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ABSTRACT

A "quantum correction" of the statistical model of the atom has
been obtained by modifying March and Plaskett's regi&n of integration
in the (nr,ﬂ), or quantum number, plane. Integrations over the plane
lead, in the unmodified case, to the Thomas-Fermi density expression
and energy equation. Integrations over the modified region have here
been shown to produce a modified Thomas-Fermi expression for the elec-
ﬁron density, and a correction to the kinetic energy. The latter
correction shows a similarity to the Weizsacker correction, but is
smaller by a slowly changing factor of the order of ten. A modified
Thomas-Fermi-Dirac equation has been derived by the standard vari-
ational procedure. Numerical solutions of the equation have been
obtained which yield atomic binding energies in much better agree-

ment with experimental values than those of the unmodified theory.



I. INTRODUCTION

The statistical.model of the aton, firét propounded by Fermil and
Thomas,2 and extended.notably by Dirac,5 haé‘proved a most useful
approximation to the self-consistent field method in calculating electron
distributions and fields in atoms. Because of its relative simplicity,
it ﬁas found wide éppiication as a means of predicting properties of
free atoms and of solids.u

There has beéen considerable interest recently in extension of the

statistical theory through the incorporation of "quantum corrections."5

However, the inclusion of quantum effécts,:with the exception of the

exchange energy, le;ds to severe complication of the theory and ofAthe
equations which must be solved by numerical_means. There should be merit
in a quantum correction which, though perhaps lacking a firm underlying
basis, remains tractable while exhibiting the pdssibility of useful
applicafion.

Prompting at léast some of the humerous modifications of the theory,
including the present one, is the knowledge that the discrepancy is quite
lafge between the observed‘totaltbinding energy and that calculated,
either witﬁ or without consideration of exchange effects. For illustration

the total energies for the low Z elements, for which experimental values

-



Table T

have been obtained, are given in Table I. The Thomas-Fermi (TT') energies

have been calculated according to the formula due essentially to‘Milne:6

_ T/3
WTF = -2Of92 Z'/ “ev.

The Thomas-Fermi-Dirac (TFD) energies have been obtained from the paper

T

of Cowan and Ashkin,' and the experimental values are from Moore.

We shall show that a guantum correction can be derived by modifi-
cation of a region of integration iﬁ the (nr,ﬂ), or quantum number,
plane employed By March and Plaskett9 in their derivation of the TF

energy equation. A quantunm-~correction energy density is identified, and

it is then possible to obtain a quantum-corrected TFD equation by the

" usual variationéi procedure. Numerical solutions of the equation yield

atomic binding energies in very good agreement with experimental and
Harfree values. i

The discussion presumes zero'temperature; a possible extension to
nonzero temperature is outlined at the end of the paper.

II. A MODI%TCATION OF MARCH AND PLASKETT'S INTEGRATIONS

For details of March and Plaskett's derivation the reader is
referred to their paper. Briefly, they have shown that the sum of one-
electron eigenvalues in a spherically symmetric potential is approximated

in the TF method by an integral of the WKB eigenvalues over a particular

region of the (nr,ﬁ) plene. Ve have used n_ to denote the radial quantum



number, and £ is the orbitel quantum number. The WKB eigenvalues are
obtained as solutions of the equationlo
I‘ (E) Can i Conaadr
{am[E—V(r) (‘1’12/2m)(£+1/2) /r} dr = (n +l/2)h (1)
rl ('
)/ Y/
where r, (E) and T, (E) are the roots of

I

V(r) + (E2/2n) (81/2)/ -

V(r) being potential energy. March and Plaskett have demonstrated that
the statistical approximation to the sum of eigenvalues is given by the

integralll

¥

2 f (2%1)E(nr;..e)‘é.nrd2, o (2)

where'the number of states over which the sum is carried is written as

t

- ef (2£+1)an_ab. « (3)

The {S§ion of integration in Egs. (2) and (3) is bounded by n, = -1/2,
g = -1/2;§and E(nr,ﬁ) =E'. The Fermi energy, E', is chosen so that
Eq. (3) gives the total number of states being considered, the N electrons

occupying the N lowest states at zero temperature. ' E(ﬂr,ﬂ) is the

expression for the WKB eigenvalues considered as functions of continuous



variables. By manipulating Egqs. (1), (2), and (3); March and Plaskett

have derived the TF energy equation:

3 p2 \&rp3 2 ,
I f v s (%)
5 2m J =3 5h3

and the expression

8:rP5h é

N =
3p°

(5)
the integrals being taken between the roots of E' = V(r). - From Eq. (5),

the TF density is identified as

p = 87&33/3]33:

1/2

_where P = [2m(E* V)] is the Fermi momentum.

