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Investigation of the long term SNAP 10A reactor operating
history, considering the long term reactivity effects

and the feedback to reactor power caused by the heat
transfer characteristics of the system.

ABSTRACT:

This report presents the description and results of the long
term reactor operation code used to solve the above problem.
The code represents the heat transfer and fluid flow in a

five node reactor representation coupled with a radiator

heat transfer equation and a reactivity relationship. The
model is solved at discrete points in time based on the
assumption that for the operating histories considered, time
dependent terms involving changes in heat capacities can be
neglected without significant error. The code does not solve
for any power or temperature transients but instead calculates
reactor temperatures and powers under conditions of relatively
slow coolant flow and/or radiator emissivity coating degrada-
tions. A 0.1l year time increment is generally used between
calculation points; however, a 0.0l year increment is sometimes
used to eliminate convergence problems. Assuming the SNAP 10A
system with time dependent NaK flow and emissivity coating
degradation as input data, the resulting reactor inlet and
outlet coolant temperatures and the reactor power are presented
as a function of time.
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PURPOSE

The study was initiated to determine the long term SNAP 10A reactor
power operation and associated reactor coolant outlet temperature
primarily under conditions of degrading NaK flow. The power operation
could subsequently be translated into the time dependent fission
product inventory used as a starting point for hazard analysis.
Coolant outlet temperature would be of value in determining the
effectiveness of the temperature actuated band release device as a
reflector ejection initiating mechanism or, for that matter, any

other safety systems which depend on the magnitude or variation in
outlet temperature.

PROCEDURE AND ASSUMPTIONS

The reactor model incorporated in the code is a simplified version

of that presented in Reference 1 with the exception that terms
involving time derivatives of temperature were neglected. One
equation representing heat balance through the radiator served as

a relation between reactor outlet and inlet temperatures. Transport
time delays, heat capacity changes, etc., were not necessary for the
cases studied and, in fact, contribute insignificantly to the result-
ing steady state values.

The reactivity equation used is essentially a reactivity balance of
all the incorporated separate contributions:

a) grid plate temperature change
b) average fuel temperature change

¢) losses from fission product production and
uranium burnup

d) equilibrium xenon changes
e) hydrogen leakage
f) hydrogen redistribution

g) samarium burnout

Relationships for (f) and (g) were derived from data obtained from
Reference 2. Existing relationships were used for the other reactivity
contributions. These were also generally supplied by Reference 2.

Coupling the relationships above at a particular time, the procedure

of solution is one of minimized brute force. An educated guess is

made for the reactor coolant inlet temperature. Based on the NakK

coolant flow at the time under study, the heat balance equation

through the radiator yields a coolant outlet temperature. Assuming

all the reactor power is transferred through the coolant (not a bad
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assumption for the cases under study, but one which is being
eliminated by intended code modifications), reactor power and all

the nodal reactor fuel and coolant temperatures are computed. A
reactivity balance is then attempted based on these results. Unless
the balance falls between set tolerances (usually -0.1¢ € R < 0.1¢),
the coolant inlet temperature estimate is revised accordingly. Rapid
convergence has resulted (less than 5 guesses) for all the cases
studied thusfar. The code then advances to the next time point
repeating the same procedure after accumulating irreversible reactivity
changes-hydrogen leakage, fission product buildup, uranium burnup,

and samarium burnout.

DESCRIPTION OF MODEL

Figure 1 shows a schematic of the reactor model. The power transferred
to the coolant from the fuel is represented by the following equations

(See table of nomenclature):

no 5 1 i

i=1,2+*,5

where i refers to a particular node.
Heat transferred out of the node by the coolant is represented by

U .A

LL (p. -F) = wW(t)Wo Ce (z,,

5 £1 " T4 - T,) 1=1,2,"""*5

3 i

The heat balance across the radiator is determined as follows:
Assume a small length of radiator dl. Heat lost by the coolant

in passing through dl is radiated to space. No conduction or
change in heat capacities is assumed significant. Then:

4) dl

=W(t)Wo Ce¢ AT = K(1) € (t) (TL* - T
or since T > T
8

-W(t)Wo Cc 4T T K(1) € (t) (Tl’) dl

where:
T = radiator temperature
Ts = gpace temperature
¢ (t)= radiator emissivity at time (t)/

emissivity at t = O
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TABLE OF NOMENCLATURE

fraction of full power produced in node 1

total power at time t/total power at time t =

total heat transfer coefficient

fuel temperature of node i

average coolant temperature of node i

fraction of full flow at time t

coolant flow #/sec

Kw=s5ec

specific heat T

internode temperatures (see Figure 1)

an unknown function of radiator length

emissivity at time (t)/emissivity at t = O

initial reactor coolant inlet temperature

initial reactor coolant outlet temperature

average of the five node fuel temperatures at
time t

0
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Tf int average of the five node fuel temperatures
at time t = 0
a\f fuel temperature coefficient
d\gu upper grid plate coefficient
°“gl lower grid plate coefficient
n
1 power during time increment A4 t_./power at
n 3
o time t = O
Atj time increment
KZ’ K3, K‘+' K5, K6 constants
Tf fuel temperature of node i during time
ij increment A tj
ATc coolant temperature difference across core
during time increment 4 tj
A‘I‘c 306 coolant temperature difference across core

at time t = 0 (111°F)
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Separation of variables yields

-dT € (t) dl
;E" = k(1) W(t) WoCc

Integrating between a reactor outlet temperature T6 and inlet
temperature T

1
Te
QE = #%;;%% —L;l dl where the minus sign has been
T eliminated by changing the
limits of integration.
1
Therefore, T
6 1
-1 . £W K)o
3 T} - w(t)Cc Wo
T1
o
or
1 é(t)
3 W(t)Ce
T1

But values for T1 and T are known when initial equilibrium is

reached (€ (t) = 1; W(t) 1) subsequent to reactor startup.
Therefore, the right side of the equation for all inlet and outlet
conditions is:

I S S % 6 1 _ 1
3 3 T W(t) 3 3
T1 T6 Tlint TGint

The limitations of the model are fairly obvious:

(1) Heat transferred into a radiatcr node is by fluid
flow only. Therefore, as other means of heat
transfer (conduction) become of comparable magnitude,
the model breaks down.

(2) The radiator node temperature is assumed much greater
than space temperature.
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The final relationship in the long term reactor operation model

sets equal to zero the sum of a

conditions at full power subsequent to startup.

the following contributions and

(a)

11 changes in reactivity from initial
These changes include

their source.

average fuel temperature change

upper grid plate temperature change:

A -
(e) gl (Tl Tlint) lower grid plate temperature change
m
§ n
() KZ -1-1-1 Atj cumulative effect of fission
Fal o product poisoning and uranium
- burnup
(e) K3 - change in equilibrium xenon
%
T - 950
Iy
(f) Ky, -——j1ﬂy——- A tj cumulative effect
2 of hydrogen leakage
i=1 j=1
1.54
(g) K ATc - ATcint hydrogen redistribu-
> tion
100

.
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o
-0.348 =l At
(h) (K - AT)(1 - e "o )
J
j=1
m-1 n
-0.348 ;i At

where AL, = (Kg = AT, ;)(1 - e o ¥

3=1
and AIl =0 samarium burnout

Term (a) is the reactivity input resulting from changes in average

fuel temperature. Tfint for the SNAP 10A system is 982.7°F. The
fuel temperature coefficient, <A gr Was determined by the following
equation:
0.066 T ”
Ag = - [0.07#+ 1600 ] ¢/°F

Term (b) used values of =0.06 ¢/°F and 1010°F for cAgu and T

respectively. Likewise term (c) used a value of -0.04 ¢/°F
for < gl and 899°F for Tiint® The constant, K,, in ternm (d) was

based on an estimated loss of 6¢/yr under conditions of conmstant
reactor power (33.5 Kwt). The ,

HEE
no J
j=1

(where m is such that g Atj equals the time point of interest)
j=1

6int

represents the sum of the products of the normalized power fraction

multiplied by the time increment A.tj.

The xenon equilibrium change from cold critical to full power

(33.5 Kwt) contributes a ll¢ loss in reactivity. Therefore,
reactivity changes from equilibrium at full power can be represented
by term (e), setting K, equal to +1lke¢.

3
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The rate of hydrogen leakage as a function of fuel temperature was
approximated from the function presented in Figure 2 (Reference 3).
This function was normalized to yield a leakage rate of 3 ¢/yr if
the initial fuel temperature profile was maintained for one year.
With this criteria K, was determined as 1.62 ¢/yr.

