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. The PDQ-5 program provides a discrete
: numerical approximation to the two-
dimensional, time-independent meutron
- diffusion problem, The purpose .of this

report is .to give a general description
of the computational methods employed by
the program and to define and discuss the’
significance of the output numbers, Some
numerical examples are given,

. THE UTILIZATION OF THE. NEUTRON
DIFFUSION- PROGRAM PDQ-5 -

L.. A, Hageman
Co Jo Pfeifer : e : o

1. :INTRODUCTION'

PDQ-5 is the latest in a serles of programs whlch provide a dlscrete
numerical approximatlon to the two—dlmensional, timeulndependent, neutron

dlfqulon problem, The present PDQ-S program.ls qulte dlfferent from the

origlnal PDQ~5 version as .described in Ref 10. The Chebyshev and 1nner-

outer: iteration strategles have been rev1sed extensively, The convergence

'crlterlon and the quantlties printed by the program during each outer 1teration

also have been changed., The purpose’of~this report is to give a general
description of the computational methods employed by the'program and to define
and discuss the significance of the output numbers,

The material presented in this report is intended as an aid to the

user of the:PDQfS-program, Thus; much of the mathematical detail and rigor

will be omitted in erden‘thet a clear overall picture of what the program is

trying to do may be presented, We hope that this report will help the user



to use the program more efficiently and enable him to better analyze and
evaluate_thé results obtained by the i:)fogram°
In Chapter'II,_statements of the‘continuous and discrete problems are
given, Chapter III is devoted to é genefal'description of the method of ' ©
‘solﬁtidn of the discrete problem, Our aim in Chapter III is not to provide a
detailéd description of thé”numerical4methbds employed by the program but
rather to describe what these numer‘cal methods are trying to do, The reader
should keep this goal in mind while reading Chapter III and not be overly con-
cerned with each mathematical step,' In Chapter I%, the present version of the
PDQ-5 program is described. -Chapter V is devoted to discussions of (1) the
flux guess, (2) the first ‘overtone mode eigenvalue. and (3) the convergence of
the inner iterations, Numerical examplés are given to illustrate certain points,
Mbét‘of?what.is said-in Chapter V is based on.experieﬁce and nét on
mhthemAticﬁl rigbr, Thﬁs, it is still wp to'thé uéer’tO-conviﬁée"ﬁimseif
whether our'féasoﬁé‘and éuf iﬁterpretaiion of resui£é are valid for his‘paftic_
ular probiéﬁu’ P | o - | . v
Thé préfaration of input and the finai outpﬁt odite are:not diacuased".

in this report. ' For a coﬁplete description of the PDQ-5 progfam, see Ref, 4..
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~ II, ' THE CONTINUOUS AND DISCRETE. PROBLEMS

The neutron-diffusion approximation to the tra.nér;ort eqﬁapibn for a

reactor model in a ,réétangular, region R can,be :ﬁritten as

RV divcng(.mgradsng(;_)J +‘zg__<;.~)wg'<11:>. RCSLING

fk—lvzk (r)‘P (r) }

where
'r . = the position vector whose. set of components denote the x-y -
or r-z coordinates,

the lethargy group index;,

oQ
]

<Pg_(_1;) = the, neutron flu.x in the g-th group;

D:g(_];) = the diffusion coefflclent a.nd D (r) > 0,\

. EZ(_;:) = the absorptlon. ma.crosco.plcucross,!- sgctlon,‘
EZ(E-)' = the -rémo;(a.l macroscopic cross section from gréup g to group gl
with

E(r)"Z‘.(r):O,

B2g = the geometric buckling,
a r 2 . AR
T () =z:2() +5@)+D (#)BS,. - - .
L0 =25 + ) + 0 (8%,
xg  ~the integral of the fission -spectrum over the lethargy- range '

: G
represented by group g with Zix:g =1,0,

-v;:;(;) = the .fission macroscopic cross 'section times the average number
. of neutrons released per. fission, -

the eigenvalue o

=
n



On the external boundary of R, we have the boundary condition that ‘
the~fluxes are zero, ¢ 2 = @, or that the normal de;‘ivative, is"zero, :_:_g = 0‘,:L
We assumé that the region R may be divided'into a firiite‘ntﬁnber of "
rectangular subregions Ri such that the group coefficients D g’ Zg, 2; ’and 22
are constant and non-negative within. oach subregion Ri Moreover, we assume -
that Dg and ¥ are'striotly positii_ro and thot zg > 0 for scme g and some sub-
region R;. It is also oosuined that (P_g(;_')-: and ‘the normal component of
D g(g)g!'adw (r) are continuous across interfaces between subz"egions,
| The time—indepandent diffusion problom stated above daﬁnea an elgeni-
value- problem and we seek-to determme solutions P g of (2.1) dorresponding to
the largest (in modulus) eigenva.lue A of (2.1). .
' Ha.betler and Martino [Ref. 9 ] have- shown that ‘the’ eigenvalue problem
(2, l) has a unique positive dominant. elgenvalue A (i.e, =A1->;|Ak|- for all:
k #1), Moreover, ‘the solution gl(_x:) E.-{wl(;)‘,- <P’2(;'_)31-‘;j;’v";,4 fP]é(g)i'} to,_(.2~.,l),
correspondlng to A ca.n~be' taken. to be .positive everyWhero;:» 'Thus,.'tho. "gomtinuous
problem is well definedo RS S T TR |
' For oomplicated reactor, designs; -one camv only hope to'find an approxi-
mate solution to this p;%oblemx«, by the use of m:mericalamothods, The ‘PDQ programs
«were written to solverthis problem by numerical means, - -
To obtain the discrete numerical analogue to the, contimmous problem,
the coupled differential: quations given by (2;1‘) are -approximated by a coupled
oystem of iinea.r algebraic oquatiomo obtained by a finite difference technique.
Basicaily,; such a A.techniqge consis-ts of.impc?sing"a?-xhoshlof- horizontal’ and
verticél,;linzes*_on- tbe;reoté.ngular region R and then fox"--‘-ea.ohvme'sh poifnt ‘rep{ocing

v

1 Rotational symmetry boundary conditions and: mternal ZEero, derlvatlve .conditions
may also be :unposed See Ref. 4.

4
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- . the differehtia; equation by a certain finite difference expression involving

the ¢ only at the mesh points of R. If N is the number of mesh points, then

for each neutron group one obtains a system of N linear equations. Ir_1.the
PDQ-5 program, the finite difference approximation for (2.1) at a.,gén'eral..“mesh

point P (See Fig. 2,1) can be expressed 'a.sl

G

N B~
- =&
(202) aN(PgsN S 89S aE(Pgs aw(Pgs P &P : g“ls )N 1= fk(p
where for x-y geometry
_ + _
_ Dg’thw.+ Dgs R& _ Dgs thw‘ Dgx RihE
AT Zhy -’ s ~ 2hg
gsR Myt Dg,R3hS | gsﬁth g,R s .
4 =T 'ZhE‘" ST A
g,R by * shw +tz &Ry hghg + zg,thEbN |
e = — — .
r_- .
g—»l thth tEg gLR s}‘w g—l, hEh ’f zg«-l,thEhN -
r = l‘- . g
. . o
o \’Zk R, hth * \’zk,Rz shw * "’:k RL s ™. Vzk,i'R#hEhN'
fk = R LF Al 3
a —3

o &N*.‘as)”r"e.E+aw+e'."’

1For a derivatlon of the dlfference equations for x—y geometry, see Ref lh,
a.nd for r-z geometry, ‘see Ref 10 : ‘ o
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FIGURE 2,1

In matrix notation, the discrete analogue to (2.1) may be written as

(2.3) {A - R }EEF } ~
(2,3) ,'-(pl-_A..‘q‘g-__.:; .- % :
: A S Y- W f o

Here gg is & vector whose components are thé approximations for SPg(_r_') at the.
N pres,cr:;j;bed mesh points and-) is the approximation for - A, 1If the finite

3

'difference approximation for ¢ ‘g‘(g_)’? at the n-th mesh point is defined as CPg. n

then

23 = {cpg-rl’q)g» 277 "(pg-'sN'}‘ °

Ay R, s and the F'e are Nl matrices, The matrix A, corresponds to the
discrete. é.nalogue' of tfhe diffusion and. to{;a:lé. a‘b's’orfﬁtioﬁ- tefms, '.Rg'—l .corresponds



LN

to th? removaletefmifram group g-1.to gfoup.g{and"Fk corresponds to the k-th
group;fiseion term, .

- 1f we leti {¢19<P2.9°°° 20} 5

b '(::> | qfy xqfa cer %l
o) A OO'L
B %2 xfl  %f2 x2fe
(20[&) M E . ° 0. i I arld F = ° 'o'
O Roa A xF1 xf2 0 xgfe

then'(%,3) may be simply written 'as
| L - 1. .
(205) . hi —M Fg °

The discrete problem then is to deteﬁmine_the eigeovectopAcorrespendihéwto the .
largest (in modulus) eigenvalue of (2.5).: | ; .

Birkhoff and Varga [Ref. 1] have shown that tHe discrete problem (2.5)
has a unique positive daminant eigenvalue Al Moreovef; the eigenvector @1
correspondlng to this fundamental eligenvalue has all positive components°
Further, any positive eigenvector of M lF.i_s simply a scalar multiple of glp
Thus, like the cootinuous problem, the discrete problem is well defined.

The PDQ-5 program obtains by itérative means only an approximate
solution to the. discrete problem which in turn is only an approximation of "the

continuous.problem. Thus, the solution provided by the program is twice removed



from the solli;t,ion of the continuous problq_m,l We shall use the ter_xh
discretization g‘}'_gx_‘_ . to -denéte the error j.ntrngced in passing from the con-,.‘
tinuous: to the‘ 'aiscret,e problem and the term iteration error to degc;{,é the
e;ror introduced in the‘iterative solution of the discrete prob‘,lexh, The
magnitudes” of the discretization q.né itexta.tior:x errors are .a function of how “the
User specifies his problem, - |

In' order .to Tun a problem on the PDQ-5 program, the user must specify |

(1) the continuous problém

' (2). the finite difference mesh to be imposed, and
~ (3) the accurfécy- desired in the solution of the discrete problem. ,

Items (1) and (2) together. define the discrete problem and c;let.énqine the
-discfetizat'ion error, Item (3) determines the iteration error.

The ‘assumption' that the discretization error .’approaches zero as the
separation between. mgsh.ppints_ approaches zero is implicit in"any finite
difference technique. However, the authors know of no rigorous mathematical :
{rerif:‘Lcation of this a.ssuﬁptién_ for the most general neutron diffusion problem, Of
. more pra.ctical.:importa.nce is the es*biﬁmtiop\ of the discretization e’rror i‘oxfﬂa '
particular discretized p.roblem,,~ .~ Again, this is a very ;.difi‘icfglt proﬁlem for
which a satisfactory answer is not known. If a user-is concerned &bot:lt the
lﬁagl‘:ggl.tude pi‘_the discretization error, he can solve the problem again using a
finer ‘me_sh, If the difference between the two so;l.utioné is small, then he may
feel’ justified in assum:i:ng tha.t the discretization error is small, This -
procedure is somewhat da.nge\rous but for- the present seems to be the most practlca.l

It should be noted that.for a fixed number of mesh points, there 1is

usually a 'best" way of placing the mesh points. In.general, more mesh .points

l’I'he continuous problem as defined here is normally only an a.pprom.matlon of the
actual physical model. Thus, in reality, the program solution is at least

three times removed from the solution of the true physical problem.