When the potential is known, the evaluation of the TF approximation

to the sum of eigenvalues is simply effected by the use of Egs. (2) and

(3). 1In the particulér case of a Coulomb field, Scott's correction12

to the atomic binding energy is obtained in comparing the approximate
sum with the correct sum. Thus, in atomic units the WKB expression for

the eigenvalues in a Coulomb fieid*is
) N . B

i
i
)

E = -z%/2(n_+4+1)5,
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identical with that obtained by solving Schrodinger's equation. We

introduce for convenience

o = (v-za/zs')l/2 : ' . (6)

(nr+%l)outer boundary’
the subscript referring to the outer boundary of the region of integration
in the (nr,ﬁ) plane.

We now have, from Eg. (3),

nr+£i-l=a.
N = 2f (EMl)dnrd/Z
= -1/2 n = -1/2
= 27 /3. | (7)

If levels are filled fromn = 1 to n = v, where n is defined by

n = nr+£+l, then the number of states must equal
v , -
Zaﬁ = y(wrl)(2v4+1) /3. ‘ 8)
T ; :

Therefore, equating Egs. (7) and ‘(8) ,

T = [v(v+l)(2v+l)v/2]:._l'/3.

Carrying out the integration of Eq. (2) in a similar manner and

' substituting‘for a, we get



I = -Ze[v(v+l)(2v+l)/2]l/3. (9)

Scott's correction, 22/2, is then obtained by subtracting Eq. (9) from
the correct sum of eigenvalues, -Zav, and letting v tend to infinity.

In application to the statistical atom, the sum of one-electron
eigenvalues is not the total energy of the electron distribution, since
the electron-electron potential energy is included twice in the summation.
Howéver, the over-estimation of the atomic binding energies is caused by
the laré;‘magnitude of the electfon-nuclear potential energy resulting
from the infinite density of electrons which the theory predicts at the
nucleus. Since correction of the electron-electron potential energy

...... is thus of minor importance, we migbt expect to achieve a significant .
" improvement in Bindipg energy by correcting, in some manner, the sum
of eigenvalues.

To pursué this end, let us consider thg following modification of
the available electron states. Let us change the lower limit of £ and
the value of awsoythat the correct sum of eigenvalues results, again
in the case of the Coulomb field, when integrations such as the preceding

- are perfqrﬁed over;ﬁhe"modified region. We shall dénote the lower limit
of 4 by‘ﬂmin, which'is, in genérél, now diffefenilfig? -1/2. It is con-
venient also to introduce the quéntity a = ﬂmin;i/5§ which we shall call
the "modification factor." An evaluation of a and a for the K shell

follows.



To include two states in the region of integration, we require

that

nr+£+1=mK

o
]
n

'(2z+1)dnrdz’
z=gK-1/2 n_= -1/2

by

]

2leng ey rem) /5.

The condition that the total energy of the two K-electrons be the

correct value yields

nr+E+l=onK

2 (22+1) [-ze/a(;lrwﬂ)?]dnraz
z=aK_1/2 n_=-1/2 ,

2(-22/2)

2, 2 : 2
27 (ay B ay e ") fay
The pertinent solution of these two equations is a = 0.26679643,
@ = 1.&856320. .
Putting v = 2, a similar calculation for the ten states of lowest
energy results in the values & = 0.25928018, a = 2.4915790. Further,
we can consider Eq. (8) to rebfesent the total number of states for non-

integral values of v; corresponding values of a and o can then be found.
It is not difficult to show that as the number of filled shells -
i
becomes very large, zmin tends oward the unmodified TF value of -1/2,

and that as the region of integration goes to Zero, & = a = 6-1/2 = 0.L0824829.



If one performs the integrations indicated in Egs. (2) and (3)

with the general value zmin replacing -1/2 as the lower limit of g,
the result is a modified TF energy equation and a modified formula for

the density. Specifically, we obtain in place of Egs. (%) and (5),

r

or. 2 2 24 -

o 3 P° he a 2
l'l. o

and

- . _
2 2 2 3/2

ve [ fan v ) [ e, e
1

The electron density in Eq. (10) has been identified from Eq. (11). That

" is,

: C +2 2-
o= <8=r/3h3,)[an(E'-v-;—g,-—n f—é)f/ (12)

in the region specified by the limits on Egs. (10) and (11). These

limits are the roots13 of

vV + (1512/2n}):11‘2/r2 = . (13)

Obviously what we have done is to eliminate states with orbital -
angular momentum between zero and a cut-off value Lc =gh. Corresponding

to Lc at every radial distance‘is'a minimum value of allowed linear

+ 10
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momentum, or more specificelly, the lowest alloved magnitude of a
momentum vector having no radial component. Calling this linear cut-off

gh/r allows us to write the density as

nmonmentun P.

o
1

- (8x/37)(PPpR)3/2 (24)

At radial distances less than T,

range from zero to P, so the electron density vanishes.

momenta are prohibited over the entire

By integrating over the region in momentum space which remains
after elimination of & circularly cylindrical portion oriented along the

radial momentum axis, we obtain

~.
A

2y 2 2
(2%, = /5 + 20_/5.