Term (g) was originally a very crude approximation for reactivity

loss due to hydrogen redistribution. The -14.86¢ portion of this

term was deduced from redistribution reactivity losses during startup;
namely, from cold critical to equilibrium conditions at full power
(coolant AT across core ~ 100°F - 950°F average coolant temperature).
The only other data on hydrogen redistribution which existed at this
time was for other ATs (200°, 300°, and 400°) for the same average
coolant temperature and power. The first portion of term (g) is .
essentially a function derived from these four data points (Ke = 4.18¢)
This function was believed at first to be an underestimate of the
negative reactivity contribution from hydrogen redistribution as the
average coolant temperature declined from 950°F. However, the more
recent data of Table 1 indicated that the underestimate resulting

from lower average coolant temperature was counterbalanced. This
counterbalance was due to the fact that the data points used were

for constant power of 33.5 Kw. In reality a reduction of power would
cause an overestimate of the negative reactivity contribution of
hydrogen redistribution. Thus, a happy ending. One final point

about this term should be mentioned. As average fuel temperature
decreases, approaching 700-800°F, the time for the hydrogen redistribu-
tion to take place becomes equal in magnitude to the time increment
(0.1 yr). Thus, below 800°F the negative hydrogen redistribution
effect is, indeed, an overestimate.

Table 2
Negative Hydrogen Redistribution Reactivities (¢)

Coolant
Inlet (°F)

800 900 1000 1100 1200 1300
04 32,5 17.34 14,86 12.88 11.27 9.94 8.84

AT =10 50.0 25.22 21. 7% 18.88 16.57 14,66 13,07
100.0 46.33 Lko.12 35.08 30.94% 27,49 24,59

32.5 21.12 17.87 15.31 13.26 11.60 10.2
AT=200F] 50.0 28.39 2k, 22 20.91 18.23 16.04 14.23
100.0 47,88 k1,33 36.05 31.72 28.13 25.12

32.5 27.04 22.64 19.22 16.50 14,31 12.

AT=300F| 50.0 33.72 28.52 24 43 21.15 18.49 16.23
100.0 51.68 b4, 39 38.54 33.78  29.15 26.57
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Term (h) represents the positive reactivity resulting from samarium
burnout. The initial excess samarium poisoning over equilibrium
samarium was evaluated as 44.5¢. Kg was set equal to 44.5¢ and
term (h) then represents the cumulative reactivity input as a
function of time and power.
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RESULTS

Examination of Reference 4 revealed a minimum flow degradation to

date of 0.3 gpm/1000 hours. Reference 5 recommended a 10% emissivity
coating degradation over a 5 year period. Using these conditions as
input data, Figure 3 (solid lines) shows the coolant inlet and outlet
temperature, average fuel temperature, and the reactor power fraction
as a function of time. The early drop in temperature and power
results from initial hydrogen redistribution. The following gentle
increase is caused by samarium burnout. Figure 4 shows the reactivity
contributions from hydrogen leakage, hydrogen redistribution, and
samarium burnout as a function of time.

Since average fuel element temperature drops below 800°F at 4.53 years,
the reactivity effect from hydrogen redistribution after this time is
probably overestimated and, thus, the coolant temperatures are too
low. In order to obtain an upper limit for coolant outlet temperature
(from a lower limit on hydrogen redistribution negative reactivity
loss), a second case was programmed which considered no reactivity
loss from hydrogen redistribution following the initial 14.86¢. The
results are also shown on Figures 3 and 4 as dotted lines. An
increasing difference in outlet coolant temperature with time should
be noted. This fact is readily reconciled when one notes the rapid
change in negative reactivity input from hydrogen redistribution
between the two cases. The resulting higher average fuel tempera-
tures increases hydrogen leakage while samarium burnout is almost
unchanged.

A compilation of the code for the first case discussed is included
as Appendix A.

CONCLUSIONS

The conclusion reached from this preliminary study is illustrated by
Figure 3; namely, that slow coolant flow degradation does not seem
to result in the high coolant outlet temperatures previously expected
to cause expansion compensator failure or fuel element rupture.
Although a complete transition to a NaK stagnation mode (no flow)
was not possible with this simplified model, the important effect of
hydrogen redistribution is indicated. Further, the heat transfer
effects neglected (i.e., conduction) will, at low flow, generally
further inhibit rapid increases in outlet temperature. It should

be noted that work in progress may demonstrate the transition of
interest.

