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THE REDUCED CELL AND ITS CRYSTALLOGRAPHIC APPLICATIONS 

Stephen L. Lawton and Robert  A .  ~ a c o b s o n  

ABSTRACT :,. . , , . . 

This repor t  descr ibes  the reduced cell  and i t s  applications to  
s t ruc tura l  crystallography. Typical applications which a r e  discussed 
a r e  i t s  use a s  the s tandard choice of the unit cel l  in  a tr iclinic la t t ice  
and the use  of i t s  s c a l a r s  in  identifying in  a la t t ice  the cel l  of highest 
symmetry.  The repor t  a l so  descr ibes  two FORTRAN computer pro-  
g rams  which may be used to locate the reduced cel l  in a latt ice,  to  
calculate i t s  pa ramete r s  and to der ive the ma t r ix  for  the t ransformation 
of the original ce l l  to  the reduced cell .  

I. INTRODUCTION 
+ 

Pre l iminary  investigations of a crystal l ine substance usually 

begin with a n  identification of i t s  c rys t a l  symmet ry ,  such a s  i t s  c rys ta l  

system, latt ice type, space group and ccl l  pa ramete r s .  Such informa- 

tion may be obtained either by powder o r  single c rys t a l  X-ray diffraction 

techniques. Once the symmetry. has  been kstablished, however, it i s  
. . 

sometimes desirable  to locate and identify i t s  reduced - ce l l  as well. 
. . .  

The " t rue t t  reduced cel l  is defined.as that ce l l  whose axes a r e  the 

three  shor tes t  iion-coplanar translations in the latt ice;  consequently 

there  i s  only one such cel l  in any one latt ice.  I t  i s ,  by convention, the 

s tandard choice for  the triclinic cell .  But m o r e  important,  this  cell, 

and the method of finding it,  provides a simple d i rec t  method for  

identifying and locating in the latt ice the cell  of highest symmetry,  



s ta r t ing  f rom any ce l l  in  any a r b i t r a r y  orientation. This fact  alone i m -  

mediately suggests two useful applications: i t s  use  in  powder work in 

assigning the ce l l  of highest symmetry  to a pat tern indexed in  the t r i -  

clinic sys tem by a method such a s  that due to  Ito, and for  the alignment 

of single c rys t a l s  on a single c rys t a l  or ien ter  in which the c rys t a l s  a r e  

mounted in a completely random orientation. It also s e r v e s  a.s a. 

"fingerprint" and can thus be used not only for  comparing two crystal l ine 

f o r m s  of a compound for  s imi lar i t ies  in  their  latt ice but can  a l s o  be used 

to verify whether or not two crystal l ine fo rms  actually correspond to the 

s a m e  compound. Fur the rmore ,  by the s a m e  reasoning, any two o r  

m o r e  cel ls  in  a la t t ice  may  be, linked together via the reduced cel l  s ince 

the s a m e  reduced ce l l  can  always be found regard less  of the s tar t ing 

point. The reduced cel l  is thus an important one; consequently the 

mcthod of finding it ,  a s  well as a discussion of i t s  applications, i s  the 

purpose of this r epor t  and i s  fully discussed with the aid of detailed 

examples.  

'l'he concluding portion of t h i s  repnrt  descr ibes  two computer pro-  

g r a m s  written in full F o r t r a n  fo r  the IBM 7074 computer.  The f i r s t  of 

the two programs,  RCELL, i s  s t r ic t ly  a cell  reduction program which 

obtains the reduced ce l l  by the method discussed in this report .  The 

second, TRACER, i s  an  expanded version of RCELL and may be used 

not only fo r  obtaining the reduced cell, but a l so  fo r  general  cell  t r ans -  

formations a s  well a s  ma t r ix  multiplication and ma t r ix  inversion of 

3 x 3 t ransformation ma t r i ces .  



The Delaunay cel l  and the method of finding i t  i s  not discussed in  
S 

this report .  It i s  a cell  whose shor tes t  t h ree  non-coplanar t ranslat ions 

a r e  chosen so  a s  to enable a l l  t h ree  interaxial  angles to  be non-acute; 

they a r e  not necessar i ly  the shortest  translations in the latt ice.  

11. THE REDUCED CELL 

A. THEORY 

Of the seven sys tems into which c rys t a l s  may be classified,  the 

triclinic sys tem i s  the only one which possesses  no symmetry  a t  all .  

Through lack of symmetry  the th ree  axes may be unequal in length, un- 

equally inclined and a t  angles other than right angles.  This means that 

any three  non-coplanar vectors suffice in outlining a triclinic cel l  in a 

latt ice,  that t he re  i s  no restr ic t ion a s  to which three  a r e  chosen and 

that they a r e  not res t r ic ted  to those shor tes t  in magnitude. 

Of the infinite number of possible ' tr iclinic cel ls ,  most  of them a r e  

quite impractical.  One cell  which has  now been accepted a s  s tandard fs 

defined a s  the smal les t  cel l  whose axes a r e  the three  shor tes t  non- 

coplanar t ranslat ions in the  latt ice.  This par t icular  cell  i s  r e f e r r e d  to 

as the I-eeluccd cel l  and the m.ethnd of finding i t  i s  known a s  cel l  reduc- ~- - 
tion. F o r  a triclinic cel.1 tn be a reduced cell  the following conditions - 
must  be satisfied: 

(i). The cell  must  be primitive.  ' 

(ii). Each ccl l  edge must  be shor te r  than the diagonals of 

1 
the faces bordering i t  , s o  that (vectorially) 



Condition (ii) may be  rewri t ten into a m o r e  suitable form a s  a t e s t  by 

s q u a r i n g  each side of each inequality and expressing the vectors as 

sc'alar products.  F o r  instance, by squaring both s ides  of 

we obtain 6 l2 < 1;' - bd 1 2 ,  

By a s imi l a r  t rea tment  with the o thers ,  the twelve inequalities reduce 

to  the following six: 

(iii) . 

4 4 

where  la b I = ab  cosy, etc. 

If  a cel l  defining a part icular  latt ice is pr imit ive but fails to 

sat isfy all s ix  conditions under (iii), i t  is possible to sea rch  for  shor te r  

translations in  a systematic  way utilizing directly the th ree  vectors  



defining the edges of the original cell .  One method of doing' this  is due 

to ~ z i r o f f  and, ~ u e r ~ e r ~  and i s  the method discusged h e r e .  The use  

of this method requi res  that (1) the cell  to  be reduced i s  pr imit ive and 

(2)  Llle three  vcctors  descr ibe  the cel l  in  d i rec t  space, a s  the rec iproca l  

of the reduced primitive cel l  of the reciprocal  latt ice is not necessar i ly  

the reduced primitive cel l  of the d i rec t  lattice1' '. The method of s e a r c h -  

ing for  shor t e r  vectors  in a latt ice may be  achieved in a t  l eas t  oneof  

two ways, either graphically o r  analytically. 

The graphical method of finding the reduced cell  simply involves 

constructing the latt ice on paper and searching for  the shor tes t  t r ans l a -  

tions directly. This may be achieved by drawing a two-dimensional 

latt ice of points, o r  net, according to a fixed sca le  containing two of the 

th ree  axes and searching for  the shor tes t  translations,  one axis  a t  a 

t ime.  

The analytical procedure i s  a much m o r e  exact approach for  i t  not 

only allows the m o r e  demanding accuracy but i t  a l so  lends itself well 

for  use on a computer (Chapter 111). Briefly, the analytic reduction p ro -  

- 4  4 

ceeds a s  follows: F i r s t ,  of the three  sca la r  products z- 6: x .  c, c . a ,  

the one la rges t  in absolute value i s  selected a s  the f i r s t  candidate for  

the reduction of a vector.  The part icular  vector which i s  reduced f i r s t  

i s  the l a r g e r  of the two vectors comprising the sca la r  product just 

4 4 

selected; thereaf ter ,  the second longest remaining t ranslat ion of a, b and 
4 

c i s  reduced next and finally the remaining translation reduced last .  

After a l l  t h ree  translations (vectors)  have been reduced, the six 



conditions (iii) a r e  again tested. If one o r  more ,  of the axes can  be r e -  

duced s t i l l  fur ther ,  the new pa ramete r s  a r e  recycled for  fur ther  reduc-  

tion. 

The procedure of reducing the length of a vector i s  achieved by 

vector addition o r  subtraction. F igure  1 i l lus t ra tes  this  procedure for  
4 44 4 

L h t :  redr.lctlon of vectnr b 1 in the a hl -plane. Sllartei: v t : c ~ u r s  of b a r e  

4 + 
found by adding (vectorially) integral values of a to  b i f  the angle be- 

+ 4 

tween a and b i s  g rea te r  than 90" o r  by subtracting (vectorially) 1 
d 4 

integral  values of a from b i f  the angle 'betwcen them i s  l e s s  than 90". 

In this  c a s e  the angle between them i s  l e s s  than 90" s o  that by successive 

4 4 + 
subtraction of vector a f rom b the shor tes t  vector b i s  ultimately ob- 1 

-+ 4 4 

tained i n  this net, where lcl I > Ir9 I > Ib 1 < Ib41 <. . . < (h-I 
L 

Fig.  1. The vectorial  reduction of a vector.  
-6 

That [b 3 1  i s  the smal les t  m a y  be verified mathematically in the follow- 

ing manner .  Let the projection of vector $ on the la t t ice  row co~ltaining 1 
4 

17~c to r  a be defined a s  the distallce OA. Similarly,  le t  the projection - 
of b Z  on the s a m e  row be OA1and that of rg be OA", etc. In going f rom 

4 '  4 4 

b to b to b the magnitude of cn i s  seen  to. dec rease  a s  docs i t s  3 



4 4 4 

projection, and f rom b 4  to b m  they s t a r t  to  inc rease  again. F o r  b the 

projection OA i s  longer than (a1 but both OA' and OA" a r e  shor t e r  than 
4 4 

la ! . Now if b = b then OA' = OA" = $ la 1 . If, however, the vectors  

4 4 

b and b a r e  of unequal length, then their  projections a r e  a l so  of un- 2 

equal length, one projection (in this c a s e  OA') being g rea te r  than f la \  

and the other (in this c a s e  OA") being l e s s  than $ l a \ .  Thus, the shor tes t  

4 

translation b in  general,  i s  obtained when n ' 

'la1 cosy 

o r  
Ib cosy I < + ) a ] .  

If both s ides  a r e  multiplied b y z ,  the following expression i s  obtained: 

2 
lab cosy I a . 

Rut 

whence 

--. 4 

lab cosy = la . b 1 ,  

which i s  just one of the s ix expressions of (iii) on page 4. Note that 
4 

this i s  mere ly  equivalent to saying that b is the shor tes t  t ranslat ion in 

the ab-plane when 

~ r ~ < ~ z * r l .  

As the length of a vector i s  reduced, that i s ,  a s  shor t e r  vectors  

a r e  located in a net, the angle between the two vectors  involved in  the 

reduction approaches 90" with a corresponding approach of the sca la r  

4 

product to  zero.  F o r  instance, a s  b i s  reduced in the ab-plane, ~ 4 9 0 "  

and la . 1 -- 0. This immediately suggests an analytical approach to 

locating shor te r  vectors  in a lattice. Suppose w e  can lucale shur te i l  



4 

vectors  of b a s  follows: 

4 

where  lb < 15 I . If we multiply (vertically) both s ides  by a, we obtain 

an expression now in  a usable mathematical form for  locating shor t e r  

4 

vectors  of b ,  a form which is i n  terms 0.f variables which a re  

s ince i t  i s  equivalent (in expanded form)  to 

2 abn cosyn = a b  cosy - na . 1 1 

then 

4 4 4 4 

In otherwords,  i f  a . b i s  positive, we subtract  naZ; if a 
1 . b l  i s  

2 4 4 negative, we add na . In this way a . b is made sma l l e r ;  the net 
1 

4 4 

affect i s  reduction of b (a held constant) in  the a b  -plane which in turn 1 
4 

yields a vector m o r e  orthorgonal to  a ,  that i s  191 < ITl I and 

-C -C 

I c o s ~ ~ , (  < Icusyl 1 .  If i t  i s  desired t o  rcdnrr a inrterd uf b in  rhc ab- 

2 4 4 

plane, then nb i s  appropriatelyadded o r  subtracted f rom a . b . Once 

4 4 

the smal les t  la . b I i s  calculated, the new cell  pa ramete r s  may be 

determined according to  the usual methods (Appendix IV). 

2 2 According to the foregoing discussion integral values of a , b o r  

c Z  a r e  either a.dded o r  subtracted f rom ail u f i s y ~ ~ l ~ n e t r i c a l  s ca la r  product 

fo r  reduction of a vector. These integers ,  n, may be used to obtain the 

final ma t r ix  f o r  t ransforming the original t r ic l inic  cell  to  the reduced 



cel l .  We f i r s t  note that before any axis  i s  reduced the initial ma t r ix  i s  

always the identity matr ix .  After reduction of a vector has  taken place 

in  a par t icular  net, the integer,  n, which i s  obtained becomes the element 

n introduced into the identity ma t r ix  to form the par t icu lar  ma t r ix  i j  

corresponding to  the transformation of the cell  before reduction to the 

cel l  obtained af te r  reduction of the vector.  Each t ime  this process  i s  

c a r r i e d  out one simply s t a r t s  again with the identity ma t r ix  and reduces 

the vector to  determine i t s  magnitude and the integer nij. Finally a f te r  

the ent i re  cell  has  been reduced, the ma t r ix  for  the t ransformation of the 

original t r ic l inic  cell  to  the reduced ce l l  becomes 

- 
N ~ - t n  - (Nn-l-n 1 . . . (N4+5)(N3,4)(NZ43)(N142) 

where N whose modulus is always unity, i s  the ma t r ix  for  the 
P' q' 

t ransformation of cel l  (p) to ce l l  (q),  cell  (1) being the original cel l  

and cel l  (n) the reduced cell .  

To i l lustrate  this procedure of deducing the ma t r ix  suppose we 

--C 

reduce a part icular  cell  by f i r s t  reducing vector c in the ac-plane, 
* 4 

holding a fixed in  magnitude. This means  vector a will be  added o r  - 4 

subtracted n- t imes f rom vector c until the shor tes t  magnitude of c i s  

obtained; mathematically this corresponds to  the addition o r  subtraction 

2 4 4 4 4 1 2  of na f r o m  a c until la c I s Z a  . The integer n i s  therefore  n31, 

s o  that the ma t r ix  of the resulting transformation i s  



The modulus of this matr ix  i s  unity. Now supp0s.e we further  reduce 

4 4 

vector c this t ime in the new bc-plane, holding vector b fixed in 

magnitude. The matr ix  then for  the transformation of the cell  before 
4 

reduction to that obtained af ter  reduction of vector c in the new bc-plane 

is 

The matr ix  for  the transformation of the original triclinic cel l  to 

the cel l  obtained a t  this stage of the reduction is 

-c 

In like manner i f  vector b i s  next reduced, say in the new bc-plane 

+ 
holding c fixed in magnitude, the matr ix  for the original cell  to the 

cel l  obtained a t  this new stage of the reduction becomes 

etc. 

The reduced cell  i s ,  a s  previously stated, always a primitive cell. 

This i s  required in o rde r  for it to have the smallest  volume and the three  

shortest  non-coplanar translations in the lattice. Therefore,  since the 

cell  reduction technique just described involves no change in volume, 



the original cell  f rom which the reduced cel l  i s  obtained mus t  a l so  be 

primitive.  There  i s  no restr ic t ion,  of course,  in subjecting centered 

ce l l s  to cell  reduction. Since no change in volume occurs  the cel l  ob- 

tained af te r  reduction can never,  then, be pr imit ive with one la t t ice  point 

but may s t i l l  be centered in the usual sense  and will have the s a m e  voluri~e 

and total number,  of latt ice points a s  before. Thus, i f  a C-centered t r i -  

clinic cel l  undergoes reduction in i t s  parameters ,  the final cel l  will s t i l l  

have the s a m e  volume, even though shor t e r  axes,  and will s t i l l  contain 

two lat t ice  points, being either A-, B- o r  C-centered, body-centered, or  

even a primitive cell  which i s  centered along an  edge, depending upon 

the part icular  transformation involved. Our discussion will per tain only 

to.reduction of t rue  pr imit ive cel ls  containing only one la t t ice  point. 

Of the seven crys ta l  sys tems,  only two may  be reduced. Accord-  

~ n g  to  the p ~ o c c d u r c  heretofore described, cel ls  may  be  reduced only if 

- 4  4 

their  unsymmetr ical  s ca la r s  (i. e . ,  . r, r c , c a ) a r e  not equal 

. to zero  and are r~ot at thcir  minimum possible absolute value. Thus, in  

addition to the t r ic l inic  system in which a l l  t h ree  axes may be reduced, 

the monoclinic cel ls  may a lso  be reduced but only in the plane containing 

4 

the non-90' angle. In the monoclinic system, c-unique, only a and/or 
4 

b may be reduced, the reduction being in  the ab-plane; for  b-unique, only 
4 - 
a and/or c may be reduced, the reduction being in the ac-plane. All 

other sys tems have their  ~znsymmetr ical  s c a 1 a . r ~  either a l l  z e r o  o r  a t  

their  minimum absolute value. This simply means,  then, that the 

primitive cel ls  in t h e  other f i v e  c rys ta l  oyctems a r e  actually the reduced 



cel ls .  (This i s  not s o  fo r  the centered cel ls ,  which may be reduced to 

the i r  reduced ce l l s  only by f i r s t  t ransforming them to a pr imit ive t r i -  

clinic o r  monoclinic cell .  This i s  discussed in m o r e  detail in Section 

E-3 of this chapter .  ) 

B. THE REDUCED C E L L  IN ITS CONVENTIONAL ORIENTATION 

A convention has  been established for  the reduced cel l  dcfining a 

t r ic l inic  la t t ice  and m a y  be stated as  follows: 

The reduced ce l l  defining a tricliriic la t t ice  i s  that cel l  

which i s  pr imit ive i n  nature (contains no centering),  whose 

edges a r e  the t h r e e  shortest  non-coplanar t ranslat ions in 
I 

the  latt ice,  labelled s o  a s  to have c < a  < b  and oriented s o  

that the angles a and /3 a r e  non-acute. 

(A full discusaiorl of the convention for  a i l  seven c rys t a l  sys tems may 

be  found in Crys ta l  Data Determinative Tables,  ACA Monograph No. 5, 

Lnd ed. , (1 963j, p. 2. ) 

I t  may tu rn  out that a f te r  the t r ic l inic  reduced cell  has  been 

found -- that i s ,  a f te r  the shor tes t  t ranslat ions have been located and 

they satisfy conditions (i) and (ii) on page 4 - - 'it may not correspond 

to the convention s tated above. A rear rangement  of the axes and r e -  

definition of the angles i s  thus required. To do this one simply r e -  

a r r anges  the t ranslat ions into the proper  o rde r ,  car ry ing  along the 

corresponding angles,  and then converts  the angles a and 6 to obtuse if 

found to be acute, obeying the ru les  which a r e  discussed in the next 

section, rules  to which one must  s t r ic t ly  adhere  for  proper  conversion. 



C. RULES ASSOCIATED WITH CHANGES IN C E L L  ORIENTATION 

A cell  defined by three  axes and th ree  angles is not res t r ic ted  

soley to one orientation. One i s  f r e e  to  interchange the axes,  to  r e v e r s e  

the direction of the axes,  to r e v e r s e  the so-called cha rac te r  of the 

angles o r  to r eve r t  f rom a. right-handed coordinate sys tem to a left-  

handed sys tem and vice versa .  All these changes mus t  be executed 

following a cer ta in  s e t  of basic rules .  Fa i lu re  to do s o  may re su l t  in 

r eve r sa l  of the axial  sense  and, even m o r e  seriously,  a possible in- 

advertent destruction of the latt ice accompanied by a change in  volume. 

The rules  of in te res t  a r e  summarized  below. The t e r m  "char-  

acter"  of an interaxial  angle r e fe r s  to i t s  acute  o r  obtuse nature,  in-  

dicated by the sign of i t s  cosine, (+) for  acute and ( - )  for  obtuse. 

(i). The "reversal"  in  the direction of any axis direct ly  involves 

two angles, the new angles always being the supplement of 

the old (viz . ,  8 4  T - 8), since two of the th ree  sca la r  products 

involve the reversed  axis .  

(a). If one axis  i s  reversed  (e.  g . ,  abc-Zbc), the cha rac te r  - 
of the angles opposite the other  ,two axes  is r eve r sed  

- - 
(e. !4. 9 Pnew - " - bold z&nd Ynew - - Yold ) Accompany- 

ing this change i s  a r eve r se  in the sense  of a ,  b, c ,  

that i s ,  t he re  resu l t s  a conversion of a right-handed 

coordinate system to a left-handed system, and vice 
4 - 4  

ver sa  (yiz. ,  V = (-a) b x c = -V). 



(b).  If - two axes  a r e  r eve r sed  (e.  g. ,' a b c d a b c ) ,  the cha rac te r  

of the two angles opposite the r eve r sed  axes i s  changed 

(e .  g . ,  a and p ,  indicated by the fact  that '6. c = -(b. c )  and 

- 
a- c = - ( a -  c )  ) ;  the new angles a r e  the supplement of the 

M 4 

old. The axial  sense  i s  not changed, s ince V = ( -a  ). ( -b  ) 
4 

x c = +V. 
- 

(c) .  If all th ree  axes  a r e  r eve r sed  (e. g. , abc d a b c  ), the 

ch.aracter of no angle i s  changed. The axial  setise i s  
-C 4 -+ 

changed, however, s ince V = (-a).  (-b) x ( -c )  = -V. 

(ii). If the cha rac te r  of any angle is changed, a second must  a l so  . 

4 4  

be changed. Thus, i f  the cha rac te r  of y is changed, then (a- b ) 4  
4-  -C 4 

- (a  b), implying ei ther  a o r  b has  r eve r sed  directinn, t h u s  in- 

volving a change in s ign of a second unsymmetr ical  s ca la r  

product. 

.(iii). If two axes  a r e  "interchanged", the sense  of the axes is also 

changed (e.  g. , i f  abc-acb then t V--V). To prevent this 

change ill the axial sense ,  the direction of' e i ther  one (namely, 

the unchanged axis )  o r  a l l  t h ree  axes  must  be reversed .  

Accvrripanying this  change, (a)  i f  the one axis  i s  r eve r sed  (v iz . ,  
-C 3 

a d - a )  the cha rac te r  of the angles opposite the interchanged 
3 4 

axes  (viz. ,  opposite b and c )  i s  reversed ,  and (b) i f  all th ree  

axes are reversed ,  the charac ter  of no angles is changed 

( ru le  (i) above). Thus, 



or  if a b  c- b a  c, then (a1 = /3, /3' = a), 

the system remains right-handed, or  left-handed a s  the case 

may be. 

(iv). If three axes a r e  "interchanged" they merely permute, with no 

change in the axial sense (e. g. , i f  a b c - c a b-, b c a ,  then 

+V remains + V) . 
Transformation matrices a r e  affected by reversing the direction 

of one o r  more  axes. Suppose a cell  i s  transformed to a new cell and 

it  i s  then desired to reverse the direction of one o r  more  of the axes 

of the new cell to give a third cell with the same axial lengths. The 

transformation matrix from cell (1) to cell (3) can be obtained by left 

multiplying the transformatio'n matrix of cell (1) to cell (2)  with the 

matrix used for reversing the direction of the axes. Consider, for 
4 4 

example, the reversal  in the direction of axes a and c in cell (2). The 

matrix for translorrllillg cell (1) to cell (3)  i s  thcn 

cell (2) to cell (3) cell (1) to cell (2) cell (1) to cell (3 )  
(a and c reversed) 

Notice this simply involves reversing the sign of the matrix elements in 

4 the rows corresponding to the axes being reversed in cell (2). This 

type of change holds in general for one, two, o r  three axes being reversed. 



This leads to the following rule: 

(v). Let  the transformation of cel l  (1) to cel l  (2) be given by 

Cell  (2) Cell (1) 

+ + 4 

The reversa l  in the direction of A, D., a.nd./nr C teveroes 

the signs of the corresponding "row" elements of the t rans  - 
4 -r 

fornlatiorl matr ix.  That is,  i f  A d - A ,  then nl 14-n1 

n1 24-n 2, n1 34-n and similar ly for  and/or i f  they 13' 

a r e  reversed.  

In a three-dimensional latt ice there  a r e  only four ways of obtaining 

a right-handed system of labelled axes differing only in the charac ter  of 

the angles a, 8, y between them; likewise there  a r e  only four ways of 

obtaining a left-handed system. These may be seen to conlprise the 

eight corners  of a unit cell: 

right -handed 

a b c  

left -handed 

a b c  

- 
a b c  

Figure 2 shows those f o r  the right-handed axial c r o s s  situated at the 

corners  [OOOI, [Oil], [ l o l l  and [110]. The angles a, p,  y which the 

three  vectors make a t  one of the corners ,  say [000], will be a, /3', y'  



a t  [ ~ l l l ,  a', 8 , y'at [ l o l l  and a\ B1,y a t  [110], where the pr imed 

l e t t e r s  designate supplementary angles (a1 = 180" - a, . . . , etc. ) 

Fig. 2. The four right-handed axial  representat ions of 
labelled axes in a three-dimensional 1,attice. 

The angles a, P ,  y a t  any one co rne r  may, in general,  be acute  

o r  obtuse. Consequently, there  a r e  a total of eight possible combinations, 

shown in  tabulated form in Table 1 for  each of the four right-handed 

3 
axial representations , where the charac ter  of the angle i s  indicated 

by the sign of i t s  cosine, (t) for  acute and ( - )  for  obtuse. 

Inspection of Table 1 reveals  one significant property of a latt ice.  

In only four  of the eight cases  (Nos. 1, 2, 3, 4) i s  i t  possible to find 

a l l  th ree  angles obtuse. In every case ,  on the other hand, there  exists 

a right-handed sys tem with a t  leas t  two angles obtuse. This fact  has  

thus been a basis  for  the convention established for  the t r ic l inic  reduced 

cell  (page 12) which se t s  two angles obtuse and allows the third to  be 



Table 1.  The four right-handed axial  representat ions of labelled axes  
and the cha rac te r s  of the interaxial  angles. 

e i ther  obtuse o r  acute .  In this way the triclinic cel l  whose axes a r e  the 

th ree  shor tes t  non-coplanar translations in the la t t ice  may  be satisfied 

a t  all t imes ;  to  r e s t r i c t  all th ree  angles obtuse leads to a solution in  

only 5070 of the cases .  

D. SAMPLE C E L L  REDUCTIONS O F  SOME TRICLINIC CELLS 

The following examples a r e  intended to i l lus t ra te  in  principle the 

methods associated with the reduced ce l l  technique. Example 1 i l lus t ra tes  

the complete s tep-by-step process  of obtaining the reduced cel l  of t r i -  

clinic 16-DL methyloctadecanoic acid. Example 2 illuotratco the mcthod 

of converting a reduced ce l l  to i ts  conventional orientation for  iodine 

t r ichlor ide in  which only the angles have to  be redefined. A third example 

may  be found in Example 3, part icular ly s tep 2 and 3 on page 69, which 

i l lus t ra tes  extremely well each one of the basic  ru les  of the previous 



section for  conversion of a reduced cel l  to i t s  conventional orientation 

in a latt ice.  If other examples a r e  des i red  for  pract ice,  the r eade r  i s  

r e fe r red  to the excellent comprehensive re ference  Crys ta l  Data Deter-  -- 
minative Tables r e fe r red  to  in  Section B of this chapter.  All the t r i -  

clinic cel ls  defined in  that volume a r e  the " t rue t t  reduced cel ls ;  for  each 

triclinic compound the edi tors  have indicated the original la t t ice  param-  

e t e r s  reported in the l i te ra ture ,  the pa ramete r s  of the reduced cel l  in 

i t s  conventional orientation and the ma t r ix  for  t ransformation of the 

original cel l  to the reduced cell .  

Example 1. 

Crystals  of 16-DL methyloctadecanoic acid, C H 0 a r e  t r i -  
19 38 2' 

clinic, space  group pi, with latt ice pa ramete r s  6 

Deterlnirle i t s   educed cell. 

Solution. F i r s t  a t e s t  i s  made to determine i f  this cel l  i s  a l ready 

the reduced cell .  To do this we will need to know the s ix sca lar  

products. 
4 4 

a b = a b  c o s y =  (5.40)(7.  54) cos 60" 18' = t20 .  17 
4 d 

b . c = bc cos cx = (7. 54)(51.8) cos 145" 38' = -322.  39 
4 4 

c . a = ca  cos p = (51. 8)(5.40)  cos 105" 42' = -75. 69 



(i). T e s t  

I s  1-l-20. 17 1 i (29 .  16) ? No. 

I s  1i-20. 1 7  1 i ( 56 .  85) ? Yes. 

I s  1-322. 39 1 s i ( 5 6 . 8 5 )  ? No. 

I s  ' 1-322. 391 ~ i ( 2 6 8 3 .  24) ? Yes. 

Since three  of the s ix  t e s t s  fail, i t  may  be concluded that the ccl l  is not 

a reduced cell. We therefore  proceed to p a r t  (ii). 

(ii). The Cell Reduction -- 
Reduction of c. - .- 

- - 4 4  4 4 

Inspection of the th ree  sca la r  products a . b ,  b c ,  and c . a r e -  
d - 

veals that b . c i s  the l a rges t  in absolute value. Fur the rmore ,  of - 4 4 

vectors  b and c , c is the l a rge r .  Therefore,  7 is reduced f i r s t  and. 
4 4 

is held constant in magnitude. The product b . c'  is negative in value, 
7 .. .& ' - 

s o  integral  values of b" ( =  b . b )  must  be added to the sca la r  product to 

reduce its value. 

4 + - -. 2 
b . .C = b . c + nb = (-322. 39) + n (56. 8.5) 1 1 

= -322. 39 when n=O 



4 

When n = 6 the sca la r  product 6 c is seen to a t t a in  i t s  minimum 2 

absolute value. F igure  3 i l lustrates  the reduction in  7 that has  just  

occur red. 

4 

Fig. 3; The v e c t o ~ i ~ l  reduction of vector c by vector 
b i n  the b c -plane. 

The relationships of the vectors  in  the old and new cel l  a re  thus the 

following: 

Original Cell  
4 

New Cell. 
A d 

Their  calculated values in the new .cell a r e  



i. e . ,  2 - -  - 
C2 - C2' C2 = (< t  6%). ( q t  6 5 )  

The t ransformation m a t r i x  f rom the original cel l  to  the new cel l  i s  

Fur ther  Reduction of c .  --- - - - 
A t e s t  may  now be made to determine i f  the vector c can be reduced 

even fur ther ,  this t ime in  the a c  plane. 

l t 4 5 .  331 s $ (29.16) ? No. c 

4 

Therefore ,  c can be reduced s t i l l  fur ther .  The reduction will occur  in  

4 4 

the new a c  plane and values of a 2  must  be subtracted f rom c 2- a2# a 



4 4  4 4  

c3- a 3  = c2-  a 2  - na2 = ( t45 .  33)' - n (29. 16) 

= t 45 .33  when n =  0 

The relationships of the vectors  in the old and new cel l  a r e  now the 

following: 

Original Cell New Cell 

Their  calculated values in the new cel l  a r e  

The new transformation mat r ix  (from the original cell)  i s  now 



Reduction of b. -- 
4 4 - 4 

Of the or iginal  pa ramete r s  a l ,  bl and c l ,  b was seen to have the 
1 .  

second l a rges t  value. I t  may thus be  reduced next. A t e s t  may be made 

to  determine in  which plane the reduction will have to be made. 

1-21. 631 Si (796 .  54). Yes. 

I + z o .  1 7 )  g i ( 2 9 .  16).  No. 
4 4 

Therefore,  the vector  b ( = b  ) can be  reduced in  the a b  plane, using 3 

= t20. 17 when n-0  

The relationships of the vectors  in the old and new ce l l  a r e  now the 

following : 

Original Cell  New Cell  



Their  calculated values in the new cell  a r e  

The new transformation ma t r ix  (from the original cell)  i s  now 

4 4 

~ e s t i n g  the new sca la r  product b4. c4  against  'c indicates r e -  4 
4 

duction of vector b i s  essentially complete. 

Reduction of a .  -- 
4 

The remaining translation, a, i s  now reduced next. A t e s t  i s  

made to determine in which plane the reduction will  be necessa ry  o r  if 

reduction can occur a t  all. 

1-12. 991 5 ;  (796. 51) ? Yes. 

1-8. 9 9 )  5 4 (45. 67), ? Yes. 

Reduction of the o'riginal tr iclinic ce l l  i s  thus comple'te. Testing 

C th.e tsriginal six conditions using the values obtained for  a 4, bq* cq9 



4 - C - 4  d 4 

a4' b4, b4' c 4  and c a4  verifies this and additional cycles  a r e  unnecessary. 4 

The ce l l  pa ramete r s  of the reduced t r ic l inic  ce l l  a r e  thus 

cos CL = b4' C4 - -8.64 
- (6. 76)(28. 22) = -0. 04529 

b4 C4  

C O S  p = C4' a4 - -12.99 
- (28. 22)(5. 40) 

= -0. 08524 
a4 

aq' b4 - 
C O S  y = - - -8. 99 

(5. 40)(6. 76) = -0. 24627 
b4 

- 1 y rns (-0. 24627) - 104" 151 

The t ransformation m a t r i x  f rom the  origirlal tr iclinic ce l l  to  the reduced 

ce l l  i s  thus 

Now, the conventional orientation of the reduced ce l l  in a t r ic l inic  

la t t ice  i s  

CL, @ obtuse. 



