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THE REDUCED CELL AND ITS CRYSTALLOGRAPHIC APPLICATIONS

Stephen L. Lawton and ROb_e_:'rt A, Jacobson

ABSTRACT *.

This report describes the reduced cell and its applications to
structural crystallography. Typical applications which are discussed
are its use as the standard choice of the unit cell in a triclinic lattice
and the use of its scalars in identifying in a lattice the cell of highest
symmetry. The report also describes two FORTRAN computer pro- -
grams which may be used to locate the reduced cell in a lattice, to
calculate its parameters and to derive the matrix for the transformation
of the original cell to the reduced cell. :

I. INTRODUCTION

Preliminary investigations of a crystalline subétance usually
begin with an identification of its crystal symmetry, such as its crystal
system, lattice type, space group and ccll parameters. Such informa-
tion may be obtained either by powder or sir;gle crystal X-ray diffraction
techniques. Once the symmetry has been established, however, it is

sometimes desirable to locate and identify its reduced cell as well.

The '"true' reduced cell is defined_.as that cell whose axes are the
three shortest ﬁon-coplanar translations in the lattice; consequently
there is only one such cell in any one lattice. lIt is, by convention, the
standard choic.e for the triclinic cell. But more important, this cell,
and the method of finding it, pfovi&gsa simple direct method for

identifying and locating in the lattice the cell of highest symmetry,



starting from any cell in any arbitrary orientation. This fact alone im-
mediately suggests two useful applications: its use in powder work in
assigning the cell of highest symmetry to a pattern indexed in the tri-
clinic system by a method such as that due to Ito, and for the alignment
of single ctrystals on a single crystal orienter in which the crystals are
mounted in a completely random orientation. It also serves as a
"fingerprint'" and can thus be used not only for comparing two crystalline
forms of a compound for similarities in their lattice but can also be used
to verify whether or not two crystalline forms actually correspond to the
same compound. Furthermore, by the same reasoning, any two or
more cells in a lattice may be linked together via the reduced cell since
the same reduced cell can always be found regardless of the starting
point. The reduced cell is thus an important one; consequently the
mcthod of finding it, as well as a discussion of its applications, is the
purpose of this report and is fully discussed with the aid of detailed
‘examples.

'I'he concluding portion of this repart describes two computer pro-
grams written in full Fortran for the IBM 7074 computer. The first of
the two programs, RCELL, is strictly a cell r'eduction program which
obtains the reduced cell by the method discussed in this report. The
second, TRACER, is an expanded version of RCELL and may be used
not only for obtaining the reduced cell, but also for general cell trans-
formations as well as matrix multiplication and matrix inversion of

3 x 3 transformation matrices.



The Delaunay cell and the method of finding it is not discussed in
s | : :
this report. It is a cell whose shortest three non-coplanar translations
are chosen so as to enable all three interaxial angles to be non-acute;

they are not necessarily the shortest translations in the lattice.
II. THE REDUCED CELL

A. THEORY

Of the seven systems into which crystals may Be classified, the
triclinic system is the only one which possesses no symmetry at all.
Through lack of symmetry the three axes may be unequal in length, un-
equally inclined and at angles other than right angles. This means that
any three non-coplanar vectors suffice in outlining a triclinic cell in a
lattice, that there is no restriction as to which three are chosen and
that they are not restricted to those shortest in magnitude.

Of the infinite number of possible triclinic cells, most of them are
quite impractical. One cell which has _riow been accepted as standard is
defined as the smallest cell whose axes are the three shortest non-
coplanar translations in the lattice. This particular cell is referred to

as the reduccd cell and the method of finding it is known as cell reduc-

tion. For a triclinic cell to be a reduced cell the following conditions

must be satisfied:
(i). The cell must be primitive.
(ii). Each cell edge must be shorter than the diagonals of

the faces bordering itl, so that (vectorially)
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lal<la+pl, ol<la+v 1, [cl<Rk +cl,
— — — — — — i - —
la|<|a-b|, |b!<|a-bl, |c|<!a-c|,
- — —_— i — — e — —
|a|<|a+c|, |b|<|b+c|, |c|<|b +c|,
&l<la -< |, < -2 |, 1<® -<l,

Condition (ii) may be rewritten into a more suitable form as a test by
squaring each slde of each inequality and exprcasing the vectors as
scalar products: For instance, by squaring both sides of
Bl<k -7,
we obtain ll_;lz < |_a_‘ - b—blz,
BB <f -2+ 525l
2f - B l<fR - =,
- B <a?.
By a similar treatment with the others, the twelve inequalities reduce

to the following six:

(iii). | - 5| =<ia?
AR
b - < |<ip”
B - < lsie?
[ 27| sgc?
o - 3| <la®
where la - gl = ab cosy, etc.

If a cell defining a particular lattice is primitive but fails to
satisfy all six conditions under (iii), it is possible to search for shorter

translations in a systematic way utilizing directly the three vectors J



defining the edges of the original cell. Oné‘me»thodﬂof doing this is due

to Azaroff and Buex_‘ger2 and is the method discﬁs_sed Here.~ The use

of this method requires that (1) the cell to .ibe reduced is primitive and

(2) the three vectors de'scribe the cell in Ad'ireicﬂtl space, as the reciprocal.
of the reduced primitive cell of the recibrocal lattice is not necessarily
the reduced primitive cell of the direct latticel’ 2. The methbd of search-
ing for shorter vectors in a lattice may be achieved in at least one of

two ways, either graphically or analyticaliy.

The graphical method of finding the reduced cell simply in;rolves
constructing the lattice on paper and searching for the shortgst transla-
tions directly. This may be achieved by drawihg a twd—dime_nsional
lattice of points, or net, according to a fixed scale containing two of the
three axes and searching for the shortest translations, one axis at a
time.

The analytical procedure is a much moré exact approach for it not
only allows the more demanding accuracy but it also lends itself well
for use on a computer (Chapter III). Briefly, the analytic reduction pro-
ceeds as follows: First, of the three scalar productsa - b, B - ¢, ¢ - a, .
the one largest in absolute value is selected as' the first candidate for
the reduction of a vector. The particular vector which is reduced first
is the larger of the two vectors comprising the scalar product just
selected; thereafter, the second longest remaining translation of a, b and
C is reduced next and finally the remainir;g translation reduced last.

After all three translations (vectors) have been reduced, the six



conditions (iii) are again tested. If one or more of the axes can be re-
duced still further, the new parameters are recycled for further reduc-
tion.

The procedure of reducing the length of a vector is achieved by
vector addition or subtraction. Figure 1 illustrates this procedure for

the reduction of vectnr h . in the a hl =plane. Shorteii veclurs of b are

1
found by adding (vectorially) integral values of a to ‘l;l if the angle be-
tween a and t?l is greater than 90° orrby subtracting (vectorially)
integral values of a from _l;l if the angle between them is less than 90°.
In this case the angle between them is less than 90° so that by successive

subtraction of vector a from Fl the shortest vector _b’3 is ultimately' ob-

tained in this net, where lgll > |-t‘>’2| > I_};3| < |-1;4| <oee <L |T:°°|

Fig. 1. The vectorial reduction ;:>f a vector.
That [€L3| is the smallest may be verified mathematically in the follow-
ing manner. Let the projection of vector _‘t-;l on the lattice row containing
vector a be defined as the distauce OA. Similarly, let the projection

of 1—)’2 on the same row be OA'and that of b s be OA", etc. In going from

b 1' to b 5 to E.3 the magnitude of _b.n is seen to decrease as docs its
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projection, and from B:L to -‘L_); they start to increase again. For b1 the
projection OA is longer than |a| but both OA' and OA'" are shorter than

Ia!. Now if _1;2 = B} then OA' = QA" = %|a|. If, however, the vectors

—

b,and b, are of unequal length, then their projections are also of un-

2 3
equal length, one projection (in this case OA') being greater than %|a|

and the other (in this case OA'") being less than %Ia| . Thus, the shortest

translation I_;n’ in general, is obtained when

cosy < _Tlgll_

L

or
b cosy | S%lal.

If both sides are multiplied by a, the following expression is obtained:

|ab cosy I <3 az.
But lab cosy | = l; . _};l,
whence |; . f;l S%az s

which is just one of the six expressions of (iii) on page 4. Note that
this is merely equivalent to saying that b is the shortest translation in
the ab-plane when

b |<fa £b].

As the length of a vector is reduced, thaf is, as shorter vec‘tors
are located in a net, the angle between the two vectors involved in the
reduction approaches 90° with a corresponding approach of the scalaf
product to zero. For instance, as b is reduced in the ab-plane, y—90°

and [; : g| — 0. This immediately suggests an analytical approach to

locating shorter vectors in a lattice. Suppose we can locale shurter



vectors of E. as follows:

n = bl - na
where |gnl < l_gl | . If we multiply (vertically) both sides by 2, we obtain
a-b_ =3 -b,-na’,
n 1

an expression now in a usable mathematical form for locating shorter
. - ) - . 3 13 -
vectors of b, a form which is in terms of variablee which arec knowii,

since it is equivalent (in expanded form) to

L : 2

abn cosy = abl cosy, - na” .
If

b =b, + n;

n 1

then

2 - b = a - b+ na.2 .

n 1

In otherwords, if a - Fl is positive, we subtract na2; if a - —b.l is

—

negative, we add naz. In this way ; . bl is made smaller; the net
affect is reduction of b (; held constant) in the abl -plane which in turn
yields a vector more orthorgonal to a, that is |_b.n| < |F1| and
lc087u| < lcos‘}’l I . If it is desired to reduce ;’ instead of b in the ab-
plane, then nb2 is appropriatelyadded or subtracted from a - b. Once
the smallest la—; . _b.l is calculated, the new ceil parameters may be
determined according to the usual methods (Appendix IV).