8
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should be placed in those! areas of the reactor where the flux is changing

‘most radically, For example, that portion of the reflector where the thermal -

flux peaking occurs should have a higher mesh point density than the rest of

the reflector.

For‘a3fix§d number of,groﬁpa~the running time of -the PDQ-5 program;

‘roughly speaking, is directly proportional to the mumber of mssh_poihté,;*ThQQQ
‘the imposed mesh net affects the program running.time as'well:aS'the'accuracj of

the -solution, ~An optimum mesh’hqt-might ﬁa-gefined'as-the mesh net with the

smallest nunmber of mesh poin’c,sa:'L for which the discretization error.”is within the
accuracy desired,

In. summary, the discretization error exists but, as yet, no satisfactory

~ practical method exists for appraising it. -Thus; the usef-often nust resort

to an intuitive appraisal based on experience.and trial .and error, For moré

" general discuésions on discretization errors, the interested reader is referred. .

to.Refs., 5, 8, and 16.

"The‘iiergtioﬁ'error is a muqh:easien-@pantity to appraise, For the

iteration scheme used in the PDQ-5 program, the iteration error approaches ggro
as the number of iterations aﬁprdachés infinity. Also,.practical.numericél
methodsrexist‘for estimaﬁing the iteration effor after a finite number of
iterations‘has been performed, After each iteration the program obtains' an
estimate for the iteration error and makes this information availabie in the output, -

'If (A (£)>4(/)} denote the proéram's approximation to the solution
{xl,gi} of the dlscrete problem (2.5), then the user is prlmarlly interested in
the relative errors

&v

N

lSince the interfaces between different material regions must lie on mesh .lines,
a great number of mesh lines is often needed just to describe. accurately the
different materlals present in the reactor of interest,



A - ’*1
(2.6) RAE. = -
1
and
. [i(l) ]j ["l
(2.7) . : .-~ RPE = max |— [21] s

where [i(f)]j and [gijb_denoie thegj-tp'component.of1the-§([).and'§i vedtérs,-'

‘Ihe itéf&tiéh error, aé;giyén,in.this‘chaptér, encompasses boéth, the
eigenvalue (2.6) and eigenvector (2.7) errors. However, in the remaléing
chapters we shall, for the most part, neglegt the eigerivalue error and concen- -
trate on the eigenvector error,~ e e A‘ S

Basmca.lly, the reason for.: thls is that the elgenvector is more crucial,
" and more evasive than-the ,e_q,genvalue,,~;-.\.In-tuitive1y,f»«thiszma.y be seen by con--
sidering a general matrix eigenvalue problem GX = X . Given the eigenvalue u, .
it is still a difficult task to determine x. Whereas, given the. eigenvector x; -
it is.easy to calculate p. .Thus, most eigenvalue problems are in reality
eigenvector. problems. )

- In: the;ne.xt-.‘ two. cha,ptgps“we‘ shall dgsg_riﬁe how the program measures the

-iteration .erro.x,::,wd discuss the'éig;;xificancei\:qf'thg’ information ‘available in

the ~output. .

10
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© 11T, THE‘SOLUTION OF THE DISCRETEZPROBLEM~

~-One -may iteratlvely solve the elgenvalue problem (2 5) using the well

'KnEWBWpower.method. :iﬁen the arbitrary positive. 1n1t1al vector Q(O) and

elgenvalue x(0), the power method generates successive estlmates for the

fundamental elgenvector &, and eigenvalue kl by the process

( M Lp
s = —(m i((-l)
(3:1) S { g0 =800
| T
[ = =L

where e is the summation vector; i,e.uglié a vector all of whose components. are
unityo By ET is meant the tranppOSe of the column. vector X.:. We.remark that the

quantity eTEQ is: just the sum of the components of the fission source vector jy;

S

'whlch is deflned by § = Z Fo .. R

g8
g—l
In the solutlon»of the multl—group neutron diffusion-problems; these

iterations (3,1) are called outer iterations and f is called the outer:iteration -
Since the largest_(intmodhlus)weiganvglge ofyMg;F ié'simple;aﬁd reéal, .. .-
the: power method is guaranteed to converge, i,eruvar‘ah arbitrarynpositiveﬁguesé*

vector- 3(0),- I L R P Y

lim A(f) =», and lim §(f) = & .

0 (ot



The power method.is so-called becauee’it involves~repeated multiplication by
‘the mat;ii:ﬁ‘lr For the process (3 l) gives 1(1) —'-(—- M EQ(O),

§(2) = X%I- F}ﬂl) -zij—xza- (M Q(O) and 1n general for outer 1teratlon K

Forgfheireet of tbis?paper.we_shall assume that

( (a) the eigenvalueef{xi]gN'of M7F are real and non-negative and

are'ordered such that ;1.>‘x2 z,xj 23"‘.2 xGN.Z_OFand that

(b) the eigenvectors {gijgNabf‘ﬁ7 F.form a basie‘for the associated

(3425<
' vector space, i, ©os for anybyector X of order GN, there exist
- constants.c;. such that- x=) ¢ Cidy. We'take'y, . to be the ‘eigenvector

o R =)
k g ~‘associated~wiph-xi,"i;e.; Aiii:= M lEii .

T P T S

Here we have taken N to be the number of mesh peints in'the‘finite'difﬂerence mesh
and G to ‘be. the number: of-groups. Exceptfor- the fact fhaf A > |Ap|s there
exists no‘rigorous~basieafor theee.asgumptlonsgfor=the general~problemq,'However,e
“humerical experience indicates that the abowve assumptions are valid for most "'
"physically reasonable® ‘problems, = For-the ‘sake "of ‘simplicity, :in what follows we
shall also assume that X, > Nge o o«

In order:to see how quicklf g{[) approaches §, ig:(bgl);fiat ue'expahd
1({§) in terms of the eigenvectors of M1ip

3.3) . a(()—21+2°11 »

12



vhere the c, are scalars™, The iteration error.vector, E({ %) ;- at outer iteration

£ ¥ is defined by

(3.4) .E([X:)‘ = i.(f*) o S i§2cigi o
For outer iteration ({*+1), ﬁe'have
- RS . . GN Ay
3.5), a) =E g = g+ Yoo [y
L) NS S R N R

. 'If we now assume that [ is large enough so that the eigenvalue estimates
\({ +1), T » 0, are sufficiently” close to Ay» then for outer iteration (+r)

wWe can write

. r ' ] GN T
(3.6) sy = (25 () =g + Y|
- ST =iy
and
' &N A\
. N % 41
: tr) = A== % .
G E(f*+r) i;zcl X1).;1);1 ”
M
S:ane = <1l for i > 2, we see that i(f L+r) approaches Ql as r approaches
1

infinity. Moreover, the rate at which g_([* “+r) approaches il or equivalently the
rate at which the error vector E approaches the null vector depends on how well
separated the funciaimenta,l eigenvalue )‘l is from the other eigenvalues of 'M“lFa

If the dominance ratio o of the matrix Mr_le is defined by

lFor' a discussion oh the significance of the s scalars, see the first few

pages of Chapte'r V.

“Numerical experience indicates that the eigenvalue estimates A({) do tend to
converge faster ‘than the eigenvector estimates g(f)

13
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(3.8)

gl A

A MM

O = max

.."

then the most slowly decaying contribution to the error vector, the §5. con-

tribﬁtion, is multiplied by a‘factor equal to o-each outer iteration., In other

words, for the iterative process (3.1);° the rate at which g(% ) converges to 31

generally is. governed

We now want to consider what practical criterion may be used to terminate

the itérative process,

by the dominance ratio o of the matrix M lF

If e, is a vector of ordef GN whn.ée'j;r.h component, is

=J°

unity and all other components zero, then the m& BQ.E:BL error RPE(X ) for

(3.9) RPE({) =

outer iteration [ is defined to be

{ T T,.
e e E() o gj(g(f) - %) ,
Y ;| ek

-"“'J""l

Certainly, the relative point error is & good measure as to how well $(L) «

approximates but how can one determine RPE(f) without knowing the desired answer
5 & 1

8 ?

In order to obtain a computable approximation for RFE({), we begin m.th :

a definition, Let

(3.10)
vhere

Gal)

Since we have assumed

EPS({) = Mﬂl_‘%_é.ﬁﬂ ,
sy o - . et
= max 2—— and A(f) = min S——
j EJQ(I"’I) J jﬁ.(%“l)

that Ay > Ay for i » 3, .we may take r la.rge enough so that

Eq. (3.6) may be written as -

1.

¥



.(/

(Gaz) () = ()22 4 + o)(0)7a,

A}

and hence sinceigggi_? 0 for all J

A

Ss(fen) W@

S = R
egU+)  14(o)ay

. Cye ‘ - ‘ . :
where aj =,_§TJE§ . From the definitions. of A and ) we can write EPS(f*+r+l) as
‘, ‘eji X .. . .

=]

‘ | = (ST R - T :
(3.13) EPS([‘**T'*'I) = 'Q':E)Z'LQL max -‘L_—-r_ ~ min -—‘]—_—-—i.—— RN
| ‘ J 1+ (o) aj"l 3 1+ (o)ay

Again using (3,12), the relative point error at outer iteration (f 4r) can be

expressed as

: ' : v . (_a)rc eTi ,; ‘. . | ’ | |
(3.14) . RPE([*‘l'r) = max -___Ti—.ai-z. = (O)r ma.x|a.]| b e
| Iy ooegy | . 3¢

Thus, -for [ sufficiently large we have, after some. manipulation, from (3.13)

and (BO;A)-that
) EPS ({41 o . . _2EPS(f+1)
(3.15) 1 -0+ EPS%Z+15 < RPE(/() <€1-3 - 2EPS(f*1) °

.- .Thus, one could terminate the itérative procedire by using EPS(f+1),

modified in some way by a functien of oy t6 measure the relétiﬁe point error.-
We note that EPS for duter iteration’(f+l) is a measure of the relative poirt
error for outer iteration f.

Anothef possible- measure of the errox»véctor'ié‘what we call the felativ%:

T ———————

‘sum error, RSE({), which is defined by



. T 1/2
(3.16) RSE(I) {LMLE&K). }/ e

ﬂ&ﬁi
We shall use
- o aaq) 1/2
(3.17) BOUND({) = { 2 } .
| R [S(I) ﬁ(f~l)] S .

as.a. computable approximation for RSE([) Similar to (3.15), we have for f

eufficiently large -

; y BOUND +1 B
: ‘SR%E((*) <7 I%UNI)D(IH)

(3.18)

We note'thatvthe,reletive sum error 'is an aggregate measure. of the - -
error vector E(()‘whifeﬁthe relative point. error is a pointwise'meesure of E(f).
The PDQ-5 program uses the relative point errer approximation, EPS, to terminate

tne outer iterations,. ‘The relative dum error approximation, ‘BOUND, is available

<

from the output merely as: additional information,

The inequality (BolS).ie:baeed-on the .assumption that [ is large enough
so that - |

1, the eigenvalue estimates \(f) are sufficiently close to Ai and

2, the eigenvector expanSion of the .error vector consists of one

predominate .eigenvector; i.e.; only the most slowly decaylng '
.‘oontribﬁtion to the errorrveotornhae not been damped out sufficiently,

The two conditions given above are necessary in order to make (3.15) mathematically
rigorous, It 13 felt, however, that the bounds for- the relative point-error
given by (3315)-are prectiea1~under much less stringent cenditione, In~u51ng“

(3.15) or (3.18), if;is important that one have a good estimate for o, . (This -
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is.especie;ly true when o is close to unity.) The.program provides estimates.
for ;;; More .will be said<ahout thie later, .

