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Executive Summary

The solution of dynamic contact problems within an explicit finite element program
such as the LLNT. DYNA progroms is addressed in the attached report. Our approach is
to represent the solution for the deformation of bodies using the explicit algorithm but
to solve the contact part of the problem using an implicit approach. Thus, the contact
conditions at the next solution state are considered when computing the acceleration state
for each explicit time step. For the current development we employ a Newmark update
procedure where the position of a node at the next step is given by
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A normal gap for each slave node to master segment is computed using interpolants of
the above Newmark formula. For normal gaps which violate the impenetrability condition
for solid bodies a node to segment contact constraint is introduced. This leads to a set
of equations which couple the degrees of freedom which, when linearized, lead to a set of
simultaneous linear equations. Thus, the contact part is implicit.

Since the explicit time step is constrained by the Courant condition, we assume that
changes in the directions of the normal to contact surfaces do not change rapidly. Using
this constraint, the gap condition becomes linear and it is necessary to only solve the
implicit equations once per time step.

For contact conditions which are node-node we are able to show that satisfying the
contact conditions using the above approach lead to states for which the velocities and
accelerations computed from the Newark formulas are free from spurious jumps commonly
encountered in explicit solutions. The interpolated conditions may not satisfy the jump
states exactly, but numerical solutions confirm that good results are obtained. To facilitate
the description of contact surfaces an automatic enumeration for the slave nodes and master
segments on the surfaces of each body was employed.

The drawback of the method proposed in the study is the need to solve the implicit set
of equations resulting from contacts. This is offset by the improved velocity/acceleration
states obtained and the fact that no reduction in the Courant condition for setting the
time step is imposed by contacts. While our study employed a direct solution for the
linear implicit solutions resulting from contacts an iterative scheme, e.g., a preconditioned
conjugate gradient method, may be employed.



An Ezplicit-Implicit Contact Algorithm

MATTHEW W. SALVESON
Department of Civil Engineering
University of California, Berkeley, CA 94720

Written Under The Supervision of:

RoBERT L. TayLor
Department of Civil Engineering
University of California, Berkeley, CA 94720

1. ABSTRACT

This paper addresses the solution of dynamic contact problems by finite element methods. A new treat-
ment for transient effects associated with initial dynamical contacts between two bodies is developed and
implemented. For many treatments, it is necessary to introduce an artificial dissipation mechanism into an
analysis to control oscillations resulting from the impacts associated with dynamical contacts. For an explicit
algorithm, it is possible to introduce the constraints on the displacement field such that the spurious oscil-
lations may be avoided without using artificial damping. The proposed treatment uses an explicit-implicit
algorithm in which an explicit predictor step is performed. In the case of contact, an implicit corrector step
is then performed that enforces the zero gap constraint at all points of contact. This algorithm minimizes
the spurious oscillations usually associated with dynamic contact problems.

2. INTRODUCTION

The analysis of interacting bodies which include the effects of both material nonlinearity and large deforma-
tions has received considerable attention during the last few years(2-11, 13-21, 23-38]. Many improvements
to this type of analysis have been made and it is possible to effectively address a class of nonlinear systems
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in which constraints that reflect contact are included. In most work reported to date, one-step methods have
been used to advance the solution in time. General classes of one-step methods have been proposed for the
time integration of the momentum balance equation by many authors, including Newmark[22] and Katona
and Zienkiewicz{12].

Much effort has been expended to develop stable and accurate methods which may be applied to general
classes of problems. In general, methods are divided into groups: (1) explicit integration of the momentum
balance equations; and (2) implicit integration of the momentum balance equations. In this paper a study
is presented to consider a general treatment of contact constraints and their effects on a transient analysis.
Special consideration is directed to the dynamical aspects of contact problems so that use of artificial diffusion
mechanisms may be avoided.

Section 3 of this report develops the contact equations for a general hyperelastic material. Section 4 develops
the dynamic equations of motion. Section 5 examines the behavior of the velocity and acceleration fields at
contact interfaces. Section § presents a 2-D contact detection algorithm. Section 7 presents a number of
examples that test the sropoced alzorithm.

3. DEVELOPMENT OF VARIATIONAL EQUATIONS

This section develops the contact equations for a general hyperelastic material.