The kinetic energy density is therefore given by
. . kS

Uy = (1/2m)(3P2/5+2pf/5)b: - | | -, (15)

Using Eq. (14) we can write Eq. (15) as

“

]

U = '95/3 + (cq/re)p,

‘k='cf - (16)

where c f = (352/10m)(31r2)2/ 3 and ¢y = (ha/&n)az. ' The first term on the

right side of Eq. (16) is the usual e@ressién for the Fermi kinetic

11




energy density. The, second term is a correction which we shall call

<thé quantum-correction energy density,Uq.

III. MODIFIED TF AND TFD EQUATIONS

A modified TF equation follows immediately from Eq. (12) and Poisson's
equation. Following the usual procedure, the equation for the TF potential

function ¢, defined by Ze2¢ = (E'-V)r, is obtained as

¢u

(1 /3w2) (22 -2 /<2) 1,  xsx,

=0, ‘ . x < X, -

(17)

Here x is distance measured in units of the first Bohr radius for hydrogen.

The boundary conditions are the same as for the unmodified equation:

g(0) =1
X2¢'(X2) = ¢(X2).

A modified TFD equation can be derived by the variation technique
employed originally’by Jensenlu and recently by T—omishima15 in his
inclusion of correlﬁtion effects. The total energy density of the dis-
tribution is written as

5/3

U=cm - cexpu/3 - e(vn+ve/2)p ; (éq/rz)é,



vhere c_, = (5/4)(5/101/3 e2,.and v and v° are the potentials due to the
micleus and the electrons, respéctively. Minimization of the total
energy integral leads to the equation

t

(505/306°% - (e g /30e™? % ¢ fe2 4 v - B =0,
" which yields

2. .2\1/2,3
_ LI ¢
p = ob[To+(E v cq/r +T§) ¥, rzr,.
Here o= (3/5c )3/2 and T = (ke 2/l5c )1/2. The positive sign of the
C o f o ex iy
square root is chosen_so that the density agrees with the TF expression
" if the exchange;.represented by To,'is neglected. We again choose Ty

1 the density is

therefore 8°6T2’ while again we set p = 0 for r < ;- Understanding ¢

how to represent the TFD ?btential function, defined by Ze2¢ = (E'-V+T§)r,

as the radius at which (E'-V-cq/ra) venishes. At r = r

we are led to the modified TFD equation:
(hx/EﬁhZ)[l+n(22¢/x-a2/x2)l/2]3, X Z %,

0, - . x < xl.

¢n

The same boundary conditions epply as in the previous case.
In performing integrations of Eq. (17) or (18), the modification

factor, &, mst be specified. As we have previousiy'implied, we have



made‘the approﬁimation that the electrons are moving in a pure Coulomb
field in order to simplify the numerical work; Under this approximation
¢ is a linear function of distance from the nucleus, and Eq. (6) becomes
a = (-Z/2¢'o)l/2, where ¢'o is the initial slope of the potential function
wiﬁh respect to x. SWith o & known quéntity, a can then be found.

It should be pointed out that a and a thus computed will not corre-
spond to the Qalues which ve would obtain for an element of atomic number

_ Z by simply considering Z electrons to be moving in_a pure Coulomb field.
‘ | "-J: . In fact, it deveiops that the modificationifactbr for the isolated hydro-
| gen atom is to be computed on the bésis of about 0.10 electrons in such
a field, and for the isolated atom with Z = 100 we still get onl& about
ll particles.

The Coulomb approximation is certainly suggested by the success of
Scott's correction,'to vwhich we have previously referred. The consist-
ency of the approximation with the results obtaiﬁed from integrating
Eq. (18) has been examined in some deﬁail and found to be quite good.

The alternative to making this simplificétion is by an iterative process
to obtain a modified electron distribution in which the calculated sum
.of one-electron eigenvalues isi"self-consistent." That is, we can cal-
culate numerically the eigenvélugs in the shielded potential of the
nucleus, say by the WKB method; these are then summed. We can also
evaluate the sum of eigenvalues by4adding an amount of energy equal to
the electron-electron potential energy to the total energy of the electron
distribution as calculated by the statistical method. We can.then demand

agreement of the two sums.

1



Table Ti
Fig !
Gy 1

~ IV. RESULTS

Numerical integrations of Eq. (18) have been performedl6 for
several atomic species using the los Alamos‘IBM type 704 digital com-
puters. Some of the results érq suumarized here.

In Table II the.calculated total energies of the isolated atoms
may be compared with the energies computed according to a formula due
to Fold.y,17 vhich is based on results of Hartree calculations. With
the exception of Z = 1, the agreement‘is nowhere worse than to within
1.5 percent, with most discrepancies well under one percent.