.As .seen from Eq. (3.7), the power method is .slow?l.y convergent for those-
problems for. which the dominance ratio is close to unity,” In the next section.
we shall describe the Chebyshev polynomial iterative method’whioh.is osed in the_

PDQ~5 program to-accelerate the convergence. of ‘the basic power method,
A;, CHEBYSHEV POLYNOMIALS

Suppose that ;{ outer iterations have been done and that A ({’ * is a
-good estimate for,)\la Then from Eq., (3 6)s. doing r a.ddltional power iteratlons
gives o '

GN .

' . | B M“lF PR .
(3.19) | g(f*r) = (T g(i*) =4t '}:2 "1) PR

Thus, these r power iteratlons result in the multlpllcatlon of the most slowly decay-

ing contribution to the error vector by a factor of (o) R We note that these r
v -1

power iterations correspond to applymg the matr:.x operator ( ) to the

Ay
A
*
vector 3(f ). Nowif a ruth degree matrix polynomall,

( ) were used to operate on g_([{ ) we could enqaress _Q([ '+r) as

)

Hence, if we could choose the polynomiaJ. L such that P (l) l and
GN :

S Y |
(3°2o) ¥164 ﬁ‘) = Pr( *1 i(X ) S (1)11 +_ __20 Py

Cs r(—-) = 05 then we would have i(l +r) = 11 Even 1f such a polynomial
i=2
existed;, it would be a function of the Cis 84 and )‘i" which generally are not

llf P (x) = i b x is a polynomial of degree r in X, then the matrix polynomial
P (B) in the matrlx B is defined as P (B) = Zb (B)
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-known for all i. Therefore, such a special polynomial is out of the question,
However, for i » 2 we have that 0 ¢ ;I < o, where the dominance ratio. c can be
estimated by numerical means by the program, Thus, we.can try to choose Pr(x)
such that P_(1) = 1 and such that the maximum of |P_(x)| is minimized over the
range O g X g o, Such a po;yﬁopiel\exists [Ref. 7 ] and is called the Chebyshev
polynomial.  We re?ark that ﬁheféoeffioiepts‘of the Chebyshev polynomial are. -

functions of the orogram's estimate for E;:;Hencefofthy we shall denote this

'estimate by o, and shall take P (x) to be the Ghebyshev polynomiel of degree t

tyo
in which S is used as the estlmatg for o.‘

The Chebyshev polynomial method gives a marked improvement over the power
method in speed of convergence. For example, if a=,9 and r = L4, then from
(3.19) we see'that for the power method the most slowly decaying contribuﬁion to
the error vector is'multipliea by a factor of (.9)* or °656; Whereas,.for the
Chebyshev polynomiél method, the most slowly decajing coﬁtribution is multiplied

':by a factor of P, ( 9) or 1h5  If ,8 were used as the estimate for 3, then

Lso
'PA 8( 9) = 34, Thus, the efflclency of the Chebvshev method of iteration
depends on the "goodneqq" of +he est;mate for °.

The graph of P ( with % .9 is given in Fig° 3 1.

To give a praotical 1llustrat10n of the effectiveness of the Chebyshev
polypomial method, we‘cite.a problem whlch;was.solveg by the PDQ-SLprogram two
ways. - The regular PBQ-5 program, which uses ﬁhe Chebyshev method of iteration,
required 28 outer iferations to converge the.pfoblem- wﬁereasg-doing only
power 1terations, the program required 110 outer 1terations. The dominance ratio

for this problem was about 975,

.18
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The Chebyshev polynomials satisfy a three-term recurrence relation of the
form
(3.21) Py+, oo(X) = (gqx ‘-_q?)._l’t,.po(x)_ ‘ q3 t-1,0 (X) s
where the q's are _i‘un'ctions of LA and t, The recurrence relation (3.21) enables

us to successively "generate" the Chebyshev polynomials in a st’raightforward

1 #* -
way . Starting with ¢ (f"), the PDQ-5 program generates in succession

4 1
o o)
9_:((*-*2‘) = P2,0 \ )\ Q(I )
(o]
o(f 43) =Py , |SjoU)
. (o]

using the procedure

‘ . , -1
L :(f*ﬁ) - ._M_ o([ +-1)
& ;\(l +1;-1)

o(f") = o(f"-1) 4‘%@5(1*%5 - o(f 13
o | L

.
. * H
b , 5

+ B( +t[o(( -Pt-l) - o(/( +t,-2)]

) = () ——”ﬂ—“—L

e F(f” #-1)

lSee Ref. 10, pp 26-28
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for t-= l,.2,3,°°°o “I“#t and ﬂ[*#t are functions of o, and t and Bi§41 = O,.
(The ) calculation is included in (3. 22) to take .into account the fact that
x([ ) is not exactly equal to ),. 2) o
' Note that the Chebyehev polynomial procedure (3 22) ie eimllar to that
of the power method (3 l),' 1n fact, with ¢ =1 and B =0 the iterative procedure
(3 22) is the same as (3 1) | L | '
As indicated. prev1cuely the efficiency of the Chebyshev polynomial'
method . of iteratlon depends on a knowledge of @, Generally, of course; o is
not known a priori., In the PDQ~5 program, before startlng\the Chebyshev method
of;iteration, four or five power iterations (3.1) are performed in order to
obtain an initial estimate for G, (These iﬁltial power?iteratlone also provide a
reasonable estimate for A for use iu the‘Cheoyehev.iterations‘) Further,'lowl
degreeNChebyehev polynomlals are then repeatedly applied so that the estimates for
© may be continuously updated; After a good eetimate for o is obtained a high
degree polynomial is applied, if needed.
' Estimates for;; may be obtained by observing'thezdecay.ratelcf.tue error

’

vector, The PDQ-5 program uses tlie quantity

| RS S N 1/a
(3.23) ER(f+1) = +1) - f41) - /
| | s - i(l—l)] [s() - e({~1)1

to meaeure the decay of the error vector each outer iteratlon,-
For the power.method of iteratlon, it is easy.to see. from Eq (3. 12)

that

- .

Of course, we are aesuhing that the s in the expansion (3,3) of ([ D) is not

zero, If c, Were zero but c # O, then. ER({) would converge to Ix
. S , 1<

o

..



Goad | 1w m) =5 .

Thus, for power {terations we ma.y use ER([ ) dlrectly to estimate o,
'For ‘the Chebyshev method of 1teration (3 22), the est:lmq,tion of o becomes

-more. camplicated, From Eq (3. 20) » the vector [S(f +t,+l) - i(l +t.)] may be -

written as |
sy sl - gl = X[l 1) (e,
SRl M (il LSRN
: )\ih. . : )\3:_ . 1 : . .
If we now assume that §: === k|egPy o |78y is small” relative to -
(o - l)c (0)12 s then we ma.y write (3 25) as

. ] * . o * - ~.- ._ ...‘ . . . - ° _ ..' . ~
S(f-+tH1) -;((H—‘t)f.(q!- l)»c'épt,.oo(")?ﬁ K
Therefore, for .t > 1, we have

(3.26) | ER((*,-‘:frt+1) x

where P_ (o) =1. |
3 O‘ | | - |
‘Now with (ER), . = [ER(I*+t+1)JfEER(I§+t)]..f[ER(lﬁfz)J, it follows
rom (3.26) thas T

CEO N () = [P, )

Liore will be said about this assumption in Chapter V.

3
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.One may then obtain a new estimate by splving=(3°27).for % The PDQ-5 program
.uses*@hé,largest poéitive»solution [Ref, 10 pp 55] to (3.27) as the new qstimatef
for o, . ' |

We remark that the Chebyshev method oé iteratlon (3.22) does not change
the meaning of EPS and BOUND .as given previously°

"In order to carry out either<the.power (3,1) or Chébyshev (3.22) method

of iteration, the matrix equation
(3.28) - MS({)-= gy & 1}

must be solved for.S(f). If S(f) is written in group component form as |

S(K) = {gl(ﬁ)gsz(f)9°‘°" (f)}s then-from the definition (24h)'6f théﬂmaﬁrix

M it follows that Eq. (3. 28) may be solved for S(X) by solving suc03331ve1y the\

system of group equations

(3;;29)~ { L0 = ) +-7&—= Z (H)} = .
g l-'g 1] gl

Thus, the vector S({) can be determined if we can solve matrix equations of the

form
0 A ' A s N =b .
(3.30) | 5 =B, f)
.. where Ag is a non@singulaf matrix.and Qé([) is a known column vectofg
Thus far, we have assumed that direct inversions of the A, are possible, -

This, is true in most one-dimensional programs such as WANDA (Ref. 11]. However,

for most two dimen31onal problems;, the direct inversion of A is not fea51b130\
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Thus) the solutions gg([) to the group equations (3.29) must be approximated
by some iterative process. The iterations used to obtain these.approximétiOns

., are called inner iterations.

B. INNER ITERATION EFFECT

‘The iteration method used‘inithefPDQ-S.program\for the inher»iterations
will not be deécnibed‘in detail.in this report, Instead we seek only to discuss
those points which may be of use to the user,". In this section we will discuss -
thé‘effect.of.the inner iterations on the outer iterations and the eigenvalue
problem (2.5), In Chapter V we will discuss (and give examples of) what the .
user possibly may do to make the inner iteraﬁions more efficient LT

., In the RDQ-Svprogram g fixed number 9f,inner iterations,4mg, are perfonmmi
in.group g every outer iteration, '(Thia number is determined by the program., )
Let ;é(() be phe approximation for gg(()'which is obtained by doing these m,
iteratidns° Then yhen inner iterati&ns are'performed, instead of solving the
group equations (3.29), we are actually obtaining [Ref. 10; pp 75] the solution
to the pseudo system of group equatidns |

~

L -1 (7 \ :
(3.31) {Ag(l = E) g,(0) = A, (I -E) l-Eggg(x(‘-l,) + Ry 18,0

+ gﬁ'_f)';ll’kik(l-l)} ;

where Eg is-the error matrix asggqiated‘wifh the iteraiion ﬁethod used . for the

inner itergtions. .As'm.g épproaches;infinity; Eé'appréachés the null mé.trix°
Since we arg now solving a different system of group equatibns, it seems

likely that we are .also solving.a differeht:eigpnyalue pi'oblemo Indeed,’when

inner iterations are used, we are actﬁally solving the problem

7N



(3.32) Ty [I =M lM(I - —-——H
Here ﬁ»is a function of the itqratiqncerror~maﬁrices'Eg gnd'ﬁ'approaches M as
the number of inner iteraticns in each group approaches infinity.: We remark that
(3.32) is a non-linear problem,
The particﬁlar solution we seek is a scaiar ; and a vector ; such that
(a) » and § satisfy Eq. (3.32) with ¥ = 1,0
(b) ; is a vector whose components are all positive,

~.

zFrom?(3?32), condition'(a) requires that ; be an eigenvalue and § an eigenvector
of M_lF Since M lF can have only one linearly 1ndependent positive elgenvector,
we see that condition (b) requlres x to be the largest elgenvalue of M 1F and
_;hlts corresponding eigenvector° Thus, if x and g satisfy conditions (a) and
(b); then ; =), and ; =% - . Therefore, our discrete probiem, even thbﬁgh
inner iterations are performed,yisﬂsﬁill well defined." '

One effect then of ‘the inner iterations is that the eigenvalue problem
we set out to solve is changed. The parpiéulér answer to seek, though, is é
solﬁtion to both prob;Le;xlso Thﬁs if we solve our problem properly, i.e. satisfy
conditions (a) and (b) above, inner iterations do not cause us to get the wrong

answer,

" Instead of (3.1) then, the PDQ-5 program is actually doing

(- [1 - 11 - %—&%—))] s

Y ( Lﬁ&‘lldﬁiﬁl
(3.33) ¢ 18001 8 (f-1)

W) = s

(i
>
~~
>n\
'_J
p —

3
Eé

\ A(K/) , . . .
2 Fg({-1) ' 25



The Y(() calculation in (3.33) is the estimate for t.he Y.in (3 32), This
~ humber- should converge to u.nity.