According to the foregoing discussion integral values of az, b2 or
c:2 are either added or subtracted from an unsymmetrical scalar product

for reduction of a vector. These integers, n, may be used to obtain the

final matrix for transforming the original triclinic cell to the reduced



cell. We first note that before any axis is reduced the initial matrix is
always the identity matrix. After reduction of a vector has taken place

in a particular net, the integer, n, which is obtained becomes the element
Dy introduced into the identity matrix to form the particular matrix '
corresponding to the transformation of the cell before reduction to the
cell obtained after reduction of the vector. Each time this process is
carried out one simply starts agé.in with the identity matrix and reduces
the vector to determine its magnitude and the integer TR Finally after
the entire cell has been reduced, the matrix for the transformation of the
original triclinic cell to the reduced cell becomes

N = (N

1—n

n-1-n) """ Ny gl N5 Ny )Ny o)
where Np—’q’ whose modulus is always unity, is the matrix for the
transformation of cell (p) to cell (q), cell (1) being the original cell
and cell (n) the reduced cell. |

To illustrate this procedure of deducing the matrix suppose we
reduce a particular cell by first reducing vector ¢ in the ac-plane,
holding a fixed in magnitude. This means vector 2 will be added or
subtracted n-times from vector ¢ until the shortest magnitude of < is
obtained; mathematically this corresponds to the addition or subtraction

2

2 — — . Eam d —- . .
of na from a . ¢ until Ia . C |S%a . The integer n is therefore Do

so that the matrix of the resulting transformation is
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The modulus of this matrix is unity. Now suppose we further reduce
vector ¢ this time in the new bc-plane, holding vector b fixed in
magnitude. The matrix then for the transformation of the cell before

reduction to that obtained after reduction of vector ¢ in the new bc-plane

is
1 0 0
NZ—-’3 =10 1 0
0 na, 1

The matrix for the transformation of the original triclinic cell to

~ the cell obtained at this stage of the reduction is

1 0 0 1 0 0
Nl—>3 = (N2—>3)(N1—>2)= 0 1 0 0O 1 0
0 n:!}2 1 nz, 0 1

In like manner if vector b is next reduced, say in the new bc-plane
holding ¢ fixed in magnitude, the matrix for the original cell to thé
cell obtained at this new stage of the reduction becomes

1 0 0

N. .= 1o 1 n

1—4 23 | (Nj_.3)

0 0 1
etc.
The reduced cell is, as previously stated, always a primitive cell.
This is required in order for it to have the smallest volume and the three
shortest non-coplanar translations in the lattice. Therefore, since the

cell reduction technique just described involves no change in volume,
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the original cell from which the reduced cell is obtained must also be
primitive. There is no restriction, of course, in subjecting centered
cells to cell reduction. Since no change in volume occurs the cell ob-
tained after r-eduction can never, then, be primitive with one lattice point
but may still be cenfered in the usual sense and will have the same volume
and total number of lattice points as before. Thus, if a C-centered tri-
clinic cell undergoes reduction in its parameters, the final cell will still
have the same volume, even though shorter axes, and will still contain
two lattice points, being either A-, B- or C-centered, body-centered, or
even a primitive cell which is centered along an ledge, depending upon
the particular transformatiqn involved. Our discussion will pertain only
to reduction of true primitive cells containing only one lattice point.

Of the seven crystal systems, only two may be reduced. Accord-
ing to the piuvcedurc hoeretofore described, cells may be reduced only if
their unsymmetrical scalars (i.e., 2 -b, b - co < - Z) are not equal
to zero and are not at their minimurh possible absolute value. Thus, in
addition to the triclinic system in which all three axes may be reduced,
the monoclinic cells may also be reauced but only in the plane containing
the non-90° angle. In the monoclinic system, ‘c-unique, only a and/or
b may be reduced, the reduction being in the ab-plane; for b-unique, only
a and/or ¢ may be reduced, the reduction being in the ac-plane. All
other systems have their unsymmetrical scalars either ali zero or at
their minimum absolute value. This simply means, then, that the

primitive cells inthe other five crystal syetems ave actually the reduced
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cells. (This is not so for the centered cells, which may be reduced to
their reduced cells only by first transforming them to a primitive tri-
clinic or monoclinic cell. This is discussed in more detail in Section

E-3 of this chapter.)

B. THE REDUCED CELL IN ITS CONVENTIONAL ORIENTATION

A convention has been established for the reduced cell dcfining a
triclinic lattice and may be stated as follows:

The reduced cell defining a triclinic lattice is that cell
which is primitive in nature (contains no centering), whose
edges are‘the three shortest non-coplanar translations in
the lattice, labelled so as to have c <a <b a‘nd oriented so
that the angles & and 8 are non-acute.

(A full discussion of the convention for all seven crystal systems may

be found in Crystal Data Determinative Tables, ACA Monograph No. 5,

¢nd ed., (1963), p. 2.)

It may turn out that after the triclinic reduced cell has been
found -~ that is, after the shortest translations have been located and
they satisfy conditions (i) and (ii) on page 4 -- it may not correspond
to the convention stated above. A rearrangement of the axes and re-
definition of the angles is thus required. To do this one simply re-
arranges the translations into the proper order, carrying along the
corresponding angles, and then converts the angles & and 8 to obtuse if
found to be acute, obeying the rules which are discussed in the next

section, rules to which one must strictly adhere for proper conversion.
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C. RULES ASSOCIATED WITH CHANGES IN CELL ORIENTATION

A cell defined by three axes and three angles is not restricted
soley to one orientation. One is free to interchange the axes, to reverse
the direction of the axes, to reverse the so-called character of the
angles or to revert from a right-handed coordinate system to a left-
handed system and vice versa. All these changes must be executed
following a certain set of basic rules. Failure to do so may result in
reversal of the axial sense and, even more seriously, a possible in-
advertent destruction of the lattice accompanied by a change in volume.

The rules of interest are summarized below. The term ".cha.r-
acter' of an interaxial angle refers to its acute or obtuse nature, in-
dicated by the sign of its cosine, (+) for acute and (-) for obtuse.

(i). The '"reversal' in the direction of any axis directly involves

two angles, the new angles always being the supplement of
the old (viz., 8— 7 - 8), since two of the three scalar products
involve the reversed axis.

(a). If one axis is reversed (e.g., abc—abc), the character

of the angles opposite the other two axes is reversed
(e.g.» Bpew = T- ﬁold and Yoew = T yold)' Accompany-
ing this change is a reverse in the sense of a, b, c,

that is, there results a conversion of a right-handed
coordinate system to a left-handed system, and vice

versa (viz., V = (-Z) b xc = -V).
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(ii).

(iii).

(b). If two axes are reversed (e.g., abc—abc), the character
of the two angles opposite the reversed axes is changed
(e.g., o and B, indicated by the fact that b-c = -(b-c) and
a-c = -(a-c) ); the new angles are the supplement of the
old. The axial sense is not changed, since V = (-;)' (-B’)
xc = +V.

(c). If all three axes are reversed (e.g., abc —abc ), the
character of no angle is changed. The axial sense 1s
changed, however, since V = (-Z)' (-_‘5) be (-_Z) = -V.

If the character of any angle is changed, a second must also

be changed. Thus, if the character of ¥is changed, then (_a;--_l;)—'

_('Z:.f), implying either a or b has reversed direction, thns in-

volving a change in sign of a second unsymmetrical scalar

product.

If two axes are "'interchanged', the sense of the axes is also

changed (e.g., if abc—acb then +V—’-lV). To prevent this

change in the axial sense, the direction of either one (namely,
the unchanged axis) or all three axes must be reversed.

Accompanying this change, (a) if the one-axis is revefsed (viz.,

—a——> -—z;) the character of the angles opposite the interchanged

axes (viz., 0pposi£e? and?) is reversed, and (b) if all three

axes are reversed, the character of no angles is changed

(rule (i) above). Thus,
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ifabc—baT, then (' = 7-8 and_ﬁ' =fT-0Q) .

or ifabc— ba‘c, then (a' = B, B' = 0),
the system remains right-handed, or left-handed as the case
may be.

(iv). If three axes are "interchanged' they merely permute, with no
change in the axial sense (e.g., if abc— cab— bca, then
+V remains +V).

Transformation matrices aré' affected by reversing the direction
of one or more axes. Suppose a cell is transformed to a new cell and
it is then desired to reverse the direction of one or more of the axes-
of the new cell to give a third cell with the same axial lengths. The
transformation matrix from cell (1) to celln (3) can be obtained by left
multiplying the transformation matrix of cell (1) to cell (2) with the
matrix used for reversing the direction of the axes. Consider, for
example, the reversal in the direction of axes ;and C in cell (2). The
matrix for transforming cell (1) to cell (3) is then

cell (2) to cell (3) cell (1) to cell (2) cell (1) to cell (3)
(a and ¢ reversed)

T o o\ /n

11 P12 P13 11 "Bz "913
o 1 0 ' Nop Ty a3 5| mp By, nys
o 0 1 fi3) N3, Nig "N "Dz,  -Njg

Notice this simply involves reversing the sign of the matrix elements in
I the rows corresponding to the axes being reversed in cell (2). This

type of change holds in general for one, two, or three axes being reversed.



16

This leads to the following rule:

(v). Let the transformation of cell (1) to cell (2) be given by

Cell (2) Cell (1)
A n By, D3 a
B = nyy My Moy b
c <

B3p P32 "33
The reversal in the dircction of A, B. and/or C reverses
the signs of the corresponding '"row'' elements of the trans-
formation matrix. That is, if A—-A, then n 7m0 g
Ny, Ny 55 By 377Ny g and similarly for B and/or C if they

)

are reversed.
In a three-dimensional lattice there are only four ways of obtaining
a right-handed system of labelled axes differing only in the character of
the angles a, B, Y between them; likewise there are only four way's of
obtaining a left-handed system. These may be seen to comprise the

eight corners of a unit cell:

right-handed left-handed
abc abc
abc ibc
abc abc
Al abtcT

Figure 2 shows those for the right-handed axial cross situated al the
corners [000], [011], [101] and [110]. The angles a, Bs ¥ which the -

three vectors make at one of the corners, say [000], will be o, B', '

o!
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at [011], o', 8, at [101] and &}, 8',y at [110], where the primed

letters designate supplementary angles (o' = 180° - ¢, ..., etc.) |

Fig. 2. The four right-handed axial representations of
labelled axes in a three-dimensional lattice.

The angles @&, B, ¥ at any one corner may, in general, be acute
or obtuse. Consequently, there are a total of eight possible combinations,
shown in tabulated form in Table 1 for each of the four right-handed
axial representations3, where the character of the angle is indicated
by the sign of its cosine, (+) for acute and (-) for obtuée.
Inspection of Table 1 reveals one significant property of a lattice.
In only four of the eight cases (Nos. 1, 2, 3, 4) is it possible to find
all three angles obtuse. In eve-ry case, on thé other hand, there exists
a right-handed system with at least two angles obtuse. This fact has
thus been a basis for the convenfion established for the triclinic reduced

cell (page 12) which sets two angles obtuse and allows the third to be
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Table 1. The four right-handed axial representations of labelled axes
and the characters of the interaxial angles.

- _
Possi- Corner [[000]] Corner[[011]]| Corner [{101]7]] ‘Corner [[110]]
bilities o 8 y o g ! o 3 ! o a8 y

1 N I S (R + ] - |+ + + -

2 S A - - - + o+ | - + -]+

3 I - I | l - - - - - | l

4 T R I I I -+ |+ - - -

5 N R -1+ | - + | -] - + |+ |+

6 -+ ] - S R + |+ |+ + - -

7 T I I I I - -]+ -+ | -

8 4+ |+ - | - -+ ]+ - - |+

either obtuse or acute. In this way the triclinic cell whose axes are the
three shortest non-coplanar translations in the lattice may be satisfied
at all times; to restrict all three angles obtuse leads to a solution in

only 50% of the cases.

D. SAMPLE CELL REDUCTIONS OF SOME TRICLINIC CELLS

The following examples are intended to illusfrate in principle the
methods associated with the reduced cell technique. Example 1 illustrates
the complete step-by-step process of pbtaining' the reduced cell of tri-
clinic 16-DL methyloctadecanoic acid. Example 2 illuctrates the mcthod
of converting a reduced cell to its conventional orientation for iodine
trichloride in which only the angles have to be redefined. A third example
may be found in Example 3, .particularly step 2 and 3 on page 69, which

illustrates extremely well each one of the basic rules of the previous

ol
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section for conversion of a reduced cell to its conventional orientation
in a lattice. If other examples are desired for practice, the reader is

referred to the excellent comprehensive reference Crystal Data Deter-

minative Tables referred to in Section B of this chapter. All the tri-

clinic cells defined in that volume are the ''true' reduced celis; for each
triclinic compound the editors have indicated the original lattice param-
eters reported in the literature, the parameters of the reduced cell in
its conventional orientation and the matrix for transformation of the
original cell to the reduced cell.

