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I. INTRODUCTION 

1. Empirical aspects. There are many systems consisting of 

well defined components, where the g ~ ~ o u n d  state properties 
-. 

are essentially aaditive but'not those of the excited electronic 
Y. - 

states. Examples for this behavior can be found among atomic 

or molecular vapors, solutions of not too low concentrations, 

molecular crystals or polymers with aromatic or unsaturated 

groups not in conjugation. Proteins and nunleio acids, 

chloropl.asto, cl-.ystalline and liquid scintillators are further 

examples, and the functions of these systems depend .largely 

on this non-additivity of their excited state properties. 

For such systems, absorption spectra as well as luminescence 

and photochemical properties may be quite different from those 

of their components. The reason for this is that in excited 

states the .c-eze-1-tat-ion is not completely localized 

within one or the other of these components. The excitation 

may be completely delocallzed and spread out over the whole 

system or, in a less drastic way, it may be localized ohly 

-temporarily, but transferred from one component of the system 

to another, 

From a phenomenological point of view, three different cases 

of such behavior are distinguished easily. This may be illustrated 

with the aid of some characteristic examples. References may he 
1 found in earlier publications . 

Case A. This is one where major alterations occur in the 

absorption spectra. Typical examples are those of dimers 'which 

can be recogni.zed often in the more concentrated solutions of 

a number of dyes, such as thionine or the rhodamines. A peculiar 

example is that of the Scheibe-Jelley-polymers from pseudo- 

isocyanine and relatbd dyes. But also the more intense absorption 



regions of molecular crystals like that corresponding to the 
iri 

2 5 G O  2-absorption of the anthracene molecule belong into this 

group. In all these examples the vibronic envelapes of the 

spectra are completely different from those of the component 

spectra, even if the absorption region is approximately the 

same. Such proi€ound alterations are obviously the result of a 

fairly strong interaction between the components and it is 

- natural to speak here of a strong coupling case. As we shall 

see later, this..strong coupling results from a quite complete 

delocalizution o1 electronic excitation over the components 

of the system. 

Case B .  There are other examples where less profound alterations 

exist in the absorption spectra. The vibronic envelope is then 

retained, but the individual vibronic levels of the components 

are split in a characteristic way. This has been observed with 

some tdouble-moleculesf like diphenyl-methane and is a quite 

common effect in the weaker absorption regions of molecular 

crystals as, for instance, the 3600 R absorption of anthracene. 
In the latter case, the effect has been named lDavydov-splittingl. 

Obviously, these effects are also due to some kind of inter- 

action between the components, but of a lesser magnitude. It 

has become customary to speak here of a case. One 

may expect that the delocalization of electronic excitation 

will be less strong than in the' forgoing case. 

Case C. There is, however, a third case which should be not 

overlooked. Many systems show no or at least no essential 

alterations in their absorption spectra if compared with those 

of their components, but nevertheless have quite different 

luminescence and photocheniical properties. This occurs, for 

inst;ince,in dye so1.utions at mode'rate concentrations, where no 

v essential association exists. While there the absorption and 
fluoresc,ence spectra and even the fluorescence quantum 

efficiences may be the same as in the more diluted solutions, 



the fluorescence polarization is often much less. Likewise, 

in mixed solutions, the fluorescence or phosphorescence 

emis.sion originates, independent of the absorbing component, 

from that one.with the lower excited state. Recently, some 

very interesting demonstrations of this effect have been given 

by Kuhn et.ale2 with dye layers, separated by inert molecular 

sheets more than 100 2 thick. 

Obviously, in this case too, there exists some coupling between 

the excited states of the different molecules, but of even lesser 

magnitude than in the foregoing case B. In a revision of'an 
-2 

earlier proposal', we shall call case C now the case 04 very 
w,eak coupling. As the degree of delocalization has to be still 

less in this case, it mill be reasonable to regard the electronic 

exitation as temporarily completely localized and to interpret 

the observed effects in terms of an excitation transfer. 

Yihen speaking of delncalized exciCatlon or of excitation transfer, 

one should keep in mind that these conceptions are more or less 

complementary. The first one is concerned with the stationary 

states of the system and should be the adequate one in dis- 

cussing band splittings, .absorption intensities and related 

effects. The second one is by its' nature concerned with non- 

stationary states and should therefore allow a better description 

of experiments where the process of electronic excitation and 

its final effect can be located in different yarts'of the system. 

This justifies to some extent our preference of the term 

delocalized excitation'in cases A and B and'of excitation 

transfer in case C. However, also in systems belonging to the 

first two cases excitation transfer experiments are possible 

and should be described so in the appropriate manner. Vie shall 

see that this is indeed possible, but that some ambiguity in 

defining such terms as transfer rate cannot be avoided here. 



It is only in the very weak coupling case C that such terms 

can be defined unequivocally. On the other hand, it would 'be 

unreasonable here to speak of delocalized excitation. 

4 Some objections might be - and indeed have been. - raised 
agains-t our empirical distinction between cases B and C, 

because it can be applied only to spectra with well resolved 

vibronic structure whereas it is useless in cases of continuous 

spectra, The sol'ution of this difficulty is simple but surpri.sinc: 

%or systemwith continuous spectra there is no weak coupling 

case B at all, but the strong coupling case A changes directly 

into the very weak couplirlg one. Even for systems 1:-ith broad 

viLronic levels, which are quite colnnlon in solutions at rooril 

temj~erature, the so called weak coupling case is very closely 

lil!~ited a11d it scarcely deserves its name as a separate case. 

The justific*tion for this :vill be given later in. chapter IV. 



11. F O R M L  ZXCITON THEOHY 

2, General formulations. The theory of delocalized electronic 

states goes under the name of exciton theory. This theory is 
5 based on an original conception by Frenkel a n d  has later been 

6 
developed further essentially by Davydov and others. In the 

present chapter, only the.basic developements of this theory 

will be presented. In this connection no special references 

will be given, 'but the reader may refer to Davydovls monograph 7 

or to other comprehensive articles. 

We consider a system of N molecu'les with fixed distances and 

with their internal nuclear coordinates fixed in their 

e'quilibrium positions. The electronic coordinates, including 

spin, of the nth molecule shall be symbolized by qn. The 

electronic Hami1,tonian of the system is then 
Y .M w 

where & , which operates on the qn only, is the. Harniltonian of 
the free molecule n, and y' (qm,qn) is the intermolecular 

m,n 
interaction potential between the molecules m and.n. In zero 

order approximation, the ground state of the system can::be 

described by the product wave . . function 
w 
3C 

@G = I 1  YL, ( 2 . 2 )  
h =  ii 

where v =yn(qn), supposed to be real, is the ground state 
n 

eigenfunction of the free molecule n. Here and later we neglect 

orbital overlap between different molecules and do not trouble 

with antisymmetrization. The first order ground state energy 

becomes M 4' K 

c. 
h r l  IE .= I 0 1  2 h 

0 w is the ground state energy of the nth free molecule and n 



1, .; .- 

t11 kt - < Ytk, Y,~/  7zh/yh yh> 
the matrix element representing the ~ou'lombic interaction 

between and n. 

The singly excited states of tlie system can be described in 

terms of N locally excited configurations 

/ - $ // Y',, 
1) f l- 

where cpi is an excited state wave function of the free molecule 

1 which belongs Lo the energy w 1  Ve suppose these states to 1 ' 
be non-degenerate so that the cpi too can be taken real, and 

their energies sufficiently different from those of other - 
states. The zero order eigenfunctions pk are then linear 
combinations of the locally excited configurations 

- - i -  
= L t,, / <, 

They represent the exciton states n f  the system. The coeffi- 

cients c together with the corresponding energy values Wk kl 
can be obtained by solution of the eigcnvalue problem 

with the Hamilton operator as defined in (2.1), this can be 

expressed by the additional interaction mutrix elements 

and 

V 1  represents the Coulombic interaction between the excited 
m,n 

molecule n~ and the unexcited one n. U is the resonance 
m,n 

integral between the configurations with m and with n excited. 

This resonance integral is the main source of the effects'we 

are concerned with here. It can be interpreted as 'the pseudo- 

Coulombic interaction energy between the 'transition-charge1- 

densities yl(l 'Pn and cpm 'p:. 



3. Dimers. Instead of treating the general case we shall 
restrict ourselves to two characteristic. cases. The first one 

is that of a dimer, the components a and b of which may be 

dissimilar. Our Hamiltonian is then simply 

and there are only two.singly excited states. Their wave 

functions can be written 
= 

They are already normalized and mutually orthogonal, so that 

the eigenvalue problem (2.7) only requires that . 

This can be satisfied by specifying the parameter.afthat 

Here U is the resonance integral from (2.9) in whlch the 
indices have been dropped.. Wa,b is the energy of the configuration 

- ,- 

and Nab, has a similar meaning. The eigenvalues of p+ and d- 
are 

Obviously, there are two limiting cases l.and 2: 



With a m 0  we have 

This is the non-resonance case where the excitation is essen- 

tially localized either in the one or in the other molecule 

and the energies are those of the corresponding configurations. 

With awn/:! the 'situation is similar, but the sites of the 

excitation are interchanged. 

This is the resonance case, where the wave functions are the 

symmetric and antisymmetric combinations of the locally 

excited configurations and where the excitation is distributed 

equally over both molecules. The energies of both states differ 

by an amount of 2 U, this'energy difference is the socalled 

exciton splitting. 

The transition charge densities whi'ch enter into the resonance 

energy U as defined in (2.9) can be expanded into point 

multipole series, leading to a multipole-multipole-expansion 

for U. Generally, their first term is a dipole-dipole-term 

representing the interaction between the transition dipole 
3 .  -> 

moments rn and m of both molecules, the squares of which are a b 
proportional to the oscillator strenghts of the transitions 

between the ground- and excited states of the isolated 

molecules. 

If these transitions are allowed, and the intermolecular 



distance Rab is not too small, higher multipole contributions 

may be neglected and the resonance integral approximated by 

Here n is the refractive index of the surrounding medium, the 

square of which replaces the dielectric constant for fast 

polarizations, For a sandwich,type dimer, with the transition 

moments parallel' to each other and at right angles to the 
3 

distance vector Hab, U is positive and, according to (3.10), 

the symmetric state that of higher energy. The opposite holds 

for a head-to-tail orientation with both transition moments 

parallel to each other and to.the distance vector. 

3 3 
The transition moments M+ and hi - of the diwer itself, which 

- .  
determine the optical transitions between its ground- and 

axcited stateslare i n  the  genera l  case  according t o  (2.2), .. ( 3 0 2 )  and (3.3), weighted vector sums of the molecular 
.4 4 

transition moments ma andmb. In the resonance case o f t h e  
-> -+ 

symmetric dimer, with ma and mb equal and mutually parallel, 

the transition to the antisymmetric' state' is forbidden,. This 

is the lower one in the siinuwich type dimer but the higher one 

in the head-to-tail dimer. Therefore, these two kinds of 

dimers have quite different spectral properties. Intermediate 
8 

orientations have also been studied quantitatively . . 

For the discussion of excitation transfer, the time dependent 

~ c h r o d i n ~ e r  equation 

' 

has to b e  used, where is Planckls constant divided by 2 n. 