.We know a priori that the power method (3.1). performed without inner
iteratiéps .is .a c‘onverg,ent‘.;, process, The proce.s,s“(B, 33)18 also .convergent. -
provided a sufficient number of inner iterations are .pexi“formed},-;,;;,‘It.‘;-»-;l.s-, felt
that the PDQ-5 program does more than a sufficient number of. imner .iteratioms
so that we m#y assume the process (3.33). to be convergent. . .

If vie now és‘snme that. the m.gaﬁm.l ue asf.-igna.;r.es A(f) are sufficiently

close to Ays then the iterative process. (3 33) is. simply the power method applied

to the matrix [I - M lM( =

],; Thus, for. the iterative process.(3.33);

the. rate at whn.ch the gigenvector estlmates Q(() converge to 2 & depends primarily

on the domina.nce ratio, o, of the matrix [I - M 1M(I - -Mi— ] » We note that

'the dominanpe Il'.atio, o, qi_‘ the problem when inners. are peiformed iis generally

different than the dominance_ patj.p, 3, .of  the problem when no inn'eyrsi are requ_iredl,

Only as if,he number Ao_f inne;' 1terations. approaches. infinity does G .approach &,
Sim:.lau'ly, instead of (322) s the PDQ-5 program carries out the Chebyshev

method of iteration by

/§(f(*+t> = [I«-,_ ﬂ‘IM(I - )}(1 +t_1)
i x(/( *t-l)

{ v((*+t) = gggg +t2] S(Z +t2
[S(! 4t)] 5(1 +t-l)

(3.34) ¢ | .
2(f ) = A1) +°’I ﬁ[S(l ") - o(l 1) + ﬁI l8U61) - 8]

eF ¢(1* +t)
e F(f +t-1)

\x(/(_**t) = A (f+t-1)

‘

INumerical éonamples ‘i1lustrating this will be given in Chapter V., For the PDQ-5
program, numerical experience indicates that 6“ oi‘ten is in the ra.nge

2(1-%) <BcT+.2(1-79).
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By doing inner‘iterations, we ‘have changed the .eigenvalue matrix and
hence we might exﬁect tﬁe assobiated-eigénvalue range to change also, Indeed;
whén inngr itefatiohs are performed, the eigenvalue matrix may have negativg and
-even camplex eigenvalueé so that assumptioh (a) in (3.2) is no lbnger valid,
This chapge of eigenvalﬁe.range.is.taken into accouﬁﬁliinithe PDQ45 program
éhd genefdlly causes no .trouble, |

" ‘The comments given previously concernlng the iterative methods (3.1)
and (3 22) generally remain valid for their "inner iteration" counterparts
(B?BB)Jand'(B,BA)O. One needs only to replace o with 8, That is, instead of
(3.15), (3.18)5 (3.24) and (3.27); we have '

~

(3:35) 1E1:S£(3111%Ps([+1). < RPE({) < ZEP%(K%ELPSUHﬁ o
(3.36) iBSJUng;ét)mD(lﬂ) < RSE({). < : B°”§D“§33Nn<m ’
(3;37) ﬂxER(.{).éa y
(3.38) (BR),,; = 'lpt,oo(eyl

Sﬁmmarizing, the user should'be‘aware~that inner. iterations:.s

1. are being done, |

2., cause the dominance ratio, or equivalently the first overtone
eigenvalue; to be altéred,

.3, consume computer time and hence should be made as efficient as possible.,2

Yrnis topic-is -discufsed: in' nore detail in a’ separdte report onsthe’use ‘of CHebysHev
polynomials :in the numerical solution of the neutron diffusion problem,
2As mentioned previously, the efflclency of the 1nner iterations will be discussed
in Chapter V, _
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In the next .chapter we shall define and :discuss-thé information

available in.the output of the PDQ-5 program. . .. =~ SR



IV, THE PDQ-5 PROGRAM

The PDQ-5 rrogrém solvesfthe:fewagroup, time,independen# neutron
.diffusion.equation (2.1) in either x-y or r-z geometry and.was written for
the Phileo-2000 digita1~computer in the FORTRAN lé.nguag‘e° The method of solution
used by the program is essentially that as descrlbed in the previous chaptero
The PDQ-S program described in this report is actually the thlrd version
of PDQ-5.. The first.version [Refs. 2,, 10 ] differs qulte radlcally from the
second and third versions° Most of what is said in thls chapter is applicable

also to the second version ‘but not the flrst version,.
A, ,BACKGROUND

PDQ-5 is the latest in a series of PDQ programs which solve the.few
group diffusion equations;‘ The main differences between the raripus\prograﬁs
-are. |

(a) the computer for which the program was written;

(b) the number of alloweble lethargy groups;

(¢) the number of allowable mesh points;

(d) ‘the inner iteration method; and

(c). the application of Chebyshev- polynomlals,
For the various programs, these differences are. listed in Table 4.1.

Because of the magnltude of the neutron d1ffus1on program, dats flow
-and storage are aisignificant problem,- For - all'PDQ programs llsted 1n Table- a s
magnetic tape is used for auxiliary'storage and data is transferred to fast
'-memory as needed. 'Essentially all data is transferred from tape to fast memory

at least'once\every outer iteration,

T
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MAX. NUMBER

MAX, NUMBER

- ] ~ INNER ITERATION. CHEBYSHEV POLY
PROGRAM - COMPUTER OF GROUPS OF MESH PTS. METHOD APPLIED TO
- » POINT: FISSION
PDQ-2 ~ IBM-704 4 6,500 S.0.R. SOURCE
o . 1-LINE FISSION
PDQ-3 - - IBM-704, L 7,500. S.0.R; SOURCE
. PHILCO-2000 . s 2<LINE FISSION-
PDQ-4 -(Model 211-10) . L 20,000 S.0.R. SOYRCE
PDQ-5 PHILCO-2000 < - | . CYGLIGALLY REDUCED - FISSION
(Version 1) " (Model 211-2) 5 250,000/Groups 3-LINE SOURCE
| A _ : 5.0.R. ARG
PDQ-5 PHILCO-2000 S 1-LINE GROUP
(Version 2) (Model 212-2) 5 250, 000/Groups 'S.0.R, FLUXES
PDQ-5 PHILCO-2000 o . 1-LINE ‘. _ GROUP
(Version 3) 5 . 250, 000/Groups. CYCLIC CHEBYSHEV - FLUXES

(Model 212-2)

TABLE 4.1




The IBM-704 is an unbuffered (input/output) computer af_id the limits
.on the number of allowable mesh points for the PDQ-2 and PDQfB programs were
_.chosen such that the inner iterations for each group could be performeq in fast
memory after all~the'reQuired data for that group was iranSferredvfrem_magnetic
“tape to fast memory. -

The Philco-2000 is a buffered (input/output) computer with,the.mnltiple '
channel'feature, The different models deneted.in Tabieah;l correspond to
increasingly faste; memory or arithmetic units, The memory plus arithmetic unit
for model 21272 is roughly 4 times faster than that for model 211-10 which in
‘turn' is about 4 times faster than the memory plus arithmetic.unit for the IBM-7OL.

For the PDQ-L4 ahd PDQ-5 programs; the data requiredito perform the inner
iterations for each groub could. not be;stofed‘in fast‘memory at one time since

. the allowable.nember of mesh peints was increased beyone the fesﬁ memory
capabilities, Thus; the performance of inner iterations in a group would require
the repeated sweeping of tbe necessary data from tape; If only one iieretion
were performed per tape sweep, the speed'of‘the memery and arithmetic unit
relatlve to tape speed for the 211-2 and 212-2 models of the Philco computer is’
such that the program would run effectively at the slower tape speed deSplte:
.efficlent,bufferlng of the tape datao| The device employed in PBQ-5 to circumvent
this problem is the use of concurrent 1terations, i,e,; more. than one iteration
is done per. tape sweep.. (See Ref. 13) The present PDQ=5 program trles, if
pos31ble, to do all the necessary 1terat10ns in one tape sweep, (See Ref, 3 )
The one-line method is used in PDQ-5 rather than a two or three line method

. sieee the~enealine mefhog'allows more iteratioqﬁ to be performed per tape sweep.

PDQ-5 is the fifst program in the PDQ series in which the Chebjshev-

polynomials are epplied to the group fluxes, This application of Chebjshev
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polynqmiais wasfhade practical by the multiple input/output channel .feature of
the Philco .computer and made ‘necessary By the recent.&eeign'inperest in physically
large reactors with their high daminance ratios.

Thus, the .characteristics of the computer atshand exert, or should exert,
a strong ‘influence .on the numez;icallprocedureS'used° In essense, the numerical .

technidues are chosen to minimize the computer time required to solve, the problems

ggiinterest with a particular computer. Usually it is the inner iteration method

which must be tailored to the computer at hand,
B, ~OUTER ITERATIONS

Except.for two minor changes caused by,prograﬁ efficieﬁcy, the outer
iterations are carried out as descriced in the prerioﬁs chapter, |

First, three initial power iterations are carried out by the process
(3 33); where §(0) and A (0) are 1nput quantltles supplled by‘the ser, «Théﬁ,.h4
provided certain conditions are satisfiedl;”the Chebyshev polynomial procedure
(3.34) is started on outer iteration 4. Chebyshev polynomials of at ;ggég.
degree 3 are tﬁeh‘rebéatedly generafed° The decision whether to terminate'the
generation of the present Chebyshev polynomial and startltﬁe‘generation of4a
new polyhomial.using an imﬁroved espiﬁate.for“é is made by comparing the actgal
decay rafe of. the error vector With the‘theoreticalldecay rate; The theoreticel
" decay rate is the decay rate one would obiain if cb'were equal to 9, ER{X%§t+1)
is used to measure the decay rate actually being obtained. The ratio of the
actual decay rate to the theoretical decay rate 4s printed in the output and will

be given later,

llf these conditions are not satisfied; power iterations are done until they

arse satisfied
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1. - OUTER ITERATION'.CONVERGENCE CRITERIA

A problem is considered converged at the end of outer iteration { if

all of‘thq;folioWing criteria are. satisfied:

("-#ol) . : o o . o ' E}IS(%) s Ei. . !
(4.2) - EP8({) < [1 - SIGMA(L) e,
(4.3) o . |Y(,{) = l'oOI €&

where €, is an input quantity. . Y({) is defined in (3.33) and (3.34). SIGMA({)
is the mosfirecgnt'estimate‘for © and is obtained eifher from-ER(f) di}eétly‘of '
from Eq, (?538)° If &5 is a vector of'order‘N whose j-th component -is unit&
and all oﬁhen'camponents zero, then ﬁ?é({)ais defined by