Therefore ,  the la t t ice  pa rame te r s  of the reduced ce l l  become (upon 

rear rangement )  

a = 6. 76 4 

b = 28. 22 

c = 5.40 

The corresponding t ransformation m a t r i x  i s  

Example 2. 

Crys ta l s  of iodine t r ichlor ide,  12C16, a r e  tr iclinic,  space  group 

PT, with la t t ice  pa rame te r s  a = 5. 71, b = 10. 88, c = 5. 48 and 

a = 130" 50', P = 80" 50', y = 108" 30'. Upon t ransformation to i t s  

0 

reduced ce l l  the  pa rame te r s  become a = 5. 71, b = 8.  39, c = 5.48 A and 

a = 101" 13', P = 80" 50' and Y = 107" 54' . The corresponding t r a n s -  

formation m a t r i x  i s  100/011/0r31., Determine the p a r a m e t e r s  of the 

reduced ce l l  in i t s  conven tiorlal orientation. 

Solution. The convention i s  c < a  < b  with a ,  @ obtuse. The axial  

lengths of the reduced cel l  in  the orientation indicated a r e  seen  to  be 

in  the proper  order .  The angle P however does not conform to the con- 

vention and mus t  be cor rec ted .  The change which i s  required i s  t he  

following: 

6' = n -  /3 = T -  80" 50' = 99" 10' 

y '  = n - y =  .rr- 107" 54' = 72' 6 '  . 



Such a change resul ts  f rom two possible changes in the axes:  a reversa l  

in the direction of the a-axis  only o r  the reversa l  in the directions of 

both the b-  and c-axes. We may take our choice. The transformation - 
matr ix  corresponding to the two possible changes a r e  il lustrated below. 

Notice that one i s  related to the other by a change in sign of a l l  nine 

elements. The fo rmer  (A=  -1) involves a conversion from say, a right- 

handed system to a left-handed system; the lat ter  (A=  1) a retention of 

se11sc. 

E. APPLICATIONS 

Once a unit cell  has been identified from single crys ta l  o r  powder 

diffraction data, one question often asked i s  whether o r  not a unit cell  

of symmetry higher than the observed one actually exists and i f  so what 

i s  it, how i s  i t  oriented relative to the observed one, and what a r e  i t s  

dimensions? The reduced cell  and the method of finding i t  provides the 

answer. 



THE 43 REDUCED CELLS 

In 1928 P. Niggli showed that t he re  a r e  only 43 unique reduced ce l l  

4 
types . He showed that by considering a l l  the possible combinations of axial  

lengths and interaxial  angles in the fourteen Bravais  latt ices,  there  r e -  

sult  just these 43 cel ls  whose axes correspond to the th ree  shor tes t  
4 - 4 4  

non-coplanar translations in the lattice. I t s  s ix  s c a l a r s  - - a . a, b b, 

4 + + 4 4 4 4 4  

c ' c, b . c, c a, a b - -  consequently contain complete information 

about the Bravais  la t t ice  of highest symmetry  which i t  represents .  In 

represent ing the reduced cel l  by i t s  s ca la r  products the following ma t r ix  

representation was proposed by him: 
4 4 4 4 4 4  a - a  b e b  c " )  = ' ( r l l  rZ2 r 3 3 )  

4  4 4  + 4 4  

b - c  c - a  a - b  r23 r31 r12 

where a < b  < c  with a, 4, y a l l  obtuse o r  a l l  acute.  

As examples of th.ree of the 43 reduced cel l  types, let  us consider the 

three  cubic latt ices shown in F igure  4. In each latt ice the reduced ce l l  

4 
i s  outlined in bold l ines with axes labelled e (af ter  Niggli ).  

Fig. 4. The three  cubic la t t ices  and their  reduced cell. 



In the primitive case  the three  shortest  vectors correspond to the edges 

of the cell  itself. Its sca lar  products a r e  thus 
4 4 r l i  = r 2 2  = r33 = e e = a 2 

1 
i t s  reduced form therefore being 

The three  shortest  vectors in the body-centered cubic lattice correspond 

to the lines joining three non-adjacent corners  of the cube with the 

center  of the cube, thus lying along the body-diagonals. These three  vec - 
t o r s  a r e  thus seen to actually form a rhombohedral cell  with = 109" 28' 

16.4It, cos a = -1/3. F o r  this reduced cell we have --. - 

I t s  reduced form i s  thus 

The thrcc shortest  vectors in a face-centered cubic lattice correspond l o  

the reduced cell  whose axes join a corner  of the cube with the three 

neares t  face-centers,  thus lying along the face-diagonals to form a 

rhombohedral cell  with a = 60°, cos a = *. This reduced cell  i s  a 

reciprocal of the reduced cell  in  a body-centered cubic lattice. F o r  

this cell  we have 



-+ 4 - 2 1 '1 1 
r23 - r31 = r12 

= e . e = e 2  cos 60' = e ( r )  = - 
2 .  

I ts  reduced form i s  thus 

The reduced cell  i s  thus seen  to be a special  one. Its  s ix  s c a l a r s  

a r e  seen  to  charac ter ize  a par t icular  Bravais  lattice, i t s  axial  lengths 

and interaxial  angles. Herein l ies  the "link" between any ce l l  in a latt ice 

and cel ls  of higher symmetry.  By the method outlined in the preceding 

sections of this chapter,  the cel l  i s  t ransformed to i t s  reduced cell .  I ts  

reduced form will be one of the 43 possible reduced fo rms .  By com-  

paring i t s  s ix  sca la r s  with those in Tables 2 and 3, the c rys ta l  system 

and latt ice type of highest symmetry  in  the latt ice may  be readily 

identified, keeping in  mind, of course,  the possibility of pseudo-cells 

s ince the reduced form says nothing about symmetry,  just axial  lengths 

and interaxial  angles. 

2. ORGANIZATION AND USE OF TABLES 2 AND 3 

The 43 reduced cel.1. types and their  reducedforms a r e  l is ted in  Tables 

2 and 3. Their  corresponding orientation in  the Bravais  latt ice appear  - - - 
in Figure  5 where a ,  b, c arc the axes of the reduced cel l  in i t s  con- 

4 
4 +  4 

ventional orientation and A, By C a r e  the axes of the unit cell .  The 

reduced forms appearing in these two tabies appear  in revised f a r m  f rom 



those found in  Niggli's original work4 and from the reduced forms 

2 
tabulatcd in ~ z i r o f f  and Buerger , which a r e  based direct ly on Niggli's 

work. Niggli defined the orientation of his  reduced cel l  a s  a < b  < c  with 

a ,  ,g, y either a l l  obtuse o r  a l l  acute, giving r i s e  to  what he called 

t l p o ~ i t i v e "  rcduccd fo rms  and "negative" reduced 1vr11lti respectively. 

The reduced cel l  has  since been standardized to  be c < a  c b  with a ,  B 

obtuse (p. 12). Tables 2 and 3 a r e  based on this convention. In most  

cases  only one reduced form i s  possible; that i s ,  only one orientation of 

the reduced cel l  in  the latt ice is possible which conforms to this conven- 

tion. In other cases  there  a r e  two possibilities, one with y acute and 

the other  with y obtuse, just a s  in the c a s e  of the convention used by 

Niggli where a positive reduced form and a negative reduced form could 
0, 

co-exist  in the same lattice. 'When two si.ich. orientations a re  possible, 

both a r e  given to facilitate quick a.nd rapid r e f p r p n c p ,  (Note that a, b, 

c, CL and /3 remain unchanged in the  two orientations. Note a lso  that the - 
reduced cell  i s  defined soley by i t s  three  axial vectors;  the charac ter  -- ---- - 

$of i t s  interaxial angles defines i t s  orientation. ) Consequently, i f  a r e -  -- - 
duced cel l  is converted to i ts  conventional orientation, these tables may 

be used directljr. 

In pract ice the procedure of identifying the unit cell  and latt ice 

type f r o m  a knowledge of the reduced cell  i s  a s  follows: F i r s t ,  the 
M 4 + - + 4 .  

symmetrical  sca la r s  (i. e . ,  a a, b b, c . c - in  that o rde r )  of the 

conventional reduced cell  a r e  placed into one of the following four 

categories,  a s  defined on page 29in t e r m s  of r1 r z 2  and r33: 



- 
r l l  - r22 = r33 

r = r  11 2 2  + '33 

# '22 f r33 11 (where r 11 - - '33 # r22) 

'11 + '22 f '33 

Using Table 2 and the catagory established for  the symmetr ica l  s ca la r s ,  

to within reasonable experimental e r r o r ,  the unsymmetr ical  s c a l a r s  

4 + 4 4 4 4  

(i. e . ,  b c, c - a, a b - in that o rde r )  a r e  examined next to determine 

to which subcatagory they belong. In doing this they a r e  searched  for 

specializations, such a s  one o r  m o r e  being zero,  one o r  m o r e  being 

related to each other o r  related to the symmetr ica l  s ca la r s .  F r o m  this 

i t  i s  possible to deduce immediately the c rys t a l  sys tem of highest 

symmetry,  i f  one exists.  Finally, using Table 3 and the cel l  number in 

parentheses  obtained f rom Table 2, the t ransformation f rom the reduced 

cell  to  the unit cell ,  and i t s  latt ice type, may be obtained. 

Using Table 3 the cel l  pa ramete r s  of the unit ce l l  may  be found by 

two different methods, using either the d i rec t  t ransformation r r ld t~ ix  ap- 

pearing in cvlul~lll 4 or  thc formulas  appearing in colur~ln 5. If thc 

ma t r ix  in column 4 is used, the method proceeds according to  that given 

in Appendix IV. If the formulas  in column 5 a r e  used, the actual s ca la r s  

a r e  simply inser ted  direct ly  into the expressions l isted. 

The expressions in  column 5 of Table 3 a r e  based direct ly  on the 

ma t r ix  appearing in column 4 and the reduced form appearing in column 

3. The following il lustration shows their  derivation for  Orthorhombic 

(26a). According to Table 3 the reduced form (whose general  form is 

defined on page 25) and l l l e  txansformation ma t r ix  f n r  this cell  a r e ,  respectively 



The formula f o r  AL in  t e r m s  of the reduced cel l  s c a l a r s  is 
4  4 

A' = (a+ i;+ 5. (a + b + F )  

2 
The expressions for  B~ and C may  be s imi lar ly  obtained using 

and 
2 4 -  c. = (c) (c) . 

E'igure 5, a s  previously indicated, consis ts  of the sche l l~a t ic  

-+ --) -) 

diagrams of the various reduced cells(with axes  a, b, c) outlined in 

4 4 - L  

their  respect ive Bravais  space-latt ice (with axes A, B, C). They are 

4 based direct ly  on Niggli's original f igures  (F igures  44 - 58) with a few 
::: 

modifications. 

.lr 1- 

Permiss ion  to  use  F igures  44 - 58 due to was kindly granted 
by Akademische Verlagsgesellschaft ,  Frankfurt  Am Main, Germany. 



Table 2 (pages 36-39) 

Table 3 (pages 40-60) 
6 



Table 2. The  "Unsymmetrical '"Scalars of the 43 reduced cel l  types in  
the i r  conventional orientation (c < a  < b; (2, ,f3 obtuse). 

A. Symmetrical Scalars: - - 
r l l  - r22 - r33 ' 

B. Symmetrical Scalars: - 
r l l  - r22 + r33 

Unsym. 
Scalars: 0 0 0 

~ -. 

sl1' GI,. bll 
- - 
r2 3 r2 3 r2 3 

- - - 
p2 3 r23 

I - I - I 
~ ~ 1 1  7 r~~ 3'1 I 

tvo equal (sum = -rll ) 

three unequal (YUII - -rll 

Cubic (41 ) 
-- 

Cubic (43). 

Rhombohedra1 (36) 

Rhombohedrd (37) 

Cubic (42) 

Tetragonal (34a, b, c)  

Orthorhombic (25a,b, c) 

Unsym. 
Scalars: 0 0 0 

0 0 bll % 

0 0 GI I 

0 0 r12 

0 0 
- 
1-I 2 

Tetragonal (31 ) 

I ~ a x a g ~ n ~  (4~a) 

Hexagonal (bob) 

Orthorhombic (24.a) 

Orthorhombic (ab) 



Table 2. (continued). 

B. cont t. 

C. Symmetrical Scalars:  rI1 # rZ2 # r33 (wllere r l l  = r33 # rZ2 ) 

g13 533 &33 

533 533 r12 

- 
533 533 r ~ 2  

I - I - 
3r33 3r3, $Gll - f T S 3 )  
- - 
r2 s r23  r ~ 2  

- - - 
r23  23 r12 

Tetragonal (33) 

Orthorhombic (26a) 

Orthorhombic (26b) 

Rhombohedral (38) 

~ o n o c l k i c  (I 4) 

Monoclinic (1 5 ) 

Unsym. 
Scalars:  0 0 3 

0 51 0 

0 
- 
r31 0 

51 I 0 &I I 

El U gl1 (w, - -rll ) 

- - 
r 2 3  r31 r 2 3  

- - 
r23  r31 r23 

hIl 
- - 
r23 ( - ) r23 (sum = -r , ) 
- - 
r2, I - - rl , (sum = -rl , ) 

Tetragon,d (30) 

Hexagonal (39) 

Orthorhombic (23) 

Tetragonrzl ( 3 3 ~ )  

'I'otragonaJ. (3315) 

Monoclinic (1 2) 

Mono c l i n i  c (1 3 ) 

Rhombohedral (35 ) 

Orthorhombic (28) 

Monoclinic (7) 



Table 2. (continued). 

D. Symmetrical Scalars.: III # r22 f r33 

Unsp. 
Scalars: 0 Orthorhombic (1 9) 

Orthorhombic (22a) 

Ortliorho~ubic: ( 22h ) 

Mono olinic (k)  

Mono c l b i  c (4b ) 

Orthorhombic (20) 

Monoclinic (5) 

Monoclinic (9a) 

Mono clinic (9b) 

Orthorhombic (21 ) 

~rthorhombic (27a) 

Orthorhombic (27b) 

Mono clinic (I 1 a) 

Monoclinic (I I b ) 

~onoclinic (1 0a) 

M~~nosLjnio (1 0b) 



Table 2. (continued).. 

Orthorhombic (29) 

Mono c l i n i  c (8 ) 

Monoclinic (1 6) 

Monoclinic (1 7) 

Mono c l i n i  c (1 8 ) 

Mono c l in ic  (6 ) 

Tricl inic  (1 ) 

Tric l in ic  (2) 



Table 3. The reduced forms and transformation matrices for the 43 re -  
duced cells.  T R I C L I N I C  

Cell parameters of 
c s l l  in terms 

of reduced c s l l  scalars 

M O N O C L I N I C  (c-uni  que) 

Transformation 
matrix f o r  

rsduced c e l l  
t o  un i t  c e l l  

1 0 0  

( 0  O ) 0 0 1  

Reduced f o r m  

r22 r33 ( ;: F3, ...) 

N o .  
, 

1 

CAI 1 pa,rarnet,~rs n f  
i.~>ljt. cel.1. rin t~,nns 

of reduced c e l l  s c d a r s  

Uiiit c ~ l l  
l a t t i c e  
'type 

. 

Trmaf o m t i o n  
matrix for 

reduced 
t o  unit  c e l l  

' 1 0 0  

r23 r31 r1, 
0 0 1  

2 

Reduced f crrn 

3 

4a 

4b 

5 

NO. 

P 

U n i t  c e l l  
l a t t i c e  
type 

0 0 1  

T o o  

o o . I  C ~ S Y  = -rI2 /AB 

p 

0  0  1 

c = r22 - 
C 0 3  Y = r31 /AB 

(:'I iZ2 " 1 0 0  

( o  ) 0 0 . 1  

= rII 

B2 c2 = = rZ2 r33- 
cos Y = rI2 /AB 



IZI' c - -  

A / (5) 

Fig.  5. The fourteen Bravais lattices and their reduced cells.  



Table 3. (continued). 

M O N O C L I N I C  (c -un ique)  . 

Tr~isf omation Cell parameters of 
Reduced form 

matrix for unit o e U  in terms 
reduced of redL~bad cell scdaro 
to unit cell 

No. 
W t  cell 
lattice 

tY-?e 

6 

7 

8 

9 

9b 

lCla 

l o b  

r22  

- - 
r33 - r31 r31 r l l  

- r,, - r 3  - S. 
2 2 (-P,, - r,, J /AR 

r 2  2 

- - 
2 ( I  - 2 - 2 

= QIl + 2Fz3 +-2q2 
B' = r,, + rz2: a,, 
c2 = -2e2, + r,, ) 
-cos Y = -2(r,, + I;;, )/AB 

rll r 2 2  r 3 3  

8 1 7 0  

2 0 1 

B 

c2 = r,, 
1 0 9 c o s Y = ~ , , / ~ 1 3  

1 2 3 



Fig.  5. (continucd). 



No. 

1 la  

l l b  

Table  3. (continued). 

MONOCLIN IC  (c-unique)  

Unit c s l l  
l a t t i c e  

1 type ' 

Reduced form 

- 0  2  I A' = 4 x 2 2  - r33 

CDS Y = (-al, )/AH 

Traiisfon,atio:i 
i ~ t r i x  fo r  

rsdllced 
t o  ce l l .  

B 

ce l l  of 
unit c e l l  in terms 

o l  re&uced c a l l  scalars 

0 0 1  cos y = 2Fl2 /AB 

1 0 1  
- 

A 2  = 2(rl l  - rpl ) 

I 0 7  

B 

B 

1 0 1  

1 0 1  

1 1 0  A' = 2(rl l  + r12 ) 

1 1 0  A2 = 2(r11 + FI2 ) 

cos Y = &, /AB 

0 0 1  = 



A ( l l b )  

Fig.  5. (continued). 



Table 3. (continued). 

M O N O C L I N I C  (c -un ique )  

M O N O C L I N I C  ( b - u n i q u e )  

No. 
Unit c s l l  

l a t t i c a  
type 

NO. 

3 

/la 

4b 

5 

Reduced form 

Unit c e l l  
l a t t i c e  

type 

P 

P 

P' 

Transf o m t i o n  
matrix f o r  

rsduced c s l l  
t o  u i i i t  c e l l  

0 0 1  

1 0 0  

Reduced 

Cell parameters of 
udt c e l l  i n  te rns  

of rsd.~c..d c e l l  sca lars  

Trailsf o;m;nat3 on 
.matrix f o r  

reduced c e l l  
t,n i ~ n i  t, I ? A ~  1 

CeXL parameters of 
uni t  c o l l  in terns  

of reclucod c e l l  scalars 

0 0 1  

o l n  cos P = r2, /AC 

( a l l  oz2 1;:) 
'1 0  0  I I 

0 . 1  0  cos = rI2 /AC 

1 0 0  

(i " , ) 0 I . O  

= r, 
8' C2 = = ... 
cos B = -r12 /AC 



Fig. 5. (continued). 



48 Table 3. (continued). 

M O N O C L I N I C  (b -un ique)  
- 

Cell parameters of 
unit csll in terns 

of reducsd cell scalars 

Trailsf omation 
matrix for 
rsduced cell 
to unit cell 

Reduced form No- 
Unit csll 
lattice 
type 

A2 = rll + r33 + 2r31 
B2 = k22 - - r33 - 2231 
C2 = r33 
cos P = (-rS3 - rpl )/AC 

A*' = /q, + za + SIP 
R2 = -2(&, + r,, 1 
c2 = 7 ,  + r ,  + 2rI2 

6 

7 

r 2 2  

- 
r31 

2 2 

r z 2  

- 
.23 ( 1  - 2 - 2 

8 

cw p = -2& + r12 )/AC 

3 3 

r l l  r 2 2  r 3 3  2 0 1  @ I 1  - r 3 3  

9 a 

n ooo p )/AC 

A2 = b,, - r3;, 
9b 

BL = 

10a C 

1 2 O 

- 

c2 = rll 

0  2 1 A2 = b22 - r33 
l l b  c (ii: "' 

( 0 0 1 )  

B 2 = r 3 3  

- C2 = r l l  
I o o C O S ~  = Z12 /AC 



Fig .  5. (continued). 



50 Table 3. (continued). 

MONOCLIN IC  (b -un ique)  

Reduced form 

r 2 3  r31 r 2 3  

1 5  

16 

1 7  

18 

1 1 0  

r 2 3  1123 r12 
0 0 1  

A' = 2(rl l  + f ,, ) 
B~ = 2(r1,  - r I2  ) 
c2 = r3, 
cos p = %,,/Ac 

~ I I  r 2 2  r a a  0 0 1  A2 = r3, 
0 2 1  

1 0 0  cos p = r,, /AC 

1 0 0  
Tll 

0 0 1  c o s p  = r,, /AC 

0 0 1  

0 1 0  cos p = r,, /AC 



Fig. 5. (continued). 



Table 3.  (continued). 

ORTHORHOMBIC 

Ce.U parameters 3f 
ulit c a l l  in terms 

of reduced c e l l  sca la rs  

T r a ~ s f  ornat ion 
matrix f o r  

red:lced c e l l  
t o  Lmit c o l l  

NO. 

19 

2 0 

2 1 

2 2a 

22b 

2 3 

24a 

24b 

Unit c e l l  
l a t t i c e  

type 
Reduced form 

- 
P 

1 0 0  A2 = rll 

0 0 1  

. + 

C '  
0 1 0  

0 0 1  

c2 = r,, 
1 0 0  

c 
( . I  - ::) 

1 0 0  

c2 = 
0 0 1  

1 0 1  A' = 2(r,, + 5, ) 
B' = Z ( r l ,  - r,, ) 

0 1 0  

A' = 2 ( r l l  - r12 ) 

C' = r3, 
0 0 1  

( 'i :) 9 0  1  

1 1 0  

0 0 1  

A2 = r,, 
~ ~ = , @ ~ ~ - r , , ,  c2 = r33 

A' = 2(rll + E; ) 
B' = 2 ( r l l  - 5 : ; )  
~2 = 

r 3 3  



F i g .  5. (continued). 



54 Table  3. (continued). 

O R T H O R H O M B I C  

Cell parameters of 
unit  c e l l  in terns 

of reduced c e l l  scalars 

Trmsf o m t i o n  
m t r i x  f o r  

csll 
t o  xiit c e l l .  

Reduced form 

, 

NO. 
Unit c3.U 

la t - t ics  
t n e  

A' = z ( r l l  + F12 ) 
B2 = -2(CI + 5, 
c = 2(r l l  + raI ) 

!I.'= 2 ( r l l + z 2 3 )  
B' 2 -2(7>* + E~~ ) 
C' = 2 ( r I l  + r12 1 

A' = 2 ( r l l  + ) 
B2 = - 2 ( r 2 3  -t.. r31 ) 
c2 = 2 ( r l l  + Fit3) 

25a 

25b 

2 5 ~  

1 0 1  

r l  1 - - - &;3 -- rI2); 
1 1 0  

26a 

26b 

27a 

2713 

-. . ~ 

2 8 

29 

r~~ ~ I I  r33 A' = 2 ( r l l  +q2 ) - q3 
B: = ~ ( r , ,  - r12 ) 

0 0 1  

r11 r11 

0  0 1  

0 0 1  

r 2 2  r3a 

1 2 1  

0 0 1  

r22 

: I )  

'23 (71 - s2J r,, 

7 o 1 

( 2 I  o ?  

A ' =  4 ( r l l + 5 , 3 )  
' 4i22 + r23 ) + r~~ 

c2 = -'!+r2, 

F 
r11 r 2 2  r 3 3  

0 0 1  



Fig. 5. (continued). 



Table 3. (continued). 

T E T R A G O N A L  

NO. 

IJnit c a l l  
l a t t i c e  

type 

30 

3 1 

3 2a 

3 2b 

33 

34a 

Redxed fom 

P 

P 

ornation 
matrix f o r  

t o  .unit ce l l  

rl I A2 = rlI - raI 
34b - - 

r l l  - r31 r31 r l l  - r31 

2 2 

c e l l  parameters sf 
LI .T I~~  ce.U in terns  

of rsa~csd c e l l  sca lars  

-.- 

1 0 0  

1 2 1  

0 0 1  = rll 

1 1 0  A' = 2r, ,  +g,, 
1 1  1 

- 
A' = rll - rZ3 

- C" 2 (rll + FZ3 ) 
r23 r l l  - r23 r l l  

2 2 
- 

A2 = r l l  
1 0 0  c2 = r22 

0 1 0  

1 1  

34c - - 
rll - r12  r11 - r12  

2 2 1 1 0  

0 1  0 

0 0 'I 

- 
= r,, - T 2  

c2 = 2(rl l  + F12 ) 

= rll  
2 C = r33 



Fig. 5. (continued). 



Table 3. (continued). 

RH40MiBOHEDRAL 

No. 

35  

36 

37 

R H O M B O H E D R A L  ( F r i m i t i v e )  

Reduced form ~ r m s f o ~ i m t i o n  j Call  parz~neters of 
inayrix f o r  u ~ i t  c s l l  in terms 

rsduce' "11 : 3£ r e k c e d  c s l l  s c d a r s  
t o  xiit. c e l l  ; 

I 
I 

(1 - cos a ) 

I 
I I 

I 

r 2 3  r23 r23  
0 0 7  

I 
I 
I 
I 

rZ3 = rl c3s a 
r 2 3  r 2 3  r z 3  1 (90° < a < 10?~28"16.,!+f~) 

I 
I 

I 

r11 

H E X B G O N A L  (T r ip ly  - primit ive)  

T r ~ 1  ,?jfom.tiO:~ i 
Cell  parameters 3r" nrrtriz f o r  unit c d l  i n  terins 

rc-dace3 c e l l  I of r e d x ~ d  c a l l  s ca l a r s  
t o  mit ce l l  ; 

I 
I 
I 

~ ~ = 3 ( 3 r ~ ~ - r ~ ~  1 

I 
I 
I 
I 

- rZ3 ) = 2(rII  + F2. ) 
: c2 = 3(r l l  + aZ3) = 3(r l l  - s 2 3  

I 
I 

I I 

I 

. 
I - . . 

I 

2 
I 

I I 

I I 

n2 = 3 r l , - -  r 3 3  = 3rll + %  
: c2 = 3 

I 
I 
I I 



Fig.  5. (continued). 



Table 3.  (continued). 

H E X A G O N A L  

C U B I C  

Cell  parameters of 
un i t  c e l l  in terms 

02 rduceci c a l l  sca la rs  

Trzisf 01mtioi1 
.mtr,+ f o r  

reduced c e l l  
t o  u n i t  c o l l  

Reduced form 

39 

4 0a 

40b 

NO. 

Cel l  parme-kers of 
i ~ n i t ,  pel1 i n  tonns 

o? ra&uced csll 

A' = rll  

A' = 4 7 

A' = 2rll 

0 0 1  = rll 

Y =120° 
0 1  0 

~ I I  ~ I I  r 3 3  1 0 0  A' = rll 
P 

P 
0 0 1  

Unit c e l l  
l a t t i c e  

t n e  

T r a n s f o m t i o n  
matrix f o r  

~0duo-d till 
t o  u n i t  c e l l  

- 
No. 

4 1 

42 

43 

Unit c s l l  
l u t t i c e  Red:~~.ced rum 

1 0 0  

0 0 1  

1'11 r1 1 1 1 0  
0 1 1  

1 0 1  

F 

-.- 

~ I I  ~ I I  1 1 1  

- - 



Kg- 

Fig. 5. (continued). 



3 .  USES O F  THE REDUCED CELL 

Bccause of the uniqueness of the reduced cell ,  because i t  can 

always be readi ly found without difficulty and because i t s  s c a l a r s  identify 

the ce l l  of highest symmet ry  in  the latt ice,  it thus provides many f a r -  

reaching uses  as a tool in  la t t ice  studies and t ransformations.  The 

following a r e  a few typical examples. 

The reduced ce l l  a s  the s tandard choice for  the t r ic l inic  cell  in  a 

tri 'clinic latt ice has  a l ready been discussed. 

By making use  of the fact  that the Bravais  la t t ice  imposes r e -  

s t r ic t ions on the ce l l  pa ramete r s  of the reduced ce l l  and thus i t s  s ca la r s ,  

the reduced ce l l  m a y  therefore  be used to  identify cel ls  of highest 

symmet ry  in  a latt ice.  This use  i s  not res t r ic ted  soley to  using the r e -  

duced cel l  as a test on primit ive t r i c l i n i r  ce l i s  hut may be used equally 

well on any cel l  in  any crystal. sys temr  primitive or: centered, in any 

orientation. The object in each c a s e  i s  always to convert  the ce l l  to  i t s  

seduced cell  s o  i t s  s c a l a r s  can  be analyzed with use  of Tabl.ep 2 a n d  3. 

If the original cel l  i s  t r ic l inic  o r  monoclinic, i t  mus t  be reduced before 

testing. If the  original ce l l  is pr imit ive but of symmetry  higher than 

monoclinic, i t  always corresponds to the reduced cel l  withnnt. prc~rious 

reduction. ' If the original cell  (any sys tem)  i s  centered i t  necessar i ly  

does not correspond to the reduced cell  and must  f i r s t  be converted to 

a primitive ce l l  before reduction to  i t s  reduced cell. In routine work the 

t r ic l inic  t ransformations appearing on pages 174 and 175 may  be used 



successfully on any c rys t a l  sys tem for  achieving conversion to a pr imi-  

tive lattice. Thus, i f  i t  i s  des i red  to t e s t  a C-centered~monocl inic  

la t t ice  f o r  a higher symmet ry  cell ,  i t  may f i r s t  be t ransformed to a 
- 

primit ive cel l  by the t ransformation $$0/$$0/001 (obtained from page 32)  

and the primitive ce l l  then reduced by the method of Section A of this 

chapter.  If the reduced form reveals  a higher symmet ry  cell ,  the 

ma t r ix  in column 4 of Table 3 provides the necessa ry  link to that unit 

cell .  

Another frequent use  i s  the application of cel.1 reduction to p r imi -  

t ive monoclinic cel ls  in  o rde r  to find the 8-angle, o r  7-angle a s  the c a s e  

may  be, nea res t  90". At the same  t ime the cell  s o  obtained i s  the r e -  

duced cel l  and i ts  s c a l a r s  can  be quickly analyzed to  verify whether o r  

not the. original monoclinic cell  i s  actually the cel l  of highest symmetry  

in the lattice. Since monoclinic cel ls  a r e  s o  frequently encountered in 
. . 

s t ruc tura l  work, this i s  recommended a s  routine prac t ice  and a good 

habit  to  get into "before" the actual s t ruc tu re  determination begins. By 

making this a common pract ice i t  i s  possible to t ransform the Miller 

indices to the better cell  in the initial s tages of the determination and 

thus save needless ex t ra  work la te r .  

A fourth example i s  i t s  use in  aligrli~lg a single c rys t a l  on a single 

c rys ta l  or ienter .  Suppose a c rys ta l  fragmcnt o r  sphere  i s  to be used for  

the collection of intensity data. Such c rys t a l  shapes often give l i t t le o r  

no d i rec t  indication of cell  orientation. Using the cel l  reduction 

technique, hclwever, the p~~oblc rn  of cell  nrientation i s  solved rapidly 



and easily. A cel l  - -  any a rb i t r a ry  cell  - -  i s  f i r s t  located and then 

transformed to i t s  reduced cell; the original cell  may, for example, be 

triclinic, primitive o r  centered. An analysis of the reduced cell  sca la r s  

will immediately identify the unit cell  and i t s  relative orientation, using 

Tables 2 and 3 ( see  Example 3) .  

A fifth example i s  i t s  use in prnving whcthel- or not two crys ta ls  

a r e  of the same compound; thcy may. fnr j.nstancc, bt dilleretit in  crystal  

habit. There i s  always only one reduced cell  in any one lattice. Thus, - 
i f  the lattices a r e  iderltical, the reduced cells will a lso be identical. 

The reduced cell  can a lso  be used to provide the "link" between two 

cel ls  in a lattice. Suppose, for instance, a crys ta l  s tructure i s  reported 

in the l i terature a s  beirig Cc monoclinic. Suppose a reinvestigation i s  

ca r r i ed  out by a different investigator and i t  i s  discovered that the crys ta ls  

a r e  really face-centered orthorhombic. He may f i r s t  check to make su r e  

the face-centered orthorho~rlbic cell  describes the same lattice as  tho C- 

centered monoclinic ce l l  reported in the l i terature by transforming both 

ccl ls  to l l ~e i r  respective reduced cell. If the crystals  a r e  of th.e same 

compound their reduced. colle will. be identical, a s  pointed out above. If 

i t  i s  shown that the two lattices a r e  indeed identical, i t  may then be de- 

sired to t ransform the cel l  parameters ,  the fractional atomic coordinates 

and the Miller indices of the monoclinic cell  to those in the orthorhombic 

orientation; the matr ices  for  achieving these transformations may be ob- 

tained from the matr ix  for the transformation of lattice axes in direct  

space, a matr ix  obtained by multiplication of the four matr ices  involved 

in the following sequence of operations: 



s o  that the mat r ix ,  N, for  the t ransformation of the C-centered mono- 

clinic cel l  to the face-centered orthorhombic cel l  i s  

In this way the reduced ce l l  is seen  to provide the link between the mono- 

clinic cell  and the face-centered cell  --- in the s a m e  lat t ice  . In pract ice,  of 

course,  in o rde r  f o r  the reduced cell  to  be the link i t  must  be brought 

into the s a m e  "orientation" f rom both cel ls  (page 32). F o r  convenience, 

the orientation may  be that established by convention, namely c < a  < b 

with a, 6 obtuse. If i t  should turn  out that the reduced cel l  obtained f rom 

the one unit cell  has  y acute and the other reduced cel l  has  Y obtuse, the 

other five pa ramete r s  identical, one of the two conventional reduced 

cel ls  must  be reoriented to make the one y-angle a g r e e  in numerical  

value with the y-angle in the other cell  before calculating the ma t r ix  for  

linking the two ce l l s  - via the reduced cell  ( s e e  page 32). ( F o r  comments 

on rules  governing the reorientation, s e e  pages 13 to 18 . See a l so  

Example 3, pa r t  A,  pages 8 0  - 86 for  fur ther  comments on the existence 

of two possible orientations for  the same  reduced ce1.l in a latt ice.  ) In 

using the computer programs descr ibed in  Chapter111 of this report ,  the 

reduced cell  defined on the l a s t  page of output will be that in  its con- 

ventional orientation, with no restr ic t ion on the charac ter  of the  angle y.  



