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The PDQ-5 program provides a ~screte 
numerical approximation to the two­
dimensional~ time=independent ~eutron 

'· · diffusion problem. The purpose .of this­
rep·ort is .to give a general description 
of the computational methods employed by 
the program and to define and dis.cuss the' 
significance-of ·the output numbers. Some 
numerical examples are given. 

THE UTILIZATION OF THE NEUTRON 
DIFFUSION PROGRAM PDQ-5 · 

L.. A. Hageman 
C. J; Pfeifer 

I. INTRODUCTION' 

PDQ-5 is the latest in a series of programs which provide a discr.ete 

numerical ·approximation to the two-dimensional, time-independent~- neutron 
. . . . . ~ ::. . ,· . ~ . '• . . ·. 

diffusion problem. The present PDQ-5. program is quite different from the 
. . 

original PDQ-5 version as described in Ref. 10. The. Chebyshev and inner­

outer iteration strate:gie13 have been revised extensively. The convergence 

. criterion .and the quantities print.ed by the program during each outer iteration 

also have been changed. The purpese ,of this report is to give a general 

description of the computational methods employed by the program and to define 

and di$cuss the significance of the output numbers. 

The material presented in this report is intended as an aid to the 

user of the-PDQ~5-program. Tnus~ much·of the'mathematical detail and rigor 

w:Ul be omitted in order. that a clear overall picture of what the program is· 

trying to do,may be presented. We hope that this report will help the user 

.\; 



to use the program.more effici~ntly an~ enable him to better analyze and 

evaluate _the results obtained by the program. 

In Chapter II~ statements of the continuous and discrete problems are 

given. Chapter III is devoted to a general description of the method of 

solut~on of the discrete problem. Our aim in Chapter III is not to provide a 

detailed descrif>tion of the·· numerical methods employed by the program but 

rather to describe what these numer~.cal methods are trying to do. The reader 

should keep this goal in. mind while reading Chapter III and not be overly con-

cerned with each mathematical step. In Chapter IV, the present version of the 

PDQ-5 program is described. Chapter V is devoted to discussions of (1) the 

flux guessJ (2) the first ·overtQpe mQqe ~igenvalue~ and (3) the convergence of 

the inner iterations. Num~ical exampl~s are given to illustrate certain points. 

Most -of what is said in Chapter V is based on experience and not on 

mathematical rigor. ThUSg it_is still up to the user to .convince-himself 
. . : 

whether our reaso~s and our interpretation of results are valid for his partic-

ular problem. · 

The preparation or tnput and the final output odite arG not discua3ed 

in this report. E'or a complete description of the PDQ-5 program, see Ref. 4 •. 

. .;..,: .. 
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II. · THE CONTDJUOUS AND DISCRETE .. PR0}9LEMS 
. . . . ·.·' 

The neutro,n .. cq..f.fusion apprax:ima.tion to the transport equ.at,ion for a 
... 

reactor··model .in a. rectangular .. region,R can be ,written as 

(2.1) 

where 

{ - div[D (r)gradCP. (r).] +.I: (r.)cp (r) :-- I:r 
1

(r).cp·! l(r) g - . g -. g. - g - g- - g- . -

.!: .= t~e p~sition vector ·whO~e set of components denote the·x~y· 

or r-z coord:?-ria tee,. 

g = the lethargy: gro'\lp index, · 

cp g.<.t) = thf3, neutron nux in .the g..,.th group, 

Dg(f./. =the dJ..rfusiol'l: ·coefficiEmt and,.Dg(,t) ·> o;~_·· 

... I::(,t) = the ab,sorption. macroscopic . cross; s~ction, · 

-~ .·' 

I:~(~)"= ,thEf -remo~al macroscopic cross section t;om graup g to group gt-1' 

with 

I:~(,t).= I:~(£) s_O, 
2 . 

B = the geometric buckling, g 
' : 

I: (r) = tB:(r) + I:r(r) + D (r)B~ , . g- . g- g- g- g 
.;: ;.· . 

. ·xg =.the integrai .of the fission ·SpectrUm ·over the lethargy.: range . 
. G 

represented by group g with ). X' = 1.0, 
~g 

f . 
·\)t (r) 
'g- = th.e .fission macroscopic cross ·section tim.es the. aver~~e nUmber 

' of. neutrons released per .. fission, 

A = the eigenvalue. 

3 



' . 
On the external boundary of ·R; we have· the boUndary ccmdi tion that . . o<Jl . . . 

the.,_fiuxes are· zero, <p g = o, or that the. normal derivative- is:·.zer.o~ on g = 0.
1 

We assume that the· region R ·may be divided· in~o a firiite number of· '- · -
. . f 

rectan~ar sUbregions Ri such that the group coefficients Dg" I:g"· ~" and I:g 
. . 

are constant and non-negative .within-~ach subregion Ri. ·Moreover" we assume·­

that Dg and x1 are str:l~tly positi~~ and that t! > 0 for some g and some sub.­

region Ri'. It is also assuined that_ <pg(r.._):and th~ normal co~ponent of 

D (r) iftOad'JI (r)_ are continuous across interfaces between s-gbregions. 
g-~ g- . . 

The time-¥,1dependent diffuqJion problom :stated a.bo·ve defines an e:1.gen~ 
l·. \. 

value problem an~ ~e seek-to det~rmirte .solutions cp g of (2.1) C'orresponding to 

the lB.+gest (in modulus) eigenvaiue, A of (2.1). , -

Ha;b~tler and Martino [Ref. 9 ] have ·shown :that' the: eigenvalue problem 

(2.1) ~as· a unique positive ct6ndnant,e~ge~v&lue A{ (ic.-e., A-l '>·I Akl- ~or all· 

k f 1). Moreover, the solution. t
1

(r_) = (<Jli6:J;· <p~(r..h~ -~~~--~ ,. <p~(r_}} to (_2.1). 

corresponding to A1 c~·be :taken. to ·be .positive eve-:rywb.er~~ Thus,.'the 'go~tinuotis 

probl~- is ~p. def~_~q.-~ · . . . ' ~ 

For complicated reacto~! designs; ·one can -orily hope· to·. find an approX:i.-

mate solution to this p;rob'lem. by th~ use o~ numerical methods. 

<Were written to solve-:- this problem by numerical- means·~- · 

The PDQ programs 

To obtain the disc:rete numerical an&lo~e t(),.th,Ei~ conti.riuous problem" 

the .coupled ·differential- equations giv.en ·by (2.,1') are:.'approXilnated by a coupled 
,•' . 

system of linear algebrai_c equat~~ms obtained ·by a finite difference technique. 

Basic~y,: such .. a .techniq¥e consists of .imposing· a·-mesh -of· horizontal" aria 
I ' ·, 

( 
vertical ;l~~:f. Qn- tl;le; rectangular region R and· then for.- each mesh point replacing 

1 R6tational symmetry b-oundary conditions ahd· inte-rnal zero. derivative ,conditions 
may also be imposed. See Ref.· 4. 

4 ) 
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' I .•. 

......... 

. the differentiaL, equation by a certain finite diffe~ence ~xpressiqn involving 

the rpg only at the. mesh points of R. If N is the number of mes~ points~ t~en 

for each neutron group one obtains a system of N linear equations. !n.the 

PDQ-5 program~ the finite difference approximation for (2.1) at a generaLmesh 

point P (See Fig. 2.1) can be. expressed as1 

where for x-y geometry 
:·,' ·.,· 

D. R ~· + D R hs = g~ 4 g~ 3 
~· ' .. 2h'• 
. . . . E 

1 . . . : . ' 
;For a derivation of tne difference equations fo~ ~-y geometry' see Ref. 14~ 
and f.o!' r-z geoJI!,etry~ 'see Re,f. '10. -.~ · · · · 

5 
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·In matriX notatio~.P. the discrete· analogue to (2.1) may be written as 
. I . 

Here !g is· a. vector wl'wse componen~s' are· the. app_rax:ima:tions for cp g(£.) at the. 

N. pres,cr~bed mesh points and·-~ is the approximation fqr ·A. If the finite 

.... 

difference appr:ailmati.on for _cp .{,t): at the n-th' m:esh point·· is defined as cp . ..P 
. g . . . . . . - .. ·. g_,n 

then 

/ 

A R and the Fk:_~·s are~ NxN matrices·. The matru Ag corr-esponds- to th_e 
g' g-1' ~- .. · 

'· 

discrete. analogue· of the diffusion and~ total.a:hsorption terms_,:R _1 .corresponds \ . . g:-

' 6 

-..,; 
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to the removal ter.m:fram group g-l.to group.g» and·Fk corresponds to the k-th 

group. fission term~ · · · 

~ xlFl xlF2 0 .o 0 'X:l ~G · 
0 t ·. l 

-Rl A· X2F1 x2F2 0 0 ·1.. ; X2fG. 2 
(2o4) .M s 0· 9 and F= o· 

0 

0 
• 

-RG-l AG .XGFl XGF2 0 0 • XGFG 

then (2o3) may be simpl~ ~itten'as 

(2o5) 

Th~ discrete problem then is to de.terinine. the eigenv~c.~o;r:. ·correspond:iilg 'to the . 

largest (in modulus) eigenvalue of (2.5)~ 

Birkhoff and Varga [Ref. 1 ] have shown that th:e dif!.crete problem· (2~5): 

ha~· a unique posit~ve daminan~ eigenvalue t..1·• Moreov~r~ the eigenvector ~ 
-1 

corresponding to this fun:damenta.l eigenvalue has all positive .componehts. 

Furtl)er~ any positive eigenvector of M=1F. is simply a scalar multiple of.!1• 

Thus~ like the continUO\lS problem,9 the discrete problem is well defined. 

. The PDQ-5 program obtains by iterative means. only an approrlmate 

solution to the. discr~te problem which in turn is only an approximation of.the 

pontinuous. problem. Thus~ the solution provided ,by the program J~ twice. removed · 

'-· .. ~ . ~ .. 
-· 

' . ! 

'?··, .. , :,. 

; ( . 
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1 
from the ~olution of the contin~ous problem. We. sh~ .use the ter.m 

-. 

discreti.zation error,to denote the· error :).ntroduced in passing from the con­

t~uou~: t.o the discrete problem and the term iteration error to denote ·the 

error ~troduced in the\iterative solution of the discrete prob.lem. The 
\. l· 

magnitudes' of' the discretization ~d iter.atiori errors are .a function ·of how·the· 

user specifies his problem. 

In'_order ,to ·run a problem on ·the PDQ.:-5 program, the user must specify 

(1) the continuous problem 

(2). the finite difference'mesh to be imposed, and 

{3) the. accuzfacy. desi~d in the soluti~:>n of the. discrete probl~ •. 

Items {1) and. (2) togethexi. define,_th~ discrete probiam and dete~e the 

·discretization error. It~ (3) determines the iteration error. 
. , ' . . I] 

.. 
The assumption:'that the di~cretization error approaches zero as the 

separation· between. mes~. points approaches 'zero is implicit in·. any finite 

difference technique. However, .the authors know of no rigorous mathematj,:cal , 

verif~cation of this assumption for the most general neutron diffusion problem. Of 

more practical importance is ·the ea~tio~ of the discretization .error for .. a 
.. : ~ 

·. 
P¥ticular discretized problem~ "· Again, thi~ is a very ·diffic'\llt problem for 

which a satisfactory answer is. not known. If a ~ser ·is concerned about the 

• 1 
ma~tude of_ the discretization error, he can solve .the problem again using a 

'· . 
' finer mesh. If.the difference between.th$. two solutions is small, then he may 

feel; justified· in assuming that the disc;retization error is sma11·. This 
·l.·.-

procedure is somewhat dang~rous but for. the present seems to be the most practical. 

It. should be. noted that .. for a fixed number o.f mesh points, there ·is 
' . 

usually a "best" way of placing .. the _mesh points. In .. general, more mesh .po~ts 
"':'' . 

1The continuous problem as defined here· i~ noniialiy.., onlY an approximation of the 
actual ·physical m~del. Thus, in reality, the ·,program solution is at least 
three times removed from the solution of the true physical ,problem. 

8 
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·. 

should be placei;l in those) areas of the reactor where the .flux is changing 

·most radically. For ex.a,.mpJ,.~, that: portion _of the reflector where the thermal · 

.flux peaking ~ccurs should have a. b~gher J!lesh· point: density than the rest of 

the reflector • 

For a. fixe~ number of gro1,1p~ -th~ running time .-of the PDQ-5. program.r ". . . . 

.-roughly _speaking~.· ·is directzy propdrtional to the number of mesh points. ' 'Thus~ 

-the- imposed mesh: net affects ·the· program running. time as well ,~s ·the accuracy of 

the. so:l;~tion .... An optimum mesh :'n~t might 'tie. -~efined· as the mesh net with the 

smallest riUinber· of mesh points~ for which the .discretiz-ation error -is .. 'withiri the 

accuracy desired. 

In.summary, the discretization error exists but, as yet, no satisfactory 

practical method exists for appraising it. ·Thus; 'the :user- often must resort· 

to an.intuitive appraisal based on experienceand·trial and·error. For more 

general di,scussi:oris on dis~retization errors,· the ·interested· reader is; referred .. 

to.Refs. 5, 8, and 16. 