The stationary states of the dimer are then described by 
.' 



and a general non-stationary state by 

with constant coefficients c+ and c - . For V++W - this re- 
presents a back and forth oscillation of the excitation between 

both molecules. If we assume the molecule a alone to be excited 

at t = 0, we have c+ = cos a and c = sin a, as can readily be - & \ 

seen from (30 2) and (3.3). - 

A straight-forward calculatfon then leads to 
. - 

1 Here, = 2 (W+ + \Y - ) is the average energy of both stationary 
- .  

states. 

i; From (3.14) we get for the expectation valueaabl of va qb 1 

For sufficiently short times this becomes 

which is independent of a.and holds thus under resonance and 

under non-resonance conditions.' But the maximum value ofqab, 

. .. 

SO that qab becoiues large only under near-resonance conditions 
a*7~/4, It obtains its first maximum at the time 

If we define the transfer rate nab! as the maximum expectation 

value of qab1 divided by this time, we get 



Under r e s o n a n c e  c o n d i t i o n s  a = x/4 t h i s  becomes 

wilich i s  g e n e r a l l y  r e g a r d e d  as t h e  t r a n s f e r -  r a t e  f o r  r e s o n a n c e .  
? I n  y r i e i y l e ,  a s imilar  r e s u l t  w i g h t  have  'been o b t a i n e d  b y  

a p p l i c a t i o n  o f  t h e  u n c e r t a i n t y  r e l a t i o n .  F o r  l a t e r  a p p l i c a t i o n s  

n e  may k e e p  i n  mind t h a t  t h e  r e s o n a n c e  t r a n s f e r  r a t e  i s  e q u a l  

t o  t h e  e x c i t o n  s p l i t t i n g  be tween W+ and  IV - i n  ( 3 . 1 0 )  d i v i d e d  

by h/2.  But one s h o u l d  n o t e  t h a t  o u r  p r e s $ e n t  d e f i n i t i o n  of  

t h e  t r e t n s f e r  r a t e  i s  r a t h e r  a r b i t r a r y ,  due t o  t h e  q u & r a t i c  

il;cr.e;sa of  tile e x p e c t a t i o n  v a l u e  qab, a11d t o  t h e  back  and  f o r t h  

t r L ~ n s f e r  l i t t e r  on. A l s o ,  i t  r o u l d  b e  a i f f i c u l t  t o  p e r f o r m  a n y  

e :~pe r iu ;cn t  b y  ~ r h i c k  such  a t r a n s f e r  r a t e  might  be measureu .  

4 .  Po lymers .  A s  a second  example we c o n s i i i e r  t h e ' s i n g l y  e x c i t e d  

s t a t e s  o f  a l o n g  l i n e a r  po lymer ,  c o n s i s t i n g  of N m o l e c u l e s ,  

a l i l r e ,  and ,  i n  e c l u i v c ~ l e n t  p o s i t i o n s .  The polymer may have  e i t h e r  

t r a n s l a t i o n a l  o r  s c r e w - t r a n s l a t i o n a l  syri~metry s u c h  as a h e l i x .  

The 2; crave f u n c t i o n s  (2 .6 )  c a n  t h e n  b,e c o n s t r u c t e d  as  t h e  

l i n e a r  c o m b i n a t i o n s  

The i n a e x  lc d e t e r m i n e s  t h e  p h a s e  d i f f e r e n c e  be tween t h e  e x c i -  

t l ~ i t i o r l  a t  a d j a c e n t  m o l e c u l e s .  I t s  K d i f f e r e n t  v a l u e s  c a n  b e  

c h o s e n  s o  t h a t  t h e  @& a r e  m u t u a l l y  o r t l rogona l  and. a l s o  t h e  

n o n d i n g o n a l  e l e m e n t s  ($!'&/&/,c4) of the H i l ~ i l t o l l  o p e r a t o r  
d 

d i s a p p e a r .  Because of  t h e  p e r i o d i c i t y  i n  ( 4 . 1 )  t h e ' i n d i c e s  lc 

c a n  be r e s t r i c t e a  t o  t h e  i n t e r v a l  



For l i e & ,  k becomes a continuously variable parameter within 

these boundaries. If, for simplicity, interactions between 

non-adjacent molecules are neglected, the energy values are 

Tlie interaction matrix elenleiits V, V' anc!. U are the same as 

defined in ( 2 . 4 ) ,  (2.8) and (2.9) with the indices dropped. 

The first terms on the right side of (4.2) represent the 

static contribu'tions to the energy resulting from the excitation 

of one molecule and from its Coulombic interactions with its 

neighbors. The last term represents its resonance interaction 

which depends essentially on k and so on the phase difference 

0.f excitation between adjacent molecules. The energy values 

from (4.2) are distributed within a band of the width 4 U, the 

so-called exciton'band of the system. The expression (4,~) is 

equivalent to the corresponding one ( 3 * 6 )  for the.dimer with 
a = n/4.  The doiihle amount of the splitting resu.lls from the 

presence of two nearest neigh'bors for every molecule in the 

polymer instead of one in the dimer. 

The extreme energy values of (4.2) are those for k = 0 and 
+ 

k = - n .  The nature of these extrema depends on the sign of U, 

which in the dipole-dipole-approximation is analogous to the 

expression given in (3.11) for the dimer. here too this sign 

depends on the orientation of the molecular transition 
-+ 

moments ml towards each other and towards the translation 

vector between adjacent molecules. For the two extreme cases 

of orientation, the b;ind structures are depi,cted in Fig, la,b. 

The considerance of the interaction between more distant 

molecules \rrould lead to deviations from tile simple cos k- 

dependence of the energy assumed here. 

Tk~e symnretry of the system imposes severe restrictions on the 

optical transitions between the ground state and the excitea 

states. One may easily verify that only hio, the transition 



dipole moment for the state k = 0, has a component along the 

polymer or, ill case of a helix, parallel to the screw axis. 

Furthermore, if this screw axis isrxold, so that the 

translational unit cell consists of r molecules, only Mk with 
+ 2x k = - -  

r has a transverse component.(one should keep in mind 

that k is based here on the screw-translational of our model. 

For integer r it can be replaced by k '  = rk, the wave 'vector' 

based on translational symmetry. Our exciton band is then 

spliL i ~ ~ t u  r subbands which are, however, co~lnected to each 

other. Both allowed, transitions are k' = 0-transitions as 

required for translational symnletry.)In the case r = 2 which 

has been discussed by McHae and   as ha', this is lc = x so that 

only transitions to the top and to the bottom of the exciton 

bi~inu are dipole-allowed. The same is true for the 3-dimensional . , 

analogue of this case, the n~olecular crysti;l'with .two molecules 

in equivalent positions in the elementary cell. A more cornpli- 

cated case, that of. the double-stranded helix of polypeptides 
10 has been treated by Rhodes . 

. . 

Our present model allows further, within certain limits, to 

understand the spectra of the Scheibe-Jelley-polymers mentioned 

in I. Their characteristic feature is a sharp band with 

longitudinal polarization which certainly results from the 

transition to the k = 0 -state.. The transverse absorption is, 

however, broad and seems to extend over the whole band. This 

might be  explaineci by a pseudo-helical structure a 

cer.tain unlourlt of angular disorder as has been sup,posed 
11 earlier . Or, it might result from the coupling with intra- 

12 
u~olecular vibrations as suggested by McRae . 

- 
In the stationary exciton states p) the excitation is equally 

4 '  
distributed over all components of the polymer. Here, too, the 

alteration of a non-stationary distribution can be described 

by the corresponding time-ueyenaent wave functions. Upon 



introduction of the appropriate time factors, multiplication 

with an arbitrary function c(k) and subsequent integration 

over k one gets from (4.1) 

For a wave packet with k-values centered closely at an average 

value ko we can eliminate the strong time dependence under the 

integral by expanding ~ ( k )  and writing 

The integral represents now an amplitude factor which, due to 

the property of our c(k), has a steep maximum.at 

This corresponds t u  a linear migration of our wave packet 
with the time-independent group velocity. 

I where d is the distance uetween adjacent molecules. With (4.2) 

and (4.3), the energy in the region k - 0  can be expressed as 

p may therefore be interpreted as the 'masst of the' exciton 

and can be positive or negative, d.epending on the sign of U. 

According to (4.3), the exciton transfer rate between adjacent 

molecules in thg po1yme.r is 



This depends essentially on k and is extremely small for I r a 0  

or k h n ,  that is for excitons produced by allowed optical 

transitions in a golymer with p = 1 or 2. But this does not 

mean that excitation produced in such a way would not migrate 

essentially. Any excitation transfer experiment will require 

some kind of a trap within the lattice. The presence of such 

a trap within the region of a widely delocalized exciton 

severely disturbs the quasistationary wave function, and the 

exciton will be soaked in without much regard to its k-value. 

A more reasonable expression for the transfer rate should be 

obtained by averaging over the k-values. This leads to 

which is just twice the value (3.19) calculated for the aimer.' 

Another may to discuss excitation transfer is t.a assume that 

the exciton at % = 0 is completely localized at one single 

molecule. Later on it will spread out over surrounding mole- 

cules. According to calculations by ~errifield" .and 'also by - 

14 
Magee and Funabashi the mean square distance from the origin 

increases 'in proportion to the time as follo~vs: 

Numerically, this is not much different from our result (4.5). 



STiiONG AND WEAK COUPLING 

5.  Potential energy surfaces. In our foregoing discussion we -. 

have considered the electrons of the system.at fixed nuclear 

positions. Yie have so disregarded not only nuclear vibrations 

but also the differences in the equilibrium positions 

accompanying electrbnic excitation. This may be justified i n  

cases of strong resonance interaction where the interaction 

energy exceed,s that of the ,vibrational quanta involved and 

where also the tim'e, for excitation transfer is so fast that 

nuclear rearrangement cannot take place. Our results from 

chapter I1 can be valid, therefore,,in the strong coupling 

limit only. 

For the treatment of cases of weaker inte'raction, and.even for 

an understanding of their limitation against strong coupling 

cases, the variation of nuclear coordinates has.to be considered. 
c. As a first step, we confine our interest to the variation of 

. . 

the electronic wave functions and their energies with .the 

intramolecular coordinates which will be summarized by Q. 

. That is, we consider the potential energy surfaces for the 

nuclear vibration's but stiil do not discuss these vibrations 

in 'de ttti 1. Likewise, intermolecular uotions shall not be 

discussed, so that we can' retain our previous assumption of 

rigid separations and orientations of the individual molecules 

toward each other. 

The original  treatment.^ of this probleln have been given by 
16 

Simpson and ~ e t e r s o n l ~  and by McClure . The more general 
17 aspects have been discussed later by Wittkowsky and Moffitt 

in an admirably elegant way. Our present discussion will use 

similar ideas but proceed along a somewhat different line. 

F0r.a single molecule, -\\re take the following .expressions for 



the electronic wave functions ana energies of ground- and 

excite6 state: 

As before, the prime shall indicate electronic excitation. 