Consider a body B occupying a region 2, with boundary 80, at some time t. Define the region occupied
by B at time % to be {1y, the reference configuration, with boundary 8Qp. Each material point in the body
ia represented by its position vector X in the reference configuration. Assume the existence of an invertible
mapping ¢ : O x R — Q, such that

x = ¢(X, ) (3.1
where x is the position vector of the material point X in the current configuration Q;. See Figure 3.1.

X,

FIGURE 3.1 Mapping of Reference Configuration to Current Configuration

A fundamental measure of deformation is the deformation gradient defined by

_9% _
F= ==V (3.2)

from which the first Piola-Kirchoff stress tensor for finite elasticity may be deduced from an energy functional
w:
AW (F)

5 (3.3)

P=p
where

W = W(Vou) = W(F) (3.4)
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It is common in numerical simulations to introduce the displacement field (assuming a constant basis e; and
common origin for the body)

u=x~-X (3.5)
Hence,
Vou=F-1 (3.6)
This gives
_ 8W(You)
P= po—-———a(%:) (3.7

Consider a body force per unit mass in the reference configuration, bg, and a surface traction p defined by
p = PN where N is the outward normal to the surface in the reference configuration. These terms together
with ¥ may be used o exprass the enesgy functional L{u):

O(u) = / poW(Vou) dV — / pobg-udV — / po-udA (3.8)
e Qo Ny
We desire a valid solution for u such that
6I(u) = / P .Vo(éu)dV -—/ pobg - dudV — p-dfudA=0 (3.9)
Qq o atle
This may now be transformed to the current configuration to yield
/ a-V(&u)dv-—/ pb-6udv-/ p-éuda=0 ' (3.10)
[2 7 [N an,
where
t=on
o= -}pr’ (3.11)
J = det(F) |

Here, n is the outward unit normal to the surface in the current configuration.

Utilizing D’Alembert’s principle, Equation (3.10) may now be modified to include inertial terms:

/ c~V(6u)dv+/ pu dv — pb-&udv—/ p-éuda=0 (3.12)
Q4 11 [ a0 ’
Once an expression for W is chosen, a stress function may be computed:
o= f(Vou) (313)
Spatial discretization of the body B using finite element methods {39, 40] will then yield the familiar equations
Mi 4+ P(u)=F (3.14)
To include the effects of contact, Equation (3.8) is augmented with a set of constraints, g, and their Lagrange
multipliers, A :
fi(u,A\)=T{u)+X-g (3.15)

g i8 the n¢, order vector describing n discrete constraints on the displacement field. Here, each constraint is
a zero penetration condition at the discrete points of contact.
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Define the second term on the right hand side of Equation (3.15) as

Oen=A-g (3.16)
The first variation of Equation (3.16) is
Sleon =8A-E+A-6g=6A-g+ (%6") A= 6A-g+ 6u-(G(u)A) (3.17)
where
og )’
Gu)={—
(u) ( u (3.18)
A point of contact between a slave node, m,, on a slave surface, and a master surface defined by the line
between Masier Node I, mj, and Tlester 1od: 2, =z, & dizgremmead below in Figure 3.2.
§ L |
i |
a
m
- L4 Master Node 1
2 o e =Y .m
Master Node 2 Slave Node 1

1
l I
FIGURE 3.2 Discrete Point of Contact

For the moment, we will assume that the normal is constant along the master segment. Note that this
contact condition may exist between two distinct bodies or two pointa on a single body.

At time 2,4, the gap condition at point i is defined by

3 = (Xms — (1 ~ @' )Xm1 — @*xm3) 'm0 (3.19)
where for the i,y gap condition
Xms = A:;tax
X1 = AmiX (3.20)
Xm2 = AlaX

where A is a Boolean selection operator.
Noting that §x = éu, the first variation of Equation (3.19) becomes
bg; =(Ams ~ (1 - a')Am; — o' Ama)bu - n+
(6a'(Am1 — Ah2)x) - n+ (3.21)
(AL, — (1 —aY)AL, - a'Alz)x) - 6n

This may be written as
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5gi =(A:;“ - (1 -— a")A."..l - aiA:;;Q)JH -n4
(ALd) - (TAT) (Ads — Ada)2) mt -

(T - (B6u)) (m:}r) (Abs = (1~ ) Abuy — af Adra)x) - T

Equation (3.22) may be generalized to the case where a continuous outward normal is interpolated along the
master contact segment.