··The iteration error is a much :easier. quantity to appraise. ·For the 

iteration sc::h~e used in the PDQ-.5 program, the iteration error approacnes z_ero 

as the number of iterations approaches in~inity. Also, practical.numer~cal 

methods-exist for estimating the iteration error after a finite-number of 

iterations 'has been performed:. After each iteration t'he program obtains· an 

estimate for the iteration error and- makes this informa~ion available in the output\~· 

·rf {x{/),t(f)} denote the program's approXimation to the solutipn 

{x1,t1 ) of the discrete problem (2.5), then the user is primarily interested in 

the relative errors 

... ~ 
1since the interfaces between d.if.ferEmt material reg:ions must lie on mesh lines, 

a great number o.f mesh lines is often needed J~.1st to d,escribe. accUrately the 
different materi~ls present in the :reactor of interest. · ·· · 

9 
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)..1 
•," I•.;" 

a.n<~ 

(2.o7). !WE max 
[i:<K)]j [J,l] .1 

= [J.i]j. ' j 

wnere Lt(!)] j and [.t.1 ]~.denote thE)_: j-t~ ·component of· the t(/) . and .li vectorso · 

, ·: '!'he iteration err?r, as: given in . th;i.s. chapter, encompasse~ b6tli.\ the.· 
. ., ....... 

eigenvalue .(2.6) and eigenv~ctoz: ,(2.7) errors. · H~wev~r, in the r~:ing .. 
/ chapters we shall, for the most part, negle,~t· th~ eigenvalue en·or and ccmcen- · 

trate Oz:l the eigenvector e:rror 0• · .. , 
•' 

Basic~y, the :rea_son for.,,this is that the :eigenvector is more c~cial, 

and more e~si:ve .than-the ej_genv~ue • .-:~ Intuit-ively; this:ma.Y be seen by con-· . ' . . . -· .. . . . ,. . 

sidering a gene:I'lll· matrix. eigenvaJ.ue· P.r.o.blem ~- = -~ • ,: Given. t!'te eigenvalue 1-1' 

it is .still. a difficult task to determine ~· Whereas,, given the. eigenvector ~9 : 

it is.:easy to ca:tculat.e ~o . Thus, most eigenv~ue proplems $.l'e ~. rea.l,ity 

eige~:vector. problem~-· 

In· the_·neJ¢.· two .. ch~pt~rs.·we .~hall d~sc_ri'be ho~ the:.progl!am measures the 

· iteratiOn errci._ .and dis:cuss the si~,ficance:, 'oJ the· ini'ormat.~~11· :.available .in 

the ·output •.. 

. :· ... • 

10 
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· _ III. THE SOLUq'ION· OF THE DISCRETE ·.PROBLEM 

.··One may itera.ti:veljr solve 'the eigenvalue problem (2. 5} usj,ng. the well 

· iiii6Wn poWer-method. :~n the arbitrary ·positive. initial vector ~(0) and 

eige~~alue )\(0~)_, the /ower method generates successive estimates for the 

fundamental eigenvector 1
1 
~d eigenyalue·A1 ·by·th~ process 

.,, . 

where ~ is the summation vector; i •. e •. e is a vector all of- whose components. are 

unity. By ~T is meant the tran>~pose of _the column. v~ctor ~r' .. We remark that the 

quantity ~TFJ. isJ just the sum of the components of the fission source vector i' 
G . :.':~:;:- .· 

which .. is de.fin~d by· t =, , L F· cp · • 
. . -· g=l g-g 

In the_ solution- of th~ multi-group neutron diffusion-problem; these· 

:, • t • I I ~ ~ 

iterat-ions (3~1) are called outer iterations and f is called· the outer: iteration· .·· 

index numb.er •. . .. .' .... ··:· '··,·, ...... • {' •I" t -. 

Sj,nce the largest . (in,_mod'u.lu~)- .eigenv~lu~ Qf-;l-i.;.;~F is ·simple .arid rE!al, . .'. .· , ·' 

the: power method is guarant~ed to converge, i. e.•, for. an ~rbitrary·,positive, guess··-

vector· . .l{O), ·. ::.: . . . • d, ' ... ; . . "·, ~ ~ • ,• : • -l. 

·,•. . ·' 

: .. ~ ; ... : 

11 



• 

The })Qwer method .is so-called because -it invo~v~s . ;repeated rnul:t!iplication by 

'the matrix:I-r1F~_·_ F~r the ~~?c~.ss (3<~L~iv~~ ~(1) ~.ACO};I.("~F~(o), .. 

( 
. 1 -1 ( . . .. . . . 1 . ( -1 2 ( ) d 

.t. 2) = >J(l) M .Fl.l) ~ A.(~)·x(O) ~. n 1 0 ~d ·in .g~e~~l for .o~ter i~eration A 

(.3 ~ 2) 

Fot~the· :r;est of this ·:paper ~. s.hall assume th~t 

{a) 

{b) 

.) ·. 

: \ . 

. GN -1 . · ·· ·. 
the .eigenvalue~· {Xi)l of M F are real· and ~on-rtegatiVEl! and. 

are ordered ~ucn that Al.: >. A2 ~ X~ ~ .• • • 1 
~ AGN ~ 0 and tha~ 

· GN · ., ··-1 · · ... 
the eigenvector~ J.t:r]f ·,o£ M F fonn a ~asia for the associated, 

vector space, i •. ~., fQr anyGNector .~ of order GN,. ~here exist 

c.onstants ci.euch that·~= ~l~ili·. we·.ta.ke'.lj_ to ,be the 'eigen'Vect.6r, 

. ass·ociated wi~h · x1, ... L e.; Aj_li·, = M-1FJ.i · 

' . ..· . ~~ . : 
. •:':. ,' 

,, .... 

Here we hav~a taken N to be the number of mesh point.s in. :t)le· finite· dif(erence mesh 
I 

8.11d G to. bE;l' the :p~er:. ot· gro'"pe·~ <Ex(lept>··ror·- the fact that. xl ;:;. I A2·1 ,. t.her~ 

exists no· rigorous· basis :.for these. as~umptiops ··,for 'the geileraF'problem.: · However, 

· humeriqal eJq>erience. indicates that the abo:ve assumptions are valid for ~ost · ) '·· · 
. ' . 

' 

sl'lall.also as'sume· that 'X2 > Aj• · < '· . •·• ·'·'·;·, ... • 

In order,to see how quickly t.(_l) approaches 11 i.n .()·.1), .iet us· exp~d: · 

t(ff.) in te~s of the eigenvectors of M-1F 

(3.3) 
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.. ·GN 
t.<t-~) = ~; .+ L: c ·t.· 

1 i=2 i ~ 
, 

... 



..... 

.. ,,. 

where the ci are scalars1 • The iteration error·.vector~ !<fit:), at outer iteration 

/.* is de~fined by 

For o~ter iteration (/~+1), ~-have 

{3. 5) ~ 

* 'If we now assume that l is large enough so that the eigenvalue estimates 

A.({-tT),' r ~ O, are sufficient1y2 close to ")...
1

, then for outer iteration (/!-tT) 

we can write 

(J.6) 

and 

t~ GN ("-· )r E( +r) = 'e . ..::.! ~· 
- i~ l. "-1 ·-]. 

A.. . * 
Since A. 1 < 1 for i ::> 2, we see that j_{i ':r). approaches 11 as r approaches 

1 
infinity. Moreover, the rate at which ~~~+r) approaches 11 or equivalehtly the 

rate at which the error vector !1approaches the null vector depends on how well 

separated.the f'und.amenta+ eigenvalue "-lis from the other eigenvalues of M=1F~ 

If the dominance ratio ~ of the matrix M~1F is defined by 

1For a discussion on the significance of the ci scplars, see the first few 
pages of Chap~er v. 
~umeri~al experience· indicates that the eigenvalue estimates A.(/) do tend to 

converge faster 'than the eigenvector estimates t(/). · 
·~..- . 

lJ 



(3~8) 

then the most slowly decaying contribution to the error vector~ the t 2 con= 

tribution~ is mtlitiplied by a factor eq~l to ~-each outer iteration. In other 

words, for the iterative process (3.i).9'the rate _at which j,(/{) converges to .1.1 
. - . ~ 

·-generally is. governed by the dominance ratio o of the matrix M F. 

We now want to cons-ider what practical criterion may be used to· terminate 

the' iterative· process~ . It !,J is: a vector o~ or~e~ .GN who~e j=t.h cnmponAnt. i.8 

unity and all other components zerQi th~n. th~ re~~v~ BOint grrgt RPE([.) for 

outer iteration /._is d~ffued to be 
.• 1 

(3. 9) RPE(/) =max 
j 

. ',. •. 

. . t····-· . · ... · ...... . 

Certainly, the relative point error is a good measure as to how well J.(/.) ; 

approximates 11 but how can one determine RPE(f) without knowing the desireg · ~swer 

11 ? 

In order to obtain a computable approximation for RPE(/) 9 we begin ~th:·· 

a detinition. Let 

where 

(3.11) and· .a<f) 

Since we have assumed that >,.2 > A.i for i ~ 3, .. we may take r large enough so that 

Eq~ (3.6) may be Wr-itten as . 



\.· 

• 

--{3.12). 
/ 

. T 
and hence since ·~jil ~ 0 for _all j 

. T- . 
· c2~ti2 

where ~j = T. • From the definitions of A and~ we can. write EPS((*+T.+l) ·as 
'. !.jll 

(3.13) EPS (/~ +r+ 1) 

* Again: using -(3. 12), the relat.i ve point erN>r at outer iteration ({ +r) can be 

expressed as 
. ';,: ,'' 

(3.14) * RPE(.( +r) ::::max 
j 

Thus_, ·~or L sufficiently larg~_we have, after some .. manipulation, ·rroin (3.i3) 

and (3.14) that 

(3.1.5) EPS(i.+l~ . ... f , . . 2EPS{/+lt 
1 - o + EPS f+l) ~ RPE( ) ~ 1 ~- o - 2EPS( +1) 

-Thus, one coul4 terminate the iterative procedure by usirig EPS{i+l), 

modified in same way by. a function of~~ to measure the relative point error. 

We note that.EPS for outer iteration' (/+i) is ·a measure of the.relative point 

error for outer. iteration 1. 
Another possible>measur~ of the error vector is'what we'call. the relative: 

.. • -· 7 - ' 
-~ error, RSE(-/), which.is defined by 

15 



(3 .. 16) 

We sh8.11 use 

BOUND(/) 

-- {(E,(T{)_)TE<i_ ),} 1/2 RSE(/) 
\.illi ' .... 

•.!. 

as a .comp:utable· appra:dma.tion f~r RSE(().. Similar to (3.15)» we have for /. 

'sufficiently large . ~ ' • • ,I • 

BOUND<f+l) . · f..~ BbtiNDU+l) 
1- o ~-BOUND(l+l) ~-RSE( ,). ~ 1·_;. o- BOUND({+l) ·:· •; 

We note· that t}?.e .relative sum error .·i~ an aggregate measure. of the · 

e~or vector. ~(.f} while' the relative point. error is a pointwise me.asure of .. ~(/). 

The PDQ-5 program uses ~he relative ~oin~ err~r approximation, EPS~ to terminate 

the outer iterations.,. -The relative sum er~_or. app:r;'!oximation,- ·BOUND, is available·· 

tram· the output merely as additional information. 

so that 

_The inequali~y (3.1.5). is.l;>ased on the ;assumption that /.:is large .enough 

1., the .eigenvalue estimates }..(/) are sufficiently close to }..i and 

2o the eigenvect'or ·e.Xpa.nsion -of, the· .error vec_tor .consists of one 

predominate eigenvector, . i. eo~ only the most slowly decaying .· 

contribut-ion to the !arror,veotorhas not.been damped out auffieie~tly. . . .~ . ~ . . . 

The two conditions. given above are nece~sary in orde.r to make (3ol5) mathematically 

rigorous" It i~ felt, however,_ -tl:lStt the bounds. for· the .relative point· error 

given by (Jol5) .are· pr~ctical· under much less stringen~ cqndition~~ In using 

(3~15) or (3ol·8).» it is impo;rtant .that ope have a good estimate· f<?r ~. , (Thi~· 
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is. especia.J,ly true when a is. close to unity.) Th~.-program provides estimates 

for o~-- More -~11 be said about this later •. ' . :. 

,As seen from. Eq. (.3.7), the power method is .slowly convergent :for th9se· 

problems for which the dominance ratio is close to unity.. In the next section . 

we shall describe the Chebysh~v polynomial i~erative m~thod ·which is used in the . . . :. 

PD~5 program to·accelerate the convergence of-the basic power method. 

A;~ CHEBYSHEV POLYNOMIALS 

Suppose that t* outer iterations ha.ye been done and that )...(/*).is a 

-good estimate for.)...1• Then from Eq. (.3.6),,dodng r· additional power iterations 

gives 

(.3.19) (
M-lF)r GN , ()...i )r· 

.t.<i*tr) = - J.<l*) = .t + L: c. - ~·. 
)...1 . . l i=2 J. )...1 \ .. J. 

Thus -· .9 these r power ite~ations result in the multiplication of the-most slowly decay-

ing contribution to the error .vector by a factor of (~)r~ We note that these r. 

power iter:~ions correspond to applying the matrix op;rator ( M~~Fr to the 

vector J.(f ). Now if a r-th degree matrix polynomial , 

, P r (M:~F )• were used· to operate on 1 ({*) we could express 1 (.(*-IT) . as . 