Explicitely, we restrict ourselves to one nuclear coordinate Q 

for each molecule.. At the moment, this is no restriction of 

generality since the alteration in ecluilibrium position with 

excitatiorl can be represented by one coordinate alone, as 
"f long as it has not to be a normal coordinate vibration. 

i fe  suppose further that the wave functions depend smoothly on 

this coortiinate and that their energy values are cluadratic 

functions of the distances from the respective eijuilibrium 

positions Q and QA f o r  both states. It has been for simplicity 
0 

only that we have taken the same force constant for the nuclear 

vibrations of both states. This seems justified because in 

actual molecules the alteration in e(,juilibrium position is 

more important than that of the vibrational frequency. However, 

we shall relax this aciditional assumpti011 later if necessary. 

According to (j,l), (5.2) vertical excitation - in the sense 
of the Pranck-Condon-principle - leads to an excited state 

;iith 1; ils tile ~~irlimua~ energy o f  the s;irne state, ire can take 

as c : .  rou;;ii r!ieasure f o r  l,he total l/~ic!.ti1 of the vi'ijronic band 

s;l.rstr:~:i in moiiorncr. For short, we shall ci.ill this later 



O u r  f o l l o \ c i n g  t r e a t n c - n t  o f  c o m p o s i t e  s y s t e n s  w i l l  b e  e s c l u s i v e l y  

r e s t r i c t e t l  t o  d i m e r s .  'Ge s h a l l  t r y ,  however ,  t o  g e n e r a l i z e  sonue 

o f  t h e  r e s u l t s  t o  polymer  sys t ec i s  as f a r  as t h i s  seelus p o s s i b l e .  

F o r  a Gi~uer . , .  c o i l s i s t i n g  of  two m o l e c u l e s  of  t h e  same k i n d ,  t h e  

groun(!-state ii7ave f u n c t i o n  i s  a g a i n  

buL depends  now n o t  o n l y  on t h e  e l e c t r o n i c  b u t  a l s o  on t h e  

n u c l e a r  c o o r d i n a t e s  Qa a a d  Qb.  The c o r r e s p o n d i n g  e n e r g y  as a 

f u n c t i o n  of  t h e s e  1s 

where iv i s  a g a i n  t h e  monomer g r o u n d - s t a t e  e n e r g y  and  V t h e  
0 

i n t e r a c t i o n  o f  b o t h  m o l e c u l e s  i n  t h a t  s t a t e .  If a p o s s i b l e  

Q-dependence of  V i s  n e g l e c t e d ,  t h e  e q u i l i b r i u m  c o n f i g u r a t i o n  

is a t .  Q = Q a n d  t h e  c n r r e s p n n d S . n g  energy  
a b o 

I n  t h e  a b s e n c e  of  r e s o n a n c e  i n t e r a c t i o n  t h e  e x c i t e d  ' s t a t e s  I 
mould be s i m p l y  t h e  l o c a l l y  e x c i t e d  o n e s  

w i t i l  t h e i r  e n e r g i e s  

I n  c a s e  -o f  Q 1  .+ C1, t h e s e  e n e r g i e s  a r e  d i f f e r e ~ t  f o r  a l l  n u c l e a r  
0 

c o n f i g u r a t i o n s  x i t h  Qa $ Qb.  F o r  t h e  t r e a t m e n t  o f  r e s o n a n c e  

i n t e r a c t i o n  we m u s t ,  t h e r e f o r e ,  r e f e r  t o  t h e  g e n e r a l  c a s e  of 

u n s y m m e t r i c a l  d i m c r s  i n  3 .  Here  t o o ,  we w r i t e  f o r  t h e  wave 

f u i i c t i o n s  



I n  t h e  f i r s t  p l a c e ,  t h e s e  f u n c t i o n s  depend on t h e  n u c l e a r  

c o n f i g u r a t i o n  by nay of t h e  p a r a m e t e r  a which a c c o r d i n g  t o  

(3 .4 )  and ( 5 . 8 )  i s  now d e t e r m i n e d  by 

The e n e r g y  v a l u e s ,  as c a l c u l a t e d  from ( 3 . 6 )  become now f o r  

U > 0 (sancir i ich-type d i m e r )  : 

F o r  U <  0 t h e  s i g n s  must  'be in t e rck langed .  

From (7 .10)  t h e  f o l l o w i n g ' e ~ i u i l i b r i u r n  c o n f i g u r a t i o n s  s n d  t h e i r  

e n e r g i e s  a r e  c a l c u l a t e d :  

??t;f- . / ' X r - ,  L 
wit11 t h e  e n e r g y  b/+ = W + kd+U (5 .11 )  

f o r  a l l  v i i lues  o f  U. 

. )hrdrl I k ' s i  2 
w i t h  t h e  e n e r g y  ( c -  = b + J + ' ( 4  + - 4 )  ( ( 5 . 1 2 )  

b u t  -_.._. two niiriinla a t  ____ ---.. . ... . - r 
/ 

' I  i - 1 . - , )2 - y I ( =  - 7 - - ( J 3 - ~ 1 t 2 Y ~ k C  h Y .  *.! - 3 f l ( ~ ' . - ]  1.: ( 5 . 1 4 )  
3 . - . >  .c) - ---- .- - , . . . -. ,. . , .. . - .- ..- 

I 2 4 d L  i i I , j - , ~ , ' ~ ~ ' - i d ~ a )  - 
J A  = - i & v - w v  *; K O  

2 X 2 ( g ' - ~ 3 1  L 
0 



with the same energy 

for 

In Fig,2 potential energy surfaces with Qa and Qb as variables 

are represented as calculated from (5.10) for W - in two typical 
cases. Fig.2a corresponds to the inequality (5.13). This is 

obviously a strong coupling case, Both molecules have the 

same equilibrium po'sition which is half way in between those 

of the'ground- and excited monomer states. Fig.2b corresponds 

ko the inequality (5.16) and is a weak coupling case. Here 

the'potential energy surface shows two minima which are 

close to the equilibrium configurations of the two locally 

excited states (5.7). 

The most essential .parts of the potential energy surfaces of 

the excited states are those within the plane 

V- a, = 3, A Q; 
where all extrema are located. The intersections with this 

plane of bo.th surfaces are, therefore, represented in Fig.3 

with the same values as in Fig.2a,b. In addition, the border- 

line case 

. z M l  = k i ! . ;  - ;*. j L  
k o  * o .  (5.17) 

is also represented there (designated p = l)., 

It follows from (5.9) that in the strong coupling case A, for 
configurations not too far from those of the minima at 

1 
6 1 ,  = Qb = 5 (qo + Q A ) ,  a is close to n/4. The wave functions 

- 
p+ and p - are then, according to ( 3 . 2 )  and ( 3 . j ) ,  nearly the - 

- .  symmetric and antisynl~netric combinations of gnIb and Pab,. 
Thus the excitation is essentially delocalized. The energy 



d i f f e r e n c e  be tween  t h e  t ~ v o  s k a t e s  W and '3 i n  ( 5 . 1 0 )  i s ,  + - 
t h e n ,  !~tucl.! :;;ore thiir, t h e  monomer e l e c t r o n i c  band w i d t h  w 

d e f i n e d  i n  ( 5 . 3 ) .  The s i j l i t t i n g  s h o u l d ,  t h e r e f o r e ,  l e a d  t o  

a n  e s s e n t i a l l y  u i f f e r e n t  s g e c t r u m .  T h i s  i s  i n  a c c o r d  \ ~ i t h  

o u r  e m p i r i c a l  c r i t e r i u m  f o r  t h e  s t r o n g  c o u p l i n g  c a s e  i n  

c h a p t e r  I .  

F o r  t h e  weak c o u p l i n g  c a s e ,  ( 5 . 1 4 )  p r e d i c t s  e q u i l i b r i u m  

p o s i t i o n s  f o r  @ which i n  t h e  l i m i t  a r e  a t  QaT Q;, Q b / . , Q o  and 

v i c e  v e r s a .  F o r  c o n f i g u r c ; * t i o n s  1,::ithin t h i s  r a n g e ,  (5 .9 )  g i v e s  

a - 0 (or  - n / 2 )  v h i c h  accorc i ing  t o  ( 3 .2 )  and  ( 3 . 3 )  means 

$ + - @ h ,  4% Gr,  , t h a t  i s  e s s e n t i a l  l o c a l i z a t i o n .  A s  t h e  

p o t e n t i a l  e n e r g y  s u r f a c e  i s  t h e n  n e a r l y  t h e  same a s  f o r  non- 

i n t e r a c t i n g  m o l e c u l e s ,  t h e  g e n e r a l  a 2 p e a r a n c e  o f  t h e  s p e c t r u m  

i s  t h e  same a s  t h a t  of t h e  monomer. T h i s  t o o  i s  i n  a c c o r d  

w i t h  o u r  p r e v i o u s  e m p i r i c a l  c l a s s i f i c a t i o n .  

- From o u r  c o n s i d e r a t i o n  o f  p o t e n t i a l  e n e r g y  s u r f a c e s ,  t h e  

i n e q u a l i t i e s  (5.13.)  ancl (.j. 1 6 )  seem t o  p r o v i d e  a n a t u r a l  l i m i -  

t a t i o n  be tween s t r o n g  and  weak c o u p l i n g .  T o g e t h e r  w i t h  o u r  

e x p r e s s i o n  f o r  t h e  e l e c t r o n i c  b i i n d  w i d t h  ( 5 . 3 )  t h i s  c a n  be  

f o r m u l a t e d  as  f o l l o w s :  

I n  t h i s  form t h e  c r i t e r i u m  i s  s imilar  t o  t h a t  one d e r i v e d  

o r i g i n a l l y  by Simpson and  ? e t r r s o n l 5  from q u i t e  d i f f e r e n t  

c o n s i d e r i : ~ l i o n s .  T h e i r  c r i t e r i u m  \vould be  o b t a i n e d  by i n t r o -  

d u c t i o n  of  t h e  f a c t o r  2 i n t o  t h e  l e f t  s i d e  of  ( 5 . 1 8 ) ,  b u t  i n  

r e g a r d  of  t h e  .? - s i g n  and  o f  o u r  c r u d e  d e f i n i t i o n  of  t h e  

e l e c t r o n i c  band x i d t h  t h i s  d i f f e r e n c e  d o e s  n o t  seem t o  be  

imjiortarll;. I t  i s  q u i t e  i n t e r e s t i n g  t h a t  t h i s  c r i t e r i u m  ciln 

b e  o b t n i n e u  front a c o n s i d e r a t i o i l  o f  p o t e n t i a l  e n e r g y  s u r ' f a c e s  

a l o n e ,  w i t h o u t  t i i l i ing t h e  v i b r i ~ t i o n a l  ' p a r t  of  t h e  wave 

f u n c t i o n s  i n t o  a c c o u n t  e s p l i c i t e l y .  
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It should be mentioned, however, that the Simpson-Peterson- 

criterium cannot be applied without some restrictions, as 

has been emphasized recently by McHae and siebrand18. This 

results from the fact that the criterium, as derived here, 

considers the qualitative behavior of the potential energy 

surfaces only but neglects their quantitative properties. 