Example 1.

Crystals of 16-DL methyloctadecanoic acid, C OZ’ are tri-

19t38

clinic, space group PI, with lattice parameters

a =540 4 “a= 145° 38!
b= 7.54 B = 105° 42
c = 51.8 y= 60° 18!

Determine its reduced cell.
Solution. First a test is made to determine if this cell is already

the reduced cell. To do this we will need to know the six scalar

products.
2-Db = abcosy= (5.40)(7.54) cos 60° 18' = +20.17
b-c = bc cosa= (7.54)(51.8) cos 145° 38' = -322. 39
C.a = cacos@= (51.8)(5.40) cos 105° 42' = -75.69

a3 =a%= (5402 = 29.16
b5 = b% = (7.54)% = 56.85
T.T = % = (51.8)% = 2683. 24
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(i). Test
Is [+20.17| <L(29.16) No.
Is |+20.17| <1(56.85) 2 Yes.
Is |-322.39|=<i(56.85) 2 No.
Is |-322.39| <1(2683.24) 2 Yes.
Is |_75.69l = 1(2683. 24) 2 Yes.
Is  |-75.69] =3#(29.16) 2  Nao.

Since three of the six tests fail, it rﬁay be concluded that the ccll is not
a reduced cell. We therefore proceed to part (ii).

(ii). The Cell Reduction

Reduction o_f c.

Inspection of the three scalar products _a-‘- b, b <, and ¢ - a re-
veals that b - ¢ is the largest in absolute value. Furthermore, of
vectors b and :, ?is the lafger. Therefore, :is reduced first and b
is held constant in rnagnit.ude. The product b-c is negative in value,
so integral values of b? (= 'b.p-'g) must be added to the scalar product to

reduce its value.

b,rc,=b, ¢+ nblz = (-322.39) + n (56. R5)

= -322.39 when n=0

= -265, 54 n=1

= =208. 69 n=2

= -151.84 n=3

= - 94,99 " n=4

= - 38.14 n=5

=+ 18.71 n=6 -

= + 75.56 n=7
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When n = 6 the scalar product T;Z . ?2 is seen to attain its minimum.

absolute value. Figure 3 illustrates the reduction in C that has just

occurred.

Fig. 3. The vectorial reduction of vector < by vector
b in the b ¢ -plane.

The relationships of the vectors in the old and new cell are thus the

following:

Original Cell New Cell

3 | ay =3
by b, = b)
; 5T
ay- by ay by = ;1—1
57 5, T B e e,
ot S G 5 e

Their calculated values in the new cell are
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a, = a; = 5.40
b, = by = 7.54
c, = \/(Cl+ 6b1)-(c1+ 6b1) = 29,35
. 2 _ —>.—> _ — — ] — —
i.e., c," =cy ¢, = (c1+6b1) (c1+6b1)
_ 2 —>.—> 2
=c, 412D ¢ + 36h
= (51.8)% + 12 (2322, 39) + 36 (7. 54)°
= 861,22 |
cz=/861.22 = 29.35
Ja, by =a t b = +20.17
b. . =B, T, +6b.% = +18.71
2° 2701 4 1 .
Cyta, ¢yt ay t6bra, = -75.69 + 6 (+20.17) = +45. 33

The transformation matrix from the original cell to the new cell is

1 0 0
0 1 0
0 6 I

Further Reduction of c.

A test may now be made to determine if the vector ¢ can be reduced

even further, this time in the ac plane.

Is oy Tl<ta,? o
l+45.33] < (29.16) 2 No. .

Therefore, o can be reduced still further. The reduction will occur in
the new ac plane and values of a2 must be subtracted from ?2° "‘_‘jz’ a

positive quantity.

o!
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C— — — —_—

cy' a3 = Cp 3y - may” = (+45.33) - n (29.16)
= +45, 33 when n=0
= +16.17 n=1
= -12.99 n=2 =
= -42.15 n=3

"The relationships of the vectors in the old and new cell are now the

following:
Original Cell New Cell
5 5y - 5
E’2 B>3 = b,
E.2 E; = .?2 B 2"’_"2
3’2' B’Z 2’3- 6’3 = 5’2- B’Z
E’z- E’Z 3’3 2'3 = B’Z- (?2-25’2) = B’Z c,- 26"2- 5’2
E’Z- E’Z cy ay = (c, - 2a,) a, = ¢, a, - 23.'22

Their calculated values in the new cell are

a3 =a,=5.40
by =b, = 7.54
cy = fic, - 2a,) (c, - 2a,) = 28.22
ay by = a, b, = +20.17
b,y = by c, -2b, 2, = -21.63
Cyay =Cya, - 2a,” = 12,99
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Reduction gf_ E

— —_—

"Of the original parameters 5'1, b1 and e B] was seen to have the

second largest value. It may thus be reduced next. A test may be made

to determine in which plane the reduction will have to be made.

Is b, <%l S%csz ?

|-21. 63| <1(796. 54). Yes.
Is  [ay Byl=ta,® 2

|+20.17] <3(29.16). No.

Therefore, the vector g(:B;) can be reduced in the ab plane, using

ay b, .
_a'4- 6’4 = 5’3 "b'3 -n a32 = (+20.17) - n (29.16)
= +20.17 when n=0
= - 8.99 n=1 =
= -38.15 n=2

The relationships of the vectors in the old and new cell are now the

following:
Original Cell New Cell
;3 :4 = ;3
bs b, = Dby -2,
E’3 E’4 - E.3
ay by ay by =a, by -2y =2, b, - a32
by <y by ¢y = (b -ay) oy = by cy -2y cy
<y ay Cyay=Cy a,
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Their calculated values in the new cell are

a, = a; = 5.40

b, = (33-5’3)- (3’3-5’3) = 6.76
c4=c3=28.22

a, b, = -8.99
Cqag=cyay = -12.99

1 0 0 1 0 0 1 0 O

I 1 oftq4o 1 ol]=lT 1 o0
o o 1/ \2 6 1/ \z2 6 1

Testing the new scalar product 1—):1 2:1 against -;-c42 indicates re-

duction of vector b is essentially complete.

Reduction of a.

The remaining translation, a, is now reduced next. A test is
made to determine in which pla.he the reduction will be necessary or if
reduction can occur at all.

— —_— 2
. <1 o
Is |c4 a4| 2 Cy ?

|-12.99]| = (796.54) 2 Yes.

Is |5;'34|<:§b42 ?
|-8.99| =1 (45.67), ? Yes.

Reduction of the original triclinic cell is thus complete. Testing

the original six conditions using the values obtained for a, b’l’ cy0
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ay’ b4, b4' Cy and Cy' 2y verifies this and additional cycles are unnecessary.

The cell parameters of the reduced triclinic cell are thus

a, = 5.40 &
b, = 6.76
S Cy = 28. 22
by e -8. 64

4
—_ = = ~0.04529
6. 76)(28. )
4 4 (6.76)(28. 22)

o= cos ) (-0.04529) = 92° 36!

Cc,* :
_ %4 %q -12.99 _
cosB=— 3, T (2. a0 - 0085
B= cos™ ! (-0. 08524) = 94° 53!
a, b, |
%4 Pq -8. 99 _
cos Y = z, b4 = 15:20)(6.76) = -0. 24627

y = cos”! (=0, 24627) - 104° 15
The transformation matrix from the original triclinic cell to the reduced

cell is thus

1 0 0
T 1 0
z 6 1

Now, the conventional orientation of the reduced cell in a triclinic
lattice is
c <a <b

0, B obtuse.

o
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Therefore, the lattice parameters of the reduced cell become (upon

rearrangement)
a= 6.76 4 o= 94° 53
b = 28.22 B =104° 15'
c = 5.40 oy = 92° 36!

The corresponding transformation matrix is

T 1 0
2 6 1
1 0 0

Examgle 2.

Crystals of iodine trichloride, 12C16’ are triclinic, space group
P1, with lattice parameters a = 5.71, b = 10.88, ¢ = 5.48 A and
o= 130° 50', B=80° 50', ¥ = 108° 30'. Upon transformation to its
recduced cell the parameters become a = 5,71, b = 8.39, ¢ = 5.48 A and
= 101° 13', = 80° 50' and ¥ = 107° 54'. The corresponding trans-
formation matrix is 100/011/001, Netermine the parameters of the

reduced cell in its conventional orientation.

Solution. The convention is ¢ <a <b with o, B obtuse. The axial
lengths of the reduced cell in the orientation indicated are seen to be
in the proper order. The angle 8 however does not conform to the con-
vention and must be corrected. The change which is required is the
following:

B'=m-B=m7-80° 50' = 99° 10’

Y'=m-vy=q-107° 54' = 72° &',
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Such a change results from two possible changes in the axes: a reversal
in the direction of the a-axis only or the reversal in the directions of

both the b- and c-axes. We may take our choice. The transformation

matrix cofresponding to the two possible changes are illustrated below.

T o o
a—-a |0 1 1] a=-1
A
1 0 0 0o o0 1
o 1 1| —
0 0 1 1 0
a=1 LE=2lo0o T T| a=1
cC — =C
0o o

Notice that one is related to the other by a change in sign of all nine
elements. The former (A= -1) involves a conversion from say, a right-
handed system to a left-handed system§ the latter (A= 1) a retention of

sensc.

E. APPLICATIONS

Once a unit cell has been identified from single crystal or powder
diffraction data, one question often asked is wﬁether or not a unit cell
of symmetry higher than the observed one actually exists and if so what
is it, how is it oriented relative to the observed one, and what are its
dimensions? The reduced cell and the method of finding it provides the

answer.
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1. THE 43 REDUCED CELLS

In 1928 P. Niggli showed that there are only 43 unique reduced cell
types4. He showed that by considering all the possible combinations of axial
lengths and interaxial angles in the fourteen Bravais lattices, there re-
sult just these 43 cells whose axes correspond to the three shortest

_— - —»

non-coplanar translations in the lattice. Its six scalars -- a-a, b-b,
c*c, b E: c-+a, a*b -- consequently contain complete information
about the Bravais lattice of highest symmetry which it represents. In

representing the reduced cell by its scalar products the following matrix

representation was proposed by him:

a*a b:-b c-c ) Ty Top r3q
bc ¢c+-a a-b Tyy Ty r o

where a <b <c with &, 3, Y all obtuse or all acute.
As examples of three of the 43 reduced cell types, letus consider the
three cubic lattices shown in Figure 4. In each lattice the reduced cell

is outlined in bold lines with axes labelled e (after Niggli4).