In view of the foregoing discussion one may wish to extend the 

convention fo r  the orientation of the reduced cel l  to "c  < a  < b  with a, /3 

obtuse and - obtuse, - i f  possiblet1.  In reporting a t r u e  reduced cel l  in  

the l i te ra ture ,  however, i t  will usually - if not always - be used soley 

for  report ing a t r ic l inic  ce l l  in  a t r ic l inic  latt ice,  a ce l l  for  which the re  

can be iio al ternat ive choices in the charac ter  of the angle y once a and - 
6 a r e  r e s t r i c t ed  to obtuse in nature.  It i s  to be recal led that the con- 

vention was originally established only for  the orientation of the reduced 

cel l  in a triclirlic latt ice.  

Before concluding, one important  point must  be emphasized. It i s  

very  important  that the appropriate  ma t r i ces  be selected fo r  conversion 

of a centered Bravais  la t t ice  to  a pr imit ive la t t ice ,  It is not sufficient: 

m e r e l y  to reduce the volume of the cel l  by a factor  of two, for  instance, 

in  t ransforming an  A-, D-,  C-  o r  I-centered la t t ice  to  a pr imit ive latt ice.  

It can  be shown quite easi ly  that any cell  subjected to  a t ransformation 

specified for  A-P, B-P, C-P and I-P resu l t s  in  a different reduced 

cel l  i n  each case .  On the other  hand, of the numerous possible t r ans -  

formations for ,  say, A--P applied specifically to an  A-centered cell ,  

r e su l t s  in only one reduced ce l l  in the end. 

Finally, i t  may  be concluded that the reduced ce l l  i s  a l so  useful in 

identifying all ce l l s  of possible lower symmet ry  in a par t icu lar  latt ice.  

Consider,  for  i n ~ l ~ ~ ~ ~ c e ,  hexagonal (40b) whose reduced fo rm i s  



By disregarding r1 a s  being the observed specialization LF and by 11 

considering "0" to be r23 we find, upon inspection of Table 2 under 

( r l  = r22 f r33), the following reduced f o r m s  as well 

orthorhombic ( 24b) 

and 

monoclinic (1 5), 

Orthorhombic (24b) and monoclinic (1 5) a r e  both C -centered cel ls ,  both 

of which do exist  in a hexagonal lattice. This c lear ly  shows that inspec- 

tion of the reduced cel l  s ca l a r s  for  the grea tes t  number of specializations 

will reveal  the cel l  of highest symmetry .  

Example 3 

PART A 

In an investigatj.on of nickel dimethylglyoximc 3, single c rys t a l  

f ragment  of the compound was mounted on a f iber  in a completely random 

orientation and aligned on a single c rys t a l  or ienter .  A face-centered 

t r i c l i i~ i e  ccl l  was located and observed to have the following lat t ice  

pa ramete r s  : a. = b 0. 360, b = 18. 037, c = 25. 760 A.  , a = 127. 03", 

18 = 129. 81° ,  y = 90. 51". The problem is the following: we wish to 

locate in  the latt ice the unit cel l  of highest symmetry,  identify i t s  c rys ta l  

systerrl, latt ice type. and cell  pa ramete r s ,  and to  der ive the t ransformation 



matr ix  for t ransforming the face-centered triclinic cell  to the newly 

chosen unit cell. 

Solution. Before proceeding with the calculations, le t  us outline 

the procedure we shall follow. 

Step 1. Transform the face-centered cel l  to a primitive cell. 

Gtep 2.  Reduce the primitive cel l  to i ts  reduced cell. 

Step 3.  Convert the reduced cell  to i t s  conventional orientation, 

delined a s  c < a  < b  with a, /.3 obtuse. This will allow us 

to use  Tables 2 and 3. ' 

1 

Step 4. Identify the reduced cell  sca la r s  (of the conventional 
, 

reduced cell)  with one of the reduced forms in Table 2,. 

thereby identifying immediately the crys ta l  system of 

highest symmetry  in the 1.attj.ce. 

Step 5. Using Table 3 and th.e information obtained in Table 2 

a) d.ed1.1.ce the latt ice t ype ,  

b) calculate the cell  parameters  of the new unit cell. 

Step 6. Using mat r ix  multiplication, deduce the transformation 

matr ix  for transformation of the original face-centered 

triclinic cel l  to the unit cell. 

The s e r i e s  of transformations to be executed will thus be 

F-tr icl inic  -. P-tr icl inic  -. Reduced cel l  
cell  (1) cel l  (2)  cell  ( 3 )  

Reduced cell  in 
Unit cell  +- conventional 

cell  (5) orientation 
cell  (4) 



Step 1. Transformation of face -centered t r ic l inic  to  pr imit ive -- - 
t r ic l inic;  Cell (1) to  cell  (2). ----- 

Our ultimate goal is to  reach  the reduced cell, the unique cel l  

which contains information about the unit cel l  of highest symmet ry  in the 

latt ice,  i t s  relative orientation and pa ramete r s .  But i t  i s  a pr imit ive 

cel l  an6 since it can only be obtained direct ly  f rom a primit ive triclinic 

cell, we must  f i r s t  t ransform the face-centered ce l l  to  a pr imit ive one, 

with a subsequent reduction in  volume. Theoretically the pr imit ive t r i -  

clinic cell  may  be any one of the infinite such cel ls  in  the latt ice;  con- 

sequently we a r e  f r e e  to select  any t ransformation ma t r ix  we des i re ,  s o  

long a s  i t  c a r r i e s  out the des i red  reduction. In routine work we may 

select  the (F P) transformation on page 175, which i s  

If the face-cexitered cel l  i s  subjected to this  transformation, the new 

pa ramete r s  belonging to cel l  (2 )  becorrle 

a = 10. 3602 a! = 120. 2543" 

Step 2. Reduction of pr imit ive cel l  to reduced 'cel l ;  Cell (2) to - - - .  - --- 
cel l  (3). -- 

Tke primitive triclinic cel.1 obtained in  Step 1 may  now be reduced 

by the method outlined in  Section A of this chapter .  If this .  i s  done i t  i s  



observed that the primit ive triclinic cel l  t ransforms to the reduced cel l  

by the following transformation matr ix:  

[cell (2) to cel l  ( 3 ) ]  

t o  yield latt ice pa rametc r s  

S t e ~  3. Conversion of reduced cel l  to conventional orientation: 

cell  (2)  to cel l  (4). ----- 
We wish to use  Tables 2 and 3 where t h e  c rys ta l  system of highcst 

symmetry  may be identified. To use them, however, the reduced cel l  

must  be in its conventional orientation,'  namely c < a  < b  with a ,  f l  obtuse. 

The reorientation of axes and angles may be done in several ways, t h r e e  

of which a r e  shown in detail below. The affects of the changes on the 

erarlsfvrmation matr ix  for  cel l  (2) to  cel l  (3) i s  also shown. When the 

ent ire  processed i s  finished, the resulting matr ix  will he that for  cell  

(2)  to cell  (4), where cel l  (4 ) . i s  now the reduced cel l  in i t s  conventional 

orientation. The rules  s e t  forth in Chapter 11, ' sect ion C, a r e  used 

throughout. 



Interchange a a ~ d  c, 

) System goes left-handed. 
Return t o  right- 
handed system by 
reversjng direction t Set a = a - a  
of h. Ws s e t s  P =  a - P  

a = l r - a  
y =  l r - y  

Reverse direction 

C 
of a and b; 

v System remains 
l e f  t-harded. v 

J b 

Set P = a - P  
y = l r - y  

- 
Set a = a - a  

p e r - p  
Reverse direction 

I 0 7  
System returns t o  a 

right-handed. - 
Reverse direction 

of b and c 
Return t o  right- 
handed sgst8em 

v by reversing 
the riirection of 
all three axes; 

System remains 
right-handed. 

I 0 7  



Upon completion of the necessary  changes to  obtain the reduced 

cel l  in  i t s  conventional orientation, the following latt ice parameters  for  

ce l l  (4) and transformation matr ix  of cel l  (2) to cel l  (4) a r e  obtained: 

Step 4. Identification of unit cell  of highest symmetry  in latt ice.  ---- - 

W e  nvw look, a t  the reduced form of the conventional reduced cell, 

cel l  (4), and analyze i ts  sca lars .  
- 4 - 4 4 -  

a - a  b - ' b  c - c  107. 29 107.32 42.12 
- 4 - 4 4 -  

b - c  c - a  a - b  r 
23 '31 r12 

-21. 06 -21. 04 52. 81 

Its inspection reveals  the following relationships (to within experimental 

We now go to  Table 2, which is divided into four divisions according 

to the four c lasses  of "symmetrical" sca la r s .  . In our case  we observe 
- + A  4 -  4 -  

(a  a = b . b # c . c) ,  that is ('I1 = r22  # T . ) which appears on pagc 36-  
53 

37. Within this division a search  i s  made for  the set of three "i~nsjrrn= 

4 4 

metrical ' '  s ca la r s  coinciding with our observed set ,  namely (b  . c 
4 sc A i 1- 1- c a a ' b) = (zr33 r ) It turns out to be the seventh entry., z r33  12 

indicating an orthorhombic cell. The number in parentheses,  (26a), 

r e fe r s  to  the cell  number in Table 3, appearing on page 54, and to  the 

corresponding diagram in Figure 5 on page 55. 



5. Identification 

~ a r a m e t e r s .  

Refer r ing  now to Table 3 and ce l l  number (26a), we find all the 

remaining information we need to  know. According to this table nickel 

dimethylglyoxime i s  body-c entered orthorhombic and the ma t r ix  for  

t ransforming the conventional reduced cel l  to the orthorhombic ce l l  i s  

The orthorhombic cel l  pa ramete r s  may  be calculated f rom the 

conventional reduced cel l  pa ramete r s  in one of two ways, using either 

the d i rec t  t ransformation ma t r ix  appearing in  column 4 o r  the formulas  

appearing i n  column 5. Both methods a r e  i l lustrated below. 

M.ethod A. (discussed in  Appendix IV). 

I-orthorhombic 
ce l l  

Conventional 
reduced ce l l  

4 4 

. (I) --C =(i i () (:) ~ = a  B = - a  4 t r + T  t b  - + 

, C =  C 

2 4 4  4 --r 

A = ( a t  b t z . ( a + b t  c )  

2 2 
= a '+  b + c t 2bc cos a t  2 c a c o s  fit 2 a b c o s y  



Similarly,  

Method B. - 

where  r l  in  this c a s e  was taken as the average of a2  1 b2. These  values 

a g r e e  quite well, within experimental e r r o r ,  with the observed va.111es 7 

of a = 16.68, b = 10.44  and c = 6.49  1. 

Step 6 .  G ~ n c r a t i o n  - of m a t l i x  - lor  t ranstormation of the face-centered --- 
t r ic l inic  cel l  to body-centered orthorhombic cell .  --- - 

The s e r i e s  of t ransformations which were  c..xeruted in  thc preceili~lg 

s e r i e s  of s teps,  together with the transformat.ion ma t r i ces  used and 

generated. we1-e the following: 

F-tr icl inic  
c e l l  (I ) 

I-orthorhombic 
c e l l  (5)  

P-tr icl inic  
c e l l  (2) I(;:;) 

Conventional 

Reduced ce l l  
c e l l  ( 3 )  

reduced c e l l  
c e l l  (4)  



The matr ix,  N, for  the t ransformation of the original face-centered 

triclinic cel l  to the orthorhombic cel l  i s  given by 

1 

N = KJI = 

0 0 
1 -1 0 -1 

This i s  solved by ma t r ix  multiplication (Appendix VI). F i r s t  J and I 

a r e  multiplied together, a s  writ ten,  and the resultant left multiplied 

by K.  The resul t  becomes 

We may check this mat r ix  to verify i t s  cor rec tness  by f i r s t  calculating 

i ts  modulus. The value i s  observed to be ti, verifying that the sys tem 

has remained right-handed (indicated by the + sign) and that a reduction 

in volume of one-half has  occurred  in going f rom a face-centered 

latt ice to a body-centered la.ttice, which i s  just what we should expect. 

If w e  then calculate the orthorhombic cel l  pa ramete r s  using ma t r ix  N, 

we find that precisely the same  values a r e  obtained for  A, B, C a s  

before. 

With appropriate  application of ma t r ix  N to the face-cenlered t r i -  

clinic cell ,  the body-centered orthorhombic ce l l  may  be lvcated on the 

single c rys ta l  or ien ter  and a check made on the intensit ies to verify the 

presence  of th ree  intersecting m i r r o r  planes, thereby confirming the 

t rue  existence o f  the v ~ ~ t l ~ a r h o m b i c  ce.1 l rather Lha~i a pseudo-orthorhombic 



Having obtained the matr ix  for the transformation of the original 

triclinic cell  to the final orthorhombic cell, we may quite easily con- 

s t ruct  a schematic diagram of the lattice containing both cells to visualize 

just how they a r e  oriented relative to each other. To do this we could 

f i r s t  draw the triclinic lattice and then,using the transformation matr ix  

N, construct the orthorhcrmhic srectoro within this lattice, o r  we could 

draw the orthorhombic lattice f i rs t ,  constructing the triclinic vectors 

in the lattice second. Obviously, the lat ter  approacl~ wvuld be the eas ier  

sirlce the axes describe an  orthogonal system which i s  eas ier  to draw. 

But to do this we need to know the inverse of matr ix  N since we will 

want to go "from" the orthorhombic cell  constructed f i r s t  "to" the t r i -  

clinic cell. The inverse matr ix  and the apps0pria.t.e vectorial transfornia- 

-L t 4  

The net resul t  is ~hocvn in Fig. 6 in  which the vectors a ,  b, c correspond 

tion of axes in  direct  space i s  
F - t r i ~ l i n i c  cell l-orthorhombic cell  

+. - ) -  
to the axes of the orthorhombic cell  and the vectors A, B, C to the 

axes of the original face-centered triclinic cell. 

A - - 1- 1- 1- -za - qb - zc  
.-) 

B L - 1- 3- 1- 
-5a  + =h - ,c 

4 4 

C - - 3i;' - iC - 

N-l = 

1 1 1  -z -z -z 
1 3 1  -- - 
2 7, - F  

3 1  1  - 2 - -z 



Fig. 6. The face-centered triclinic cel l  outlined in  the body-centered 
orthorhombic la t t ice  of nickel dimethylglyo--' vim e . 



Once we know the matrix for transforming the original cell to the 

final cell  in direct  space, we automatically know three other matrices, 

namely the original cell  to the final cell in reciprocal space and the 

final cell back to the original cell in both direct and reciprocal 

space. Knowing these, of course, we then automatically know the 

matr ices  for transforming Miller indices as well as atomic coordinates 

of atoms because the former transforms by the same matrix a s  the 

transformation of axes i n  direct space (Appendix 111) and the atomic 

coordinates transform by the same matrix a s  the transformation of 

axes in reciprocal space (Appendix 111). 

The matrices of interest may be summarized a s  follows: Let 

cell (1) be the original face-centered triclinic cell and cell  (5) the final 

body-centered orthorhombic cell. In addition, let N be the matrix for 

transforming cell (I),  t o c e l l  (5) and its inverse, N ,  be that for cell 

(5) to cell  ( l ) ,  both in direct space; that i s  

CELL (1) TO CELL (5) CELL ( 5 )  TO CELL (1) 

From these two matrices we may establish the following for the trans-  

formation of axes : 



C E L L  (1) TO C E L L  (5) 

- 1 
= t ranspose of N 

. . 

= N in d i rec t  space:  

1 1 3  

C E L L  (5) TO C E L L  ( I )  

1 -2 0 $ 

- Z  1 1  z 0 

1 1  -1 - Z  - Z  

in reciprocal  space:  

- - Z  Z 
1 3 1  

- Z  2 - Z  

1 1  1 
- Z  -'Z - 2  

Problem 3, P a r t  A, just completed by hand calculation may be 

solved for  the mos t  p a r t  through the use of the computer p r u g r a i n  

- 1 = N 

= t ranspose of N 

in  d i rec t  space: 

TRACER, discussed in  the next chapter.  The input and output to  this 

1 1 1  
-T -Z  - Z  

1 3 1  
- Z  2 -'Z 

3 . 1  1 
- 2 -z -z  

~ r o b l e m  a r e  shown on pages 120 through 125. 

I 
in reciprocal  space:  

1 1  
- 2  - 5  -1  - 

1 
0 -2  

1 1 
Z  0 - Z  



PART B 

To i l lustrate  a phenolmenon which may occur, not often but 

occassionally, let  us modify one of the lattice parameters ,  say c, by 

an  amount t o .  004 k to that which was observed for the face-centered 

triclinic cell  stated in  P a r t  A of this problem, thus paralleling a situa- 

tion which may occur in experimental measurements of lattice param- 

e te r s .  Suppose we change the parameter  c = 25. 760 to c = 25. 764 i., 
I 

leaving the others unchanged. Now repeat the serie's of transformations 

executed in P a r t  A. 

Snl.ution. F i r s t ,  the face-centered triclinic cell  i s  transformed 
1 

to the primitive cell, yiel.ding the parameters  a = 10. 3602, b = 10. 4402, 

c = 10. 3602 A, CI = 120. 251 0'. P = 143.4914", y = 59. 7430". 

Next, tlle reduced cell  i s  found. Using the method of Section A 

of this chapter (or  programs RCELL o r  TRACER), i t  is observed that 

the primitive triclinic cell  t ransforms to a reduced cel l  this t ime, not 

by the transformation matr ix  observed in P a r t  A of this problem, h11t 

by the following matr ix:  

0 

to yield lattice parameters  a = 6.4904, b = 10. 3600, c = 10. 3602 A .  , 

a! = 72. 7766", P = 71. 7461°, y = 108. 2460". 

Next the reduced cell  in i t s  conventional orientation i s  obtained, 

giving 



a = 10. 3600 i. a =  108. 2539" 

b = 10. 3602 8 = 108. 2460" 

c = 6.4904 y = 107.' 2234" 

and the ma t r ix  for  cel l  (2) to cel l  (4) being 

If we compare  the conventional reduced cell  just obtained with the 

one obtained in  P a r t  A, Step 3, we notice a conspicuous difference. A11 

s ix  ce l l  pa ramete r s  a r e  essentially the s a m e  (within experimental e r r o r )  

except the angle y .  The questions which might be asked a t  this point 

a r e :  What happened? A r e  the c.onventiona1 reduced ce l l s  obtained in 

both cases  real ly  the s a m e  o r  a r e  they actually different? I s  i t  s t i l l  

possible to a r r i v e  a t  the same  orthorhombic ce l l  a s  that obtained in 

P a r t  A of this problem? 

Befure  explaining what happened, le t  us  f i r s t  answer the l a s t  of 

the three  questions by analyzing the s c a l a r s  of the conventional reduced 

ce l l  just obtained. These a r e  

This reduced form i s  seen  to  be identical to that obtained in  P a r t  A ex- 

cept that r i s  now negative with a value of -31. 78 instead of +52.81. 12 

Inspection of Table 2 for the observed form of 



shows that the lattice i s  again orthorhombic, the number in parentheses 

being (26b). 

Turning to Table 3 and looking up cell  number (26b) i t  i s  dis- 

covered that the reduced cell  actua.l,ly describes the same body-centered 
9 

orthorhombic lattice a s  does (26a) and can be verified visually upon in- 

spection of the corresponding figure. 

Let us now .analyze what happened to cause this change in the r e -  

duced cel l  and to show mathematically that the two reduced cells do 

indeed describe the same  orthorhombic cell. F i r s t ,  notice the s imi lar -  

i t ies ,  and differences, i n  the matr iccs  for  the transformation of the 

primitive triclinic cell, cell  (2), to the reduced cell, cell  ( 3 ) ,  nhtained 

in P a r t s  A and B. They were  

P a r t  A P a r t  E 

The only difference in  the two i s  the difference in element nZ1; in th.s 

fo rmer  matr ix i t  i s  a "OH, in  the lat ter  a "-1". This means the change 

toward the apparently different reduced cells took place during the cell  

reduction when the following tes t  was made: 



4 

the point a t  which a t e s t  was made for  the possible reduction of vector  b 
4 

in the ab-plane, holding vector a fixed in both magnitude and direction. 

In the reduction routine i t  i s  observed that this occurs  when subscript  

n = 3. In p a r t  A the actual t e s t  and resu l t s  a r e  

(a) P a r t  A (b)  P a r t  B 

Fig.  7. Vectors in  agb3-plane i n  Example 3, pa r t s  A and B 
respectively.  

and in  p a r t  B 

1+21. 07521 > *  (42. 1253)  = 21. d626 . 
4 --. 

The s c a l a r  product a3. b3 is seen to  be s o  c lose  in  absolute value to 

$a3' that the slightest  change in ei ther  of the two quantities influenced 

w l ~ e t h e r  o r  not reduction w a s  to  occur  ( see  Fig. 7). In p a r t  A the sca la r  

2 
product was less t h a n  +a3 s o  that no reduction took place and the 'angle  

2 
y remained acute;  in pa r t  B the sca la r  product was g rea te r  than $a3 s o  

that reduction took place and the angle y became obtuse. 

I t  is to  bc recal led f rom the discussion in  section A of this  chapter 
-C -C 

that if the prdjection of say, vector b, onto say, vector a ,  i s  exactly 



& 

equal to l i a l ,  then the magnitude of vector b remains unchanged i f  the 
M 4 

character  of the angle between a a.nd h i s  reversed,  Thus, in experi- 

mental work where lattice parameters  have a certain amount of e r r o r  

associated with them, i t  i s  of no serious consequence i f  a vector i s  o r  

i s  nlot capable of being reduced in this situation. In one case  the angle 

i s  acute, in the other obtuse, and the vector being shifted undergoes 

only a very smal l  to negligible change in magnitude, depending on how 

close the situation above i s  described. 

Let us now assume for  the moment that entry number (26b) i s  not 

in  Tables 2 o r  3. Sinc.e the reduced fo rm obtained in par t  B contains a 

negative r i t  would appear that we could not use reduced form (26a). 12' 

The reduced form to which one m u ~ t  rcoort  would the11 be Lhe choice 

a - a  b - b  c - c  - - 
b - c  c - a  a - b  

which technically matches the observed ( r  negative). 12 

NOW, monoclinic (1 5) is a.n end -c  entered coll, being G-cer l lered 

b-unique o r  B-centered c-unique. Since the observed reduced form 

matches so  closely reduced form (26a), except for r being negative, 12 

we should be highly suspiciolis nf the existence of thc body-celllerttd 

orthorhombic lattice. To confirm our suspicions i t  m a y  be recallod 

that a n  end-centered monoclinic cell  may be transformed to a body- 

centered monoclinic cell. by the following transformation (shown for  ' 

C-centered b-unique) 



Fig. 8. Transformation of a C-centered 
monoclinic latt ice to a Body- 
centered lattice. 

If the body-centered monoclinic cel l  has  = 90" and th ree  intersect ing 

m i r r o r  planes a r e  found, the cel l  is then body-centered orthorhombic.  

Thus, le t  us t ransform the conventional reduced cel l  to the body-cen- 

t e red  monoclinic cell, using the following s e r i e s  of t ransformations:  

conventional C-centered 1: % bll a I-centered 
reduced cell  (,,,, ,,,,, 9 ,  > monoclinic 13b cel l  

The ma t r ix  f o r  the t ransformation of the conventional reduced cel l  to 

the body-centered cell  becomes 

which, when solved by ma t r ix  multiplication, i s  seen  to give a t r ans -  

@ formation mat r ix  which gives the same  body-centered la t t ice  pa ramete r s  



a s  those obtained in p a r t  A. ' This means  that  although the reduced ce l l  

obtained in p a r t  B appea r s  to  differ f rom that obtained in pa r t  A in the 

angle Y ,  the s a m e  body-centered orthorhombic la t t ice  is descr ibed by 

the reduced ce l l  in  e i ther  case ,  r ega rd le s s  of whether r l  i s  negative 

o r  positive. Using this tra.n.aformation ma t r ix  just obtained the ce l l  

paralllrlars a r e  calculated to  be A = 10.14, B = 16. 68, C = 6. 49 A .  ; 

the values t o r  A and I3 have simply been interchanged in  value. 

In this par t icu lar  example the conventional reduced ce l l s  gave r e -  

duced fo rms  in  which lrl 2 1 a  # I-r 12lb. 
In s o m e  c a s e s  this i s ,  indeed, 

found to occur.  In o thers  l r l  1 = I-r 1 an  example being monoclinic 
a 1 2  b y  

I. 

(4a and 4b). These  c a s e s  ' a r i se  soley f r o m  the convention se t  upon the 

reduced cell, which explicitly s ta tes  that while CY and a r e  r e s t r i c t ed  to  

obtuse, no such . res t r ic t ion  exists on y ,  So i t  i s  that in some c a s e s  two 

redilcecl cel ls  satisfying the convention may resu l t  for  a par t icular  latt ice,  

differing only i n  t h e  angle y, tho resu l t  beiug different orientations of the 

"same" reduced cel l  i n  the lattice. 

LII. COMPUTER PROGRAMS FOE. LATTICE TRANSFORMATIONS 

AND CELL REDUCTIONS 

'rwu F o r t r a n  computer programs a r e  descr ibed in this  chapter  for  

general  latt ice t ransformations and ce l l  reductions in d i r ec t  space. The 

f i r s t  descr ibed i s  RCELL, a comgi.it.cr program uscd soley lur obtaining 

reduced cel ls  direct ly  f rom primit ive t r ic l inic  o r  monoclinic cel ls .  

The second descr ibed i s  TRACER, a much m o r e  general  program which 



may be used for  general cell  t ransformations in  d i rec t  space, for cel l  

reductions only o r  for general  cell  t ransformations followed by cel l  

reduction. TRACER is designed to per form the s a m e  operations a s  

RCELL with the added fea ture  that i f  cel l  reduction i s  desired,the input 

cell  m a y  be primitive o r  centered, and i f  centered,may be t ransformed 

by the program to a pr imit ive cel l  and then reduced without reloading 

the program. P r o g r a m  RCELL i s  res t r ic ted  to the reduction of p r imi -  

t ive cel ls  only in obtaining reduced cel ls .  - 

A. RCELLy 

A F o r t r a n  Cell Reduction P r o g r a m  

1. GENERAL INFORMATION 

P r o g r a m  RCELL, written in IBM 7074 F o r t r a n  language, i s  a com- 

puter p~rsgram for  the redilction of primitive ce l l s  by the procedure 

discussed in  Chapter 11. The orientation of the reduced ce l l  defined in 

this p r o g r a l ~ l  i s  that s ~ t a b l i s h e d  for  a tr iclinic latt ice,  that cel l  whose 

edges a r e  the three  shor tes t  non-coplanar translations in the latt ice,  

labelled s o  a s  to have c < a  < b  and oriented s o  that the angles a and ,b 

a r e  non-acute. 

The essential  input consists of four ca rds :  a t i t le card ,  a c a r d  

specifying the form of the s ix cell  pa ramete r s  of the cell  to be reduced, 

a c a r d  containing the s ix  latt ice parameters ,  and a stopper c a r d  coded 

s o  a s  to allow m o r e  than one cel l  to be reduced without reloading the 

program. 



The output cons is t s  of the input data, the old pa ramete r s  ( r e a l  

and reciprocal) ,  the new pa ramete r s  ( r e a l  and reciprocal)  of the reduced 

ce l l  together with the t ransformation ma t r ix  and i t s  inverse  fo r  the 

or iginal  cell  to  the reduced cell ,  the new pa ramete r s  ( r e a l  and reciprocal)  

of the reduced cel l  i n  i t s  conventional orientation togethcr wi th  tlie lrans- 

formation m a t r i x  and i t s  inverse  f o r  th.e original cell  to  the reduced 

ce l l  in  i t s  conventional orientation, the t r igonometr ic  values (s ine and 

cosine) of the r ea l  and rec iproca l  angles of the conventional reduced ce l l  

and the s c a l a r s  corresponding to the  conventional reduced ce l l  fo r  use 

with Tables 2 and 3 for  the determination of unit ce l l s  of higher  symmetry.  

The program has 'been  written in full F o r t r a n  with a miai.mum of 

indexing. All a r r a y s  are one-dimenoional. The re  a re  no subroutines.  

The sequential instructions in the p rogram follow exactly t h e  reduction 

procedure  outlined in  Chapter 11, Example 1, and the rules  outlined on 

pages 13-17. Example 1 in Chapter I has beon included in  this repor t  

fo r  a twofold purpose.  It i l lus t ra tes  the step-by-step detailed rne6ba.ni .c~ 

of solving f o r  the reduced cel l  and i t  provides a worked out example to  

a id  in  following and interpret ing the F o r t r a n  s tatements  in the Symbolic 

P r o g r a m  Listing. 

The program itself i s  divided into five pa r t s  according to  i t s  

function. P a r t  1 i s  used f o r  reading in  the  input data and setting i t  up for  

use in P a r t  2. It i s  used in  calculating the ceil  pa ramete r s  in  d i rec t  o r  

rec iproca l  space, depending upon the f o r m  of the input, and for  calculat-  

ing the trigonometric values of the cel l  angles.  The formulas  which 

1 
a r e  used a r e  the following (from Buerger  , Tables 20 and 21): 



a::: = 1 cos a,:: = cos p cos y - cos a 
a sin @ sin y sin ,9 sin Y 

b::: = 1 
C O S  8::: = cos a c o s  y - cos p 

b sin a>:: sin y sin CL sin y 

c ::: = 1 cos y* = C O S  (Ycos 
c sin c@ sin p sin a sin 

1 

--F= 
cos B" cos y::: .. cos ry:: 

a = a:: sin sin y:K cos a = sin ,8::' sin y:% 

1 cos @:: cos y>:: - cos p::: = 
b:: ,in a sin y::: C O S  p = sin Cp* sin 7:;: 

1 cos a<: cos B::: - cos 7::: 
C = 

c:K sin a sin 8::: 'OS Y = ,in a::: sin p::: 

V = abc sin a sin /ij sin y::: 

v::: = 1 / v  . 
Par t  2 transforms the original cell to.its reduced cell, which may 

or  may not conform to convention. The final matrix elements which a r e  

generated for the transformation of the original cell to its reduced cell 

a r e  represented in  the program a5 a one-dimensional ar ray,  N(I) , .  where 

I i s  a s'ubscript, and i s  defined a s  follows : 

original 
cell 

reduced 
cell 

The matrices printed out in the output correspnnd to the direct t rans-  

formation matrix defined a s  
. . . .. 



original 
cel l  

reduced 
cell  

where n, , = N I ,  nl = N2t  etc .  

P a r t  3 t ransforms the reduced cel l  obtained in P a r t  2 to the con- 

ventional orientation established for  the tri.clinic systcm. P a s t  4 

calculates the trigonometric sines and Losines of the angles of the con- 

ventional reduced cel l .  P a r t  5 calculates the s ix Niggli sca lars ,  which 

are  defined on page 29 . 
As indicated in Chapter I1 a primitive mor~vclinic cell ,may be 

reduced to obtain a new cel l  with m o r e  orthogonal axes.  F o r  a dis-  

cussion regarding this use of RCELL, see  page 110. 

2. INPU 'I' UATA 

1 .  Title ca rd  - -  1 c a r d  - -  FORMAT (16A5) 

Any alphanumeric information. This wi l l  be printcd back uul 

a s  a heading on each page of output. 

2. Cnntrol ca rd  - -  1 c a ~ d  - -  FORMA'I' (11) 

= 1 if the cel l  parameters  on the Paramete r  ca rd  a r e  

in direct  space. 

= 2 i f  the cell  parameters  on the Paramete r  ca rd  a r e  ,. 

in reciprocal space. 



3. P a r a m e t e r  . . .  c a r d  . . - -  1 c a r d  

Columri . . . . 

1 - 10 . . . FORMAT (F10. 6), l a t t i ce  parameter  . - a (or  - a::). 

11 - 20 . FORMAT (F10. 6), l a t t i ~ e . ~ a r a m e t e r  - b (o r  - bs) .  

21 - 30 FORMAT (F10. 6), ' lat t ice Pa ramete r  - c (or  - c::). 

31 - ' 40  . F'ORMAT (F10. 6), la t t ice  pa ramete r  (or  a::). 

41 - 50 . FORMAT (F10. 6), latt ice pa ramete r  P(or  P::).  

51 - 60 FORMAT (Fl 0. 6), latt ice pa ramete r  y (o r  7::). 

Note: The cel l  edges a r e  i n  (H) in d i rec t  space and in 

reciprocal  space;  the angles a r e  in degrees  and decimal  fraction. 

4. Stopper ca rd  - -  1 c a r d  - -  FORMAT (11) 

= 0 (or  blank) i f  no m o r e  cel ls  a r e  to  be reduced. 

= 1 i f  another ce l l  is to  be reduced. 

Note: This c a r d  allows reduction of m o r e  than one ce l l  without 

reloading the program. Thus, any number of se t s  of data may be 

processed.  ~ a c h ' s e t  consis ts  of i tems 1 through 4. 

3. RUNNING DECK ARRANGEMENT 

Program-  RCELL i s  on the Iowa State IBM 7074 l ib ra ry  tape under 

the name RCELL44SLL. In  using l r e  tapc a typica.1 rvn will consis t  of 

the following ca rds  : 
14 16 la. 

1 card:, (Start  Account Card)  POGO 
. . 

