

RFP-1455

199
9.22-72

Sh. 2285

RFP-1455

September 11, 1972

TEMPERATURE MEASUREMENT AND CONTROL
IN THE BOMB REDUCTION
OF PLUTONIUM TETRAFLUORIDE

Jack L. Long

James C. Brown

Robert G. Auge

DOW CHEMICAL U.S.A.
ROCKY FLATS DIVISION
P. O. BOX 888
GOLDEN, COLORADO 80401

U. S. ATOMIC ENERGY COMMISSION
CONTRACT AT(29-1)-1106

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America

Available from the

National Technical Information Service

U. S. Department of Commerce

Springfield, Virginia 22151

Price: Printed Copy \$3.00; Microfiche \$0.95

Printed
September 11, 1972

RFP-1455
UC-4 CHEMISTRY
TID-4500 - 56th Ed.

**TEMPERATURE MEASUREMENT AND CONTROL
IN THE BOMB REDUCTION
OF PLUTONIUM TETRAFLUORIDE**

Jack L. Long

James C. Brown

Robert G. Auge

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DOW CHEMICAL U.S.A.
ROCKY FLATS DIVISION
P. O. BOX 888
GOLDEN, COLORADO 80401

Prepared under Contract AT(29-1)-1106
for the
Albuquerque Operations Office
U. S. Atomic Energy Commission

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

RFP-1455

C O N T E N T S

Abstract	1
Introduction	1
Experimental	1
Results	1
Discussion	2
Conclusions	3
Reference	3

ACKNOWLEDGMENT

The authors wish to acknowledge the excellent cooperation received from the Chemical Operations group.

TEMPERATURE MEASUREMENT AND CONTROL IN THE BOMB REDUCTION OF PLUTONIUM TETRAFLUORIDE

Jack L. Long, James C. Brown, and Robert G. Auge

Abstract. A technique was developed for estimating the minimum temperatures attained in small and large scale bomb reductions of plutonium tetrafluoride with calcium metal. The temperatures in both the small (50 gram) scale and large (1.8 kg) scale exceeded 1900°C. The addition of calcium fluoride slag from previous reductions lowered the temperature to less than 1536°C.

Slag addition to 2.5 kg reductions resulted in practically no splattering of the molten reaction products and in increased reduction yields.

INTRODUCTION

The standard method for the production of plutonium metal at Rocky Flats is by the reduction of plutonium tetrafluoride with calcium metal. The reaction is carried out in a magnesium oxide crucible which is sealed inside a pressure vessel. The equipment is shown in Figure 1. The pressure vessel is evacuated and back-filled with argon. The vessel and contents are heated until the reduction reaction (equation 1) is initiated:

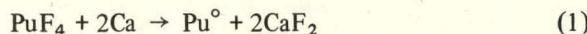


Figure 1. Pressure Vessel, Copper Gasket, and Crucible.

The reaction is exothermic, 149.5 kilocalories per mole of plutonium,¹ and the reaction products are rapidly heated to the molten state. Calcium fluoride melts at 1414°C,¹ and the temperature within the reaction mass was generally believed to be in the range of 1600°C to 1700°C. More precise knowledge of the maximum temperature attained during the reduction is necessary to have a better understanding and control of the process.

EXPERIMENTAL

The technique used for temperature measurement was to suspend within each reduction vessel a maximum of three tantalum tubes of 0.125 in. i.d., 0.010-in.-wall thickness, and 6- to 9-in. long, containing pure metals of different melting points. The amount of pure metal in each tube was less than 1 gram. The tubes were positioned so that the bottom of the tube was always above the level of the plutonium metal product which collected in the bottom of the crucible after reduction. Figure 2 is a radiograph of a small scale crucible after reduction and shows typical tube positioning. The plutonium metal, slag layer, and tantalum tubes are discernible. Similar positioning was used for temperature measurements in large scale reductions.

Temperature control was accomplished by adding calcium fluoride slag from previous reductions to the reduction charges. The constituents of any given reduction charge were pre-mixed in a closed polyethylene container which was rotated and inverted many times.

RESULTS

The crucible charges and results of five, small-scale reductions are presented in Table 1. The percent yield was calculated as the weight of the plutonium metal button divided by the weight of plutonium in the compound(s) multiplied by 100. Comparison of experiments 71-1 and 71-2 shows that the inclusion of 25 wt% slag reduced the temperature from higher than 1900°C to lower than 1536°C with no difference in the yield.

