

Demonstrations of Diode-Pumped and Grating-Tuned ZnSe:Cr²⁺ Lasers

R. H. Page, J. A. Skidmore, K. I. Schaffers,
R. J. Beach, S. A. Payne, W. F. Krupke

This paper was prepared for submittal to the
Advanced Solid-State Lasers Twelfth Topical Meeting
Orlando, FL
January 27, 1997

September 19, 1996

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

Demonstrations of diode-pumped and grating-tuned ZnSe:Cr²⁺ lasers

Ralph H. Page

Jay A. Skidmore

Kathleen I. Schaffers

Raymond J. Beach

Stephen A. Payne

William F. Krupke

Lawrence Livermore National Laboratory

Mailcode L-441

P.O. Box 808

Livermore CA 94550

(510) 422 2774

(510) 423 6195 facsimile

RPAGE@LLNL.GOV

A diode-side-pumped ZnSe:Cr²⁺ laser operated with a 1.65 μ m InGaAsP/InP pump array. With a grating tuner and MgF₂:Co²⁺ laser pumping, it spanned the 2134 - 2799 nm range.

Demonstrations of diode-pumped and grating-tuned ZnSe:Cr²⁺ lasers

Ralph H. Page, Jay A. Skidmore, Kathleen I. Schaffers,
Raymond J. Beach, Stephen A. Payne, and William F. Krupke

Lawrence Livermore National Laboratory

Mailcode L-441

P.O. Box 808

Livermore CA 94550

(510) 422 2774

(510) 423 6195 facsimile

RPAGE@LLNL.GOV

Within the last few years, the divalent-transition-metal-doped II - VI material class has been proposed as source of new tunable mid-IR lasers. These new lasers could presumably find many applications, including those currently filled by parametric oscillators, lead-salt diode lasers, etc. Spectroscopic evaluation¹ exposed Cr²⁺ as a prime laser candidate on account of its high luminescence quantum yield and the expectation that ESA would be absent. ZnSe and ZnS were host media that gave laser action in a confocal cavity when pumped with a ~1900 nm MgF₂:Co²⁺ laser;^{2,3} untuned operation centered around 2350 nm, the wavelength of maximum emission cross section. Three different doping methods (melt growth, seeded physical vapor transport, and diffusion doping) have produced ZnSe:Cr²⁺ crystals that lase. Use of an intracavity birefringent filter initially allowed tuning throughout the 2280 - 2530 nm range. Several development opportunities remained to be addressed, including construction of a diode-pumped laser system, extension of the laser's tuning range, and improvement of the laser material quality (and hence, the slope efficiency.)

Spectroscopic parameters (see Table I) have a decisive impact on the choice of laser design. ZnSe:Cr²⁺ has been referred to as "the Ti-sapphire of the mid-IR" on account of its similar electronic transition symmetry, short energy-storage lifetime (~9 μ sec.) and broad emission linewidth (implying a wide tuning range of ~2000 - 3000 nm.) A salient difference is the much larger transition cross section, which, together with the longer fluorescence lifetime and smaller transition energy, combine to give a much smaller (by over two orders of magnitude) saturation intensity $I_{sat} = h\nu/\sigma t \sim 14 \text{ kW/cm}^2$. Generally, efficient laser operation mandates a pump intensity on the order of I_{sat} , although lower intensities also can work well in side-pumped configurations. The first ZnSe:Cr²⁺ laser demonstrations were conducted in an end-pumped geometry with a tightly-focused (~0.2 mm spot) MgF₂:Co²⁺ laser beam, for a peak pump intensity well over 100 kW/cm², so laser threshold was easily reached. Upon "radiance conditioning," available diode arrays for the preferred 1.8 μ m pump wavelength deliver more modest intensities of only a few kW/cm², so the low I_{sat} value can be considered a crucial factor enabling efficient diode-pumped laser performance.

