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ABSTRACT

A "quantum correction" of the statistical model of the atom has

been obtained by modifying March and Plaskett's region of integration

in the (n '8)' or quantum number, plane.  Integrations over the plane

lead, in the unmodified case, to the Thomas-Fermi density expression

and energy equation.  Integrations over the modified region have here

been shown to produce a modified Thomas-Fermi expression for the elec-

tron density, and a correction to the kinetic energy.  The latter

correction shows a similarity to the weizsKcker correction, but is

smaller by a slowly changing factor of the order of ten.  A modified

Thomas-Fermi-Dirac equation has been derived by the standard vari-

ational procedure.  Numerical solutions of the equation have been

obtained which yield atomic binding energies in much better agree-

ment with experimental values than those of the unmodified theory.

\h.
9 :#.

2

- 



I.  INTRODUCTION

1The statistical model of the atom, first propounded by Fermi  and
2                                 3Thomas,  and extended notably by Dirac,  has proved a most useful

approximation to the self-consistent,field method in calculating electron

distributions and fields in atoms.  Because of its relative simplicity,

it has found wide application as a means of predicting properties of
4

free atoms and of solids.

There has bten considerable interest recently in extension of the

statistical theory through the incorporation of "quantum corrections. „5

However, the inclusion of quantum effects, with the exception of the

exchange energy, leads to severe complication of the theory and of the

equations which must be solved by numerical means.  There should be merit

in a quantum correction which, though perhaps lacking a firm underlying

basis, remains tractable while exhibiting the possibility of useful

application.

Prompting at least some of the numerous modifications of the theory,

including the present one, is the knowledge that the discrepancy is quite

large between the observed' total binding energy and that calculated,

either with or without consideration of exchange effects.  For illustration

the total energies for the low Z elements, for which experimental values

-

' 3



1Lble   I
have been obtained, are given in Table I.  The Thomas-Fermi (TF) energies

have been calculated according to the formula due essentially to Milne: 6

w           =    -20.92   27/3 ev.TF

The Thomas-Fermi-Dirac (TFD) energies have been obtained from the paper

7                                               8of  Cowan and Ashkin,     and the experimental values  are from Moore.

We shall show that a quantum correction can be derived by modifi-

cation of a region of integration in the (n '8)' or quantum number,

plane employed by March and Plaskett  in their derivation of the TF

energy equation.  A quantum-correction energy density is identified, and

it is then possible to obtain a quantum-corrected TFD equation by the

'

usual variational procedure.  Numerical solutions of the equation yield

atomic binding energies in very good agreement with experimental and

Hartree values.                  i

The discussion presumes zero temperature; a possible extension to

nonzero temperature is outlined at the end of the paper.

.

II. A MODIFICATION OF MARCH AND PLASKETT'S INTEGRATIONS

For details of March and Plaskett's derivation the reader is

referred to their paper. Briefly,   they have shown  that   the   sum  o f  one-

electron eigenvalues in a .spherically symmetric potential is approximated

in the TF method by an integral of the WKB eigenvalues over a particular

region of the (n 'f) plane.  We have used n  to denote the radial quantum

4



number, and f is the orbital quantum number.  The WKB eigenvalues are

10
obtained as solutions of the equation

r2 (E) C.9..   2    -                                                                                                                                     nCS-„t,-·

\ *

f,,        ia,[E-V(r)-(lk2/22)(211») 2/rl-  tr  =   (n,+i'/2)h,                  (1)
rl (E)

where rls(E)
and

r2f(E) are the roots of
(.