The results of experiments 71-3 and 71-4, where a mixture of plutonium tri- and tetrafluoride was reduced, are

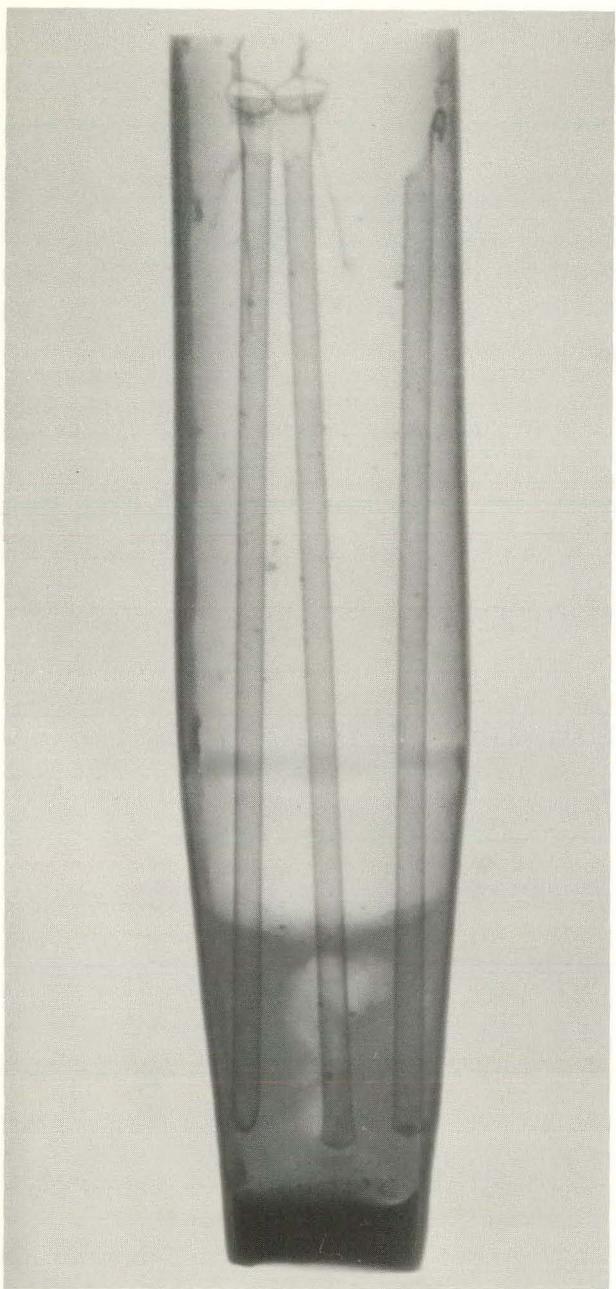


Figure 2. Radiograph of Tantalum Crucible Showing Suspended Tantalum Tubes.

essentially the same as for experiments 71-1 and 71-2. The slightly lower reduction yield from 71-4 is not considered to be significant. Experiment 71-5 illustrates the effect of substituting plutonium dioxide for plutonium tetrafluoride. A temperature reduction is evident but an extremely low reduction yield resulted.

The temperature profile of a 1.8-kg reduction charge, without slag added, was investigated by positioning three tantalum tubes containing pure metals across the diameter

of a 4 1/2 in.-diameter MgO crucible containing the charge. One tube, containing niobium, was located near the center of the crucible. A second tube, containing vanadium, was located approximately 1/4 in. from the crucible wall. The third tube, also containing vanadium, was located approximately equidistant between the other two tubes. The vanadium in the tube adjacent to the crucible wall, and the niobium in the tube near the center of the crucible did not melt, but the vanadium in the third tube did melt.

A series of five 2.5-kg reductions was made with slag added. The amount added was in the same ratio as was used for the small scale work; that is, 25 percent by weight of the PuF_4 weight. For comparison purposes, these reductions were made concurrently with eighteen 2.0-kg routine-production runs without slag added. The calcium metal and plutonium tetrafluoride used were from production stock. The results of the two sets of runs are shown in Table 2. Note the increase in yield when slag was added. Less splattering was observed when slag was added, as evidenced by the lack of metal or solidified slag on the crucible cover. In contrast, solidified materials were frequently found on the crucible cover when no slag was added.