Our diode-pumped laser design (Figure 1) is based on that of a previously-reported diode-pumped Nd:YVO₄ laser.⁴ The output of four microlensed 1.65 μ m InGaAsP/InP diode bars is combined in a cylindrical lens and focused onto a ~0.2 mm stripe on a ZnSe:Cr slab, whose end-faces are AR-coated for 2.5 μ m. The single bounce at the "TIR interface" allows the resonated beam to sample the high-gain pump face region, yet enter

and exit the crystal without aperture losses. Output energy and beam quality depend on the bounce angle and penetration depth of the pump light.⁴ The diode array, when operated at a low duty cycle with a 50 μ sec pulsewidth, gave the slope data of Figure 2; a maximum diode power of 75 W was obtained, and an array-integrated slope of 0.795 W/A corresponding to a slope for each diode bar of ~0.2 W/A. Slope-efficiency data for the integrated laser using a series of flat output couplers are shown in Figure 3. (The pump-energy scale has been normalized by a factor of 0.06, roughly representing the fraction of the pump energy absorbed in one resonated-mode diameter. Our lightly-doped crystal had a 1.65 μ m pump absorption coefficient of ~2.2 cm⁻¹, half the 1.8 μ m value of $\alpha_{\text{max}} \sim 4.4$ cm⁻¹.) Here the threshold energy increases substantially for output coupling values above 10%, reflecting a crystal passive loss estimated at $\alpha_{\text{loss}} \sim 15\%/\text{cm}$. The maximum peak output power of 0.34W was achieved with the 90% -reflecting output coupler. A "figure of merit" $\text{FOM} \equiv \alpha_{\text{max}}/\alpha_{\text{loss}}$ can be used to describe crystal quality; in this case, $\text{FOM} \sim 27$. Our crystal-growth efforts are aimed at raising the doping level and pump absorption without increasing the passive loss.

Grating-tuning experiments were done by replacing the cavity high-reflector with a 420 line/mm diffraction grating on a rotation stage, and using curved output couplers. The diode array was removed and a pump beam from a MgF₂:Co²⁺ laser was focused onto the crystal using the same cylindrical lens. Output wavelengths were checked with a monochromator. According to Figure 4, the long-wavelength limit of operation was 2799 nm, most likely due to the decline in emission cross section (and gain.) The short-wavelength cutoff was 2134 nm; even though the emission cross section remains substantial, self-absorption inhibits laser operation.

This work was supported by the U. S. Department of Energy under Contract W-7405-ENG-48, by LLNL.

References

1. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, "Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media," IEEE J. Quantum Electron.32, 885 - 895 (1996).
2. R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, "Cr²⁺ - doped zinc chalcogenides as efficient, widely-tunable mid-infrared lasers," IEEE J. Quantum Electron., submitted for publication.
3. R. H. Page, L. D. DeLoach, K. I. Schaffers, F. D. Patel, R. J. Beach, S. A. Payne, and W. F. Krupke, "Recent developments in Cr²⁺ - doped II - VI compound lasers," OSA Trends in Optics and Photonics on Advanced Solid State Lasers, Stephen A. Payne and Clifford R. Pollock, eds. (Optical Society of America, Washington, DC 1996), Vol 1, pp. 130 - 136.
4. J. E. Bernard and A. J. Alcock, "High-efficiency diode-pumped Nd:YVO₄ slab laser," Opt. Lett. 18, 968 - 970 (1993).

		$Ti^{3+}:Al_2O_3$	$ZnSe:Cr^{2+}$
Transition		$2E \rightarrow 2T_2$	$6E \rightarrow 5T_2$
Upper-level lifetime	τ_{em} (μsec)	3	9
Peak fluorescence wavelength	λ_{max} (nm)	800	2300
Fluorescence linewidth (RT)	$\Delta\nu$ (cm ⁻¹)	4300	1700
	$\Delta\lambda$ (nm)	300	1000
Relative bandwidth	$\Delta\lambda/\lambda_{max}$	0.38	0.43
Peak pump cross-section	σ_{abs} (10 ⁻²⁰ cm ²)	6.5	87
Pump saturation intensity	I_{sat} (kW/cm ²)	2000	14

Table 1. Spectroscopic properties of Ti^{3+} in Al_2O_3 and Cr^{2+} in II-VI hosts; the low I_{sat} value for the latter enables diode-pumped laser operation.

