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I. INTRODUCTION

1. Empirical aspects. There are many systems conéisting of

well defined componénts, where the ground state properties
N e

are essentially additive but not those of the eXciteg electronic

e

states. Examples for this behavior can be found among atomic
or molecular vapors, solutions of not too low concentrations,
molecular crystals or polymers with aromatic or unsaturated
groups not in cbﬁjugation. Proteins and nucleic acids,
chlofOplaste, crystalline and liquid scintillators are further
examples, and the functions of these systems depend -largely

on this non-additivity of their excited state properties.

For such systems, absorption spectra as well as luminescence
and photochemical properties may be quite different from those
of their components. The reason for this is that in excited
states the\£}g£j;2gigigggijgfigy is not completely localized
within one or the other of these components. The excitation

may be completely delocalized and spread out over the whole

system or, in a less drastic way, it may be localized ohly

‘temporarily, but transferred from one component of the system

to another.

From a phenomenological point of viéw, three different cases

of such behavior are distinguished easily. This may be illustrated
with the aid of some characteristic examples. Refefences may be -
found in earlier publicationsl.

Case A. This is one whére major alterations occur in'the'
absorption spectra. Typical examples are those of dimers which

can be recognized often in the more concentrated solutions of

a number of dyes, such as thionine or the rhodamines. A peculiar
example is that of the Scheibe-Jelley-polymers from pseudo-
isocyanine and related dyes. But also the more intense absorption
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regions of molecular crystals like that corresponding to the
2560 R—absorption of the anthracene molecule belong into this
group. In all these examples the vibronic envelopes of the
spectra are completely different from those of the component
spectra, even if the absorption region is approximately the
same. Such profound alterations are obviously the result of a
fairly strong interaction between the components and it is

natural to speak here of a strong coupling case. As we shall

see later, this strong coupling results from a quite complete
delocalization of electronic excitation over the components

of the system.

Qase B. There are other examples where less profound alterations
exist in the absorption spectra, The vibronic envelope is then
rétained,_but the individual vibronic levels of the components
are split in a characteristic way. This has been observed with
some ‘'double-molecules' like diphenyl-methane and is a quite
common effect in the weaker absorption regions of molecular
crystals as, for instance, the 3600 R absorption of anthracene.

In the latter case, the effect has been named 'Davydovésplitting'.

Obviously, these effects are also due to some kind of inter-

action between the components, but of a lesser magnitude. It

has become customary to speak here of a weak coupling case. One
may expect that the delocalization of electronic excitation

will be less strong than in the forgoing case.

Case C. There is, however, a third case which éhould be not
overlooked. Many systems show no or at least no essential
alterations in their absorption spectra if compared with those
of their components, but nevertheless have quite different
luminescence and photochemical properties., This occurs, for
instance, in dye solutions at moderate concentrations, where no
essential association exists. While there the absorption and

fluorescence spectra and even the fluorescence quantum

.efficiences may be the same as in the more diluted solutions,
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the fluorescence polarization is often much less. Likewise,

in mixed solutions, the fluorescence or phosphorescence

emission originates,

independent of the absorbing component,

from that one with the lower excited state. Recently, some

very interesting demonstrations of this effect have been given

by Kuhn et.al.2 with dye layers, separated by inert molecular
sheets more than 100 { thick.

Obviously, in this case too, there exists some coupling between

the excited states of

magnitude than in fhe

earlier proposalB, we.

weak coupling. As the

less in this case, it

the different molecules, but of even lesser
foregoing case B. In.a revision of an

shall call case C now the éase of very
degree of delocalization has to be still

will be reasonable to regard the electronic

exitation as temporarily completely localized and to interpret

the observed effects in terms of an excitation transfer.

When speaking of delocalized excitation or of excitation transfer,

one should keep in mind that these conceptions are more or less

complementary. The first one is concerned with the stationary

states of the system and should be the adeQuate one in dis-

cussing band splittings, .absorption intensities and related

effects. The second one is by its nature concerned with non-

stationary states and

should therefore allow a better description

of experiments where the process of electronic excitation and

its final effect can be located in different parts of the system.

This justifies to some extent our preferencé of the term

delocalized excitation in cases A and B andtof excitdtion

transfer in case C, However, also in systems belonging to the

first two cases excitation transfer experiments are possible

and should be described so in the appropriate manner. Ve shall

see that this is indeed possible, but that some émbiguity in

defining such terms as transfer rate cannot be avoided here.
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It is only in the very weak coupling case C that such terms
can be defined unequivocally. On the other hand, it would be

unreasonable here to speak of delocalized excitation.

Some objections might be -~ and indeed have been& - raised
against our empifical distinction between cases B and C,
because it can be applied only to spectra with welllresdlved
vibronic structure whereas it is useless in cases of continuous
spectra, The solution of this difficulty is simple but surprising:
For systemswith continuous spectra there is no weak coupling
case B at all, but the strong coupling case A changes directly
into the very weak coupling one. Even for systems with broud
vivronic levels, which are gquite common in solutions at room
temperatufe, the so called weak coupling case 1is very closely
limited and it scarcely deserves its name as a separate case,

The justification for this will be ziven later in chapter IV,
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II. FORMAL EXCITON THEORY

ds'

2., General formulations. The theory of delocalized electronic

states goes under the name of exciton theory. This theory is

5

based on an originai conception by Frenkel” and has later been
developed further essentially by Davydov6 and others. In the
present chapter, only the basic developements of this theofy
will be presented. In this connection no special references .

Will'be given, but the reader may refer to Davydov's monograph

or to other comprehensive articles,

We consider a systeh of N molecules with fixed distances and
with their internal nuclear coordinates fixed in their
equilibrium positions. The electronic coordinates, including
spin, of the nth molecule shall be symbolized by~qn. The

‘ electronic Hamiltonian of the system is then

H L7£ 2 Y, | (2.1)
=1 ‘ n=y mrn )

where.k;, which operates on the q, only, is the Hamiltonian of
the free molecule n, and Y;,h (qm,qn) is the intermolecular
interaction potential between the molecules m and n. In zero
order approximation, the ground state of the system can:be

descrlbed by the product wave function

9, = NY - (2.2)
ES ’
where P =¢n(qn), supposed to be real, is the ground state
eigenfunction of the free molecule n. Here and later we neglect
orbital overlap between different molecules and do not trouble

with antisymmetrization. The first order ground state energy

becomes N T '
. S~ SN
—_— O Y, .
' We =2 m° +2_ 2 Vinn (2.3)
h=1 hi=i mon
o)

W is the ground state encrgy of the n . free molecule and

-
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"fmn = < Y/h 7;n / 7,:;1 /fm Yn/\ ‘ (2,4)

the matrix element representing the Coulombic interaction

between m and n.

The singly excited states of the system cun be described'in

terms of N locally excited configurations
/ , - - - ) 3
E” /(,7)( . (305)

where ¢, is an excited state wave function of the free molecule

1 which belongs (Lo the energy w!. We suppose these states to

1
be non-degenerate so that the @i too can be taken real, and
their energies sufficiently different from those of other
states. The zero order eigenfunctionsfa}are then linear

combinations of the locally excited configurations -

fo —-— Yy - ,’/'A P "( :

G =2 Cue YN Y (2.6)
l net B

They represent the exciton stutes of the system, The coeffi-

cients c¢ together'with the corresponding energy values Wk

k1l _ :
can be obtained by solution of the eigenvalue problem

-3 P " ‘ , -
CEFIHIE) = Wo by (2.1
With the Hamilton operator as defined in (2.1), this can be

expressed by the additional interaction matrix elements
. / —_ '/' s ! B ! / \ ’ ’
th — N\ y/m %1 / K:n/fm fn._/ - (2.8)
_ / . ./
and [’(hm — \ f”.’ %1/7;,-,,/)%1; Yn/\ (2.9)

Vé,n represents the Coulombic interaction between the excited
molecule m and the unexcited one n. Um,n is the resonénce
integral between the configurations with m and with n excited.
This resonance integral is the main source of the effects we
are concerned with here., It can be interpreted as the pseudo- .

Coulombic interaction energy between the 'transition-charge'-

densities ¢ ¢, and ¢ /.
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3. Dimers. Instead of treating the general case we shall
restrict ourselves to two characteristic cases. The first one
is that of a dimer, the components a and b of which may be

dissimilar,., Our Hamiltonian is then simply

H=Fy+Ty+ Tl o (3.1)

and there are only two singly excited states., Their wave

functions can be written
) . Y ' = /
Co=cosx W'Y, +LSina V.Y, (3.2)
o , !, L. . 4 4
¢ =snx BY, —tesa VY, (3.3)

They are already norﬁalized and mutually orthogonal, so that

the eigenvalue problem (2.7) only requires that

CE 1K LD

This can be satlsfled by specifying the parameter. af/hat
: P Y,
foatp — W/

Here U is the resonance integral from (2.9) in whlch the

L
, =N = 7 (3.4)

}’j»@x'z

indices have been dropped. wa'b is the energy of the configuration

Pa Pp * |

— / i) /
and wab' has a similar meaning. The eigenvalues of g> and QL
are

Wals — Wik
os Qe (3.6)
' u ’
g(j°“’J+l"“’°) = $in 2a

We = F(Wap+Woy) x

Obviously, there are two limiting cases 1 and 2:

1. I~ ] Way = Waye . X~ O e

[ I

-




With a**O.we have

Co~ Loty = VS Wes Wy, -7

P -0y =¥, Y W~ Wy (3.8)

This is the non-resonance case where the excitation is essen-

tially localized either in the one or in the other molecule
and the energies are those of the corresponding configurations.
With a~ /2 the situation is similar, but the sites of the
excitation are interchanged.

7"

2.: -thl/ >) / ‘V‘:'b -— IU‘I-AII , X :’_

.~ Gy = L2~ 1en), =3 Wy rbig)-U (5-10)

This is the resonance case, where the wave functions are the

O~ O = G OR 1+ 0) | b~ Wy o) ~l - (5:9)

symmetric and antisymmetric combinations of the lbcally

excited configurations and where the excitation is distributed
equally over both molecules. The energies of both states differ
by an amount of 2 U, this energy difference is the socalled

exciton splitting.