Setting the first variation of Equation (3.15) to zero yields at time t, 41

Muy18a41 + P(uns1) + G(n41)Anyr = FRh

3.23
841 =0 (3.23)

where at time tq4y

Mp;1 is the mass matrix
" P(un41) is the stress divergence
G(un41) is the contact matrix (3.24)
Fa% is the vector of external loads
Zn+1 15 the vector of constraints

Equation (3.23,) is a set of ordinary differential equations and Equation (3.23;) is a set of algebraic equations.

The pair together is known as differential algebraic equations (DAE) [1] and may be conveniently solved
using one-step time integration methods. For example, using the Newmark method [22] we have

1
Up4l = U + Atruvn + (‘Atn.)2 (5 - ﬂ)an + (Atn)z Banst

(3.25)
Va1 = Vn + Atn(1 — 7)a, + Atpyan4;
where
At, = tay1 —1n
Vp = Un
- 3.26
by @20

B,v = integration constants

For non-zero # and v , Equation (3.23) may now, in general, be solved. However, for the explicit algorithm
with = 0.0 and ¥y = 0.5, Equation (3.23) is modified to

M. 1Gnt+1 + G(Unt1)Ans1 = FiF) — P(unyr)

3.27
8a+2=0 320

Note that the gap condition is now to be satisfied at time t,,2. This is because for explicit time integration,
the displacement field at time 2,2 is entirely defined by the state at time tn41. We then choose the rate
terms at time t,4; to satisfy the gap constraints at time t, 3.

To facilitate solution of the contact terms in Equation (3.27), a number of simplifying assumptions will be
made as discussed in the next section.



6 M. Salveson

4. EQUATIONS OF MOTION

For our algorithm, we neglect the second and third term in Equation (3.21). The first term is O(1). The
second term is O(At?), 8o it is neglected. The third term is neglected because the outward normal n is
assumed to be constant between the predictor and corrector step (this is the only step when contact is
considered). This assumption is acceptable only because this algorithm is subject to the numerical stability
constraints of an explicit algorithm.

An explicit algorithm for a linear elastic material requires that

At < (4.1)

Cmas
whee A is a characteristic length and ¢4, i8 the maximum wave speed in the material.

Significant errors in the calculation of the normal can only be introduced if the velocity of contact segment
approaches the natura! wavza spzeds of the materials.

Assuming that n is constant between the predictor step and the corrector step makes Equation (3.21) linear
in u. For clarity we rewrite Equation (3.27), noting this linearity
M, 1tin41 + GasrAatr = FiF) — P(un4)
Ba+2=0

We now assume that the mass represented by M, 1 is lumped at the nodes. Because the forces, Any;, are
not initially known, the following predictor equations are solved explicitly:

(4.2)

Ma, ;1 = Fa% - P(unq) (4-3)
Velocity and position “predictor” terms are then found using the explicit Newmark discretization.

1
Va4l = Va+ §At..(a.. + §n+1)
(4.4)

1 .
Xnt2 = X4l + Atas1¥ng1 + E(Atn-i-l)zin-}l

Equilibrium must be enforced at time .41 and the zero penetration condition must be enforced at time
thea-

Dn 42 and gn 42 are certainly not known a priori, but may be approximated using the “predictor” positions
of the master and slave nodes. Additionally, iteration on the contact (or “corrector”™) stage of this algorithm
may be used to yield better values for both D43 and gnya.

Note that if the i;, gap condition, ¢, is greater then zero for the “predictor” values of position, velocity,
and acceleration are correct and no contact has taken place at the i;, point during this time step. If contact
has occurred, g° must be set to zero and position, velocity, and acceleration terms must be “corrected”
to account for the external contact forces on the bodies. This is done by subtracting Equation (4.3) from

Equation (4.2).

M(an41 = Bns1) + Gap1A =0

4.5
8a42=0 (4-5)
Equation (4.5) may be expressed as the symmetric system of linear equations
M Gnul| [ans1]_ [Ra
2., %]l [= “

where
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Ry =Ma,.y,

1 2 @47
R; =~GT ( + At, (v,. + >At, ))
2= +1 | Xn41 +1 3 an ( Atu+1)2 + Atn 1AL,

Once Equation (4.6) is solved for an1, corrected values for va41 and x,42 may then be obtained using the
Newmark integration scheme.

5. BEHAVIOR OF INTERFACE VELOCITY AND ACCELERATION

In the previous section, we motivate the imposition of a gap constraint on the displacement field at time
tn4a. This leads to other desirable properties.