P I F

Fig. 4. The three cubic lattices and their reduced cell.
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In the primitive case the three shortest vectors correspond to the edges

of the cell itself. Its scalar products are thus

—_— — 2
= = e-€e = a

Tig T To2 T T3

—_—
(] (]

e2 cos 90° = 0,

| T23 7 7317 M2 7

its rgduced form therefore being
11

0 0 0

The three shortest vectors in the body-centered cubic lattice correspond

to the lines joining three non-adjacent corners of the cube with the

center of the cube, thus lying along the body-diagonals. These three vec-

tors are thus seen to actually form a rhombohedral cell with a = 109° 28'

16.4", cos o= -1/3. For this reduced cell we have

e e e = ez__(J3af_ 322
11 -~ T22 7 %337 =\7z /)7 71T
- _ -2 w= o2(-Yy = - 11
1‘23—1'31 -rlz—e e = € cOSs = e ? = 3
Its reduced form is thus
11 11 i
11 T11 T
3 3 3

The three shortest vectors in a face~centered cubic latticé correspond to

the reduced cell whose axes join a corner of the cube with the three

nearest face-centers, thus lying along the face-diagonals to form a

rhombohedral cell with o = 60°, cos a= 3. This reduced cell is a

reciprocal of the reduced cell in a body-centered cubic lattice. For d

this cell we have
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R 2 (/2a)2 _at
Ty1 T fe2 T 33z < =\ )
r
_ _ _ —_— — _ o _ 2 1, _ 11
r,y = T3 =T, e-e =e coséO-e(a)—2
Its reduced form is thus
11 T Y
11 T T
z 2

The reduced cell is thus seen to be a special one. Its six scalars
are seen to characterize a particular Bravais lattice, its axial lengths
" and interaxial angles. Herein lies the ''link'"' between any cell in a'lattice
and cells of higher symmetry. By the method outlined in the preceding
sections of this chapter, the cell is transformed to its reduced cell. Its
reduced form will be one of the 43 possible reduced forms. By com-
paring its six scalars With those in Tables 2 and 3,the crystal system
and lattice type of highest symmetry in the lattice may be readily
identified, keeping in mind, of course, the possibility of pseudo-cells
since the reduced form says nothing about symmetry, just axial lengths

and interaxial angles.

2. ORGANIZATION AND USE OF TABLES 2 AND 3

The 43 reduced cell types and their reduced forms arelistedin Tables

2 and 3. Their corresponding orientation in the Bravais lattice appear
in Figure 5 where a, B, ¢ arc the axes of the reduced cell in its con-

ventional orientation and A, B, C are the axes of the unit cell. The

reduced forms appearing in these two tables appear in revised form from
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“those found in Niggli's original work4 and from the reduced forms

EN

tabulatcd in Azaroff and Buergerz, which are based directly on Niggli's
work. Niggli defined the orientation of his reduced cell as a <b <c with
o, B, Y either all obtuse or all acute, giving rise to what he called
"poegitive'" reduccd forms and ''negative' 1'<":-:luued [urmms respectively.
The reduced ccll has since been standardized to be ¢ <a <b with &, 8
obtuse (p. 12). Tables 2 and 3 are based on this convention. In most
cases only one reduced form is possible; that is, only one orientation of
the reduced ceil in the lattice is possible which conforms to this cbnven-
tion. In other cases there are two possibilities, one Qith Y acute and
the other with ¥ obtuse, just as in the case of the convéntion used by
N‘iggii where a positive reduced form ang a negative reduced form could
co-exist in the same lattice. When two such orientations are possible,
both are given to facilitate quick and rapid reference, (Note that a, b,

c; & and 8 remain unchanged in the two orientations. Note also that the

- reduced cell is defined soley by its three axial vectors; the character

‘of its interaxial angles defines its orientation.) Consequently, if a re-

duced cell is converted to its conventional orientation, these tables may
be used directly.
In practice the procedure of identifying the unit cell and lattice

type from a knowledge of the reduced cell is as follows: First, the

—_— — —

symmetrical scalars (i.e., a - a, b- b, : E’-; in that order) of the
conventional reduced cell are placed into one of the following four

and r,,:

categories, as defined on page 29in terms of r 22 33

11’
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T =T =T

11 22 33

S rzz% T33
T 17 T Tag

11 7 T22 7 Ta3

{(where Ty] T Taz 7£r22)

Using Table 2 and the catagory established for the symmetrical scalars,
to within reasonable experimental error, the unsymmetrical scalars

(i. e., b - Ch C - ay 2 - b - in that order) are examined next to determine
to which subcatagory they belong. In doing this they are searched for
specializations, such as one or more being zero, one or more being
related to each other or related to the symmetrical scalars. From this
it is possible to deduce immediately the crystal system of highest
symmetry, if dne exists. Finally, using Table 3 and the cell number in
parentheses obtained from Table 2, the transformation from the reduced
cell to the unit cell, and its lattice type, may be obtained.

Using Tabl.e 3 the cell parameters of the unit cell may be found by
two different methods, using either the direct transformation matrix ap-
pearing in coluinn 4 or the formulas appearing in colurnn 5. If the
matrix in column 4 is used, the method proceeds according to that given
in Appendix IV. If the formulas in column 5 are used, the actual scalars
are simply inserted directly into the expressions listed.

The expressions in column 5 of Table 3 are based directly on the
matrix appearing in column 4 and the reduced form appearing in column
3. The following illustration shows their derivation for Orthorhombic

(26a). According to Table 3 the reduced form (whose general torm is

defined on page 29)and Lhe transformation matrix for this cell are, respectively
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™1 B! T33 11 1
-12-_1733 %¥33 ., and T 1 0
0 0 1

The formula for AZ in terms of the reduced cell sca.lars is

A2 - @+D+c) (@+b+79)

2. 24+b-b+c.c+2b-c+2c-a+2a-b
2r 27 . -
. 33 33
-r11+r11+r33+ -5 + = +2r12

= 2(ry) t 1) -T33

The expressions for B2 and C2 may be similarly obtained using

B2 = (<2 +b) (-2 + b)
and c?=@Q-@.

Figure 5, as previously indicated, consists of the schematic
diagrams of the various reduced cells(with axes a B: 8 outlined in
their respective Bravais space-lattice (With axes A, B, E). They are
based directly on Niggli's original figures (Figures 44 - 58)4 with a few

ste
3L

modifications.

“Permission to use Figures 44 - 58 due to Niggli4 was kindly granted
by Akademische Verlagsgesellschaft, Frankfurt Am Main, Germany.



Table 2 (pages 36-39)

Table 3 (pages 40-60)
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Table 2. The "Unsymmetrical' ‘Scalars of the 43 reduced cell types in
their conventional orientation (c <a <b; &, B obtuse).

A, Symmetrical Scalars: r, TT, T Ty’
Unsym.
Scalars: O 0 0 Cubic (41)
-%?“4 %5“4 %r” Cubic (4‘3)
T,, T,, T,, Rhombohedral (36)
T,y Tpe Ty Rhombohedral (37)
ls;n '|3'.£|| L3rll Cubic (42)
two equal (sum = -r, ) Tetragonal (34a,b,c)
three wieyual (sum — -I, ) Orthorhombic (25a,b,_c)
Be. Symmetrical Scalars: r, =T, # Ty,
Unsym. )
Scalars: O 0 0 Tetragonal (31)
0 0 3T, Hexagonal (40a)
0 0 5T, Hexagonal (40b)
0 0 o Orthorhombic (24a.)
0 0 T, Orthorhombic (24b)




lo

Table 2. (continued).
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B. con'te.
BTy, BTy, ATy, Tetragonal (33)
%-1:33 BT, r, Orthorhombic (26a)
BTy, BTy, Tpp Orthorhombic (26b)
$T,, FT,, (T, -+T,;3) Rhombohedral (38)
T,s Tas r, Monoclinic (14)
Tos Tps T, Monoclinic (15)

C. Symmetrical Scalars:

r, #r, 7Ty, (vhere r

= I‘353 # rZZ)

Unsym.
Scalars: O 0 0 Tetragonal (30)
0 3T, 0 Hexagonal (39) |
0 T, 0 Orthorhombic (23)
5T, 0 37, Tetragonal (32a)
5T 0 3T, (sum — -r ) Totragonal (32h)
T,, T, S Monoclinic (12)
T,, T, Tps Monoclinic (13)
3T, 3T, 3T, Rhombohedral (35)
r,, (r,-2,,) T,, (sum=-r, Orthorhombic (28)

F23 (I-'n "Fzs _:FIZ ) ITIZ (sum = =Ty )

* Monoclinic (7)

. e ————
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Table 2. (continued).

De Symmetrical Scalars: r, # T,, 7‘ Tys

Unsym.

Scalars: O 0 0 Orthorhombic (19)
0 0 3T, Orthorhombic (22a)
0 0 T, Orthorhombic: (22h)
0 0 T, Monoclinic (4a)
0 0 T, Monoclinic (4b)
0 Ir,, 0 Orthorhombic (20)
0 T, 0 Monoclinic (5)
0 3T, T, Monoclinic (9a)
0 3T, -I-'Iz Monoclinic (9b)
3T., 0 0 Orthorhombic (21)
Tas 0 0 Munoclinle (3)
3T, O 3T, Orthorhombic (27a)
$T., 0 3T, Orthorhombic (27b)
%533 0 T, Monoclinic (11a)
BTy 0 T, Monoclinic (11b)
Tys O 3T, Monoclinic (10a)
— 1—

Monoclinic (10b)




Table 2. (continued).

D. con't.

3T,, BT, iT,, Orthorhombic (29)
BT,; * TTas T, Monoclinic (8)
3T,, T, BT, Monoclinic (16)
3T, T, BTy, Monoclinie (17)
Tps BTs3 o3 Monoclinic (18)
3(T,,-r,,) T, =&, -T,) Monoclinic (6)

T, T, | Triclinic (1)

Triclinic (2)
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Table 3. The reduced forms and transformation matrices for the 43 re-

duced cells. TRICLIN!C

Unit c=1l Transformation

. tti matrix for
No lattice Reduced form reduced cell

Cell parameters of
wit cell in terms

\ type to wiit cell of reduced cell scalars

rll r22 r33 1 O O

1 P - = 010
r23 r3| rIZ

0 0 1

Ty T Ti3 100

2 P - = = 01 0
Ty T3 Ty

0 1

MONOCLINIC (c-unique)

Transformation

Unit cell O fR11 parameters of
matrix F . .
No. lattice Reduced form reduced CZL mit eell in terms
type to unit cell of reduced cell scalars
2
P Ty Tea Tas 0 01 gz = Ty
3 - 0 = Ty
. T3 0 0 _ 10 Cc =r,
T 00 cos y = F,, /AB
- .
4 Ty Tan T'ss 1.0 0 -‘];42 =71,
a = To
0 0 .1 - gosy = -r,, /AB