Finally, as estimates of pump failure mode become more sophisticated,
the most probable fission product inventory will be exactly determined.

719-P
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Obviously, the inventory from full power operation for 10 years
expediently used in the Final Safeguards Report - SNAP 10A Flight
Tests (NAA-SR-/774) seems very conservative from a safety viewpoint.
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1616 LONG TERM REACTOR OPERATION -

C LONG TERM REACTOR GPERATION
DIMENSIGN T(6),TBAR(5) 4P(5) yA(5) s TF(5) ,COE6 (6),TITLE{12)

COMMGN PT,TIN, TOUT ,WO,DELYIM, TMAX,A,CQE6

CALL READ
500 REAC INPUT TAPE 5,1,TITLE

1 FORMAT(12A6)

CALL READ

SUMEN I=0ELTIM
 CAY4=,324=DELTIM

GUESS=50C.

TIME=DELTIM

"DEL =0. ) )

WRITE GUTPUT TAPE €,2,TITLE
2 FORMAT(1H1 12A6)
_JoeL=.1 e
TMAX=TMAX+.01
T1IP=TIN
C2= (TIN#46C.)nn(-3)-(TOUT+460.) *%(-3)
DELTCI=TOUT-TIN
00 420 1I=1,5
| 42Q P(I)=A(I)ePT

TFBAR I=S82.7

g | T01=TOUT
m.  TlI=TIN
e ” N4=1
L LL=0
seetes  TLL)I=TIN.
SUMAI=0.
: CELTI=.348sDELTIM t
2T SuMI=0, :

. .
oooooo

104 T{1)=T(1)-GUESS
W= 10-0197'TIME

CI=44.5-SUMAI
L=1
DO 105 KKK=1,30
79 TRANK=T(1)+460.
RAD=1.-C2#E /Wes TRANK#=3
_IF (RAD) 80,80,84

00000002

00000003

~0000CC04

0000cCc008
00000009
00000010
0000CO11
0000C012
00000013
00000015
0000CO16
0000cCO017
00000018
00000019

~0000C021

00000022
00000023
00000040
0000CC50
00000052
00000054
00000990
0000CSS1
00000992
0000C995
00000996
0000CSS7
00000998
0000C999
00010100
00001000
00001001
00001002
00001003
00001C05
00001005
00001006
00001007

00001008

11/18/63 PAGE 1
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1616 LGNG TERM REACTGR OGPERATIGN

80 T(1)=(.992#W/(C2*E))%%,3333-460.
IF (ITRY) 81,81,82

81 ITRY=1

G@ TO0 79

82 WRITE OGUTPUT TAPE €,83,KKK,T(1) +TP,DELP,TM,DELM
83 FORMAT(41H-CONVERGENCE OF T(l) WAS NOT ACCOMPLISHED/14,1P5E15.5)

CALL Cump
GO To 5CoO
84 T{6)=TRANK/RAD=#»,3333-460.
TGAP=(T(1)+T(6))/2.+426.
DEL I=DEL
CELTC=T(6)-T(1)
EN=W#DELTC /DELTCI
CON=PT=EN/2.
C1=EN/(.211% e WO)
L0 100 I=1,4
TOI+1)=P(1)#C1+T(I)
10C TBAR(I)=(T(I)+T(I+1))/2.
TBAR(5)=(T(5)+T(6))/2.
TCBA =0.
Lo 110 I=1,5
11C TCBA =TCBA +TBAR(I)
TCBAR=TCBA /5.
TFBAR=(T(I)+T(6))/2.+2¢€.
TGAP=(TFBAR+TCBAR) /2.,
DO 130 N=1,20

00001009
000Q1010

00001011

00001012
00001013
00001014
00001016
00001015
00001016
00001017
00001018
00001020
00001030
0001C404
0001C105
00010110
00010130
0001C140
0001C150
00010160
ooo1lo0180