An implicit Newmark time integration algorithm will lead to spurious results in the velocity and acceleration
fields if the zero gap condition is only imposed on the disp]acement field. This is not the case for an explicit

[I4T £l

Newmarx time integratics algorit.m. Al spurizsus resulis cu the velocity and zeccleration fizlds venish after
two time steps.

The Newmark temporal discretization is given by
Va4l = Vo + A‘n(l - 7)‘1&-}1
1 1
Xn42 = Xatl + Atns1Vag1 + 3 (Atns1)* (1 = Bansr + 3 (Atn)? Pants (5.1)

Atnyi = tapisr — tngi

For an explicit algorithm, choose 8 = 0.0 and vy = 0.5. Assume the zero gap condition is enforced on the
displacemnent field at times 2,42, tn43, 8nd 444, such that for a one dimensional problem

Xn42 = Xn42
Xn43 = Xn43 (¢-2)
Xa44 =
Consider the zero gap condition at time t,44. Equation (5.1) gives us
1 1 _
xXp43 + Atasavaes + 3 (Atn+3)2 an43 = Xn43 + Atasaviea + 2 (Atn+3)2 anya (5.3)

Noting that the zero gap condition is also satisfied at time ¢,

Vasa + Atn+3an+3 =vopa+ —Atn+38u+a (5.4)

Equatlon (5.1;) may be substituted into Equation (5.4) to give

Vatz+ §Atu+za:.+2 + E(Atn+2Atn+3)a:|+2 =

1 1 (5.5)
vz + iAtnq-?a:‘-i-? + E(Atn-{-ZAth)a:i-z
Similarily, the zero gap condition at times t, 2 and t, ;3 yields
V41 + 5 Ataszahis = Vi + 3AtnszaRsa 5.6)
Substitution into Equation (5.5) gives
8n43 = 8743 (5.7

Substituting this into Equation (5.4) gives
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Va3 = Vo4s (5.8)

Note that for persistent contact, enforcement of the zero gap condition on the displacement field will also
produce a zero gap condition on the velocity and acceleration fields for all time points greater then or equal

10 thya.

For two or more dimensions, define an outward surface normal at time ¢; to be n;. Assume the zero gap
condition is enforced on the displacement field at times t,43, tn43, and tn 44, such that

(Xh43 ~ XT43) “Dag2
{thas = XT4z)  Rass (5.9)

(x:s+4 - x’,{‘“) R FY

Proceeding in a similar manner as before will yield

(xn+3 — Xn43) - (Dn4s — Daya3) +

1

Ata42(Atnyz + Atays) (ansa — aT4s) -Bays—

At, 5

At 13 (xht2 = XT42) - (D43 = Bng2) + (5.10)
n$2

1 1
Atnys [(V:H»: + EA‘M.:&:;-H) - (V'r'x.-f-? + '2'Atn+237:+2)] -(Dn4a—Days) =0

If we assume that the rotation of a contact surface is relatively small between time steps then we may assume

Rppq N Dpy3 X Day2 (5.11)
Which then leads to the desired resuit
4 - m .
(a%+3 — aR43) ‘Days (5.12)

(V:H-:! - V'v';'+3) *DBn4d

The explicit-implicit algorithm proposed in this report will preserve this behavior of the velocity and acce-
leration fields acroes the contact interface.

6. A 2-D CONTACT DETECTION ALGORITHM

This algorithm assumes a peicewise linear contact surface. It assumes a constant velocity during the current
time step. It will produce a normalized time of contact, 7., as well as the point of contact, a. See Figure
6.1, Figure 6.2, and Figure 6.3.
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FIGURE 6.1 Contact Point r =0

FIGURE 6.2 Contact Point 7 = 7,

FIGURE 6.3 Contact Point r =1

Define xs;, xm1;, and xm2; to be the position vectors at 7 = 0 for the slave node, master node 1, and
master node 2, respectively. Also, define xs;, xm1;,, and xm2; to be the position vectors at 7 = 1 for
the slave node, master node 1, and master node 2, respectively. For contact detection we assume constant
velocity within each time step, thus these position vectors may be expressed as a linear function of 7.

xs = xs;(l - 1') + x8;7
xml = xm1(l — 7) + xmly7 (6.1)
xm2 = xm2;(1 - 7) + xm2;7
The normal is constant along the length of the master element. It may also be defined as a function of r. -
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n=n(l~1)+ny7