The'transition charge densities which enter into the resonance
energy U as defined in (2.9) can be expanded into point-

multipole series, leading to a multipole-multipole-expansion

for U. Generally, their first term is a dipole-dipole-term

represenﬁing the ineraction between the transition dipole
moments E; and EZ of béth molecules, the squares of Whicp are
proportional to the oscillator strenghts of the transitions
between the ground- and excited states of the isolated

molecules,

If these transitions are allowed, and the intermolecular
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distance Ra is not too small, higher multipole contributions

, b
may be neglected and the resonance integral approximated by

U~ = iy = SRR R] G
TR n/ Z (1 Rey)( 1, .7\)45)/ 3
Here n is the refractive index of the surrounding medium, the

square of which replaces the dielectric constant for fast
polarizations. For a sandwich type dimer, with the transition
moments parallel to each other and at right angles to the

—

distance vector R_.,
ab’

the symmetric state that of higher energy. The opposite holds

U is positive and, according to (3.10),

for a head-to-tail orientation with both transition moments

parallel to each other and to the distance vector.

b d —> A
The transition moments M+ and M_ of the dimer itself, which

determine the optical transitions between its ground- and
excited states,areAin the general case according to (2.2),
(3.2) and (3.3), weighted vector sums of the molecular

transition moments'E; and ET. In the resonance case of. the

b

. . . L — —
symmetric dimer, with m, and my

the transition to the antisymmetric state is forbidden. This

equal and mutually parallel,

is the lower one in the sundwich type dimer but the higher one
in the head-to-tail dimer. Therefore, these two kinds of
dimers have guite different spectral properties. Intermediate

orientations have also been studied quantitativelys;

For the discussion of excitation transfer, the time dependent

Schrﬁdinger equation

5 = rye o | ~
: , : - = (o (3.12)
(H =57 H = (3¢

has to be used, where ﬁ'is Planck's constant divided by 2 m.

The stationary states of the dimer are then described by

; ._1"
Ei‘ = @_r__' € *T/‘/It
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and a general non-stationary state by

— Chet . F =AW
= (t) = @ e "' re et - (3.13)
with constant coefficients c, and c¢_. For wqu_ this re-

presents a back and forth oscillation of the excitation between
both molecules. If we assume the molecule a alone to be excited
at t = 0, we have c, = cos a and c_ = sin'a, as can readily be
seen from (3.2) and (3.3). '
A straight—forWard calculation then leads to

— (oS 3¢ - Sin —5——)

“'/bf l(t
-~ (f) = [/Hj z - K dinld~ ""

—{ $indx . xm————— ‘.)ﬂ/

lﬁ»z“' (3'14)

Here, W = % (W+ + W_) is the average energy of both stationary

states.

From (3.14) we get for the expectation value eab' of ¢, 9,

| 2 Ut
Gopy () = $Ih 22x - Lin Fnie (3.15)
For sufficiently short times this becomes
72 42
oy ue | (3.16)

which is independent of « and holds thus under resonance and
under non-resonance conditions. But the maximum value of(?ab,
is 2. 2
Qo = dintla = ——’éL—- o, (3.17)
o Ifw(« (Won - Wyg)“+4 U

so that Q b becomes 1arge only under near-resonance condltlons

a~T/4, It obtains its first maximum at the time

v h h
[} 2 —_— ] 2‘
VI Sin 91Ul $in 2x

If we define the transfer rate n,, as the maximum expectation

s Pn X

value of ?ab' divided by this time, we get



F/Ul

Nisi = 4 [$in2x/ | (3.18)
Under resonance conditions o« = n/4 this becomes
res @4/Ul . o
Ny = 5 (3,19)

which 1s generally regarded as the transfer - rate for resonance.

éluie, a similar result might have been obtained by

In pri
application of the uncertainty relation. For later applications'
we may keep in mind that the resonance transfer rate is eyual
to the exciton splitting between W, and W_ in (3.10) divided

by h/z. But one should note that our presﬂent definition of

the transfer rate is rather arbitrary, due to fhe guadratic
increuse of the expectation value Q;b,and-tb the back and forth
transfer later on. Also, it would be difficult to perform any

experiment by which such a transfer rate might be measured.

4, Polymers. As a second example we consicer the singly excited -
states of a long linear polymer, consisting of N molecules,
alike, and in equivalent positions., The polymer may have either

translational or screw-translational symmetry such as a helix.

The N wave functions (2.6) can then be constructed as the

linear combinations

N :
==, e Y I ¥ (4.1)
@/\ ’,/V {4___4 g ;1¢L}y;‘ .

The index k determines the phase difference between the exci-
tution at adjacent molecules. Its N different values can be
chosen so that the ¢’ are mutually orthogonal and also the
nondiagonal elemcnts(¢ AZ/Q »of the Hamilton operator
disappear. Becausc of thc periodicity in (4.1) the indices k

can be restricted to the interval

-0 < /\571—




|
.
v
|

For N=xx, k becomes a continuously variable parameter within
these boundaries, If, for simplicity, interactions between
non-adjacent molecules are neglected, the energy values are
Wi = Wy +i'=u®+2(Y'-y)+ U cos h (4.2)
The interaction matrix elements V, V' and U are the same as
defined in (2.4), (2.8) and (2.9) with the indices dropped.
The first terms on the right side of (4.2) represent the
static contributions to the energy resulting from the excitation
of one molecule and from its Coulombic interactions with its
neighbors. The last.term represents its resonance interaction
which depends essentially on k and so on the phase difference
of excitation between adjacent molecules. The energy values
from (4.2) are distributed within a band of the width 4 U, the

so-called exciton band of the system. The expression (4.2) is

equivalent to the corresponding one (3.6) for the dimer with
a = n/4, The douhle amount of the splitting results from the
presence of two neafest neighbors for every molecule in the
polymer indtead of one in the dimer.

The extreme energy values of (4.2) are those for k = 0 and

kK = 2 n. The nature of these extrema depends on the sign of U,
which in the dipole-dipole-approximation is analogous to the
expression given in (3°11) for the dimer. Here too this sign
depends on the orientation of the molecular transition
moments .

1
vector between adcjacent molecules. For the two extreme cases

towards each other and towards the.translation

of orientation, the band structures are depicted in Fig. la,b.
The considerance of the interaction between more distant
molecules would lead to deviations from the simple cos k-

dependence of the energy assumed here.

The symmetry of the system imposes severe restrictions on the
optical transitions between the ground state and the excited

states. Une may easily verify that only Mo' the transition
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dipole moment for the state k = 0, has a component along the
polymer or, in case of a helix, parallel to the screw axis.
Furthermore, if this screw axis isrfold, so that the’
translgtional unit éell consists of r molecules, only Mk with

Kk =2 %? has a transverse component.(One_should keep in mind
that k is based here on the screw-translational of our model.
For integer r it can be replaced by k' = rk, the wave 'vector'
based on translational symmetiry. Our exciton band is then

5plip into r subbands which are, however, connected to each
other. Both allowed transitions are k' = O - transitions as
required for translational symmetry.)In the case r = 2 which
has been discussed by McRae and Kashag,'this is k = m so that
6nly transitions to the top and to the bottom of the exciton
band are dipole-allowed. The same 1is true for the 3-dimensional
analogue of this case, the molecular crystul‘with.two'molecules
in egquivalent positions in the elementary cell. A more compli-
cated case, that of the double-stranded helix of polypeptide
has been treated by Rhodeslo. '
Our present model allows further, within certain limits, to
understand the spectra of the Scheibe—Jelley—polymers mentioned
in I, Their characteristic feature is a sharp band with
longitudinal polarization which certainly results from the
transition to the k = O - state. The transverse absorption is,
however, broad and seems to extend over the whole band. This
might be explained by a pseudo-helical structure with a

certain amount of angular disorder as has been supnposed
earlierllo Or, it might result from the coupling with intra-

molecular vibrations as suggested by MéRaelé.

In the stationary exciton states Q&, the excitation is equally
distributed over all components of the polymer. Here, too, the
alteration of a non-stationary distribution can be described

by the corresponding time-dependent wave functions. Upon
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introduction of the appropriate time factofs, multiplication
with an arbitrary function c(k) and subsequent 1ntegrat10n

over k one gets from (4. 1)
4

_ & the-2
=Zw)=2 % /C(/() e |
l=1 ”4(

For a wave packet with k-values centered closely ét an average

value k we can eliminate the strong time dependence under the

1ntegra1 by expanding W(k) and writing
=)= ZS‘;//

h/{ko)
l=1 gt

The integral represents now an amplitude factor which, due to

the property of our c(k), has a Steep maximum at

mex f ?N ' 3 f [
4 ==/ =2 Sink

Ak Ab A é( '
This corresponds to a linear migration of our wave packet

with the time-independent group velocity:

iy = i‘-g"”“ = *";"/’/:,_‘n/(o/ O (4.3)

where d is the distance vetween adjacent molecules. With (4.2)

and (4.3), the energy in the region k~O0 can be expressed as

Wik) ~ W(o) --i-— u = Wio)+ & oul

p may therefore be interpreted as the 'mass' of the exciton
and can be positive or negative, depending on the sign of U.
According to (%4.3), the exciton transfer rate between adjacent

molecules in the polymer is

¢->0+1

n - .;Z_,_){_Lg/g;'nkoj - (4.%)
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This depends essentially on k and is extremely small for k-0
or k~mn, that is for excitons produced by allowed optical
transitions in a polymer with p = 1 or 2. But this does not
mean that excitatioh produced in such a way would not migrate
essentially. Any excitation transfer experiment will require
some kind of a trap within the lattice. The presence of such
a trap within the region of a widely delocalized exciton
severely disturbs the quasistationary wave function, and the

exciton will be soaked in without much regard to its k-value.

A more reasonable éxpression for the transfer rate should be
obtained by averaging over the k-values. This leads to
3/£(/'/. Kl 2 2 £/ul
A | = ST = = 4,
h[f’/r1 boh Ky h h A (#.5)

which is just twice the value (3.19) calculated for the dimer.