(.3 .20) 

., . ': 
Hence, if we could choose the polynomial P such that P (1) = l and 

Gf ciP ·[~i) .li = ,Q, then w~ would ha~e . .t(l~:r ). = ~l .- . E~n. ~f such a polynomial 
i=2 r 1 : . . . 

existed, it would be a function of the c., lis and )...., which generally,are not 
J.. J. 

1
If P r (x) = 1 ~!{xk is a polynomial 

P .(B) in the matrix B is .defined as r --. , 

of degree r in x;-· then the matrix polynomial 
r 

p r(B) = L bk(B)k~ 
k=O 

17 
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-known for all i. Therefore, S}lch a special p<;>lynomial is out of th,~ question~ 
).i - . . - -

However. .for i ..... 2 we have that 0 ""' -·- < o• . where the: dominance. ratio, o can be 
, c:;;. ;::=. ).1 - , ' . . . 

estimated by numerical means ·by. the program~ Thus, we: .. can try to choose Pr(:X) 

such that P r (1) = 1 and such that the maximUJil .o.f I P r (x) I ·is minimized over the 

range 0 ~ ~ ~ <;:~. Such a po~~~~l. exists [Re.f. 7 ] and is called the Chebyshev 

polynomial •.. We remark that the . co,e.f.ficients ·O.f the Chebyshev polynomial are .. 
; . . . . :::_ . 

.functions o.f the program's estim.a:te for o~ .H~J:).ce.forth.li we shall denote this 

-estimate by o
0 

and shaU take P t a (x;.) to be the Chebyshev po~ynOJnial o.f degre'$ t 
'·· 0 . . 

in which 0 is used as the est~te .for ~. 0 ' .. 
. . 

The Chebysh,ev polyno~al method gives a marked improvement over the power 

method in speed of convergence. For e~.ple.!' if a = , 9 and r ;;;;; 4)1. then from 

(3 .19) we see tha't for the power me.thod the most slowly decaying contribution to 

the error ·ve.ctor is multiplied by a .f~ctor of, (. 9)4 or 0 656; whereas~ . for the 

Chebyshev polynomial method~. the most elowly decaying contribution is multiplied. 
. : . . . 

·_:by a .f~ctor .of P
4
,.

9
C9) or .145.~_ I.f .8 were used as the estimate foro, then 

P4 g .eL9) = .34. , _Thus, the e.f.ficien~y of the Chebyshev method of :iteration 

depend,s on the "ioodne~·s'l t!'lf t.he e~timate for o. 

The graph of P
4
(t") With o .= .9 is given in Fig. 3.1.. 

. . .· 1 . 0 

To give a practical illustration of the e.f.fecti veness of the Chebyshev · 

polynoinial'method, we cite a problem which.was solve~ by the PDQ-5,proiram two . . ' . ' . 

ways. · The regular PDQ-5 program, which uses ~he Chebyshev method of iteration, 

required 28 outer iterati.ons to converge the .problem.; whe!·eas,. doing only. 

power iterations, .the program requ:i,red 110 outer iterations. The dominance ratio 

.for this proble~ was about .975. 
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The Chebyshev polynomials satisfy a three-term recurrence relation of the 

form 

(3. 21) 

where the q's are %unctions of o
0 

and t. The recurrence relation (3.21) enables 

us to successively "generate" the Chebyshev polynomials in a straightforward 

1 * way. Starting with~(!), the PDQ-5 program generates in succession 

' ' ; 

using the procedur~ 

if- . 

2</.+t) 

..... . ... ,' . ·.· .. . . ..... .., . .-....... . 

t_(.t*+J) = PJ,ojM~:FJt.(t*) 
.:.. .. ,· . ~ . . . . 

. . . :: ~ . . 

* ,. . .. ·- if-. ,. ... . '* . . if- " . if- " . .. ·-

~<K -tt:) = ~<K -tt-l) +.'(:(K ;+tL~<l .+t) - ~<t. ·-tt-l) 

(3. 22) 
. i' ·'' *. . ~ . ! ..... 

+,~I ~..,iJ!Cf, ·+t-1) - !<I ~-2) J 
. f 

.~·· 

.. :-' 

1see Ref. 10, pp 26-28 
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~: 

' .. 

for t -= 1.~~2.~~.3.~~ • • •. att-+t and ~ .l~t ~e functions of a
0 

and t and ~ f*<+l = O. 

(The A calcU+ation is included in (.3.22) ~o take,in~o account the fact that 

* )\ ~.~ ) :· is. not exactly equ.B.l to ~1: ) 
Note that the Chebyshev ·polynomial procedure (3~22) is similar to that 

of the power method (.3.1); ·· in ·fa.ct, with a = 1 and ~ = 0 the ·iterative procedure 
'I . 

As indicated-previously the· efficiency of the Chebyshev polynomial' 

method_of .iteration depends on a knowledg~.of ~ •. Generally.~~ of course.~~ a is 

not known ~ priori. In the PDQ-5 program'.~~.· before starting, the Chebysh~.:v; ~ethod 

of iteration, four or five power iterations (.3.1) are perf~rmed in order to 
. . 

obtain an init.ia1 estimate for a. {Thes.e Wtial power iterati~ns also provide ·a. 

reasonable estimate for Al for use in the ·Ch~by~hey iterati~ns·.) Further, low 

degr~e, Chebyshev polynomia~s are then repeatedly applied so that the estimates for 
'. . . 

... 
a may be continuously updated.- ·After a good estimate. for a is ol;>tained a_high 

degree polynomial is applied, if needed. 
. ... ·:·:, 

Estimates for· a may be obtained by observing the decay rate· of the error 

The PDQ-5 program uses the quantity 

(.3. 2.3) ER({+l} m fr§,(f+l) - .t,Ct')J:~(l+l) - .t.Wi}l/2 
· · lc§.<i) - t..<.l-1) J C£<1) - t<f-l)J · 

' ' • I 

t<:>.:~aaJ.Ul~ th~. deca,y of the error vector each outer iteration •. 
·. '':' 

For the powerc method of it.eration.P it. is easy \tq see. fr<>n~:\ Eql . (.3.12) 

·'· 
1of course.P we are 

zero. . If c2 were 
* assuming that_.the c2 in the expansion (.3.3) o~·-f{f·) 

zero but c3 f.- 0, then ER(,() would converge to I f.l . 
1'-

' .. 
is not .-. 
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lim ER(/) =a 
I- . 

0 

Th~s, 'for .power iteration~ we ~l" u~e ER(l) directly_ to e.st·im~if.e a. 
For ·t)le .Chebyshev. ~ethod of iteration (3 ~·22), the est:i.m~ftioza. of a becomes. 

.. .;. . . \" ' . 

mor~. cmnplicated'! From Eq. (3.~20), the vect~:r l.§{f*+t+l} - tU~+t.)] may .be 

written as 
'·· ...... 

(3 .• 25 ), 

If we ~ow assume that r:_ :(-~1:~. ·1) c.l\ . ~~i·)t.· is 
· . · i~ -A.l, · · .. ~ · '· 0 o /\1 l. 

. 1 . 
small relative to 

(a~ l)c2Pt~a (~)t.2 , then we may write (3.25) as 
•• ! • -~ 0 'I • 

. . *. ·. .· .. · * . . . . ~ .··. . . . ·. -· ... 
§.({:+t+l) - .1(~·':-tt) .:::. ("..- l)C.~Pt,a (a):l-2 

. . . . . : . . . ·. . 0 

Therefore, ~or .. t > 1, we have 
. ,·, .·· 

where P (c) =.1. 

* ER(.(::+t+l) 
.Pt (~) 
. '"o , 

o,a
0 

Now with.(ER)t+l:: [ER(f:+t+l)]•[ER(~+t)]··~[ER(/"!!:+2)], it follows 
• ', ~' I 

from (3.26) that 

(3.27) 0 

~ore w:Ul be said about this assumption in Chapter V. 
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. -One may then ob-tain a new estimate .by solving (3.27) for o •. The PDQ.;..5 program 

uses-th~. largest positive solution [Ref.lO pp 55] to (3 .• 27) as the· new estimate 

for o. 

We remark that the Chebyshev method of iteration (3.22) doe~ not change 

the.meaning of EPS and BOUND.aa given previously. 

In order to .ca,rry out either the power (3.1) or Chebyshev (3.22) method 

of iteration» the matrix equation 

F ·~ . 
M§(J)· .. = ).(i=l) .t.([-1) 

must ·be solved for.§.(/). · If §.(/f) is written i.p. ,group component form as 

§.{f)= L~1 <£),.!2 <i).ll· ~ • ,!cz<l) l» then -trom the definition (2.4) ·of the matr~ 
' . . . 

M it follows that Eq. (3.28) may be solved for §.{/..) by solving succes~ively th~ 1 , 
1, 

system of group equat:i,ons 

Thus.\) the vector §,(i) can be determined if ~-can, solve matrix equations of the 

form 

(3.30) 

where Ag is; a noll.=singul~ matrix <and £if) is a known col~ vector •. 

Thus far.11 we haye assumed· tpat direct inversions of the Ag are possible. 

This\ is tru.e in most one=dimension~ programs such as WANDA [Ref. 11]. However3 

.\ 

for most two dimensional problems.~~ the. direct 'inversion of A. is not feasible.\ g 
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Thus~. the solut~o~s -~g(f.) to the group equations (3.~9) must be approximated 

by s.ome iterative process. The iterations used to obtain these. approxima:tions 

are ca.J.J..ed ~ iterations. 

B. INNER ITERATION EFFECT 

·The iteration methOd used. in. the: PDQ-5 program. for the inner iterations 

will not be descr,ibed in detail(in this report. Instead, we seek only to dis9uss 

those .points which may be· of u~e to the us~r_." , In this section we ~ip. discuss ··: 

the effect of the inner iterations on the oUter iterations and the eigenvalue 

problem (2.5). In Chapter 'V we will discuss (and give examples of) what the . 

user possibly may do to make the inner iterations more efficient.: __ _ 

Ifi the P.DQ-5 program a fixed n~~er ~f inner iterations, mg' are perfor.med 

in .group g every outer iteration. (Th~s. number is determined by the program.) 

Let ~g(f) ~e the approximation for f!..g(f) which is obtained by doing these mg 

iterationso Then when inner iterations are performed, instead of solving the 

group equations (3.o29), we are actliwy obtaining [Ref. lOp pp 75] the solution 

to the pseudo system of group equations 

{Ag(I ~ Eg)-
1
!_g(.() = Ag(I - E8)-~gt8(.(-1) + Rg_1!_g-1 {.() 

+ ).ff-1) f F~k([-l)}. ,g=G· 
k=l ·g-1 

where E is ·the error matrix associated ·with .the iteration method used. for the g 

inner iter~tions. .As mg approaches.· inf'init,y, E~· approaches the null m~trixo 

Since· we ar~. now solving a different system of group equat1.ons,~~ it se~s 

likely that we are -al~o s'olving, a different ,eig~nval1:1e p~oblemo Ind·eed, when 

' inner iterations are. used, we are actuall! s~lving the probl~ 

\ 
I 

• ..0.' 



(3.32) 

HereM is a function of the iteration. error. matrices E and M·approaches Mas .· . g.. . . 

the number o'f imler it~ratj,oris in ·each 'group approaches infinity~· We renia.rk that 

(3 0 32) is a non-linear problem. 

The particUlar solution we seek is a scalar A and a vector l such that 
-

(a) A and 1 satisfy Eq. (3.32) with Y = 1.0 

(b) 1 is a vector whose components are all positive. ; . 

·From, (3.32},,-. condition· (a~ reqUires that A be an eigenvalue and ·1· an eigenvector . . . . .· 

-1 -1 : 
of M F. Since M F can have only one linearly independent positive eigenvector, 

we see that condition (b) requires A to be the largest eigenvalue of M-1F and 
- -

...!:.its corresponding eigenvector. Thus, if A and 1 satisfy conditions (a) and· 

- -
(b), then A = Al and 1 = .li . .Therefore, ·our discrete problem, ·everi though 

inner iterations are performed,· is s:till well defined.- · 

One effect then of the inner iterations is that .. the eigenvalue problem 

we set out to solve is changed. The par~icular answer to seek, though, is a 

solution to both problems. Thus if we solve our problem properly, i.e.,. satisfy 

conditions (a) and (b) above, inner iterations do not cause us to. get the wrong 

answer. 