V(r)  +  (62/2m) (2+ /2)2/r2  =  E,

V(r) being potential energy.  March and Plaskett have demobstrated that

the statistical approximation to the sum of eigenvalues is given by the

11
integral

I=2 (2.6+1)E(nr'£)dnrd.6,                             (2)f.1,

whererthe number of states over which  the   sum is carried is written  as

N=2  J  (22+1)inrd.0. i                              (3)

The   r ion
of integration   in  Eqs.    (2)    and   (3) is bounded   by  nr   =   -1/2,

2   =    -1/2Aand  E(nr'f)    =   Ei. The Fermi energy, E', is chosen so that

Eq.   ( 3)   gives the total number of states being considered,   the N electrons

occupying the N lowest states at zero temperature.  E(n 'i) is the
..»e.

expression for the WKB eigenvalues considered as functions of continuous

..1.
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9.                                                                                                                                                                                                                                                                                        I.

variables.  By manipulating Eqs. ( 1), ( 2), and ( 3), March' and Plaskett
-

have derived the TF energy equation:

P   C 3 pz 5 3 2
I   = j   (322  +   V/',I 3   4*r   dr                   '                                                                         (4)

and the expression

P 8,23         6
N   =    /   -  4ycr   dr,                                                                                                             (5)

J  3h3

the integrals being taken between the roots of E' = V(r).
· From  Eq.   ( 5),

the TF density is identified as

p = 8263/3h3,

where  P  =  [211(E' -V) 11/2 is the Fermi momentum.

When the potential is known, the evaluation of the TF approximation

to  the  sum of eigenvalues is simply effected by  the  use  of Eqs.   ( 2)  and
12

(3).  In the particular case of a Coulomb field, Scott's correction

to the atomic binding energy is obtained in comparing the apprbximate

sum with the correct sum.  Thus, in atomic units the WKB expression for

the eigenvalues in a Coulomb field,is
.

'

E = -Z2/2(nr+Z+1)2,

.
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identical with that obtained by solving Schrodinger's equation.  We

introduce for convenience

a  =  (-Z2/S,)1/2                                                                                      (6)

=   C nr+Z+1) outer boundary'

the subscript referring to the outer boundary of the region of integration

in the (nr'£) plane.

We   now  have,   from  Eq.    ( 3),

n   + £+1=06r

N = 2.1,        f (281)«,d,
f= -1/2  nr= -1/2

= 2/3.                                       (7)

If levels are filled from n=l t o n=v, where n i s defined by

n = n +8+1, then the number of states must equalr

  312   =   v(p+1)(2v+1)/3.                                                                                                           (8)

1

Therefore, equating Eqs. (7) and (8),

a = [v(v+1)(2v+1)/2]1/3.

Carrying out the integration of Eq. (2) in a similar manner and

substituting for a, we get

7



..

I = .Z2[v(,+1)(2v+1)/211/3.                          (9)

Scott's correction, %2/2, is then obtained by subtracting Eq. (9) from
2

the correct sum of eigenvalues, -Z v, and letting v tend to infinity.

In application to the statistical atom, the sum of one-electron

eigenvalues is not the total energy of the electron distribution, since

the electron-electron potential energy is included twice in the summation.

However, the over-estimation  of the atomic binding energies is caused  by

the largk- magnitude   of the electron-nuclear potential energy resulting

from the infinite density of electrons which the theory predicts at the

nucleus.  Since correction of the electron-electron potential energy

is thus of minor importance, we might expect to achieve a significant

' improvement   in bindipg energy by correcting,   in some manner,   the   sum

of  eigenvalues.
.

To pursue this end, let us consider the following modification of

\
the available electron states.  Let us change the lower limit of E and

"

the value of a,so that the correct sum of eigenvalues results, again

in the case of the Coulomb field, when integrations such as the preceding

are performed over the modified region.  We shall denote the lower limit

of f by
Zmin' which is, in general, now different from -1/2.  It is con-

C L.4. .1.7 -\
venient   also to introduce the quantity  a   = Emin+1/21 which we shall   call

the "modification factor. " An evaluation  of  a  and  a  for  the K shell

follows.

8  ···



To include two states in the region of integration, we require

that

n +1+1-r r   -ak
2-2  .1, (2»'1«r" #

f=ak-1/2   nr= -1/2  ,

=   2(«Kj-h,„*2+2'K3)/3.