Another‘way to discuss excitation transfer is to assume that
the exciton at t =.O is completely localized at one single
molecule. Later on it will spread out over surrounding mole-
cules. According to calculations by MerrifieldlB.andAalso by
Magee and Funabash114 the mean sguare distance from the origin

increases 'in proportion to the time as follows:

Ziw _ Bl

(79t = 2= = =

Numerically, this is not much difterent from our result (4.5).
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III. STRONG AND WEAK COUPLING

5. Potential energy surfaces. In our foregoing discussion we

have considered the electrons of the system -at fixed nucleér
positions. %e have so disregarded not'only nuclear vibrations

but also the differences in the equilibrium positions

accompanying elecfrbnic excitation. This may be justified in
cases of strong resonance interaction where the interaction
energy exceeds that of the vibrational quanta involved and
wheré also the time for excitation transfer is so fast that
nuclear rearrangement cannot take place. Our results from
chapter I1 can be vaiid, therefore, in the strong coupling

limit only.

For the treatment of cases of weaker interaction, and even for
an understanding of their limitation against strong coupling
cases, the variation of nuclear coordinates has to be considered.
As a first étep,’wé confine our interest to the variation of
the electironic wave functions and their energies with -the
intramolecular coordinates which will be summarized by Q.

" That is, we consider the botential energy surfaces for the
nuclear vibratioﬁs but still do not discuss these vibrations
in detail. Likewise, intermolecular motions shall not be
discussed, so that we can retain our previous assumption of
rigid separations and orientations of the individual molecules

toward each other.

Thé original treatments of this problem have been givén by

15

Simpson and Peterson and by McClurelG. The more general

aspects have been discussed later by Wittkowsky and Moffitt17
in an admirably elegant way. Our present discussion will use

similar ideas but proceed along a somewhat different line.

For ‘a single molecule, we take the following expressions for
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the electronic wave functions and energies of ground- and

excited state:

[

vig ) W= I +§—/£~&"°)2 (5.1)

Vi &) W= W '*'%/Q*ﬁo')z (5.2)

As before, the prime shall indicate electronic excitation.
Explicitely, we restrict ourselves to one nuclear coordinate €
for each molecule. At the moment, this is no restriction of
geherality since the alteration in equilibrium position with
excitation can be represented by one coordin?te alone, as

long as it has not to be a normal coordinated;ibration.

We suppose further that the wave functions depend smoothly on
this coordinate and that their energy values are quadfatic
functions of the distances from the respective eguilibrium
positions Qo and Qé for both states. It has been for simplicity
only that we have taken the same force constant for the nuclear
vibrations of both states. This seems justified because in
actual molecules the alteration in eqguilibrium position is

more important than that of the vibrational frequency. Hdwever,

we shall relax this auditional assumption later if necessary.

According to (5.1), (5.2) vertical excitation - in the sense

of the Franck-Condon-principle - leads to an excited state

; . 4
w o= W, + 3’5/4‘,'*' W)

Wwith wg s the minimum energy of the sume state, we can take

energy of

X / g 2 [l
Aw = 2—/'&76-06) (5.3)
as <« rough measure tor the total width of the vibronic band

systew in the monomer. For suort, we shall call this later

the electronic band width.
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Cur folilowing treatment of composite systems will be exclusively
restricted to dimers., We shall try, however, to generalize soume

of the results to polymer systems as far as this seems possible.

For a dimer, consisting of two molecules of the same kind, the

ground-state wave function is again

Eo = ¥y Y (5.4)
but depends now not only on the electronic but also on the
nuclear coordinates Qa and Qb. The corresponding energy as a

function of these 1is

: - 2 _ "

P g . : X ; = ’

WG = Zr\/a + V + .‘[M/q‘ﬂa) +/‘2-f', fc).] (5.5)
where LS is again the monomer ground—stdte energy and V the
interaction of both molecules in that state. If a possible
JY-dependence of V is neglected, the equilibrium configuration
is at @ = Q, =Q

b

W' = swe ¥ | (5.6)

In the absence of resonance interaction the excited States

o and the corresponding energy

would be simply the locally excited ones

Doy = ' ¥y B~ ¥a ¥e (5.7)

witii their energies

Wt = wy - e+ v+ (=0 -a,)]

W = wy v wl+ V' + E[(8-i) +l4,-22)°] (5.9)
In case -of Qé<# Qo these energies are différent for all nuclear
configurations with Qa F Qb. For the treatment of resonance
interaction we must, therefore, refer to the general case of
unsymitetrical dimers in 3. Here too, we write for the wave

functions




Cr = cosx N4 + inx ¥ f (3.2)
(3.3)

In the first place, these functions depend on the nuclear
configuration by way of the parameter o which according to

(3.4) and (5.8) is now determined by
7 r (5.9)
“/a'b -—Wabl X (Q2_0b)/00_001) °

The energy values, as calculated from (3.6) become now for

ffz'/l =

U>0 (sandwich-type cdimer):

We = worwi V' + 2[(3, -0} @ -Gy 0)4@ 0]
1'/’( (- 0/,)/01 J,)#-/f/j (5.10)

For U 0 the signs must be interchanged.

From (5.10) the following eguilibrium configurations and their

energies are calculated:
e C, B —_ ” . /
@’_: Minimum at 0?“ = u(//, =3 (6\("' Og)
: 2
nem ) ! / X I »
with the energy |‘/‘_ = W, *h, +V ‘f";’/ég'[‘p)*a (5.11)
for all values of U,

- ﬂ - A s ) J
‘?.: Minimum at (;\/‘-( = [\/;, = 'z_ {(/a"*' (:10)

. iy / NI S SR |
with the encrgy bv_ =Wy, +h ot Vv + :;—/[., '4‘,} - (5.12)
; ; : I R
ror LIUI2 X(A)c_ao) _ (5.13)
but two minima at
- / ; L4
YU -
1 /I / s 2 - —
. L ) + - L) = S 5,14
u/ 3 (c? &’ y Hp Ay 'BN(‘G‘-JL~2' (5 )
/ st ’/ ,, ‘Il(i
‘4_2}‘ = Zléu &v Iz{/\,/_&u,z



with the same energy

W M/

for AUl £ x (& -@)° L (5.16)

. i /
W, ~w) +y —

(5.15)

In Fig.2 potential energy surfaces with Qa and Qb as variables
are represented as calculated from (5.10) for W_ in two typical
cases. Fig.2a corresponds to the inequality (5.13). This is
obviously a strong coupling case. Both molecules have the

same eguilibrium position which is half way in between those

of the ground- and excited monomer states, Fig.Z2b corresponds
to the ineguality (5.16) and is a weak coupling case. Here

the potential energy surface shows two minima which are

close to the equilibrium configurations of the two locally
excited states (5.7).

The most essential parts of the potential energy surfaces of
the excited states are those within the plane

Be+ 0, = Do+ Q2
where all extrema are located. The intersections with this
plane of both surfaces are, therefore, represented in Fig.3
with the same values as in Fig.2a,b. In addition, the border-

line case
y ni A 42,
2IUl = x{w,~&,) . (5.17)

is also represented there (designated p = 1).

It follows from (5.9) that in the strong coupling case A, for
configurations not too far from those of the minima at

Q, = Q, = % (QO + Qé), a is close to n/4. The wave functions
¢; and ?; are then, according to (3.2) and (3.3), nearly the
symmetric and antisymmetric combinations of Qa'b and @ab"

Thus the excitation is essentially delocalized. The energy
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difference between the two staﬁes W+ and %_ in (5.10) is,
then, much more than the mononmer electronic band width w
defined in (5.3). The splitting should, therefore, lead to
an essentially different spectrum. This is in accord with
our emplirical criterium for the strong coupling case in .

chapter I,

"or the weak coupling case, (5,14) predicts eguilibrium
positions for'gz“Mich in the limit are at Qa"’Qé' Qb'“Qo and
vice versa. For configurations within this runge, (5.9) gives
aj?O(qFrvn/z) which according to (3.2) and (3.3) means
QL;~£5,’gf~ f;bl , that is essential localization. As the

potential energy surface is then nearly the same as for non-

interacting molecules, the general appearance of the spectrum
is the same as that of the monomer. This too is in accord

with our previous empirical classification.

From our consideration of potential energy surfaces, the
inequalities (5.13) and (5.16) seem to provide a natural limi-
tation between strong and weak coupling. Together with our
expression for the electronic bund width (5.3) this can be

formulated as follows:

1 > X g . -2 ) ) ‘
TUIZ 7 (o~ de) ~ 4w (5.18)
In this form the criterium is similar to that one derived

15

Qriginally by Simpson and rPeterson from quite different
considerations. Their criterium would be obtained by intro-
duction of the tactor 2 into the left side of (5.18), but in
regafd of the Z ~-sign and of our crude definition of the
electronic band width this difference does not seem to be
important. It is uite interesting that this criterium can

be obtainec from a consideration of potential energy surfaces
alone, without taking the vibrational part of the wave

" functions into account explicitely.
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It should be mentioned, however, that the Simpson-Peterson-
criterium cannot be applied without some restrictions, as
has been emphasized recently by McRae and Siebréndls. This
results from the fact that the criterium, as derived here,
considers the qualitative behavior of.the potehtial energy
surfaces only but neglects their guantitative properties.
Actually, it is not so much the existence of two minima in
the lower potential energy surface but their depth in relation
to the vibrationel energy which decides between strong and
weak coupling behavior. Under Simpson-Peterson weak coupling
conditions (5.16), but with.a suffiéiently small difference
between the equilibrium configurations Qo and Qé of both
states, the minima are close to each other and so shallow
that even the lowest vibrational state will extend over both
of them and not feel much of the small hump in between. This
can be visualized from Figs.Z2 and 3 if one consideres that
therec the nuclear Quordinates are represented in units of

v
v . ) i X ' 2
Q) - Q, and the energies in units of 3 (Q) - Q).