Instead of (3.1) then, the PDQ-5 pro.gram is actually doing 

(3.33) 

!(f) .= §.{f.) 
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The Y(/.) calcul~tion in (.3 • .3.3) is the .. estimate for. th.e.- Y _.in (.3 • .32) ~ This 

number· should converge to unity • 

. we lmow.! ,priori_ that. the power .. method (3.1). pe~f<?rmed without inn~r 
' 

ite;ratio~s is a convergent.: prqcess. 'llle proc~~s (.3 • .3.3}_.is also .. convergent .... 

provided a suff~cient number of inner iterations are .pe~formed.·:.:: .. ~t .. : ts felt ~ 

that the PD.Q-~ progrCUD: does ·more than ~ _sufficient numb~r o . .f.. ~er .-iterations 

so that we may assume the process. (.3.3.3). to .be convergent.. . . 
• • • • • •• •. • • < ••• 

I.f we now asA1lmA ~.,ha,t. t.~A AigAnva.lne eAt.i!"~·:t·f'IA ..,.._(/) arA .!3.'1.1ffieient-ly 

close to ~l' th[~n t~~ ~~t(erat~~Fp)rJocess (?. • .33) .~s. ~impJ.r the power method applied. 

to the:mat~i.x. I- M-~ I ~ ··A.i . ·~ .. Th\ls, t:or .the. iterative proc~ss. (3 • .3.3), 

the, rate at wh~ch the .. ~i~nvector es~~tes !(i.). cop.v;~rge1to !1 depends primarily 

on the dominance ratio, S, , of the matrix [r -M-~ {I ::- ~iF)] • We, note that , 

the dominance ratio, a-i ·of the problem wh_en inners, are performed 1is generally 
• 0 ' 0 0 L 

different than the dominance ratio, ~' of the p~oblem when no inriers are requirect1 • 
~ . . . . . . 

Only as the number of inner iterations . approaches. :infinity does :<1, appr.oach a. 
.. . . . . ·~ . . '.. ' -· . 

Simil~ly., instead of. (?. 22), ~he .~PQ-5 .. pro~am.carries out tne Chebyshev 

method o£ iteration.t7.. 

"§.<f*+t) = [r~~ M-1M(I - M-1! )ltt(*+t-1) . 
A. (f -tt-l) f . 

... . ~ . ''l' ~ ... 
1,, Y(f*+t)· = [¥(,( +t)) .S.(f +t) 

.[§.([~ -tt)] T t(f*-tt-.1) 

• t t 

(J • .34) .. 

~umerical ~p1es 'illustrating this will be given in Chapter V. For the 'PDQ-5 
programs numerical experience indicates that· &often is .in. the range 
a - .2(1 - '0) < '8-·<:: a + .2(1 - a). 
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By doing inner iterations, we ·have changed the:eigenva~~e matrix and 

hence we might expect the associated- eigenvalue range to change also •. Irideed; 

when inner iterations are performed, the eigenvalue matrix may have nega~ive and 
. . 

:even complex eigenvalues· so that assumption (a) in (3.2) is no longer valid. 

This change of eigenvalue. range is. taken into accoun:t1:· in~."the PD~5 program 

and generally causes.no trquble. 

·The cc;>mments given previously concerning the it~ra:tive metqods {3.1) 

and (3 •. 22) ·generally remain valid for their niruie~ it:eration" counterpa.z;ts 
' . .. . .. 

(3 .. :33), ... ail.d (3.34). One needs only to replace o With go• That is, instead of· 

(3~15), (3.18h (3.24) and (3.27), we. have 

(3·.35) 
EPS(i+l) {. 2EPS(i+l) · 

1 - 8 + EPS(/+1) !S RPE( .): ~ 1 - ~ - 2EPS{i+l) ' 

. BOUND(/+1) . f . BOUND({+l) . . 
1 - 8 + BOUND(/+1) S RSE( ).. S 1- 8 ·- BOUND(f+l ' 

(3.37) lim m<f) = a 
t~·· . 

, 

(ER)t+l::: IPt,oo (e)_( 
..... 

SUmma.rizing, the user should' be aware that inner .. :iterations''-" 
"'=" .~ .. -

1. are being done, 

2. cause the dominance ratio, or equivalently the first overtone 

' eigenvalue, to be altered, 

~ consume computer time and hence should.be made as efficient as possible. 

j_This topic, is ·d:i:scusljed:. j_n: ·more. detail 'in ·a· separate· report; on:>the:: usb :of Cnebysftev 
polynomials:in the numerical solution of the neutron diffusion problem, 

2As m~ntioned previously, the efficiency of the inner iterations will be discussed 
in Chapter V. 
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In t~e next . chapter.. we. shall define and :discuss :'the' iilformation · 

available in·. tlw output of the P:OQ-5 ·program. ,., '·· , .. 

.. . ': . ~r,· 

.. ; . 

. : · .... '· ~ 

' ;, . ~ ' 

. .' 
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IV~ . THE PDQ-5 PROGRAM 

The PDQ...;.5 program solves. the ·.few-group~ time independent neutron 

diffusion equation (2.1) fn either x-y or r-z geoni~~ry and. was. written for 

tha Philco-2000 digital computer in the FORTRAN language. 
'. \ 

The method of solution 
• 

used .by the progr~_is essentially that .as descri~ed:in the previous chapter. 

·The PDQ ... 5..,program described in this report is actually the. third. version 

of PDQ.;.5 ~- The first. version (Refs. 2) ,. 10 ·] differs quite radically .. from the 

second and third versions. Most of what is said in this chapter is appl~cable 

also to the second version.but not the first version. 

A. .BACKGROUND 

PDQ-.? is the latest in a serie_s of PDQ programs which_ s~lve the. few 

group diffusiom equations. The main differences betwe~n the var:Lpu~>pro~rams 

are. 

{a) the computer for which the program was written; 

{b) the number of allowable lethargy groups; 

{c) the number. of all;qwable mesh points; 

{d) the inner iteration method; and 

{o) the application of Chebyshev pulyuumlals. 

For the various programs~ these di.ff~rences are.listed in Table 4.1. 

Because of the magnitude of the neutron. diffus_ion program~ data flow 

and storage ·are a;;.significant ·probl:m. ; . For· al}-:,1PDQ p~:<;)grains· ·Ji!lsted in' ·-Table.·4·.-•l .• 

ma~etic tape is used for auxiliary~torage arid. data is transferred to fast 

memory as needed. Essentially all data is transferred from tape to fast memory 

at least .once\every outer iteration. 
r . 
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MAX. NUMBER !-lAX. NUMBER INNER ITERATION CHEBYSHEV POLY 
PROGRAM COMPUTER OF GROUPS OF MESH PTS. METHOD APPLIED TO 

,. .. •.. -

POINT~ FISSION 
PDQ-2 IBM-704 4 6,500 s.o.R. SOURCE 

.. 

... 1-LINE FISSION 
PDQ.;.3 ·. . IBM-704 4 7,5.00. S.O.R.; SOURCE 

-
: ·• .. . 

PHILC0-4000 - ' '. 2~LINE FISSION-
PDQ-4 . (Mo_del 211-10) 4• 20,000 ' s.o.R. SO.l:1RCE 

.. 
PDQ-5 PHILC0-2000 - . ~CLICALLY REDUCED FISSION .. 

(Version 1) · . (Model 211-2) .5 25o,ooo/Groups 3;_LINE __,. SOURCE 
-· s.o.R. -.. 

·' .. 

PDQ-5 PiULC0-2000 l~LINE GROUP 
(Version 2) (Model 212-2) .5 250,000/Grou:;ps s.o.R • FLUXES 

·. 
:.r 

PDQ-5 PHILC0-2000 1-LINE . 
{ - GROUP 

(Version 3) (Moiel· .-212-2) :5 ,_ 250,000/Groups.;. CYCLIC CHEBYSHEV . 
fl.,~S '/ 

: 

'· 

TABLE 4.1 

-·. 
-· ~--- ·-
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T~e IBM ... 704 is an unbuffered {input/output) computer and.the limits 

on the number of allowable mesh points for the PDQ~2 and PDQ-3 p:f7ograms were 

__ chosen such that the inner iterations for each group could be perfor.me~ ~ fast 

memory after all·the required data fo:;-that group was transfe~red from magnetic 

tape ·to fast. memoryo . 

The Philco-2000 .is a buffered {input/output) comput.er with, the. multiple 

channel feature. The different models denoted. in Table 4ol correspond ~-o 

increasingly faster memory or arithmeti!c units. The m~ry plus arith!netic unit 

for model 212-2 is roughly 4 times faster than that for model 211-10 which in - . 

turn' is about 4 times faster than the. memory plus arithmetic. unit for tbe IBM-704o 
•' . ! • 

For the PDQ-4 and PDQ-5 programs» the data requir~d !_,to perform the inner . . 

iterations for each group could- nqt be .. storecii.in fast mmQ.Ory at one time since _ 

_ the all-owa.bl~ number of mesh points was increased beyond the f~st memory 

capabilities. Thus, the performance of inner iterations in a group would require 

the repeated sweeping of the nec_essary data from tape. If only one iteration 

were performed per. tape sweep, the speed of the memory an.d arithmetic 'llllit 

relativ& to tape speed for the.211-2 and 212-2 models of the Philco computer is 

such that the program would run effectively at the slower tape speed despite ;, 
; •· ;' . ·. ,' . I, 

effi.ci~nt: buffering of the tape data. The device employed in PDQ-5 to circumvent 

this problem is the us.e ·of concurrent iterations, i.e., more..., th~ one iteration 

il? done per. tape sweep·... . (See Ref. 13) The present PDQ-5 program tries9 ·'·.if 
) 

possible, to do all the necessary iterat;ions in one tape sweep • . ,, ' 
{See Ref~ 3 ) 

The one-line method is used in PDQ-5 rather than a two or three line method 

·· since the one=line meth~ allows more iteratio~~ to be p·erformed per tape sweep. 

PDQ-5 is the first program in the PDQ series in which the Chebyshev . 
. ·; 

polynomials are _applied to.the group fluxes. This application of Chebyshev 
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polyn~als was.· made practical by the multiple inp'llt/output· chap.nel .feature of 

the Philco .conipute+ and made ·ne)cessary by the recent .d~sign in~erest -in physically 

large reactors with their high dominance ratios. 

Thus, the -.cha_racte:i-iatica of the compllter at) h&nd exert,· or should exert, 

a strong·influence.on the nume~ical procedures·used. In essense, thenumerical. 

techniques are chosen to minimize the computer time required· to sol:ve, the· problems 

oi. interest with ~ particular computer. Usually it is the inner iteration method 

Which must be tailored to the computer at hand. 

Bn ··OUTER ITERATIONS 

Except for two minor changes caused by program efficiency~ the outer 

iterations are carried o~t as described in .the previous chapter. 

First, thre~ initial p~wer iterations are carried out by th~ process 

(3.33), where ~(0) and ~(0) are input quantities supplied by the use2·, Then~ 
'· . 1 ,,; .· ' '•' .. 

provided certain conditions are satisfied , the Chebyshev polynomial procedure 
I 

(3.34) is started on outer iteration 4. Chebyshev pol~omials of ,!i l~~st,__ 

degree l a.re thEm repeatedly g-enerated. '!'he decision whether to terminate the 
. . -

generation of the present Chebyshev polynomial and start the generation of a 

new pol~omia:l· using an improved ~s.timate. for .. ~ is made b~ comparing the actual 
. . ·. . ~ 

decay rate of. the error vector with the theoretical decay ra.t.e~ The theoretical 

decay rate is the decay rate one woUid obtain if o ·were equal to ~. ER(/~~t+l) 
0 

is used to measure the decay -r~te' actually being obtained. 'T.he ratio of the · ..... 

actual 4ecay.rate to the the,oretica1 decay rate 'is printe~ in.the output and will 

be given later. 

1If these conditions are not satisfied~ power iterations are done until they 
are satisfied. . . 
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L · OUTER ITERATION'. CONVERGENCE .CRITERIA 

A problem is-considered convergeci at the end of outer it~:r:-ation fl if 

!JJ, of th~- folloWing criteri,a. are .. satisfied~ 

~ · .... 
EPS(j) ·~ [1 - SIGMA(/) Je:1 

wh~re e:1 is an input qUantity. - Y(f) is defined in (.3 • .33) arid (J.J.4). SJGMA(/} 

is the most recent estiniate ·for 'c) and· is obtained either from ER(/) d#-ectly· or .. 

from Eq. (.3 • .38). If ~j is a vect6r of oz:der N whose j=th component is unity 

and 8.11 other, components zero9 then EPs(/) .is defined by 

where 

~(/.) and 1,(j) 

and where the subscript j for e~ch g varies only over the set of indices for 

which e~F ~ (/-1) f 0. In (4 .• 5) 9 . ~.S(/) and !g(f) are the g-th gr.oup components . -J g-g . . 

of·the vectors 2([) and t(fl)~ · 

Efts{i) differs from -EPS(/) as defined by (.3.10) ~rily in that Mle . 

determination of ~ and l, for EPs excludes those fl:U:C points wh~~. ~e\ -i~ ~on= 
. . 

fissionabl_~ ma~eria1 i-!hile the 'det-ermination of ~ and 1:.. :for EPS does 1 not.~ In . . / . . . . 

most. problems· where both EPS and ·EPS were calculated, /'it was found that th~se 

)j 
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quant.ities differed to any extent only in the early iter;at:Lons. Thus, for mos.t 

practical purposes, EP§{f) may be taken to.be equivalent to EPS(f). ' 

NOI'D!WY» it is condition (4.lf which determines·: the .termination of 

.: the pr-oblem. Only when [1 - SIGMA(/)] becomes smaller than E1 does condi~ion 

(4-.-2) take over. If 1()
1

:iis close to unity, we ·see from th:~ .in~q~lity q.35) 

that EPS(/) being ~a~ does not necess-arilY mean that RPE(f) is sma),.l. · Condition 

(4.2) was ~~luded t9 pr~ven"j:. this "pseudo convergence;,q . Of couz:-~~g fo.r cQndition 
' I ' • • • 

(4.-2) to be of any help,!) SIGMA(!) must b~ a good estimate for ~. Condition (4.3) 

was included for a very special· type· of _problem and usually ~hould~.hot be of 

concern to the user. 