Actually, it is not so much the exi.s-Lence of two minima in 

the lower potential energy surface but their depth in relation 

to the vibrationel energy which decides between strong and 

weak coupling behavior. Under Simpson-Peterson weak coupling 

conditions (5.16), but with a sufficiently small difference 

between the equilibrium configurations Qo and QA of both 

states, the minima are close to each other and so shallow 

that even the lowest vibrational state mill extend over both 

of them and not feel much of the small'hump in between. This 

can be visualized from Figs.2 and 3 if one consideres that 
thcrc the nuclear coordinates are represented in units of 

V Q& - Qo and the energies in units of 5 (Q: - Po)* . 

. 6 ,  Inclusion of nuclear vibrations. Before me proceed further, 
we should investigate hoa far our potential energy surfaces' 

can be used for the description of the vibronic states of our 

system. The complete Schr6ding.er ecjuation, including nuclear 

vibrations, has the form 

Here, ,xi~)is the electronic part of the Hamilton operator which 

we have considered alone up to now. T/L'is an additioqal . 

operator representing the kinetic energy of the nuclei. The 

superscripts in parenthesis are used to indicate that these 

operators contain differential procedures acting on the - 
respective coordinate~.Y'(~,~) is the complete vibronic wave 

function of the system and E the total energy. 



The usual procedure in solving (6.1) is that of the Born- 

Oypenheimer approximation19 which is called often the adiabatic 

approximation. The vibronic wave function is written as a 

product 
@/q, ~ a ,  XU)  w02) - 

lIere,p(q,~) is the electronic wave function for the nuclei 

at rest, that is, the solution of the electronic part of the 

Schrcdinger equation which we had considered in 5: 

X(Q) is a solution 'of the Schrijdinger equation for nuclear 

motion alone under tlie potential W(Q) appearing in (6.3): 

- 
BY multiplication of (6.3) with X(Q) and .of (6,4) with .@ ( q , ~ )  

we get by subsequent addition 

This is a good approximation to the exact Schradinger equation 

(6,1), if tlie term on the right side is small. This requires 

that the electronic nave function depends only smoothly on 

the nuclear coordinates Q within the range of the vibrational 

function x(Q), It .can be sh0b~n that this holds if'the elec- 
tronic state in question is well separated energetically from 

other states for the nuclear configurations. in question. 

We have already su2posed that the monomer wave functions are 

smooth functions of the Q so that for these functions the Born- 

Oppenheimer separation is justified. We shall see, that the 

same holds also for the dimer states in the extreme cases of 

strong or of \veal< coupling either for a restricted range of 



nuclear vibrations at least. 

For strong coupling the parameter a is close to.n/4 in that 

region and varies littie over a wide range, of nuclear configura- 

tions. Therefore, d+ and @- nill vary smoothly, as the monomer - 
functions, with a change in the internal nuclear coordinates Q. 

For weak coupling a is close to 0 or 7t/2 and it remains so, 

at least in the.neighborhood of each of the minima of W - . 
Although a and@ . - will vary quite abruptly in the region of 
Q a = Qb, this is unimportant for vibronic functions which are' 

confined mainly to the regions of the minima. 

The situation is different, however, in the intermediate range 
. . , under conditions like those represented in Fig.3f Here, a still 

] : . f L . (  ,.s / 

varies considerably near Qa = Qb, and the vibrational functions 
. . 

are large in that region. Our treatment based on the electronic 

wave functions (3.2). and (3.3) should therefore be r e s t r i c t e d  
- '  . to the nearly extreme coupling cases. 

At first we shall investigate the width of the electronic band 

for one of the individuaL transitions of the dimer. For this 

purpose, in Fig.2 the potential energy surfaces df the ground 

state are represented.also. From a comparison of Fig.2a .and 

2b it is evident that the distance'between the equilibrium 

configurations of ground and excited state is less in the 

strong coupling case. For extremely weak coupling :this difference 

is, of course, the same as in the monomer but for the strong 

coupling case less by a factor of 1/p. Therefore, the width 

of the individual electronic band should be essentially re- 

duced and this should further contribute to the difference in 

appearence of monomer and strongly coupled dimer spectra. 

This can be established more quantitatively from (5.10). For 

the, strong coupling limit, vertical excitation. (Q,,= Qb = Qo) 

leads to 



vertical - I I k . ;  > 
\>i + - lu; i- iv 3 + b.; + - . - (  2 ;Q-(-oj- * h 
- 

Since the energy minima from (5,ll) and (5.12) are 

one gets for the Franck-Condon ~ ~ i d t h s  of the d-irner by 

comparison with (5.3) 

The cidths of the individual electronic band in the strongly 

coupled dimer should, therefore, be only one half of that of 

the monomer. 

Some indications for this reduction in bnnd width can be found 

in the spectra of n pyridocyani~rt. itye, as by 1:icrloel2. Further 

expcrirnental evidence for c;imers is soue~il~~t meager, probably 

because of the overlay between the two electronic transitions 

and also because of the interference ~t~ith the spectra of 

nigher association stages. 

lionever, the extrapolation of this result to polymers with 

large N leads to an understanding of the drastic reduction of 

vibrational broadening in the lc = .O- exciton band of the 

Scheibe-Jelley-polymers. Obviously, this results from the 

distrlbu.tion of the dif Perence. between ground- and excited 

state equili'brium posi.tion over a large number of mo.lecules. 

7. Detailed consideration of vibronic states..We shall now 
proceed in formulating the vibronic wave functio'ns for the 

dimer inits two extreme coupling cases, where the Born- 



Oppenheimer separation is possible, We write the wave function 

then in a general way as 
. . 

where k denotes one of the electronic 'states, while v and w 

are vibrational quantum numbers. Our restriction to one single 

intramolecular coordinate for each molecule becomes now 

essential, because we have to regard it as a normal coordinate. 

This is not too serious since at least in the more symmetric 

molecules one vibration is predominantly'involved in an 

electronic transition. Furthermore we regard the vibronic 

levels of (7.1) as infinitely sharp. This might seem obvious 

here, but our later considerations in chapter IV will show 

that this is an essential assumption which is not always 

justified. 

For the ground state'k = G we can simply use t h i  electronic 

wave function (5.4) and combine it with the vibronic functions 

?'(Q ) nnd 1 ( Q  ) o f  the individual molecules in their ground- 
i t  a b 
state centered at Qo. Thus we get 

The electronic ..wave functions rpa and cpb contain not only the 

electronic but also the nuclear coordinates. This latter 

dependence is not strong and may be neglected, but it would 

seem reasonable to take the functions at the ground state 

equilibrium position Qa = Qb = Qo. Because the nuclear 

potential has been supposed to be harmonic, the]; are Hermite- 

functions of their respective coordinates, and the .energy 

values belonging to ( 7 . 2 ) ,  including zero point energy, 'are 

In our harmonic approximation,these vibronic states are 

( v t  w + 1)-fold degenerate. For the excited states the two 



coupling cases need separate treatments. In the strong coup- 

ling limit we get with the electronic wave functions for 

a = n/4 together with the appropriate vibrational functions 

The prime in parenthesis is used here to indicate that the, 

respective vibrational functions are centered at the 'half - 
1 excitedt equilibrium configurntinn Q n Qb = 3 (Qo + Q:) a 

found in 5 for the,excited states. The electronic wave 
functions too should be specified for these values of the 

nuclear coordinates:Wave functions of this type, which are 

donstructed from electronic and vibrational functions for' the 
12 system as a whole, have been called E-V-functions by McRae . 

The energy values belonging to (7.4) are 

-e - > 
2' : 

k = , y ; d  - . .,,& + id; + /I = 3 t (1: + :d + 7 1 .q !.<, 
( 7 . 5 )  

As in the ground . state, . there is a (v + w + 1)-fold degeneracy 

for harmonic'vibrations. This degeneracy would not even be 

removed if the force constants for the ground and, excited 

state of the monomer mould have been taken different i n  (5.1) 

and (5.2), One may verify from an expansion of the potential 

ene'rgy surfaces (5.10) near the equlibrium configuration 
1 Qa = Qb = 2 ( Q ~  + Q:) that the, force constants and therefore 

also the frequencies are in fact those of the monomer. This 

can also be visualized from an inspection of Fig.2a. 

Under decreasing coupling, the vibrational .functions, remain 

centered at the same equilibrium configuration. However,. the 

force constants change, as can be verified from (5.10) and 

is evident from Figs.2 and 3 .  More specifically, the force 

constant for the antisymmetric vibration Q ,  = -&Q,,  increases 

for the higher one of the two states; whereas it decreases 



for the loser one (f?and respectively, if U 7  0 is assumed). 

On the other hand, the force constant of the symmetric 

vibration stays the same. This removes the vibrational 

degeneracy and leads to a first order splitting of the energy 

values in (7.5). This corresponds to a mixing between wave 

functions (7,4) with the same vibrational quantum number sum 

v + w. In next order, the Q-dependence of the parameter a in 
the electronic wave functions becomes essential so that even 

a more general product formulation than (7,4) of the vibronic 
wave functions becomes invalid. If these functions are to be 

retained, heavy mixing among them must be.considered under 

which only the total symmetry of the vibronic states (not the 

electronic or the vibrational ones alone) is retained. Starting 

from his E-V-coupling limit (our strong coupling one), McHae 12 

has used a perturbational method for such less strong 'coupling 

cases, 

In the weak coupling limit, the higher one of the excited 

states ($!-+for U > 0) has not much interest because its equili- 
brium configuration is far from that of the ground state. The 

potential energy surface of the lower excited statep'_ h a s  two 
. . 

minima of equal energy at the two configurations 

a , =  2 2 .  = 2 / and , h 3 

If these minima are deep enough, the lowest vibrational 

states mill be confined mainly to their regions. Since in this 

case the.force constants are those of the fre.e molecule, we 

can again use products of monomer vibrational functions. But 

the inherent degeneracy of the double minimum potential 

should be resolved by taking suitable linear 'combinations 

such as 



The primeu monomer v i b r a t i o n a l  f u n c t i o n  d e n o t e s  one of  t h e  

e x c i t e d  s t a t e s w h i c h  i s  c e n t e r e d  a t  QA. 

F o r  v  + n ) O ,  we \rrould have a n o t h e r  d e g e n e r a c y  r e s u l t i n g  from 

o u r  f o r m e r  a s s u m p t i o n  o f  e q u a l  f r e q u e n c i e s  i n  ground- a n d  

e x c i t e d  s t a t e .  . l i e r e  we s h a l l  l ' i f t  t h i s  d e g e n e r a c y  by making 

t h e  more r e a l i s t i c  a s s u m p t i o n  of a c e r t a i n  d i f f e r e n c e  between 

t h e  f r e q u e n c y  ).it o f  t h e  e x c i t e d  monomer and  t h e  f r e q u e n c y  r;, 
o f  t h e  u n e x c i t d d  one.  We s h a l . 1  c a l l  t h i s  f u r t h e r  t h e  - non- 

d e g e ' n e r a t e  weak c o u p l i n g  c a s e .  