1 card :  ALTSW A L L  O F F  POGO 

I card :  Z LLOAD @ R C E L L ~ ~ S L L @  POGO 



4 c a r d s  p e r  cel l :  . (Data Cards )  

1 ca rd :  

76 

WTM 

1 card :  (End Account Card)  POGO 

All var iab les  a r e  s tored  i n  COMMON, locations 19800 - 19975, 

and may  be called with a POGOZ dump. The t ime est imate i s  approxi- 

mately 1 minute f u r  rediirtj.on of 10 cel ls .  

4. SAMPLE INPUT AND OUTPUT 

Example Z on page 19 showed by hand calculation the reduction 

of pr imit ive 16-DL methyloctadecanoic acid whose la t t ice  pa ramete r s  

, 6 
a r e  repor ted  in the  l i t e ra tu re  a s  being 

a = 5.40 C W =  145" 38' 

b = 7.54  /j = 105" 42' 

c = 51.8 y =  60" 18' . 
The s a m e  ce l l  may  be reduced by this program, using the following 

input data: 

. C 1 0 0  C O M * ~ " ~  

F O R T R A N  S T A T E M E N T  
5 YO 21 30 11 0 5 I0 51 bU - - - . -- -. + + - - - - -. -- . . . . . 70 :. b' - -  

Fig. 9. Input data fo r  sample  problem. 

The output i s  shown on the next two pages. 
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5. SYMBOLIC PROGRAM LISTING 

PROGRAM R C E L L  

OES&RIPTION. C E L L  REDUCTION'PROGRAM 
LANGUAGE.  F U L L  F O R T R A N  F O R  I B M  7074 
DATE.  F E B R U A R Y  1965 ( F I N A L  V E R S l O N ) '  
PROGRAMMER. S T E P H E N  L.  L A W T O N  

G L O S S A R Y  O F  S Y M B O L S  

A  
A  A  
A  B  
A B S A B  
A B S R C  
A B S C A  
A  L  
A L P H A  
A L S  
A L S T A R  
A N G L E  ( 3  I 
AS 
R 
B B  
B  C  
8 E  
B E S  
B E S T A R  
B E T  
R E T A  
B  S  

CC 
C O S A L  
C O S A L S  
C U S B E  
C O S B E S  
COSGA 
C O S G A S  
c S  
D  I 3  I 
O E T  
G  A  
GAMMA 
G A S  
G A S 1  AR 
1  
I A X l S  
I C O N T  
I C Y C L E  
I N P U T  
I n u T P T  
I S I G N  
J 

D I R E C T  C E L L  P A R A M E T E R ,  A  
A *  A  
A*R*COSGA = S C A L A R  PRODUCT O F  A  U I T H  B  
A B S F  I A B  ) 
A R S F  ( R C  
A B S F ( C A )  
D I R E C T  C E L L  P A R A M E T E R *  A L P H A ,  I N  R A D I A N S  
D I R E C T  C E L L  P A R A M E T E R *  A L P H A ,  I N  D E G R E E S  
R E C I P R O C A L  C E L L  P A R A M E T E R *  A L P H A - S T A R *  I N  R A D I A N S  
R E C I P R O C A L  C E L L  P A R A M E T E R ,  A L P H A - S T A R ,  I N  D E G R E E S  
D I R E C T  C E L L  P A R A M E T E R S  A L P H A ,  B E T A *  GAMMA I N  NEW C E L L  
R E C I P R O C A L  C E L L  P A R A M E T E R *  A - S T A R  
D I R E C T  C E L L  P A R A M E T E R *  8 
848 
B * C * C O S A L  = S C A L A R  P R O D U C T  O F  B  W I T H  C  
D I R E C T  C E L L  P A R A M E T E R ,  B E T A ,  I N  R A D I A N S  
R E C I P R O C A L  C E L L  P A R A M E T E R *  B E T A - S T A R ,  I N  R A D I A N S  
R E C I P R O C A L  C E L L  PARAMETER,  B E T A - S T A R *  I N  D E G R E E S  
MODULUS OF I N V E R S E  M A T R I X *  I N  F L O A T I N G  P O I N T  
D I R E C T  C E L L  P A R A M E T E R ,  B E T A *  I N  D E G R E E S  
R E C I P R O C A L  C E L L  P A R A M E T E R ,  8 - S T A R  

. D I R E C T  C E L L  P A R A M E T E R *  C  
C * A * C O S B E  = S C A L A R  PRODUCT O F  C  W I T H  A  
C  *C 
C O S F  I A L  
C n S F  I ALS! 
C O S F  I B E  ) 
C O S F  I B E S )  
C O S F  I GA ) 
C O S F ( G A S  ) 
R E C I P R O C A L  C E L L  P A R A M E T E R *  C - S T A R  
D I R E C T  C E L L  P A R A M E T E R S  A t  81 C  I N  NEW O R I E N T E n  C E L L  
MODULUS OF D I R E C T  M A T R I X ,  I N  F L O A T I N G  P O I N T  
D I R E C T  C E L L  P A R A M E T E R ,  G A M M A *  I N  R A D I A N S  
D I R E C T  C E L L  P A R A M E T E R *  GAMMA, I N  D E G R E E S  
R C C I P R O C A L  CECI .  PARAMETER,  G A M M A - S T A R *  I N  R A D I A N S  
R E C I P R O C A L  C E L L  P A R A M E T E R ,  GAMMA-STAR, I N  D E G R E E S  
I N D E X  
A X I S  I V E C T O R )  H F I D  C O N S T A N T .  l = A ,  ,?= I39  3 = C  
CODE F O R  N E X T  J O B  
NUMRER OF C Y C L E S  I N  R E D U C E D  C E L L  R O U T I N E  
S P E C I F I C A T I O N  CODE FOR C E L L  P A R A M E T E R S  R E A D  AT I N P U T  
PROGRAM S E C T I O N  NUMBER . .  
NUMBER OF A C U T E  A N G L E S  I N  R E D U C E D  C E L L  
I N D E X  



J A 
J B 
J C  
J F 
JJ 
J L 
K  2 
K K  
L 
L M 
M 
MAX 
N 1 9  1 
N A l 9 )  
N B l 9 1  
NCH66K 
N E T  
N I l 9 )  
N S T O P  
N T E M P ( 9 )  
N T U R N  
P N  
OM A X  
OQMA X 
S I N A L  
S I N A L S  
S I N B E  
S I N B E S  
S I N G A  
S I N G A S  
S T O R E  
SUM 
T I T L E I 1 6 )  
v 
v S 
X 
X X 
X Y 
X Y Z  
Y 
Y Y 
Y Z 
z 
z X 
Z X 2  
z z 

CODE F O R  S H I F T  I N  A - A X I S .  J A = O  NO S H I F T *  J A = l  S H I F T  
CODE F O R  S H I F T  I N  B - A X I S .  J R = O  N O  S H I F T *  J B = l  S H I F T  
C O D E  F O R  S H I F T  I N  C - A X I S .  J C i O  N O  S H I F T ,  J C = l  S H I F T  
J A  + J B  + J C  
I N O E X .  
I N D E X .  
CODE F O R  R E D U C T I O N  O F  R E M A I N I N G  TWO A X E S  
C O D E  F O R  P A R A M E T E R S  I N  C O N V E N T I O N A L  C E L L .  l = A *  2 = 8 *  3 = C  
I N D E X  
I N O E X  
I N O E X  
L A R G E S T  C E L L  P A R A M E T E R  R E A D  A T  I N P U T .  l = A ,  4 = B *  7 = C  
E L E M E N T S  O F  D I R E C T  T R A N S F O R M A T I O N  M A T R I X  
M A T R I X  E L E M E N T S  O F  C E L L  I N )  TO C E L L  ( N + l )  
M A T R I X  E L E M E N T S  n F  C E L L  1 1 1 ,  TO C E L L  I N t l )  
I N D C I  C O N T R O L L I N G  REDUCIIUN UF C E L L  PARAMETER 
MODULUS OF DIRECT TRANSFDRMATION M A T R I X *  IN FIXED POINT 
E L E M E N T S  O F  I N V E R S E  T R A N S F O R M A T I O N  M A T R I X  
I N O E X  CONTROL.  WHEN N S T O P  = 3 9  R E D U C T I O N  C Y C L E  C O M P L E T E  
T E M P O R A R Y  S T O R A G E  L O C A T I O N  FOR M A T R I X  E L E M E N T S  
I N D E X  C O N T R O L  
I N T E G E R  ( F L O A T I N G  PT.1 
T H E  L A R G E R  O F  TWO C E L L  P A R A M E T E R S  
T H E  L A R G E S T  O F  I A B S A B *  A B S B C ,  A B S C A )  
S l N F I A L I  
S I N F I A L S )  
S I N F I B E )  
S I N F I B E S )  
S I N F I G A )  
S I N F I G A S )  
TEMPORARY S T O R A G E  L O C A T I O N  F O R  NEW S C A L A R  PROOUCT 
BC + C A  + A B  
A L P H A N U M E R I C  T I ' T L E  R E A D  4 T  S T A K T  OF PROGRAM 
C E L L  VOLUME I N  D I R E C T  S P A C E  
C E L L  V O L U M E  I N  R E C I P R O C A L  S P A C E  
TEMPORARY L O C A T I O N  FOR C E L L  P A R A M E T E R  A, B OR C 
X.N 
TEMPORARY L O C A T I O N  FOR S C A L A R  PRODUCT A B t  B C  OR C A  
TEMPORARY L O C A T I O N  O F  NEW S C A L A R  PRODUCT 
TEMPORARY L O C A T I O N  F O R  C E L L  P A R A M E T E R  A t  B OR C 
Y + Y  
T C M P O R A n Y  L O C A T I O N  POR S C U L A R  P K U D U C I  A B t  BC OR CA 
TEMPORARY L O C A T I O N  FOR C E L L  P A R A M E T E R  A, B OR C 
TEMPORARY L O C A T I O N  F O R  S C A L A R  PR0011CT AB,  B C  OR C A  
TEMPORARY L O C A T . I O N  O F  NEW S C A L A R  PROOUCT 
z z 

D I M E N S I O N  T I T L E I 1 6 ) *  N 1 9 ) ~  N 4 1 9 ) g  N B ( 9 ) r  N I 1 9 ) t  0 1 3 ) .  A N G L E 1 3 ) p  
1 N T E M P l 9 )  

COMMON T I T L E * I N P U T , A t B , C , A L P H A , B E T A * G A M M A * A S t B S * C S v A L S T A R , B E S T A R *  
1 G A S T A R ~ S I N A L ~ S I N B E I S I N G A ~ C O S A L ~ C O S B E ~ C ~ S G A ~ S I N A L S ~ S I N B E S ~  
2 S I N G A S ~ C O S A L S * C O S B E S v C O S G A S t A L t B E ~ G A t A L S t R E S ~ G A S ~ V ~ V S ~ A 8 ~  
1 B C , C A ~ X , Y . L ~ X Y ~ Y Z ~ ~ X ~ X X * Y Y ~ Z ~ ~ X Y ~ ~ L X Z ~ O H A X ~ M A X ~ N ~ D ~ A N G L E ~  
4 I O U T P T * N S T O P ~ K Z t K K t N C H E C K * P N * S T O R E t I ~ J J t J L ~ M v L t L M * N T U R N ~  
5 N T E M P ~ I S I G N ~ I C O N T , A B S A B P A B S B C ~ A B S C A ~ O Q M A X ~ I A X I S ~ I C Y C L E ~  
6 J ~ ~ J B ~ J C ~ J F , S U M ~ N A , N B ~ N I ~ N E T ~ D E T ~ B E T I J  

P A R T  1. I N P U T  

b 

-9999 R E A D  1 0 0 0 ,  I T I T L E I I ) ,  I = 1 t 1 6 1  



REAO 1001,  INPUT 
1000  FORMAT 116651  
1 0 0 1  FORMAT 1 1 1 )  

IOUTPT = 1 
I F  ( INPUT  - 1 )  61,  61,  6 2  

6 1  REAO 10029 Ar 0, Cv ALPHA, BETA* GAMMA 
GO TO 7 1  

6 2  REAO lOO2q AS* BS* CS, ALSTAR, BESTAR, GASTAR 
1002  FORMAT 16F10.6)  

GO TO 7 2  
L 

7 1  SINAL = SINFIALPHA + 0 .01745329 )  
SINBE = S INFIRETA 0 . 0 1 7 4 5 3 2 9 )  
SINGA = SINFIGAMMA + 0 .01745329)  
COSAL = COSFIALPHA + 0 . 0 1 7 4 5 3 2 9 )  
COSBE = COSFIBETA + 0 . 0 1 7 4 5 3 2 9 )  
COSGA = COSFIGAMMA + 0 .01745329 )  

8 1  ALS = ACOSFIICOSBE + COSGA - COSAL) / I S I N B E  + S I N G A ) )  
RES = ACOSFIICOSAL + COSGA - COSBE) / I S I N A L  + S I N G A ) )  
GAS = ACOSFIICOSAL COSBE - COSGAl / I S I N A L  + S I N B E ) )  
S INALS = S I N F I A L S )  
SINRES = S I N F I B E S )  
SINGAS = S INF IGAS)  
AS = 1. / I P  + SINRES + SINGA)  
BS = 1. / ( 0  + SINALS + SINGA) 
CS = 1. / (C + SINALS S INBE)  
ALSTAR = ALS + 57.295780 
RESTAR = RES + 57 .295780 
GASTAR = GAS + 57 .295780 
GO TO 99 

L 
72 SINALS = S INFIALSTAR + 0 .01745329 )  

SINBES = SINFIBESTAR + 0 . 0 1 7 4 5 3 2 9 )  
S lN6AS  = SINFIGASTAR + 0 .01745329 )  
COSACS = COSFIALSTAR + 0 .01745329 )  
COSRES = COSFIBESTAR + 0 .01745329 )  
COSGAS = COSFIGASTAR + 0 .01745329 )  
AL = ACOSF IICOSRES + COSGAS - COSALS) / IS INBES + SINGAS) 
BE = ACOSFIICOSALS + COSGAS - COSBES) / I S I N A L S  + S I N G A S ) )  
GA = ACOSFIICOSALS + COSBES - COSGASl / I S I N A L S  + S I N B E S ) )  
S INAL  = S I N F I A L )  
SINBE = S I N F I R E )  
SINGA = S I N F I G A )  
COSAL = COSF IAL I  
COSRE = C U s k t u t i  
COSGA = COSFIGA) 
A = 1. / IAS + SINRE + SINGAS) 
B  = 1. / IRS + SINAL + SINGAS) 
C  = 1. / ICS + SINAL + S INBES)  
ALPHA = AL + 57.295780 
RETA = BE + 57 .295780 
GAMMA = GA 57.295780 

C 
99 V  = A + R * C + $ I N A L + S I N H E + S I N G A S  

v s  = L./V 
GO TO ( 6 5 ,  5019 6 7 1 1  IOUTPT 

C 
L 
C  OUTPUT OF PART 1. OUTPUT OF INPUT ANU THE OTHER 
C  CALCULATED CELL DATA. IOR IG INAL  CELL )  
c 
L 

6 5  PRINT 1004  



PRINT 1 0 0 5 t  ( T I T L E I I I ,  I = l e 1 6 l  
1004  FORMAT I l H l I  
1 0 0 5  FORMAT (1HK9 4 x 9  16A5 / /  I 

I F  I fNPUT  - 1 1  139 139 1 4  
13  PRINT 1 0 0 6  

1006  FORMAT I l H J ,  3x9  27H INPUT DATA I N  DIRECT SPACE / /  I 
GO TO 1 6  

14 PRINT 1 0 0 7  
1 0 0 7  FORMAT I l H J ,  3 x 1  31H INPUT DATA I N  RECIPROCAL SPACE / /  I 

16 PR lNT  1 0 0 8  
1 0 0 8  FORMAT (1HLe  9 x 9  33H  OLD PARAMETERS (ORIGINAL CELL )  I 

75  PRINT 1 0 1 1 9  A *  ALPHA 
PRINT 10129  89 BETA 
PRINT 10139  Cc GAMMA 
PRINT 10149  AS, ALSTAR 
P B l h f  1015. BS, B tSTAR 
PRINT 10169  CSt  GASTAR 
PRINT 1017,  V 
PRINT 1018 ,  V S  

1 0 1 1  FORMAT (1HKs 1 5 x 1  6H  A = F9.41 1 4 x 9  1OH ALPHA = F10.41 
1 0 1 2  FORMAT l 1 H  r  1 5 x 9  6H B = F9.49 1 4 x 1  10H BETA = F10.4)  
1 0 1 3  FORMAT ( 1 H  r l 5 X r  bH C F9.49 1 4 x 9  10H GAMMA = F10.41 
1 0 1 4  FORMAT ( l H J *  1 5 x 9  6H A* = F9.6, I 4 X .  10H ALPHA* = F10.41 
1015  FUNMAT ( 1 h  , 15x9  6H B* * F9.6, 1 4 x 9  10H BETA = F10.41 
1 0 1 6  FORMAT ( 1 H  r  15x1 6H C* = F9.69 14x9  10H GAMMA* F10.4)  
1017  FORMAT (1HJ9  1 5 x 1  6H V = F9.3) 
1 0 1 8  FORMAT ( 1 H  9 15x9  6H  V* = F9.69 / /  I 

GO TO 11749 701,  88919  IOUTPT 
C 
C 
C PART 2 -  TRANSFflRHATION OF ORIGINAL CELL TO REDUCED CELL 
c 
L 

1 7 4  IUUTPT = i 
ICVCLE 5 1 
AB = A 8 COSGA 
R C  = 8 C * COSAL 
CA = C A COSBE 
0 0  1 7 5  J = 1 9 9  
N I J I  = 0 

1 7 5  N A I J I  = 0 
N i l 1  = I, 
N l 5 1  = 1 
N ( 9 l  = 1 
N A I l I  = 1 
N A ( 5 l  = 1 
N A l 9 l  = 1 

3 8 2  NSTDP = 1 
' K 2  = 0 

ABSAB = ABSF IAB I  
ARSRC = ABSF(BCI  
ABSCA = ABSF ICA I  
QCMAX = MAXlF(ABSAB9 ABSBC, ABSCAI 
I F  IQQMAX - ABSAel 176,  401,  1 7 1  

1 7 6  I F  (QQMAX - ABSRCI 890,  404,  4 0 7  
4 0 1  QMAX = MAX1F(A9B I  

I F  IQMAX - A1 849 9 1 1  9 2  
4 0 4  QMAX = MAXlF(B,CI  

I F  (QMAX - 8 1  8 4 *  93, 9 4  
4 0 7  QMAX = MAXlF(C,A l  

I F  (QMAX - C )  84, 959 96 
9 1  I A X I S  = 2 

GO TO 1 



L 
1  MAX = 1  

GO TO 10  
2  I A X l S  = 1  

QMAX .=  MAX lF (8 ,C )  
I F  (QMAX - R l  A79 101,  LO2 

1 0 1  K2 = 1  
GO TO 30  

102 K2 = 2  
GO TO 5 0  

3  I F  I K 2  - 1)  88 ,  121,  1 2 2  
1 2 1  I A X l S  = 2  

GO TO 5 0  
122  I A X I S  = 3  

6 0  T0 3 0  
C 

4  MAX = 4  
GO TO 30  

5 I A X l S  = 2  
OMAX = MAX lF (A ,C )  
I F  (QMAX - A)  87, 2019 2 0 2  

2 0 1  K2 = 1 
GO TO 10  

202 K2 = 2  
6 0  TU 5 0  

6  I F  ( K 2 -  1 1  88 ,  1239 1 2 4  
123  I A X l S  = 1 

6 0  TO 5 0  
124 l A X l S  = 3 

cn T O  10 
C 

7 MAX = 7  
GO TO 5 0  

8  I A K 1 5  - 3 
QMAX = MAX lF (A ,B )  
I F  (OMAX - A )  87, 301,  3 0 2  

3 0 1  K2 = 1  
GO TO 10  

302 K2 = 2 
GO TO 3 0  

9 I F  ( K 2  - 1 1  8 8 1  125 ,  1 2 6  
1 2 5  I A X I S  = 1  

GO TO 30  
1 2 6  I A X I S  * 2 

G O  TO 10  
84  PRINT 2 0 1 0  

2010  F O R M A I  ~ I H L ,  0311 S E R R O R ~  - S T A T E M E N T  NII. 4 0 1  PLUS 0 0 1  C A R D .  404 P L  
1US 0 0 1  CARC OR 4 0 7  PLUS 0 0 1  CARD.) 

GO TO 8 9 0  
87  PRINT 2 0 1 1  

2011  FORMAT I l H L ,  77H $ERRORS - STATEMENT NU. 2  PLUS 0 0 1  CARD, 5 PLUS 0  
1 0 1  CARD OR 8  PLUS 0 0 1  CARO.1 

GO TO 090  



88 PRINT 2 0 1 2  
2 0 1 2  FORMAT 11HL1 3 5 H  SERRORS - STATEMENT NO. 39 6 OR 9.1 

GO TO 8 9 0  
C 
C REDUCTION OF A. (OMAX = A )  
C 

l o x  = A  
V =: B  
2 . = ' C  
XY = AB 
V Z  = . B C  
Z X  = CA 

C 
NCHECK = 1 
GO TO 185. 1 1 ,  1 2 1 1  I A X l S  

1 1 1 - 2  
GO TO LOO 

1 2 . 1  = 3 
GO TO 3 0 0  

c 
1 5  A = '  X 

8 = Y  
c =- 2 
AB = XY 
B C  = YZ 
CA = ZX 

C 
NCHECK = NCHECK - 1 
I F  INCHECKI 4 6 1  179  1 7  

17  I F  ( I  - 2 1  8 6 1  1 2 1  1 1  
4 6  MAX = MAX t 1 

NSTOP = NSTOP + 1 
I F  (NSTOP - 3'1 I R *  181  6 0 1  

18  GO TO 111  2 1  3 1  4 r  59 b r  7, .B* 9 ) r  M A X  

L 

NCHECK = 1 
GO TO 1 3 2 ,  859 311,  I A X I S  

3 1 1 = 6  
GO TO 1 0 0  

3 2 I r 4  
GO TO 300  

L 

3 5 4  = z  
R = X  
C - Y  
AB = ZX 
BC = XY 
CA = YZ 

C 
NCHECK = NCHECK - 1 
I F  (NCHECKI 4 6 1  37,  3 7  

37 IF ( I  - 41 8 6 1  3 1 1  32  
C 
C REDUCTION OF C. I O M A X  = C )  



NCHECK = 1 
GO TO ( 5 1 ,  5 2 1  8 5 1 ,  [ A X I S  

5 1 1 = 7  
GO TO 1 0 0  

5 2 1 ~ 8  
GO TO 3 0 0  

C 
5 5 A  = Y  

B = z  
C = X  
AB = YZ 
BC = ZX 
CA = XY 

L 

NCHECK = NCHECK - 1 
I F  (NCHECKI 4 6 ,  5 1 ,  5 7  

5 7  I F  I 1  - 7 )  8 6 ,  52 ,  5 1  
C 

R S  PRINT 2 0 1 5  
2 0 1 5  FORMAT ( I H L ,  4 7 H  $ERRORS - ERROR I N  A X I S  DESIGNATION I N  PART 2.1 

GO TO 8 9 0  
8 6  PRINT 2 0 1 4  

2 0 1 4  FORMAT l l H L ,  3 8 H  $ERROR$ - STATEMENT NO. 17,  3 7  OR 57.1 
GO TO 8 9 0  

c 
C REDUCTION OF X. A8SFlX.Y) GREATER THAN ( Y * . 2 ) / 2  
C 

1 0 0  XX = X.X 
YY = Y.Y 
PN = 0. 
I F  ( A B S F I X Y )  - 0.5 YY)  444 ,  4 4 4 1  1 1 0  

1 1 0  I F  I X Y )  1 2 0 1  4 4 4 1  2 0 0  
1 2 0  XY2 = XY + PN*YY 

I F  l X Y 2 1  1 3 0 ,  150 ,  1 5 0  
1 3 0  STORE = XY2 

PN = PN + 1. 
GO TO 1 1 0  

1 5 0  I F  l A B S F t X Y 2 1 , -  ABSF-(STORE))  1 4 3 ,  1 4 2 ,  1 4 2  
1 4 2  PN = PN - 1. 
1 4 3  N A ( 1 1  = PN 

X = SQRTFlXX 4 2.ePN.XY + PN*PN*YY) 
ZX = ZX + PN*YZ 

1 4 4  I F  l A B S F ( X Y 2 1  - A B S F ( S I O R E ) 1  1 6 0 1  1 7 0 ,  17.0 
1 6 0  XY = XY2 

GO TO 5 2 0  
1 7 0  XY * STORE 

GO TO 5 2 0  
L 

200 XY2 XY - PN+YY 
I F  ( X Y 2 )  250,  250,  2 3 0  

230  STORE = XY2 
PN = PN + I. 
GO TO 2 0 0  

2 5 0  I F  l A R S F ( X Y 2 )  - ABSF(STORE11 2439 2 4 3 9  2 4 2  
2 4 2  PN = PN - 1. 



243 N A I I )  = -PN 
X  = SQRTFIXX - 2.*PN*XY + PN*PN*YY) 
ZX ZX - PN*YZ 
GO TO 1 4 4  

C 
C REDUCTION OF x. A0SFIZ.X) GREATER THAN l Z * * 2 ) / 2  
C 

300 X X  = X*X 
z z  = 2.2 
PN = 0. 
I F  (ABSFIZX)  - 0.5 221  4 4 4 r  4 4 4 1  310 

310 I F  1ZX l  3201  4 4 4 1  400  
320 2 x 2  = ZX + PN*ZZ 

I F  l Z X 2 )  3 3 0 ~  3901 350 
33u STORE = 2 x 2  

PN a PN * 1. 
GO I U  310 

350 I F  (ABSF(ZX2)  - ABSFISTORE)) 3431  342, 742 
342 PN a PN - 1. 
343 N A I I )  = PN 

X = SQRTFtXX + 2.*PNe?X + PN*PH*ZZ) 
XY = XY 4 PNoYZ 

344 I F  lABSF(ZX2)  - ABSFISTORE)) 3609 370, 3 7 0  
360 Z X  = Z X 2  

GO TO 520  
370 ZX = STORE 

GO TO 520  
C 

400 2 x 2  = ZX - PN*ZZ 
I F  l Z X 2 )  4 5 0 1  450, 4 3 0  

430 STORE = 2 x 2  
PN = PN t 1. 
GU TO 400 

450 I F  (4BSFIZX2)  - ABSFISTURE)) 4639 4 6 3 1  462 
462 PN = PN - 1. 
463 N A I I  1 = -PN 

X = SQRTFIXX - 2.*PN*ZX + PN*PN*ZZI 
# V  = XY - PN*YZ 
GO T O  344 

C 
520 N B l 1 )  = N A I l ) * N l l )  + N A t 2 ) * N 1 4 )  N A l 3 ) * N 1 7 )  

N B I Z )  = N A I l ) * N ( 2 )  t N A ( z ) * N ( S I  + N A O ) - N I O )  
N D l 3 )  = N A I I I * N ( ~ )  + N A l 2 I * N 1 6 1  t N A l 3 ) * N l 9 )  
NB14)  = N A l 4 ) * N f l )  + N A I S ) * N I 4 )  + N A l 6 ) * N f 7 )  
N 0 1 5 )  = NA14)*N121 + N A I S ) @ N l 5 )  + N A l 6 ) * N 1 8 )  
N B I 6 )  = N A l 4 ) * N ( 3 )  + N A l 5 ) * N 1 6 )  + N A l 6 ) * N l 9 )  
N B I T I  = N A l T ) * N ( l )  N A l B ) * N l 4 )  + N A l 9 ) * N ( T )  
N B I B )  = N A 1 7 ) * N l 2 )  4 NAIB) *N15)  + N A 1 9 ) * N l H )  
N B ( 9 )  = N A 1 7 ) * N l 3 )  + N A I B ) * N ( 6 )  N A l 9 ) * N 1 9 )  
00 5 2 1  J = 199 
N ( J 1  = N B I J )  
I F  I N I J ) )  5211 5409 5 2 1  

540 N t J )  = 0  
521 N A I J )  = 0  

N A ( 1 )  = 1 
N A l 5 )  = 1 
NA191 = 1  

444 GO TO (601 ,  1 5 1  1 5 1  3 5 1  601, 351 5 5 1  5 5 1  60111  I 

OUTPUT OF PART 2. (REDUCED CELL l 



6 0 1  COSAL = BC / l B * C )  
COSBE = CA / 1C.A) 
COSGA = AB / l A * 8 )  
AL = ACOSFICOSAL) 
BE = ACOSFICOSBE) 
GA = ACOSFICOSGA) 
SINAL = S I N F I A L I  
SINBE = S I N F I B E I  
SINGA = S I h F l G A )  
ALPHA = 57 .295780 AL 
BETA = 57.2957R0 RE 
GAMMA = 57 .295780 G A  
GO TO 8 1  

A  TEST I S  NOW MADE TO DETERMINE I F  THE CELL JUST ORTAINED 
I S  THE REDUCED CELL. I F  ONE OR MORE OF THE AXES CAN BE FURTHER 
REDUCEOt THE PROGRAM RETURNS TO STMNT 3 8 2  FOR ANOTHER CYCLE. 

I F  I A B S F I A B )  - 0.5 A*A)  502,  502,  3 8 1  
I F  ( A B S F I A B I  - 0.5 8.8) 503,  503,  3 8 1  
I F  IABSF IBC)  - 0.5 0.8) 504 , . 504 ,  3 8 1  
I F  I A B S F I B C )  - U.5 C*C)  5 0 5 1  505,  3 8 1  
I F  I A B S F I C A I  - 0.5 C*Cl 506,  506,  3 8 1  
I F  (ABSF ICA)  - 0.5 A*A)  66 ,  669  3 8 1  
ICYCLE = ICYCLE 1  
GO TO 3 8 2  

C  
6 6  NET = N l l ) * I N 1 5 ) * N l 9 ~  - N l 8 I * N l 6 ) 1  - N ( Z ) * l N I 4 ) * N l 9 1  - N 1 7 ) * N 1 6 1 )  

1 + N ( 3 1 * 1 N l 4 ) * N l B )  - N l 7 I * N l 5 ) 1  
OET = NET 
N I 1 1 1  = l N I 5 ) * N l 9 1  - N I 8 ) * N 1 6 ) 1  / NET 
N I I 2 )  = - ( N l 2 ) * N ( 9 l  - N I B ) w N l 3 ) )  / NET 
N I ( 3 )  = l N ( Z ) * N l 6 1  - N I 5 ) * N l 3 1 1  / NET 
N I l 4 1  = - ( N l 4 ) * N l 9 )  - N l 7 ) * N l b I )  / NET 
N 1 1 5 )  = I ~ ( l ) * N l 9 )  - N l 7 ) * N l 3 1 )  / NET 
N1161  = - l N t l ) * N 1 6 )  - N l 4 I * N l 3 1 1  / NET 
N 1 l 7 1  = l N I 4 ) * N ( B l  - N I 7 l * N l 5 1 1  / NET 
N I ! A !  = - I N ( l I * N I R I  - N l 7 ) * N l Z ) )  / NET 
N 1 l 9 )  = ( N l l l + N I b I  - ~ ( q ) - f r l ( Z ) )  / tdCT 
BET = N I ( l ) * l N I l 5 ) * N l l 9 ~  - N I I B ) * N 1 l 6 ) 1  

1  - N I l 2 l * l N I l 4 1 * N I l 9 ~  - N I l 7 I * N I l 6 ) )  
2  + N I l 3 ) * l N I I 4 ) * N I l B )  - N I I 7 ) * N 1 1 5 1 )  

DO 6 4  1  = 1.9 
I T  I N I I I I I  648 63, b4 

6 3  N I I I I  = O 
6 4  CONTINUE 

I F  I IOUTPT - 2 )  582,  5 8 2 ,  5 8 3  
C  

5 8 2  PRINT 1027  
1027  FORMAT I l H L ,  9X1 32H NEW PARAMETERS IREDUCFO CELL )  1 

GO TO 7 5  
7 0 1  PRINT 1028  

PRINT 1029  
PRINT 1030,  N l l l ,  N l 2 ) ,  N l 3 ) ~  N I I 1 1 ,  N l I 2 1 1  N I I 3 1  
PRINT 1 0 3 0 1  N ( 4 ) 9  N I S I ,  N1611  N I I 4 ) q  N I l 5 ) ,  N 1 l 6 l  
PRINT 1030,  N l 7 ) ~  N ( B ) ,  N (Y1 ,  N I l 7 l t  N I I R I ,  N I l 9 1  
PRINT 1 0 3 1 1  UET, BET  

1028 FORMAT 11HJq 25x9 25H TRANSFORMATION MATRICES ) 

1029  FORMAT I l H J ,  23Xp 7H DIRECT, 13Xv 8H INVERSE 1 
1030  FORMAT 11HJ1 2OXt 3141  8Xs 314  I 
1 0 3 1  FORMAT l l H J t  2 1 X 1 ' 6 H  MOD = F5.21 9x1  6H 4 0 0  = F5.2 1 

C 



C PART 3. TRANSFORMATION OF REDUCED CELL TO CONVENTIONAL 
C REDUCED CELL. THE CONVENTION I S  C LESS THAN A LESS THAN 8, 
C WITH ALPHA* BETA OBTUSE. 