Basically9 _the converge~ce criteria for th~_outer 'iterations are set up 
. . ; 

so that the relative point erro~ of_ the group fluxes_ is-less than two 'times.the 

input quantity E1 • This ~11 only be valid~ though, if.enough iterations are 

done so t~t certain assumptions are satisfied or very nearly satisfied. Thusi· 

t~e user must make El small enough so·that the program has time to do its job. -

2. OUTPUT FROM THE OUTER ITERATIONS 

-"The information printed by the program_during out.Ar it.~l"at.:!.on I is given 

below. We assume that /. is ... .written as ~~-tt~ where t = 0. implies that- the power 

method (3.33) is beil?.g carri_ed out a.n,d t ~ 1 implies that a Chebyshev polynomial 

-· 
is being generated by (3.,34). 

(1) DEGREE ~ t 

(2) 

For a convergent problem NORM:must be converging to unity. 

(3) LAMBDA e [Y~r+t) ][A. <F +t.-,1)] for I! +t > 1 and 

LAMBDA e A. ( f.'+t) for t* +t = 1. 'A is defined in (.3. 33) and (3 .. 34) •. 
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We have not given any specific advice concernirig the accuracy of the 

eigenvalue ·estimate· LAMBDA. The user niay often obtain a "feel·" for the· · 

eigenvalue accuracy'by examining successive LAMBDA's, i.e., by-noting how the 

LAMBDA• s are changing from outer 'to outer. ··Normally, the· relative eigenvalue 
LAMBDA - ;\. . . I . . I 

error · · · · · · 1 should nc,>t be takEm to be :less than NORM -·1.o· ·• : 
;\.1 . ' . 

. I .. . . . .. '· * ... ·. - * 
(4) MAX e [;\.(,( +t-1)][;\.(,( +t)] 

.... . . •'· 

}.. is defined by .(4.'5). 
.· . :. . . '* .· * . . . .... 

(5) MI~ e [}..(.( +t-1)][~(,( +t)] ~ is defined by (4.5) ~ 

Actually, the program uses th~ ~bsol':lte. val~e· of ~~'2-g(.(). to determine 
~j!g(/-1) 

X(,() and }.. (.(). But if any component of s(i) which is in a fissionable material 
....... ·- ::.·. 

is negative, then a negative MIN is printed. Thus, a negative MIN means some . . ·. . :-: . . ; . 

component of.§.(/) is negat~ve. A negative component of §.(.() in non-fissionable 
.:.·· .. 

material, howe~e~; is not detected. 

If an infinite number of inner iterati.ons were··don~, then. MAX and MIN 

would be. rigorous .upper and lower bounds for the eigenvalue· ;\.i• ·However, when 

a ·finite· number of inner iterations :are done,.· MAX and· MIN ne¢d not always·;· 

bound Al•' 
rv ~~ 

(6) EPS e EPS(,( +t) 
rv 
EPS is given·by (4.4) 

. r...J. *· 
(?)· PTiAV e EPS(f +;) 

BOUND(.( +t) 

. . 
BOUND is given by (3.11) 

Pt/AV compares. the two measures we have for the ·error vector.. :It is 

the ratio of the pointwise me~sure .to the aggrega t~ oz: .. "avera:ge 11 measure. As 

to be expecte9,,- this ratio usually is great-er. than one. .• , If PT/AV is :large, 

say greater than 10 or so, this_often implies that a small or insignificant 
rv 

region of the reactor is causing trouble in t~e pointwise measure EPS. Frequently 

this trouble can be corrected by changing the ·flux guess or the description of 

the problem. We will give an example of ·this 1n chapter V. 
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(8) SIGMA = an estimate for the. dominance ratio fl and is obtained by 

* SIGMA = ER([ +t) for power iterations. ER is given by Eq. (3.23). 

SIGMA e l~gest positive solution_of Eq •. (3.-27) for _Chebyshev iterations. 

(9) SIG~ EST •. :: another estimate for the domin~ce ratio~. 
·.· 
' 

Although SIGMA is easy to c~pute,. it is .. not easy to compute· .. at. the 
~ - • • . .i ' . 

right time, i.e., one ~ould like to use the SIGMA estimate fo~ gbefore ~tis 
. r . . . 

convenient for the program to compute SIGMA •. H9wever, .a ~ood approximation for - ' . . ~ . .. . . 

5IGMA, which is lhe SIGMA E5T. ·' is aV"d.llablt~ ali ·the pr.oper t:!Jy.e. If t """ 1, 
. . . ··.• .; 

SIGMA EST is the estimate, o , for fJ which is used in the polynomial generation. 
0 . 

. ·. ·. . .. A .. 
The user should take SIGMA as the best estimate for o •. 

(10) RATIO = Lo· if outf!r· iteration (f~l) was ·a pow~~ iteration.' 

RATIO = Actual conver nee rate of outer iteration · -1 
- Theoretical con-vergence rate of outer iteration .,.1)· 

if o~ter iteration ([~1)- was a Chebyshev iteration. 

RATIO is used by the program to measure the effectiveness-of the 

Chebyshev polynomial presently being generated. If ·RATIO < l.O.;· then we-are not 

doing as well as expected and if RATIO > 1.0, we are doing better than e~ected~ 

RATIO probably is of limited interest to .the ·user. 

In the next section, . we will define the informatip~ prin~e.~ by the 

.program· during the inner iterations. 

3. OUTPUT FROM· THE INNER ITERATIONS 

We recaJ..l from Chapter 3 that the inner iterations for sroup·g are 

performed in order to obtain an approximation to the solu~ion of the matrix 

equation 

where A is a non-singular matrix and b ({) is a known colwun vector • . . . · -g 
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Ba.sically, these inner iterations generate this apprqx:i.mation to th~ 
' ' I ' 

true solution by repeated application of a matrix algorithm which successively 
" 

improves an initial guess for the solution. The matrix algorithm depends on 
' ' . 

the iterative method,used for the inner iterations. Th~,~DQ-5 program uses the 
. . : . ' . . , . 

one-line cyclic. Chebyshev, semi-iterative m~thod [~f •. '16, :.'pp. 149] ~or t~e: inner 

iterati,ons. This method.can be viewed as:a'vari.S.nt. of the one-line.success:lve 
I • I . 

overrelp.xation met,hod· which had been used in the. pr~vi9us 'Vers.ion of the PDQ-5 
' I ' • ' t ' (" 

pro~am •. , 

The ·pn~5· pr~graJri doe_s a fixed nUJilber, rp.g; .of .. inner :iter~tions in gl-oup g 

eVery outer, iteration. · The program tries to choo.se m such that the inner 
. . . g 

iteration error vector after performing the m iterations is about .1 of the · 
. . . :: . :. g 

initial error vector. . Essentially, this prediction is made in what is called 
: . . 

·~ . . 

th~ '·"omega routine", Which is carried out· be.fore the first outer iteration Is 

done. We will not desc:ribe how this predi~tion is ~de. _ 

If there is not sUfficient-storage to perform all mg iterations concur­

rent~;· the smallest ogd integer q is found sue~ that the data for_(f!i-/q) concur­

- rent i:erations will fit into storage. Then ',(m~q) concurrent iterations are 

p~rfo~ed tduring each of q passes through, the mesh. ~e mesh is swept forw~d on 
• I. 

the odd passes and backward on the even passe~ or vice versa. On the backward 

sweep some of the data tapes are read backwards. 

If ·!~m)(-f) denotes the approximation for !!f/) after m iterations in ;:­

group g, then the n~ re.sidual vector ,g~m)(f) ~or the m=th inner iteration i; 

defined to be 

(4.q) 

The result of 'j:.he la~t outer iteration, 'P g(/.-1), is used. as the initial guess·· 
. ( ) 

vector, i.e., !!g 
0 }f) =_'P..~<1=1). 



We are now ready to .define the ·output frOJil the inner·· iterations_., , During 

outer .iteration f.., the·output .. fr9Dl the_·inne~_iteration~ for each g:rroup··g is 

R(l), which is.cBlled the iriiti~ residual, should be decreasing from 

outer to· outero The SIG;MA EST estimate f.or ~ is determinedl __ .t;ro:rn .. the initial 

residualso 

~ 
(m ) . ] T[ (m·) J 1/2 R g (/.)_ R g (/)_} 

(2). DELTA(q,m .) = ~i5l). : . .,

1
.T.( (f)· ] , where' 

g.. ( (l}- g_ " (f) 
' .g .. : g 

q 3,.-s the number of tape passes needed to_perform the mg 

inner iterations. in group g. 

DELTA is dire.ctly .Proportiona~ to, the error reduction in. the inner i.tera­

tic;>ns., However, since the· constant of ·proportion,ality varies fr.om ·problem to· 
. . . ' 

P.l-oblem, ·this quan~ity probably is of limited interest to· the user.. .After 

the first few outer iterations, a sudden large change· in DELT~ som~times implies 

a. ma.chine error 0 · 

' . 

38 '"I 



.. v. DISCUSSION AND NUMERICAL EXAMPLES · 
. -~ . 

In this chapter we shall discuss various topics pertaining to the 

practical use of the P:PQ program. We sluul discuss_. 

(a.) 

(b). 

(c) 

the importance of the flux guess 1 
\.. ' 

estimates for the first overtone mode eigenvalue1 and 
. . . 

the convergence rate of the inner iterations. 

A •. THE FLUX GUJ!;SS 

In this section.we give no specific advice on how to speci~ an initial 

flux ;guess. Instead1 we seek only to discuss the importance of the flux guess 

and how the efficiency of tpe PDQ program c~ be affected adversely by a 11bad11 

flux guess • 

. For the present we shall neglect the effect of the inner iterations. We 

also: .shall assume that the eigenvectors (.li} .of M-1F are hormaiized. such . that 

T 1 
.ti.li = 1.0. 

From assumption (b) of. (3.2) 1 the initial flux guess J.(O) may be expressed 

lllliquely; as a linear combination of the .li.11 
1: 

(5.1) 
(GN -

I(O) = L o.J.. 
i=l l: ~-

, . 

where the c. are the scalar expansion coefficients. 
~ . .. 

then we may write .t(O) as 

I • 

2' -
If ~e assume that c1 f 0, 

1we do· this .tot.·mci.ke~)j.he1 !. 11-size "· ·or.;.-':'Cl.ength "' :of. each elgernre·ctor' ·the:· ·same.~_=--:: ... :.· .:,r· 
::l": ~· .,.. ... !- •• ' · .•. ,... ' 

. { ~ ' 

2This must be true if all the components of I(O) are positive. 
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-
where c1 = ci/c1 .. Sin_ce "c

1 
reflects only the .level of the· flux guess.~~ we may 

take c
1 

to be unity so that t(O) may be wr-itten as 

(5.2) 0 

Since the eigenvectors .li have been normalized to the !lame "s.izeu, the 

scalars c1 determine the d,egree of "goodne~.~" of the initial nux guess. In 

successive outer iterationS_g the PDQ program seeks to redu.ce1 t.h~ eoeffieiants 

2 of the overtone mo4es in the flux guess. Convergence of the outer iterations !s 

achieved when the ~oeffic~ents have been reduced far enough so th$.t J.(f) approxi­

mates 11 to the accuracy desired~ How much these ~oeff1c1ent~ have to be red~ced 

depends on the nux gues.s. 

The magnitude of an expansion coefficient corresponding to a slo~ly 

decaying overtone mode· is more crucial ·than that corresponding to a rapidly 

decaying overtone mode. · Also, as we shall see later, the effici~nc.y of the 

Chebyshev polynomial method o~ iteration is affected to some degree by the 

magnitude of the expa,nsion coefficients of the initiAl flux guess. 

For a given problem and a given ~ux guess, one usually does not have the 

foggiest idea as .to ·the values of .the· .c.oeff·i"cients· c . .; .. · .. Thus; "to . 
. l. . 

·,· ... · :. ·:·· 

discuss flux ~eases in terms of ~he ci is ·f.!'l4tless. Like~se, .it is f-ruitless 

to discuss the degree of "goodness" of the guess since, obviously,. the best 
I ' I ' •: 

initial flux guess is the answer, ,11• Hence, we will discuss "bad" flux guesses. 

1 For e~ple, from Eq. (3.6) we see that the coefficient ci is mult:J:plied_ by a 
factor (Ai/A1 ) for.every-outer iteration of the power typa. . ' 

2 ' The eigenvector .li is called an overtone mode if i f 1. The !trst overtone 
mode corresponds 'E"o ! 2• 
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_.r1/-\. 
,. 

For a given problem with a given flux guess, the· job of the PDQ'pro~am 

is to obtain the desired solution in the fewest number of outer iterations. 

Usually, the program can do this only if the Chebyshev polynomial method of 

iteration is used efficiently. But, as seen in Chapter III, the e"fficient use 

of the Chebyshev polynomial method depends on· knowing Al and the dominance ratio~ 

both of which must be estimated by the . program. How well the pro~am can 

estimate these quantities is determined to some extent by the flux guess.. Hence, 

by a 11bad11 flux guess we mean a flux guess whi"ch· hinders, the efficiency of the 

. Chebyshev polynomial method of iteration. 