6, Inclusion of nuclear vibrations. Before we proceed further,

we should investigate how far our potential energy surfaces-
can be used for the description of the vibronic states of our
system. The complete Schrddinger eguation, including nuclear

vibrations, has the form

[ 7V +T @ -F£]¥(96) = (6.1)

Here, }WW’ls the electronic part of the Hamilton operator which
we have considered alone up to now.d//z is an additional.
operator representing the kinetic energy of the nuclei. The
superscripts in parenthesis are used to indicate that these
operators contain differential procedures acting on the
respective coordinates.&?(q,Q) is the complete Vibronic wave

function of the system and E the total energy.
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The usual procedure in solving (6.1) is that of the Born-
Oppenheimer approximation19 which is called often the adiabatic

approximation. The vibronic wave function is written as a

L Vi) = Su@Xe (6.2)

Here,gb(q,Q) is the electronic wave function for the nuclei

product

at rest, that is, the solution of the electronic part of the

Schrédinger equation which we had. considered in 5:

[77 =W Elg.@) =0 (6.3)

X(Q) is a solution of the Schrbdinger equation for nuclear

motion alone under the potential W(Q) appearing in (6.3):

[T+ W) -FlX(Q) =0 (6.4)
By multiplication of (6.3) with X(Q) and of (6.4) with Qs(q,Q)
we get by subsequent addition -

T TR-E](8) =

= [T P~ BT XY@ e

This is a good approximation to the exact Schrodinger eqﬁation
(6.1), if the term on the right side is small. This requireé
that the electronic wave function depends only smoothly on

the nuclear coordinates Q within the range of the vibrational
function X(Q). It can be shown that this holds if the elec-
tronic state in question is well separated energetically from

other states for the nuclear configurations in question.

We have already supposed that the monomer wave functions are
smooth functions of the Q so that for these functions the Born-
Oppenheimer separation is justified. We shall see, that the
‘same holds also for the dimer states in the extreme cases of

strong or of weak coupling either for a restricted range of




(o et
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nuclear vibrations at least.

For strong coupling the parameter o is close to mn/4 in that
region and varies little over a wide range of nuclear configura-
tions. Therefore,@+ and @L will vary smoothly, as the monomer
functions, with a change in the internal nuclear coordinates Q.
For weak coupling a is close to O or ©n/2 and it remains so,

at least in the neighborhood of each of the minima of W_.
Although « and‘¢_ will vary quite abruptly in the region of

Qa

=‘Qb, this is unimportant for vibronic functions which are
confined mainly to the regions of the minima.

The situation is different, however, in the intermediate range
under conditions like those represented in Fig,}( Here, o still
varies considerably near Qa = Qb, and the vibrational functions
are large in that region. Our treatment based on the electronic
wave functions (3.2) and (3.3) should therefore be restricted

to the nearly extreme coupling cases.

At first we shall investigate the width of the electronic band
for one of the individual transitions of the dimer. For this
ﬁurpose, in Fig.2 the potential energy. surfaceds of the ground
state are represented.also. From a comparison of Fig.2a.and‘
2b it 1is evident that fhe distance between the equilibrium
configurations of ground and excited state is less in the
strong coupling case. For extremely weak coupling this difference -
is, of course, the same as in the monomer but for the strong
coupling‘case less by a factor of I/VE. Therefore, the width
of the individual electronic band should be essentiélly re-
duced and this should further contribute to the difference in

appearence of monomer and strongly coupled dimer spectra.

This can be established wore quantitatively from (5.10). For
the strong coupling limit, vertical excitation,(Qa,= Q, = Qo)
leads to '
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. ) . X
errtlc‘il = [.1/"} -+ /’V.,',, -+ b -t ’2"' “h) L\o) x L(

Since the energy minima from (5.11) and (5.12) are

WTln = "/\".0 -t /v'o/ -+ [' -+ (4 ' - o\c) x é(
one gets for the Franck-Condon widths of the dimer by
comparison with (5.3) '

The widths of the individual electronic band in the strongly
coupled dimer should, therefore, be only one half of that of

the monomer.

Some indications for this reduction in band width can be found
in the spectra of a pyrldOCVdnlue dye, as by nciaelz. Faurther

experimental evidence for dimers is soumewnat meager, probably

because of the overlap between the two electronic transitions

and also because of the interference with the spectra, of

higher association stages.

However, the extrapolation'of this result to polymers with
large N leads to an understanding 6f the drastic reduction of
vibrational broadening in the k = 0- exciton band of the
Scheibe-Jelley-polymers, Obviously, this results from'the
distribution of the difference between ground- and excited

state equilibrium position over a large number of molecules.

7. Detailed consideration of vibronic states. We shall now

proceed in formulating the vibronic wave functions for the

dimer in its two extreme coupling cases, where the Born-
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Oppenheimer separation is possible. We write the wave function

then in a general way as

’/A yw (9.6) = éx (. 5n, .. 6,’ /Yv-;.- (e, by) 0 (7.1)
where k deﬁotes one of the electronic states, while v and w
are vibrational quantum numbers. Our restriction to one single
intramolecular coordinate for each molecule becomes now
essential, because we have to regard it as a normal coordinate.
This is not too serious since at least in the more symmetric
molecules one vibration is predoﬁinantlx‘involved in an
electronic transition. Furthermore we regard the vibronic
levels of (7.1) as infinitely shafp. This might seem obvious
here, but our later considerations in chapter IV will show
that this is an essential assumption which is not always

justified.

For the ground state k = G we can simply use the electronic
wave function (5.4) and combine it with the vibronic functions
If(Qa) and J(Qb) of the individual molecules in their ground-

state centered at QO. Thus we get

Yopu = T ¥y Joib) Awié,) (7.2)
The electronic .wave functions ¢, and ¢, contain not only the
electronic but also the nuclear coordinates. This latter
dependence is not strong and may be neglected, but it would
seem reasonable to take the functions at the ground state
equilibrium position Qa = Qb = Qo. Because the nuclear
potential has been supposed to be harmonic,}the}& are Hermite-
functions of their respective coordinates, and the-ehergy

values belonging to (7.2), including zero point energy, are

Vo A
E.=fw,+V+(vew~1)iy, (1.3
In our harmonic approximation, these vibronic states are
(v+4+ w+ 1)-fold degenerate. For the excited states the two
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coupling cases need separate treatments. In the strong coup-
ling limit we get with the electronic wave functions for

a = n/4 together with the appropriate vibrational functions

-

"7 1T
i/+,va/ “qﬁ{-/"

— - v

NG

-

i_V, - - 7 n{’) . ._ 1) ) : |
7 * 7 >7»,//’,11 /"a,)[w /(x’(,/ | (7.4)

[}

The prime in parenthesis is used here to indicate that the
respective vibrational functions are centered at the 'half
excited' equilibrium configuration Q = Q = % (Qo + Qé)
found in 5 for the. excited states. The electronic wave
functions too should be specified for these values of the
nuclear coordinates. Wave functions of this type, which are
constructed from electronic and vibrational functions for the
system as a whole, have been called E-V-functions by McRae12.

The energy values belonging to (7.4) are

Eupw = Wo+tty + V2 Y +(vevrt)in. (7.5
As in the ground.state, there is a (vA+ w + 1)-fold degeneracy
for harmonic vibrations. This degeneracy would not even be
removed if the force constants for the ground and excited
state of the monomer would have been taken different in (5.1)
and (5.2). One may verify from an expansion of the potential
energy surfaces (5.10) near the equlibrium configuration
Qa

also the frequencies are in fact those of the mOndmer._This

= Qb = % (Q0 + Qé) that the force constants and therefore

can also be visualized from an inspection of Fig.2a.

Under decreasing coupling, the vibrational functions remain
centered at the same equilibrium configuration; However, the
force constants change, as can be verified from (5.10) énd

is evident from Figs.2 and 3. More'specifically, the force
constant for the antisymmetric vibration.fQa = -‘JQb increases

for the higher one of the two states, whereas it decreases
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for the lower one (ﬂiandlfirespectively, if U> 0 is assumed).
On the other hand, the force constant of the symmetric
vibration stays the same. This removes the vibrational
degeneracy and leads to a first order splitting of the energy
values in (7.5). This corresponds to a mixing between wave
functions (7.4) with the same vibrational quantum number sum

v + w. In next order, the Q-dependence of the parameter a in
the electronic wave functions becomes essential so that even

a more general product formulation than (7.4) of the vibronic
wave functions becomes invalid. If these functions are to be
retained, heavy mixing among them must be - considered under
which only the total symmetry of the vibronic states (not the
e1ectron1c or the vibrational ones alone) is reta1ned Starting
from his E-V-coupling limit (our strong coupllng Qne), MoRaelz
has used a perturbational method for such less strdng'coupling

cases,

In the weak couplihg limit, the higher one of the excifed

states (Q;for U>0) has not much interesf becﬁuse its equili-
brium configuration is far from that of the ground state. The
potential energy surface of the lower excited stateft has- two

minima of equal energy at the two configurations
A= <a,u, \QJ - and L*;'z:"[y,é?/;:"?a

If these minima are deep enough, the lowest vibrational

states will be confined mainly to their regions. Since in this
case the force constants are those of the free molecule, we
can again use products. of monomer vibrational functions. But
the inherent degeneracy of the double minimum potentlal

should be resolved by taking suitable linear comblnatlons

such as

Xy o = ,—1—[ Y MIRYMEAEI WMD) /QA)] (7.6)
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The primed monomer vibrational function denotes one of the

excited stateswhich is centered at QéQ

For v + w>0, we would have another degeneracy resulting froﬁ
our former assumption of equal frequeﬁcies in ground- and
excited state. lHere we shall 1ift this degeneracy by méking
the more realistic'éssumption of a certain difference between
the frequency %’of the excited monomer and the freqﬁency )y,
of the unexcited one. We shall call this further the non-

degenerate weak coupling case.

For the construction of vibronic wave functions the vibronic
part (7.6) has to be multiplied by the electronic part ¢i.

As we have already stated in 6, the parameter o is essentially
constant within each of the two equilibrium regions_but has
there different values, close to O at the one and close to

n/2 at the other. According to our general expression (3.3) for
Qz, this function has now a somewhat peculiar character, being
@; ¢, near one minimum and Py mé near the other. Thus we can

write for sufficiently low vibronic states

-

g \Y 1, '
%)W * T i /v [‘*u)/IN/‘ﬂ)r ‘A 't, iyt )-'I)/]v(‘*'/.)] (?’7).