IOUTPT = 3 
JA = 0 
JB  = 0 
JC = 0 
NTURN = 1 
KK m 3 
I F  I M l N l F ( A r R 9 C )  - A) 7021  611, 9 9 9  
J J  = 7 
M = - 6  
GO TO I 2 1  
I T  I M I N l F ( A i B * C )  - 8 1  b l Z t  6139 g99 
JC * 1 
J J  = 7 
# - 0  
GO TO 723 
J J  = I 
n = - 3  
Go TO 722 
NTURN - 2 
KK = 2 
I F  I M A X l F ( A * B * C )  - A )  9999 6149 704  
J J  = 4 
n = - 3  
GO TO 7 2 1  
I F  (MAXlF(AvB9C) - 8 )  9999 6151  6 1 6  
JB = 1 
J J  = 4 
M = Q  
GO TO 722 
J J  = 4 
M = 3  
GO TO T 2 3  
NTURN = 3 
KK = 1 
I F  ( O ( 2 )  - A) 710, 7079 710 
I F  ( C ( 2 )  - 0 )  9991  7089 709 
I T  ( R I N l T l O t e )  - 8 )  6 L L *  b L l r  Y Y 9  
J J  = 1 
M = b  
GO TO 723 
J J  = 1 
M = 3  
GO TO 722 
I F  I M I N l F ( A 1 C )  - A )  6 2 3 1  6211 999  . 
JA = 1 
J J  = 1 
n = o  
GO TO 7 2 1  
I F  l H I N l T ( A t B I  - A)  6231  bZZ t  999 

O(KK)  = A 
ANGLE ( K K I  '= ALPHA 
JL = J J  + 2 
DO 6 6 5  L = J J p J L  
L M = L + M  . .  
NTEHP(L1 = N(LWI 
GO TO 17031 706, 7391,  NTURN 
O(KKI  = 0 



ANGLE I K K )  = BETA 
GO TO 6 6 4  

7 2 3  D ( K K I  = C 
ANGLE ( K K )  = GAMMA 
GO TO 6 6 4  

L 
739  DO 7 3 0  I = 1 1 9  
7 3 0  N ( 1 )  = N T E M P I I )  

A = 0 1 1 )  
0 = O ( 2 1  

- C = 0 1 3 )  
ALPHA = A N G L E I l I  
BETA = ANGLE121 
GAMMA = ANGLE1 3 )  

THE FOLLOWING SECTION CHECKS TO MAKE SURE ALPHA AND BETA ARE 
EACH EQUAL TO OR GREATER THAN 9 0  DEGREES. I F  UNE OR BOTH ARE 
LESS THAN 9 0  DEGREES, THE PROPER ADJUSTMENTS ARE MADE. 

I S I G N  = 0 
I F  (ALPHA - 90.01 21 ,  8 0 1 1  8 0 1  
I S I G N  = I S I G N  + 1 
I F  (BETA - 90.0) 2 2 1  802 ,  802  
I S I G N  = I S I G N  + 1 
I F  ( I S I G N  - 1 )  831,  6 9 1  7 9  

I S I G N  = 1 
EITHER ALPHA OR BETA I S  LESS THAN 9 0  DEGREES. REDEFINE THAT 
ANGLE AS I T S  SUPPLEMENT AND SET GACMA = 180.0 - GAMMA. 
(TWO ANGLES MUST ALWAYS BE TRANSFURMEO SIMULTANEOUSLY.) 

GAMMA = 180.0 - GAMMA 
DO 6 6 6 1  I = 7 9 9  
Nil) = - N ( I )  
I F  ( N l I ) )  6661 ,  4441,  6 6 6 1  
N ( I )  = 0 
CONTINUE 
I F  (ALPHA - 90.0)  43, 4 4 1  4 4  
ALPHA : 1Rn.n - ALPHA 
DO 6 6 6 2  1 = 1 1 3  
N ( I )  = - N ( I )  
I F  ( N ( 1 ) )  6662 ,  4442 ,  6 6 6 2  
N ( I )  = 0 
CONT INUE 
GO TO 831  
BETA = 180.0 - BETA 
DO 6 6 6 3  I = 4,  h 
N I I )  = - N ( I )  
I F  I N ( 1 ) )  6663 ,  4443 ,  6 6 6 3  
N I I )  = 0 
CONT I NUE 
GO TO 8 3 1  

I. 

C I S I G N  = 2 
C REDEFINE ALPHA AN0 BETA AS I T S  OWN SUPPLEMENT AND REVERSE THE 
C DIRECTIONS OF A AND 8. 
C. 

7 9  ALPHA = 180.0 - ALPHA 
RETA = 180.0 - BETA 
0 0  6 6 6 4  I = 1 1 6  
N I I )  = - N ( I )  
I F  ( N ( 1 ) )  6664,  4 4 4 4 1  6 6 6 4 .  

4 4 4 4  N i t )  = 0 



6664 CON1 lNUE 
C 
C A CHECK I S  MADE TO DETERMINE I F  THE SYSTEM HAS GONE FROM 
C RIGHT-HANDED TO LEFT-HANDED OR VICE VERSA. I F  JF = 1 THE SYSTEM 
C HAS REVERSEO. I F  JF = 0 OR 3, I T  HAS NOT REVERSED. 
C 

8 3 1  JF  = JA + JB JC 
I F  t JF  - 1 I 71 ,  832, 7 1  

832 0 0  835  I 1 9 9  
N I I I  = - N t I )  
I F  I N I I ) )  835, 833, 835 

833 N t I l . = . O  
835 CONTINUE 

GO TO 7 1  
C 
L 
C .OUTPUT OF PART 3 

C 
67  GC) TO 6 6  

583  PRINT !026, I T l T L E t I I ,  I = 1,161 
1026 FORMAT ( l H 6 ,  4x9 16A5 / /  I 

68 '  PRINT 1038 
1038 FORMAT I l H J ,  9x9 45H NEU PARAMETERS (CONVENTIllNAL R E ~ U C E O ' C E L L )  I 

GO TO 75  
889  PRINT. 1028  

PRINT 1029 
PRINT 1030, N ( 1 ) r  N f 2 ) c  N(31,  N I ( 1 1 ,  N I t 2 ) r  N 1 t 3 )  
PRINT 1030, N t 4 ) r  N ( S ) ,  N (61 ,  N 1 t 4 1 r  N l t 5 ) ~  N 1 1 6 l  
PRINT 1030, N t 7 l .  N (81 ,  N t 9 l t  N I t 7 ) ,  N l I 8 I t  N I t 9 l  
GO TO 633  

999  PRINT 1054 
1054 FORMAT (1HLr  17H $ERRORS - PART 31  

G 
C 
C OUTPUT OF PART 4. TRIGONOMETRIC VALUES OF THE ANGLES OF THF 
C CONVENTICINA~. REDUCED C E L L *  
c 
C 

6 3 3  PRINT 634  
634  FORMAT I l H L t  9 x 1  73H TRIGONOMETRIC VALUES OF THE ANGLES OF THf CON 

1VENTIONAL REOIICFn SELL I 
S ~ N A L  = SINFtALPHA 0.01745329) 
SINBE = SINFtBETA 0.01745329) 
SlNGA = SlNFtGAMMA 0.01745329) 
C Q S A L  = C O S ? I A L P H ~  b u .01745 j291  
t O S B 6  - CGSTIOETA t u.Ul745329)  
COSGA = CGSFIGAMMA 0.01745329) 
SINALS = SINFtALSTAR 0.01745329) 
SINRES = SINFtBESTAR 0.01745329) 
SINGAS = SINFtGASTAR 0.01745329) 
COSALS = COSFtALSTAR 0.01745329) 
COSBES = COSF(RESTAR 0.01745329) 
COSGAS = COSFtfiASfAR 0.01745329) 
PRINT 635 

635  FORMAT ( IHK,  28x1  7H ANGLE , 6X, 5H S I N  , 7X, 5H COS 1 
PRINT 641, ALPHA, SINAL, COSAL 
PRINT 642, RETAt SINRE* COSBE 
PRINT 643, GAVPA, SINGA, COSGA 
PRINT 644, ALSTAR, SINALS, COSALS 
PRINT 665,  BESTAR, SlNBES, COSBES 
PRINT 646, GASTAR* SINGAS* COSGAS 

6 4 1  FORMAT t l H J ,  15x1  7H ALPHA F13.4, 2F12.5) 



6 4 2  FORMAT ( 1 H  t 15x9 7H RETA , F13.4, 2F12.5)  
6 4 3  FORMAT ( 1 H  15x9  7H GAFMA F13.41 2F12.51 
6 4 4  FORMAT (1HJg 15X t  7H ALPHA*, F13.4, 2F12.5)  
6 4 5  FORMAT ( 1 H  15x9  7H  BETA *, F13.4, 2F12.5)  
6 4 6  FORMAT ( 1 H  15X, 7H GAMMA*, F13.4, 2 F 1 2 - 5 )  

C 
c 
C OUTPUT OF PART 5. SCALARS CORRESPONDING TO THE CONVENTIONAL 
C REDlJCED CELL. 
C 

8 7 1  PRINT 8 8 0  
8 8 0  FORMAT (1HL.  9 X t  56H SCALARS CORRESPONDING TO CONVENTIONAL REDUCED 

1  CELL 1 
AA = A*A 
8 0  = 8.0 
CC = C*C 
AB = A*R*COSGA 
RC = R*C*COSAL 
CA = C*A*CCSBE 
SUM = RC + CA + A0 
PRINT 801,  AA, 8 8 1  CC 
PRINT 882,  RCp CAP A0 
PRINT 883,  SUM 

8 8 1  FORMAT (1HKg 1 5 x 1  9H R ( l p 1 )  = F7.21 5 x 1  9H R ( 2 9 2 )  = F7.21 5 x 1  
1  9H R ( 3 1 3 )  = F7.2)  

882  FORMAT (1HJ. 1 5 x 1  9H R ( 2 9 3 )  = F7.21 5x9  9H  R ( 3 ~ 1 )  = F7.2, 5x9 
1  . 9 H  R ( l t 2 1  = F7.21 

8 8 3  FORMAT ( 1 H K t  15X1 28H R ( 2 1 3 )  + R ( 3 1 1 )  + R ( l 1 2 )  = F7.2)  
c 

8 9 0  READ 1070,  ICONT 
1 0 7 0  FORMAT 1 1 1  1 

I F  ( ICONT)  8 9 1  89,  9 9 9 9  
8 9  STOP 8 9  

END 



B. TRACER 

A General For t ran  Lattice Transformation - Cell Reduction Program 

1. GENERAL INFORMATION 

Program TRACER, written in IBM 7074 For t ran  language, i s  an 

expanded version of RCELL. T t  i s  a computer program fnt. general ccll 

transformations in direct  space (using matr ices  supplied by the user) ,  

for cell  reductions only o r  for  general cell  transformations foll.owed by 

cell  reduction. Typical examples of i t s  uses a r e  

1. Transformation of lattice axes in direct  space and reciprocal 

space (i-') from an  old cell  to a new cell, e. g. , Monoclinic pz l / n  to 

~ 2 ~ / c ,  using a transformation matr ix  supplied by the user .  

2, Transformation of a priniitive triclinic o r  monoclinic cell  to i t s  

reduccd cell. 

3. Reduction of primitive monoclinic cells,  using the cell  reduction 

technique incorporated in  the program, to locate a better monoclinic cell  

with shorter  and inore orthogonal axes. 

4. Two o r  more  transformations in sequence, using ixdlrices sup- 

plied by the user ,  to t ransform each cel l  consecutively to the next cell  

and.  to  calculatc the cell  parameters  of each intermediate cell  and the 

final cell, e.  g . ,  F-tr icl inic to I?-triclinic to I-orthorhombic. 

5. Two o r  more  transformations in sequence, transfoi-inirig the 

f i r s t  N cells to new cells using matr ices  supplied by the use r  and then 

letting the program transform the Nth cell  to i t s  reduced cell, e. g . ,  F- 

triclinic to P-triclinic to reduced cell. 
a 
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6. Matr ix multiplication of two o r  m o r e  t ransformation ma t r i ces .  

The tabulated t ransformations of la t t ices  for  the t r ic l inic  and mono- 

clinic sys tems appearing in Appendix VII cover t ransformations frequently 

encountered in crystallography and may  be used in  routine work with the 

program. Suppose, for  instance, one has  a face-centered t r ic l inic  cel l  

and i t  i s  des i red  to  obtain the reduced cell .  Before the reduced ce l l  can 

be  found the face-centered cel l  mus t  f i r s t  be converted to  a pr imit ive 

cell. Being unique, the program i s  always able  to  locate i t  s tar t ing with 

any a r b i t r a r y  primitive t r ic l inic  ce l l  in the lattice. The s a m e  reduced 

ce l l  i s  always obtained, a s  will the ma t r ix  fo r  the t ransformation of the 

original centered ce l l  to the reduced cell ,  regard less  of the intermediate  

pr imit ive cell. The t ransformations on pages 174 - 175 will be found 

part icular ly useful in  this r ega rd  for  obtaining such intermediate  pr imi-  

tive cel ls  at this step. (Note that they may be used on any centered cel l  

belonging to  any one of the seven c rys t a l  sys tems.  ) 

The essent ial  input consists of the six latt ice pa ramete r s  ( r e a l  o r  

reciprocal) ,  the ma t r i ces  to be used for  the consecutive t ransformations 

of cel ls  which will not be reduced by the program a s  well a s  any 

alphanumeric information identifying each cell. The reduced cell ,  i f  

desired,  does not have to be obtained direct ly  f rom the original cel l  but 

may  be obtained f rom a cel l  previously obtained by other  t ransformations 

( see  No. 5 above); it must;  however, be the l a s t  cell  in any sequence of 

transformations,  that is ,  a f te r  the reduced cel l  i s  obtained "by the pro-  

gram" one may not transforin the cell  to a new ce l l  without reloading the 



program. A maximum of eight consecutive transformations may be ap- 

plied to any one original cell (controlled by the DIMENSION statement 

for  output only). Provision has been made for allowing more  than one 

compound to be run without reloading the program. 

The output consists of the matrices used and generated for the 

. latticc axce in direct space, the lattice y#r#rnrelers (real and reclprncal) 

of the original cell, all  intermediate cells and the final cell, and the 

sine and cosine values of all angles in each cell. In the case of the 

reduced cell the program prints out two cells, a s  in the case of program 

RCELL, the second being just a s  rearrangement of the f i rs t  and cor-  

responds to the convention established for the triclinic reduced cell, 

namely, that cell whose edges a r e  the three shortest non-cnplanar 

translations in the lattice, labelled so a s  to have c < a  < b  and oriented 

' so that the angles CI and 6 a r e  non-acute. Included also a r e  the scalars  

of the reduced cell  f o r  use with Tables 2 and 3 for the determination of 

unit cells of hiqher symmetry. (For a discuskion of the v.ss of the 

"direct" and t t inverset l  matrices in the output, see  Appendix III. ) 

As indicated above, this program (and RCELL, a s  well) m a y  be 

used to reduce a primitive monoclinic cell to find a monoclinic cell with 

shorter  and more  orthogonal axes. This i s  one of the reasons why the 

two orientations of the reduced cell a r e  printed in the output. The f i rs t  

of the two reduced cells i s  that obtained directly from the original cell 

"before" reorientation of axes. In using the program for this purpose 

the new angle will; in 50% of the cases,  become acute after reduction. 



This resul ts  f r o m  the natural  sequence in  the reduction process .  Accord- 

ing to Section C in  ChapterII ,  the appropriate  "obtuse" angle of the new 

cel l  i s  the supplement of the acute  angle with the -corresponding changes 

in axial  directions and t ransformation ma t r i ces  ( ru l e s  i - v, Section C ) .  

Consider, for  example, the reduction of a pr imit ive monoclinic ce l l  to 

a new monoclinic cel l  with the following new latt ice pa ramete r s  and 

If i t  i s  des i red  that fi  be  non-acute, the changes to be made a r e  a s  

t ransformation mat r ix :  

follows (two choices):  

(a) .  Set $ = 180" - 87.  62" = 92. 38", 

- 
se t  abc abc 

a = 10.65 i. cr = 90" 

b = 16.81 @ = 87.62" , matr ix :  

c = 8.44  y = 90" 

o r  (b). Set = 180" - 87. 62" = 92. 38" ( a s  in  (a)  above), 

s e t  abc -+ a E  

1 0 1  

0 1 0 

0 0 1 .  

The program has  been written in full F o r t r a n  using one-, two- and 

three-dimensional arrays.  The generation of the ma t r i ces  in the output 

and se t  

1 0 1  

U 1 0  

0. 0 1 

A 

1 0 1  

O ~ O  

- 
0 0 1 .  



i s  defined in the usual sense on page 90. The matrix elements of all  

primitive cells to their reduced cells are in fixed point; all  other matrices 

a r e  in floating point. TRACER i s  essentially an expanded version of 

RCELL so that the cell  reduction routine i s  virtually the same. The 

routine which calculates a new cell from an old using the matrix supplied 

at input uses th ri. method and fcrlilllulas lii Appen.dix IV. After all  axial 

transformations h a v e  been compli.led, a tes t  i s  made to determine the 

total number of consecutive transforl~lations executed for any one com- 

pound; if more than two have been made, all  N matrices a r e  multiplied 

together according to the rules of matrix multiplication outlined in 

Appendix VI. 



2. INPUT DATA 

1. Title ca rd  - -  1 c a r d  - -  FORMAT (16A5) 

Any alphanumeric information. This will be printed back out 

a s  a heading on each page of output. 

2. Control c a r d  - -  1 card  

Column 

1 - 3  FORMAT (I3), = 1 i f  the cel l  pa ramete r s  on the 

P a r a m e t e r  c a r d  a r e  in  d i rec t  

space. 

= 2 i f  the cell  pa ramete r s  on the 

P a r a m e t e r  c a r d  a r e  in 

reciprocal  space. 

FORMAT (I3), number of Cell Specification c a r d s  to 

be read; (ITOTAL). 

FORMAT (I3), number of' Transformation ca rds  to be 

read; (MATRIX). 

3. P a r a m e t e r  card - -  1 ca rd  

Column 

1 - 10 FORMAT (F10. 6), latt ice parameter  - a (or  - a:::). 

11 - 20 FORMAT (F10. 6), latt ice parameter  - b (o r  - b::). 

21 - 30 FORMAT (F10. 6),  latt ice parameter  - c (o r  - c::). 

31 - 40 FORMAT (F10. 6),  latt ice pa ramete r  a (or  a::). 

41 - 50 FORMAT (F10. 6), latt ice pa ramete r  (or  8 :::). 

51 - 60 FORMAT (Fl O.'b), 1atti.r.e pararnele~. ').' (or y:::). 

Note: The cel l  eXges a r e  in  (i) in  d i rec t  space and (i-') in 

reciprocal  space; the angles a r e  in degrees and decimal fraction. 



4. Cell Specification cards  - -  ITOTAL cards  

Column 

1 FORMAT (I l ) ,  cell  number. (The original cell  i s  

cel l  number 1. ) 

2 (blank) 

3 ,FORMAT (11'1, = 1 i f  the  cell i s  to be tranoformcd to 

a r ~ e w  re11 l r~ lng  the matr ix  oupplied 

on the Transformation card. 

= 2 if the cell  i s  to be reduced to i ts  

reduced cell  by the program. 

= 3 final cell. No transformation to be 

applied. 

4 - 5  (blank) 

6 - 8 0  FORMAT (1 5A5), Any alphanumeric information de- 

scribing the cell, e. g . ,  lattice type 

and crys ta l  system. - Left justify. 

This will be printed back out a s  a 

heading. 

Note (1). These ITOTAL cards  include the original cell ,  a l l  

intermediate cells and the final cell. They must be arranged 

in increasing order  of cell  number. 

Note (2). The reduced cell  ia to be considered as one cell, 

not two, even though the program will output the reduced cell  

in two orientations: one whose lattice parameters  were  obtained a 
by direct  transformation f rom the previous cell  and the same 



reduced cel l  but with i t s  latt ice pa ramete r s  rear ranged s o  a s  

to conform to the convention established for  the t r ic l inic  system. 

5. Transformation c a r d s  - -  MATRIX ca rds  - -  FORMAT (9F8. 5) 

One c a r d  pe r  matr ix ,  a r ranged i n  o rde r  of use.  Each ma t r ix  i s  

used for  t r ans fo r~n ing  one ce l l  to a new cell ,  e.'g., 

Cell (1) to Cell  (2) - -  1 c a r d  

Cell (2) to  Cell (3) - -  1 card, etc. 

These ca rds  a r e  included only when needed; i f  MATRIX = 0, 

these ca rds  a r e  omitted ( sce  sample problems).  The o r d e r  of 

punching i s  P(l, l ) ,  P(l,  2), P(1,  3) P(2, 1) ,  P(2,  2), P(2,  3), P(3,  l ) ,  

P(3, 2), P (3 ,3 ) .  

6. Stopper c a r d  - -  1 c a r d  - -  FORMAT (11) 

= 0 (or  bla.nkj if no m o r e  compounds a r e  to  be processed,  

= 1 i f  another compound i s  to be processed.  

Note: This card  allows m o r e  than one compound to be processed 

without reloading the program. Thus, any number of se t s  of 

data may be processed.  Each s e t  consis ts  of i tems 1 through 

6. 



3. RUNNING DECK ARRANGEMENT 

P r o g r a m  TRACER is on the Iowa State IBM 7074 l ib ra ry  tape under 

the name  TRACER3SLL. In using the tape a typical run  will consis t  of 

the following ca rds :  
1.4 18 78 

1 card:  (Start. Account Card)  POGO 

1 card:  ALTSW A L L  O F F  POGO 

1 card:  Z LLOAD @TRACER~SLL@ 

(Data Cards)  

1 card:  

POGO 

WTM. 

1 card :  (End Account Card)  POGO 

All var iables  a r e  s tored  i n  COMMON, locations 19000 - 19975. 

and m a y  be called with a POGOZ dump. The t ime est imate is approxi- 

mately 1 minute for  t ransformation o r  reduction of 10 cells.  



4. SAMPLE INPUT AND OUTPUT 

SAMPLE PROBLEM 1 - 
It i s  des i red  to  find the reduced ce l l  of t r ic l inic  16-DL methyl- 

octadecanoic acid, space group pi, with latt ice pa ramete r s  a = 5.40, 

b = 7.54, c = 5 1 . 8 A . ,  a =  145" 38', /3 = 105" 42', y = 60" 18'. The 

des i red  t ransformation i s  

P- tr ic l inic  - Reduced ce l l  

cel l  (1) cel l  (2)  

-- C IO '  CO**tNT 

F O R T R A N  S T A T E M E N T  
1s 30 15 o s so s) . * . . . : .  1 - 

LO 

I , L_-^_I---L I I . . . .  I . ,  

Fig. 10. Input data for  sample problem 1. 

The computer output for sample problem 1 has  not been included in this 

report .  

SAMPLE PROBLEM 2 - 
It is des i red  to  c a r r y  out two separa te  t ransformations,  using 

ma t r i ces  found in Table 9. The transformations of in te res t  a r e  



a) Compound A 

Monoclinic ~2~ /n ~ 2 1 / c  

cell  (1) cell  (2) 

cell  (1) cel l  (2) 

The lattice parameters  of cell  ( I ) ,  compouna A, are a = 7. 62, b = 4.10, 

c = 13. 2 A., fl = 110' 201 (b-uniqYk) and those of cell  (1). compound B. 

a r e a  = 10.2, b = 12.4, c = 1 6 . 8 A . , . @ =  99' OO1(b-unique). . . 

,_ f rnv r n v v l t r ~  

+ 5 1 . 1 1 ~ ~ ~ 1  f 
"U"'"," ; FORTRAN STATEMEN? 

5 b l  10 I5  YO 11 10 I 3  40 4 5  50 I5 bO bI - . - - -. . . . . 
70 7.' 

I I 

Fig. 11. input data for sample prob1e.m 2. , , 

1 2  

n .3. 

- 
I 

The output for sample problem 2 has not been included in this report. " 

IlblS.8, . . , . , . . I  . . .  r . . . . ,  . . . , . . .  I . . .  I . . . .  1 . . . .  I .  ..'.L~.. '--_-I 
I 

I ,  L 1 I I ----I.. , 
1 1 9 0  .Ot 1 I 0  -133 3331' 7 . 6 2 ,  4 .101  1 13 .2 ,  I 9.0.:.01 . ,A .---- L . .  

M Q N B C L ~ ~ M .  .. - - 8 ".._,I , . I .  I i 
MBNQCL I N I C ,  P ~ , I . / . C .  , I . . , . . . . I  . I 8 -...-I 

.o.  . , . O..,O. . , , o . . o  , . . . .o,..o. . . , - I .o, o...o. . , . ' . . I . . l O .  . I  o . . o  L . 
Oi 

1 . .  I 



SAMPLE PROBLEM 3 

I t  i s  des i red  to find the reduced ce l l  of face-centered t r ic l inic  

nickel dimethylglyoxime whose latt ice were  observed on a 

single c rys ta l  or ien ter  to be a = 10. 360, b = 18. 037, c = 25. 760 A , ,  

a = 127. 03", = 129. 81°,  y = 90. 51". The ma t r ix  for  the t ransformation 

of the face-centered triclinic cell  to a pr imit ive t r ic l inic  ce l l  i s  
- 

-- ~ ~ o / $ ~ o / $ o ~  (obtained f rom page 175). The consecutive t ransformations 

of in te res t  a r e  

- 2 0 - 2  
F-tr ic l inic  -------, P-tr ic l inic  -Reduced ce l l  , 

cel l  (1) ce l l  (2) ce l l  (3) 

I 
- C POP COMMENT 

F O R T R A N  S T A T E M E N T  I 
I5 YO 21 1 0  15 0 5 50  55 . . - . - . - -- . 00 .- 6 5  

;2, ' I 
I I I I I .I_ I A-........ I . . . . .  I . . ;  

I..... 1.. . . . . I I 

25.760 127.03 129.81 L-.. .... I . ! 

I . : 
- . L . _ 1 -  .-I ... : 

I . . , , I . ..,,A,., r . 
01.5 , . O.,5 0.0, , -0,. 5 , 0.5, 0. .15 --L~L!?-..I . . .oi ..s! ! 

Fig. 12. Input data for  sample problem 3 .  

'I'he output to  this probler~l  is shown on thc next six pages, Frlr a 

discussion and an  analysis of the output, s ee  Example 3, page 67, p a r -  

t icularly s teps 4-6. 
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5. SYMBOLIC PROGRAM LISTING 

PROGRAM T R A C E R  

D E S C R I P T I C N .  L A T T I C E  T R A N S F O R M A T I O N  - C E L L  R E D U C T I O N  PROGRAM 
LANGUAGE.  F U L L  F O R T R A N  F O R  I B M  7074 
D A T E .  F E D R U A R Y  1965 ( F I N A L  V E R S I U N )  
PROGRAMMER. STEPHEN L. L A Y T O N  

A  
A  A  
A  B 
A B S A B  
A B S B C  
A B S C A  
A  L  
A L P H A  
A L S  
A L S T A R  
A N G L E  I 3  ) 
AS 
A X I 5 1 3 )  
R  
B B  
8 C  
a E 
R E S  
B E S T A R  
B E T  
R E T A  
B S 
c 

D I R F C T  C E L L  P A R A M E T E R ,  A 
A * A  
A * B m C O S G A  = S C A L A R  P R O D U C T  O F  A  M f T H  B  
A B S F  ( AR I 
A B S F  ( B C  ) 
A B S F ( C A  1 
D I R E C T  C E L L  P A R A M E T E R ,  A L P H A i  I N  R A D I A N S  
D I R E C T  CELL P A R A M E T E R *  A L P H A ,  I N  D E G R E E S  
R E C I P R O C A L  C E L L  P A R A M E T E R 1  A L P H A - S T A R ,  I N  R A D I A N S  
R E C I P R O C A L  C E L L  P A R A M E T E R i  A L P H A - S T A R 1  I N  D E G R E E S  
D I R E C T  C E L L  P A R A M E T E R S  A L P H A ,  R E T A ,  GAMMA I N  NEW C E L L  
R E C I P R O C A L  C E L L  P A R A M E T E R *  A - S T A R  
D I R E C T  C E L L  P A R A M E T E R S  A t  8. L U k  NEW C E L L  
D I R E C T  C E L L  P A R A M E T E R ,  B  
8.0 
B * C * C O S A L  = S C A L A R  PRODUCT f l F  R  W I T H  C  
D I R E C T  C E L L  P A R A M E T E R 1  B E T A *  I N  R A D I A N S  
R E C I P R O C A L  C E L L  P A R A M E T E R ,  B E T A - S T A R *  I N  R A D I A N S  
R E C I P R O C A L  C E L L  P A R A M E T E R ,  B E T A - S T A R *  I N  D E G R E E S  
MODULUS O F  T R n N S F .  M A T R I X  FOR C E L L I N + l )  TO C E L L I N I  
D I R E C T  C E L L  P A R A M E T E R ,  B E T A ,  I N  O F C R F F t  
R E C ~ P R O C A L  C E L L  P A R A M E T E R ,  8 - S T A R  
D I R E C T  C E L L  P A R A M E T E R ,  C  

C A  C * A * C O S B E  = S C A L A R  PRODUCT O F  C  W I T H  A  
CC C .C 
C € , , L ~ 1 5 r l 2 )  ANY A L P H A N U M E R I C  I N F O R M A T I O N  D E S C R I B I N G  THE C E L L  
C O S ( 3 )  C O S F  O F  NEW A L P H A ,  B E T A ,  GAMMA 
C O S A L  C O S F  I A L  I 
C O S A L S  COSP 1 4 L S  I 
C O S R E  C O S F  I B E  1 
C O S B E S  C O S F I B E S )  
COSGA C O S F  I G A )  
C O S G A S  G ~ S F I G A S I  
C S  R E C I P R O C A L  C E L L  P A R A M E T E R 1  C - S T A R  
0 1 3 )  D I R E C T  C E L L  P A R A M E T E R S  A l  8 1  C  I N  NEW O R I E N T E D  C E L L  
D E T  MODULUS OF TRANSF.  M A T R I X  FOR C E L L I N I  T O  C E L L ( N 4 1 )  
D I M I 6 i 1 2 1  S T O R A G E  L O C A T I O N S  F O R  A, 0, C, A L P H A i  B E T A *  GAMMA 
G  A  D I R E C T  C E L L  P A R A M f l E R ,  G A M M A *  I N  R A D I A N S  
GAMMA D I R E C T  C E L L  P A R A M E T E R ,  GAMMA1 I N  D E G R E E S  
t AS S E C I P R O C A C  C E L L   PARAMETER^ GAMMA-STAR1 I N  R A D I A N S  
G A S T A R  R E C I P R O C A L  C E L L  P A R A M E T E R 1  GAMMA-STAR, I N  D E G R E E S  
I I N D E X  
I A X l S  A X I S  ( V E C T O R )  H E L D  CONSTANT.  l = A ,  2 = R t  3 = C  



I CONT 
ICYCLE 
ICYCLT 
IDENT 
I H K L t  1 2 )  
INPUT 
IOUTPT 
I S I G N  
I SUM 
I T O T t l  
J 
J A 
JB . 
JBZ 
JC 
J F  
JJ 
J L 
K 
KZ 
K 4 
K 8 
K K 
K X 
L 
L 2 
L I N E  
L L 
L M 
M 
MATRIX 
MAX 
M M ( 3 1 3 ~ 3 )  
N ( 9 )  
N A ( 9 l  
NB ( 9  1 
NCHECK 
NN(313 .3 )  
NQ( 1 2 1  
NSTOP 
NTEMP ( 9  ) 
NTUHN 
P ( 3 r 3 , 3 1  
PN 
Q13,3,3) 
PMAX' 
C C M A X  
5 1 3 t 3 9 1 4 )  
S INAL  
.SINALS 
SINBE 
SINBES 
SlNGA 
SINGAS 
STORE 
SUM 
T I T L E l 1 6 )  
v 
v s 
W13,3,3) 
X 
X X 
X Y 

CODE FOR NEXT JOB 
NUMBER OF CYCLES I N  REDUCED CELL ROUTlNE 
NUMBER OF CYCLES 1N.RDUTINE 
(NOT USE0 I N  PROGRAM) 
CODE FOR PROGRAM SECTION 
SPECIFICATION CODE FOR CELL PARAMETERS REAO A T  INPUT 
PROGRAM SECTION NUMBER 
NUMBER OF ACUTE ANGLES I N  REDUCED CELL 
TOTAL NUMBER OF CELLS INVOLVED I N  PROGRAM 
TOTAL NUMBER OF CELL I D E N T I F I C A T I O N  CAROS REAO I N  
INDEX 
CODE FOR SHIFT I N  A-AXIS. JA-D NU SHIFT, . J A = 1  SHIFT 
CODE FOR SHIFT  I N  B-AXIS. JB=O NO SHIFT,  J B = l  SHIFT 
INDEX 
CODE FOR, SHIFT I N  C-AXIS. JC tO  NO S H I F T t  J C = l  SHIFT 
JA + J B  + JC 
INDEX 
INDEX 
1 NDEX 
CODE FOR REDUCTION OF REMAINING TWO AXES 
CODE FOR TRANSFER TO + FROM MATRIX INVERSION ROUTINE 
STORAGE FOR K 
CODE FOR PARAMETERS I N  CONVENTIONAL CELL. ' . l=A,  2=B, 3-C 
INDEX 
INDEX 
INDEX 
PAGE CONTROL FOR OUTPUT 
INDEX 
INDEX 
INDEX 
NUMBER OF TRANSFORMATION CARDS READ I N  
LARGEST CELL PARAMETER REAO AT INPUT. l = A t  4=8,  7=C 
MATRIX ELEMENTS ( I N  F1XED'PT. I  FOR CELL (N+11  TO C E L L I N )  
ELEUENTS OF DIRECT TRANSF.ORMATION MATRIX TO RED. CELL 
MATRIX ELEMENTS OF CELL ( N I  TO CELL ( N t l l  I N  RED. SECT. 
MATRIX ELEMENTS OF CELL ( 1 )  TO CELL ( N t l l  I N  RED. SECT. 
INDEX CONTROLLING REDUCTION OF CELL PARAMETER 
MATRIX ELEMENTS ( I N  F IXED PT.1 FOR C E L L I N )  TO C E L L ( N + l )  
I tJENTIFICATION VARIABLE 
INDEX CONTROL- WHEN NSTOP = 3, REDUCTION CYCLE COMPLETE 
TEMPORARY STORAGE LOCATION FOR MATRIX ELEMENTS 
INDEX CONTROL 
MATRIX ELEMENTS ( I N  FLOATING P O I N I )  
INTEGER (FLOATING PT.1 
MATRIX ELEMENTS ( I N  FLOATING P O f N l l  
THE LARGER OF TWO CELL PARAMETERS 
THE LARGEST OF IABSAB, ABSDC, ABSCAI 
MATRIX ELEMENTS ( I N  FLOAT PT.) FOR CELL (N+11  TO CELL IN1  
S I N F I A L I  
S I N F I A L S )  
S I N F I B E I .  
S INF (BES1  
S I N F I G A )  
S INF ICAS)  
TEMPORARY STORAGE LOCATION FOR NEW SCALAR PRODUCT 
BC CA + AB 
ALPllANUMERIC T I T L E  REAO AT START r?F PHili.RAM 
CELL VOLUME I N  DIRECT SPACE 
CELL VOLUME I N  RECIPROCAL SPACE 
MATRIX ELEMkNTS OF ORIGNAL CELL TO F INAL  CELL 
TEMPORARY LOCATION FOR CELL PARAMETER A, B OR C 
X+X 
TEMPORARY LOCATION FOR S C A L A R ' P R O D U C T  AH, BC OR CA 