DISCUSSION

The maximum temperature of 1900°C to 2415°C suggested by the metal-melting experiments, for both small and large scale reductions, could be low because of heat losses through the tantalum tubes. Similarly, the maximum temperature suggested for the small scale reductions, with slag additions, could be low. However, the addition of slag to the small scale reductions apparently lowered the temperature by at least 364°C (m.p. vanadium – m.p. of iron). The metal button yield was not affected by slag addition to the iodine-boosted, small scale reductions. Therefore, the decreased temperature was not detrimental.

The increased yields obtained in the large scale reductions, with slag added, may have been due, in part, to slower cooling and solidification of the slag, thereby allowing more time for the metal to coalesce. A factor, which was probably more important, was reducing the maximum temperature and causing a decrease in the reaction between the molten plutonium metal and the magnesium oxide crucible. One of the reaction products would be magnesium metal which has a high vapor pressure. As a result, a decrease in the rate of reaction would result in a decrease of the rate of magnesium metal vapor leaving the melt and, consequently, less splattering of the slag. The reduced splattering with slag added is indirect evidence of less reaction between the molten metal and the crucible material.

Table 1. Crucible Charges and Results of Small Scale Reductions.

Experiment No	Charge Weight (g)				Theoretical Yield of Pu Metal (g) ^a	Weight of Pu Metal Button (g)	Percent Yield	Temperature of Reaction ^b (melting point in °C)			
	PuF ₄	PuF ₃	I ₂	Ca				1563 Fe	1769 Pt	1900 V	2415 Nb
71-1	74.17		26.8	29.9		56.7	54.0	95.1	M	M	M
71-2	74.17		26.8	29.9	18.7 ^c	56.7	54.0	95.1	NM	NM	NM
71-3	63.04	11.13	26.8	29.9		56.7	54.0	95.1	M	M	M
71-4	63.04	11.13	26.8	29.9	18.7	56.7	53.5	94.4	NM	NM	NM
71-5	58.9	PuO ₂	14.0	26.8	29.9	56.7	43.0	75.6	M	M	NM

^aThese weights are based on plutonium analyses of the plutonium compounds.

^bThe abbreviations used are: M for metals which melt, and NM for metals that do not melt.

^cThis is equivalent to 25 wt% of the PuF₄ weight.

Table 2. Effect of Slag Addition on Metal Yield.

2.5-kg scale reductions with slag added.

Date	Theoretical Yield (g)	Plutonium Metal (g)	Percent Yield
2-20-68	2500	2459	98.4
2-22-68	2500	2478	99.1
2-22-68	2500	2448	97.9
2-23-68	2500	2491	99.6
2-23-68	2500	2447	97.6
Theoretical grams 12500	Total grams 12323	Average 98.6	

2.0-kg scale production runs without calcium fluoride slag added

Date	Theoretical Yield (g)	Plutonium Metal (g)	Percent Yield
2-20-68	2000	1880	94.0
2-20-68	2000	1978	98.9
2-20-68	2000	1978	98.9
2-20-68	2000	1732	86.6
2-20-68	2000	1956	97.8
2-22-68	2000	1944	97.2
2-22-68	2000	1746	87.3
2-22-68	2000	1706	85.3
2-22-68	2000	1838	91.9
2-22-68	2000	1956	97.8
2-22-68	3000	1866	93.3
2-23-68	2000	1714	85.7
2-23-68	2000	1968	98.4
2-23-68	2000	1822	91.1
2-23-68	2000	1724	86.2
2-23-68	2000	1950	97.5
2-23-68	2000	1890	94.5
2-23-68	2000	1898	94.9
Theoretical grams 36000	Total grams 33546	Average 93.3	

This factor is discountable in the small scale reductions because tantalum vessels were used

CONCLUSIONS

A simple technique was developed to estimate the temperature in bomb reductions of plutonium tetrafluoride.

The maximum temperatures in both small and large scale reductions were found to exceed 1900°C. The addition to small scale reductions, of calcium fluoride slag which was generated during previous reductions, did not affect the metal yield. The addition of slag to large scale reductions provided an average metal yield of 98.6% for the 2.5-kg scale as compared to an average metal yield of 93.3% for the 2.0-kg scale without slag added.

Splattering of molten reduction products was virtually eliminated by slag addition, probably by decreasing the rate of reaction between the magnesium oxide vessels and molten plutonium metal.

REFERENCE

1. Plutonium Handbook, Volume 2, Chapter 15, page 564, by J. M. Cleveland (edited by O. J. Wick).