The correspondlno enervles are conveniently calculated as the

diagonal elements of the completer Hdmlltonlan.

rasw,
Fooe =y VE, S = ol e b e (0 edi, +/,,,4,,\ (7.9)

Here U is the same eléctronic resonance integral (2.9) as be-
tfore. It is, however multiplied with the square of the wvibra-

tional overlap integral

Svw = Yo Ju? | (7.9)
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This is different from O for v # w, because both vibrational’
functions belong to different centers. The va observe the
completeness relation ’

~ S T R .
Z 'va - Z. va' =17 - ' (7.10)
v W
Therefore, the splitting in (7.8) is not only small because
of the small value of U in the weak coupling case, but it is
further reduced by the factor Siw which is less than unity.

Our wave functions. (7.7) and the corresponding energies (7.8)
are sufficient, ifAthis splitting is small compared with the

energy differences between the Vibfonic levels with different
gquantum numbers of v and w. Since, generally, the states with
the same ¢guantum number sum v_+.w will be close to each other,

this condition can be specified as

L, Y :
Fii] Son << Bl ya= 3] (7.11)
If jU/ is larger‘but still close to the weak coupling limit,
as defined in (5.16), it is reasonable to return to our pre-

vious assumption of gi=)5 . We shall call this the degenerate

weak coupling subcase.

For v =w =0, (7.7) and (7.8) are valid in this case too,
since there is no further vibronic.level with the same cuantum
number sum. For higher vibronic levels, the zero order wave
functions are linear combinations of the wave'fundtions (7.7)
with the same v + w = ¥V, The function for the one quantum
lefels v = 1 may be given here as an example

- .. N
)‘l/ ;- / 79/) / “u. / o ",n )= \0 ‘ J‘?'( )/'Y’-’ /(‘)'3))
, *

. (N Q). CAES AL )] Gz
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The signs in the round brackets are here assumed to be inter-
changed together, but independently from the signs oﬁtside,
so that the total number of states is 4. Their energies can
be calculated as those in (7.8).

- 4 s 2) 5
Eryy = myrhg '+ 200 £ULS,, 4,,1'5“.,.,) (7.13)
Wave functions and energy levels for some higher vibronic
r0

states have been given by Siebrand

For)@'= )., that is for the degenerate case, and for harmonic -

vibrations the va are functions of one single parameter
/ ’] z
: 3/{‘7 A Yy

Y can so be regarded as the width of the monomer electronic

(7.14)

band, measured in units of vibrational ¢uanta. A general

expression for the‘SvW is 21
v-r "~V+N—r J
- 1) e-'zj'
Sv.v‘ - ‘v' V/Z_ (1/ Y‘)/(/J-r)’ rl
.oli’y_ v : ( »“)
with > <N 7.1
Pw oA o >)

The first few members are

_3 -y _r
‘?06‘ = é g ) ‘SC’I = 'd e 4 , 521.4 = ///’J)C %

Further members of this series have been published, together

with their graphical representationszo.

Appropriate values of ) might be estimated from spectra because

the intensities of allowed v« O-vibronic bands should be

proportional to SOv For instance, the intensity ratio of the

first two vibronic bands 1in the 3650 R transition of anthracene

sugg estsy~— . As this might be typlcal for weak coupling cases,




N
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the reduction of band splitting by the occurrence of the
vibronic overlap integrals in (7.8) and (7.13) is not so

drastic as one might suspect.

With stronger deviations from the weak coupling limit the
mixing of vibronic states extends to those of different total
vibrational quantum numbers ¥V, as far as they have the same
symmetry. First order wave functions, and energies correct

to the second order, have been obtained by McB.ae21 with a
pertubation treétment, starting from his m-m-coupling case
which corresponds fo our degenerate weak coupling case.
Earlier, the same author12 has treated intermediate coupling
cases by another approximation, based on the application of
zero order pertubation theory to the accidental degeneracies
which occur in that region between wave functions of the type
-(7.7), For the same purpose, SiebrandQO,‘in his treatment of a
quite analogous polaron problem, has preferred a variation
method based on thé_use of strong and weak coupling limit

wave functions together. Energy diagrams have been obtained

by both authors for that intermediate region. Further perturba-
tional treatments, starting from both 1limits, have been given
by Fulton and Goutermangz.. ‘

It might be possible also to startAwith the exact vibrational
wave functions for the single—.or double-minimum potential
(5.10) However in this case the term on the right'side of (6.5)
resulfing from the incomplete separation of the variables by
the Born-Oppenheimer procedure, would deserve special considera-

tions. Up to now, this possibility has not yet been explored.

Our present results can easily be formulated in terms of

excitation transfer. It is now obvious that the transfer rate

h _ ozl | | (3.19)
S ) '
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calculated earlier for a dimér of alike molecules will be
valid in the strong coupling case only. The transfer occurs,
in this case, with fixed nuclear configuration, corresponding

to the average between ground- and excited state.

As we have found for the symmetric dimer in 3, the transfer
rate is equal to thé resonance splitting divided by 2/h. This
should be valid also in the weak coupling case, if there is
essential interaction only between one pair of equivalent

levels. Thus we get from (7.8) for non-degenerate weak coupling

: Ul -z ‘
n‘;u_,:/) = /‘ Si)l\/' (7.16)

This is the transfer rate between an excited molecule with the

vibrational guantum number v and .an unexcited one with the
quantum number w., As may be séen from an inspection of the
corresponding wave functions (7.7), this trunsfer is accompanied
by an'exchange of the vibrational quanta so that the excited
molecule stays in the same vibrational level. Likewise, the
average values of‘the nuclear coordinates change according

to the temporary excitation of the one or the other molecule.

As is evident from (7.16)‘the transfer rate depends on the

vibrational quantum numbers of both molecules.

Schematically, this kind of transfer is represented in Fig.4a,
where the molecule a returns from its original vibronic level
v of the excited state to the ground state level w; while
the molecule b undergoes the inverse process. One may call

this a pair of coupled transitions within these molecules.

In the degenerate weak coupling case the situation is somewhat
different. As one may conclude from the inspection of wave
functions like (7.12) the trunstfer of electronic excitation
may or may not he connected with an exchange of the vibrational

quanta. lowever, here too the alteration of nuclear coordinates
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is connected with the transfer,

Fig.4b represcents an example for transfer under these condi-
“tions. From an original pair of levels v and w of the excited
molecule and the unexcited one, several pairs of coupled

transitions may now occur. These are

V-2V 4+ n for a, together with
W-sW - n for b, with the condition that

-v< n<w

This gives a total number of v + w + 1 pairs of coupled
transitions. For v = w = 0, the transfer rate is that of (7.16).
Vibronically excited states would deserve an individual treat-
ment because of the different participation of Vibfational
quanta, but it is evident that then the transfer rate for

degenerate weak coupling transfer exceeds that of (7.16).

Although in this chapter we have restricted ourselves to the
consideration of dimers only, it is tempting to extrapoiate
these results to polymers. From (4.4) together with (7.16)
we may expect for non-degenerate weak coupling a transfer

rate between adjacent molecules .of"

Nl CR |
- jul S ;g ‘
p bty = Sl g, (7.17)
q—>h *
where ko describes the phase of the exciton state. For v = w = 0,

this would apply as well in the degenerate subcase. It corres-
ponds to the migration of an exciton in which the temporatily
excited molecule alone has the excited state equilibrium
configuration but all other molecules that of the ground state.

One may describe this as a lattice distortion which is strictly

connected with the exciton.




_35;

fligher approximations for exciton migration under sfronger
coupling have been obtained Dby Mc}.-laelz?-zl and by‘MerrifieldQB.
The lattice distortion extends then, together witn the
excitation, over an-increasing nunber of molecules until

it finally, in the strong coupling caée,disappéars because

it is distributed among an infinite number of molecules.
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IV, ViRY WEAR COUPLING

8. Preliminury consideruations. In chapter III we have considered

the etfects of vibrational structure of our system but have
disregarded a possible structure of the vibronic levels them-
selves. More specificully, we have based our treatment on

the assumption of infinitely sharp vibronic levels. To this
one cannot object,in actual cases, as long as the vibronic
spulitting resulting from coupling exceceds the finite width of
the indidual vibronic band. One must expect, however, that
for very weak interaction even two coinciding vibronic levels
are not completely at resonance with each other, but certain
rezions of them only. In that case, the théory developed for
weak coupling cién no more be valid, but instead we have
another, well definecd, coupling case. It 1s this case; which

we shall call the very weak coupling cuse. This definition is

in accord with our experimental one given in chapter I, because
all eventual splitting effects would be maskea by the finite

vivronic bund widath,

Solution spectra of organic compouncs have usually fairly
broad vibronic bunds. yuite often, the width of these is not
much less than the vibrational spacing, and even at liquid
nitrogzen tewperature hand widths of 100'cm—1 or more, to he
compared with spacing of 1000 cm"1 or less, are the rule
rather than an exception. It is under Special'cohditions only
that sharper hands are observed, such as for aromatic hydro-
carbons in adeguate crystalline hydrocarbon solvents at
liquid nitrogen temperature or belowzq. But these so called
'line spectra' still have widths of the order of 10 cm_l, and
even at liquid helium temperature 3 cm-1 seems to be a lower

limit“<”,

:
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Certainly, this finite band width, which is several orders

of magnitude larger then that calculated from the 1life

times of the excited electronic states themselvés, may have
different causes. Different local environments of the -
molecules might be a possible cause ih solid solution spectra.
It is out of the question that this would seriously hamper

the transfer in cases, where the coupling energy is less '
than the differences of the vibronic levels between different

molecules.

Another cause mighf be more important, at least.in liquid
systems at higher temperature. The intramolecular vibrations
of different molecules are cértainly coupled to some extent
with each other and with the multitude of intermolecular
lattice vibrations. As a result of this, each supposedly
intramolecular normal vibration is, in fact, a bunch of normal
vibrations of the syétem. The frequency specctrum of this
extends over a cerfain range which can be regarded as the
vibronic band width. In our previous model, part of this
might-have been considered by allowing a mechanical coupling
between the vibrations of the separate molecules as well as

a change of their mutual distance and orientation.