F o r  t h e  c o n s t r u c t i o n  o f  v i b r o n i c  wave f u n c t i o n s  t h e  v i b r o n i c  - 
p a r t  ( 7 . 6 )  h a s  t o  be m u l t i p l i e d  by  t h e  e l e c t r o n i c  p a r t  @- . 
A s  we have  a l r e a d y  s t a t e d  i n  6 ,  t h e  p a r a m e t e r ' a  i s  e s s e n t i a l l y  

c o n s t a n t  w i t h i n  e a c h  of t h e  two. e q u i l i b r i u m  r e g i o n s  . b u t  . h a s  

t h e r e  d i f f e r e n t  v a l u e s ,  c l o s e  t o  0 a t  t h e  one and  c l o s e  t o  

n/2 a t  t h e  o t h e r . A c c o r d i n g  t o  o u r  g e n e r a l  e x p r e ' s s i o n  (3 .3)  f o r  

, t h i s  f u n c t i o n  h a s  uotv a somewhat p e c u l i a r  c h a r a c t e r ,  b e i n g  
1 

Ya Yb n e a r  one minimum a n d  (pa n e a r  t h e  o t h e r .  Thus we c a n  Yb 
w r i t e  f o r  s u f f i c i e n t l y  low v i b r o n i c  s t a t e s  

The c o r r e s p o n d i n g  e n e r g i e s  a r e  c o n v e n i e n t l y  c a l c u l a t e d  as t h e  

d i a g o n a l  e l e m e n t s  of' t h e  comple te1  I-Iamil tonian:  

Here  U i s  t h e  same e l e c t r o n i c  r e s o n a n c e  i n t e g r a l  ( 2 . 9 )  as be- 

f o r e .  I t  i s ,  however m u l t i p l i e d  w i t h  t h e  s q u a r e  o f  t h e  ;v ibra-  

t i o n a l  o v e r l a p  i n t e g r a l  



This is different from 0 for v + w ,  because both vibrational' 

functions belong to different centers. The Svi observe the 

completeness relation 

Therefore, the splitking in (7.8) is .not only small because 
of the small value of U in the weak coupling case, but it is 

further reduced by the factor s : ~  which is less than unity. 

Our wave functions, (7.7) and the corresponding energies (7.8) 
are sufficient, if this splitting is small compared xith the 

energy differences .between the vibronic levels with different 

yuantum numbers of v and w. Since, generally, the states with 

the same quantum number sum v + w will be close to each other, 
this condition can be specified as 

If I U /  is larger but still close to the weak coupling limit, 

as defined in (5016), it is reasonable to return to our pre- 

vious assumption of ):'= ), . We shall call this the degenerate 
weak coupling subcase. 

F o r  v = kv = 0, (7.7) and (7.8) are valid in this case too, 
since there is no further. vi'bronic level with the same c!uantum 

number sum. For higher vibi-onic levels, the zero order wave 

functions are linear combinations of the wave -functions (7.7) 
- 

wit11 tlie same v + w = v, The function for the one quantum 

levels 7 = 7 may be given here as an examp1.e 



The signs in the round brackets are here assumed to be inter- 

changed together, but independently from the signs outside, 

so that the total number of states is 4. Their energies csn 

be calculated as those in (7,8) .  

Kave functions and energy levels for some higher vibronic 
20 states have been given by Siebrand 

  or F;: = 1';. , that is for the degenerate case, and for harmonic 
vibrations the SVw are functions of one single parameter 

y can so be regarded as the w ~ d t h  of the monomer electronic 
'band, measured in units of vibrational quanta. A general 

21 expression for the S+, is 

The first few members are 

Further members of this series have been published, together 
20 

with their graphical representations . 
Appropriate values of ) might.be estimated from spectra ,because 

the intens'ities of allowed v<-0-vibronic bands should be 
L proportional to So,. For instance, the intensity ratio of the 

first two vibronic bands in the 3650 2-transition of anthracene 
suggests j.- 1. As this might be typical for weak coupling cases, 



the reduction of band splitting by the occurrence of the 

vibronic overlap integrals in (7.8) and (7.13.) is not so 
drastic as one might suspect. 

With stronger deviations from the' weak coupling. limit the 

mixing of vibronic states extends to those of different total 

vibrational quantum numbers 7, as far as they have the same 

symmetry. First order wave functions, and energies correct 

to the second drder, have been obtained by ~ c ~ a e ~ '  with a 

pertubation treatment, starting from his m-m-c.oupling case 

which corresponds to our degenerate weak coupling case. 

Earlier, the same author1' has treated intermediate coupling 

cases by another approximation, based on the application of 

zero order pertubation theory to the accidental degeneracies 

which occur in that region between wave functions of the type . ' 

- (7.7). For the same purpose, siebrand2', in his treatment of a . , 

quite analogous polaron problem, has preferred a variation 

method based on the use of strong and weak coupling limit 

wave functions together. Energy diagrams have been obtained 

by both authors for that intermediate region. Further perturba- 

tionzl treatments, starting from both limits, have been given 
2% by Fulton and Gouterman . 

It might be 2ossible also to start with the exact vibrational 

wave functions for the single- or double-minimum potential 

(5.10) IIowever in this case the term on .the right side of ( 6 : 5 )  
resulting from the incomplete separation of the variables by 

the Born-Oppenheimer procedure, would deserve special considera- 

tions. Up to now, this possibility has not yet been explored. 

Our present results can easily be formulated in terms of 

excitation transfer. 1.t is rlow obvious that the .transfer rate 



calculated earlier f0r.a dimer of alike molecules will be 

valid in the strong coupling case only. The transfer occurs, 

in this case, with fixed nuclear configuration, 'corresponding 

to the average between ground- and excited state. 
' 

iis we have found for the symmetric dimer in 3, the transfer 

rate is equal to the resonance splitting divided by 2/h. This 

should be valid also in the weak coupling case, if there is 

essential interaction only between one pair of equivalent 

levels. Thus we get from (7.8) for non-degenerate weak coupling 

This is the transfer rate bettireen an excited molecule with the 

vibrational quantum number v and an unexcited one with the 

iluantum number w. As may be seen from an inspection of the 

corresponding wave functions (7.7), this transfer is accompanied 
by an exchan&e of the vibrational quanta so that the excited 

molecule stays in the same vibrational level. Likewise, the 

average values of the nuclear coordinates change according 

to the temporary excitation of the one or the other molecule. 

As is evident from (7.16) the transfer rate depends on the 

vibrational quiintum numbers of 'both molecules. 

schematically, this kind of transfer is represented in Fig.4a, 

where the molecule a returns from its original vibronic level 

v of the excited state to the ground state level w, while 

the mo'lecule b undergoes the inverse process.. One may call 

this a pair of coupled transitions within these molecules. 

In the degenerate weak coupling case the situation is somewhat 

different. As one may conclude from the inspection of wave 

functions like (7.12) the transfer of electronic excitation 

may or may not he connected 171th an e.xchange of the vibrational 

quanta. However, here too the alteration of nuclear coordinates 



is connected with the transfer. 

Fig.41, re2resents an example for transfer under.these condi- 

tions. From an original >air of levels v and w of the excited 

molecule ~ n d  the unexcited one, several pairs 0.f coupled 

transitions may now occur, These are 

v-.i,v + n .for a, together w'ith 

W - > W  - n for b, with the condition that 

This gives a total number of v + w + 1 pairs of coupled 
transitions. For v = w = 0, the transfer rate is that of (7.16). 

Vibronically excited states would deserve an individual treat- 

ment because of the different garticipation of vibrational 

yudnta, but it is evident that then the transfer rate for 

degenerate we& coupling transfer exceeds that of (7.16). 

il1,ti~oukh in this chapter he have restricted ourselves t o  the 

consiaerhtion of dimers only, it is tempting to extrapolate 

these results to ,~olyrners. From (4.4) together with (7..16) 

we may expect for non-degenerate weak coupling a transfer 

rate between adjacent molecules of' 

where k describes the phase of the exciton state. For v = w = 
0 

0, 

this woulc! apply as we'll in the degenerate 'subcase. I t  corres- 

ponds to the migration of an exciton in which the temporatily 

excited molecule alone has the excited state equilibrium 

configuration but all other molecules that of the ground state. 

One may describe this as a lattice distortion which is strictly 

co~ir~ecl;ed \,vi tl.1 the exciton. 



2ig lner  a p p r o x i m a t i o n s  f o r  e x c i t o n  m i g r a t i o n  u n d e r  s t r o n g e r  
23  c o u p l i n g .  have  b e e n  o b t a i n e d  by h l c ~ a e ~ ~ ' ~ ~  and  by h l e r r i f i e l d  

The l a t t i c e  d i s t o r t i o n  e x t e n d s  t h e n ,  t o g e t h e r  w i t h  t h e  

e s c i t ~ t i o n ,  o v e r  an i n c r e a s i n g  number o f - m o l e c u l e s  u n t i l  

i t  f i n a l l y ,  i n  t h e  s . t r o n g  c o u p l i n g  c a s e , d i s a p y e a r s  b e c a u s e  

i t  i s  d i s t r i b u t e d  among an i n f i n i t e  number o f  m o l e c u l e s .  
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8. P r e l i m i n a r y  c o n s i d c r ~ t i o n s .  I n  c h a p t e r  I11 n e  have  c o n s i d e r e d  

t h e  e i ' f e c t s  of  v i b r a t i o n a l  s t r u c t u r e  o f  o u r  sys t em b u t  have  

d i s r e g a r d e d  a p o s s i b l e  s t r u c t u r e  o f  t h e  v i b r o n i c  l e v e l s  them- 

s e l v e s .  t io re  s p e c i f i c a l l y ,  we have  b a s e d  o u r  t r e a t m e n t  on 

t h e  a s s u m p t i o n  o f  i n f i n i t e l y  s h a r p  v i b r o n i c  l e v e l s .  To t h i s  

one c a n n o t  o b j e c t , i n  a c t u a l  c t i s e s ,  as l o n g  as t h e  v i b r o n i c  

s y l i t t i n g  r e s u l t i n g  from c ~ u y l i n g  e x c e e d s  t h e  f i n i t e  w i d t h  o f  

t h e  i n u i d u a l  v i b r o n i c  bilnd. One must e x p e c t ,  however ,  t h a t  

f o r  v e r y  :veaIc i n t e r a c t i o n  even  two c o i n c i c i i n g  v i b r o n i c  l e v e l s  

a r e  n o t  c o t n p l e t e l y  a t  r e s o n a n c e  ? i r i t h  e a c h  o t h e r ,  b u t  c e r t a i n  

r e " i o n s  o f  therid o n l y .  I n  t h a t  c a s e ,  t h e  t h e o r y  d e v e l o p e d  f o r  

!veaB c o u i i l i n g  ci5.n no more be v a l i e ,  b u t  i n s t e a d  l.ve have  

z ~ ~ o t h e r ,  w e l l  de f  inct3., c.::upling c a s e .  I t  i s  t i l i s  c a s e ,  which 

we sl ial l  c:~;11 t h e  ver.:? v;ealc c o u p l i n g  c q s e .  T h i s  d e f i n i t i o n  i s  

i n  a c c o r d  w i t h  o u r . e x p e r i m e n t a 1  one g i v e n  i n  c l ~ a p t e r  I ,  b e c a u s e  

a l l  e v e n t u a l  s p l i t t i n g  e f f e c t s  ~ o u l d  oe masked by t h e  f i n i t e  