4b P

— — pp— p—
H
H
)
N
a ] .
&
o S —e e ——s®
o = O
(@] - O O
[e)
O
n
~
e
sl
~n
g

-l o o




Fig. 5. The fourteen Bravais lattices and their reduced cells.
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Table 3. (continued).
MONOCLINIC (c-unique)
Uit cell Tm‘”‘;‘zf‘?mgtim Cell parameters of
No. | lattice Reduced form ";“; r’fi‘ 03"1 unit cell in terms
type io Eﬁi % gill of redaged cell scalare
2 _ : . —
T, L T33 1 0 1 gz : Ty + I3 + 21‘3|
6 - — - — - 0 0 1 ~ Tas
B Ti3 — Ty Ty Ty — Ty —_ o - c* = Z!'rzz - r|| - I‘3
2 2 1 21 cos r = 5 3/AR
Ly a2 T, 101 IBLZ = Ay ++ 25? '*2'5’252
- - _ _ - T T =r I‘2 r
7 B Ty (ru T3 — rnz): Ty, l ! 9 c* = ‘”2 T23 +2 r, )IZ
1 01 cos ¥ = -2(r, + T, )/AB
Ty - T Tag ' 201 A22 = 4 +- T33
B =»r,.tr,-20r
° B . T,y Tyy T, 1T .9 ¢’ = , “ N
> 2 0O 0 1 cos ¥ = .'2(r|2 r, )/AB
T, 22 Ta3 2 01 g: = 4r, - Ty
9a - P = T2
B 0 Tys T 01 8 C® = ry
) 0 0 1 co.:.)’—(Zr' )/AB
Ty Ty Ty 2 01 A: = 4r, T33
b B - - 0 0 B? = T
0 T3z T ‘ - C" =ry
) 0 0 1 cos ¥ = 2r, /AB
Ty Ty Taz 1 2 0\| Ai = 4Ty, - T,
10a 0 BE = Iy
B r,, O r, ! c? = LT
5 1 0 cos ¥ = 2r,,/AB
Lob I, T, Iy 1.2 0 Az = 4y, - 1y,
- - B =r
B r,s O T .(_:). 0 1 c* = I'|3|3
) 1 0 /| cos vy = 2r,; /AB
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44 Table 3. (continued). _
MONOCLINIC (c-unique)
. A Transformation \
Unit cell : o0 Cell parameters of
No. lattice Reduced form rfgzzz 22{1 ‘unit cell in terms
type tcj it cell of reduced cell scalars
Ty, Ty Ti; -0 2 1 éz = 4Ty, = Ty
lla - El =r,
B ﬁ O rla 1 O _O CZ = I'33 .
> 0 0 cos ¥ = (-2r , )/AB
Ty T Ty 0 2 1 A = 4Tpp = T3y
11b B _ _ 1 0 o B® = r,
ry; O T ) ct = T _
2 0 1 cos y = 2r,, /AB
r, Ty Ty T 0 1 AZ = 2(1‘“ - ;3| )
B =r
12 - 01 0 22
B Tz T3 Tps - - c? = 2(r||_+ Ty )
17 0 1 cos y = AB
r, T, T, 1 0 1 Az =2(x, + T, )
. - B¢ = n,
13 = - - - U 1 0 2 -
r23 r3| I'23 — Cz = 2 I'”_— I'l )
1 0 1 cos ¥ = 2r,, /AB
Ty Ty Tas 110 AZ = 2(1'” tr, )
14 B . . B =rp
- - LU O 43
T2z Tes Iy, - c* = 2(1'“__ L )
1.7 0 cos v = 2r,, /B
15 5 Ty Ty Ty 171 0 éi f 2(1‘“ tr, )
: | - - - 0 0 1 3 =
Tas Tos T - c* = 2&11_’ T
11 0 cos ¥ = 2r,; /AB
Ty Ty Ty 0 0 1 Az = Ty
16 B - = 1.0 0 B =
T3z T3 - ¢ =
1
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Table 3. (continued).

MONOCLINIC (c-unique)

Transformation

Unit cell trix T Cell parameters of
No. lattice Reduced form I:‘; rlf; 2{1 it cell in terms
type i‘; Eﬁzt g;'l_l of reduced cell scalars
2 _
T, Toa  Ts; 0 0 gz - I,
=T
17 - - 0 0 1 ~ 33
B Ty Ty Ty - c* = 41'2:;_"‘ ry,
> ) 1 2 0 cos Yy =T, /AR
18 Tn Tea Tas 0 01 ‘g‘z = i::sa
- - 01 0 o
B Tss Taz T3 - - C? = 4r, - T3
> 3 2 01 cos y = T, /AB
MONOCLINIC (b-unique)
Unit cell Tmn:f‘.’m?m on Cell parameters of
No. lattice Reduced form mg rlg oil unit cell in terms
type . }r'(ra) EE% g:ﬂ of reduced cell scalars
3 Ty T Tis 0 1 %i T Ty
- - noo=my
P 2., 0 0 100 C? =1,
01 0 cos B = T, /AC
= 2 _
P Ty T Tyg 100 gz =Ty,
i ~ s
1a 0 0 r|2 0 0 1 CZ = y
0 1 .0 cos B = -r, JAC
, T, T, Iy, 1 0 0 A: f r,
4b P - 0 0 7 B = Ta
0 0 T, C° = 1y
01 0 cos B = F,, /AC
. 2 _
] 5 r, T, T 0 0 1 gz Sl
= T
0 r, O ° 10 c* =r, -
100 cos B =T, /AC




Fig. 5. (continued).
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48 Table 3. (continued).
MONOCLINIC (b-unique)
Transformation
Unit cell . Cell parameters of
No. | lattics Reduced form r‘jﬁﬁi;ﬁ gZ{l wiit cell in terms
type to wnit cell of reduced cell scalars
Iy T2 L33 1 1 A: =1, t 1t 2m,
B* = -1 -, - 2r
6 - - - - 1 2 1 ~ " 33 30
C T3 Ty Ty Iy - - c? = T33
5 > 0 0 1 cos B = (-r,, - r,, )/AC
T, T2 i 101 A? = Aoyt 21'_& +)2:-Ei§
, B = 2(r,;+ r
! C Ty (T - Ty = 3?IZ) 2 1 E ! c* = Tyt T X :Iz
IN\T T o/ |cosg= 2@, +7, )/AC
Ty Ta2 T3 -2- 0 T ‘gz = Z'rn = T3
8 C = = 0O 0 1 ' frsa
T3z T33 Ty, - C* = r, + Ty = 21‘|2
- 2 1 1 0/|cosp =2(r,-r, )/AC
Ty T Tsp 2 01 ‘g‘: =4, = Ty
9a - 0 = Ty
C 0 r, r, 0 _ ! c®=r,
- 0 T 0/ | ocospal-2r, )/ac
Ty Tae Tss 2 01 A_2 = 4z, T3a
o | C - = 001 ||B %
0 Ts3 Ty C® =1, _
> 0-1 0 cos B = 2r,, /AC
Ty T Tas 120 AZ = 4ry - ),
10a - T ¢ B® = r,
C' Tas 0 T, 1 oo c? = T33
Y 0 0 1 cos B = 2¥,,/AC
Ty Tz Tas 1.2 0 g: = 4r,, - 1
10b ' : =Ty
C T3 O T, ! 0 C? = ry
=5 0 1) | cos B = 2F,;/AC
Ty T T 0 21 g‘z = 4ry - Ty
lla N - - S
C ry, O T -O. 01 c® = Ty
> 1 0/ |cos B = (-2r,)/AC
Ty T Ty 0 21 gz = 41y, = Ty,
11b - - = T3y
C £, 0 T 001 )G I
5 1 0/ |cos g =2r, /AC
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50 Table 3. (continued).
MONOCLINIC (b-unique)
Unit cell Trmif(?mz;'tion Cell parameters of
No. lattice Reduced form _m"; rig 2{1 wnit e2ll in terms
type iz ﬁt 2;11 of reduced cell scalars
T T 1 1 A% = 2(r, =T, )
t 22 n w = La
12 C - - 1 1 Bz = 2(1‘“ +ry, )
Tazg Ta Tas . C™ =1y _
0 0 cop g = 2r,, /AC
T '1' 1 1 A m 2(r + T, )
I 22 " n 23
13 C - - - 1 1 BZ = 2(r, - T, )
Taz T3 Ths : C° =1y _-
0 0 cos B = 2T,4/AC
T T T 1 0 B =2(r, +r, )
" ¥ 33 n 12
14 C - _ 7 0 B22 = 2(r, - rlz)
L2z To3 I C° =mr,
0 1 cos B=2T,, /AC
Ty Ty T33 1 0 A: - 2(1'“ + EIZ)
15 C _ _ _ 7 0 BZ' =2(r, -1,)
T3 Tez Ty, C™ = ry _
0 1 cos B = 2r,,/AC
Ty Taa Tas 0 1 Ai = T
16 C = - 0 1 Bz B by = Tay
Taz T3 Ty -
2 2 1 0 cos B = T, /AC
» Ty T Ty _1_ 0 Ai _= T,
17 C - _ 1 o} BZ' = 4y, - ooy
Ly Ty Ty C™ = ry5_
) ey 0 1 cos g = Iy, /AC
Ty Tay Ty 1 j];: f Z;Ss
18 - - 2 1 - i T3
C Tas Yss  Tas 0% = T _
2 ) 0 0 cos B = T,,/AC
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(15)

(18)

(17)
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Table 3. (continued).

52
Transformation
Unit cell . Cell parameters of
No. lattice Rediiced form nxajf,rlx for unit cell in terms
redaced cell £ reduced cell scalars
type to unit cell of reduced ce scalars
2 _
Ty T Tis 10 ga _ :Ir:ll
= Iz
19 P O o O O CZ — I'33
-0
h . 2
C r, T, Ty 2 0 1 gz ; 2'}3 -y
20 ' - 2 0 1 el 33
0 r,, O C% =1y
2 0 0
2 _
Ty Ty Ty 0 01 A2 = T3
21 C o 0 3 7 B.2 = 4r,, - Ty,
(33_3 0 0 ¢t =r,
2 1 0 O
2 _
r, T, T, 1 0 0 %2 ; 21' .
22 no,
22a C 0 o = 1 2 0 Gt = r..
) 0 0 1
T, T, Tay 1 0 0 .g"; =r,
- T 5 = 4l = Ty,
2zb C 0 0 Ty 120 c* = Tz3
_ —2— n o1
Ty oo Ty 1 0 1 Az = 2('1'” + i,m g
23 C i - 1.0 71 B = 2Ury, = xy
0 T, 0 ce = Ty,
0 1 O
P : 2 _
Ty Ty Ty3 1.1 0 A" = 2(1'“ 12 )
24a C 17 1 0 B‘Z i 2(1‘” T T, )
0 U r, C" = ry
0 0 1
0 2 = + 7
Jab C r, r, Tss % :]] o gz _ ggi:: %:: g
B s ~e —
0 0 T €° = rss
0O 0 1




o

P’ R
(20) (21)
c C
» i
e sm—— (e S— A
A/ A/
(22a) (22b)

(23) : (24a) (24b)

Fig. 5. (continued).
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Table 3. (continued).