(hot) | () = 220
where
' - es () e s )
(4.5) A([) & max max ~1;'t5-—-—-— and A(f) = min min —4—8~——
g’ 3 g, (f-1) g J e®,(f-1)

and where the subscfiﬁt J for.egch g varies only over the set of indices for
which e F 2 (ﬁnl) #0. In (405)9‘§g(K) and gg([) are the g-th group camponenﬁs
of the vectors S(f) and §(f). |

ﬁ?é(ﬂ) differs from‘EPS(ﬂ) as defined by (3010)T6h1y in that the
determination of I,and A for ﬁ?é-excludes those flux pointé whicﬁ‘arefih non-
f1331onable mater1a1 while the determination of  and A for EPS does, noto. In

most. problems- where both EPS and EPS were calculated, 1t was found that these
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quantities differed to any extent only‘in the early iterations. Thus, for most
. o '
practical purposes; EPS([) may be taken to.be equivalent to EPS(f).
Normally, it  is condition (4.1) which determines the termlnation of

.g;the.préblem, Only when (1 - SIGMA(f)] becomes smaller than €, does condition

1
(4-2) take over, If 6 iis close to unity, we see from the inequglity (3.35)
that EPS(f) belng small does not necessarlly mean that RPE(K) is small, - Condition
(4?2)lwas 1ncluded to prevent this "pseudo converggnceﬂql‘Of coprse, for c¢ondition
(4.2) to be of any help, SIGMA(K) must bé a good estimate for 9;' Condition (4.3)
Qas included for a very specia1~type'of_probl¢m and dsualljvshould;not be of
concern to the user, |

Basically, the convérgepce.criteria fo: the,ogﬁe?'iterations are set'up
so that thé relative,point erro:,bf.the group fluxes is less than two'iimes‘thq
iﬁput quantity Eqo -This will only be valid, though, if enough itérétions are
done so that certain assumptions are satisfied or very nearly satisfied., Thus,"
the user must makg € small enough spvthat the program has time to do its job.

. 2, OUTPUT FROM THE OUTER ITERATIONS

- 'The information printed by the program during outer iteration { is given
below, W? assume that [ is.written as [?ft, where t = O.implies that the power
method (3.33) is being carried out and t » 1 implies that a Chebyshev polyncmial
is being generated by (3.34).

(1) DEGREE = t

(2) NORM = v(f®+) Y is defined in (3.33) and (3.34)

For a convergent problem NORM.must be converging to unity.
V) I (F+6-1) ] for £*4¢ > 1 and -

A([Ht) for f*+t =1, A is defined in (3.33) and (3. ).,

(3) LAMBDA

lll

LAMBDA
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We have riot given any specific advice concerning the accuracy of the
eigenvalue'eetimate'LAMBDA. The user may often obtain a "feel" for the -
eigenvalue accuracy by examining successive LAMBDA's, i.e., by noting how the

LAMBDA's are changing from outer to outer. -Normally, the relative eigenvalue -

| LAMBDA -\ | . , L
error ————;—*—*—- should not be taken to be ‘less than |NORM - 1.0
3 A

v

(4). MAX = [x(( +t-l)][x([ +)] X is defined by (4;55'
(5) MIN [x(( +t-l)][x(i +t)] x is deflned by (4 5)" T
- es, ()
Actually, the program uses the absolute value of -%rfiir—;-to determlne
.e.? -1
‘J*g
x([) and x({) But if any component of S([) Whlch is in a flSSlonable material

is negative, then a negative MIN is prlnted Thus, a negative MIN means some
component of)§([) is negatlve. A negatlve component of S([) in non—flss1onable
material, noweuen; is:not uetected.“ . o ‘ . -

If an infinite number of,inner.iterations were -done, then MAX and MIN
would be. rigorous upper and lower bounds for the eigenvalue')\‘-l° 'However, when

a finite number of inner iterations:are done, MAX and MIN need not always:

boundﬁxlt

(6) EPS = EP%((*4t) EPS is given by (4.4)-

(7)° Pr/av o EEU L, BOUND is given by (3.17)
BOUND(f{ +t) 3 S

‘Pt/AV compares the two measures we have for tnezerfor‘vecton; flt is
the ratio of the pointwise measure to the aggregate or "average' measure., As
to be expected, this ratio usually is greater,than one, . If PT/AV is large,
say greater than 10 or so, this often implies that a small or.insignlficant
region of the reactor is causing trouble in.tne pointwise measure ﬁﬁé, Frequently
this trouble can be corrected by changing the flux guess or the descrlption of

the problem, We w1ll give an example of this in Chapter V



Il

(8) SIGMA = an estimate for the dominance ratio % and is obtained by

SIGMA

]

ER([*4t) for power iterations., ER is given by Eq. (3;23).

SIGMA = largest positive solution of Eq. .(3.27) for Chebyshev iterationms.
(9) SIGMA EST. = another estimate for the dominance ratio 9. o .

Although SIGMA ig easy to pomputé,uit ié_not easy to computei%t!@hé‘_:A

right time, i.e., one #ould likf to use thg SIGMA estimate fof 6 before ;t is.'
convenient for the program to bompute'SIGMA Héwevér, a good approximation for 
3IGMA, which 1s Lhe SIGMA EST., ls dvalldble aL the proper tlme. Tf t = 1,
SIGMA EST is the estimate, oo, for which is used in the polynomial generation.

The user should take SIGMA as the best estlmate for o.A

(10) RATIO = 1. 0 if outer 1teration (f~1) was a.power fteration,’

RATTO . Actual convergpnce rate of'outer iteration~(1-l)
Theoretical convergence rate of outer iteration ({-1)

m

' if outer iteration (f-1) was a Chebyshev iteration,
RATIO is used by the program to measure the effectiveness-of the - ' z
Chebyshev polynomial presently being generated. If RATIO < 1.0s ﬁhen-we~;re not
doing as well as expectéd and if RATIO > 1.0, we are'doing better than expected;-
RATIO probably is of limited interest to the user,
In the next section, we will define the informatiogiprinped_by the
program during the iﬁner iﬁerations. | o i

3. OUTPUT FROM THE INNER ITERATIONS

We recall from Chapter 3 that the inner iterations for group g are - -
performed in order to obtain an approximation to the solution of the matrix
eqﬁation : ' : | »

A2 0 =) 5 -

where A is a non-singular matrix and gg(l) is a known column vector. -
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Ba;ioally,-these inner iterations generate this apprqximation to the
true solution’by repeated application of a matrix algorithm which successively
improves an initial guess for the solution, The matrix algorithm depends'on
the iterative method\used for the inner itera.tions° The PDQ"5 program uses the
one-line cyclic Chebyshev semi—iterative method [Rsf 16, pp. 149] for the inner
iterations. This method can be viewed as'a varuant.of the one-line suocess1ve_
overrelaxation method'which'had been used»in the previous version of.the‘PDgas

program,

-}

" The PDQ-5 program does a fixed number, mg, of 1nner 1terations in group g
“every outeriiteration° The program tries to choose mg such that the inner
iteration error vector after performing the m, iterations is about .1 of the -
initial error vector.‘ Essentially, this prediotion is made in what is called
the "omega routine" which is carried out. before the first outer 1teration 4s
done, We will not describe how this prediction is made,

If there is not sufflcient storage to perform all mg 1terations concur-
rentxy, the smallest odd integer q is found such that the data for (mg/q) concur-f
. rent iterations will fit into storage, Then (mg/q) concurrent iterations are
_-performed during each of q passes through the mesh. The mesh is swept forward on
the odd passes and backward on the even passes or v1cevversao On the backward
sweep some of the data tapes are read backwards, } “

If s(m)(() denotes the approximation for s&f) after m iterations in
group g, then the flux residual vector R( )(() for the m-th inner iteration is

defined to be

(-14.06‘) 4 (m)([) - (m)([) (m=1)(£/)

The result of the last outer iteration, ?g([—l), is uSed\as the initial guess®

veetor, i.e., §é?{ﬂf) =f2g(f¥1)°



We are now ready to define the'output from the inner-iterations, : During

outer iteration [;.the-outputmfrqm thq~innen,iteratioh§ for each group g is

2

@ R E{[ ‘1)(1)]T[R‘1)<1>]} Y

R(1), which iq.céllegvthe'ihitiél residual, should be decreasing from
outer to' outer. ThetSIGMA EST estimate for 9 is determined! from. the initial

residuals,

(2) DELTA(q,m,) = {F

q is the number of tape passes.neededrio‘perfofm the m,
inner 1terations in group g.

DELTA is dlrectly proportlona; to the error reductlon in the inner itera-
tions; However, since the constant of proportionallty varles.from prqblem to -
'problem, this quantity probably is of llmited interest to the user° :Aftér‘
the first few outer iterations, a sudden large change in DELTA sometlmes implies

a machlne error.,’



"V, DISCUSSION AND NUMERICAL EXAMPLES - -

In this chapter we shéil-discuss various topics pertaining to the
practical use of the PDQ pi'ogram° We shall disEuss“'

(a) the importance of the flux guess,

(). estiﬁates for the firét overfqne‘mode eigenvalue, and

(¢) the convergence rate of the inner iterations;
A.  THE FLUX GUESS

In this section.we.give no specific advice on how to specify an initial
flux guess, Instead, we seek pnly to discuss the impoftance-of thé‘f;ux guess
and how the efficienc& of the PDQ program can be affected adversely by a "bad"
flux guess, o
| . For the present we shall neglect the effect of the innér iterations., - We

also shall assume that. the eigenvectors {gi},of M iF are normalized such that

T, _ 1
ii'ii e loOn

. From assumption (b) of (3.2), the initial flux guess §(0) may be expressed
uniquely as a linear combination of the 345
: “GN -~
(5.1) a0 =) oid;
' i=1 :

~

where. the ci are the scalgr expansion coefficients., If we assumezwthat S # Oy

then we may write §(0) as

lWe do - this tormaké§¢hehﬂsiZe"~onn%length"wof.each:eigenvéctqgiﬁhggsameﬁkqj“r;ar

2This must be true if all the components of §(0) are positive,
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where ¢, = ci/°1'° Sinoefol reflects only the.level of the flux guess, we may
take c; to be unity so that $(0) may be written as
: o (%E ,
(5.2) : $(0) =8, + ), c,8 o
At L0

Since the eigenvectors &, have been normalized to-the same "size" the
scalars ¢y determine the degree of "goodness" of the initial flux guass. In
successive outer iterations, the PDQ program seeks to redunel the coefficients
of the overtone modes2 in the flux guess, Convergence of the outer iterations is -
achieved when the coefficients have been reduced far énough so that g([) approxi—
mates 3& to the accuracy desired. How much these coefiicients have to be reduced
depends on the flux guess; |

The-magoitude of an expansion~coefficient cofreeponding to a slowly
decaying overtone mode-is more crucial-thao that corresponding to a repidly
decaying overtone mode.,  Also, as we shall see later, the efficiency of the
Chebyshev polynomial method of iteration is affeoted to some degree by the
magnitude of the expansion coefficients of the initial flux guess,

For a given problem and a given flux guess, one usually does not have the
foggiest idea as to the véiuesoof1thenooefficientsoci@quhusiuto.
discuss flux guesses in terms of the ¢y is-fruitless, Likewise, it is fruitless
to discuss theidegree of "goodness" of the guess since, obviously,‘the best

initial flux guess is the:answer, il; Hence, we will discuss "bad" flux guesses,

lFor example, from Eq (3.6) we see that the coefficient cy is multiplied by a
factor (), /xl) for every -outer iteration of the power typa, . :