S o l u t i o n  s g e c t r a  of  o r g a n i c  comyouniis have  u s u a l l y  f a i r l y  

b r o a d  v i b r o n i c  bands .  : . .Juite o f t e n ,  t h e  w i d t h  o f  t h e s e  i s  n o t  

n~uch l e s s  t l l a r l  t h e  v i b r a t i o n a l  s i x i c i n g ,  and  ever1 a t  l i q u i d  
-1 

n i t r o ( 4 e n  t e u i ~ e r a t u r e  band w i d t h s  of  1 0 0  cm o r  more,  t o  be  
-1 compared :;vith s,.iacing of 10U!) c n  o r  l e s s ,  a r e  t h e  r u l e  

r a t h e r  t h a n  a n  e x c e p t i o n .  I t  i s  u n d e r  s p e c i a l  c o n d i t i o n s  o n l y  

t h a t  s h a ' r p e r  'bands a r e  o ' i jserved,  s u c h  as f o r  a r o m a t i c  l ~ y d r o -  

car .bons  i n  ade : jua te  c r y s t a l l i n e  hy'drocarbor; s o l v e r l t s  a t  

l i q u i d  n i t r o g e n  t e m p e r a t u r e  o r  belowz4.  Uut t h e s e  s o  c i l l e d  
-1 

' l i n e  s i ) e c t r a '  s t i l l  have w i d t h s  of  t h e  o r d e r  of  1 0  cm , and  
-1 

e v e n  a t  l i q u i d  h e l i u m  t e u i p e r a t u r e  3 c ~ u  seems t o  be a l o w e r  - 
1 i L l i t L >  * 



Certainly, this finite band width, which is several orde'rs 

of magnitude ltii-ger then that calculated from the life 

times of the excited electronic states themselves, may have 

different causes. Different local environments of the 

molecules might be a possible cause in solid solution spectra. 

It is out of the question that this would seriously hamper 

the transfer in cases, where the coupling energy is less 

than the differences of the vibronic lev'els between different 

molecules. 

Another cause might be more important, at 1east.in liquid 

systems at higher temperature. The intramolecular vibrations 

of different molecules are certainly coupled to some extent 

with each other and with the multitude of intermolecular 

lattice vibrations. As a result of this, each supposedly 

intramolecular normal vibration is, in fact, a bunch of normal 

vibrations of the system. The frequency spcctrum of this 

extends over a certain range which can be regarded as the 

vibronic band width. In our previous model, part of this 

might have been considered by allowing a mechanical coupling 

between the vibrations of the separate molecules as well as 

a change of their mutual distance and orientation. 

Alternatively, we can still regard the vibrations as essen- 

tially intramoleaular but then \?re u~ust take into account 

vibrational energy exchange. We can ascribe this to a kind 

of collisional grocess between the molecule and its neighbors. 

Such processes are resgonsi'ble for the comparatively fast 

establishment of thermal equilibrium between the vibrational 

degrees of freedom of an excited molecule and its surroundings. 

The time required for this has been estimated to about 10-'"sec 
36 10-12sec 

or even shorter. From thermal conductivity data, 

would scem reasonable undcr room temi)erdture condi,tiions, 



Y 
corresponding to a band width of 30 cm-l. 

If the coupling is so weak that the transfer has not been 

accomplisk~ed: during the collisional 1ife.time of such a 

vibronic level, the transfer will necessarily be afflicted 

by such collisions. Tie shall illustrate this by a rough 

calculation. 

Let us consider again an initial state in which the excited 

lucrlecule a occupies the vibrational level v, and the unexcited 

molecule b occupies' the level IV. Under our conditions of very 

weak coupling the transfer can solely occur with the exchange 

.of the vibrational cluanta v and m between :both molecules as 

it has been depicted in Fig.4a. The increasing exsectation , 

value for the final state of the system which may be 

designated here as 4an,b ,v. can be calculated from (3.16) 
if we replace there the electronic interaction energy U by 

the vi'bronic interaction energy, which according to (7.8) is 
U stw or for short: 

Thus we get 
&;$ t 3  

'I . :  
Y 5 ;I !d, *' I) $ z 

as long as this stays small and as long .as no collisfon 

occurs. If the first collision occurs at ; f = T  qaw,blv will 

have increased by an amount of 

Since such a collision destroys all phase relations between 

+ 
Thermal conductivities of non-metallic substancd's are of the 

-1 
order of cm2 *set . For equilibrium within molecular 
distances (3-10-~cm) this leads to the time given here. 



the wave functions, the increase during the further collision 

time periods will be the same, so that we get 

In contradistinction from the strong and the weak coupling 

case, the transfer is now linear in time, and the rate can. be 

unambigously calculated as 

If we express the collision time interval by the corresponding 

band width . J E  = h / ~  , we get finally 

The l'inear increase of the expectation value of the final state, 

and the square dependence of the interaction energy are the ' 

characteristic features . . of our Present very weak coupling 

case. The comparison with(7.16) shows that for the same but 

small 'interaction the transfer rate is less than .that for so- ," 

. called weak coupling. The transition from weak to very weak 

coup.ling occurs unavoidably if the transfer calculated from . . 

(7.16) would last longe'r than the collisional time T.' This 
places the approximate limit between the'se two cases at. 

A reciprbcal argument, based on (6.3) would place it at 

.::? E 
Y -  I I , tv ,J  I ,.z 3- 

which is not much different from (8.4). 

Several misconceptions'seem to exist - even in the more recent 
literature - about the nature of this very weak coupling case. 



4 It; i l ~ ~ s  bel:i~ c o n s i d e r e d  b a s e d  on a d i f f e r e n t  n~ociel ( t h e  

i n t e r a c t i o n  - nf  - c s i i i i n u a  - model as  opposed  t o  t h e  e x c i t o n -  

n o d e l ) ,  A c t u a l l y  i t  i s  j u s t  one t y p i c a l  c a s e  of  e x c i t a t i o n  

t r a n s f c r  b a s e d  on t h e  same i n t e r a c t i o n  m a t r i x  as f o r  weak 

c o u p l i n g .  T h i s  l e a v e s  t h e  sys t em no c h o i c e  be tween two 

~ i i f f e r e n t  mechanisms,  I n  t h e  c o n t r a r y ,  t h e  sys t em h a s  t o  

a r r a n g e  i t s  t r a n s f e r  i n  a c c o r d a n c e  w i t h  t h e  g r e v a i l i r i g  con- 

d i t i o n s .  If due t o  l a r g e  c l i s t a r l ces  o r  o t h e r  r e a s o n s  t h e  

-.: L,:, I-.:( :;..-;,. m a t r i x  e l e ~ e n t  i s  l e s s  t h a n  t h e  v i b r o i l i c  band w i d t h ,  

we have t h e  c o n d i t i o n s  of t h e  v e r y  weak c o u p l i n g  c a s e .  

F u r t h e r m o r e ,  t i l e r e  i s  t h e  b e l i e f  t h a t  v e r y  weak c o u p l i n g  f o r m a l i s m  

m u l d  a 9 p l v  o n l y  t o  e x c i t a t i o n  t r a n s f e r  be tween d i f f e r e n t  

nlolec'ules". I t  i s  t i le  pu rpose  o f  o u r  p r e s e n t  c o n s i d e r a t i o n s  

t o  show t h a t  t h i s  i s  n o t  t r u e .  I t  i s  o n l y  t r u e . t h a t  v e r y  

\veal< c o u p l i n g  a l l o ~ v s  f o r  such  t r a n s f e r  t o o  p r o v i d e d  t h e  

r l e c e s s a r y  r e r j u f r e ~ n e n t s ,  which will be i n v e s t i g a t e d  l a t e r ,  

a r e  met .  

In o r d e r  .Lo make o u r  f u r t l ~ e r t r e a t m e n t  as g e n e r a l  as p o s s i ' b l e  

we s h a l l  f o r ~ u u l a t e  i t  f o r  c o n t i n u o u s  v i b r o n i c  l e v e l s .  However,  

t h i s  i n c l u d e s  d i s c r e t e  l e v e l  s y s t e m s  as  w e l l ,  and we s h a l l  

s e e  t i ~ a t  even  t h e  s t r o n g  and t h e  weak c o u p l i n g  c a s e s  a r e  

c o v e r e d .  

9. D e t a i l e d  Theory .  We suppose  a g a i n  t h a t  a m o l e c u l e  a i s  

e x c i t e d  and a n o t h e r  m o l e c u l e  b  u n e x c i t e d  a t  t h e  b e g i n n i n g .  

Both m o l e c u l e s  may be  of  t h e  siiue k i n d  o r  d i f f e r e n t .  T h e i r  

t o t a l  v i b r o n i c  e n e r g i e s  s h a l l  be named EA and Eb r e s p e c t i v e l y .  

We s h a l l  f o l l o w  t h e n  t h e  develoyemeil t  w i t h  t i m e  o f  a l l  

s i t u a t i o n s  i n  which molecu le  b  i s  e x c i t e d  i n s t e a d  of  a and  

where t h e  v i b r o n i c .  e n e r g i e s  a r e ,  t h e n ,  Ea and E;I r e s p e c t i v e l y .  



- 
By use of molecular vibronic wave functions Y/(q,~,~) with 

the corresponding energies as additional parameters, such 

processes can be described as 

or shorter by use of dimer vibronic wave functions as 

It is convenient here to normalize the molecular wave func'tions - _  
belonging to the o.rigina1 s'tate - =v:pb and those 

belonging to the final = pa ~6 differently 2 8 , 2 9  
- 

Retaining for the former ones the usual normalization: 

we define the normalization of the latter ones 'as follows: 

Here < / ) denotes the product of the functions in brackets 
integrated over the' corre,sponding coordinates q and Q, while 

v. and li,' are quantumnumbers of intramolecular vibration. 
a. 

As before, only real wave. functions are considered. 

With these definitions the orthonormalization relatiops ,for 

wave functions with different energy values E and B are 

with )"= pi or pb. Here v and Tare the vibrational quantum 
numbers be.longing to the energies E and B. ,Jh)is the Dirac . 

&-function, which has 'the property a8(ax) = 6 ( x ) .  
Furthermore, the expectation value of any operator Op is 

so that<wfCP/F> now represents the density of this expectation. 

value on the energy scale. The expectation value itself for 



any final state energy interval is obtained by integrati'on 

over this interval. The properties of the final state system 
7- 

wave function  follow from those of its factorsva and 
' / 

b .  These wave functibns are, of course, also funbtions of 

their respective electronic and nuclear coordinates q and Q. 

The corresponding time dependent wave function is then 

The time dependence of the slowly varying coefficients 

c(E,,E;,t) follows from the time dependent SchrBdinger 

equation which we write here 

is the unperturbed Hamilton operator, of which Y/acb(~:,~b) 
and gab, (E ~ , E ~ )  are eigenfunctions with their respective 

energies as eigenvalues. Treprksents the interaction between 

these, which is supposed to be resonance interaction only, 

while the Coulombic interaction is thought to be already' 

included in yi,. By insertion of (9.1) into (9.2) together 

with the initial conditions co(0) = 1, c (E,,E;,o) = 0 ' one 
obtains 

This and the follorving results are valid as long as the final 

states are not essentially populated'and the depletion of the 

original state can 'be neglected. 