54
ORTHORHOMBIC
Unit cell Tra.flzf(?rmzfa:‘tion Cell parameters of
No. | lattice Reduced form 1’3 rig ‘:{1 wit cell in terms
type i; E‘i;t 2;11 of reduced cell scalars
. T " ] T 10 AZ = ZE.I_‘.” H E'Z g
25a I B = =2(r, + r
- - - - - 0 1 1 B TR TP
( n T Ty rlz) T3 T 10 1 c* = 2(1'“ t Ty, )
r, r, T, o 1 1 gi = %EEII iizs%
= =2(T,a+ T
- - _ - N - 1 0 1 = e R T e
25b I Ls3 ('r'” = T3 I'|2) T 0 Cf = 2(1‘,, + T, )
1
A no T T, 101 A% = 2(1‘” +Fa| )
» _ ol -
25c¢ I : - - - - - 11 0 Bz = =2(rps+ Ta )
Trz Ty (rn Loz~ rau) o 1 1 c° = 2(r, +T,3)
Ty Ty Tas 1T 1 1 Az f r2(r,, +-I‘,2) = T33
26a I - = - T 1 0 gz - ﬁ(ru -T,)
33 33 12 S
= 2 0 0 1 "
Ty Ty 33 11 0 gz f Séru _'I'_ilz g
26b I o Ty T T 1 1 o2 _ r T T e /7 Tas
—-33 33 12 33
2 2 0 0 1
T, T, T, 1 00 AZ =71,
27a - T B’ = 41"22 LY T3s
I r,, O Ty e c* = T3
= 0 0 1
Ty Tz T3 100 A =,
27h - _ Bl T ATu-m, -7
I ¥,, O T, 1 21 02 = r3:2 i 33
2 2 0 0 1
Ty Too Ty T 01 A = 4(1‘” + I-_';aa)
28 F B2 = 4(r,,+T,,) +r
— - — - 0O 2 1 A 23 "
Tos (rn - '?-rza) 23 - — C® = —47,,
17 0 1
Ty Tz Ta3 2 01 A: i 4r = Ty,
29 F ;33 E'.33 Ta3 0 21 gz ; irzz T e
2 2 4 0 0 1 N




"Fig. 5. (continued).
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56 Table 3. (continued).

TETRAGONAL

Unit cell Tra.nsfc.)rma.tion Cell parameters of
No. lattice Redaced form fztrlgc fo{l unit cell in terms
type i“ ‘ucc'e ce. of redaced cell scalars
o unit cell
T, Ts2 Ty, 0 0 1 A = Ty
30 P o o o 1 0 0 G2 =1,
01 O
r, T, T, 1 0 0 A? =
31 P 01 0 ¢ =
o 0 o0 © T Tas
o 0
T, Taa Ty 700 ¢ = Ty
32a - 2 _
I T, 0 r, 9 0 1 c* = 41‘22 '?‘ru
' 2 2 121
32b ru rzz I‘“ 0 0 1 AZ = I‘”
- - 2
I 5,0 %, 100 c% = fr,, - 2,
B B 12
Ty T, L33 Tt 10 © = 2r, + —é;as
-— — 2 =
33 T Ty Fa T 1 1 1 c®=r,,
2 2 4 v 0 0 1
r, T Ty 1 0 1 A% = T, = ;23
34a = = = = = 110 c*=2(x +T
I Tas Ty = Thy T — Ty ( " 23 )
§4h r, T ry, 11 0 A2 = r, = Fzu
34%L - - - _ - 2 _ -
I Ty = Ty T3 Ty = Ty o 11 ¢ 2(r“ " Tl )
5 5 1 0 1
T, Ty T, 0 1 1 A* = Ty - ;'nz
— — — — -— O 2 = v ™
34c I : -%, § -F, T, 1 1 C2=2(, +7,)
2 2 171 0




Fig. 5.

(continued).
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Table 3. (continued).
&
RHOMBOHEDRAL
RHOMBOHEDRAL (Frimitive) HEXAGONAL (Triply-primitive)
No. Reduced form Trm.;sfgmna’bicn E Cell parameters of Tre;-msfgrmation E Cell parameters of
ri“;&g:é izil E mit cell in terms rz‘;_t;z;f gZI]‘_l i unit cell in termns
to wait. 0;11 E of reduced ccll scalars tc; mi;t— cejl E of redaced c2ll scalars
: i
r, T, T, 01 1\ i 2*=r, ( ) 0 1\ ¢ Azz =r,
' =2r, (1 — cos a 1 G =30Cr,~1, )
35 - — O O : .rll 22 1 H 22 il
IR om 21T e < e09) 200y =10
2 2 2 11 0 ; 1 1 :
Ty Ty Ty 0 10 E A* =, 110 i Az = R2(ry = Tp3) =20, + Ty )
6 - \ T,,=r cosa t C = 3(r, + 25 ) = 3(ry - 2T )
3 T T r 1 O O ] 2'-0 1 O) 1 O 1 ] 7 — 1200
23 23 23 - V(5 9 - . -
[\o o 7/ ! (507 < @ <90 11 71/
r, r, T, 100 § A* =1, 11 0 ;' AZ = 2(r,- - B3 )
37 F.F. T 01 0} ! T~ T, CO8 “‘O 01 711 C; - ?g—gg + 23 )
23 23 23 ! (900 < a < 10a%-g1 WAL ' =
0 0 1 5(' 105°28116.41) 11 1/
r, T, r,, 171 1\ i £2=xg, " 2 1 1\ & =3n,. -2 =3n, + I';B
! r,,=3r, (1 +2cosa ) - t C° = 1y,
38 _ _ _ 7 1 C 0O ; : . 1 0 : y = 1200
E r—33- I'” - f O 1 O i (1 > 109028 1'6.4 ) O O 1 EZ
> 2 5 E




O -.—

=20

”t' 'I< (o]

(36)

(35)
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e e -

(38)

(37)

(continued).

Fig. 5.
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60 Table 3.
Transformation
Unit cell . Cell parameters of
No. lattice Reduced form I;‘;’gg:g £Z§l unit cell in terms
type to unit eell of reduced cell scalars
2 _
2 r, I, ¥, 0 01 _léz =1,
- = T2
P o T, 0 100 y =120°
D) 01 O
. Ty Ty oo Tas 100 é: =T,
Oa ra =r
{ 33
P u 0 r, b0 y =120°
) 0O 0 1
Ty Ty T3z 0 0 ézz =Ty,
- = Ty3
40b P o o T, 010 y =120°
2 0 0 1
Unit ceil Trmif9nnz;:tion Cell pavameters of
No. lattice Reduced form mi ri'fi{ O]]jl unit rell in tormes
type :;.g 32; t ;:ll of reduced cell scalars
Ty Ty Ty 100 A* = Ty
41 P o 0 o0 010
0 O 1
2 _
T T, T 110 AT = %ru
42 = = = 01 1
I TR TRCIT)
3 3 3 L 1
rll rll I‘II 1 1 1 AZ = 21‘“
s | P E 5 o) (1]
2 D) 2 17 1 1
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(41) (42) (43)

Fig. 5. (continued).
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3. USES OF THE REDUCED CELL

Bccause of the uniqueness of the reduced cell, because it can
always be readily found without difficulty and becé.use’ its scalars identify
the cell of highest symmetry in the lattice, it thus provides many far-
reaching uses as a tool in lattice studies and transformations. The
following are a few tYI.)ical examples.

The reducea cell as the standard choice for the triclinic cell in a
triclinic lattice has already been discussed.

By making use of the fact that the Bravais lattice imposes re-
strictions on the cell parameters of the reduced cell and thus its scalars,
the reduced cell may therefore be used to identify cells of highest
symmetry in a lattice. This use is not restricted soley to using the re-
duced cell as a test on primitive triclinic cells but mﬁ.y be used equally
well on any cell in any crystal system, primitive ar centered, in any
orientation. The object in each case is always to convert the cell to its
reduced cell so its scalars can be analyzed with use of Tables 2 and 3.

If the original cell is triclinic or monoclinic, it must be reduced befor.e
testing. If the original cell is primitive but of symmetry higher than
monoclinic, it always corresponds to the reduced cell withaut previous
reduction.  If the original cell (any system) is centered it necessarily
does not correspond to the reduced cell and must first be converted to

a primitive cell before reduction to its reduced cell. In routine work the

triclinic transformations appearing on pages 174 and 175 may be used

J
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successfully on any crystal system for achieving conversion to a primi-
five lattice. Thus, if it is desired to test a C-centered monoclinic
lattice for a higher symmetry cell, it may first be transformed to a
primitive cell by the transformation %%0/%%0/001 (obtained from page 32)
and the primitive cell then reduced by the metﬁod of Section A of this
chapter. If the reduced form reveals a higher symmetry cell, the
matzjix in column 4 of Table 3 provides the necessary link to that unit
cell.

Another frequent use is the application of cell reduction to primi-
tive monoclinic cells in order to find the 8-angle, or Y-angle as the case
may be, nearest 90°. At the same time the cell so obtained is the re-
duced cell and its scalars can be quickly analyzed to verify whether or
not the original monoclinic cell is actually the cell of highest symmetry
in the lattice. Since monoclinic cells are so frequently encountered in
structural work, this is recommended as routine practice and a good
habit to get into '""before'' the actual structure determination begins. By
making this a common practice it is possible to transform the Miller
indices to the better cell in the initial stages of the determination and
thus save needless extra work later.

A fourth example is its use in aligning a single crystal on a single
crystal orienter. Suppose a crystal fragment or sphere is to be used for
the collection of intensity data. Such crystal shapes often give little or
no direct indication of cell orientation. Using the cell reduction

technique, however, the problem of cell nrientation is solved rapidly
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and easily. A cell -- any arbitrary cell -- is first locéted and then
transformed to its reduced cell; the original cell may, for example, be
triclinic, primitive or centered. An analysis of the reduced cell scalars
will immediately identify the unit cell and its relative orientation, using
Tables 2 and 3 (see Example 3). |

A fifth example is its use in proving whctl';er or not two crystals
are of the same compound; thcy may. fa* instances, be different in crystal
habit. There is always only one reduced cell in any one lattice. Thus,
if the lattices are identical, the reduced cells will also be identical.

The reduced cell can also be used to provide the ''link'"' between two
cells in a lattice. Suppose, for instance, a crystal strt.J.cture is reported
in the litérafure as being Cc monoclinic. Suppose a reinvestigation is
cé_rried out by a different investigator and it is discovered that the crystals
are really tace-centered orthorhombic. He may first check to make sure
the face-centered orthorhombic cell describes the same lattice as tho C-
centered monoclinic cell reported in the literature by transforming both
cclls to their respective reduced cell. If the ctrystals a'.re of the same
compound their reduced cells will be identicé.l, as pointed out above. If
it is shown that the two lattices are indeed ideﬂtical, it may then be de-
sired to transform the cell parameters, the fractional atomic coordinates
and the Miller indices of the monoclinic cell to those in the orthorhombic
orientation; the matrices for achieving these transformations may be ob-
tained from the matrix for the transformation of lattice axes in direct
space, a matrix obtained by multiplication of the four matrices involved

in the following sequence of operations:

ol
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C-monoclinic » P-triclinic

&
N 4
N 4 Reduced Cell

F-orthorhombic —3—> P-triclinic —_—

so that the matrix, N, for the transformation of the C-centered mono-
clinic cell to the face-centered orthorhombic cell is

-1

N = (vThoy, T, m)

In this way the reduced cell is seen to provide the link between the mono-

clinic cell and the face-centered cell in the same lattice. In practice, of

course, in order for the reduced cell to be the link it must be brought
into the same '"orientation'' from both cells (page 32). For convenience,
the orientation may be that established by convention, namely ¢ <a <b
with @, B8 obtuse. If it should turn out that the reduced cell obtained from
the one unit cell has ¥ acute and the other reduced cell has ¥ obtuse, the
other five parameters identical, one of the two conventional reduced
cells must be reoriented to make the one Y-angle agree in numerical
value with the yY-angle in the other cell before calculating the matrix tor
linking the two cells - via the reduced cell (see page 32). (For comments
on rules governing the reorientation, see pages 13 to 18 . See also
Example 3, part B, pages 80 - 86 for further comments on the existence
of two possible orientations for the same reduced cell in a lattice.) In
using the computer programs described in Chapterlll of this report, the
reduced cell defined on the last page of output will be that in its con-

ventional orientation, with no restriction on the character of the angle Y.
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In view of the foregoing discussion one may wish to extend the
convention for the orientation of the reduced cell to '"c <a <b with &, B

obtuse and Y obtuse, if possible". In reporting a true reduced cell in

the literature, however, it will usually - if not always - be used soley
for reporting a triclinic cell in a triclinic lattice, a cell for which there
can be no alternative choices in the character of the angle ¥ once & and
B are restricted to obtuse in nature. It is to be recalled that the con-
vention was originally established only for the orientation of the reduced
cell in a triclinic lattice.