TEMPORARY LOCATION OF NEW SCALAR PRODUCT 
TEMPORARY LOCATION FOR CELL PARAMETER A' B OR C 
Y *Y 
TEMPORARY LOCATION FOR SCALAR PRODUCT AB, BC OR CA 
TEMPORARY LOCATION FOR CELL PARAMETER A, B OR C 
TEMPORARY LOCATION FOR SCALAR PRODUCT ABt BC OR CA 
TEMPORARY LOCATION OF NEW SCALAR PRODUCT 
2.2 

**  o*********.**.***.*o**o** 

FORMAT 5 1  ATFMFNT S 

.................... ****a** 

L 
L 

1000 FORMAT 116A5 )  
1 0 0 1  FORMdT ( 3 1 3 3  
1062 FORMAT 16 f10 .6 )  
1003  FORMbT ( l X ,  12, 2 x 1  1 5 A 5 )  
1C04 FORMAT 19F8.5) 
1005  FORMAT l l H 1 )  
1006  FORMAT I l H K 1  4 x 1  16A5 )  4 

1007 FORMAT ( l H L ,  3X, 44H INPUT DATA OF ORIGINAL CELL I N  DIRECT SPACE 
1008  FORMAT I l H L ,  3X, 48H INPUT DATA OF ORIGINAL CELL I N  RECIPROCAL SPA 

I C E  1 
1009  FORMAT 11HL1 3x9  40H LATTICES USED I N  PROGRAM / 1 
1 0 1 0  FORMAT I l H  , 9 X r  7H CELL 1 ,11 *4H)  t 1 5 A 5 )  
1011  F O R M A T  ( 1 ~  , 9 x ,  IH CELL t , I i , s l n )  REDUCED CELL CONFORMING TO T R  

l I C L I N l C  CONVENTION 1 
1012  FORMAT I l H L ,  83H  SERRORS - STATEMENT NO. 4 0 1  PLUS 0 0 1  CARD* 4 0 4  PL 

i U S  001 CAAb OR 4 8 7  PLUS 001 CARD. 
1013  FORMAT (1HLp 77H  SERRORS - STATEMENT NO. 2 PLUS 0 0 1  CARD* 5 PLUS 0 

101 CARD on o FLUS o o i  cano. I 
1014  FORMAT (1HLv 35H SERRORS - STATEMENT NO. 3 1  6 OR 9. ) 
1015  FORMAT I I H L ,  4 7 H  SERRORS - ERROR I N  AX IS  DESIGNATION I N  PART 1. 
1016  FORMAT I l H L ,  38H SERRORS - STATEMENT NO. 1 7 1  3 7  OR 57. 1 
1017  FORMAT I l H L ,  18H SERRORS - PART 2. ) 
1018  FORMAT 11HLs 3 x 1  39H TRANSFORMATION MATRICES / J 
1019 FORMAT I l H K ,  1 2 x 1  7H CELL I r I l t l l H )  TO CELL ( t I l , l H ) t  

1 12Xv 7H CELL ( , l l t l l H )  TO CELL ( 1 1 1 t l H )  / /  
1020  FORMAT I l H  11x9 3F7.2, 12X, 3F7.2 / ) 
1 0 2 1  FORMAT I1HKe 1 2 x 1  19H CELL ( 1 )  TO CELL I t I l t l H l t  

1 12x9  7H CELL I v I l r 1 3 H )  TO CELL 1 1 )  / /  
1022 FORMAT 11H4, 4 x 1  16A5 / 
1023 FflRMAT (1HK9 9 x 1  29H LATTICE PARAMETERS CIF CELL 1 , I l t S H )  -- ,15A51 
1024  FORMAT (1HKe 15x9  6H A = F9.49 14Xe 10H ALPHA = F10.4) 
1025  FORMAT ( 1 H  9 15x9  6H B = F9.41 1 4 x 1  1OH BETA = F10.4) 
1026 FORMAT ( 1 H  1 5 x 1  6H C = F9.4, 1 4 x 1  1OH GAMMA = F10.4) 
1027 FORMAT (1HJv  15x9  6H A* = F9.61 14x9  10H ALPHA* = F10.4) 
1028 FORMAT ( 1 H  I 1 5 x 1  hH R. F 9 . b ~  14X. 1OH BETA = F10.4) 
LO29 FORMAT 11H 9 15x1  6H C* = F9.6, 1 4 x 1  10H GAMMA* = F10.4)  
1030  FORMAT ( 1 H J 1  15x9  6H V = F9.3) 
1031  FORMAT I 1 H  , 1 5 x 1  6H V* = F9.6, / /  
1032 FORMAT (1HK. 9 x 1  44H NATURAL TRIGONOMETRIC VALUES OF THE ANGLES 1 
1033  FORMAT ( 1 H K t  28x1  7H ANGLE 9 6 x 1  5H S I N  9 7 x 9  5H COS ) 

1034 FORMAT I l H J p  LSX, 7H ALPHA 9 F13.4, ZF12.5) 
1035 FORMAT l 1 H  t 15X1 7H BETA 1 F13.4, 2F12.51 
1036  FORMAT ( 1 H  1 15x9  7H GAMMA t F13.41 2F12.51 
1037 FORMAT l l H J t  15x9  7H ALPHA*, F13.4, 2F12.5) 
1038 FORMAT 11H 1 5 x 9  7H RETA *, F13.4, 2F12.5)  



1039 FORM41 l 1 H  , 15x9 7H GAMMA*, F13.49 2F12.5) 
1040  FORMAT ( l H L *  9 x 1  44H SCALARS CORRESPONDING TO  HIS REDUCED CELL ) 
1041 FORMAT ( IHK,  15x1  9H R f l , l l  5 F7.2, 5 x 1  9H R ( 2 t 2 )  PT.2, 5x9 

1 9H R l3 .31  F7.2) 
1042 FORMAT I l H J ,  15X, 9H R ( 2 9 3 )  F7.2, 5 x 1  9H R I 3 1 1 1  = F7.2, 5x9 

1 9H R I 1 ~ 2 1  F7.21 
1043 FORHkT (1HK1 15X, 28H R12e3)  + R l 3 r l l  + R ( l e 2 )  = F.7.2) 
1044 FORMAT I 1 H  9 16x9 314. 2 l X t  314  / 
1045 FOHMAT I lHK ,  9 x 1  29H LATTICE. PARAMETERS OF CELL f , I l i 3 1 H )  -- CONVE 

LNTIONAL REDUCED CELL 1 . . 
1046 FORMAT l 1 H  r 16x9 6H MOD = F8.4, 1 9 X r . ' b ~  HOD' = FB.4 / ) 
lC7O FORMAT 111)  

L 

C 
DIMENSII 
I 
2 
3 

COMMON 
1 
2 
3 
4 
5 
6 
7 
B 

INPUT 
J 

e...oe.ie...o.. 

L 

9999 REAO 1000, ( T I T L E ( I ) r  I = 1,161 
READ l O O l r  INPUT, ITOTAL, MATRIX 
GO TO 161, 621, INPUT 

6 1  REAO 1002, A, 8, C t  ALPHA, BETA, GAMMA 
GO TO 70 

62 READ 10029 AS* BS* CS, ALSTARt BESTAR, GASTAR ' 

70 DO 8 2  J = l t l T O T A L  
' 82 REAO 1003, N Q I J ) ,  I C E L L I I , J ) 9  I = 1,151 

I F  (MATRIX) 600, 600, 18  . . 

78 DO 8 3  K = 1,MATRIX 
83 READ 1004, ( I P ( I , J , K ) ,  J ' s  l r 3 1 ,  I = 1.3) 

. . . .  K4 = 1 
C . , 

C ......... C i*............... 
c 
C MATRIX INVERSION 



1  - P ( 1 , 2 r L ) * ( P ( 2 r l * L I * P ( 3 * 3 * L I  - P ( 3 * 1 t L ) * P ( 2 ~ 3 , L ) )  
2  + P ( l ~ 3 ~ l l * ( P I 2 ~ l r L ) * P ( 3 r Z 1 L )  - P ( 3 t l t L l * P ( 2 * 2 t L I )  

S  1 , l t L t  = ( P ( Z * Z , l ) * P ( 3 , 3 * L )  - P ( 3 r 2 * L l * P I Z ~ 3 r L ) l  / D E T t L )  
S11 ,Z .L~  = - l P ( 1 . 2 * L I * P I 3 ~ 3 , 1 )  - P ( ~ . ~ . L ) * P I I I ~ * L I I  / DET(L )  
S ( l i 3 r L I  = I P ( l * Z * L ) * P ( 2 * 3 r L )  - P ( 2 * 2 * L ) * P ( l r 3 , L I )  / D E T ( L )  
S ( 2 V l 9 L )  = - ( P ( Z , l , L ) * P ( 3 1 3 9 1 )  - P ( 3 ~ 1 ~ L l * P 1 2 ~ 3 v L l l  / D E T ( L I  
S 1 2 t 2 1 L )  = ( P ( l , l t L ) * P ( 3 * 3 e L I  - P l 3 ~ 1 ~ L ) * P ( L * 3 ~ l I )  / OET(L )  
S (Zp3gL1  - ( P ( l , l p L ) * P 1 2 * 3 , 1 )  - P ( Z * l r L ) * P ( 1 , 3 1 L I )  / OET(1)  
S ( 3 r l * L )  = ( P ( Z * l , L ) * P ( 3 * 2 * L )  - P ( 3 * 1 , L I * P ( 2 * 2 t L ) )  / D E T I L I  
S ( 3 , 2 t L )  = - ( P ( l r l ~ L l * P ( 3 t Z ~ L l  - P ( 3 , l r L ) * P ( l * Z t L ) )  / D E T I L I  
S (393 .L )  = l P I l r l ~ L l * P I Z ~ Z ~ L )  - P ( 2 * 1 1 L ) * P I l , Z , L I )  / D E T I L )  
0 0  5555  1  = 1 # 3  
0 0  5555 J 113  
I F  P S l l r J v L I )  5555, 55539 5555  

5559 S I I , J * L I  = 0.0 
5555 CONTINUE 

B E T I L )  = l . / O E T ( L I  
I F  l K 4  - 1 )  5 5 5 8 *  5556, 5558  

5556  I F  ( L  - MATRIX) 5557, 5558, 5558  
5557  L  = L  + 1 

GO TO 5554  
5558 GO TO ( 6 0 0 ,  603, 681 77721,  K4 

C 

+.......+....*+....*** ***me* * * * * * * * * m  

MISCELLANEOUS PROCESSING 

L 

C 
600 ICYCLT - 0  

ICYCLE = 0 
IOUTPT = 1 
K ' 1  
t H K L I 1 1  = 1 
I = NO( ITOTAL - 1 )  
GO TO 1112, 1161, 1  

112 ISUM = ITOTAL 
GO TO 8 0  

l l b  ISCM = I l U l A L  + 1 
80 GO TO ( 7 1 9  721, INPUT 

l. 

7 1  SINAL = SINF(ALPHA 0.01745329)  
S T N R F  = S T N F I R F ~ A  . n . n 1 7 6 ~ 3 2 9 1  
SlNGA = SINFIGAMMA 0.01745329)  
COSAL = COSFIALPHA 0.01745329) 
COSBE = COSF(BETA 0.01745329) 
COSGA = COSF(GAMMA 0.01745329) 

8 1  ALS = ACOSF((C0SBE COSGA - COSALI / (SINBE SINGA))  
BES = ACOSF((C0SAL r COSGA - COSBE) / (S INAL  S INGAI )  
GAS = ACOSF((C0SAL COSBE - CCSGA) / IS INAL  S I N B E ) )  
SINALS = S INF IALS)  
SINBES = SINF(BES1 
SINGAS = SINF(GAS) 
CUSALS = COSFIALS) 
COSBES COSFIBES) 
COSGAS = COSF(GAS) 
AS = 1. / ( A  SINPFS SING41 
BS = 1. / I B  SINALS SlNGAI 
CS 1. / I C  SINALS SINBE) 
ALSTAR = ALS 57.295780 
BESTAR = BES 57.295780 



G A S T A R  = G A S  5 7 . 2 9 5 7 8 0  
GO TO 99 

C  
7 2  S I N A L S  = S I N F I A L S T A R  0 . 0 1 7 4 5 3 2 9 )  

S I N B E S  S I N F ( 0 E S T A R  0 . 0 1 7 4 5 3 2 9 )  
S l N G A S  = S I N F I G A S T A R  0 ; 0 1 7 4 5 3 2 9 )  
C O S A L S  = C O S F I A L S T A R  0 . 0 1 7 4 5 3 2 9 )  
COJBES = C O S F I B E S T A R  0 . 0 1 7 4 5 3 2 9 )  
C O S G A S  = C O S F I G A S T A R  0 . 0 1 7 4 5 3 2 9 )  

.AL  = A C O S F I ( C 0 S B E S  C O S G A S  - C O S b L S l  / I S I N B E S  S I N G A S ) )  
B E  = A C O S F I I C O S A L S  C O S G A S  - C O S B E S )  / I S I N A L S  S I N G A S ) )  
G A  = A C O S F I I C O S A L S  . C O S B E S  - C O S G A S l  / ( S I N A L S  S I N B E S ) )  
S I H A L  = S I N F I A L )  
S I N B E  = S I N F I B E I  
S f N G A  = S I N F f G A )  
C O S A L  = C O S F ( A L 1  
C O S B E  = C O S F I B E )  
COSGA = C O S F I G A )  
A  * 1. / ( A S  S I N B E  S I N G A S )  
B  = 1. / I B S  S I N A L  S I N G A S )  
C  1. / I C S  S l N A L  S I N B E S )  
A L P H A  = A L  5 7 . 2 9 5 7 8 0  
B E T A  - B E  5 7 . 2 9 5 7 8 0  
GAMMA = GA 5 7 . 2 9 5 7 8 0  

L 

6 5  D I M I l l K )  = A  
O l M ( 2 1 K )  = R 
D I M 1 3 r K )  = C  
O l M ( 4 1 K )  = A L P H A  
D I M l 5 v K )  = B E T A  
D l M ( 6 1 K )  = GAMMA 
I = I H K L I K )  

" G O  TO 1 6 7 1  5 0 1 1  4 1 1 1  1  
6 7  I F  ( K  - 1 )  6 4 1  6 4 1  6 3  
6 3  I F  f I S U M -  K )  4 1 ,  4 1 9  1 1 3  

P R I N T  1 0 0 5  
P R I N T  10061 1 T I T L E I I ) i  I = 1 9 1 6 )  
GO TO 1 1 0 7 1  1 0 B ) r  I N P U T  
P R I N T  l o 0 7  
GO TO 7 3  
P R I N T  1 0 0 8  
P R I N T  1009 
DO 1 3  J = l t l T O T A L  
P R I N T  1 0 1 0 1  J1 ( C E L L I I * J ) q  I = 1 1 1 5 )  
I = N O 1  I T O T A L  - 1 )  
GO TO ( 1 1 3 1  1 1 1 1 1  1  
J = J + 1  
P R I N T  1 O l l t  J 
I = N Q I K )  
GO TO ( 5 0 0 0 1  5 0 0 1 ) 1  1  

T R A N S F O R M A T I O N  U S I N G  M A T R I X  S U P P L I E D  T H R U  I N P U T  



L 
C  C A L C U L A T I O N  O F  T H E  NEW A *  61 C  
C  

5 0 0 0  I C Y C L T  . =  I C Y C L T  + 1 

c 
C  C A L C U L A T I O N  O F  T H E  NEW A L P H A *  B E T A *  GAFMA 
C 

J = 2  
L - 3  

- .  ~ 

1 + P ~ J . ~ , K I * P I L . ~ , K I * C * C  
2 4 ( P ( J v l , K I . P I L , 2 , K )  4 P I J * Z * K I ~ P I L , l v K ) I ? A ~ ~ ~ C U s ~ *  
3 .  + ( P ( J I 1 1 K ) m P ( L * 3 * K )  + P ( J * ~ ~ K ) * P I L ~ ~ ~ K ) ) * A * C ~ C ~ S B E  
4 + l P ( J t 2 * K ) * P ( L * 3 * K )  + P ( J * ~ ~ K ) * P ( L * ~ * K J ) * B * c * C O S A L I  
5 / ( A X I S ( J ) * A X I S I L ) I  

P N G L E I I )  A C O S F ( C O S ( 1 ) )  5 7 . 2 9 5 7 8 0  
GO f a  ( 1 1 s ~  16* 1 9 ) ~  I 

1 1 5  J = 1 
G O  TO 19 

1 6 L = 2  
19 C O N T I N U E  

A = A X f S I 1 )  
0 = A X I S ( 2 )  
C  = A X I S f 3 )  
A L P H A  = A N G L E  ( 1 )  
B E T A  = A N G L E f 2 )  
GAMMA = A N G L E 1 3 1  
K = K + 1  
I H K L ( K 1  = 1 
tiu I U  I 1  

L 

C **.*.........*.*....+..*.. *a*m*..*..*.**.....**.**a...m.*4.*. 
c 
c 
C  P A R T  1. T R A N S F O R M A T I O N .  
L 
c 

5 0 0 1  K = K  + 1 
I H K L ( K )  = 2 
I C Y C L E  = 1 
A 8  = A  B  C O S G A  
B C  = 0 . C C Q S A L  
C A  = C  A  C C S B E  
GO 1 7 5  J = 1.9 
N ( J )  = 0 

1 7 5  N A I J )  = 0. 
Nil) = 1 
N I S I  = 1 
N ( 9 )  = 1 
N A l l I  = 1 
N A l 5 )  = 1 
N A ( 9 )  = 1 



N S T O P  = 1 
K 2  = 0 
A B S A B  = A B S F I A B J  ' 

ABS.BC = A B S F I B C )  
A B S C A  = A B S F I C A J  
Q Q M A X  = H A X L F I A B S A B ~  ABJBC* AESCAI 
I F  . lCQCIAX - A B S A R J  176, 401, 176 
I F  ' I Q Q M A X  - A B S B C  J  8 9 0 , .  404, 407 . 
Q M A X  = M A X l F 1 A r B 1  
I F  I Q H A X  - A )  84, 919 92 
C M A X  M A X L F l B r C J  
I F  I Q H A X  - 0 )  041 93, 94 
Q M A X  = M A X l F I C , A J  
I F  I ' Q M A X  - C )  849 95r  96 
l A X l S  * 2 
G O  T O  1 
I A X I S  = 1 
G O  T O  4 
I A X l S  = 3 
G O  T O  4 
I A X I S  = 2 
G O  T O  7 
I A X I S  = 1 
G O  T O  7 
l A X I S  = 3 
G O  T O  1 

M A X  = 1 
G O  T O  10 
I A X I S  = 1 
Q M A X  = M A X l F I B r C l  
I F  l Q M A X  - R J  8 7 ,  101, 102 
K 2  = 1 
G O  T O  30 
K Z  = 2 
G O  r 0  5 0 ,  
I F  I K Z  - 1) 889 1219 1 2 2  
I A X I S  = 2 
G O  T O  50 
I A X I S  = 3 
M A X  = 4 
G O  10 30 
I A X I S  = 2 
O M b X  M A X l F I A r C )  
I F  I Q M A X  - A )  8 7 ,  2 0 1 9  202 
K 2  = 1 
G O  T O  10 
K 2  = 2 
G O  T O  S O  
I F  I K 2  - 1 1  889 1239 124 
I A X I S  = 1 
G O  T O  50  
I A X I S  = 3 
G O  T O  10 

M A X  = 7 
G O  T O  5 0  
I A X l S  = 3 
O M A X  M A X l F l A r B )  
I F  I Q M A X  - A 1  879 3019 302 
K 2  = 1 
G O  T O  10 
K Z  = 2 



G O  TO 30  
I F  IK2  - 11 081  1251. 126 
I A X I S  = 1 
G O  T O  30 
I A X I S  .= 2 
GO t o  t o  
P R I N T  1012 
G O  TO 890 
P R I N T  1013 
G O  TO 890 
P R I N T  1014 
GO TO 890 

R E D U C T I O N  O F  A. ( Q M A X  = A )  

X = A  
Y = B  
1 L 
X Y  = A B  
v z  = B C  
Z X  = C b  

N C H E C K  = 1 
GO TO I 8 5 1  111 1 2 ) ~  I A X I S  
1 - 2  
GO T O  100 
1 = 3  
G U  TO 300 

N C H E C K  = N C H E C K  - 1 
I F  I N C H E C K )  469 171 17 

17 I F  I 1  - 2 )  Bbr 12. 11 
46 MAX = MAX + 1 

NSTOP = NSTOP 1 
I F  I N S T O P  - 3 )  189 181 601  

18 GO T O  ( 1 1  21 31 41  5 9  61  79 81 911 MAX 
6 
c REDUCTIONOF B. I Q ~ A X  = 0 1  
C 

3 0 X  = B  
Y = C  
2 = A  
XY = BC 
Y Z  - C A  
Z X  = AR 

C 
N C H E C K  = 1 
GO TO (329 851 3119 I A X l S  

3 1 1 - 6  
GO TO 100 

3 2 1 = 4  
GO TO 300 

C 
3 5 A  = z  ' 

B = X  
C = Y  



NCHECK = NCHECK - 1 
I F  (NCHECK) 46 ,  379  3 7  ' 

37 I F  I 1  - 4 )  86 ,  31, 3 2  
C 
C REDUCTION OF C. (OHAX * C I  
L 

5 0 X  = C  
Y = A  
Z = B  
XY = CA 
YZ = AB 
ZX = BC 

C 
NCHECK = 1 
GO TO ( 5 1 ,  52, 8 5 1 1  I A X I S  

5 1 1 = 7  
GO TO 1 0 0  

5 2 1 = 8  
GO TO 300 

c 
5 5 A  = Y  

B = z  
c = X  
A0 = YZ 
BC = ZX 
CA = XY 

NCHECK = NCHECK - 1 
I F  (NCHECK) 4 6 1  5 7 1  5 7  

57  I F  ( 1  - 7 )  869 529 5 1  
c 

8 5  PRINT 1015  
GO TO 8 9 0  

R A  P R I N T  I n iA  
GO TO 8 9 0  

C 
C REDUCTION OF X. ABSF(X.YI GREATER THAN ( V * * 2 1 / 2  
c 

XX = X.X 
YY = Y*Y 
PN 2 0. 
I F  (ABSF(XY1 - 0.5 Y Y I  444, 4449 1 1 0  
I F  ( X Y )  1 2 0 1  4 4 4 1  2 0 0  
XYZ = XY 4 PN*YY 
I F  ( X Y Z I  130,  150,  1 5 0  
STORE = XV2 
PN = PN 4 I. 
GO TO 1 1 0  
I F  tABSF tXY2 )  - ABSFISTORE)) 143,  142,  142  
PN = PN - 1. 
N A I I )  = PN 
X = SQRTF(XX 4 Z.*PY*XY t PN*PN*YY) 
ZX = ZX 4 PN*YZ 
I F  IABSF(XY2)  - ABSF(STORE1) 160,  1709 1 7 0  
XY = XY2 
GO TO 520 
XY = STORE 
GO TO 5 2 0  



XY2 = XY - PN*YY 
I F  (XY2)  2509 2509 230  
STORE = XY2 
PN = PN + 1. 
GO TO 200  
I F  lABSF lXY2)  - ABSF(ST0RE)) 2 4 3 t  243, 242  
PN = PN - 1. 
N A ( 1 )  = -PN 
X = SQRTFIXX - 2.*PN*XY + PN*PN*YY) 
ZX = ZX - PNeYZ 
GO TO 144  

REDUCTION OF X. ABSF(Z.XI GREATER THAN 1 2 * * 2 ) / 2  

X X  = x t x  
z z  = 2.2 
PN = 0. 
1 E  ( A e S F t i x )  - 0.5 - L Z )  454. $ 9 5 ,  310 
I F  I Z X )  3209 4449 400 
2 x 2  = ZX + PN*ZZ 
I F  1 2 x 2 )  3309 3 5 0 t  350  
STORE = 2 x 2  
PN = PN + 1. 
GO TO 310 
I F  IABSFIZXZ)  - ABSFISTORE)) 3439 3429 342 
PN = PN - 1. 
N A I I )  = PN 
X = SQRTF(XX + 2.*PN*ZX + PN*PN*ZZ) 
XY = XY + PN*YZ 
I F  (ABSF lZX2)  - ABSF(ST0RE))  360; 3709 370 
Z X  = 2 x 2  
GO TO 520 
L R  = S'IURE 
GO TO 520 

b X 2  = ZX - PN*ZZ 
I F  1 2 x 2 )  4509 4509 430 
STORE = 2 x 2  
PN = PN + 1. 
GO TO 400 
I F  I A R S F I I X 7 1  - A R t F I S T 0 4 E I I  4 6 3 1  4 6 3 ,  462  
PN = PN - 1. 
NA 1 I) = -PN 
X = SQRTF(XX - 2.*PN*ZX + PN.PN*ZZI 
XY = X Y  - PN*YZ 
GO TO 344 



N A I 9 )  = 1 
444 GO TO (601,  15, 15, 359 601, 35, 55, 55, 6 0 1 ) .  I 

C 
C 
C . OUTPUT. OF PART 1. (REDUCED CELL) 
C 
C 

6 0 1  COSAL =.BC / (B*C)  
COSBE = CA / IC*A)  
COSGA = AB / (A*B)  
AL = ACOSF(COSAL1 
BE = ACOSFICOSBEI 
GA = ACOSFICOSGA) 
SINAL = S I N F I A L )  
SINBE = S INF IBE)  
SINGA = S I N F t G A ) .  
ALPHA = 57.295780 AL 
BETA = 57.295780 BE 
GAMMA = 57.295780 GA 
L L  = 1 
GO TO 602 

C 
c A T E S T  IS NOW MADE T O  DETERMINE IF THE CELL JUST OBTAINED 
C I S  THE REDUCED CELL. I F  ONE OR MORE OF THE AXES CAN BE FURTHER 
C REDUCED, THE PROGRAM RETURNS TO STMNT 382  FOR ANOTHER CYCLE. 
C 

5 0 1  I F  IABSFIAB)  - 0.5 A*A) 502, 5 0 2 1  3 8 1  
502 I F  (ABSF(AB)  - 0.5 8.B) 503, 503, 3 8 1  
503 I F  (ABSF(BC) - 0.5 B*B)  504, 5 0 4 1 . 3 8 1  
504 I F  (ABSF(BC1 - 0.5 C*C) 505, 505, 3 8 1  
505 I F  IABSF(CA) - 0.5 C*C) 5061  5061  3 8 1  
506 I F  (ABSF(CA) - 0.5 A*A) 661  66, 3 8 1  
3 8 1  ICYCLE = ICYCLE + 1 

GO TO 382 
C 
L 

C PART 2. TRANSFORMATION OF REDUCED CELL TO CONVENTIONAL 
C REDUCED CELL- THE CONVENTION I S  C LESS THAN A LESS THAN B, 
C W I T I I  ALFllAv DCTA OBTUSC. 
c 
L 

66  JA = 0 
JB = 0 
JC = 0 
K = K + l  
I H K L ( K )  = 3 
NTURN = 1 
KK = 3 
I F  IM IN lF IAvB ,C)  - A) 702, 6111 9 9 9  

6 1 1  J J  = 7 
M = - 6  
GO TO 7 2 1  

702 I F  I M I N l F ( A r B 1 C I  - B )  612, 613, 9 9 9  
612 JC = 1 

J J  = 7 
n = o  
GO TO 723 

613  J J  = 7 
M = - 3  
GO TO 722 

703 kTURN = 2 
KK = 2 
I F  IMAXlF(A,B,C) - A) 9991  614, 704  



6 1 4  JJ = 4 
M = -3 
GO TO 7 2 1  

704  I F  I M A X l F ( A r R 9 C )  - 8 1  9999 6159  6 1 6  
615 JB = 1 

JJ  = 4 '  
M = 0 .  
GO TO 7 2 2  

6 1 6  J J  = 4 
M = 3 
GO TO 7 2 3  

706  NTURN = 3 
KK = 1. 
I F  t o t 2 1  - A)  7109 7 0 7 9  7 1 0  

7 1 0  I F  l o l l )  - 8 )  999.  7 0 8 9  7 0 9  
7 0 1  I F  I R I N I k I l J , C )  - 8 )  622, 6 2 1 9  993 
6 2 1  JJ = 1 

.M - 6 
tiU I'U 723 

6 2 2  JJ = 1 
M = 3  

O ( K K )  = A 
ANGLE ( K K )  = ALPHA 
J L  = JJ + 2 
nn 665 L = J J , J L  
L M = L + M  
NTEMPIL )  = N ( L M )  
GO TO ( 7 0 3 9  7 0 6 9  7 3 9 ) r  NTURN 
U I K K I  = 8 
ANGLE ( K K )  = BETA 
GO TO 6 6 4  
O ( K K )  = C 
ANGLE ( K K )  = GAMMA' 
GO TI3 sf54 

L 

739  0 0  7 3 0  I a l r 9  
730  N (  I 1  NTEMP(1) 

A = O ( 1 )  
B = 0 1 2 )  
C = O ( 3 )  
ALPHA = ANGLE(1) 
BETA = ANGLE(2)  
GAMMA = ANGLE131 , 

C 
C THE FOLLOWING SECTION CHECKS TO MAKE SURE ALPHA AND BETA ARF 
C PAC# EQUAL 1'0 UR GREATER THAN 90 DECREES. I F  ONE OR BOTH ARE 
C LESS THAN 9 0  DEGREES* THE PROPER ADJUSTMENTS ARE MADE. 
C 

223 L L  = 2 
I S I G N  = 0 
I F  (ALPHA - 90.0)  219 8019 8 0 1  

2 1  I S I G N  = I S I G N  + 1 
8 0 1  I F  (BETA - 90.0) 229 8029 8 0 2  

22  I S l G N  = I S I G N  + 1 
802  I F  ( I S I G N  - 1 )  6029  699 7 9  



C I S I G N  = 1 
C EITHER ALPHA OR BETA I S  LESS THAN 9 0  DEGREES. REDEFINE THAT 
C ANGLE AS I T S  SUPPLEMENT AN0 SET GAMMA = 180.0.-  GAMMA. 
C I T W O  ANGLES MUST A L C A Y S  BE TRANSFORMED SIMULTANEOUSLY.) 
L 

6 9  GAMMA = 180.0 - GAMMA 
0 0  6 6 6 1  1 = 7,9 
N I I )  = - N l 1 )  
I F  I N I I I )  66619 4441,  6 6 6 1  

4 4 4 1  N I I )  = 0 
6 6 6 1  CONTINUE 

I F  IALPHA - 90.0)  4 3 1  4 4 1  4 4  
4 3  ALPHA = 180.0 - ALPHA 

0 0  6 6 6 2  1 = 1.3 
N I I )  = - N l I )  
I F  I N I I ) )  6 6 6 2 1  4 4 4 2 1  6 6 6 2  

4 4 4 2  N I I )  0 
6 6 6 2  CONTINUE 

GO TO 6 0 2  
4 4  BETA = 180.0 - BETA 

0 0  6 6 6 3  1 = 4 9 6  
N I I )  = - N ( I I  
I F  I N I I ) )  6663 ,  44439  6 6 6 3  

4 4 4 3  N I I )  = 0 
6 6 6 3  CONTINUE 

GO TO 6 0 2  
C 
C I S I G N  = 2 
C REDEFINE ALPHA AND BETA AS I T S  OHN SUPPLEMENT 
C OIRECTIONS OF A AN0 0. 

ALPHA = 180.0 - ALPHA 
BETA = 180.0 - BETA 
0 0  6 6 6 4  1 = 1 1 6  
N I I )  = - N l I l  
I F  I N I I ) )  6 6 6 4 1  4 4 4 4 1  6 6 6 4  . 
N l l )  = 0 
CONTINUE 

REVERSE THE 

A CHECK I S  MADE TO DETERMINE I F  THE SYSTEM HAS GONE FROM 
RIGHT-HANDED TO LEFT-HANDED OR VICE VERSA. I F  J F  = 1 THE SYSTEM 
HAS REVERSED. I F  J F  = 0 OR 39 I T  HAS NOT REVERSED. 