Multiplication with pabI (Ea,Ei), where the bar denotes a 
pair of other values of Ea and EL, and subsequent integration 

over the q,Q-apace leads under consi.deration of the or*ho- 

normalization relations between the unparturbed wave functions 

- 
< Ellb (4; 5) I (& ' I  4')) = 0 (9.4) . . 

and {'p - 4 b  , ( ~ , h  y/&i(E. '6 I q)) = J/4.-E)J(4J-e) , (9.5) 
# 

where 

is the energy difference between the initial and the final 

state. In the following we shall use the short handnotation 

where the dependence on the initial energies EA and Eb is. 
. . 

droppedbecause these are considered to be constant. With our 

normalization for the final state u(E,,E~) is the density 

of 'the interaction .matrix element in the Ea-EL-plane .' 
The integration of (9.6) with the initial condition 

C(E~,EA,O) = o leads t,o 
I 

# 

.* 1 

ld&f ddF& 
c i&#Z:*)  = - f i  .~t;t,W$?-"~ . .  = u&,&Y . ..4F, - I  (9.9) 

0 
I The expectation value for the state qabI(Ea,Eb,t) becomes 

! then 
2 - AEC 4h2/&/  4') &j,2 1 c~'E~, F;, ~ J I  - (A &I 2 +. 

By integration over the final state energies Ea and Ei we , 

obtain finally the probability Qab tha't molecule b is excited, 

independent of the final vibropic energies of both:. " 



This expression is valid as long as qab,"l. For sufficiently 

short times, such that. 

for the energy difrferences considered, we can approximate 

the sine'by,its argument and obtain 

If the condition (9.12) is satisfied fo'r all energy values 

within the total rangesdw and dwt of the electronic transitions, 
the integration in (9.13) can be performed over these ranges. 

In regard of our no.rmalization, we obtain then 

. where u2 is the square of. the total electronic interaction- 
matrixelement as defined in (2.9). (9.14) is identical with 

our earlier result (3.16) for the strong coupling cake, which, 
therefore, is covered a1s.o by our present treatment. If we 

require that essential transfer occurs under these conditions 

so 'that qab (t) approaches unity' (disregarding here the 
depiction of the initial state and a possible back transfer), 

. . we 'have \~)~&/t' for times within the limits. of (9.12,), which 

are * 

This leads to 

? / ,y /  27 dw ,Al 



which is in Psc% the o,riginal Simpson-Peterson criterium for 

this case. 

I In casd of molecules with well defined vLbronic- levels (9,13) 

can be used for even longer time intervals, if the integration 

is restricted to those regions j c V  and drw of Ea and EL 

which correspond to the vibrational levels v and w, respectively, 

of the original state of the system. The integration then 

where uvW as before is the vibronic matrix element of resonance 

interaction. We have neglected here' further contributions to 

9aw,btv from other bands within the integration range,in (9.11) 

since these contributions are small because of the denominator 
v. . d ~ ~  under the integral. Oblously, (9.16) describes the transfer 

under non-degenerate weak coupling conditions. For the degene- 

rate subcase we have merely to perform the summation over the 

dsgenerate final levels v + n and w + n, \!rith'-vf n i m  as in 7.: 

Our approximation (9.13) becomes invalid here too if the 

condition (9.12) is no more satisfied for energy values within 

the same pair of vibronic levels. By the same reas'oning as . 

applied to the strong coupling case we get no,w 

as a lower limit for the weak coupling case, where A s  is (the 
vi'bronic band width. This is not much different from the 1imi.t 

(8.4) found earlier by our preliminary considerations. 

If the interaction matrix element becomes smaller than 

allowed by (9.18) we enter the region of very weak coupling. 



dF t 
For this (9.11') is still valid, but sin - can no more be 

.2$ 
repaaced by ies argument for the long times required, .even 

within small energy ranges. Instead of this, we must now'take 

the limiting value of the integral in (9.11) for large t 

* 
By use of the 6-function we can write this 

Here, the increase . o f  J a b ,  (t) i.s linear with time, as it 5 
should be in the very weak coupling case. In order to carry 

. . 

oat the integration, we transform to new energy variables, 

namely to AE as defined in (9.7) and 

Since' the transformation determinant is un.ity, w.e get 

3 J.I\, ifX 

One of the irepresentations of the 6-function is kt) = h ' j n  

f ->w s i ' f x 2 '  

Compare E.Madelung, Die mathematischen Hilfsmittel des Physi- 

kers, 6, Aufl. 1957, Springer Verlag Berlin, GSttingen, 
Heidelberg, pag.18 



This integration requires that u2 (E, dE) is not essentially 
different from u2 (E,o) within a range of at least/d~./v2f/t. 

Here, we are interested only in times longer than those 

required for weak coupling transfer. According to (7.16) 
h these are times t> , so that nearly constant values 

4 kvu 
of (E, AE) within /JE/L/U~~/ are sufficient. Since for very 

weak coupling the inverted inequality (9.18). holds, we have 

Near constancy of u2 (E,h) is then required within the 

region of the vibronic band widths only. This can be supposed, 

homever,'because otherwise these bands would not appear 
. . 

simple, but wauld show further structure. A better approximation. . 

than (9.21) in the region near the weak c.oupling limit should 

. be possible by a more accurate integration of (9.11) than by 

way of the 6-function, but this is outside of our present 

- .  . intentf ons. 
. . 

According to (9.7) E-0 states simply the conservation of 

unperturbed energy,. which is more strictly observ.ed in our 

present very weak c~oupling case than in the other cases with 

stronger interaction. The quantity E as defined in (9.20.) is 

then exactly the amount of energy transferred between both 

molecules. 

From (9.21) the transfer rate can be unambiguously calculated' 

  he remaining integration here requires a knowledge of u?(E,o) 
as a function of E. If we assume each of the v'ibronic levels 

v and w to have the same precisely defined widthdc, the 

function u2 (E,,~A)will be constant within that region so 

that we have * 



The integration .in (9.22) extends over a linear interval' of 

E which is ui the order of AE.  We get therefore 

with a numerical factor a not far from unity. Under our present 

assumption, a deyends on the .location of the original energy , 

values EA, Eb within their band, so that we must take the 

average. A straightforward calculation under these assumption 

givcs a = 3/4, and thel-efore. 

a i ~ .  - ,  
3 ~ 4 4 %  

-> - 
c2 ;5- A& 

We sl~ould not give.too much atkention to the numerical factor 

here and to the deviation from its value in (8.3) or in other 

expressions for the weak coupling transfer rate published 

earlier? The value of that factor depends largely on our 

assumption of a sharply defined band width. A Gaussian 

di.stribution leads' to a similar but somewhat different resull;, 

the definition' of, the vibronic band width is, however, some- 

what arbitrary here. 

Our present considerations allow for the broadening of the 

vibronic levels. Therefore,' we can go one step further and 

ass.ume thermal equilibrium to be established not only for 

the primarily unexcited molecule b but also for the primarily 

excited one a. With a vibrational relaxation time'r- the time 

between two collisions, that lead to other vibronic levels of 

the same: electronic state - the broadening is L ! T - ~ / ~  and 
insertion into (9.23) gives 

2 gb2 it,, 

WiLhin the very weak coupling range (but by no way within 

the weak coupling one!) this can be less than unity so that 

thermal equilibrium can be obtained before excitation transfer 



occurs. By introduction of Boltzmann-factors g$ for the 

originally excited molecule and gv for the unexcited one we 

get ,then a total transfer rate of 

This refers to excitati'on transfer under our very weak coupling 

conditions for any pair.of alike molecules with well defined 

vibronic levels in thermal equilibrium. In this case we have 

still more reason to regard the excitation as temporarily 

localized at one single molecule, Since now no phase relations 

exist any more between the wave functions of both molecules, 

the.depletion of the original state as well as an eventual 

.back reaction can be treated by the formulation of a suitabae 

first order differential equation for the expectation.values 

Cafb and qab; A transfer to other molecules could be treated 
in a similar way ah a ~CaLivCical hopping or dfffusional 
process, with.out .any consideration of the wave-like properties 

of the excitation. 

- W e  shall now consiher in detail molecules with continuous 

spectra, that is those which show no or only weakly developed 

vib.ronic structure. ' Continuous spectra result if the individual 

vdbronic levels of one or. of both states merge together. This 

may be due to extreme life-time broaciening.as in the case 03 

dissociation continua, where the nuclear ~notio'n may even no 
bz- 

more be vibrational at all. It may also aue to the crowding 

of vibratidnal levels in larger molecules. This is the general 

cause for the continuous or quasi-continuous appearance ,of the 

spectra which is so often met in solution spectroscopy of 

polyatomic molecules. 

With the distribution of the total vibronic resonance inter- 

actfon among many vibronic levels, the matrix elements uvw 



become necessarily small. This leads not only to a reduction 

of the weal? nsii>iing transfer rate (7.16) but also to a shift 

of the boundary (9.18) between weak and very weak coupling. 

Let us suppose that there are z vibronic banGs with comparabae 

values of their Franck-Condon-integrals Svw and of the same 

width A & .  The spectrum will be continuous if the sum of the 
energy ranges covered by these bands exceeds the total elec- 

tronic band width d~v, that is, if 

We shall suppose that this is true for the ground- and excited 

states of both molecules a and b. NOT, the total resonance 

interaction is 

if Bw is the average vibronic matrix element. By insertion 
o f  ( 9 . 2 6 )  and (9.27) into (3.18) we get 

2 / u / > >  = , A E  > O U  ( 9 . z ~ )  

as the lower limit for weak coupling. Comparison with (9.15) 

shows, however, that this is also the limit for strong coupling. 

Kith other words, if U is large enough to allow for weak 

instead of very weak coupling, it is already sB large that 

the coupling is strong. Thus we arrive at the imaortant 

result that for systems with continuous vibronic levels no 

weak coupling case exists any more. It is not.surpr.ising that' 

the experimental criterium for weak coupling. (compare 

chapter I) fails for continuous spectra. 

Even for systems which show vibronic structure, but where 

this structure is not well pronounced insofar as the vibronic 

band widths are not much less than the banC separations, the 

upper and lower limits from (3.15) and (9.18) are so close 

together that the 11-eak coupling case is not much more than 



an intermediate one between the two others. This is so for 

all solutior syslems and many crystalline ones, with the 

excepti.on', perhaps, at very low temperature. It is only the 

widespread use of the present terminology which may justify 

us to call this intermediate case that af weak coupling. 