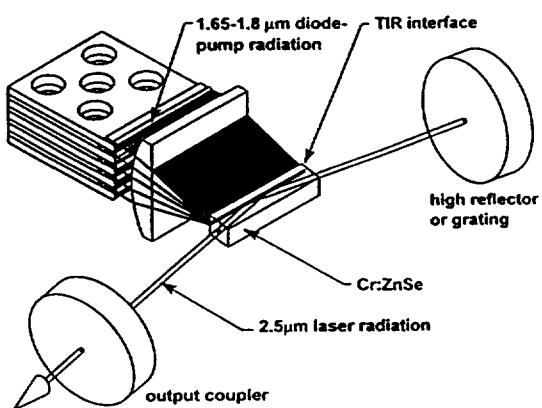


Fig. 1. Diode-side-pumped laser design, which facilitates integration of a ZnSe:Cr slab and a multiple-bar diode array.

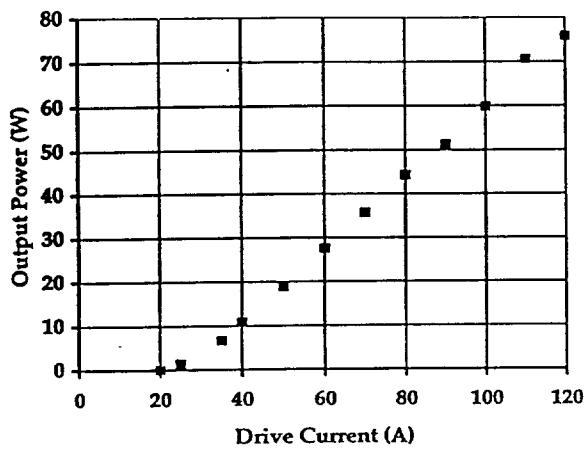


Fig. 2. Slope data for a 4-bar InGaAsP/InP pump array operating at 1.65 μm. The threshold and slope are respectively 24.4 A and 0.795 W/A.

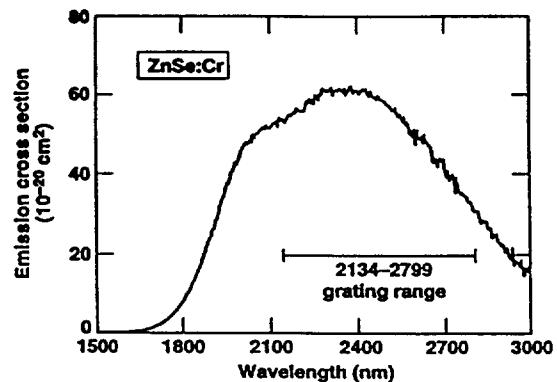


Fig. 4. Emission spectrum and tuning range demonstrated with $MgF_2:Co^{2+}$ laser pumping of ZnSe:Cr, tuned with a diffraction grating. Two different output couplers were used to obtain the indicated coverage.

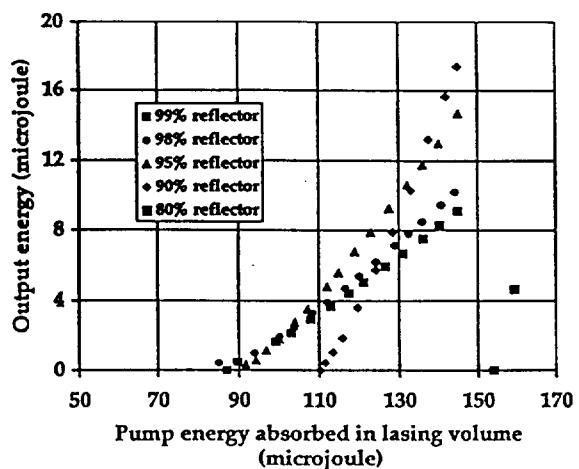


Fig. 3. Slope data for the diode-pumped ZnSe:Cr laser operating with several different flat output couplers. The pump-energy axis has been scaled to account for an estimated mode fill of 0.06.

Technical Information Department • Lawrence Livermore National Laboratory
University of California • Livermore, California 94551