The condition that the total energy of the two K-electrons be the

correct value yields

n +8+1=06
p r Kr

2( .Z2/2)   =   2 J' j    (22+1) [-Z2/2(n +B+1)2]dnrd£
8= -1/2 n2=-1/2

=   -*2(aK2-2=KiK'»K )/a#'

The pertinent solution of these two equations is a  = 0.26679643,

aK = 1.4856820.

Putting v = 2, a similar calculation for'the ten states of lowest

energy results in the values a  = 0.25928018, a£ = 2.4915790·  Further,

we can consider Eq. (8) to represent the total number of states for non-

integral values of v; corresponding values of a and a can then be found.

It is not difficult to show that as the number of filled shells

becomes very large,    8 0 tends toward the unmodified  TF  valde   of   -1/2,min

and that as the region of integ:ation goes to zero,a=a= 6-1/2 = 0.40824829.

9
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If one performs the integrations indicated in Eqs. (2) and (3)

with the general value Z .  replacing -1/2 as the lower limit of £,min

the result is a modified TF energy equation and a modified formula for

the density.  Specifically, we obtain in place of Eqs. (4) and (5),

r2r  2
/ 13.p- 112 a21

I  =J     LS 2m
+V+-- Ip    4*r2dr,                                                                                  (10)

5m r2Jr
1

and

r
r 2  8* F -1,2 a2 13/2  2

N  = j         -3    2=(E'-V-  2m  -2)          4*r dr. (11)

rl 3h              r

The electron density in Eq. (10) has been identified from Eq. (11).  That

'
is,

02 -2 -5/2
P   =   (8*/31,3) 1 2»,(E'-V-  8 22) -1                                                                             (12)r

in the region specified by the limits on Eqs. (10) and (11).  These

13limits are the roots of

V + (f/2482/2 = 8,· (13)

Obviously what we have done is to eliminate states with orbital

angular momentum between zero and a cut-off value L = af.  Corresponding
C

to Lc at every radial distance is a minimum value of allowed linear

' 10    p



W

momentum, or more specifically, the lowest allowed magnitude of a

momentum vector having no radial component.  Calling this linear cut-off

momentum Pc = a /r allows us to write the density as

p = (8*/3hj)(p2-p:)3/2 (14)

At radial distances less than rl' momenta are prohibited over the entire

range from zero to P, so the electron density vanishes.

By integrating over the region in momentum space which remains

after elimination of a circularly cylindricaI portion oriented along the

radial momentum axis, we obtain

(P2)av  =   3P2/5  +    ,2/5.

.......

The kinetic energy density is therefore given by
I 1

*

1 Uk  =
(1/an)(31 2/54· 2/5)p. (15)

'
.·                                                                                                                                                                                                                                                        S

Using  Eq.    (14)   we   can  write  Eq.    (15)   as
4,                                                                                                                                                                                                                                                                                                                                                 ,

Ibl

Uk = cfp5/3 +
(C /r2)9, (16)

where c
f = (%2/1Om)(3,2)2/3 and c  = ( 2/22)82.

The first term on the

right   side   of  Eq.    ( 16)    is the usual expression   for the Fermi kinetic

11
I '



energy density. The: second  term  is a correction which we shall  call

the quantum-correction energy density,U .q                       .

III.  MODIFIED TF AND TFD EQUATIONS
»

A modified TF equation follows immediately from Eq. (12) and Poisson's

equation.  Following the usual procedure, the equation for the TF potential

function 0, defined by Ze20 = (E'-V)r, is obtained as

0" = (4x/3AZ)(2Z0/x-a2/x2)3/2, x 2 x1'
(17)

x < x1

Here x is distance measured in units of the first Bohr radius for hydrogen.