Alternatively, we can still regard.the vibrations as essen-
tially intramolecular but then‘we must take into account
vibrational energy'exchange. We can ascribe this to a kind

of collisional process between the molecule and its neighbors.
Suéh processes are responsible for the comparatively fast
establishment of thermal equilibrium between the vibrational

degrees of freedom of an excited molecule and its surroundings.

The time required for this has been estimated to aboﬁtAlo-lzsec
> e
or even shorterféFrom thermal conductivity data, 10 lZsec

would scem reasonable undcr room temperature conditions,
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corresponding to a band width of 30 em L.
If the coupling is so weak that the transferAhas not been
accomplished, during the collisional lifetime of such a
vibronic level, the transfer will necessarily be afflicted
by such collisions. We shall illustrate this by a rough

calculation.

Let us consider again an initial state in which the excited
molecule a occupies the vibrational level v, and the unexcited
molecule b occupies the level w, Under our conditions of very
weak coupling the transfer can solely occur with the exchange
of the vibrational quanta v and w between both molecules as

it has been depicted in Fig.4a. The increasing expectation
“value for the final state of the system which may be

aw, bty Can be calculated from (3.16)

if we replace there the electronic interaction energy U by

designated here as ¢

the vibronic interaction energy, which according to (7.8) is

U Siw or for short:
M S~‘1)."/ = Uyw (8"1)

Thus we get , ”
Py v iz v
Upiy T

° S/:l W v ™~ +2
as long as this stays small and as long as no collision
occurs. If the first collision occurs at# =T, Qaw’b,v‘will
have increased by an amount of
ASal by 7

Since such a collision destroys all phase relations between

Thermal conductivities of non-metallic substancds are of the
1

order of 10—3 cm?® esec For equilibfium within molecular

distances (3-10_80m) this leads to the time given here.



_39_

the wave functions, the increase during the further collision

time periods will be the same, so that we get

y ; ~ = ~ —— 8.2
Sav, piw (£) ~ = Javpw ~ — 7 (8.2)
In contradistinction from the strong and the weak coupling

case, the transfer is now linear in time, and the rate can be

unambigously calculated as

. . 2 ~
VW Gav A'w Upiy €

—
—

Misa ™ 7 T T %2

(>3

If we express the collision time interval by the corresponding
band width Je = h/T , we get finally

> 2 =2 42

n'vw G Uiy — 1 v

@->h 545 hde

The linear increase of the expectation value of the final state,

(8.3)

and the square dependence of the interaction energy are the
characteristic features of our présént very weak coupling

case. The comparison with (7.16) shows that for the same but
small interaction the transfer rate is less than that for so- o
" called weak coupling. The transition from weak to very weak
coupling occurs unav01dab1y if the transfer calculated from-
(7.16) would last longer than the collisional time T . This

places the approximate limit between these two cases at

7 AE
S = (8.4)
[ Uy ~ LT p
A reciprocal argument, based on (8.3) would place it at
A ‘
| Wyl ~ <=
v o

which is not much ditferent from (8.4).

Several misconceptions seem to exist - even in the more recent

- literature - about the nature of this very weak coupling case.
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It has been considered based on a different modelg (the
interaction —of - cgiivinua - model as opposed to the exciton-
modeli)., Actually it is just one typical case of excitation
transfer based on the same interaction matrix as for weak
coupling. This leaves the system no choice between two
different mechanisms. In the contrary, the system has to
arrange 1its transfer in accordance with the prevailing con-
ditions. Iif due to large distunces or other reasons the
atepracsso matrix element is less than the vibronic band width,

we have the conditions of the very weak coupling case.

Furthermore, there is the belief that very weak coupling formalism
would apply only to excitation transfer between different

} 25
molecules /

. It_is the purpose of our present considerations
to show tnat this is not true., It is only true that very
weuk coupling allows for such transfer'too provided the
necessary requirements, which will be 1nvestigated later,

are met.

In order to make our further treatment as general as possible
we shall formulate it for continuous vibronic levels. However,
this includes discrete level systems as well, and we shall

see that even the strong and the weak coupling cases are

covered,

9. Detailed Theoryv. We suppose again that a molecule a is

<

excited and another molecule b unexcited at the beginning.
Both molecules may be of the sume kind or different. Their
total vibronic energies shall be named Eé and Eb respectively.
We shall follow then the developement with time of all
situations in which molecule b is excited instead of a and

where the vibronic. enerxrgies are, then, Ea and Eg respectively.
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By use of molecular vibronic wave functions }D(q,Q,E) with
the corresponding energies as additional parameters, such

processes can be described as

L EDY(8) — hlE)E(EY

or shorter by use of dimer vibronic wave functions as

Yoy (E,8) —> Yy (80,5
It is convenient here to normalize the molecular wave functions
belonging to the original state Epé'b =yb;yub and those
belonging to the final state!f;b, = wa;Lg differently 28,29,

Retaining fbr the former ones the usual normalization:

v, 1 / . / A
CEHIH ) = iy
we define the normalization of the latter ones as follows.

o Vs (/V
<'u%//4£ > :; AL \l/b #y/>

Here\ > denotes the product of the functions in brackets

7

integrated over the corresponding coordinates q and Q, while
u;and VJ are quantum numbers of intramolecular vibration.

- As before, only real wave functions are considered.

Wlth these definitions the orthonormalization relat1ons for

wave functions with dlfferent energy values E and E are
VIE)IE) ) = J(E-E LY fiv- v)

with W= u/ or W, . Here v and V are the vibrational quantum
numbers belonglng to the energies E and E. (ﬂk)1s the Dirac
§-function, which has the property ad(ax) = 6(x).

Furthermore, the expectation value of any operator Op is

o P ’&. - Y )// _d,_'_é_.

ckpo( /)) ()//&}3/ )ﬂv |
SO that{iﬁ@dV&> now represents the density of this expectation.
value on the energy scale. The expectation value itself for
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any final state energy interval is obtained by integration
over this interval. The properties of the final state system
ab ! ‘follow from those of its factors‘Vf and

w% These wave functions are, of course, also functions of

wave function \J

their respective electronic and nuclear coordinates q and Q.

The corresponding time dependent wave function is then

¢y, T
— =A1EEL )Y
’ - "/t' *t‘,/f ‘ .
+//L 1—-4 L-b’ )fjll/f:’ :/I f/é’—/gb’
(9.1)
The time dependence of the slowly varying'coefficients
c(Ea,E',t) follows from the time dependent Schrddinger
equation which we write here ‘
r‘?»——— .
‘—— — —
U =(7,+7 ) = (9.2)

]Yols the unperturbed Hamilton operator, of which EP ,b(Ea,E )
andlL%b,(Ea,E ) are eigenfunctions with their respective

- energies as elgenvalues.7V-represents the 1nteract1on between
these, which is supposed to be resonance interaction only,
while the Coulombic interaction is thought to be already
included in J/,. By insertion of (9 1) into (9. 2) together
with the initial conditions ¢ (O) 1, ¢ (Ea 0) one

obtalns

EREI (/E &) ~HEAEE
'““%L (‘,,,)e (66, // Y (B E e e a5,

.....i V(B -r/ t‘)f

This and the following results are valid as long as the final
states are not essentially populated and the depletion of the

original state can be neglected.
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Multiplicétion with y?ab'(ﬁ _'), where the bar denotes a
pair of other values of E and Eé, and subsequept'integration
over the q,Q-apace leads under consideration of the ortho-
normalization relations between the uhpaftﬁrbed wave functions -

L (B ED I, g (6,605 = (9.4)
ana ¥, (6,585 E)) = = J1e, £)J/ &) (9.5)
442

to ﬂcg‘jh/” ' %%/5’5}/7’/14,4'/5 e (9.6)

where CAF = C;;:,/*t:; —54*54‘ (9.7)

is the energy difference between the'ihitial and the final
state. In the following we shall use theAshort.hand'notation

S (&L BT (6,5 = UG &) (9.8)
where the dependgnée on the initial energies Eé and Eb is
dropped because these are considered to be constant, With our
normalization for the final state u(E,,By) is the density .

" of the interaction matrix element in the EafEa-plane;‘
The integration of (9.6) with the initial condition
c(E,,E},0) = 0 leads to o :
., 4 ", .

e e ey

CiEE )= f,-“.ff_?a,li//e dt = 4{/5,4‘;)'—;;-— (9.9)
A o
The expectation value for the state (2 b,(l‘.‘.a,Et’),t) becomes
then ! . £ dEé
Jeig, £ )]t = 2ALERED g
G by (4E)* ST

By integration over the final state energles E and Eﬁ

(9.10)

obtain finally the probab111ty1?ab; that molecule b is excited,
independent of the fimal vibronic. energles of both:
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Qaw () = //cth 11y dE

, 454
7(/ u” /a-aq}s, 75

{ﬂg)}

A€, 6/1_5,{ (9.11)

This expression is valid as long as § _,,<1. For sufficiently
short times, such that. - ‘

45T (o | | (9.12)
2% -

for the energy differences considered, we can approximate

the sine by, its argument'and obtain-

g,,,,?/t) //142/5 £') d& A5’ ' (9.13)

If the condition (9. 12) is satisfied for all energy values
within the total ranges;fw and dw' of the electronic transitions,
the integration in (9.13) can be performed over these ranges.
In regard of our normalization, we obtain then
' T 242
: U<z
Q("A’ /f) ™~ 72

. where U? is the square of the total electronic interactiqn-

"(9.14)

matrixelement as defined inv(2.9). (9.14) is identical with
our earlier result (3.16) for the strong coupling case, which,
therefore, is covered also by our present treafment. If we
require that essential transfer occurs under these conditions
so that guu“(t) approaches unity (disregarding here the
depletion of the initial state and a possible back transfer),
we have IUIVﬁ/t for times within the limits. of (9.12), which
are # o élf_ - .Zf'

4 .AIJ
This leads to

‘,3/{'/(1 >> J_N . | © (9.15)




- 45 -

as an approximate condition for strong coupling transfer,
which is in fact the original Simpson-Peterson criterium for
this case. ‘

In casé of molecules with well defined vibronic levels (9.13)
can be used for even longer time intervals, if the integration
is restricted to those regions;Jev and Jew of E, and E}
which correspond to the vibrational levels v and w, respectively,
of the original state of the systém. The integration then

leads to .