851  JF = JA t JE + JC 
I F  I J F  - 1 )  8 2 1 1  8 3 2 1  8 2 1  

8 3 2  0 0  8 3 5  I = 1.9 
N I I )  = - N l I )  
I F  I N I I ) )  835, 8 3 3 1  8 3 5  

8 3 3  N I I )  = 0 
8 3 5  CONTINUE 

C 
8 2 1 K = K -  l 

N N l l 1 l r L L )  = N ( 1 1  
N N l 1 , 2 1 L L I  = N l 2 )  
NN11,3,LL) = N l 3 )  
N N l Z 1 1 , L L I  = N l 4 )  
N N I 2 1 2 1 L L )  = N 1 5 )  
N N I 2 9 3 r L L )  = N l 6 l  
N N I 3 , l v L L )  = N l 7 )  
NNl3 ,2 ,LL)  = N I B )  



P R I N T  1 0 1 7  
GO T O  890 

G E N E R A T I O N  O F  M A T R I X  F O R  T R A N S F O R M A T I O N  O F  O R I G I N A L  
C E L L  TO F I N A L  C E L L  



C 
C OUTPUT 
C ................ C ' 

c 
C 

6 8  IOUTPT = 3  
PRINT 1 0 1 8  
K = l  
I F  ( ISUM - 5 )  7989 7999  7 9 9  

7 9 8  L I N E  = 2  
GO TO 8 0 0  

799 L l N E  = 3 
8 0 0  I = NQtK )  

GO TO ( 7 5 0 9  75119 I 
7 5 0  KX '  = K  + 1 

PRINT 10199  K t  KXv KX1 K 
PRINT 10209  P t l ~ l r K ) r P ( 1 1 2 ~ K ) r P I l r 3 r K ) ~  S t l ~ l ~ ~ ) ~ S ( 1 ~ 2 n ~ ) ~ S ( 1 1 3 1 K )  
PRINT 10209  P t 2 ~ l ~ K ) ~ P I t r Z ~ K l ~ P I 2 ~ 3 ~ K ) n  S t 2 , l r K ) r S ( 2 , 2 g K ) r S ( 2 * 3 v K )  
PRINT 10209  P l 3 ~ 1 r K ) ~ P ( 3 ~ 2 r K I ~ P I 3 ~ 3 9 K ) ' t  S ( ~ ~ ~ ~ K I ~ S I ~ ~ ~ V K ) , S ( ~ ~ ~ , K )  
PR lNT  10469  OET(K19 B F T ( K )  
GO TO 7 5 5  

7 5 1  L  = 1 
K X = K + l  
PRINT 1019.  Kc KXv KX9 K  
PRINT 10449  N N I 1 ~ l v L ) , N ~ ( l t 2 ~ L ) ~ N N I l ~ 3 ~ L ) r  M M l l * l , L ) v M M l l ~ 2 . L ) ~  

1 M M t l 9 3 r L )  
PRINT 10449  N N l 2 * l r L ) r N N ( 2 ~ 2 r L ) t N N ( 2 * 3 , L ) r  M M t 2 r l ~ L ) ~ M M l 2 9 2 * L d ~  

1 M M ( Z p 3 * L )  
PRINT 1044,  N N ( ~ ~ ~ * L ) * N N ( ~ ~ ~ * L I ~ N N ( ~ S ~ ~ L ) ,  H M ( 3 r l * L l * M M ( 3 ~ 2 v L l *  

1  M M t 3 * 3 * L )  
PRlNT 10469  D E T I K ) *  B E T t K )  
L l N E  = L I N E  + 1  
I F  ( L I N E  - 5 )  7529 743,  7 4 3  

7 4 3  L I N E  = 1  
PRINT 10229  ( T I T L E ~ I I ,  I = 1,151 

7 5 2  L  = 2  
K X = K + 2  
PRlNT 1 0 1 9 1  K *  KXc KX*  K  
PR lNT  10449  N N I l ~ l ~ L I ~ N N ( 1 ~ 2 ~ L ) ( N N ( 1 ~ 3 n L I t  M M ( l t l r L ) t M M l l t 2 9 L ) n  

1 M M ( l r 3 r L 1  
PRINT 10449  N N I ~ ~ ~ ~ L ) ~ N N ( ~ ~ ~ ~ L ) ~ N N I ~ ~ ~ V L ) V  M M ( 2 r l , L ) , M M ( 2 * 2 9 L ) *  

1 MMt2 r3 ,L )  
PRlNT 10449  N N t 3 r l r L ) r N N 1 3 r Z t L ) t N N I 3 * 3 * L ) ,  N M l 3 r l * L ) r M M l 3 r 2 1 L ) *  

1 MM(3 r3 ,L )  
PR lNT  10469  O E T ( K + l ) r  B E T I K + l )  

7 5 5  L l N E  = L I N E  + 1  
I F  ( L I N E  - 5 )  7419 ? 4 0 *  740 

7 4 0  L l N E  = 1 
PRINT 10229  I T I T L E I I ) ,  I = 1,151 

7 4 1 K = K + , l  
I F  I I T O T A L  - K )  7539 753,  8 0 0  

7 5 3  I F  l l T O T A L  - 3 1  7429 7579 7 5 7  



C 
757 PRINT 10219 ITOTALt ITOTAL 

PRINT 1 0 2 0 p  P ( l ~ l ~ L 2 l ~ P ( 1 ~ 2 ~ L 2 ) ~ P ( l r 3 r L 2 I ~  S ( l r l * L 2 ) 9 S ( l r 2 t L Z ) ,  
1 S l  l r 3 9 L 2 )  

PRINT 10209 P(2ol9LZlrP(2929LZ)rP(2939L2)9 S ( 2 * l t ~ 2 ) r S ( 2 1 2 * L 2 ) *  
1 S ( Z p 3 9 L Z )  

PRINT 10209 P ( 3 r l * L 2 ) * P ( 3 , 2 * L 2 ) 9 P ( 3 * 3 * L Z ) *  S ( 3 r l * L 2 ) * S ( 3 r 2 r L 2 ) 9  
1  S ( 3 9 3 r L 2 )  

PRINT 10469 D E T ( L 2 ) r  B E T ( L 2 )  
I F  ( ICYCLE)  7429 7429 758 

758 K 4  = 4  
JB2 = ITOTAL - 1 

' DO 7 7 7 1  1  = 193  
0 0  7 7 7 1  J  = 193 

7 7 7 1  P ( I * J * J R 2 )  N N ( I g J o 2 )  
En Tn A A R ~  

7772 L I N E  = L I N E  + 1 
I F  ( L I N E  . 5 )  761, 760s 7 6 0  

760 L I N E  = 1 
PRiNT 10229 ( T I T L E ( I ) *  t = 19151 

761 PRINT 10219 !SUM* ISUM 
PRINT lOZO* P ( l ~ l ~ L Z ) ~ P ( l ~ Z ~ L Z ) ~ P ~ l ~ 3 ~ L 2 1 t  S ( l ~ l r L 2 ~ ~ S ( l ~ Z , L 2 ) ~  

1 S ( l t 3 9 1 2 I  
PRINT 10209 P(2919LZl9P1292*L2l,P(2939L2)9 S I 2 * l r L 2 ) * S ( 2 * 2 , L Z l *  

1 S ( 2 9 3 9 L 2 )  
PRINT 10209 P ( 3 r l * L 2 ) * P ( 3 9 2 * L 2 I , P ( 3 & L 2 ) r  S ( 3 r l . L 2 ) * S ( 3 * 2 r L Z ) r  

1 S ( 3 9 3 9 L 2 1  
PRINT 10469 OET(LZ)9 B E T ( L 2 )  

C  
742 J  = 0  
7 5 6 J = J + 1  

PRINT 1022, ( T I T L E ( I ) *  1 = 1 9 1 6 )  
I r  (IIIKL(J) - a )  7 7 1 ~  777, 771 

7 7 1  PRINT 10239 Jc ( C E L L ( I r J ) *  I = 1 9 1 5 )  
GO TO 773 

772 PRINT 1045, J  
C  

773 A = O I M ( l 9 J )  
8  = O I M I Z t J )  
C  = D I M ( 3 p J )  
ALPHA = D I M ( 4 , J )  
BE lA  ' U I R I 5 ~ J ~  
GAMMA = O IM169J )  
GO TO 7 1  

??7 PRINT 1n74m A *  ALPHA 
PRlNT 1025.  89 BETA 
PRINT 10269 Cc GAMMA 
PRINT 10279 AS, ALSTAR 
PRINT 1028, 8 S t  BESTAR 
PRINT 10299 CSt GASTIR 
PRINT 10309 V 
PRINT 1031  9. VS 

C  
SINAL = S IN t lALVHA + 0.0174!JSt91 
SINBE = SINFIBETA + 0.017453291 
SINGA = SINF(GAMMA 0.01745329) 
COSAL = COSF(ALPHA + 0.01745329) 
COSBE = COSF(BETA + 0.017453291 
COSGA = COSF(GAMMA + 0 .01745329)  
SINALS = SINFlALSTAR + 0.01745329) 
SINBES = SINFIBESTAR 0.01745329) 
SINGAS SINF(GASTAR 0.01745329) 
COSALS = CGSFlALSTAR 0.01745329) 



COSBES = C O S F f B E S T A R  0 . 0 1 7 4 5 3 2 9 )  
COSGAS = C O S F ( G A S T A R  * 0 . 0 1 7 4 5 3 2 9 1  

c 
P R I N T  1 0 3 2  
P R I N T  1 0 3 3  
P R f N T  1 0 3 4 9  A L P H A *  S I N A L *  C O S h L  
P R I N T  1 0 3 5 9  B E T 4 9  S I N B E *  COSBE 
P R I N T  1 0 3 6 9  GAMMA* S I N G A t  COSGA 
P R I N T  1 0 3 7 9  A L S T A R *  S I N A L S *  C O S A L S  
P R I N T  1 0 3 8 ,  B E S T A R *  S I N B E S *  COSBES 
P R I N T  1 0 3 9 9  G A S T A R *  S I N G A S ,  COSGAS 

C 
I = I H K L ( J 1  
C O . T O  ( Z O B c  8 7 1 9  8 7 1 ) ~  1 

C 
, 8 7 1  P R I N T  1 0 4 0  

AA  = A * A  
8 8  = 8.0 
CC = C.C 
A 8  = A*B*COSGA 
B C  a B*C*COSAL 
C A  = C*A*COSBE 
SUM = A 8  4 B C  t CA 
P R I N T  1 0 4 1 ,  A A *  0 0 1  CC 
P R I N T  1 0 4 2 9  B C r  C A v  A 8  
P R I N T  1 0 4 3 9  SUM 

C 
2 0 8  I F  (ISUM - J 1  8 9 0 9  8 9 0 9  7 5 6  

C 
C 

8 9 0  R E A D  1 0 7 0 9  I C O N T  
I F  I I C O N T )  8 9 9  8 9 ,  9 9 9 8  

9 9 9 8  P R I N T  1 0 0 5  
GO TO 9 9 9 9  

8 9  STOP 8 9  
E N 0  
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APPENDIX I. THE SPACE LATTICE 

The periodic arrangement  of atomic o r  molecular units in  a crystal  

may be conveniently expressed by representing the repeating units a s  

points. The resul t  i s  a three-dimensional network of points in  space 

called a lattice' o r  point latt ice and the points making up this network a r e  

the latt ice points. This framework has the property that i t  can be moved 

about in space like a rigid body either by translation o r  rotation about a 

given axis s o  a s  to bring the latt ice points into self-coincidence. 

As can be seen from Figure 13 a point latt ice may be regarded a s  

dissecting space into a se t  of parallelepiped cells with a latt ice point a t  

each corner .  Each cell, o r  unit cell, i s  identical in size,  shape and 

Fig. 1 3. The Space Lattice 



orientation. The number of cells differing in size,  shape and orienta- 

tion in a latt ice is infinite since there  a r e  a n  infinite number of possible 

latt ice rows. However, only three'non-coplanar rows a r e  required to 

outline a cell  in  three-dimensional space. The shape of this cell, and 

hence the shape of the ent ire  lattice, may be completely described by 

. specifying the repeat  distance between points along each nf the three 

chosen directions in  the latt ice and by specifying the angles between these 

three  intersecting rows (Figure 13). The total llurz~ber of parameters  i s  

thus six: three  crystallographic axes a, b, c and three  interaxial angles 

a, p ,  Y ,  where 

i s  the angle between sides b and c, 

/3 i s  the angle between sides a and c ,  

Y i s  the angle between sides a and b. 

A variety of names a r e  given to the six quantities which specify a three-  

dimensional lattice. The three  most  commonly used are latt ice param- 

e ters ,  lattice constants and cell  dimensions. - -- - 
 crystal^ contain syiurletry a s  a consequence of periodicity and 

only certain types and combinations a r e  allowed, giving r i s e  to ,32 point 

groups and 230 space groups, each corresponding to  possible combina- 

tions of symmetry in a lattice. The net effect of symmetry i s  to r e -  

s t r i c t  the axial lengths and angles to special values, resulting in cells 

of various shapes. By dividing the point groups into c lasses  according 

to the principle axes of rotation, that is ,  with n = 1, 2, 3, 4 and 6 and, 

i f  necessary,  by further subdivision ac.cording to a common se t  of unique 



symmetry elements, the seven crys ta l  systems result. These a r e  

summarized in Table 4. The minimum essential symmetry elements 

which define each system a r e  shown in  column 3.' It i s  these elements 

alone which a r e  responsible for fixing one o r  more  of the s ix lattice 

parameters  summarized iri columns 5 and 6. 

. As i s  shown in column 4 of Table 4 the threefold axes which define 

the rhombohedral and cubic systems l ie  along the body-diagonals rather  

than coinciding with one o r  more  of the three crystallographic axes. In 

these two systems i t  i s  this element which controls the six parameters .  

F i r s t ,  a threefold along a body-diagonal res t r ic ts  a = b = c. The cubic 

system then differs from the rhombohedral system only in the total 

number of threefold body-diagonals; the fo rmer  has only one whereas 

the latter has four a t  109O 28' to each other. Such an arrangement of 

threefolds res t r ic ts  the angles a = /3 = y = 90". for the cubic system 

whereas no such restriction exists in the rhombohedral system. 

The cells corresponding to the seven crys ta l  systems and the 

unique symmetry elements controlling their shape a r e  shown in Figure 

14. . 

It may turn out experimentally that two o r  more  cell  parameters  

which a r e  not required to be equal in magnitude may actually turn out 

to bc accidentally equal, within experj.menta.1 e r ro r .  Such a cell  i s  a 

pseudo-cell and i s  always of lower symmetry than the parameters  in- - 
dicate. F o r  instance, i f  the 8-angle of a monoclinic cell i s  90°, all three 

4 sides stil l  unequal,. i t  is only pseudo-orthorhombic and i s  sti l l  monoclinic 



TABLE 4 
w 
A 
00 

The S e v m  Crys ta l  Systems 

Trizlinic 
(Anorthic) 

Monoclinic 

Orthorhombic 
(Rhombic) 

Axial 
Lengths 

Minimum Symmetry ~ e ~ u i r e !  Location c.f 
ments;  unique elements I Unique Elements 

Order  of 
Principle  Axis 

Rhcmbohedral 
(T r igonal) 

Interaxial  
Angles 

Crystal  
System 

Cubic 
(Isometric) 

Tetragonal 

H ex.a g onal 

none 

1 (twofold, m i r r o r )  

3 (twofolds, m i r r o r s )  

1 (threefold) 

4 (threefolds) 

1 (fourfold) 

1 (sixfold] 

b-axis 

a ,  b, c-axes 

body -diagonal 

body -diagonals ; 
109" 2.3' to each othe 

c-axis 



T riclinic Monoclinic Orthorhombic 

i 

T etragonal 

i 

Hexagonal Cubic 

Fig. 14. The sev rys ta l  systems.  



by symmetry due to the absence of intersecting mi r ro r  planes o r  two- 

fold axes. Likewise, an orthorhombic cell whose three sides a re  equal 

in length is  pseudo-cubic but still remains orthorhombic by symmetry 

due to the absence of crystal  units related by threefolds axes. 

Depending upon the three intersecting lattice rows. which a r e  

choacn, eells of a wide vatiety. uf shapes and sizes are possible in a 

given lattice. As can be seen from Figure 15 such cells a r e  not restricted 

to so-called primitive cells with a lattice point located a t  just the corners;  

non-primitive o r  centered cells a r e  also possible. 

Fig. 15. Examples of different cells outlined in a lattice 

There a re ,  in all ,  only three unique types of centering, namely 

end-c entering, face-centering and body-centering. These, together 
.. . 

with primitive, constitute the four lattice types. The primitive, o r  

simple cells, denoted by the symbol P, contain only one 



lattice point per  cell, each point located a t  a corner  and shared by eight 

cells.  The centered cells contain points in addition to those in the 

corners .  Thus, the body-centered cell, d e n 0 t e d . b ~  the symbol I, con- - 
tains one additional point a t  the body center.  The - end-centered cell, 

denoted by the symbol A, B o r  C, also contains two points per  cell  but with 

centering on two faces, namely those which a r e  parallel and opposite 

each other. The symbol denotes the face on which the centering occurs 

and is defined with the A face containing the b- and c-axes, the B face 

containing the a-  and c -axes and the C face containing the a -  and b-axes. 

In orthogonal systems this i s  equivalent to saying that the A face i s  nor- 

mal  to the a-axis, the B face normal to the b-axis and the C face normal 

to the c-axis.  The face-centered cell, denoted by the symbol F, exhibits - 
centering on al l  six faces, thereby increasing to four the number of 

points per  cell; those in the eight corners  constitute one and those in the 

s ix  faces, each shared by two cells,  constitute the other three.  

The relative volumes of the primitive and centered cells of course 

vary in exactly the same ratio a s  the number of lattice points each con- 

tains. .That is,  the volume of the cells of lattice type P:(A, B, C):I:F i s  

in the ratio 1 :2:2:4. A cell containing two lattice points i s  said to be 

doubly primitive, three points triply primitive and four points quadruply 

primitive. 

In practice i t  would seem logical to outline the cell  in a lattice 

having the smallest volume, namely a primitive cell. Why then does 

one concern himself with centered cells a t  all? The unit cell, i t  must be 



understood, does not literally "exist" a s  such in a lattice; they a r e  only 

a mental construction chosen a t  ones convenience. There a r e  thus an 

infinite number of cells which can be outlined in a lattice. On the other 

hand there i s  always only - one unique cell of least volume whose axes 

correspond to the pr imary rotation axes of the lattice a s  a whole. This 

i s  the cell  in which one i e  really intoreotod for it  i o  tho only ccll which 

displays the full symmetry of the lattice. As a result, this cell may 

turn out to be centered with a repeating unit of structure in its faces o r  

body center. Fo r  this reason i t  i s  necessary that we retain centered 

cells in crystal  classification. 

All seven crystal  systems a recapable  of possessing centering. 

Depending upon the system some of these centered cells can be t rans-  

formed to centered cells of ,smaller volume or  transformed directly to 

a primitive cell without losing i ts  full symmetry. This merely amounts 

to redefining in the lattice a new cell without destroying the 90" angles. 

F o r  instance, a face-centered monoclinic cell may be redefined a s  an 

end-centered monoclinic cell with half the volume and no loss in sym- 

metry. It is not possible, however, for each of the seven systems to 

have each of the three types of centering; some types of centering a r e  

not consistent with the symmetry conditions. For  instance, a cubic 

cell cannot have centering on only one pair of opposite faces a s  the 

symmetry would then no longer be cubic; rotation -about . anyone . of the. 

four threefold body-diagonal axes would automatically generate centering 

in the other pair of faces. 



As a convenient rule of thumb, the following order  of reductions -- 
a r e  seen to hold for the "possible" transformations of lattice types 

within a crystal  system: 
A 

F - I - B - P  lattice type 
C 

4 2 2 1 pts. per  cell; rel .  vol. 

The direction of the ar row indicates the.direction in which one lattice 

type may be reduced to another, i f  possible. Thus, in $he tetragonal 

system two reductions a r e  possible: a - C centered lattice may be reduced 

to a primitive lattice and a face-centered lattice to a body-centered 

lattice, each with a reduction in both volume and total number of lattice 

points. Note the o rder  "1 before (A, B, C)"; i t  i s  written in  this way be- 

cause a monoclinic I lattice may be converted to an A o r  C monoclinic - 
lattice (b-unique) o r  A o r  B lattice (c-unique), the ar row indicating this 

The primitive cells,  plus those where the centering i s  unique, a r e  

listed in Table 5 and shown in  Figure 16. These a r e  called the fourteen 

Bravais Lattices. 



TABLE 5. 

THE FOURTEEN BRAVAIS LATTICES 
\ 

System 

Triclinic 

Monoc linic . 

Orthorhombic 

Tetragonal 

Hexagonal , 

Rhombohedra1 

Unique 
Lattice Types 

Cubic 

P 

P, C 

P, C, I, F 

p, I 

P 

R 

P, I, F 

Alternative 
Symbols for  Other 

Orientations 

Direct 
Relationship 

A, l3, C, I, F 

A, B, 1, F 

A, B  

C, F 

H 

P ( = A = B = C = I = F )  

F ( = D ) ,  C(&A=I=E')  

C ( = A = B )  

P ( = C ) ,  I(=F) 

P(H) 



Triclinic Monoclinic 

P C I F 

Orthorhombic 

P 

T etragonal Hexagonal 

Cubic 

I I 

Fig. 16. The fourteen Bravais  latt ices.  



APPENDIX 11. VECTORIAL REPRESENTATION OF AXES 

IN A DIRECT LATTICE 

Since each point in the three-dimensional lattice i s  related by 

translation to an adjacent point (or any other point), such an a r r ay  of 

points may be defined by three non-coplanar vectors. These three vec- 

to rs  each have magnitude and direction, corresponding to the distance 

and direction the rigid lattice must be translated to a r r ive  at  self- 

coincidence. Alternately, the three vectors may be considered a s  

representing the three arbi t rary  distances and directions one point must 

be moved to generate all  the other points to completely fill space. 

4 4 4 

For convenience, the vectors a,  b and c describing the point 

lattice may be placed so that al l  Lliree erninate from a single point, con- 

veniently taken a s  the corner of a cell (Figure 17).  Each vector will 

then terminate a t  the next point along the lattice row. The length of the 

three sides a, b and c of the unit cell correspond to the magnitudes of 

the vectors and the angles a, /3, y to the angles between each pair of 

vectors. 

Fig. 17. A three dimensional parallelepiped, o r  unit cell 



APPENDIX I11 

TRANSFORMATION OF LATTICE AXES, MILLER INDICES 

AND ATOMIC COORDINATES 

Given a cell defined by a set  of coordinate axes, o r  vectors, in a 

lattice it  i s  sometimes desirable to redefine in the lattice a new cell 

poss&ssing a new set  of coordinate axes. Accompanying this change there 

i s  a change in the intercepts which the new axes make with the various 

planes, that is ,  a change in the Miller indices, a s  well as  a change in 

the lattice axes in reciprocal space and the atomic coordinates of the 

atoms. As i s  shown in Table-6 when transforming from cell ( I ) ,  the 

original cell, to cell (2)', a new cell in the same lattice, the Miller in- 

dices transform by the same matrix a s  the vectorial transformation of 

lattice axes in direct space l '  (no change of origin) whereas the 

reciprocal axes and atomic coordinates both transform by a matrix 

which i s  the transpose of the inverse of the matrix for the vectorial -- 
5 

transformation of lattice axes in direct space . 
Example 

Consider the transformation of a C-centered monoclinic cell to a 

body-centered orthorhombic cell, where A = a, B = b and C = a + c. 

Let cell (1) be the original monoclinic cell and cell (2) the new ortho- 

rhombic cell. Further, let N be the matrix for transforming the lattice 

axes of cell (1) to cell (2) and i ts  inverse, N ,  be that for cell (2)  to 

cell ( I ) ,  that i s  



CELL (1) TO CELL (2) CELL (2) TO CELL (1) , 

Knowing these two, the other transfur~~laliurrti  ol ilrterest are thus known 

immediately, a s  summarized below: 

C E L L  (1) TO CELL (2) 

Axes in direct  space 
Miller indices 

C E L L  (2) TO CELL (1) 

Axes in direct  space - 
Miller indices 

= t ranspose of N 
Axes in  reciprocal  space . 
Atomic coordinates 0 

1 0 1  

1 0  

0 U 1 



Table 6. The transformation of latt ice axes,  Miller indices and atomic coordinates. 

Definitions 

a, b,c = r e a l  axes of c e l l  (1 ) 
A,B,C = r e a l  axes of c e l l  (2) 

n i j 
= elements of matrix N 

h, k, R = Miller indices of c e l l  (1 ) 
H,K,L = b w e r  indices of c e l l  (2) 
n i j = elements of matrix N 

a,b,c = r e a l  axes of c e l l  (1) 
A,B,C = r e a l  axes of c e l l  (2) 
s i j = matrix elements of N inverse, N-I 

a*, b*, c* = reciprocal  axes of c e l l  (1 ) 
p,  B*, C* = reciprocal  axes of c e l l  (2) 
tij = matrix elements of N-I transposed 

x ,  ,y, ,zl = f rac t iondl  atomic coordinates 
in c e l l  (1 ) 

x,,y, , z, = f r ac t iona l  atomic coordinates 
i n  c e l l  (2) 

tij = matrix elemerts of N-I transposed 

Matrb: 

N 

N 

N-I 

transpose 

of N-I 

transpose 

of N-I 

Description 

(a). Vectorialtransfornaa- 
t i on  of l a t t i c e  axes 
ir_ direc t  space, 
c e l l  (1 ) t o  c e l l  (2). 

(b ) . Transformation of 
Miller indices, 
c e l l  (1 ) t o  c e l l  (2). 

(c) . h v e r s e  vector ia l  
t m s f o m e t i o n  of 
l a t t i c e  axes in 
di rec t  space, 
c e l l  (2) t o  c e l l  (1 ). 

id). Veztorial transforma- 
tion of &&%!2 Z E s  
in reciprocal  space, 
c e l l  (1) t o  c e l l  (2). 

(e ) . Transformation of 
atomic coordbates,  
c e l l  (1 ) t o  c e l l  (2). 

I Transformation 
I 

A = n , , a  + n 1 2 b  + n 1 3 c  

B = nzla  + n2,b + n,,c 

C = n,,a + n3,b + n,,c 

H = n,, h + n I 2 k  + n, , l  

K = n,, h + n,,k + n2,1 

L = n,, h + n,,k + n,,L 

a = s , , A  -!- s I 2 B  + s , , C  

b = S 2 , A  + s Z 2 B  + s Z 3 C  

c = s , ,A + s,,B + s,,C 

A * =  t , , a * +  t , ,b*+ t , ,c* 

61 = tZla* + t2 ,b*  + t23c* 

~ * = t , , a ~ ~ + t , ~ b * + t , , c *  

x, = ~ I I  X I +  ~ I Z Y I +  t 1 3 z 1  

7 2  = t 2 ~  X I +  t 2 2 ~ ~ S  t 2 3 z l  

- 
'2 - t31 t 3 2 ~ l  ' t 3 3 z ,  



APPENDIX IV. THE USE O F  VECTOR MULTIPLICATION 

IN THE TRANSFORMATION O F  LATTICE AXES 

A ce l l  is t ransformed to a new cel l  by expressing the new coordinate 
+ + d  4 4 4  

axes A ,  B, C, a s  vectors ,  in  t e r m s  of the old with axes a, b, c. The 

magnitudes of the s ix  ce l l  pa ramete r s  in the new ce l l  a r e  then obtained 

f r o m  the sca la r  products of the new vec1ul.s cxprcoood an t e r n s  nf the  

original vectors  whose magnitudes C L L ~  known. The method r ~ s ~ r l t s  f rom 

the following two proper t ies  of the sca la r  (dot) product: 

(i). The dot product of a vector with itself gives the square  

of i t s  magnitude. 

(ii). The dot product of two non-zero vectors ,  divided by their  

magnitudes, gives the cosine of the aliglt bctwccn them. 

The general  form of the vectorial  t r ans fo rn~a t ion  of axes is given 

old 

o r ,  as (a) in Table 6, page 159. To calculate the magnitude u1 A, 13, C, 

a, p ,  y in the new cell, the following expressions a r e  used: 

C O S  a' = s.3 m 

4  + 
A * B  cos y' = - 
IA  I IB I 



where 
4 4 4 4 4 4 -C 4 

A - A  = ( n l l a  + n12b + n 13 c ) . ( n l l a  + n12b + n13C) 

In expanded form A. B becomes 

4 4 4 4 4 + n b - n  a + n b - n  b + n 1 2 b - n  T 12 21 12 22 2 3 



When = this reduces to 

+ +  4 + + 4 4 

A - A  = ( n l l a  + n12b + n c ) . ( n l l a  + n12b + nl37) 13 

+ 2n n a c cos 0 
11 13 

+ 2n n a b cos y 
11 12 

The other dot products may be similarly obtained. 

The following example il lustrates the use of these expressions. 

Example 

Consider the following axial transformation in a direct  lattice: 

new old 

The lattice parameters  in the original cell  a r e  a = 5. 40, b = 7. 54, 

c = 51. 8 i., O! = 145' 38', 8 = 105'42', y = 60" 18'. Calculate the param- 

e te r s  A, B, C, a', /3', 7'  in the new cell. 



4  4  4  4 4 4  

B * C  - - (-2a +6b t c ) .  a 
cos a' 

' m[ /B 1 1 ~  I 

4  4 4  4 4  

C . A  - - a ( -a  t b )  
cos 8' = 

I ~ I I A I  Ic I I A I  
4  4  4  4 4  -C 

C O S  y '  = A - B  - - (-a +b)* ( - 2 z t 6 b  t c )  
I A  I I B  I I A I I B I  

The length of the A-axis i s  

+ 4  4 4  4 4  

= ( - a ) . ( - a )  + 2 a . b +  b - b  

2 = a 2  t 2 a b  cosy+  b 

= (5. 40)' - 2(5. 40)(7. 54) cos 60" 18' + (7. 54) 
2 

and s imi lar ly  B = 28. 2 i, 

The magnitude of the ang1e"a is 

- - -.2ad + 6 a b  cos y + a c  cos 6 
I B  I I C  I 

- - -2(5. 40)' + 6(5. 40)(7. 54)cos 60" 18! + (5. 40)(51. 8)cos 05" 42' 
(28. 2)(5. 40) 

and s imilar ly 



APPENDIX V. THE INVERSE TRANSFORMATION 

Suppose a cell  with axes a, b, c i s  transformed to a new cell with 

axes A, B, C. The vectorial transformation of these axes in direct 

space i s  given in the usual way by the following se t  of equations: 

The matrix for this transformation is  

- - - I  
'l'he inverse transf'ormation I\] , corresponding to the transformation of 

the new cell back to the original cell, i s  then 



where A i s  the determinant of the original transformation matrix: 

- 1 
The derivation of the inverse, N , in actual practice may be 

carried out in .a four step procedure. Starting with the,original matrix, 

N, each element n. i s  f i rs t  replaced by its minor. The minor of n. 
l j  1.i 

i s  the a r r ay  of order one less than the original a r ray  and corresponds 

to the a r r ay  of elements left after striking out row i and column j. Thus, 

the minor of n i s  11 

etc. Second, a sign i s  attached to each minor to convert i t  to a cofactor, 

it j 
qij, the sign being (-1) . Third, the transpose is  formed, which simply 

involves the exchange of each cofactor qij for q... The result a t  this 
J1 

stage is  a matrix known a s  the adjoint of N. Finally, each transposed 

cofactor--that is,  each element in the adjoint--is now divided by the 

determinant of the original matrix. The final result i s  the inverse 

- 1 
matrix N . 

Consider the following axial transformation in direct space and its 

corresponding matrix, N: 



- 1 
It i s  desired to solve for the inverse transformation, N , to express 

4 4 4 

A = - a t b  

4 4 + 4 

B = - 2 a + b t c ,  matrix: N = 
4 .4 4 

C = a  t c  

+ - -  -C - -C 

the vectors a, b, c in  term's LI A, .  D , C . 

- 
1 1 0  

2 1 1 

1 0 1  

Solution. The determinant of this matrix i s  

= - 1 t 3  = 2 . 

Proceeding by the stepwise process, writing down f i rs t  the culaclurs 

(minors plus their sign), we have 

divide each 
element 

/ 

transpose 



Hence, the transformation in rea l  space of the cel l  with axes A, B, C '  

back to the original cel l  with axes a, b, c i.s 



APPENDIX VI. TWO OR MORE TRANSFORMATIONS IN 

SEQUENCE-(MATRIX MULTIPLICATION) 

If the vectorial transformation from cell 1 to cell 2 i s  known and 

that from cell 2 to cell  3 i s  known, it i s  sometimes desirable to know 

the transformation from cell 1 to cell 3. In general, i f  the transforma- 

tion matrix f rom one cell to  the next f u r  - 11 cells in  successiern is lcnown, 

the matrix for the transformation of the original cell tu Lhe - 11th cell  ~ i i a y '  

be found by the method known a s  matrix multiplication. 

The method of matrix multiplication proceeds a s  follows: Let D 

represent 'the matrix for the transformation from cell. 1 to cell 2, E 

the matrix for cell 2 to cel l  3, F the matrix for cell 3 to cell 4, etc.,  

and N the ,matrix fo r  the transformation of cell (n-1) to cell n. The - - 
matrix, Q, fo r  the transformation of cell 1 to cell n i s  then given by - 

Q = N . .  . H G F E D .  