Basically, the· Chebyshev strategy of .. the PDQ program can be divided into 

three parts as .follows: 

· ·(1) Initially, at least·three iterations of the power type are carried 

out .in order to obtain an initial estimate for the dominance ratio and a.· 

reasonable estimate for Al• We note that these power iterations will practically 

eliminate from .the flux guess those overtone modes with.small'~igenvalu~s.· (See 

Fig. 3.1) The Chebyshev m~thod of iteration is st'arted on outer it~ration [ 1, 

where i 1 ·is the smailest integer greater than or equal to·4 for which the 

.following conditions are satisfied::·· 

(a) . INORM<i1-:-l) ·~ 1.01 .s .025 

(b) EPS(f1-l} .S ~2 

(c) SIGMA EST.~:(f1): !S. 1.0 ·. 

(d). SIGMA,EST.(f.1)-:> .4 

(2) Then, low degree Chebyshev polynomials are applied repeatedly with 
t : •• 

the estimates for·' the domiziB;nqe ratio being upd~ted coiitin~~usly:,; · If· the -low 
. . . ' . . . . . . 

·. .. ... \ 

degree Chebyshev.polyriomials are generated with the dominance rat'io.under~estimated, 

:-:. 
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then }.hes.e polynomials will greatly reduce~, a.J,.l overtpne ·l.llodes. in. the nux 
. . ~ ' . . 

guess excep1;, .. :t.hose with the largest, eigenvalues, thus allowing relatively good 
' . . . . . . 

convergence of the .SIGMA estimates to .the correct· value for the ·dominance ratioo 
0' ' 0 0 0 0 00 ··:.·· 0' M ,o 

: •, 

(3) . Afte:r the: SIGMA estimates have converged, . high degre~. Chebyshev ·· .. 
~ ·~ . . .. . 

polynomials. are applied, if needed, to reduce those overtone mode~ witn the largest ' " . . . 

eigenvalueso · 

In: summary,)' i;.he strategy of the PP9. program :ts to eliminate first tho 

more rapidly·decaying modes in .the ,P.ux guess and then concentrate on the more . 
. • -- ' . ' ' • I, . '. '' . ·~- • ' 

tslowly decaying overtone modeso Normally.~! for this.,strat~~ to be effective an. 

increas~g sequence :of dolllinal}ce .ratio ~stimates is nee_ded. in the generation: of 

succ~ssive Chebyshev polyn~mialso 

· . In practice, the __ esti!Date~. for .. ,tl:J,e dominance ratio provided by the 
' • • • . ~ • ' . ' ' I 

-: 

program ar~ ':':s~ly smaller. (a~ l,.e~st for th~-early outer iter~tions) than the 

··correct valueo· . Hcn(ever, .a nux gu~~s w~ich do~s. pot contain enough. of the ..... , . 

fWlda.mental.mod~-: may :cause the ... in.itia,l .eigenvaJ.u~a estimate.s,_ A. {i) ,· .. t 0. be too 
. : . . . . . ... , ...... . . . .. . .. . . ,. 

small wh,ich .in turn may cause the ipitial estinJate.s -!:o.r the ·d.orninan~e· ratio to, . ' . . . . ~ . . ' ' ;, . " . . 

be too largeo Usually, a: 11badn: flux· guess ~Uch. as;_this is· i!nplied· ~enev:er . 
' . . . . ' .·.. . . . . I . 

conditions (a), (b), or (c) given ab()ve prevent the Chebyshevmethq,d of. iteratj,on 

from starting on outer iteration 4 or? and/or .. Wh.enever the in~tial estimates 
~ ! 

for the doJirlnance ratio 0 over-estima:te the corr,ect .value_o_:· .,, 

An implied "qa~" ~lux guess ae descr.ibed above sh~uld. be taken a~ a 

signal to the user. that the· progr~ possibly: could h~~' s~lved .. -h.ia: problem more 
. . . . ·. ~ . . .-:-~ .. ~ . ' . . '· 

., , . 

1For exam~i~, if (x2/Al) = o889 and if a 5-th de~ee Chebyshev po~omial is_ 
generated·with a0 = o89, then all overtone-modes; li,·with (A.i/XiJ s_ 68 .. are 
multiplied by a .factor smaller than o 017 while the first o~~rto!'le mo.de ~ · .t2J~ is 
multiplied ·by :o 21L · · · · · · · ' ~- · · · · · · · ·· · 

2That is, in Eqo (5.1), c1 is smaller relatiye to the other ci'a.than we would 
likeo 

42 



efficiently-had pe used a little better flux-guess. We recognize that·this is 
. . 

hindsight b~t. hopefully this-~ype of information will enable the user to obtain 

a better feel as to what constitutes a good flux guess. 

In order to provid~ a flux guess for the PDQ program the user m~st . . . . 

specify an initial flux leVel and distribution for each group. For the flux 

leirel, it is the group~to-group flux ratios ·whi~h are important. Thus; to 

sp~cify an initia.l.fltix .. guess, the use~ ~h.guld-~onsider both the.flux 

distribution within a group and the group-to-group flux levels. 

The two examples given below_are production problems for which the 

user specified a bad flux guess. For both problems the 'E1 used in the , 

termination of the outer iterations was .05. 

.·:. ·: 
, r , , I ·> r ' o: ~- lo I ''' • 

. '' 

. ' 
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,. 

For Problem 1, regions 1-; 2, 3, and 4 are metal and water refi~ctor 
' . 

regions; -5i··--6, 8, ~d 9 are fuel regions; and 7 is a control rod.1 The reactor. . . . 

is 12-.6 centimeters Wi.de and 52.18 cent.imeters long wit}l 47 mesh points fu the .x 

.. direction and 81 mesh points in. the y direction. 

The flux distribution in the y "direction is indicated in the above 

graphs. In the x direction,·· there are small wiggles in the fluxes. in the fuel 

and rod regions. 

CASE- 1 CASE 2 

·GROUP · GROt.)P GROUP GROUP GROUP· GROUP 
COMPOSITION 1 2. 3 1 2 3 

1 .75 1.25 7·5 .11 .• 055" .33 

2 .75 "1.0 2.0 .44 .22 .33 

3 ·o 75 1.0 2.0 ldO ·44 ·.11 

4, - ·.?5 1.0 2.0 2.0 1.0 .66 

5 -75 ... 1.0 2.0 1.0 ·44 .11 
.. 

6 .75 1.0 2.5 1.0 .44 '· .11 

7 .• 75 1.0 2.0 1.0 .44 .11 

"8 .75 -LO 2~5. 1.0 .44 .11 
·' 

9 .75 1.0 .2.0 1.0 .44 .ll 

INITIAL FLUX GUESS FOR PROBLEM T· 

The flux guess for case 1 was supplied by t.tte user who· submitted the_• 

p;roblem •. The outer iteration data for both cases _are listed in Table 5.1. 

For the flux guess of case 1, we note that both the group-to-group flux 

ratios and··the general flux shape ·within groups were ·bad. The reader should 
. . 

espec~ly compare the LAMBDA a.tld SIGMA EST. values for the two cases. 

l The fuel and rod regions 
cated·in the piC?ture. 

for problem l.are actually more complicated than indi-

' 
:..:;: 
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- .. ------- ---
CASE 1 CASE 2 

.. 

• SIGMA SIGMA 
ITERATION NORM EPS LAMBDA PT/AV RATIO EST. DEGREE NORM EP3 LAMBDA PT/-AV RATIO . EST. DEGREE 

.· -~ ~ 

1 ' 10.3060 10.1100 .6746~ 3.42 1.00 .ooo 0 
·-

.-8849 1.2566 ·.93919 .3.90 1.00 .000 -0 
l"f 

.. 

2 1.2012 .3470 .81039 1.71 1.00 .099 0 .. 1.0319 .1384 .96819 2.08 1.00 .141 0 .': 
·-

3 1.0605 .l368 .• 84440 1.36 1.00 ·.)99 0 1.0159 .ot)o7 .91656 1.66 .1.00 .129 0 

4: 1.0458 .0995 .87362 1.28 1.00 .911 0 1-.0138 .03.3'9 ._.:11471 1.42 1.00 .499 1 
-: .. 

5 1.0361 .0753 .88972 1.28 1.00 .856 0 1.0100 .0.221 .91618 1.43 .52 .687 
. ,.. 

" 
6 1.0278 .-J569 .89983 1.30 1.00 .774 0 1.0063 .0129 .91876 1.42 .44-· .678 3 

. ·-
7- 1.0209_. .0425 .90669 1.33 1.00 .748 0 1.00}9 .• 0078 .92070 1.40 .34 .686 1 

_, 

--
8 1.0154 ~0313 .911.$4 1.36 .1.00 .731 1 1.0024 .0049 • 92188 1.42 · .• 87 .719 2 

9 ~£.0098 .01'17 • 916,19 1.39 1.05 .720 2 1.0010 .0019 .-}2297 1.43 .85 • 713 --.- 3 . --
10 1.0036 .0071 .92092 1.40 1.15 .713 3 

. ---- - - .. -- ·-

11 1.0011 .0021 .92289 1.40 1.25 .713 4 
' -

TJ\BLE 5.1 
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MACRO$COPIC CROSS SECTIONS FOR .PROBLEM 2 

GROUP COMP D SIGMA A SIGMA R NU SIGMA F 
.. 

1 1 l. 9749 • 00260 .07751 
. . 

. ·-' .. '. •. 0017 5 
1 2 1. 9239 .00488 .• 08167 ~00725 
1 3 1.9749 .00260 .07751· .00175 
1 4 1.9239 .00488 .08167· .00725 

·2 1 .9884 :.00149 .08183 .00219 
2 2 .9668 .00220 .08311 :.00022 
2 3 .9884 .00159 .08783 .00219 
2 4 .9668 .00220 . .08311 .00022 

' 
J 1 .7201 .02164. .07985 .03078 
3 2 .7139 .01882 .07769 ;oo331 
3 3 • 7201 .07164 .07985 . .03078 
3 4 • 7139 .01882 . .07769 .00331 

4 1 .30916 .21700 0.0 .42896 
4 2. .26956. .05405 ·o.o .05795 
4 J .30916 .31700.' o.o .42896 
4 4 .26956 .05405 0.0 .05795 

The buckling for all groups and all compositions is .000147. 

The reactor model for.problem 2 is 187.8 centimeters wide and 30.1 

centimeters long with 57 mesh points in the x direction-anq 23 mesh points in 

the y·direction 

CASE 1 CASE ;; 

' GROuP GROUP , GROUP. GROUP GROUP GROUP GROUP GROUP 
COMP 1 2 3 4 1 .. 2 3 4 

' 

1 66.0 73.0 57.0 20.0 66.0 73.0 57.0 20.0 

2'. 66.0 73.0 57.0 20.0 14.0 18.0 16.0 2LO 

.3 66.0 73.0 ' 57 .o 20.0 .86 ' l.i4 .98 1.34 

4 66.0 73.0 57.0 20.0 .86 1.14 ~98 1.34 

INITIAL FLUX. GUESS FOR PROBLEM 2 

The outer iteration results for problem 2 are summarized in Tables 5.2A 

and 5.2B. 
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.. .. 
--·-·· ·····---..-··· 

CASE 1 ..... 
\J ... 

·····--· -····-·· 
OUTER SIGMA 

ITERATION NORM EPS LAMBDA· . 'P!T/AV RATIO EST. DEGREE 
·lw\·' 

1 .7138 1.0530 1.0006 . H96 1.00 o.o· 0 
' 

'2 .9428 .3107 .9433 1~62 1.00 .102 0 

3 1.0089 .2042 .• 9973 1.40 1.00 .653 0 

4 1.0299 .1727 1.0442 1.29 1.00 .942 . 0 

5 1.0430 .1567 1.0812 1.29 1.00 1~017. 0 
I 

6 .. 1.0497 .1449 1.1087 1.34 1.00 .997 ·o 

7 1~0510 .1359 1.1283 1.44· 1.00 .963 0 

8 1.0486 .1289 i.1U8 1.$9 1~00 .931 0 
- ... 9 1.0440 .12~5 1.1510 '1.8l 1.00 .903,· 0 

10 1.0385 .1193 1.1573 2.11 1.00 .881 0 

11 1.0328· .1161 ' 1.1615 2 •. 49· . 1.00 .863 0 

12 1.0275 .1136 1.1644 2.99. 1.00 .848. 0 

13 1.0227 .1117 l.1665 3. 63' . 1.00 
I 

.836 0 

14 1~0186 .1102 1.1679 4.44 1. 00 ' .826 1 

15 1.0130 .1083 1.1695 6.33 Lo't •. 816 2 

16 1.0054 '·.1069 ·1;1711 1.5x10 1.21 .808 3 
17 1.0016 .1075 1.1718 5.4-XlO . 1.49 .802. 4 
18 1.0002 .1060 1.1720 3.9xl0

2 
2.32 .799 5 

3.4xia3 
' 19 0 9997 . 1.0517 1.1720 .15 .• 813. 1 " 

.~ 1 •. 0001 2~1327 1.1720 2.5xio4 2.34 .645· 2 

.21 1.0000 '88. 99 1.1720 6 
1.38 .749" . '3 2.2xl.O 

22 1.0000 132.1 1.1720 
. 6 

.06 .• 816 '1 . 3.'5x10 
;,. 