2The eigenvector §. is called an overtone mode if i # 1, The first overtone
mode corresponds to §,.
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For a given problem with a given flux guess, the job of the PDQ ‘program
is to obtain the desired solution in the fewest number of outer iterations,
Usually; the program can do this only if the Chebyshev polynomial method of

iteration is used efficiently. But, as seen in Chapter III, the efficient use

© of the~Chebyehev polynomial method depends on knowing A and the dominance ratio,

both of which must be estimated bj the program., How well the program can
estimate these quantities is determined to some extent by the flux guess.. Hence,

by a "bad" flux guess we mean a flux guess which-hinders the efficiency of the

. Chebyshev polynomial method of iteration°

‘Basically, the Chebyshev strategy of-the PDQ program can be divided into
three parts as follows:

(1) Initially, at least' three iterations .of the power,type'ere carried
out in order to obtain an initial estimate for the dominance natio and;a,"
reasonable estimate for kl’ We note that these power iterations wili practically
eliminate from the flux guees those overtone modes with'smallfeigenvaiues;' (See
Fig. 3.1) The Chebyshev method of iteretion‘is Started on outer iteration Kl’

where fi»is the smallest integer greater than or equal to 4 for.whicﬁ the

-following conditions are satisfied: -

(a) | NORM({;~1) = 1.0] 5',025
(b) EPS(f,-1) <2 |
(c) SIGMA EST.(f;) < 2.0 -
(a) SIGMA' EST, ‘({l“). > .4
(2) Then, low degree Chebyshev polynomials are applied repeatedlv with
the estlmates for the dominance ratlo being updated contlnuously, If the low

degree Chebyshev polynomials are generated w1th the dominance ratio undernestimated,



then these polynomials will greatly redu'ee},_. all overtene-podes, in the flux
guess except. those with the largest,:~ eigenvalues, thus allowing relatively good
convergence of the SIGMA estimates to the correct value for the dominance ratioa

3) . After the SIGMA estﬂmates have converged, high degree Chebyshev -
plol,ynomia;s, are applied, if needed, to reduce those overtone modes with the largest
eigenvalues, ‘ . ' _ |

In summa.ry, the strategy of the PDQ program is to eliminate ;f]_pst the
more ra.pidly deca,ying modes in the flux guess and then concentrate on the moxre .
elowly decaying overtone modes., Normally, for this. stramtegr to be effective an.
increaeing sequence of dominance ratio estimates is needed in the generation of
successive Chebyshev polynomiele U

L In practice, the__est{mateezfor_.:the dominance ratio provided by’._the

program are gsue.ll_y smaller (.at’ lslea:st for the. early ocuter iterations) than the ..
' 'correet va.lue,’ _ However, .a flux gueee which does not contain enough.of the . -
fund.a.menta.%,mede% may cause the.initial .e:igenvalqe. estimates ,_‘:)\(f )s-to be too
small w_ﬁieh in turn'.‘nila;r;"lce.use, ‘the ipitial estimates -for the -dominance ratio to:-
be too large. Usually, a “bad' flux guess such as; this is implied yfh'enexer C
conditions (a), (S), or (_c) given above prevent the Chebyshev method of iteration
from starting on outerriteration 4 or S‘andi/or whenever the_ initial estimates
for the dominance ratio over—estimate the correct. value, |

An implied "bad" flux guess as described above should be taken as a

signal to the user. that the program possibly. could have solved. hia problem more

1For example, ir ( /xl) = 889 and if a 5-th degree Chebyshev polynomal is
generated with o .B;. then all overtone modes; §., with (Ai/xl) < .8 are
multiplied by a actor smaller than 017 wh:Lle the first overtone mode 5" B 1s N
. multiplied by .211., ~ - .

2That is, in Eq. (5. l), ¢, is smaller relatiye to the other .ci's.than we would
like, ; _ ) i
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efficiently- had he used a little better flux.guess., We recognize tpat-this is
hindsight but hopefully this‘tipe of information will enable the user to obtain
a better feel as to what constitutes a good flux guess,

In order to provide a flux guess for the PDQ program the user must
speclfy an initial flux level and distrlbutlon for each group. For the flux
level, it is the group;to-éfoup flux ratios which are important. Thus, to
specify an initial flux guess, the user should consider both the. flux
distribution within a gfouo'ahd the groﬁp—to—group flux levels.

The two examples glven below are production problems for whlch the
user Sp801fled a bad flux guess, For both problems the ;1 used in the . |

termination of the outer iterations was ;05}
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For Problem 1, regions 1; 2, 3,' aﬁd 4 are metal and water reﬂeq’tdr
reg’ions s 556, 8 and 9 are fuel regions; and 7 is a control rod,.l The reactor.
is 12,6 centimeters wide and. 52,’18 centimeters long with 47 mesh pointg in the x
: 'dirt;ction and 81 .mes'h points in.: the y direction.

The flux distribution in the y 'd_ireci;.ion is indicated in the a‘tﬁove
graphs. In the x directiqn,~' there are small wiggles in the fluxes in the fuel

and rod regions,

CASE 1 | . CASE 2
"GROUP | GROUP | GROUP | crow | crovp | cmoup
COMPOSITION | 1 | 2 | 3 S 1| 2 3
1 50| L2575 o AL | .055 | .33
2 75 | 1.0 | 20 | k| .2 | .33
3 W75 | 1.0 | 2.0 | 1 1.0 | 44 [ W11
L., 75 1,0 | 2.0 | 2.0 | '1,b .66
5. 75 | .10 | 2.0 | 1.0 | g | .m0
6 75 | 1.0 | 2.5 | |10 | e, | m
7 o755 | Lo | 20 | 1.0 | oLah | .11
8 75 | L0 | 2.5 e | |
9 75 | Lo 20 | | Lo | a4 | .

INITIAL FLUX GUESS FOR PROBLEM 1

The flux guess for case 1 was supplied by the user who submitted the
problem,,. The outer iteration data for both cases are listed in Table 5.1,

For the flux’gue',ss -of case 1, we note that both the group—tb-group flux
ratios and ‘the general flux shape‘within' groups were bad. The reade’rlshould

especially compare the LAMBDA and SIGMA EST, valueés for the two cases.

1The fuel and rod regions for problem 1 are actually more complicated than J.nd1-=
cated in ths picture,

;o ) L5
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CASE 1 - CASE 2
1 . SIGMA . SIGMA
TTERATION| NORM | EPS |LAMBDA(PT/AV|RATIO| EST. |DEGREE | | NORM | EPS |LAMBDA PT/AV|RATIO| EST,|DEGREE
1 | _10,,-,3660 10.1100| . 67468|3.42 |1.00 |.000 0 8849|1256, 73919).3.90 ;1)_.,00 000 | 0
2 1.2012| .3470|.81039[1.71 |1.00 [,099 [ 0 - | |1.0319| .1384(.56819] 2.08 [1.00 [.141 | o°
3 1.0605| .1368|.84440[1.36 |1.00 |.399 | 0O 1.0159 0307] 51656 1.66 1,00 {,129 | ©
L 1.0458| .0995|.87362|1.28 |1.00 |.911 | 0" 1.0138| .0339|.91471) 142 |1.00 {.499 | 1 .
5 | 1.osér| .o753].88372[1.28 [1.00 |.856 | o 1.0100| .0221|,91618{1.43 | .52 |.687 | 2
6 | 1.0278| .0569(.8993(1.30 {100 |.774 | O | |1.0063| ,0139|.31876|1.42 | .44 |.678 | 3 -
70 7| 10209 .0425(.90669[1.33 [1.00 |.748 | 0O 1.0039 | .0078|.92070| 1.40 | .34 |.686 | 1
8 | 1.0154| .0D313|.91154[1.36 |1.00 [.731 | 1 1,0024 | .O049|.92188|1.42 | .87 |.719 |- 2
9 | 1.0098| .o197.916191.39 |1.05 |.720 | 2 | |1.0000| .con9|.92297]1.43 | .85 |.713 | 3,
10 [1.0036| .0071.92092[1.40 L5 |73 | 3 .
1. | 1.0011| .0021|.92289 [L.40 125' I

'\, TABIE 5.1
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MACROSCOPIC CROSS SECTIONS FOR‘PﬁOBLEM 2

GROUP COMP
1 1
1 2
1 3
1 4
2 1
2 2
2 3
2 4
3 1
3 2
3 3.
3 4

b 1
L 2
4 3
[ 4

D

1.9749

1.9239
1.9749

1;9239 '

9884,
. 9668
. 9884
.9668

. 7201
L7139
.7201
.7139

.30916

.26956

. 30916
. 26956

SIGMA A

.00260
.00,88
00260
.00488

-00149
.00220
.00159

.00220 -

.02164
.01882
.07164
.01882

. 21700
.05405
31700
.05405

. SIGMA K

- .07751
T .08167
L07751
.08167

.08783
.08311
- ,08783
.08311

.07985

07769
.07985.
S07769.

0.0

0
-0
0

0
0
0

The buckling for all groups and all compositions is .000147.

The reactor model for problem 2 is 187;8 centiﬁeters wide

=, 00175

~7,00725
.00175
.00725

.00219
. . 00022
.00219
.00022

.03078
.00331
.03078

0 ,00331

. 1,2896
.05795
L2896
.05795

. NU SIGMA F

and 30.1_

centimeters long with 57 mesh points in the x direction and 23 mesh points in

the y direction’

CASE 1 _ CASE 2
" | Grour | cRouP | GROUP | croup| GROUP GRQUP GROUP | GROUP
coP | 1 ¢ 2 3 A 1| -2 3 4
1 66.0 73.0 57.0 20,6 ‘ 66.0 73.0 | 57.0 20.0
2. | 66.0 | 73.0 | 57.0 20.0 14.0 | 180 | 16.0 | 210
3 66.0 | 73.0 | 57.0 20.0| 86| 1.1 98 | 1.34
L | 66.0 | 73.0 | 57.0 20,0 86 | 1.14 .98 | 1.34

INITIAL FLUX GUES3 FOR PROBLEM 2

The outer iteration results for problem 2 are summarized in Tables 5,2A

and 5.2B.
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CASE 1

.
\J

SIGMA

TABLE 5.24

| Ing§g§0N- NORM | EPS | LAMBDA | BI/AV | RATIO  EST, | DEGREE|

1 .7138 | 1,0530 | 1.0006 | 1196 1.00 | 0.0 | o |

2 . .9428| L3107 | . .9433 | 1i62 1.00 02| o
3 1.0089 | .2042 [ ".9973 | 1.40 | 1.00 | .653 | ©
A © 01,0299 | .1727 | 1.0442 | 1.29 1.00 942 0O
5 - 1,0430 1567 | 1.0812 | 1.29 1,00 | L,017.| O
6 S 1.0497 | L1449 | 1.1087 | 1.34 1.00 997 | -0
"7 11,0510 | .1359 | 1.1283 | 1.44 . | 1.00 | .963 | o©
g 1.0486 | .1289 | 1.1418 | 1.59 | 1,00 | .931 | o
9 1.0440 | .1235 | 1.1510 | 1.81 1.00 | .903,{" o
10 1,0385 { ,1193 | 1.1573 | 2.11 1,00 | .88 | o0