The boundary conditions are the same as for the unmodified equation:

0(0) = 1

x d'(x-) = 0(X2) o2r    2

A modified TFD equation can be derived by the variation technique
:'        14employed originally by Jensen  and recently by Tomishima15 in his

inclusion of correlation effects.  The total energy density of the dis-

tribution is written as

u = c 213 - ce, 13 - et#*ve'sp + (cdrho,

12   ..··



1

where c = (3/4)(3/*)1/3 e2'.and vn and ve are thepotentials duetotheex

nucleus and the electrons, respectively.  Minimization of the total

energy integral leads to the equation

(5cf 3)P2/3 - (4cex/3)pl/3 + C 2 +V-E' =0,

which yields

p = co[To+(E'-v-(9/r2+T2)1/2]3, r h r.0 1

Here ao = (3/5cf)3/2 and To = (11·cex2/15cf)1/2. The positive sign of the

square root is chosen so that the density agrees with the TF expression

' i f the exchange, represented  by  'ro, is neglected. We again choose   rl
as the radius at which (E' -V-c /r2) vanishes.     At  r  =  rl the density  is

therefore  80 73. while again  we   set  p  =  O  for  r  <  rl . Understanding  0
0 0'

64

how to represent  the TFD  btential function, defined by Ze20  =  (E'-V+72)r.
0  .

we are led to the modified TFD equation:

0,•   =    (4x/344Z)[1+,(2Zfi/x-a2/x2)1/213, X-ix-
1'

(18)
X<X.

1

The same boundary conditions apply as in the previous case.

In performing integrations  of Eq.  (17)  or  (18), the modification

factor, a, must be specified.  As we have previously implied, we have

13      .-

,.
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V

made the approximation that the electrons are moving in a pure Coulomb

field in order to simplify the numerical work.  Under this approximation

0 is a linear function of distance from the nucleus, and Eq. (6) becomes

a =
( -Z/20' o)1/2,   where   0'0   is the initial slope   of the potential function

with respect to x.  With a a known quantity, a can then be found.

It should be pointed out that a and a thus computed will not corre-

spond to the values which we would obtain for an element of atomic number

Z by simply considering Z electrons to be moving in a pure Coulomb field.

In fact, it develops that the modification factor for the isolated hydro-

gen atom is to be computed on the basis of about 0.10 electrons in such

a field, and for the isolated atom with Z = 100 we still get only about

11 particles.

The Coulomb approximation is certainly suggested by the success of

Scott's correction, to which we have previously referred.  The consist-

ency of the approximation with the results obtained from integrating

Eq. (18) has been examined in some detail and found to be quite good.

The alternative to making this simplification is by an iterative process

to obtain a modified electron distribution in which the calculated sum

of one-electron eigenvalues is "self-consistent. "     That  is,   we  can  cal-

culate numerically the eigenvalues in the shielded potential of the

nucleus, say by the WICB method; these are then summed.  We can also

evaluate the sum of eigenvalues by adding an amount of energy equal to

the electron-electron potehtial energy to the total energy of the electron

distribution as calculated by the statistical method.  We can then demand

agreement of the two sums.

14



IV.  RESUIRS

Numerical integrations   of  Eq.    ( 18)   have been performed for
16

several atomic species using the Los Alamos IBM type 704 digital com-

puters. Some of the results are sunmarized here.

.TA61 0 77.- In Table II the calculated total energies of the isolated atoms

may be compared with the energies computed according to a formula due

to Foldy, which is based on results of Hartree calculations. With
17

the exception of Z = 1, the agreement is nowhere worse than to within

1.5 percent, with most discrepancies well under one percent.

Several comparisons are of interest.  Among these are the values

computed for xl' as compared with those obtained by Golden. 5  In Golden's

paper the information is given from which this quantity, the inner radius

at which the electron density vanishes, may be calculated for the ground

F,j. I states of the atoms with Z = 1, 2, and 8.  The comparison is made in Fig. 1.

From the curves it is apparent that the values obtained in the present     '

calculations range from about three times those of Golden at low Z to about

1.5 times his (projected) values at high Z.