N; = (xm2; — xm1;) x e3
N;
D =
NGl . (6.2)
N; = (xm2; — xm1;) x e3
=N
ny =
TNl

If contact occurs at some 7, between r = 0 and 7 = 1, inclusive, then the following must be true:

(xs —xm;)-n (6.3)

Substitution of Equation (6.1) and Equation (6.2) into Equation (6.3) will now yield

At + Br+C=0 (8.4)
where
A= (n; ~ny)-(—xs; + x8; + xml; — xml;)
B =n; - (~xs; + x8; + xml; — xml;) + (n; — ny) - (xs; — xml,) (6.5)
C = n; - (xs8; — xm1l,)
Once Equation (6.5) is solved for 7., a can be found by letting 7 = 7.

- 1
oo s = xm1)

= Tpmz = x|, (66)

7. EXAMPLES
All bodies in the examples are modeled using the non-linear elastic constitutive relation deduced from

1 1
W(C) = 54\ n(J))* +u (11 -3- 2 ln(J)) (7.1
which yields the Cauchy stress-deformation relation:

In(J). , u
o= A—J—l + 7(b -1) (7.2)
For emall deformations, this model yields results which coincide with isotropic linear elasticity where A and
s are Lamé constants. For finite deformations, the model gives reasonable results for principal stretches less
than 4.0. In examples below, principle stretches are greater than zero and much less than 4.0.

We present a set of example problems which test the performance of the contact formulation presented above.
For these calculations we use A = 33333 and z = 5000.

7.1. Bar Striking Rigid Surface

A horizontal bar of dimension 30 by 4 is given an initial velocity of 50. It has an even mesh of 30 by 6
elements. The vertical bar is rigid and fixed in place. It has dimensions of 4 by 30 and has an even mesh of
6 by 30. This mesh is shown in Figure 7.1. Both bars have a mass density of po = 0.1. Here, however, the
vertical bar is rigid and is fixed in place. The horizontal bar is given an initial velocity of -50. The deformed
shape is shown in Figure 7.2 with contours for o1; superimposed.
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This model was compared to one where the horizontal displacements of the tip of the horizontal bar were
fixed, yielding identical results.

wgia Surface, Undeformed Shape

FIGURE 7.2 Bar Striking Rigid Surface, Deformed Shape, o1,
Stress

A time history plot of the total energy for the maximum stable time step is show below.

Total Energy ve. Time

17000 ¢

18000 +

15000 1

Eaergy

14000 1

13000 {

o 0.005 0.0t 0.015 .02
Time

FIGURE 7.3 Bar Striking Rigid Surface, Total Energy, Maximum
Time Step

f{istory plota of tip displacements, velocities and accelerations are given below.
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Tip Dieplscsemoent va. Time

1
on ¢+
o8 + oot Bar
o— -MB.I
Qs 4
i 0.2 1
o
oz 0.008 0.0 0.018 o2
04 4
0.8 4
08 +
1
Timeo

FIGURE 7.4 Bar Striking Rigid Surface, Tip Displacement

Tip Veiacity ve, Time

&0

a5 4
401 ——Cenbar |
B 4 R .-,
30 +

e

- 20 4
18 +
10 +
8+

0.001 0.001 .00 Q.008

Time

FIGURE 7.5 Bar Striking Rigid Surface, Tip Velocity

Tip Accoleratan ve. Time

Assvierslion
P .
1IN

FIGURE 7.6 Bar Striking Rigid Surface, Tip Acceleration

7.2. Bar Striking Compliant Surface

The undeformed mesh is as before. A horizontal bar of dimension 30 by 4 is given an initial velocity of
50. It has an even mesh of 30 by 6 elements. The vertical bar is unconstrained and initially at rest. It has
dimensions 4 by 30 and has an even mesh of 6 by 30. Both bars have a mass density of po = 0.1.

The deformed shape is shown in Figure 7.7 with contours for ¢y superimposed.
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FIGURE 7.7 Bar Striking Compliant Surface, Deformed Shape, o4
Stress

The total energy in the system is calculated at each time step. This time history is shown in Figure 7.8 for
a time step that approaches the maximum stable step size for isotropic elasticity. The variations in energy
are typical of an explicit solution.