Gaw, sty (8 ~ ~—Z7— (9.16)
where u . as before is the vibronic matrix element of resonance
interaction. We have neglected here further contributions to
qaw,b'v from other bands within the integration range in (9.11)
since these contributions are small because of the denominator
4E? under the integral. Oﬂaously, (9.16) describés the transfer
under non-degenerate weak coupling conditions. For the degene-
rate subcase we have merely to perform the summation over the
degenerate final levels v + n and w + n, with -v£n<£w as in 7:
- | | > ul . ,
Sa,ven; b w-n (£) ~ - V;,Z'N Tzt (9.17)

OQur approximation (9.13) becomes invalid here too it the
condition (9,12) is no more satisfied for energy values within
the same pair of vibronic levels., By the same reasoning as

applied to the strong coupling case we get now

i | Bl Uyigl >> A& : - (9.18)

as a lower limit for the weak coupling case/wherezﬂe is the

vibronic band width. This is not much different from the limit_

(8.4) found earlier by our preliminary considerations.

If the interaction matrix element becomes smaller than

allowed by (9.18) we enter the region of very weak coupling.
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. ri
For this (9.11) is still valid, but sin 7 can no more be

]

‘replaced by its argument for the long times required, even

within small energy ranges. Instead of this, we must now take .

the 11m1t1ng value of the 1ntegra1 in (9.11) for large t
Ye £1) S0 2 4EL
: V74 , /h - . -
Sayr (2) = 4‘/""// A df 8
>of (JE) S

, 4EL

2 ’ Sn T
UAE . z;}_/): —pI _;/A- dEy!
2%

7‘z‘

“,

By use of the 6-function we can write this%
‘\t ‘ 'AE e i~
Qap'(¢) = —”—l—//azlz—f?,zr,,')f//j-t— 7E, dE,

2“‘//”2/&4 )a///rg)//é‘ 48 (9.19)

Here, the increase -of g?ab,(t) is linear with time, as it
should be in the very weak coupling case. In order to carry
oat the intégration; we transform to new energy variables,
namely to JE as defined in (9.7) and

—_/E -£E,+ 5 -F,) ' j (9.’20)A

Slnce the transformation determlnant is unity, we get

gn,; (¢) = ﬁ-“—/ UYELE)HAE)dEAYE) = 2” UuE o/;/E (9.21)

. ] - . /' J"lill 2 ZL*
One of the ;representations of the &6-function is dix) = Im'*i 2
; . ' - £ a0 "X

Compare E.Madelung, Die mathematischen Hilfsmittel des Physi-
kers, 6. Aufl. 1957, Springer Verlag Berlin, Gottingen, '
Heidelberg, pag.18
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This integration requires that u? (E,A!E) is not essentially
‘different from u®* (E,0) within a range of at least[JE[~24/t.
Here, we are interested only in times longer than those

required for weak cbupling transfer. According to (7,16)'
i .

2 4 Uvw »

of ¢* (E, 4E) within L!Elquvwl are sufficient. Since for very

these are times t> , So that néarly constant values

weak coupling the inverted inequality (9.18) holds, we have
O J4E << T Uy, | << %%i
Near'conétancy of u® (E,JE) is then required withiﬁ the
région of the vibronic band widths only. This can be supposed,
however, because otherwise these bands would not appear
éimple, but would show further structure. A better approximation.
than (9.21) in the region near the weak coupling limit should
be possible by a more accurate integration of (9.11) than by
way of the 8~function, but this is outside of our presént

intentions.

According to (9,7) E ~0 states simply the conservation of
unperturbed energy, which is more strictly observed in our
" present very weak coupling case than in the other casés with
stronger interaction. The quantity E as defined in'(9.20) is
then exactly thé amount of energy transferred between both

molecules. .

From (9.21) the transfer rate can be unambiguously calculated’

as : SV AF (e, ' o
. Coms, =5 JurlEc)dE (9.22)

The remaining integration here requires a knowledge of u® (E,O0)

as a function of E. If we assume each of the vibronic levels -
v and w to have the same precisely defined width Je, the
function u2(Ea,Eé)‘will be constant within that region so

that we have ,
- U’
o,
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The integration in (9.22) extends over a linear interval of
E which i: oi the order of Je. We get therefore

V& w?/TlT avzh’ .

”o‘?—il, = 4 A8

with a numerical factor o not far from unity. Under our present

assumption, o depends on the .location of the original energy
values Eé, Eb within their band, so that we must take the
average. A straightforward calculation under these assumption

gives o = 3/4 and therefore

2
— ST Avu
N W W — . ¢
Nesh T T x4 (9.23)

We should not give too much attention to the numerical factor
here and to the deviation from its value in (8.3) or in other
expressions for the weak coupling transfer rate published:
earlier? The value of that factor depends largely on our
assumption of a sharply defined band width. A Gaussian
distribution leads to a similar but somewhat different result,
the definition'oflﬁhe vibronic band width is, however, some-

what arbitrary here.

- Qur present considerations allow for the broadening of the
vibronic levels. Therefore, we can go one step further and
assume thermal equilibrium to be established not only for
the primarily'unexcited molecule b but also for the primarily
excited one a. With a vibratiohal relaxation timeZ’— the time

between two collisions, that lead to other vibronic levels of

the same: electronic state - the broadening is J£~4ﬁ-and
insertion into (9.23) gives
22 Uy ,
T %bii ~ (4£)? (9.24)

Within the very weak coupling range (but by no way within
the weak coupling one!) this can be less than unity so that

thermal equilibrium can be obtained before excitation transfer
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occurs., By introduction of Boltzmann-factors g& for the
originally excited molecule and Ca for the unexcited one we

get then a total transferbrate of

N S T e ‘pu 3 YV i, 42 .

nﬁ-—ﬂ’, :éég\lj/{ndli:h = VE I é%‘f"j“’ “W" (9.25)
This refers to excitation transfer under our very weak coupling
conditions for any paif‘of alike molecules with well defined
vibronic levels in thermal gquilibrium. In this case we have
still more reason to regard the excitation as temporarily
localized at one single molecule. Since now no phase relations
exist any more between the wave functions of both molecules,
the depletion of the original state as well as an eventual
‘back reaction can be treated by'the formulation of a suitabie
first order differential equation for the'expectatiqn‘values
?aﬂb and ‘?ab5° A transfer to other molecules could be treated
in a similar way as a statistical hopping or diffusional
process, without-aﬁy consideration of the wave-like propertieé

of the excitation.

- We shall now consider in detail molecules with continuous

spectra, that is those which show no or only’weakly developed
vibronic structure. Continuous spectra result if the individual
vibronic levels of one or of both states merge together. This
may be due to extreme life-time broadening as in the cdse of
diésociatibn continua, where the nuclear motion may even no
moré be vibrational at all. It may also %ue to the crowding

of vibratiénal levels in larger molecules. This is the general
cause for the continuous or guasi-continuous appearance ,0of the
spectra which is so often met in solution spectroscopy of

polyatomic molecules.

With the distribution of the total vibronic resonance inter-

action among many vibronic levels, the matrix elements ug e
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. become necessarily small. This leads not only to a reduction
of the weal ccupiing transfer rate (7.16) but also to a shift

of the boundary (9.18) between weak and very weak coupling.

Let us suppose that there are z vibronic bands with comparabile
values of their Franck—Condon—integrals va and of the same
width Je. The spectrum will be continuous if the sum of the
energy ranges covered by these bands exceeds the total elec-
tronic band width ‘Aw, that is, if

Zde > AW | (9.26)
We shall suppose that this is true for the ground- and excited
states of both molecules a and b. Now, the total resonance

interaction is

/U] = VL ul, ~zl Uyl (9.27)
: v .
if ﬁvw is the average vibronic matrix element. By insertion
of (9.26) and (9.27) into (9.18) we get

2IU] >> 248 > 4w (9.28)

as the lower limit for weak coupling. Comparison with (9.15)

- shows, however, that this is also the limit for étrong coupling.
With other words, if U 1is large enough to allow for weak
instead of very weak coupling, it is already sé large that

the coupling is strong. Thus we arrive at the important

result that for systems with continuous vibronic levels no

weak coupling case exists any more, It is not surprising that

the eXperimental criterium for weak coupling (compare

chapter I) fails for continuous spectra.

Even for systems which show vibronic structure, but whefe
this structure is not well pronounced insofar as the vibronic
band widths are not much less than the band separations, the
upper and lower limits from (9.15) and (9.18) are so close

together that the weak coupling case is not much more than
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an intermediate one between the two others. This is so for
all soluticr sysiems and many crystalline ones, with the

exception, perhaps, at very low temperature. It is only the
widespread use of the present terminology which may Jjustify

us to call this intermediate case that of weak éoupling.

If, for vibronic cohtinua, the range of the weak coupling case
is reduced to zero, then that of the very weak coupling case
must extend further. The reason for this is not difficult to
see, We have found. that the\integration of (9.11) by use of
the 6-function requires that u® (E, JE) does not vary essen-
tially in the region around JE = 0. For molecules with well
separated vibronic levels, this is only within the widths of
these. But for continuous spectra, this region extends over

an essential part of the electronic band'widths.‘This results
from the fact that the spectral intensity distribution of an
ahsorption- or emission transition is determined by Llhe same
yibrational_o erlap integra1s which also determine the variation

of u(Ea,Eé) and of its square.

‘More quantitatively, this may be stated as followé. By inte-
gration of (9.22), but now over the total electronic band
width dw, we get | '
' e U

Mas b = ~ 54w

with a numerical factor o' not far from unity.. The use of the
6-function in going from (9.11) to (9.22) reqguires that for
a timé t‘ correéponding'to the reciprocal of the rate, and
for an energy interval JE of the order 4w

Aﬂ?f;>>
2l

This leads to the condition

207 TUl << AW

which, in fact, is close to the strong coupling limit (9.15).
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Near this limit, the 'very weak coupling' transfer may become
quite fast. One must then be careful in using Boltzmann-
distributions in a way analogous to that in (9.25), because
the transfer time might be less than the thermal relaxation

o~

time T.