23 1.0000 80.2 . 1.1720 7.2:xio
6 

2~92 .598 2 

.24 1.0000 3'60.6 1.1720 9 • .3xJ.o7 i.72 .729 3 
25 1'.0000 .1071 1.1720 2.3xio4 -.42 .728 1 

26 1.0000 .0.524 1.1720 J.BxJ.o4 2.06 •. 557 2 

27 1.0000 .0222 1.1720 4 5.-9x10 . 1.53 .653 3 
28 1.0000 .0115 1.1720 2;,7xl04 '"7o18 .• 655 ·1 I 

·.'1 

; 1.1720 8. 7-xl04 29 1.0000 .0076 2.06 .466 2 
' 

6.2x1.o4 30 1.0000 .• 0043 1.1720 .61 .635 3 
31 1.0000 .0026 1.1720 5.0x104 .17 .700 1 
32' 1..0000 .0018 1.1720 7'.lxlo4 ·1.30 .639 2 

- i 

TABLE 5.2A 
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~--··-·-- ···-·· 

CASE 2 ,, 
.... 

" 

OUTER ,, SIGMA 
ITERATIO~ NORM EPS LAMBDA PT/AV .. RATIO'·:: . " 

ES7'~ DEGREE 

1 1.0320 16.845. 1.12.38 3. 7Xl0 .. 1.00 o.o 0 .. 
2 1.0253 .7290 1 .. 1522 7.40 1.00 . .~096 0 
3 1.0252 .301J 1.1603 . 6.36 1.00 .363 0 

I 
l; 

4 .1.0204 .2147 1.1648 6.83 1.00 .569 : 0 
5 1.0157 .1717 1.1673 7.68 1.00 .686 0 
6 1.0121 .1448 1.1689 8.85 1.00 ~ 1 
7 1.007? .12()4 1.1702· 1.2d0 .90 .755 2 
8 1.0036 .1089 1.1714 2.5x10 .74 .770 3 
9 la00l7 .• 1124 l.J71R 5.1,T.l0. .61 ~ ·1· 

10 1.0011. ' .1092 1 .. 1719 7.8xl.O 1.02 .773 2 
11 1.0005• .1081 1.1719 1.7x102 

·97 • 779 3 
12 1.0002. .1103. 1.1720 4.0xlo2 

.89 .783 4 
13 1.0001 .1077r 1.1720 9.3x102 .85 .785 5 
14 1.0000 .1052 1.1720 2.2xlo3 .83 .786 6 
15 1.·oooo 

~ 
.1033 1.1720 . 4.9xl.o3 .83 .786 7 

16 1.0000. .0944 1.1720 9.9xlo3 .83 .786 8 
17 1.0000 .0802 1;,1720 l.Bxlo4 .81 .78~ 9 
18 1.0000 .0618 1.1720 ·4 2.9xl0 .79 .786':· 10 
19 Loooo· · .0409 Ll7.20 4~1x1o4 .70 .706 11 
20 1.0000 .{)241 1.1720 · 5.'2x1o4 .78 .786 12 
21 1.0000 .0132 1.1720. 6.2x1o4 .78 .786 13 .. 

.oo69 6.9x1o4 22 -1.0000 .. 1.1720 ~79 .786 14 
23. l..OOOO .0034 1.1720 . 7 .3x10 4 .79 • 786 15 
24 1.0000· .0016 1.1720 .7.2xlo4 .79 .?86 1 

TABLE 5.2B 
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It -is seen that -the behavior of ·the LAMBDA a.nd SIGMA estimates are the 
. . ' ~ ~ 

same as· for problem 1, :L e., the bad ~ess gave lower es.timates for ).1 ' and 

o~~restimates for the _dominance ratio.·· · 

.The two, examples given above illustrate. the effect of the flux guess. 

In the solution of proble~ 1, the. "bad" nux gUess required 2 additional outer. 

it~ra.tions and increased the total number of outer iterations by ~·- In the 
~ ' • I ' 

_soluti~n of problem 2, the "bad" flux guess required 8 addition outer iterations . . . , 

and increased the total number of outer iterations of 33~. · Note that the 
.. . ~ 

dominance ratio· for problem 2 is higher than that for 'problem 1. GeneraJ.ly, a. 

· 1'bad11 flux guess can d<? mor~ damage for. problems which have a. hi~ dominance 

ratio. 

The initial estimate for the fundamental eigenvalue usuaily is not 

very important. Ho~eyer, a go~d initial eigenvalue estimate is useful whenever 

a. very good fl~ guess is used. 

Before going on to the next section on the .first overtone mode 

eigenvalue, we would like to make one additional comment concerning problem 2. 

In case 2, EPS is the only quantity which is_ chang~g to any extent after 

outer iteration 13~ Also, PT/AV is very large Which implies that the relative . 

sum error (3.16) is much smaller than the relative point error (3.9) •. This 

behavi.or is caused by the relat~vely small flUx values near the right .boundary. 
' ' . -? . . 

(These fluxes are roughly 10 times those on_ the left boundary.). 

To see wny these small flux values can cause trouble one need only 
.. . . \ ..... 

examine the expression (3.13) for EPS. For the problem under consideration, 
. 1 

the a. for so.~e of the points near the right boundary are probably mucb lar~~ 
' J 

lwe remark that the overtone modes need only satist,y.the zero derivative condition 
at the ri~t bo~dary. . ~· 
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than. th~ aj f()r tl)e po:i,nts, ne~. the left boun<m,:cy_ •. · ~iAc~-_,_the, p:rogram is set 

up to_ re_~u~e ~ aj .(for al~ J, __ in.: fissioning r.egion~) .'Qelqw.: a.:=·c~~.tain. value.$ · 

we see that the points with large aj will det~:rmine whe~-~the.pro'Qlem .. is .. 
converge_d •. 

:.. . ' . 

_Probably.$ for. probl.em 2, :t.he- numbers of interest· to the )lser were 

-sufficiently accura~e after 1.3· or 14 .. O\lter. it~rations.~ ThJls, _10 ·outer . . ~ . 

. ;iterations :wer~ wasted obtainin8.. a~ cur at~ . ~swers_. for an insignificant region·­

of the _reactor. Whenever the. group flllX in fiss;i.oning regions varies by orders 
.~· 

of magni~ude _and the pounda.ry con.-ditions do. not _force the overtone mocle.s to. 

behave similarly, this type of beha'1-or. in- the. ,oU'ti!'r. iterations can be· expected·. 1 
.. :. . . 

This partic\lla.r bad. prOii'a.JJl behav1.o:r. prnbahly ,o,Jld be eliminated. by ohanging 

the program so: t_hat '): and_-A. .are no~-. C()mp1;1ted over· the ins_ignif~cant regions. 

B. TilE FIRST OvERTONE· MODE EIGENVALUE 

·rn stuqying the xenon spatial stabil~ty of a core or the susceptibility 
. : . 

of. nux tllting ·d.ue to pertlirbat.io~s in riucl~~- pr~p~rti.es~ the eigenvalue 

(A.2) of the first o,;.ertone mode ofte~·must b~ calculated. This first·overtone­

mode . ei.genvaitie ~an b~ deterndn~d in a st;ai~tforw~g manner f~r one-'cll.mensional 

.(Ref~. 6· )·.and certain t~o_;c;Umerieioriai ~r~blem~> The t.wo ... d~nsional solution 

requ:ife~ .that.·the ~o~e h~ve ~ ~~eth- ~s''t,ha.t can be _identifieq as a rio.de line_ 

or' 't:he -:.f~st o~rto~e- mode so that' the rirst ~~ert~~e ~ode ~d correspondin~-- . 

eigen1f811le may be. c'B.l.culated directlY via the· PDQ program by pla:c;i.ng a zero· :.fltix 
J •. • " 

boundari ·8J.~ng· the··node line. 

·: ·MB.rzy:·. ~ores have ·first 'overtone node· l-ines which are not straight and 
,·' . 

· c~ .riot' easiiy oe locate·d· exactly. F~r such cores, the .program's estimate for / 
·' ( 

' ' 1 ' . . .. ·. '. ' . . ' . 
·For some problems, this type of outer i~ation behavior would ·also occur ;if the 
program used EPs· (Eq • .3.10) instead of EPS (Eq. 4~4) as the basis for converge~ce. 
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the dominance ratio often provides a 'good approximation for the first overt.one 
. . 1 

eigenvalue. The purpc;>se. of'ithis section is to discuss this by-product of the 

PDQ program.~ ·· 

The SIGMA estimates provided by the program are appro~tions to the 

dominance ratio ·~t But, as seen in section B of Chapter III, 6 differs frpm 
.. - ~2 : 

the true dominance ratio, a=--, of the problem. because the inner 'itera~ions . 
. . •' . ~1 ' 

are not converged properly. Thus, in order for t,he SIGMA estimates to .Provide 

a good approximation for the. first overtone eigE.n1vaJ.ue one ;f'e_qG.ires · first good 
r- '• 

convergence of the SIGMA estimates to ~ and second ~ to differ only slightly 

from o. 

Since <i ~pproaches ~'as ·the nUmber of inner· iterations approaches. 

infinity, one can make -a agree more closely with a by doing more inner. iterations. ,:;,' ::'.•;: 

As mentioned previouslY, the ·PDQ-5 program·· normally att:e~pts to do onl.y · eno.ugh 

inner iterations so that the final error in each' group is about ~1 times the . 

initial.error. However, a.n·option' is ·available to'converge the iimer iteratic;>ns 

more ti.f?1tly. If £ 2 on input card 010003 is set/equBJ. "'6 -1.0~ then the program 

tries to. do enough· ·imler iterations. so' that the firial error is about • 01 times 

the initial error. 2 

'fable 5.3 -indicates how ~ Jidght vary with th'e number o:r' inner :iterations 

performed• . C~e .. :3 corresponds to the normal PDQ progl:-am and· case 2 corresponds 

to the special £2 option. When £2 is set to -1.0, a often is in' the'range 

c;- .o4(1- a) <·as a+ .o4c1 -·a). 

~ormal]Jr, the pr9gram 1s,,estimate for thE! dominance rat;to can be used to . 
approximate thEr first overtone e'igeniral.ue of the core only when full ·core problems 
are run. The fi.rst overtone mode bf the core usuallY is not present in half core, 
-quarter core, and· cell problems. 

~ormally, this option will cause the number of inner it.erations t.o be ·increaSed 
by about 7~. . 
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CASE 

1 

2 
• • I, .. 

3 

4 

"5 

INNER ITERATIONS - .. 

j 

GROUP 1 GROUP 2 GliOUP 'j 

.• d:) 
Cl) Cl) 

25 13, j~. • 15 

14 7 ·: 8 

13 6 6 

6 3 2 -. 

TABLE 5.3 

VARiATION OF o WITH THE NUMBER OF INNER 
. ITERATIONS. FOR A THREE -GROUP :PROBLEM 

'.A. 
0 

:.898 

:··9ao--~~ 

•. 912 
'. 

."922 

• 9'58 

The ma.jor dif.t:iculty, in. using, the SIGMA estimB.tes to approximate -x.2 i.s 

the conver~nce of the SIGMA. es~imates. Basically,· the .convergence· of the 

SIGMA .estimat~s. to '8' depends on .the succe_ss of the program strategy to reduce 

the overtone mQdes irl .the flux guess in such a mB.nner that the first overtQne 

JllOde i_s the las~ ·to go; i.e. , a point is .. reached ._in the outer iterations where 

.the .first ove~tone mode is the only overtone mode of any significance remaining . · 

from. the i'lux guess.1 The user must ~e. the outer ite~ation output daf,a to 

dete~e if the Chebyshev strategy described previously in section A is being 

~~arried Ol;lt ~uccessfully. 

To illustrate how the behavior of the outer iterations may be interpre.ted 

rela~ive to the Chebyshev strategy, we shall consider the two cases of problem 

2. The behavior ·of cas.e 2 is very ·gooci.: the SIGMA· estililates basically. const~tute a 

.cohvergent increasing sequence and a high degree Chebyshev polynomial was applied. 

l.r~oughout this section, we ass:um~ that the first overtone mode· is present in 
the flux guess. 
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The behavior·:of case 1 is bad:. the. SIGMA estimates first decre~se and then 

fluct:uate. Also, all but the first Chebyshev po~omial were of low degree. 

Note the behavior of RATIO for the two cases. 

The rate at which the SIGMA estimates approach ~ prtmar!ly depends on 

the. flux-guess and the separation of. the first overtone eigenvalue from the . . 
other_.overtone eigenvalues •. We remark .that using only the power method of 

iteration is a safer but much less efficient w~ to obtain a good estimate for ~. 

The intent of this section was not to s.uggest· another primary use of the 

program but merely to discuss a program by-product which may be of casual 

interest to the ·user.;· 

C. INNER ITERATION EFFICIENCY 

The inner iterations for group g are used to obtain an approximation 

to the solution of the matrix equation (3.30), 

(5.3) A s (/) = £ (/) , .g-g . . g . ' . 
where Ag is a non-::_singuiar matr'ix a:n·d E.g(/.) ·is a known column vector. · The 

matrix A .corresponds to the-discrete analogue of the 'diffusion and total g . . 

absorption terms in the group equation (2.1). ·In.what follows we shall cirop 

the group subscript g and the outer iteration index f. in Eq.· (5.3). 
I 

In order to ':SpeCify :·Gomp.le-te],y the matrix equation (5.3), we need to 

backt~ack a little and say .something about the mesh which ·is imposed and the 

order-ing of the unknowns. : · , 

Let a mesh of V vertical lines and H horizontal lines be imposed on the 

rectangular region R (Fig~ 5.1). with the boundary·,condit:i,ons as indicated. Since 

./·' 
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the flux is lmown along the top and right boundaries .• we have only (V-1) (H-l) s N 

solution points1 for the case of Fig. 5.1. Now·to each solution point we assj.gn 

: an index number. consecutively by rows·· (s~e Fig.· 5.2) and then order the unknoWns 

such that s. corresponds to the unlmown. -at the solution point of index i. 
]. . ' . 