Totst Enorgy va. Time

20000
14000 -L
16000 /\,-
14000 4
12000 4+
F oo |
- 2000 4+
aooo 4
4000 }
2000 +
[ ]
o 0.008 oo Q.08 02
Time
FIGURE 7.8 Bar Striking Compliant Surface, Total Energy, Maxi-

mum Time Step

If the time step is reduced by an order of magnitude, the variation is greatly diminished, as can be ssen in
Figure 7.9. This behavior is typical for all the examples.

Yol Energy ve. Time

Tiae

[ ] 0.0001 0.0002 0.0003
Aeorgy

FIGURE 7.9 Bar Striking Compliant Surface, Total Energy, Small
Time Step

Time history plot of tip displacement, velocity and acceleration are given below. Note that there is no high
frequency noise. This is because any discontinuous contact behavior is minimized by the explicit-implicit
treatment of the contact surface. Any noise is effectively damped out within two time steps. Also note that
the zero penetration conditions on the rate terms are not enforced at the instant of contact. The acceleration
history exhibits a spike at the point of contact. This spike represents the dirac delta function that is taking
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place between two discretized time points. As expected, the velocity and acceleration time histories are self
corrected after two time steps.

Tip Displasemont ve. Time
036
03
0.2s 4
i 0.2
; a.18 4 -——-u«a«]
—-—— Bue
0.1 +
0.06 4+
]

(] 8.005 0.01 o.015 0.02
Tims

FIGURE 7.10 Bar Striking Compliant Surface, Tip Displacement

Tip Veleshy ve. Time

50
45
<0
%
% 20
é 25
20
%
10
L
o4
[ 0.006 oot 0.018 0.02
Time

FIGURE 7.11 Bar Striking Compliant Surface, Tip Velocity

Tip Acccleration ve. Time

00000
#0000
| ey
ocneo = = = memser
mé‘
§ oo f)
g o ! N N o
o oo a0 ofe
20000
0000
-s0000
49000

FIGURE 7.12 Bar Striking Compliant Surface, Tip Acceleration

This example is repeated modifying the mesh of the vertical bar to be 6 by 31. This mesh is shown in Figure
7.13. This will alter the initial contact from node on node on surface. Tip displacements, velocities, and
accelerations are then compared to verify that the constraints on these fields still hold. Time histories of

these fields are indistinguishable from Figure 7.10, Figure 7.11, and Figure 7.12.
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FIGURE 7.13 Bar Striking Compliant Surface, Undeformed Shape

7.3. Bar Striking Like Bar

Two horizontal bars, both cf dimension 3 by 4 are given initial velocities of 53 and -30. Both have an even
mesh of 30 by 6 elements. The mesh is shown in Figure 7.14. Both bars have a mass density of py = 0.1.

FIGURE 7.14 Bar Striking Like Bar, Undeformed Shape

The deformed shape is shown in Figure 7.15 with contours for oy superimposed.

FIGURE 7.15 Bar Striking Like Bar, Deformed Shape, 011Stress

Time history plots of tip displacement, tip velocity, and tip acceleration are given below.

Tip Dteplocsement va. Time

E===1

Bleplasaomt
.ttt h .2ttt
§

8
§

P
' §

FIGURE 7.16 Bar Striking Like Bar, Tip Displacement
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Tip Votselty ve Time
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FIGURE 7.17 Bar Striking Like Bar, Tip Velocity
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FIGURE 7.18 Bar Striking Like Bar, Tip Acceleration

7.4. Bar Striking Dissimilar Bar

The undeformed mesh is as before. Here, the left bar has a mass density of Po = 0.3 and the right bar has a
mass density of pg = 1.0. The deformed mesh is shown in Figure 7.19 with contours for 01 superimposed.

FIGURE 7.19 Bar Striking Unlike Bar, Deformed Shape, oy, Stress

Time history plots of tip displacement, tip velocity, and tip acceleration are given below.
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Tip Displacoment vs. Time
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FIGURE 7.20 Bar Striking Unlike Bar, Tip Displacement
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FIGURE 7.21 Bar Striking Unlike Bar, Tip Velocity
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7.5. Disk Striking Compliant Surface

A disk is given an initial horizontal and vertical velocity. The undeformed mesh is shown in Figure 7.23.
A deformed mesh of the disk strikin

g a vertical surface is shown in Figure 7.24. Finally, the disk strikes a
horizontal surface in Figure 7.25.
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