Although our general considerations in this chapter are not
restricted to molecules of the same kind, we have been
concerned mainly with excitation transfer between those. The
possible extension to dissimilar polecules needs, therefore,
some further considerations. In the strong coupling case,
collective excifation or excitation transfer will certainly
occur if the differences between the electronic energies do
not exceed the resonance interaction energy U. Such cases
might be treated by use of (3.18) in chapter II.

In the weak or'the_very weak coupling case, excitation transfer
between molecules with well sepérated vibronic levels would
require some more or less a001denta1 coincidence between these,
But for molecules with contlnuous or quasi-continuous levels,

. some overlap of these regions will be sufficient. The

detailed nature of'thisonerlap will be discussed below

within the aspects of the very weak coupling case which,

we have seen, is the only one in question here.

10. Quantitative formulations. Our further procedufe shall be

mainly concerned with very weak coupling.transfer under

prevailing dipole-dipole-interaction. It is under these con-

ditions only that the transfer rates can be expressed by the .

spectral data of the molecules involved.

For the calculation of the transfer rate by use of (9.22),
have to specify the matrix element u(E,0) further. If we
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return to the original energy parameters by (9.7) and (9.20),
this becomes in the complete notation of (9.8)

= i ’ :

u/l:/ﬁ/: “/E:i,a,'f‘;;l:é’ “/E Z— F AfE) (10"1)
The final state energies have been expressed here by the
original state energies and the transfer energy E. For

simplicity, we take Born-Oppenheimer vibronic functions

—

Vo (6, 8) = XY i (& ))L,/t/,/

Vo, (&, &)= V/i/ﬁ' /5'5)]; /EfE) (10.2)

where 1} and ﬂg are the vibrational wave functlons of the
excited and of the unexcited molecule f' respectively,
characterized by their vibronic state energies. Their norma-
lization is already determined by our normalizetion.precedure
for the vibronic wave functions. The square of the matrix
element u (E,0) in (10.1) becomes then under neglection of
vibrational terms; that is for electronically allowed inter-
action, | ' '

WHE o) =BV Y5000 S, Ve E"-£)S, Y, )

Z 2 P | / 2/ -
U* S /54,‘5‘5}‘{; /5,5;,"5) (10.3)
Here, U is the electronic interaction matrix element as defined
in (2::9)’ and v )
B S(E,5) =K IEJINE))

a vibrational overlap 1ntegral analogous to (7.9). Under
restriction to dipole-dipole-interaction we can use (3.11) to
obtain:

xtmi om?
Y
n Re'd

W=

(10.4)
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where X is a numerical factor containing the directional

dependence of the interaction energy and where m, m are

the electronic transition dipole moments of both mol:cules.

If we flnally insert (10.3) and (10.%) into (9.22) and replace
there the transfer energy E by the transfer freﬁuency”V= E/h =
E/27tf and change the normalization of our vibrational

functions as well to a frequency scale, we arrive at
774——>L,/ £) =

/mZS (£, £, Lhv) mrS, /E;+/v)z/v

hl,fl (10.5)

This is the transfer rate for molecules with the initial
states Eé and Eb° From this we can get the total transferlrate
for thermal equilibrium by the introduction of suitable Boltz-
mann factors and subsequent integration over all energies Eé
and Eb.-These Boltzmann factors are here continuous functions
g'(E) for the excited molecule and g(E) for the unexcited one,

which are normalized on an energy scale. Thus we get

’74->l, = : ' (10.6)

7»,9;- /[,,,z/f 2, 2/51£L/V)/t//ms/f/f4)5 (5.4 MV)&/F]&/V

The expressions within the syuared brackets under the integral

are closely related to the spectroscopic transition probabili-
ties between ground and excitéd states within the molecules a
and b; Each of them consists of the square of an electronic
transition moment and a Franck-Condon factor, averaged over

the Boltzmann-distribution of the original state. More
specifically, the first bracket is proportional to the spectral
density of the emission spectrum of molecule a for thermal
equilibrium in its excited state. This is the regular fluores-

cence spectrum. In a similar way, the second bracket is
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proportional to the spectral density of the absorption Spec-
trum of molecule b. Therefore, the integral in (10.6) is

proportional to the overlap integral of the fluorescence

spectrum of a with the abéorption spectrum of b.

The transition rate (10,6) can be calculated quantitatively
from spectral data if one uses the following relations which
can easily be derived from Einstein's well known expressions

for induced absorption and for spontaneous emission
' 2 ..
4rin’'mty
3(lut10)h%c

Ely)

J

[4(EISUE FhvdE (10.9)

§-
f'/p): 2 7;: Ce 1 y/f/f’)f /ff AV}f/f (10 8)

Here (V) is the molar decadic extinction coeiflclent and

on-a frequency scale. N' is the number of molecules per milli-
mole, ¢ the velocity of light and’ c the natural fluorescence
life time, that is in the absence of radiationless processes.

. Insertion of (10.7) and (10.8) into (10.6) gives finally .

9 x2lb0jct (£  0.9)
= yv) S [v)-—- (10.9)
ah = A28T5 RN Tg o ’?eb f

This is essentially the same result as has been obtained in
28,29 '

earlier calculations Apart from the factor V-q, the integral
here represents the overlap of the fluorescence spectrum of
thelinitiafly excited molecule a with the absorption spectra
of the finally excited molecule b. An appreciable overlap of
these spectra is a necessary condition for excitation transfer
under very weak coupling. It permits transfer between molecules
of the same or of different kind provided that in the second

case the excited state of the acceptor molecule is somewhat
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less then that of theAdonor.‘It.is remarkably that this
expression does not contain Planck's constant. Actually, it
can also be derlved on an essentlally classical bas1s¥ If the-
spectra are represented on a wave number scale y and the

fluorescence spectrum is normallzed in that way, (10.9) reads

9xiluto 1 /~ - AP
n,._ = . . = (v/)S, /V),;:- (10,10

a4->5 AT Y ”,TQQ é. }g 4 Fe ( )
The numerlcal factorlk can be calculated from (3. 11) for any

mutual orientation' of both molecules. For sufflclently fast
Brownlan rotatlon of both molecules, the average xz~= 2/3 may

be used. An average for random but fixed orientations ‘has been' :

calculated by Maksimov' and Rozman30°
Several further’simplifying approximatione are'possible‘here,
such as replaclng v by an average value and taklng it out of
‘the integral or by ‘using the mirror symmetry in order to
replace the fluorescence spectrum by the inverted absorption

4 30 == .

spectrum . 

- T . :
*This.has been done in fhe monograph: Fluoreszenz organischer
“Verbindungen, Vandenhoek‘und Ruprecht, Gﬁtfihgen, 1961 In
part of the edition, (10.9) has incorrectly been printed
with nA_1nstead oﬁ‘ns .and this error has been transfered to:

some other articles.
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V. CONCLUSIONS

In our foregoing treatment delocallzed excitation and excltation
transfer have been discussed in terms of statlonary and of

non statlonary wave functions. We have arrived at the result
Tﬁthat the apparently different cases of strong, weak and of
very weak coupling are intimately related to each other and
‘might, in principle, be described by one single theery} Their
" different characterlstlcs result merely from a d1fference in
magnitude of the 1nteract10n energy, in relation to the
electronic band width and to the individual vibronic band width.

The»conditions for-very weak coupling, in our present revised
notation, seem to be met much more often,than has been reéog—

nized in the recent literature. Actuaily, for this case to be

present, the interaction energy has not even to be small on an
absolute soale,'aeihas been found in our discussion of mole-

cules with continuous spectra,

Excitation transfer between triplet states, that is Tl-—:>So
"in one molecule together with Trf— So in the other, is spin
forbidden, and the interaction energy is small even for mole-

‘eules in close contact with each other. A value of 8 em—l has

been found by Nieman and Robinson” )

for this energy in case

of the benzene crystal. At liquid helium temperature this may
‘be sufficient for weak coupling but no more at essentially |
higher temperatures where the vibronic band w1dths exceed

that amount considerably. Then, stepwise transfer of excitation
.instead of exciton propagatlon should be expected and the
individual transfer rates should be treated by very weak
eoupllng theory, in Dexter's modification for forbidden,

'transitions?g.
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Even if the conditions for stroog or for weak coupling apply,
so that electronic or vibronic excitons do exist their
migration is still modified by the thermal redistribution of
energy between dlfferent v1bronlc levels° In exciton theory
this is considered by the 1nclus1on of exclton—phonon-

: scatterlng. This allows linear migration of excitons in a
lattice over restricted diStances only, but leads then to
diffensive motlon Model calculations under such conditions

- have been performed by Goad3 . As Katshura33 has shown,

frozen lattice irregularities lead to a similar behavior. In
both cases the root-mean- square dlsplacement of the excitation
becomes f1na11y proport10na1 to V¥, .as in dlffu31on or in a
random walk process, With the same individual transfer rate
this may result in much smaller rates for trapplng by 1mpur1t1es,
especially in one- -dimensional systems where a random walk

includes repeated v1s1ts of the same place,
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SO .~ CAPTIONS TO FIGURES

Fig.1 Energy of the exciton state of the polymer
as function of k. o '
. a: U>0
Mo b: U(O

Fig.2a Potential energy surface of a dimer undef
strong coupling, - o

2 lul

(p=x ——, = 3)

Q) - Q)

Q,» Qb nuclear coordlnatel A
Qs Qs equilibrium configurations of

monomer ground- and. exclted statea'
-~---- ground state '
" lower excited state

Fig.2b APotentiél energy surface of a dimer undefgj"

-weak coupling.
(p = 0.1)

Fig.3  Potential energies in the‘configurati@ioﬁalf
‘ plane Q, + Q = Q, + Q - |
p = 0.1 (weak coupling)
p= 1 (vorderline case)
p = 3 (strong coupling)
" Distance in units of (Q) —_Qo)‘4
Z: energy in units of %?(Qé - Qo)2

AEig.h Coupled transitions in weak coupling transfer. -
. a. non-degenerate subcase ‘

" b. degenerate subcase
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