Each matrix i s  left multiplied by the next matrix in succession; they a r e  

non-commutative. This relationship states that f i rs t  matrix D i s  left 

multiplied by E to yield a new matrix, U, which corresponds to the trans-  

formation of cell 1 to cell 3; that is ,  U = E D. Then U i s  left multiplied 

by F to yield the matrix V corresponding to the transformation from 

cell 1 to cell 4; that is ,  V = F U = F (E D). Proceeding in an analogous 

manner until all  the matrices have been accounted for, the matrix Q 

becomes the matrix for  the transformation of cell 1 to cell - n. This is 

summarized a s  follows : 



cell 1 to cell 3 U = ED 

cell 1 to cell 4 V = FU = F(ED) 

cell 1 to cell 5 W = GV = G(FED) 

cell 1 to cell 6 X = HW = H(GFED) 

cell 1 to cell n Q = N(N-1 .. . HGFED) . 
The actual-multiplication of two matrices occurs in a row by 

column manner; that i s ,  each element of the row in the lefthand matrix 

i s  multiplied into the corresponding element of the column in the right- 

hand matrix and then the products a r e  summed. For  the product of the 

two matrices ED in that order where the elements in matrix D = [d . .] and --- 1J 

in matrix E = [e. .] , the elements in matrix F become F = [f. . ]  , where 
1J 

P 
1J 

f . . =  e d . t e i Z d Z j t . . .  t e .  d = C e d 
ij il 13 IP pj k = l  ik kj 

(i = 1, 2, .. ., - m; j = 1, 2, . . .', - n in an m x ' n  matrix). - - 
In three-dimensional lattice transformations 3 x 3 matrices a r e  used 

and a r e  thus said to be conformable, that i s ,  the number of columns in 

D is  equal to the number of rows in E, a s t r ic t  requirement for matrix 

multiplication. 

The following example illustrates the method of multiplying two 

3 x 3 matrices together. 



Example 

cell 1 cell 2 

cell 2 cell 3 

cell 1 cell 3 

By matrix multiplication this reduces to 



APPENDIX VII. 

THE TABULATED TRANSFORMATION O F  LATTICES WITH CHANGE O F  

AXES, LATTICE TYPE AND SPACE GROUP 

As pointed out in Appendix I t he re  a r e  only fourteen Bravais  

Lattices.  Associated with these fourteen the re  a r e  230 space  groups. 

But as is shown in  Table 5, page 154, other types of centering a r e  a l so  

possible, though not unique f rom the basic  fourteen, simply by a change 

in the orientation of the cel l  brought about by a change in one o r  m o r e  

of the axes  defining the system. Consequently, these  non-unique la t t ice  

types then give r i s e  to  the numerous non-standard space  groups, which 

may be found in  Appendix VIII. 

It i s  often s tandard prac t ice  to  convert  cel ls  with non-standard 

space group symbols to  their  conventional orientations for  a t  leas t  one 

of two ma jo r  reasons :  conversion o r  reduction of la t t ice  types to the 

standard Bravais  latt ices (e. g. , body-centered monoclinic to  C -centered 

monoclinic, b-unique) o r  conversion of symmetry  elements to  al ternate  

orientations (e. g. , n-glide to c-glide in  the monoclinic sys tem) .  In 

o rde r  that each o r  both changes may  be made, i t  i s  necessa ry  that a 

change be made in the axes defining the cell. Jus t  exactly what changes 

a r e  made, of course,  depends upon the c rys t a l  sys tem involved. To 

facilitate routine work in such conversions the space group t ransforma-  

tions for  the triclinic and monoclinic sys tems have been worked out and 

appear on the following pages. Also included is the frequently used 

rhom't.loher:l.rra'.1.. - he-x.agoti.a l tran.slo.r tna ti on, 



In the t r ic l inic  sys tem the five la t t ice  t ransformations a r e  given 

f o r  reduction to  the "primitive" Bravais  latt ice.  In the c a s e  of the th ree  

end-centered cel ls ,  two have been given fo r  each: that appearing on the 

le f t  corresponds to  a change in  magnitude of one axis only, that on the 

right to a change in  two axes.  The la t te r  has  been included for  each of 

these cases  fo r  routine work in ce l l  reductions discussed in Chapter III. 

In the monoclinic sys tem both the f i r s t  sett ing (c-unique) and 

second sett ing (b-unique) a r e  given. Related s e r i e s  of space group 

t ransformations a r e  divided according as b < a ,  a < b (c-unique) and 

c < a ,  a < c  (b-unique). In some cases  the t ransformations a r e  the' same,  

in  o thers  they a r e  different, a fact which can be verified upon inspection 

of the corresponding f igures .  As i s  shown in  'l'able 7, which i s  to be 

used only in conjunction with the t ransformations appearing on pages 1 7 7  

through 190, the new Y o r  /3 will i nc rease  o r  dec rease  depending upon 

the ra t io  of the two original axes and the angle between them. In no c a s e  

should i t  ever  change charac ter ,  that i s ,  i t s  cosine change sign, a 

situation occurr ing only i f  the sca la r  product of the two original non- 

unique axes i s  g rea te r  i n  absolute value than the square  of the shor t e r  

original non-unique axis  ( see  Table 7). When this happens the mono- 

clinic cel l  i s  capable of being reduced until the new angle i s  l e s s  than 

the original angle and both a r e  obtuse. 

Finally, i t  m a y  be pointed out that in  the monoclinic system the 

unique end-centered cel ls  for  c-unique a r e  A and B and for  b-unique 'A 

and C. By convention the C-centered ce l l  i s  taken a s  unique for  the 



second setting. The corresponding ce l l  for  the fi.rst setting, c-unique, 

would be a n  A-centered cel l  i f  the axes were  simply permuted thusly: 

b -  c,  c - a ,  a -, b. However, an A-centered ce l l  is common to both 

settings. So a s  to distinguish between the two sett ings when reporting 

the latt ice type, the B-centered ce l l  has been accepted a s  s tandard for  

the f i r s t  sett ing and m a y  be obtained direct ly  f rom the second sett ing.by 

setting a = a ,  b c,  and c -, -b; that is 

b-unique to  
c -unique 

c-unique to  
b -unique 

1 0 0  

0  0  1 

0 0  

and 

1 0  0 

O O T  

0  1 0 .  



Fig. 18. The five triclinic lattice transformations. 



I - P  F-P 

Fig. 18 (continued). 



176 
TABLE 7. The Change in  the Monoclinic Angle With Change 

.I. 

in Cell orientation1' 

MONOCLINIC 

l S t  Setting - Unique Axis c 

'Y,ew ''old 
- 

''new - 'old 

'new <"old 

'Lev, = 90" 

y changes charac ter  

'A,, >"old 
- 

'new - 'old 

Ynew <"old 

"n,ew 
= 90" 

y changes cha.ra.cter 

a < b  

b < a  

2nd Setting - IJnirll~e Axis h 

::: 
The cel l  edges a ,  b, c correspond to the edges in the t 'originalt '  cell. 

1 2  o 2 (a. bI < z a  

1 .2  la. b ( = Fa 

$ a 2 < l a . b l < a  2 

la -b l  = a 2 

a2 < la. b (  -- 
2 o 5 la. b( < t b  

1 2  la- b ( = zb 

2 
-$b < l a . b l  < b  2 

la -b l  = b  2 

h2 . (a. b 1 



MONOCLINIC 
(c- unique) 

- 
c.  I - A  

1-8 

Fig .  19. The vectorial  transformation of axes  accompanying Monoclj.nir. 
space group t ransformations ( 1  s t  setting). 



Table 8. The Monoclinic space group t ransformations (1s t  setting). . 

Space group 
transformation 

Original 
axes 

Transformation 
matrix 

P a  - Pb 

P 2 / a  - P 2 / b  
P2, /a  - P2, /b  

Pb - P a  
P 2 / b  - P 2 / a  

P 2 , / b  - P 2 ,  / a  

Pn - Pb 

P 2 / n  - P 2 / b  
P 2 , / n  - P2,  / b  

Pn - P a  

P 2 / n  - P 2 / a  
P 2 , / n  - P 2 , / a  

Fig. , 
- - 

(%! % )  
( a  s i )  
(9 ', B )  
(;K) 

( ; a s )  

- 
b < a  

a < b  
I 

b < a  

a < b  

b < a  

a < b  

- b < a  

a c b  

E 

E 

L 

H 

I 



Table 8. (cont.). c-+P 

Space group 
transTomtion 

C2 - P 2  

C2, - P 2 ,  
Cm - Pm 
C 2 / m  - P2 /m 
C 2 , / m  - P 2 , / m  

--- 

C 2 / b  - P 2 / b  
C 2 , / b  - P 2 , / b  

C 2 / a  - P 2 / a  
C 2 , / 0  - P 2 , / a  

C a  - Pb 
C 2 / a  - P 2 / b  
C ~ , / U  - P Z 1 / b  

C c  - P a  

C 2 / c  - P 2 / a  
C2, /c  - P 2 , / a  

Original 
axe s 

b < a  

a < b  

b < a  

s < b  

b < a  

s < b  

b < a  

a < b  

Transformation 
matrix 

0 7 0  

( +  i  0 )  0 0 1  

- 
1 0 0  

( i  + 0 )  0 0 7  

0 0 1  

I 0 0  

a < b  
0 0 1  

N 

K 

0 

J 

N 

0 0 7  

K 
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Table 8. (cont. ) .  

A-B 

Space group 
transformation 

Cd - P b  

C 2 / d  - P 2 / b  

C 2 / / d  - P 2 / / b  

Cd - P a  

c 2 / d  - P 2 / a  

C2, /d - P 2 , / a  

Original 
axes 

b c a  

a < b  

b < a  

a c b  

Space group 
transformation 

A 2  - 82 

Am - Bm 
A2/m - B2/m 

Aa - B b  

A 2 / a  - B 2 / b  

Transformation 
matrix 

o i o  

(i i 0 )  0 0 1  

Oribghd 
axes 

b < a  

a c b  

b c a  

a c b  

Fig. 19 

N 

cz 

J 

K 

Transformation 
matrix 

( %  i i) 
Fig. 19 

E 

E 



t 

Table 8. (cont. ). 

I - B  

Space group 
-transformation 

82 - A 2  
B m  - Am 

B 2 / m  - A 2 / m  

8 b  A a  

' 8 2 / b  - A 2 / a  

Original 
axes 

b < a  

a < b  

b < a  

a < b  

Space group 
transformation 

I2 -----+ 82 

I m  - Bm , 

1 2 / m  - B 2 / m  

I a  - 8 b  

7 2 / a  - 8 2 / b  

Transfomation 
mtrix 

(; B )  

Original 
axes 

b < a  

a . < b  

b < a  

a < b  

Fig. , 
I 

E 

E 

Transformation 
rnatrix 

(ii % )  
-1 0 0 (i a r )  

' ( a  i g )  

Fig. 19 

H 

I 

I? 

I 



Table 8. (cont. ) .  

Fig. 19 

L 

M 

L 

G 

- - -  -_-_ 
Space group 

transformation 

F 2  - 62 
F m  - B m  
F 2 / m  - B 2 / m  
F d  - B b  
F 2 / d  - B 2 / b  

Trmsr"onnation 
matrix 

(% 1 B )  
(I E %) 
(9 1 8) 
([  $) 

Space group 
transformation 

12 - A 2  
I m  - A m  
I 2 / m  - A 2 / m  

O r i g i n a l  
axes 

b < a  

a < b  

' b < a  

a < b  

Fig. 

N 

.. 

Original 
axes 

b  < a 

Transformation 
matrix 

o i o  

( + i o )  0 '0 I 

a < b  

0 0 7  



Table 8. (cont. ). 

Fig. 1'9 

J 

K 

Transformation 
matrix 

( a  0 7  :.:) 0 

Spacc group 
transformation 

F 2  - A 2  
F m  - A m  
F 2 / m  - A 2 / m  

F d  - Ao 
. F 2 / d  - A 2 / a  

Origind 
axes 

b < a  

a c b  



MONOCLIN IC  
( b -  unique)  

F - A  
F I - C  

Fig. 20. The vectorial  t ransformation of axes  accompanying 
Monoclinic space group transformations (2nd sett ing).  



Table 9. The Monoclinic space group t ransformations (2nd setting). 

P - P  



Table 9. (cont. ) .  

Space group 
transformation 

82 - P 2  
BZ1 - P2, 
Bm - Pm 

B2/m - P 2 / m  
B 2 1 / m  - P 2 , / m  

8 2 / a  - P 2 / a  
82, /a  - P 2 , / a  

8 2 / c  - P 2 / c  
8 2 , / ~  - P 2 , / c  

B c  7 P a  

B 2 / c  - P 2 / a  
8 2 / / c  - P 2 , / a  

B a  - P C  
B 2 / a  - P 2 / c  
8 2 , / a  - P 2 , / c  

- 

Original 
axes 

a < c  

c < a  

a < c  

c < a  

a < c  

c < a  

a  < c  

c < a  

a < s  

c < a  

- 

Trmsf ormation 
matrix 

- 
1 0 0  

(; ;) 
(!2) 1 0 0  

0 0 7  

(; 1 ;) 
(X) 
- 
1 0 0  

(: : :) 
(H % g) 

0 0 7  

(; b i) 

l o o  

Fig. 20 

J 

N 

- 

K 

0 

J 

0 

. ,. , . .*- 

K 

N 



Table 9. (cont. ). 

Space group 
t ra~s: format ion 

Space group 
transformation 

Original  
a x e s  

Transformation 
matrix Fig. 20 

O n i g k m l  Transf orirntion 
axes 1 matrix Fig. 2a 
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Table 9. (cont. ). A-C 

Fig. 20 

- . - 

Space group 
transformation 

A 2  - C 2  
A m  - Cm 
A2/m - C2/m 

Space group 
transformation 

I 2  - A 2  

I m  - Am 
I 2 / m  - A2/m 

Aa  - Cc 
A2/a - C2/c 

Original 
axes 

a < c  

c < a 

Transformation 
matrix 

(;'a;) 
(8 % :) 
( H  1 :) 

Original 
axes 

a < c  

c < a  

a < c  

c < a  

Trartsf ormation 
.matrix 

( : : a )  1 0 0  
. . .. . . . . 

Fj e. 2n 

I 

F 

I 

a <  c 

c < a 
1 0 0  



Table 9. (cont. ). 

F-A 

Fig. 20 

' L 

Transformation 
matrix 

. . 

spa& group 
transformation 

1 2  - C 2  
I m  - C m  

Original 
a x e s  

a <  c 

Fig. 20 

N 

0 

o o i  

1 2 / m  - ~ 2 / m  

Transformation 
' - matrix 

Space group 
transformation 

F 2  - A 2  

F m  - A m  

F 2 / m  - A 2 / m  
F d  - A a  

F 2 / d  - A 2 / a  

c < a  

Original 
axes 

a < c  

c < a  " 

I a  - Cc 
I 2 / a  - C 2 / c  

a < c  

1 0 0  

c < a  

1 0 0  
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Table 9. (cont. ). F-C 

Fig. 20 Trmsformation 
matrix 

Space group 
transformation 

-. 

Original 
axes 

F 2  - C 2  

Fm - Cm 

F 2 / m  - C 2 / m  
Fd  - C c  
F 2 / d  - C 2 / c  

- -  

a < c  

c e a  

1 0 0  

-. . 

K 

- 



4 Fig.  21. A primit ive rhombohedral cel l  r e fe r red  to a hexagonal latt ice . 
The hexagonal ce l l  is triply primitive,  has  a volume th ree  
t imes  the volume of the rhombohedral cel l  and contains th ree  

2 1  1 latt ice points p e r  unit cel l  (a t  000, - 1 2 2  
3 n a n d - 5 3 3 ) .  

1.  PRIMITIVE RHOMBOHEDRAL TO TRIPLY -PRIMITIVE HEXAGONAL 

Vectorial Transformation 
of Axes 

Ccl l  P a r s m c t c r o  of 
Hexagonal Cell  

Hexagonal Rhombohedra1 
cell  ce l l  

a = 2a s in  a a l (H)  = a l  (R) - a 2  (R) H R 2 

4 s in  , 



2. TRIPLY - PRIMITIVE HEXAGONAL TO 

PRIMITIVE RHOMBOHEDRAL 

Ve'ctorial Transformation of Axes 

Rhombohedral Hexagonal 
f. ell ce l l  

a 
1 

= 3 ( - a  - 2 a  + c H )  
3~ l H  2~ 

Cel l  P a r a m e t e r s  of Rhombohedral Cell  

~r 3aIaI 
sin = - 3 

H 

3 01 3a - a 1 

= Z a  ( s in  -c. s in  l 2  sin 
L 



Appendix VII 

THE 230 SPACE GROUPS AND THEIR.ALTERNATE 

a ORIENTATIONS 

Monoclinic (I st setting; c d s  unique) 

No. Schoenflies 
symbol 

Standard 
symbol 

T r i  c l i n i  c 

Other orientations 

PI 
- 

PI 

I ' 

2 

A1 B1 C1 .I1 F7. 
- - - 

A1 I3-l @r .IT, F1 

C ;  

C ;  , S: 



Other orientationsa No. 1 Schoenflies 
symbol 

Mono clin 

3 

4 

5 

Standard 
symbol 

Orthorhc 

16 

17 

18 

19 

20 

21 

aOrthorhombic: cab, bca, a%, bac, &a 

uniqie) 

B2 

B21 
A2 I 2  

Bn 

Pa Fn Ba 

Am Im Fra 

Aa I a  Fd 

~2/m 

Rq /a 
~2/m 12/m ~ 2 / m  

~,2/a. k2/n ~ 2 / a  B ~ / C  ~ 2 / d  

P?[A I?+/" &+/a B+/o H%/d 

~ 2 / a  12/a ~ 2 / d  

P222 P222 P222 P222 P222 

rqne  ~22,2  ~ 2 2 ~ 2  ~222, P+ 22 

P 2 3 9  P2.,22! P 3 2 3  P37,2 P2Z13 

P3Vl P212121 P2121% P21213 P 2 ~ 2 1 2 ~  
Aq22 8 2 3 2  B2+2 C222, A+ 22 

A222 B222 B222 C222 A222 

: (2nd 

(2 

c ,' 

c 3 

Cb,  O l h  

cf, c:h 

(2, cTh 

c : ,  C L  

c: h 

c i h  

3 
c 2 h  

c:h 

c;h 

Cb2 h 

.bi c 

Di, V '  

D ; ~  V' 

D:, v 3  

D:, V 4  

D:, v 5  

D:, v6 

setting; b-axis 

P2 

p21 

C2 

~ r n  

PC 

Ctn 

C c 

~2/m 

p21 /" 
~2/m 

P ~ / C  

rq /c 

C ~ / C  

P222 

p22% 

P21 21 
P212121 

C222, 

C222 



"Orlhurl~o~ubic: cillr, bca, a a ,  bat, 3 3  

Other orientationsa 

F222 F222 F222 F222 F222 

I222 I222 I222 I222 I222 

I2l2I21 I2I2l2l ~IV?? 1212121 l v l ?  

P2m Pm2m Pm2m Pmm2 PZmm 

P21m Pbqm Pm21b Pc1n2~ P21am 

P 2aa Pb2b Pb2b Pcc2 P2aa 

P a b  PcZm Pm2a Pbm2 P2cm 

P21ab P ~ 2 ~ b  Pb21a P b ~ 2 ~  P21 ca 

P2na Pb2n Pn 2b Pcn2 P 2a.n 

P5mn Pnalm PmZln Fmt12~ P2,m 

P2cb Pc2a Pc2a Pba2 P2cb 

P2,nb PcZln Pn21 a Pbn2, P21 cn 

P m  P n a  Pn2n Pnn2 P r n  

A 2 m  Bm2m Bm2m Cmn2 A;Smn 

A21ma Bb2,m EM2,b Ccm2, A21am 

A2aa Bb 2b Bb2b Ccc2 A2aa 

B2tt~n Qn2m Am& Bmm2 C;hrm 

B2cm Cm2a Ac2m Bma2 Cab  

B2mb C c a  Am2a Bbm2 C2cm 

D2cb Cc2a Ac2a Dba2 C2cb 

F2mm Fm2m Fm2m Fmm2 E5mn 

F2dd Fd2d Fd2d Fdd2 F2dd 

I m  ban Lm2m Imm2 Im 

No. 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

3 2 

33 

34 

3 5 

36 

37 

38 

3 9 

40 

41 

42 

43 

44 

Schoenf l i e s  
symbol 

D:, v 7  

D:, V' 

D;, v9 

C: , 

ciV 

c:, 

c ;v 

CL  

cXv 

c:, 

Cv 

CL 

c ;: 
c: l 
c: t 
c:", 

c h: 

c :: 
c E 

c L: 

c E! 
c L", 
c22: 

Stmdasd 
symbol 

F222 

I222 

Iq2l21 

Pmm2 

Pmc 21 

Pcc2 

Pma2 

Pca21 

k c 2  

m21 

Pba2 

Pna+ 

Pnn2 

Crmn2 

Csnc21 

Ccc2 

h 2  

A h 2  

Arm2 

Aba2 

m 2  

Fdd2 

m 2  



No. 

45 

4.6 

47 

@ 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

5 9 

60 

61 

42 

63 

64 

6 5 

66 

67 

Schoenflies 
symbol 

c:; 

c Z 

I 
D 2 h 9  V L  
D L ,  V: 

D? 2 h  9 . ~ 3 ,  

~ ' ; h ,  V: 

Vt 

D L ,  Vf: 

~ : h )  V: 

D82hY vBh 

G h ,  V: 

D::, vAO 

D:; , v A '  
D : 2 h J ~ i 2  

D:; , vA3 
DL:, VL4 

vk5 

D:, vi6 

DL: , v;' 
DL: , vIe 
DL: , 
D::, vi0 

D',L,  v;' 

aOrthorhombic: cab, 

Standard 
symbol 

Iba2 

1ma2 

PmtlIlU 

~ n n n  

rccm 

Pban 

Prmna 

Pnna 

PIIlm. 

Pcca 

Pbam 

Pccn 

Pbcm 

~ n n m  

Pmmn 

Pbc11 

Pbca 

Pram 

Cmcm 

Cmca 

Cmm 

Cccm 

bca, a'&, 

Other orientationsa 

,I2cb .Ic2a Ic2a ,Iba2 .I2cb 

,121nb 1c2-n ~ m i a  ,rOm2 12cm 

PmmIl Frflmm FYlmTIl Pmmrll PInml 

Pnnn ~nnn ~nnn  rum ~ l v m  

&a PbuL Ptnllt, Bcm l ' n ~ ~  

Pncb Pcna Pcna Pban Pnbb 

P'camn Pmcm Pmcm Pmmb Pmnll 

Pbnn Yncn Pnan Pnnb Fcnn 

P'rsmn F'IlCrn ' Pman l?tYmb PcIXU 

Pbaa Pbcb P bab Pccb Pcaa 

Pmcb pa Pma Pbm .S?mch 

Pnaa Pbnb Pbnb Pccn Pnaa 

Pmca Pbma Pcmb Pcam Pmab 

Pmnn Pnmn Pnmn Pnnm P m  

Pn~mn Pmn~n Pmnm Pmmn Prim 

Pnea Pbna Pcn'b Pcan Pnab 

Pbca Pbca Pcab Pcab Pcab 

Pbnm Pmcn . Pnam Pmnb Pcmn 

Amma Bbrmn Bnrmb C m  Amam 

Abma Bbcm Rmab Ccmb Acam 

A m  lhnmm Eh~mm Cmrmn .m 

Amaa Bhb Bbmb Cccm Amaa 

~ b m m  ~ m c m  ~ m m  ~nrmb A m  3 
baE, 3a. 



"orthorhombic: cab, bca, a a ,  bac, a a .  
b~etragonal :  a- and b-axes in same plane but 45' t o  those in the 

statlldad orientation. 

No. 

68 

69 

70 

71 

72 

73 

74 

Schoenflies 
symbol 

D::, 

D;;, 

D::, v2h4 

D::, vES 

D::, vE6 

of:, v',' 

D;:, v t8  

Standud 
symbol 

Ccca 
L 

~ m m m  

Fddd 

Irmmn 

Ibam 

Ibca 

Imma 

Te tragonal 

Other 

Abaa Bbcb ~ b a b '  Cccb A c a  

~ m m m  ~ m m m  ~ m m m  ~mrmn ~ m m m  

Fddd Fddd Fddd Fddd Fddd 

Irmmn Irmmn Immm lrmmn Immm 

Imcb Icma I'm8 Ibm Imcb 

Ibca Ibca Icab Icab Icab 

1- h c m  Imam Irmnb Ionm 

p4 

p 4 ~  

P42 

P43 
14 

I% 

- 
P4 - 
164. 

p4/m 

p4_/m 

p4/n 

p4dn 

7 5 

76 

77 

78 

79 

80 

81 

82 

83 

84 

8 5 

86 

c4 

C41 

C42 

c43 

F4 

E"r 

cz 

FZ 

c4/m 

c4dm 

ch/a 

c4da 

c : 
c'4 

c a 
c f 

c", 

(=: 

I 
S 4 

s', 

c k h  

c :h 

C: h 

cfh  



aTetragonal: a- =d b-axes i n  same plane b11.t Ik5O t o  those in thc 
standard orientation. 

b ~ e e  footnote, p. 204. 

No. 

87 

88 

89 

$0 

31 

92 

93 

94 

95 

96 

97 

98 

99 

100" 

I 01 

102 
b 

1 03 

I ohb 

105 

lobb 

1 07 

I 08 

Schoenflies 
symbol 

c zh 
c t h 

~b 

u', 

~ 3 ,  

Il d 
D "4 

Dz 

Di 

D", 

n', 

D: 

c b v  

c4, 2 

c iU 

c*,, 
5 

c 4 v  

cY 
c i V  
c tV 

9 
C 4" 

' ck; 

Standard 
symbol 

14/m 

wl/a 

p"22 

p421 2 

PL ,22 

p4-1 21 2 

Ph222 

P4221 2 

p4322 

p4321 2 

I422 

141 22 

p m  

F4hu 

PkZm 

p4p11 

P4cc 

P h o  

P 4 p c  

Pa2bc 

I h  

I4m 

Other orientationsa 

~ 4 / m  

~ 4 1  /d 

C422 

c4221 

c/, 22 
1 

c41 221 

Ch222 

c4 2z1 
~ 4 . ~ 2 2  

c4 22 
3 1 

F/+22 

F41 22 

cm 

C,!,mb 

(74 mr! 
2 

c4P 
c4cc 

CL,.cn 

c42m 

Ch2cb 

F41n3-n 

F@c 



"TaZiragoniL: a- a~li b-axes in same .plane but 43' to tllose in k11e 
standard orientation. 

b ~ e e  footnote, p. 204. 

No. 

-1 09 

11 0 

11 1 

112 

113 

1 14  

11 5 

11 6 

11 yb 

I I ~ '  

11 9 

1 20 

l a  

1 22 

1 23 

12.4 

1 2 5 ~  

1 2 6 ~  

12i" 

1 sb 
1 29 

I30 

Schoenf'lies 
s p b o l  

cb\ 

c b', 

D:dY Vi  
DEd) V: 

D Z d ,  V: 

qd 3 V4d 

E d )  V: 

D 6 2 d )  V t  

U : ~ Y  c', 

D 8 2 d 9  V: 

D E d ,  V: 

D z ,  V y  

, Vldi 

DL: , v : ~  

I 
D4h 

D :h 
3 

D 4 .  

D:, 

D:, 

D64 I, 

Dlh 
D 84h 

Standard 
symbol 

UI md 
% cd 

P Z ~  
P Z ~ C  

PE,~  
pzq  c 

p&2 

P Z C ~  
.t'zb2 

~ & 2  

1&2 

17c2 

G a  
G2d 

~ 4 / ~ m m  

~4/mc c 

p4/nnh 

p4/nnc 

p4/mh 

~4/mnc 

p 4 / m  

~4 /ncc  

0 ther  orientationsa 

F 4  dc 

c&2 

C Z C ~  

c&2, 
czc? 

c&I 

C Z ~ C  
cz2b 

cT2I-l 

F Z Z ~  

F ~ Z C  

F&2 

~ % 2  

c 4 / m  

c4/mcc 

~ 4 / a t ~ b  

c4ha-l 

c4/mmb 

cb/rncn. 

c4/- 

C ~ / S L C C  



No. 

Rhombohe d r a l  (Trigonal ) 

Schbenf l i e s  
symbol Other orientationsa9 

Standard 
symbol 

H3 

H 3 ~  

H32 

- 
H 3  

H32 

I 43 

144. 

I 45 

1 46 

1 47 

I@ 

1 49 

a~etragonal:  a- and b e e s  in same plane but 45' t o  those in the 
standard orientation. 

b ~ e e  footnote, p. 204. 

e' 
C~hombohedral: orientation in the Internationale Tabellen (1 935). 

c : 
c S 
c a 
c; 

I 
c:i 9 s, 

c9i ., s', 

n: 

p3 

P 3 ~  

P32 

R3 

- 
p3 

~7 

~ 3 1 2  



aRhombohedral : orientation in the - International ' J ~ ~ e ~ ~ p  (1 935 ) . 
b~exagona.l : - i b id  . 

No. 

150 

1 51 

152 

153 

I 54 

155 

1 56 

1 57 

158 

159 

1 60 

1 61 

1.62 

1 63 

1 64 

165 

166 

1 67 

Hexagonal 

Standard 
symbol 

P32l 

p311 2 

p3121 

P3 21 2 

p3221 

R32 

P 3 1  

P3l m 

P3 CI 

P31 c 

R3m 

PTI m 
P ~ I  c 

~ 7 m l  

P% 

~ 7 m  
' R ~ C  

~6 

~6~ 

Schoenflies 
symbol 

D: 

D i  

D$ 

D"J  
D "J 

D 3  

c:, 

c iv 
3 
3 v 

C :v 

c iv 
C, 63 

D': d 

D , : ~  

~ 3 3 d  

D1)3d 

D 5 
3 d 

D:d 

Other  orientation^^^^ 

H312 

~ 3 ~ 2  

H311 2 

H3 22 

H 3 J  2 

H31 m 

H3m 

H31 c 

H3c 

H% 

H ~ C  

H ~ I  m 

H?I c 

H6 

H G ~  

1 68 

169 

I 
C6 

c ,' 



a~exagonal : orientation i n  the Internationale Tabellen (1 935 ) . 

Other orientationsa 

H6 5 

H6 2 

H64 . 

H6 

Hb 

H6/m 

"6 $n 

~ 6 2  

H61 2 

~ 6 ~ 2  

~ 6 ~ 2  

H642 

H63 2 

H6nni 

H6cc 

H6mc 

~ 6 m  r! 

H&I - 
Hh2c 

HZm2 

HZc2 

No. 

1 70 

1 71 

1 72 

1 73 

I 74 

18/5 

.1 76 

I 77 

1 78 

179 

180 

1 81 

182 

'183 

1 84 

185 

1 86 

1'87 

I 88 

189 

1.90 

Schoenflies 
symbol 

c ," 

C'G 

c", 

c", 

GI, 

I 
c6h 

2 
G h 

D L  

D'6 

D: 

D: '6 

D: 

D ", 

GV 
c E v  

c:, 

GV 

D:h 

D 23 I, 

D z h  

D 431, 

Standad 
symbol 

P6 5 

P6 2 

P64 
~6 3 

PZ' 

~6/m 

pb3/m 

~ 6 2 2  

P61 22 

~ 6 ~ 2 2  

P6 $2 

~ 6 ~ 2 2  

~6~ 22 

P6mm 

Pbcc 

P6pn 

P6 g c  
J 

pZm2 

~ 6 ~ 2  

pZ2m 

~ 6 2 c  



No. 

1 91 

192 

1 93 

1 94 

Cubic 

1 95 

1 96 

197 

1% 

1 99 

200 

201 

202 

203 

204 

295 

206 

207 

208 

209 

210 

211 

Schoenflies 
symbol 

I 
D s h  

D 26h 

D 46h 

T ' 
T 

T~ 

T 

T 

I 
T h 

T : 
T; 

Tz 

T: 

T; 

0 '  

0 

o 3  

o 4  

o 

Standard 
symbol 

~6/n11m 

~6/mcc 

~6~ /man 

P ~ ~ / I L U ~ C  

P23 

F23 

I23 

P21 3 

I2,3 

m3 

pn3 

Fm3 

Fa3 

h 3  

Pa3 

Ia3 

P432 

PA232 

3'43 2 

~ 4 ,  32 

I432 

Other orientations 

., 

H 6 / m  

~6/mcc 

H6/mmc 

Hb3/mm 



According t o  the W a t a  of Jamaqy 1962 f o r  International Tables . 

f o r  CWst;fllograph;ii, Vol. I ('1 952), "there tis . . . some mbigufty - 
i n  using the xlotation C4mb fo r  space group 100 when it i s  referred t o  
the C l a t t i c e  because the glide p l a ~ e  pa ra l l e l  t o  the ('11 0) now in- 
valves a t ranslat ion of (a+b)/4 f o r  which there i s  at present no 
separate symbol. Similarly i n  spsce group 102, now called C 4 p ,  the 
glide a f t e r  re f lec t ion  across (1 1 0 )  i s  [ (a+b)/4 + c/2] . Corresponding 
glides occur i n  apace groups 104, 106, 11 7,  118, 125, 126, 128, 133, 
134, 135, 136 when referred to  a C l a t t i c e .  l1 

a'. 

Other orientations 
Standard 
symbol 

P4332 

p.4 32 

. I 4  32 

P Z ~  
F Z ~  
iiL-3m 

pX3n 

FGC 
S 3 d  

Pm3m 

Pn3n 

Pm3n 

f i3m 

fi'pn 

m3 c 

P'dm 

Fd3c 

Im3m 

.Ia3d 

No. 

212 

213 

214 

21'5 

216 

21 7 

21 8 

ng 

220 

221 

222 

223 

2% 

225 

226 

22'1 

228 

229 

230 

Schoenflies 
symbol 

0 

o 

o e  

T: 

T', 

T: 

T'd 

T ?  

T: 

I 
0 h 

0: 

0 ;  

0 ;t 

0 ", 

0 :: 
0 ;  

0; 

0 : 
0 Lo 