11 1.0328°| 1161 | 1.1615 | 2.49 | 1.00 ,863 0 -

12 1,0275 | L1136 | 1.1644 | 2,99 - | 1,00 88 0o
13 1.0227 | 1117 | 1.1665 | 3.63 |- 1,00 | .86 | 0
1 1:0186 |~ .1102 | 1.1679 | 4.44 | 1.00 - | .826 | 1
- 15 1.0130 { - ,1083 | 1.1695 | 6.33 1.07 816 2
16 1.0054 | ..1069 | 1.1711 | 1.5x10 | 1.21 | .808 | 3
17 1.0016 | .1075 | 1.1718 | 5.4x10 | 1.49 802 | 4
18 1.0002 s1060 | 1.1720 3°9x102 2,32 .799 5
i9 .9997 | -1.0517 | 1.1720 | 3.40° | .15 | .83 1
20 1.0001 | 2,1327 | 1.1720 | 2.5x10% | 2,34 | .6u5| 2
2 1.0000 | 88,99 | 1.1720 | 2.2:° | 1.38 | .749°] 3
22 1.0000 | 1321 | 1.1720 | 3.5x10° | .06 816 | 1
23 1.0000 { 80.2 | 1.1720 7°2x106 2.92 .598 |- 2
25 1.0000 | 360.6 | 1.1720 | 9.3x10° | 1.72 | .729 | 3
25 1,0000 | .1071 | 1.1720 | 2.3x0% | Z.42 | 728 | 1
26 1,0000 | .0522 | 1.1720 | 3.8x10% | 2.06 | .557 | 2
27 1.0000 | ,0222 | 1.1720 | 5.9x10% | 1.53 | .653 | 3
28 1.0000 | 0115 | 1.1720 | 2.7x10* | -.18 | .655 | ‘1
29 1.0000 | .0076 | 1.1720 | &.7xa0 | 2.06 | .466 | 2
30 1.0000 | -.0043 | 1.1720 | 6.2x10% | .61 | .635 | 3
3 1.0000 | .0026 | 1.1720 | 5.0x0% | .17 | 700 | 1
32 1.0000 | .0018 | 1,1720 | 7.1x10* |-1.30 | .639 | 2
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CASE 2

SIGMA

ITERAVION. |  Nomx EPS LAMEDA Pr/AV '| RATIO" | ESI. | DEGREE
1) 1,0320 | 16.845. | 1.1238 | 3.740 | 1.00 | 0.0 0
2 1.0253 | .7290 | 1.1522 | 7.40 1.00 .096 0
3 1.0252 3013 | 1,603 | "6.36 | 1.000 | .363 0
I 11,0204 L2047 | 1.1648 6.83 | 1.00 569 0
5 1.0157 A717 | 1.1673 7.68 1.00 686 0
6 1.0121 1448 | 1.1689 8.85 1.00 | .73k 1
7 1.0079 21204 | 1.1702- | 1.2x10 .90 .755 2
8 1.0036 1089 | 1.1714 | =2.5x10 Tl 770 3
9 1.0017 | - .1124 | 10718 | s.%o0 61 el 4
10 1.0011, 1092 | 12719 | 7.8x0 | 1.02 | .773 2
11 1.0005 081 | 1,1719 | 1.7x10° 97 | .79 3
12 1.0002 - 1103 | 1.1720 | 4.0x10° .89 783 I
13 1.0001 2077 | 1720 | 9.3a0° | a5 | 785 5
14, 10000 1052 | 1.1720 | 2,2x0° .83 786 6
15 1.0000 1033 | 1.1720 | 4.940° .83 786 7
16 1.0000. |  .094 | 1.1720 | 9.9x10° .83 | 786 8
17 1.0000 ,0802 | 1.1720 | 1.ex1io* .81 .786 9
18 1.0000 |  .0618 | 1.1720 | 2,9xic% 9 | 786 10
19 1.0000" - 0409 | 1.1720 | 4.1a10% .78 706 11
20 1,0000 0241 | 1.1720 | 0 5.2x10% .78 786 12
21 1.0000 -|  .0132 | 11720 | 6.2a0* | .78 786 13
22 1.0000. |  .0069 | 1.1720 | 6.9x10 | .79 786 14
23 - 1.0000 .0034 | 1.1720 |.7.3xa0% 79 | .786 15
24, 1.,0000- ,0016 | 1.1720 | 7.2:0% .79 786 1
TABLE 5,28 Y.
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It “is seen that the behayior of ‘the LAMBDA and SIGMA estimates are the
' same as for problem 1, i.e., the bad guees gave louer estimates for xl‘eﬁd
overestimates for the dominance ratio.-

The two. examples given above illustrate the effect of the flux"guees,‘
In the solution of broblem 1,‘the_"bad" flux guess required 2 additional outer
iterations andbinoreased the total nuuber~of ouber iterations by 224, In the
‘solution of-problem 2, the "bad" flux guess reQuired 8 eddition outer iterations
and increased the total nnmber of outer iterations of 33% Note that the
dominance ratio for problem 2 is higher than that for problem 1. Geuerally;‘e
" "bad" flux guess can do more damage for.problems which have a higb douinance
ratio. | |

The initial estimate for the fundamental eigenvalue usually is nob
very important. However, a good iniﬁial eigenvalue estimate is useful whenever
a very good flux guess is used. |

Before going on to the next section on the first overtone. mode
eigenvalue; we would like to make one additional comment concerning problem 2,

In case 2, EPS is the only quantity which is changing toAany extent after
outer 1teration 13. Also; PT/AV is very large whicb imblies thab the. relative,
sum error (3. 16) is much smaller than the relative point error (3.9). This
. behavior is caueed by the relatively small flux values ‘near the right boundary
(These fluxes are roughly 10-7 times those on the left boundary,),

To see why these emall flux values can cause trouble one need only
examine the expr3831on (3.13) for EPS. .= For the problem under consideration,

the aj for some of the pointe near the right boundary are probably much larger}

lwe remark that the overtone modes need only satisﬁy the zero derivatlve condition
at the right boundary
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than the aj for the points near the left boundary..- Since-the program is set
up to reduce all a (for all. j in fissioning regions) belaw a: certain value,
we see that the points with large a will determine when . the problem -is .:. -
converged, a

_Probably, for,problem 2, the numbers-of interest to the user were .
—sufficiently”accurate after l3iorﬁlhxouter,iterationsg Thus, 10 outer
:iterationsﬁwere wasted obtaining‘accurate,answers”for'an insignificant region-
of the reactor. Whenever the.groupvfluxuin fissioning regions varies.by orders
of magnitude and the boundary conditions do not force the overtone modes %o
behave similarly, this type of behavior in. the outer iterations can be expected. 1
This particular bad program behavior prohahly conld be eliminated by changing ..

the program so. that ;bandfi.are not. computed over the insignificant reglons,
B. THE FIRST OVERTeNE‘ MODE EIGENVALUE

"In studying the xenon spatial stability of a core or the susceptibility
of flux tilting due to perturbations in nuclear properties, the eigenvalue
(xz) of the first overtone mode often must be calculated ThlS first overtone
mode eigenvalue can be determined in a straightforward manner ror one-dimen31ona]
(Ref ' 6) and certain two-dimensional problems " The fwn—dj_menaional aolu,tion
requires that ‘the core have a symmetry axis that can be identified as a node line
‘of the first overtone mode ‘80 that the first overtone mode and corresponding ‘
eigenvalue may be calculated directly vie the PDQ program by placing a z2ero’ Flux
boundary along the node line, = )

Many cores have first overtone node lines which are not straight and '

can ot/ easily Be located exactly ' For such cores, the program's estimate for

YFor some problems, ‘this type of outer iteration behavior would also occur 1f the
program used EPS' (Eq. 3.10) instead of EPS (Eq. 4.4) as the basis for convergence,
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the dominance ratio often prov1des a good. approximation for the first overtone
elgenvalueol The purpose of this section is to discuss this by-product of the

PDQ program,- ;

The SIGMA estimates prov1ded by the program are approximatione to the
dqminance ratio 9. But, as seen in section B of Chapter III, o differs from
the true dominance ratio; - o= %f, of the problem because the inner ‘iterations.
are noc converged properly. Thus, in order for phe SIGMA estimates tonprov1de
a good abproximation for the first overtone eigeﬁvalue oneyiegﬁi}es'firet good
convergence of the SIGMA estimates to 2 and second 8 to differ only slightly
from Eo . .
| Since @ approaches Efastthe'nﬁﬁber of inneér iterations approaches
infinity, one can make o agree more closely with o by doing more inner 1terationsoy
As ﬁentioned4previously, the‘PDQ~5 program'normally attempts to do only enqugh
inner iterations so that the final error in eachlgroup'is about .1 times the-
initial .error. However, an option is available to converge the inner itérations MI?

more tightly. If €, on input card 010003 is sét ‘equal to -1.0; then'the'bfogram

2

tries to do enough inrer iterations so that the final error is about .0l times

the initial erroruz_ | _

Table 5,3 indicates how 9 might vary with the'number of"inner itecaticne

performed,g CgseQB corresponds to'the normal PDQ program and: case 2 corresponde‘
to the special €, option, Wheclsz is set to -1.0, 9 often is in the range
- 041 - ) <B <3+ 041 - 3). | -

A

1Normally, the program's estimate for the dominance ratio can be used to .
approximate the first overtone eigenvalue of the core only when full -core problems
are run, The first overtone mode bf the core usually is not present in half core,
quarter core, and'cell problems, :

2Normally, this optlon will cause the number of inner iterations to be-increased
by dboub 704, , S A .
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INNER ITERA?IONS-
CASE . GROUP i : GROUP 2 | N GROUP 3 . 6\' .
l <*¢' v ‘ . ® . . .0698
R 25 BTN R R TR ' o
I 13 6 1 6 ] ez
5 6 ) — ) | . - . 3 . 1 2 ) 0958
TABLE 5.3

¥

VARTATION OF o WITH THE NUMBER OF INNER
_ ITERATIONS FOR A THREE GROUP PROBLEM

" The majorldifficnltytin.using.the SIGMAYeStimates‘to approximate Ay isi
the convergence of the SIGMA estimates, Basically,  the convergence of the
SIGMA:estimatee.to @ depends on the success of the program strategy to reduce
fhe overtone nodes in the flux guess in such a manner that the first oveftone
mode is the ldst: to go; i.e., a point is reached .in the outer iterations where
the first overtone mode is the only overtone mode of any eignificance remaining -
from,the.flux'guese.; The user must examine'the outer iteration output data to
determine if the Chebyshev strategy described previously in section A is being
garried out eneceeefullyo

To illustrate how the behavior of the outer iterations may be interpreted
relative to the Chebyshev strategy, we shall consider the two cases of prdblem
2, The behavion:of case 2 is very~gooa' the SIGMA- estimates ba31ca11y constitute a

.convergent increasing sequence and a high degree Chebyshev polynomial was applied.

lThroughout this section, we assume that the first overtone mode is present in
the flux guess,
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The behavior of case 1 is bad: . the«SiGMA estimates first decrease and thén
| fluctuéte, Also,lall but the first Chebyshev polynomial were of low degree,
Note the behavior of RATIO for the two céses°
The rate at which the SIGMA estimates approach & primarily depends on
theiflux-guess éhd'the sepafation of.thé first évertope eigenvalue from the
otherﬂoverﬁone eigenvalues. We remark that using pnly the péwer method of
iteration is4a safer but much less effiﬁient way to obtain a good espimate for 9.
The intent of this section was not to suggest another primary use of the
program but merely to discuss a pfogram by-product which may be ofvcasual

interest to the user; .
C. INNER ITERATION EFFICIENCY

The inner iterations for groﬁp g'afe used to obtain an approximation

to the solution of the matrix equation (3330),
(5.3) : o Agég([) = Qg(f)_s‘ﬁ

where Ag'isva non-singular matrix and Eg([)’is a known column vector, - The
matrix Ag.corresponds to the.discrete analogue of the diffusion and total
absorption terms in the group equation (2.1). 'In what follows we shall drop
the group subscript g and the outer iteration index { in Eq." (5.3). .