0001C190

0001C210
00010400
00010402
0001C406

~_UFAF= (((( COE6(6)=TGAP+COE6(5)) »TGAP+COE6 (4)) #TGAP+COE6(3))*TGAPOOOL10410

1+COE6(2))#TGAP+COEE(])
TGAP 1=CON/UFAF +TCBAR

IF (ABSF(TGAP1-TGAP)-1.) 131,131,130

130 TGAP={TGAP+TGAP1)/2.
131 TFBA=0

CONST=5.8EN/UFAF

SUM=0

DG 120 I=1,5

TF(I)= P(I)*CONST+TBAR(I)

SUM=SUM+42.##% ({TF(1)-950.)/50.)
120 TFBA =TFBA +TF(I)

PAR=(DELTC-DELTZ1)/100.

00010420
00010422
0001C426
0001C430
00010432
0001C440
00010442
00010450
00010460
00010462
00010470
C0010472

11/18/63 PAGE 2

61 'L X

TeNIGeq HIVEL", .** .

W o

gex

HTS6 =W~




1619 LONG TERM REACTGR GPERATIGN 11/18/63 PAGE 3
__ _Q=ABSF{PAR)/PAR 0001C473
134 SUMJ=SUM 0001 C478
TFBAR=TFBA /5. 00010480
 DBLSUM=SUMI#SUMJ 00010500
ALPHA6=- .074~6.6E-5# (TFBAR+TFBARI) /2. 0001C510
CAYS=CAY4*DBLSUM 00010515 [
AI=CI#(1.-EXPF (-EN#DELTI)) 00010516 A
SUMMA I=SUMAT+AI 00010517 (@
DEL=ALPHA6* ( TFBAR-TFBARI ) -.06%(T(6)~TOI)-.04%(T(1)-T1I)+14.#( 1.~ENO0010520 !E;
o 1)-6.#SUMENI-CAY5-4.18%Q*ABSF ( PAR) ##1 .54 +SUMMAI -14.86 0001C530 N
L IM=KKK 00010540 I3)
401 WRITE GUTPUT TAPE €,325,TIME,T(1) ,DEL 00010543 -\
~ 40C IF (ABSF(DEL)-TOL) 160,160,320 , 0001C547 ;i\
32C GO TG (151,170),L s 0001 €550 cﬁ;}
€D 325 FORMAT (OPF15.1,1P2E15.5) 00010552
: L=2 o N 00010570
T1=T(1) 0001C575
IF (DEL) 175,160,180 0001€580
T(1)=.99#T(1) 00010590
G3 TO 105 00010600
T(1)=1.C1%T(1) 0001C410
GG TO 1C5 - - o B B , 0001 0620
T2=T(1)-DEL*#(T(1)-T1)/(DEL-DELI) 00010630
T1=T(1) 00010632
T(1)=T2 00010634
CONTINUE 0001 0640 —
SUMI=SUMI+SUMJ . 0001C6&50
SUMATI=SUMAI+AI ) A 00012029 e
. WRITE GUTPUT TAPE 6,600,TIME,EN,DEL,T(1),T(6),TFBAR,CAY5,TBAR, T,TF00012000 s e
§ o 1o SUMAT,L IM 00012001 e
L3 600 FORMAT{54H- TIME N/NO DEL T(1) T16) TFBAR  HYDROGEN /00012005 o
. 16H (YR)4OXTHLEAKAGE /OPF5.1 yOPF7.3,0PF8.3,0PF7.0,0P2F8.0,1PE11.2/00012010 > B Ok
" 242XTHTBAR (1) /0P5F15.2/43X4HT (1) /0P6F15.2/43XSHTF(I)/0PEF15.2 00012015 <Al
“ w5 e A 3/1H01p 51405114, 7 ) 5 Ooomlb .”E.
£2- TIME=TIME+DELTIM . 00012030 o [
B, 332 SUMENI=SUMENI+ENsDELTIM 00012031 \d e
> IF (LL) 210,210,215 00012032 5[
::i% 21C LL=1 00012034 ole &
= GUESS=2 00012036 B
B <o - PR
o oL\
N
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GO TO 104

215 IF (TIME-TMAX) 202,202,500
202 GUESS=TIP-T(1)+2.

. TIP=T(1)

ITRY=0
GO TO 104

END( 1001010,0'091'0'0'1 1090901090)

00012038
00012040
00012044
00012045

00012046

00012050

!
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