Before concluding, one important point must be emphasized. It is
very important that the appropriate matrices be selected for conversion
of a centered Bravais lattice to a primitive lattice, It is not sufficient
merely to reduce the volume of the cell by a factor of two, for instance,
in transforming an A~, B=, C- or I-centered lattice to a primitive lattice.
It can be shown quite easily that any cell subjected to a transformation
specified for A—P, B—P, C—P and I>P results in a different reduced
cell in each case. On the other hand, of the numerous possible trans-
formations for, say, A—DP applied specifically to an A-centered cell,
results in only one reduced cell in the end. |

Finally, it may be concluded that the reduced cell is also useful in
identifying all cells of possible lower symmetry in a particular lattice.
Consider; for instance, hexagonal (40b) whose reduced form is

11 11
0 0
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By disregarding Ty, as being the observed specialization -;_-—r_ll and by

considering '"0'" to be r,, we find, upon inspection of Table 2 under

23
(r11 =Ty, # r33), the following reduced fqrms as well

r T T

11 11 "33 orthorhombic (24b)
0 0 T,
and
r T r
_1 1 _1 1 _33 monoclinic (15),
23 T23 T2

Orthorhombic (24b) and monoclinic (15) are both C-centered cells, both
of which do exist in a hexagonal lattice. This clearly shows that inspec-
tion of the reduced cell scalars for the greatest number of specializations

will reveal the cell of highest symmetry.

ExamBIe 3
PART A

In an investigation of nickel dimethylglyoxime a single crystal
fragment of the compound was mounted on a fiber in a completely random
orientation and aligned on a single crystal orienter. A face-centered
triclinic ccll was lacated and observed to have the following lattice
parameters: a = 10.360, b = 18.037, ¢ = 25.760 A., a= 127.03°,
B=129.81°, ¥y= 90.51°. The problem is the following: we wish to
locate in the lattice the unit cell of highest symmetry, identify its crystal

systern, lattice type and cell parameters, and to derive the transformation
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matrix for transforming the face-centered triclinic cell to the newly

chosen unit cell.

Solution. Before proceeding with the calculations, let us outline

the procedure we shall follow.

Step 1.

Step

Step 3.

A
Step 4.

t

Step 5.

Step 6.

™~

Transform the face-centered cell to a primitive cell.
Redice the primitive cell to its reduced cell.

Convert the reduced cell to its conventional orientation.
defined as ¢ <a <b with o, B obtuse. This will allow us
to use Tables 2 and 3.

Identify the reduced cell scalars (of the conventional
reduced cell) .with one of the reduced forms in Table 2,.
thereby identifying immediately the'crystal system of
hiéhest symmetry in the lattice.

Using Table 3 and the informva.tion. obtained in Table 2
a) deduce the lattice type,

b) calculate the cell parameters of the new unit cell.
Using matrix multiplication, deduce the transformation
matrix for transformation of the original face-centered

triclinic cell to the unit cell. .

The series of transformations to be executed will thus be

F-triclinic = P-triclinic = Reduced cell
cell (1) cell (2) cell (3)

|

Reduced cell in
Unit cell = conventional
cell (5) orientation
cell (4)
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Step 1. Transformation of face-centered triclinic to primitive

triclinic; Cell _(_1_)32 cell (_2_)_

Our ultimate goal is to reach the reduced cell, the unique cell
which contains information about the unit cell of highest symmetry in the
lattice, its relative orientation and parameters. But it is a primitive
cell and since it can only be obtained directly from a primitive triclinic
cell, we must first transform the face-centered cell to a primitive one,
with a subsequent reduction in volume. Theoretically the primitive tri-
clinic cell may be any one of the infinite such cells in the lattice; con-
sequently we are free to select any transformation matrix we desire, so
long as it carries out the desired reduction. In routine work we may

select the (F — P) transformation on page 175, which is

1 1
z 2z 0
1 1

-z z O
1 1
z 0 3

If the face-centered cell ig subjected to this transformation, the new

parameters belonging to cell (2) become

a = 10.3602 4 o= 120.2543°
b = 10.4402 B = 143.4895°
¢ = 10. 3583 y= 59.7430°

Step 2. Reduction of primitive cell to reduced cell; Cell (2) to

cell (3).

The primitive triclinic cell obtained in Step 1 may now be reduced

by the method outlined in Section A of this chapter. If this.is done it is
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observed that the primitive triclinic cell transforms to the reduced cell

by the following transformation matrix:

1 0 1
0o 1 1 [cell (2) to cell (3)]
o 0 1

to yleld lattice parametcrs

a = 6.4901 & a= 60.5197°
b = 10. 3595 B= 71.7607°
c = 10. 3583 .y = 71.7498°

Step 3. Conversion of reduced cell to conventional orientation;

cell (2) to cell (4).

We wish to use Tables 2 and 3 where the crystal system of highcst
symmetry may be identified. To use them, however, the reduced cell
must be in its conventional orientation, namely ¢ <a <b with @, B8 obtuse.
The reorientation of axes and angles may be done in several ways, three
of which are shown in detail below. The affects of the changes on the
transformation matrix for cell (2) to cell (3) is also shown. When the
entire processed is finished, the resulting matrix will be that for cell
(2) to cell (4), where cell (4) is now the reduce.d cell in its conventional
orientation. The rulés set forth in Chapter II, Section C, are used

throughout.
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Return to right-
handed system by
reversing direction
of b, This sets

[ECQELY UK
N— 4 A

" u
33

a

Y
0
0
1

O =0

System remains
right-handed.

-~

Interchange a and c,

001
011
101/ ,

v System goes left-handed.

a

Set a
B

T-a

T-B

Reverse direction
of a and b;

C —
001
011
101
System remains
left-handed. Y
Set a=mT~-Qa
ﬁaﬂ'—B b
Reverse direction
of c;
001
011
101
System returns to a
right-handed.

Return to right-
handed system
by reversing

the direction of

a all three axes;
001
911
c 101
-l
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Upon completion of the necessary changes to obtain the reduced
cell in its conventional orientation, the following lattice parameters for

cell (4) and transformation matrix of cell (2) to cell (4) are obtained:

a = 10.3583 4 o= 108.2502° 0 o 1
b = 10. 3595 B = 108.2393° 0 1 1
c = 6.4901 ¥y= 60.5197" , T 0 71

Step 4. Identification of unit cell of highest symmetry in lattice.

We now look at the reduced form of the conventional reduced cell,

cell (4), and analyze its scalars.

—_— — —  —>

i'i ii E.E. - r11 r22 T3 ) 107.29 107.32 42.12
b:-c c-a a-*b T,y Tz Ty -21.06 -21.04 52.81

Its inspection reveals the following relationships (to within experimental
error):

T = r,

11
T, = Ty, = -3r
23 31 - 2733°
We now go to Table 2, which is divided into four divisions according

to the four classes of "'symmetrical" scalars. . In our case we observe
(@a*a=b-b #c-c) thatis ("il =I5, ?57'33)., which appears on page 36-
37. Within this division a search is made for the set of three "unsym-
metrical"” scalars coinciding with our observed set, namely (_1—3" <

= =

c-a a'§=(%?

33 %r33 rlZ)' It turns out to be the seventh entry,
indicating an orthorhombic cell. The number in parentheses, (26a),
refers to the cell number in Table 3, appearing on page 54, and to the

corresponding diagram in Figure 5 on page 55.
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Step 5. Identification of lattice type and calculation of cell

parameters.

Reférring now to Table 3 and cell number (26a), we find all the
remaining information we need to know. According to this table nickel
dimethylglyoxime is body-centered orthorhombic and the matrix for
transforming the conventional reduced cell to the orth(:;rhombic cell is
111/T10/001.

The orthorhombic cell parameters may be calculated from the
conventional reduced cell parameters in one of two ways, using either

the direct transformation matrix appearing in column 4 or the formulas

appearing in column 5. Both methods are illustrated below.

Method A. (discussed in Appendix IV).

I-orthorhombic Conventional
cell reduced cell
A 1 1 1 2 A=-2 +b +¢c
B |=l T 1 o Y B=-2 +b
c o 0 1 < , C-= <
A%z @+D +0)-(a+b+0)
=2-a +b+b +c-c +2b-¢c +2c.a +2a-b
2 2 )
=a tb +c + 2bccos @+ 2ca cos B+ 2ab cos ¥

(10. 3583)% + (10. 3595) + (6. 4901)>
+ 2(-21.0557) + 2(-21.0412) + 2(52. 8078)

278.15785 A = 16.68 4.
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Similarly,
B% = (-2 +b) (-2 + b) = 108. 99802, B = 10.44 &
c? = @) @, C = 6.491%.
Method B.
A% = 2(r) +1),) - Ty,
= 2(107. 30681 + 52.08078) - 42,1214
= 278.10783 A = 16.68 &,
B? - 2ryyp -7y )
= 2(107. 30681 - 52.8078)
= 108.99802 B = 10.44 A.
c? = r,, = 42.1214 C= 6.494%.
where r,, in this case was taken as the average of az + bz. These values

agree quite well, within experimental error, with the observed va.].nes7

ofa = 16.68, b = 10.44 and ¢ = 6.49 A.

Step 6. Generation of matiix [ur transtormation of the face-centered

triclinic cell to body-centered orthorhombic cell.

The series of transformations which were executed in thc preceding
series of steps, together with the transformation matrices used and

generated, were the following:

£

723
o 0% . 101
F-triclinic 2R ~ P-triclinic 011
cell (1) T cell (?) 001

01 Reduced cell
N / cett )
Conventional

_reduced cell
cell (4)

[ Y
S

[o s puY
o e RS

I-orthorhomhic
cell (5)

A
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The matrix, N, for the transformation of the original face-centered

triclinic cell to the orthorhombic cell is given by

1 1 1 0o 0 1 1 1 o
N = KJI = -1 1 o0 o 1 1}4{-2 % o
0 0 1 -1 0 -1 I o %

This is solved by matrix multiplication (Appendix VI). First J and I

are multiplied together, as written, and the resultant left multiplied

by K. The result becomes

-z 0 3
N = -2 2 0 [cell (1) to cell (5)].
-1 -z -z

We may check this matrix to verify its correctness by first calculating
its modulus. The value is observed to be +3, verifying that the system
has remained right-handed (indicated by the + sign) and that a reduction
in volume of one-half has occurred in going from a face-centered

lattice to a body-centered lattice, which is just what we should expect.
If we then calculate the orthorhombic cell parameters' using matrix N,
we find that precisely the same values are obtained for A, B, C as
before.