With this·orde~ing of. the unlmowns, the explj,cit form .of (5 • .3) is given 

by Eq~ (5.4). The non-.zero elements_ of A~e the ~,a5,~,~, and ap give~·in 

the ,i·illl,-te differenc.e e?CJ>res.sion (2? 2). For the solut~on point i,-

ai, i-1 = ~ ': ai, i+l ~ ~ ~ ~i, i +(V.:.l) = a$ ' ai, i...:(V-1)' = ~, .and ai, :i .= ap• . . 

.We s~ that· solution pqintl i is coupled to solution. point j by ai,j" The matrix 

A 16 symmetric .so that, the coupling from point i to po.int j .is the same as the 

coupling from, point j to po_:i.nl, i. 

1 . 
A solution point is a mesh point at which the flux is not known. 
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"\ 

The PDQ-2 program used a 11.point 11 ,iterative. method, to solve Eq. (5.3). 

By "point11 method, it is meant that the approximate solution is improved one · · 

point at -a:time, i.e., first point 1 is improved, then point 2 and so on.·· The 

other PDQ programs used 11,(-l:i,.ne" iterative methods, for f. = 1,2, anq 3. By a 
. • . . ' . . l 

"i-line" method, it is meant that ·the appro.x:inlate solution is improved [-lines . 

at a timeil i.e.' first, lines 1 through f. are i.inprov~d' si.ni~taneously, then 

lipes [+1 through 2/ and so on. 
1 . · .. 

For a "i-line", ~ethod, the number of horizontal solution rows must be 

divisible by f. Now if each successive block of ·i successive solution rows is 

tai.<en to be a unit, then the number of· inner· iterations depends. on how :strongly 

these units are coupled to each other. More inner iterations are required when · 

the units are strongly coupled. 

From Fig. 5.2 and the finite difference expression (2.2), we see that 

the coupling between ~djacent units is .• through. the as and ~, terms •. · Actually, 

it, is these terms normalized by ,Bp which affect·.the number of inner iterat~9,ns. · 

:We note that each of these .terms,· (as/Bp) and ·(~/~p) 1l. is greater t~an zero 

and less than one~ The units are strongly coupled when the normal.i~ed· couplings 

between units are 11close 11 to:one. 

We re~k that it is the couplings between un~ts which have the greatest 

effect on the inner iterations~ "F'or·.l-line methods everz as and ~ term is a 

coupling between units. However, for multi-line (/ ~ 2) methodsil less than 

1/i of the a8· and·~ terms ·are· c~upl~gs between" units.·· For example, iri a 

2-line method the. as for odd s6lutioh lines· and ~ for even solution liries ¥"e 

not couplings between units.·· "Se·e Fig~ 5.3."' The·.couplfugs between· units are 
:' 

called exterior couplings and the couplings of solution lines witpj,.n a 'unit 

· 
1

A solution row is a mesh row on which the. nux is not known •. 
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are cal.led.interior ·.couplings •. : The .exterior couplings for .. an; __ _f;.;.Iine method 

are shown in, Fig~ 5.3 ! . ., ~ . 
"'· . 

} i solution l~es 
•.';• 

''· 

... 

FIGURE·5.3 
,. ,. .). i solution lines 

. . ~ . 
. . 

} ·. • . i solution lin.es 

The present version: of -.the PDQ-5 program uses a: r.:..·line method and thus 
. · .. : . 

every; a.S .and ~--term is an- exterior· coupling.· The as and ~ terms are simllar 

so we will ~e only the ~/ ap term. ··For .the· ge~eral solution point ::i. of 

Figg 5. 4. w:e. _have· 

60 
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Using Fig._ 5.2 .and Eq. (5.5), ~e.make :the following ob'servationsx . . . .'· ' . ' \. . •. '. --4 ···. .. __ ,.~· . 

. (a). For a 1 reg~or.l problem ~~h- equal. mesh. spac~_gs, a5/~ .s 1/4. 1/4 

may ~e __ t~en ·as the ·norm for. the_ (as/ap) ~ _ 

(b) A fine mesl'l in the y- dfrection and a coarse.'mesh. in- the X direc;:tion . . . " . . . . > . . , . . ·. . ; ·: . .·.. ... • . . . \ 

will cause the as/~ to be abnormally ·high. 

/ 

/"""· 
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(c) Abrupt changes in the y direction mesh spacings can cau~e a5/ap 

to be c~ose to.unity • 
. ,l .• :. . •.• • 

(d): Large sigma total terms, the .E•s, are helpful but the relative 

worth of these ~ terms is diminished by small mesh spacings and/or 

large diffusion constants. 

As indicated by (b) and {c) above, the orientation of the mesh may 

greatly affect the inner iterations. Given below are some obvious suggestions 

concerning the orientation of the mesh. -We note that the orientation of the 

mesh is not flexible in ~-z geomet~ (or when rotational symmetry is one of 

the boundary conditions). 

(1) If there . is a fine mesh in. on~. direct:i,9p. and a.. coarse mesh in the 

other. direction, then the mesh should be. oriented such that-the coarse mesh 

is in the y direction. 

(2) If there are abrupt changes in the mesh spacing ip. one, ~irection 
: . . ! ~~ · .. ::- · .. : . . . • 

and rather constant:mesh in the other direction, then the mesh ~hould be 

oriented such th~t the more constant mesh is in the y direction. 
, I 

Often,- it is not clear which or.ientation pf the mesh .is preferable. 

In this case the user must rely on his.own experience. 

The.problems given 'below·illustrate the effects of orientation on the 

inner iterations. ' 0 The suffix R means that the mesh has been rptated 90 , i.e., 

the other orientation of· the mesh was UfJed iii' solVing the ·problem. 
; :•. 
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PROBLEM 3: 0 cp = 0 . 30, ,• ,' .. 
. '0 ..----.,...._-.....--~-.,......,...~~----.--~ X 

... 

cp = 0 cp. =.o 

·'' 

cp ·= 0 . 

y 

INTERVAL COL~ INTERVAL ROW 

. J .• o 30 1.0 30 

·COJ.iP . Q. . ' . SIGMA .. A. ·SJ:GMA R , BUCKLING 
.. 

r 1 •. o ··0 •. 0 :0 .• 0 o.o 

I 
' y ·'. ' . . 

" ' 
.. 

PROBLEM .PROBLEM. 
3 ' :3R 

,·, 

.. ·NUMBER .OF 
INNER ITERATIONS 15 ' 5 
PER OUTER 
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PRO~ 1:!:: ·o ("'ql=o 20 
0 F 1. ) X 

:1'; 

G) 
IJ 

ql = 0 ql = 0 

cp =. 0 

y 

lNTERV AL COL 
1.0 20 

lNTERVAL ROW INTERVAL ROW 
~ 

INTERVAL ROW 
,•· • .. ' . 

. 1.0 10 'X' 11 l.O 
... 

20 

-, 

COMP D SIGMA A SIGMA.R BUCKLING 

1 1.0 0~0 0.0 o.o· .. 

... PROBLEM 4 I PROBLEM kR 
·' 

x=.4 x=~08 x=.01 ·x-~ x-.08 x=.Ol 
: ' 

NUMBER OF: '· 

"" INNER ITERATIONS 8 12 27 7 7 7 
PER OUTER ·. . 
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PROBLEM 5: 

INTERVAL COL 

.79500 1 
le.Ol660 ?.· · 

INTERVAL ROW ·,,. 
~99440 1 
.. 19050 5.· 

2 .. 26060 10 

64. 

·~.=·o 
ox.' 

0 1 . 4 
~=o 
OY . . 11. 

0 ~+----=~---+~~--~~--~ X 

1.-;.:--.------""..:.<...r-------1 

® 

® 

12' 

~.~~~~~~~~----~ 

y 

INTERVAL COL 

1.8055 
63175 

2 
8 

INTERVAL ROW 

1.86310 2: 
1.20400; 6 

.56515 12 

INTERVAL COL 

3.61010 3 
.52917 11 

INTERVAL ROW 

.31750' 3: 
··.19050 7 
.09525 . i3 

INTERVAL. COL 

1.0833 6 

INTERVAL ROW 

4. 
8 

.•. 

~· 



MACROSCOPIC CR,OSS SECTIONS FO~. PROBLEM 5 

GROUP COMP D SIGMA A -SIGMA. R BUCKUNG 

1 1 2.557 .0012 .0870 .002 
1 2 2u245 .0017 .0570 .002 
1 3 2.171 .0018 .0471 .002 
1 4'. 2~122 .0018 '.0402- .002-,. 1 5 2.107 .0018 .0380 .002 
1 6 ~5.000 .0011 .oooo .ooo 
1 7 25.000 .-0011. .0000 .000 

"' l 8 2 • .23.1 .0021 , .. n05.4J ._002 
1 9 2.198 .002.5 .0547 .002 

' . -

2 1· 1.314 .00001 .1205 .002 
2 2 1.113 .00049 .0573' .002 
2 3 1.094 .00062 .0401 .002 
2 4 1.072 .00070 .0290· .002 
2 5· 1.066 .00073 .0256 .002 
2 6 25.000 .00572. .0000 .ooo 
2 ·7 25.000 .00572. .0000 .000 
2 8 1.115 .00116 .• 0518 .002 
2 9 1.110 .00181 .0515 .002 

3 1 • 7383. .00077 .12258 .002 
3 2 .9121 .00159 .05786 .002 
3 3 • .9845 ·.00160 .04014 .002 
3 4 1.0401 .00155 .02862' .002 
3 5' 1.0585 .00152 .0251~ .002 
3 6 3.7175 .34145 .ooooo .ooo 
3 7 3.9342 .31927 .• 00000 ~000 

3 8 0 9290: .01150 .04760 .002 . 
'r. 3 9 • 9245 'l .02386 - .04159 .002 

4 1 .2534' .0118 o.o . - .• 002 

'\ 4 2. .4272 .0082 o.o. .002 
- 4 3 .5287 .• 0112 o.o ·.oo2 

4 4· .6265 .0066 o.o .002 
4 5 .1871 .0064 o.o .. .002 
4 6 .0659 3-.0547 . o.o .ooo 
4 7 .0771 2.80.39 o.o .ooo 
4 8 .4879 nl009 0.0 .002 
4 9 .4675 .1865 o.o .002 
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PROBLEM PROBLEM· 
5 5R 

.. 
GROUP 1 48 GRQUP 1 14 

. NUMBER OF GROUP 2 52 GROUP 2 11 
INNER ITERATIONS GROUP '3, 21 qROUP 3 10 
PER OUTER GROUP. 4 10 ' GROUP 4 8 

For problems· in r-z g~bmetry or problems with identical (or similar) 

mesh spacings in.· both dir.ections~· the orientation of the mesh is either not 

flexible or immaterial. Fox;:-\ these problems~ the 1-line method does not offer 

mucn fl~xibility. 

Multi-line methods are much more flexible in that it is possible to 

hide some of the 11bad 1:1 as and ~ couplin~a as interior couplings. For example~ 
. . .. 

in prob:tem 5 .th~·"l?ad" couplihgs_are the a.S couplings from m:esh lines Oll ·2~ 4~ 6~ 
• • \ ', \ •' ~I ',• • • 

10~ and 12 and the aN\ couplings from mesh lines 1»·· 3~ 5, 7, llj. and 13. But 

for· a. 2-line methodi Bll of these couplings are interior couplings. To illustrate 

the advantages of the multi-line methods~ problem 5 was solved using a. 2-line 

method and the resul~s _are given below • 

... 
' 

PROBLEM~ 
( 2-LINE METHOD) 

' 

GROUP ·1 7 
NUMBER OF GOOUP 2 6 
INNER. ITERATIONS. 

'-
GROUP 3 5 

. PER OUTER ~ GROUP 4 h 
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Problem 5 was ·cho~en~r::jl~,dl.~iousiy· to' iilustrate the effectiveness of the 

2-line method.· For problems with·rather homogeneous·coinpositions and rather 

constant y direction mesh spacings,· the'. effect of multi-line methods is not so: 
: 1/ • 

dramatic} · 

Perhaps a multi-line method will be feasible on the next cam~uter. Thus~ 

for possible· future use, we give a few suggestion~. concerning the mesh laydown. 

for multi-line· methods. 

The orientation of the mesh should be chosen~ if possible, using sug-

gestions (1) and (2) given previously. One then should try to hide the "bad" 

a5 and ~ couplings by .~g· them interior couplings. The u~.e:r .. :may·.:ha:v:ev··:tQ~.o 

add a~mesh row or two to do this. 

1 . Problem 5 was taken from Ref. 14 
2For a one ·region problem·with cons:tant·mesh spacings, the improvement of the 
.2-line method ovcr·the 1-line method is.auuuL 1.4. 
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