We have also pompared the radial behavior of the quantum-correction

18
energy density with the Weizsdcker inhomogeneity energy density. Using

the calculated electron distribution for the isolated copper atom for

g\3· 1
evaluation of these quantities,'we have plotted in Fig. 2 the WeizsRcker

energy density U  (multiplied by a rather arbitrary factor of 1/10), the

quantum-correction energy density U , and the corresponding radiallyq
2

, weighted quantity U x.  It is seen that the former two curves differ byq

15   ...  .



2
less than an order of magnitude over the spatial region in which U x,q

which measures the contribution to the quantum-correction energy at a

given radius, varies by several orders of magnitude.     This   is of interest

because the WeizsEcker energy term is considered by several authors19

to be too large by a factor of 9.  Very near the nucleus the correspondence

breaks down, however, since the WeizsEcker energy possesses a zero at the

radius at which the electron density has its maxinizm value.

V.  EXTENSION TO NONZERO TEMPERATURE

Extension to temperature other than zero is particularly simple if

one,neglects exchange effects.  From Eq. (14) the number of states per

unit volume with momenta between p and p + dp is evaluated as

(8*/h3) 2_2 2)1/2·. dp.      Since   the  probability  of  occupation  of  the   jth

state, with energy E  = pj2/an + Vj, is given by n  = [exp 0(E -B)+11-1,
where   B   =   1/kT   andw B   is   the chemical potential,   we  have   as the formula

for the electron density t

.

.1. 1., :
1 1,

00

p = (8*/h3110 [exp 0(E -B)+1]-1(p2-Pc2)1/2pdp. (19)

PC

222
Introducing a new momentum variable defined by (p')  =p  -pC'

Eq. (19) can be written in terms of the "Fermi-Dirac function    Fl/2( C).
t,20

i

We then have If'  

1

p =  (44/hj)(an/0)3/2'1,1/2(0),

16      "'- *
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the variable of integration in the Fermi-Dirac function being defined

21by y = B(P,)2/201, and C standing for    -B(Pc2/23 + V - P). The equation

for the potential function could now be set up and solved exactly as

described, for example, by Latter.22 The solutions would differ from

those obtained by Latter chiefly in the vicinity of r = 0.  In

the unmodified case we have C = -O(V-B), and as the nucleus is approached

    -, =  and Fl/2(C) -4 - as £3/2 Under the modification, with C including

the   term  in  pc, C -4  -CO.  and   Fl/2( C)   -*  0   as   ec.

The evaluation of Pc' or equivalently of the modification factor,

should proceed just as in the zero temperature case.

...

17



TABLE I.  Comparison of the total atomic·binding energies

on the Thomas-Fermi and Thomas-Fermi-Dirac models

with experimental values.

Z
-W F(ev)

-W (ev) -W   (ev)TFD exp

1 20.92 28.07 .13.60

2 105.4 126.7 78.98

3 271.5 312.4 203·4

4 531.3 596.3 399.0

5          894.3
'

987.5       ·        670.8

6         1369.     U     . 1494. 1030.

7 1961. 2122. 1486.

8 2678. 2878. 2043.

11                                                               1



1

TABLE II.  Total atomic binding energies from the modified

theory compared with Foldy's values.

Z                 -wmod TFD(ev) -WFoldy(ev)

1 15.50 13.60

2 77.52 78.69

3 201.8 202.2

4 399.4 400.6

5                  679.1                           677.3

6 1049. 1042.

7 1515. 1507·

8 2084. 2070.

10 3548. 3538.

420 1.856.104 1.834·10

30 4.881 4.815

40                    9.682                           9.597

50                   1.646·105                                 51.638·10

60 2.539 2.534

70 3.662 3.666

80 5.030 5.053

90 6.651 6.710

100 8.540 8.585



FIGURE LEGENDS

Figure 1. The inner radius, below which p = 0, in atomic units.

Figure 2. A comparison of the quantum-correction energy density

and the WeizsUcker inhomogeneity energy density for

the isolated copper atom.
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