Several cémparisons are of interest. Among these are the values

computed for Xy, @s compared with those obtained by Golden.5 In Golden's

paper the information is given from which this quantity, the inner radius

at which the electron density vanishes, may be calculated for the ground
states of the atoms with Z = 1, 2, and 8. The coﬁparison is made in Fig. 1.
From the curves it is apparent that the values obtained in the present !
calculations range from about three times those of Golden at low Z to about
1.5 times his (projected) valueé at high Z.

We have also compared the.radial behavior of the quantum-correction
energy density with the Weizsééker inhomogeneity energy density.18 Using
the calculgted electron distribution'for the isolated copper atom for
evaluation of these quantities;‘ﬁe have plotted in Fig. 2 the Weizsicker
energy density Ui (multiplied>by.é fatherlarbitra;y fagtor of l/lO), the
quantumrcorrection.enefgy densitylﬁq, and the corrésponding radially

weighted quantity Uq}a. It is seen that the former two curves differ by

15 Cer .



less than an order of magnitude over the spatial region in which qug,
vhich measures the 'contribution to the quantum~-correction energy at a
given radius, varies :by several orciers of magnitude. This is of interest
because the Weizsicker energy term is considered by several authorsl9

to be too large by a factor of 9. Very near the nucleus the correspondence
breaks down, however, since the Weizsicker energy possesses a zero at the
radius at which' the electron density has its maximm value.

v

V. EXTENSION TO NONZEROC TEMPERATURE

Extension to temperature other 'bha.ﬁ zero is particularly simple if
one, neglects exchange effecté.‘ From Eq. (14) the nuiber of states per
{mit volume with momenta between p and p + di: is evaluated as
(8:t/h3 )(pa-pca)l/ 2pd_’p. Since the probability of occupation of the jth
state, with energy Ej = pje/zm + Vj,1 is given by ny = [exp B(Ej-p.)+l]-l,
vwhere B8 = l/kT and, p is the chémica.l potential, we have as the formula
for the electron density | " ‘? , :

1

p= (8rr/h5)f [exp B(Ej-u)ﬂ]"l(pa-pce)l/ %pap. (19)
P, '

J

Introducing a new momentum variable defined by (p')‘?‘ = p2 - pc2
Eq. (19) can be written in terms of the "Fermi-Dirac function"zo
We then have L

!
p = (/) (2n/8)*/2 7 (0),

t

16



the variable of inféér‘atioﬁ in the Fermi-Dirac function being defined
by ¥y = B(p')a/zm, and standing'forel —ﬁ(pca/am + V = p). The equation
for the potential function éould now be sét'up and solved exactly as
descr%bed, for example, by Latter.22 The solutions would differ from
" those obtained by Latter - chiefly in'the vicinity of r = 0. In
the unmodified case'we have { = -g(V-u), and as the nucleus is appfoached
{ >« and F, /2(§) —® as §5/ 2, Under the modification, with { including
the term in p_,{— - and Fl/2(§) >0 as eb.

The evaluation of P> OF eqﬁivalently of the modification factor,

should proceed just as in the zero temperature case.

A7



TABLE I.

o [ 2NN E AN |

Comparison of the total atomic binding energies

on the Thomas~Fermi a.nd Thomas=-Fermi-Dirac models

with experimental values.

“pp(ev)

20.92

105.4

271.5
531.3

8ok.3
1369.
1961.
2678.

'WTFD( ev)

28.07
126.7
312.4
596.3
RBT.5

© - 1hok,
o122,
- 2878.

'13.60
78.98
203.4
399.0
670.8
1030.
1486.
2043.



TABLE II. ‘To;ba_.l atomic binding energies .ﬁ"om the modified

theory compared with Foldy's values.

z -W_.a 7rpleV) - ’wfolg (ev)
1 15.50 “ ;% | 15.60
2 77.52 : | 78.69
3 201.8 l | 202.2
b 399.4 400.6
2 679.1 . \ 677.3
6 1049, S 1ou2.
T 1515. , 1507.
8 o 208k | 2070.
10 35u8.. | | 3538.
20 1.856-10" 1.834- 10"
50 ~ hea : ' 4.815
40 | 9.682 \ 9.597
50 1.6u6f105,.‘ | . 1.638410°
60 o 2.559 . - o 2.554
70 | ‘3.662::5;f . 3.666
80 5.030 S 5.05%
%0 6.651 ""f .. 6.710

100 , g.54%0 . » ' '8.585



Figure 1.

Figure 2.

FIGURE LEGENDS

The inner radius,below which p = O, in atomic units.
A comparison of the quantum-correction energy density

and the Wéizsﬁcker inhomogeneity energy density for

the isolated copper atom.
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