In order to specify completely the matrix equation (5.3), we need to
backtrack a little and say something about'the mesh which is imposed and the
ordering of the unknowns, - -

Let a mesh of V vertical lines and H horizontal lines be imposed on the

rectangular region,R (Fig. 5.1) with the boundary conditions as indicated, Since
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FIGURE 5.1

the flux is known along the top and right boundaries, we have only (V-1)(H-1) & N

1

solution points™ for the case of Fig. 5.1, Now4t§Aeach solution point we assign

, an index number. consecutively by row3"(s§e Fig, '5.2) and then order the unknowns
such thatvsi corresponds to the unknown.at the solution point of index i, |

With this ordering of. the unknowns, the explicit form of (5.3) is given

.by‘Eqm‘(5oh), The non-zero -elements of A-are the ay,ag,ap,a, and ap

given -in
therfin;te difference expression (2,2). For the solution point i,

35,10 = % 2 Bi,0a T % b 83 sa(yay) = O 0 B,1-(v-1) T &y &nd &y 5 T @p.

We say that solution point| i is coupled to solution peint j by a, 5 The matrix
. . 2

A is symmetric so that the coupling from point i to point j is the same as the

coupling from point j to puinl i,

lA solution poiﬁt is a mesh point at which the flux is not known.
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The PDQ-2 program used a "point" iterative.method to solve'Eg. (5.3).

By "pointn method, it is meant thet the approximate solution is improved one -
point at .a time, i. o5 first point 1 is improved;, then point 2 and so on.- The
other PDQ programs used nf-line" iterative methods, for { = 1,2, and 3. By a
"[-llne" method, it is meant that the approximate solutlon is improved f-lines
at a time, i.e,; flrst, lines 1 through I'4 are 1mproved 51multaneously, then
lines f+1 through 2f and so on. .

For a "ﬂLline" method, the number of horizontal solution rows1 must be
divisible by f. Now if each successive block of«[ successiveAsolution rows is
taken to be a unit, then the. number of inner iterations depends - on how ‘strongly
these units are coupled to each other° More inner ;teratione are required when
the units are strongly coupled. j

From Fig., 5.2 and the finite difference expreeeion (2.2);, we see that
the coupling between .adjacent units is through.the aqg and ay terms. - Actoally3
it.is these terms normalized by;aP which affect.the number of inner iterationeo'
We note that each of these‘terms,p(as/ap) and'(aﬁ/ep),.is greater than zero:
and less than one., The units are strongly coupled when the normalized couplings.
between units are "close" togooe° .

We remark that it is the éoupiings.between units which have the greatest
effect on the inner iterations. 'Forzleline methods gzggi/as-andfaN term is a
coupling between units, However, for multi-line (f > 2) methods, less then‘
1/ of the as‘and'eN terms ‘are couplings between units, For example,.iﬁ‘a
2-line method the ag for odd sclutiohi lines and aﬁ for even solﬁtion-lines are

not couplings between units. ' See Fié;45 3. * The- coupllngs between unlts are

_called exterlor couplings and the couplings of solutlon llnes w1th1n a unlt

lA solution row is a mesh row on which the. flux is not known.

!

59



are called interior couplings.: The exterior:couplings. for anm f<line method

are shown in. Fig,- 5_1..3

T } 4 solution lines
a)s ay
" FIGURE 5.3 =  } { solution lines
. as ‘aN
= - } { solution lines

The j)resent version: of -the PDQ-5 prng;am uses a‘l-line method and'thus
. every ag and ay term is an exterior coupling.” The aqg and a.N terms are similar
S0 Wev will examine only the aS/a'P term, 'For the geqera;l golution pqi,nf.: i of
Fig, 5.2. we have. |

E: hE + Dy -
(5:5) ag/ap = ‘ i

aN+aS+a +aw+1/z, {zthh +22hhw+23hh +24NE}

Us'siﬁg‘Fig 5.2 and Eq (5.5)5 we. make the following ob‘serv‘é.tionsx

(a) For al reglon problem w1th equa.l mesh. spacings, q/a.P < l/l‘., 1/,
may be ta.ken as the norm for the (a /aP) -

(b) A fine gegh in the} y‘directi;qn and a coa:rf.se_.‘mesth‘.j_?‘.ithe, X c‘lvire‘c‘tion ‘

will cause the a.s/aP to be abnormally high.
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(¢) Abrupt changes in the y direction mesh spacings can canee as/a.P
to be close to unity, | : :
(d). Large sigma total terms, the Z's, are helpful but the relative
) worth of these I terns is diminished by small nesh spacings and/or
iarge diffusion constants,

As indicated by (b) and (c) above, the orientation of the mesh may

greatly affect the inner iterations., Given below are some cbvious suggestions

concerning the orientation of the mesh. ~we note that the orientation of the
mesh is not flexible in r-2 geometry (or when rotational symmetry is one of
the boundary conditions). |

(1) If there. is a fine mesh in one direction and a~coarseAmesh in the
other direction, then the mesh should be. oriented such that ‘the coarse mesh
is in the y direction°

(2) If there are abrupt changes in the mesh spacing 1n .one, direction
and rather constant mesh 1n the other direction, then the mesh should be
oriented such that the more constant mesh is in the y direction,

Often, it is not clear which orientation of the mesh is preferable,

In this case the user must rely on his own experience,

The.problems given beiow-iilustrate the effects of orientation on the
inner iterations. The suffix R means that the mesh has been rbtated 900, il.e.5

the other orientation of the mesh was used in solving the problem.
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~ 0 9=0
PROBLEM 3: .~ o0 e SRR I

30

v
¥

INTERVAL COL © INTERVAL ROW,
3.0 3% 0 ‘1.0 30

" COMP D SIGMA A SIGMA R BUCKLING

1 1.0 0.0 0.0 0.0

\- | ProszEM | PRoBIEM.
3 | 3R

NUMBER OF ‘ : :
INNER ITERATIONS 15 . 5
PER OUTER - !
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PROBLEM L 5O P9=0 20

9N

204 - _
- L"”
y

R
O

INTERVAL COL
1.0 20

INTERVAL ~ ROW  INTERVAL ROW  INTERVAL  ROW

"L,0 © 10 X ‘1 1.0 20

COMP D SIGMAA SIGMA R BUCKLING

1 10, 0:0 0.0 . 0.0
PROBLEM 4 ' PROBLEM 4R
=4 |x=08 |x01 | x4 |x=08 | =01
NUMBER OF o - R R =
INNER ITERATIONS ' 8 12 27 7 | 7 7
PER OUTER . . :
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PROBLEM 5:

INTERVAL COL

L79500 1 .

1,01660 7.

99440 1
.19050 5.
2,26060 10

»56515 12

,09525 .- 13

INTERVAL COL
1,0833 6

. INTERVAL ROW

T LTRSS T 4

o L, ®=0
01 L6 7 //’?'EY 1
0 }— | .
I 0l ?
1,
1-
24 | . | ®©
@ | ®
L
T raele
=0 ‘a' ‘,» Bx‘= 0
12 _
13, @ kf?b
y
| INTERVAL COL INTERVAL COL
1,8055 2 3.61010 3
3175 8 52917 11
INTERVAL ROW INTERVAL ROW
1.86310 2 31750 3
1.20400: 6 ".19050 7

1,,.1‘303 8
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2
S

COMP

MACROSCOPIC CROSS SECTIONS FOR PROBLEM 5

D

2.557
2,245
2,171
2,122
2,107
25,000
25,000
2,211
2,198

1.314
1.113
1,09%
1,072
- 1,066
25,000
25000
1.115
1,110

.7383.

° 9121
9845
1,0401
1,0585
3.7175
3.9342

29290 ..

‘o 9245

.2534
4272

0 5287

o 6265 :

1871
0659
0771
04879
h675

SIGMA A

L0012

- 0017
.0018
.0018
.0018
.0011

0'001.1. .
0021 .

,0025

» 00001
- 00049
.00062
.00070
.00073

00572
00572

.00116
.00181

.00077
.00159
-,00160
.00155
.00152

34145 -

.31927
,01150
.02386

,0118
.0082
.0112
0066
. 006l
3.0547
2,8039
.1009
.1865

-SIGMA R

.0870
.0570
0471
©.0402.
.0380
.0000
.0000
0543
0547

.1205

0573

,0401
0290
0256
0000

.0000

0518
.0515

,12258

05786
04014
.02862

.02513
00000
00000
.04760

L 04159

o © o

COO0OODOOOO

©

5 o o

°©

BUCKLING

.002
.002
.002

.002.

.002
. 000
. 000
. 002

002

.002
. 002
. 002
.002
.002
.000
.000
.002
.002

.002

.002
.002
.002
- .002
. 000
.000

o 002 '

.002

1,002
.002

002

.002
.002
.000
.000
. 002
.002
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PROBLEM PROBLEM -
5 5R
' GROUP 1 48 . | GROUP 1 14
. NUMBER OF . GROUP 2 52 GROUP 2 1n "
INNER ITERATIONS "| GROUP'3. 21 GROUP 3 10
PER OUTER GROUP 4 10 | GroUP 4 8

For problems in r-z g_}e'ometr,'v or problems with identical (or sim.ﬂ.ar)
mesh spacings infb;>th directions, the orientation of the mésh is either not
f]:ex.lble or rlmm,a.’cger.{&.l° For: the_se problems, the 1-line 'method does not offer |
much flexibility. |
Multi-line methods are much more flexible in that it is possible to
hide some of the i'bad':' as and ay couplings as interior couplings. For‘ example,
in p;‘plp\]lf_io:m 5 the. "ﬁad," céﬁpl:l‘.‘ngs are thg aqg couplings from mesh lines O, ';, Ly 6y
10, and 12 and theaN couplings from mesh lines 1,. 3, 55 75 11, and 13. But
for a.'2_-iine method, all of thesé couplings are interiér couplings. To illugtrate -
the advantages of the multi-line met;hods s problem 5 was solved using a 2-liné

method and the results are given below.

PROBLEM §

(2-LINE METHOD)
GROUP 1 7
NUMBER OF GROUP 2 6
INNER. ITERATIONS - GROUP 3 5
. PER OUTER A GROUP & l

o
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Problem 5 was j(:‘hdé‘eh’]ﬁ::;jitgdic“‘isﬁs.l‘y‘ i‘io; iilustrate the effectiveness of the
2-line method, For problems with rather homogeneéus' compositions and rather
constant y direction mesh sﬁacings,‘tﬁe:. effect of 1iml'tj.;-11ne methods 'is not so- -
dramatic,?

Perhaps a multi-line method will be feasible on the next computer. Thus,
for possible. futqre use, we give a few suggegtionaﬁconqeming the meslq laydown
for multi-line methods, ' ‘

The orientation of the mesh should be chosen,i' if possible, using sug-
gestions (l) and (2) given previously. One then should try to hide the "bad"
ag and AaN couplings by making them interior couplings. The user.may -have.4o.o

add a\meéh row or two to do this,

leroblem 5 was taken from Ref, 12,

2For a one region problem with constant mesh spacings, the improvement of the
2-line mothod over the l-line method is. aboul 1.4,
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