If, for vibronic continua, the range of the weak coupling case 

is reduced to zero, then that of the very weak coupling case 

must extend further. The reason for this is not difficu1.t to 

see. 'We have found,that the integration of (9.11) by use of 

the 6-function requires that u2 (E, A E )  does not vary essen- 
tially in the .region around A E  = 0. For molecules with well 

separated vibronic levels, this is only within the widths of 

these. But for continuous spectra, this region extends over 

an essential part of the electronic band' widths. .This results 

from the fact that the spectral intensity c3istrib.ution of an 

ahsorpt.ion- or emission transition is determined by Lhe same 

vibrational o erlap . . integrals which also determine the variation 

of U(E~,E;) and of its square. 

 ore quantitatively, this may be stated as follows. By inte- 
gration of (9.22), but now over the total electronic band 

with a numerical factor a t  not far from unity. The use of the 

6-function in going from (9.11) to (9.22) requires that for 

a time t corresponding'to the reciprocal of the rate, and 

for an energy interval dl3 of the order An 

This ieads to ,the condition 

which, in fact, is close to the strong coupling limit.(9.15). 



Near this .limit,. the 'very weak coupling1 transfer may become 

quite fast. One must then 'be careful in using Boltzmann- 

distributions in a way analogous to that in (9.25), because 

the transfer time might be less than the thermal relaxation 

time Z. 

Although our general considerations in this chapter are no.t 

restricted to molecules of the same kind, we have been 

concerned mainly with excitation transfer between those. The 

possible extension,to dissimilar molecules needs, therefore, 

some further considerations. In the strong coupling case, 

collective excitation or excitation transfer will certainly 

occur if the differences between the electronic energies do . . 

not exceed the resonance interaction energy U. Such cases, 

might be treated by use of (3.18) in chapter 110 

In the weak or the very weak coupling case, excitation transfer 

between molecules with well separated vibronic levels would 

require some more' or less accidental coincidence between these. 

But for molecules with continuous or quasi-continuous levels, 

some overlap of these regions will be' sufficient. The 

detailed nature of this overlap will be discussed b,elow 

within the aspects of tPe very weak coupling case which, a s  

we have seen, is the only, one in question here. 

10. Qu'antitative formulations. Our further pr.ocedure shall be 

mai'nly concerned wit.11 very weak coupling transfer under 

prevailing dipole-dipole-interaction. It is under these con- 

ditions only that the transfe.r rates can be expressed by the 

spectral data of the molecules involved. 

For the calculation of the transfer rate by use of (9.22), we 

have to specify the matrix element U(E,O) further. If we 



return to the original energy p.arameters by (9.7) and (9.201, 

this becomes in the complete notation of (9.8) 

The final state energies have been expressed here by the 

original state energies and the transfer energy.E. For 

simplicity, we take Born-Oppenheimer vibronic functions 

where ,rt and are the vibrational wave functions of the 

eicite.d and o f  the unexcited molecule d?, respectively, 

characterized by their vibronic state energies. Their norma- 

liza-tion is alr.eady determined by our normalization .procedure 

for the vibroni'c wave functions. The square of the matrix 

element u ( E , o )  in .(l0.1) becomes then under neglection of 

vibrational.terrns, that is for electronicakly allowed inter- 

action, 

Here, ,U is the electronic interaction matrix element as defined 

in ( 2 . 9 ) ,  and 

a vibrational overlap integral analogous to'(7.9). Under 

restriction to dipole-dipole-interaction we can use (3.11) to 

obtain: 



where is a numerical factor containing the directional 

dependence of the interaction energy and where ma, mb are 

the electronic transition dipole moments of 'both molecules. 

If we finally insert (10.3) and (10.4) into (9.22) andreplace 

there the transfer energy E'by the transfer frequency V =  ~ / h  = 

E/2 n X and change the normalization of our vibrational 

functions as well to a frequency scale, we arrive at 

This is the transfer rate for molecules with the initial 

states EA and Eb. From this we can get the total transfer rate 
for thermal equilibrium by the introduction of suitable Boltz- 

mann factors and subsequent integration over all energies EA 

and Eb. These Boltzmann factors are here continuous functions 
g'(~) for the excited molecule and g ( ~ )  for the unexcited one, 

which are normalized on an energy scale. Thus we get 

The expressions within the squared brackets under the integral 

are closely related to the spectroscopic transition probabili- 

ties between ground and excited states within 'the molecules a 

and b. Each of them consists of the square of an electronic 

transition moment and a Franck-Condon factor, averaged over 

the Boltzmann-distribution of the original state. More I 

specifically, the first bracket is proportional to the spectral 

density of the emission spectrum of molecule a for thermal . 
ecluilibrium in its excited state. This,is the regular fluores- 

cence spectrum. In a similar way, the second bracket is 



proportional to the spectral density of the absorption spec- 

trum of molecule b. Therefore, the integral in (10.6). is 

proportional to the overlap integral of the fluorescence 

spectrum of a with the absorption spectrum of b. 

The transition rate (10.6) can be calculated quantitatively 

from spectral data if one uses the following reaations whtch 

can easily be derived from Einstein's well known expressions 

for induced absorption and for spontaneous emission 

Here ~ ( v )  is the molar decadic extinction coefficient and 

f(V) the fluorescence quantum apectriim, normalized to unity 

0 n . a  frequency scal'e. N' is the number of molecules per milli- 

mole, c thevelocity of light a n d Z  the natural fluorescence 

life time, that is in the absence of radiationless processes. 

Insertion of (10.7). and (10~8) into (io.6) gives finally 

This is.essentially the same result as has been obtained in 

earlier calculations28'?Y~part frdm the factor Y - ~ ,  ' the integral ' . 

here represents the overlap of the fluorescence spectrum of 

the initial'ly excited molecule a with the absorption,spectra 

of 'the finally excited molecule b? An appreciable overlap of 

these spectra is a necessary condition for excitation transfer 

under very weak coupling. It permits transfer between molecul'es 

of the - same or of different kind provided that in the second 

case the excited state of the acceptor molecule is somewhat 



less .then that of the'donor. It is remarkably that this 

expressi.on does not contain Planckls constant. Actually, it 

can also be derived on an essehtially classical 'basis? If the 
6 

spectra are represented on a wave number scale y and the 
~. 

fluorescence spectrum . .  . is normalized in that way', (10.9) reads 

The numerical, factor X can be calculated from (3.11) for any 
mutual orientation'of both mol.ecules. For sufficiently fast 

Brownian'rotation of both molecules, the average k2 = 2/3 may 
be used. An average for ,random but fixed orientations has been' 

30 caldulated by ~aksimoi and ~oiman 

. . 
several further simplifying approximations are ,possible here, . . 
such as replacing'; by an average value and taking it out .of 

the integral or by-using the mirror symmetry in order to 
D '  ' 

. . .  replace the fluor.tis&ence . . spectrum by 'the inverted absorption 
30 spectrum 

 his ' has been done in the monograph: Fluoreszenz organischer 
-Verbindungen, ~andenhoek und Ruprecht , ~attin~en, 1961. 1n 

part of the Bdi%ion,'(lO.g) has incorrectly been printed 

with ' k 6  instead ofr, x5, .and this "error has been' transfered to, 

some other articles. 



CONCLUSIONS 

In our foregoing treatment delocalized excitation and exc'itation 
transfer have been discussed in t.erms.of stationary and of 

non stationary wave .functions. We have arrived at the result 

that the apparently.different cases of strong, weak and of. 

very weak coupling are intimately related t o  each other and' 

might, in principle, be described .by one single theory. Their 

different 'characteristics result merely from a difference in 
. 3 

magnitude of the interaction energy, in relation to the 

electronic band width and to the individual vibronic band width. 

The .conditions for .very weak coupling, in our present revised' 

notation, seem to be met much.more often,than has been redog- 

nized in the recent literature. ~ctuaily, 'for this .case to be 

present, the interaction. energy has not even to be small on.an 
. . 

ab'solute soale, as has been found in our discussion of mole- 

cules with,continuous spectra. 

~xcitation transfer between triplet 'states, that is T1->So 
I : 

[ . <. , . in one molecule :together with T1d+ So in the other, is spin . 

forbidden, and the interaction energy is small even for mole- 
, 
I ' oules i n  close contact with each other. A value of 8 bm-' has 

been found by ~iernan and ~obinson~' for this energy in case 
< 

of ,the benzene, crystal..At liquid,helium temperature this may 
. .  , 

be sufficient for weak coupling but no more a t  essentially 

. . 
. higher temperatures ,where the vibronic band widths exceed 

I , . 

. . that' amount. considerably. Then, stepwise transfer o f  excitation 
.instead of exciton propagation should be expected, and the 

- .  individual transfer rates should be treated by very weak 

ooupling theory, Dexter's mod'ific.ation for forbidden 
2 9 '  , . 'transitions . , 



I - 
. . Even if the conditions for strong or for weak. coupling apply, 

so that electronic or vibronic excitons do exist; their 

migration is still modified by. the thermal redistribution of 
. . 

energy between different vibroniclevels. In exciton theory 
. . 

this is considered by the inclusion of excitofi-phonon- 

I , .  .. scattering.. This allows linear migration of excitons in a. : 

iattice over restricted distances only, b u t  leads then to ' , 

diffensive motion. Model calculati.ons under such conditions 

have been by ~oadr'. As ~ a t s h u r a ~ ~  has shown, 

frozen lattice irregularities 'lead to a similar behavior. In 

both cases the root-mean-square displacement of the. excitation 

becomes finally proportional to E , a s  in diffusion or'in a 

random walk process. With the same individual transfer rate 

this may result i n  much smaller rates for.trapping by impurities, 

. . especially in one-dimensional systems where a random walk 

includes repeated visits of.the same place. 
1 a 
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. . .  CAPTIONS TO FIGURES . .  . . . . 

Fig.1 Energy of the exciton state of the polymer .. 
. . . . as function of k. 

. . . . . . .  . . . . . .  a: U 7 O  
% :.. " . . . . . . . . .  

% .  
b: U <  0 . . .  

. . 
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Fig.2a Potential energy surfacb- of a dimer under 

strong coupling, 

. . . .  . . . . . .  -.. 
. . . . .  . . . . 

, . Q,, Qb: nuclear coordinates . . . . 

. . .  . . . , . . ' . . . .  . . . . . .  . . . . .  . . . . . . 
. . .  

. . 
. . . . Q,, QA: equilibrium configurations of ' ."' . . . . . . .  
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. . . . . .  
,. . .:. monomer ground-' and: excited: .states . . . . _. . . . .  . . .  . . . . . .  . . . ' _ .  :. 

I . . : . .  ------ ground state . . . . . . . , . . .  . . 
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. . .  , . 
. . .  lower excited state' . . 
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. Fig.2b Potential energy surface of a dimer under.;, 
weak. coupling. 
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. . . . 
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Fig..3. Potential energies in the' configurati4ional. 
. . plane = Po + Q;, - 

. . . . . . 

p ='0.1 (weak coupling) . . 
. . . . .  . , . . . .  

. . .  . . .  p = 1 (borderline case) ' . . . . 
. . . . . .  

I . . 

I p: = 3 (strong coupling) . . 
. . .  . . . . 

' ~lsltance in units of (QA - Qo). 
. . .  x 2:  energy in units of Z(~;, - Qo)? 

. . .  . . .  . . 2 1 Fig.4 Coupled transitions in weak coupling transfer. . . 

1 . .  a. non-degenerate subcase . . , 

b. degenerate subcase 
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