With appropriate application of matrix N to the face-cenlered tri-
clinic cell, the body-centered orthorhombic cell may be located on the
single crystal orienter and a check made on the intensities to verify the
presence of three intersecting mirror planes, thereby confirming the

true existence of the uvrthorhombic cell rather than a pseudo-orthaorhombic

cell.
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Having obtained the matrix for the transformation of the original
triclinic cell to the final orthorhombic cell, we may quite easily con-
struct a schematic diagram of the lattice containing both cells to visualize
just how they are oriented relative to each other. To do this we could
first draw the triclinic lattice and then,using the transformation matrix
N, cov:nstruct the orthorhamhic vectoro within this lattice, or we could
draw the orthorhombic lattice first, constructing the triclinic vectors
in the lattice second. Obviously, the latter approach would be the easier
since the axes describe an orthogonal system which is easier to draw.

But to do this we need to know the inverse of r.natrix N since we will
want to go '""from'' the orthorhombic cell constructed first ""to'" the tri-
clinic cell. The inverse matrix and the appropriate vectorial transforina-

tion of axes in direct space is

IF=triclinic cell l-orthorhombic cell
1 1 1 A _ IR S E gl b
2 2 2 2 2 2
IS B S L Tl
3 — 3—— — —
v “% ‘% C = za - %b - ’é’C

—r —
C

The net result is ehown in Fig. 6 in which the vectors 2, by correspond
to the axes of the orthorhombic cell and the vectors K, B, C to the

axes of the original face-centered triclinic cell.



Ij

_?_______.._-

\
\

D W B

Fig. 6. The face-centered triclinic cell outlined in the body-centered

orthorhombic lattice of nickel dimethylglyoxime,
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Once we know the matrix for transforming the original cell to the
final cell in dir'ect space, we automatically know three other matrices,
namely the original cell to the final cell in reciprocal space and the
final cell back to the original cell in both direct and reciprocal
space. Knowing these, of course, we then automatically know the
matrices for transforming Miller indiccs as well as atomic ¢coordinates
of atoms because the former transforms by the same matrix as the
transformation of axes in direct space (Appendix III}) and the atomic
coordinates transform by the same matrix as the transformation of
axes in reciprocal spacé (Appendix III).

The matrices of interest may be summarized as follows: Let
cell (1) be the original face-centered triclinic cell and cell (5) the final
body-centered orthorhombic cell. In addition, let N be the matrix for
transforming cell (1) to cell (5) and its inverse, N-l, be that for cell
(5) to cell (1), both in direct space; that is

CELL (1) TO CELL (5) CELL (5) TO CELL (1)

1 1 1 1

-z 0 % -z -z -3
N=[-+ L o Ntelr 3
1 L1 3 1 1

- =2 -2 z T2 -;

From these two matrices we may establish the following for the trans-

formation of axes:
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CELL (1) TO CELL (5)

-z 0 2
in direct space: -3 3 0 = N
-1 -3 -3
r 1 3
2 "z 3
. . 1 31 -1
in reciprocal space:| -3 3 "2 = transpose of N
1 1 1
2 "z "2
CELL (5) TO CELL (1)
1 1 i
-2 -2 -2
in direct space: -3 -% -3 =N}
3 1 1
3 "2 T2
44
in reciprocal space: 0 2 -3 = transpose of N
2 0 -2

Problem 3, Part A, just completed by hand calculation may be
solved for the most part through the use of the computer program
TRACER, discussed in the next chapter. The input and output to this

problem are shown on pages 120 through 125.
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PART B

To illustrate a phenomenon which may occur, not often but
occassionally, let us modify one of the lattice pafam’eters, say c, by
an amount +0. 004 & to that which was observed for the face-centered
triclinic cell stated in Part A of this problem, thus pafalleling a situa-
tion which may occur in experimental measurements of lattice param-
eters. Suppose we change the parameter c = 25. 769 toc = 25.764 4.,
leaving the others unchanged. Now repeat the serie’s of transformations

executed in Part A.

. Solution. First, the face-centered triclinic cell is transformed
to .the primitive cell, yielding the parameters a = 10 3602, b = 10. 4402,
c = 10.3602 &, o= 120.2510°, B= 143.4914°, y = 54. 7430°.

Next, the reduced cell is tound. Using the method of Section A
of this chapter (or programs RCELL or TRACER), it is observed that
the primitive triclinic cell transforms to a reduced cell this time, not

by the transformation matrix observed in Part A of this problem, hnt

by the foll'owing matrix:

1 0 1
T 1 1 [cell (2) to cell (3)],
o 0 1

to yield lattice parameters a = 6.4904, b = 10.3600, c = 10. 3602 A.,
o= 72.7766°, B = T71.7461°, y = 108. 2460°,
Next the reduced cell in its conventional orientation is obtained,

giving

ol
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a = 10.3600 A. a= 108.2539°
b = 10. 3602 B = 108.2460°
c = 6.4904 y = 107.2234°

and the matrix for cell (2) to cell (4) being

1 T T
0 0 1
T o T

'If we compare the conventional reduced cell just obtained with the
one obtained in Part A, Step 3, we notice a conspicuous difference. All
six cell parameters are essentially the same (within experimental error).
except the angle Y. The questions which might be asked at this point
are: What happened? Are the conventional reduced cells obtained in
both cases really the same or are they actually different? Is it still
possible to arrive at the same orthorhombic cell as that obtained in
Part A of this problem?

Before explaining what happened, let us first answer the last of
the three questions by anaiyzing the scalars of the conventional reduced

cell just obtained. These are

a*a b'b c-c ) r11 r22 r33 ) 107.33 107.33 42.12
Bc ca ab -21.06 -21.05 -31.78

23 T31 12
This reduced form is seen to be identical to that obtained in Part A ex-

cept that r,, is now negative with a value of -31. 78 instead of +52. 81.

Inspection of Table 2 for the observed form of
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ara b'b c'c ) 1 ) Ty
B o oia an 1= 1= =
b:c cra a'b 2T33 2T33 Ty

shows that thev' lattice is again orthorhombic, the number in parentheses
being (26b).

‘ Turning to Table 3 and looking up cell number (26b) it is dis-
covsred that the reduced cell actually describes the same body-centered
orthorhombic lattice as does (26a) and can be verified visually upon in-
spection of the corresponding figure.

Liet us now analyze what happened to cause this change in the re-
duced cell and to show mathematically that the two reduced cells do
indeed describe the same orthorhombic cell. First, notice the similar-
ities, and differences, in the matriccs for the transformation of the

primitive triclinic cell, cell (2), to the reduced cell, cell (3), nbtained

in Parts A and B. They were

Part A Part B
1 0 1 1 0 1
0O 1 "1 T 1 1
0 0 1 0 0 1

The only difference in the two is the difference in element Noypi in the
former matrix it is a ''0", in the latter a ''-1'"". This means the change
toward the apparently different reduced cells took place during the cell

reduction when the following test was made:

?
— ‘1 2
bl S'a"a. s

—
la,’
n n
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the point at which a test was made for the possible reduction of vector b
in the ab-plane, holding vector a fixed in both magnitude and direction.
In the reduction routine it is observed that this occurs when subscript

n = 3. In part A the actual test and results are

(a) Part A (b) Part B

Fig. 7. Vectors in a,,.b3-p1ane in Example 3, parts A and B

respectively.
|[+21.0547| <% (42.1214) = 21.0607 -
and in part B
|+21.0752| >4 (42.1253) = 21.0626 .

The scalar product E;~ E; is seen to be so close in absolute value to
%a32 that the slightest change in either of the two quantities influenced
whether or not reductinon was to occur (see Fig. 7). In part A the scalar
product was less than -;l;a,SZ gso that no reduction took place and the'angle
v remained acute; in part B the scalar product was greater than %a32 so
that reduction took place and the angle Y became obtuse.

It is to be recalled from the discussion in section A of this chapter

that if the projection of savy, vector b, onto say, vector a, is exactly
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equél to l%al, then the magnitude of vector b remains unchanged if the
character of the angle between a and b is re;/ersed. Thus, in experi-
mental work where lattice parameters have a certain amount of error
associated with them, it is of no serious consequence if a vector is or
is not capable of being reduced in this situation. In one case the angle
is acute, in the other obtuse, and the vector heing shifted undergoes
only a very small to negligible change in magnitude, depending on how
close the situation above is described.

Let us now assume for the moment that entry number (26b) is not
in Tables 2 or 3. Since the reduced form obtained in part B contains a

negative r it would appear that we could not use reduced form (26a).

12’

The reduced form to which one muet rcgort would then be the cholce

bb c-c}. r r r,,
—— o ——— — = _11 _11 _JJ (Monoclinic 15)
b c cra a'b r23 Thry Typ ,

which technigally matches the observed (r12 negative).

Now, monoclinic &15) is an end=centered coll, becing C-ceulered
b-unique or B-centered c-unique. Since the observed reduced form
matches so closely reduced form (26a), except for Tyo being negative,
we should be highly suspicious nf the existence of thc body=ceulered
orthorhombic lattice. To confirm our suspiciaons it may he recalled
that an end-centered monoclinic cell may be transformed to a body-
centered monoclinic cell by the following transformatién (shown for

C-centered b-unique)
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A=a +c
B = b
C - <

Fig. 8. Transformation of a C-centered

monoclinic lattice to a Body-

centered lattice.
If the body-centered monoclinic cell has 8= 90° and three intersecting
mirror planes are found, the cell is then body-centered orthorhombic.

Thus, let us transform the conventional reduced cell to the body-cen-

tered monoclinic cell, using the following series of transformations:

I 1 0 1 O |

T% o o110
conventional 0 0 | C-centered 00| I-centered
reduced cell  (om revie 93  Mmonoclinic 13b cell

~(b-unique)

The matrix for the transformation of the conventional reduced cell to

the body-centered cell becomes

1 0 1 1 1 0 1 1 1
N = 0 1 0 T 1 0o l=T 1 0
0O 0 1 0 0 1 0 0 1

which, when solved by matrix multiplication, is seen to give a trans-

formation matrix which gives the same body-centered lattice parameters
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as those obtained in part A." This means that although the reduced cell
obtained in part B appea.ré to differ from that obtained in part A in the
angle ¥, the same body-centered orthorhombic lattice is described by
the reduced cell in either case, regardless of whether T, is negative |
or positive. Using this transformation matrix just obtained the cell
paraiuelers are calculated to be A = 10.44, B = 16.68, C = 6.49 A.;
the values tor A and B have simply been interchanged iﬁ value.

In this particular example the conventional reduced cells gave re-
duced forms in which IrlZIa # |-r12|b. In some cases this is, indeed,

found to occur. In others |r12|a= I-rlzl » an example being monoclinic

b
(4a and 4b). These cases arise soley from the convention set upon the
reduced‘cell, which explicitly states that while @ and 8 are restricted to
obtuse, no such restriction exists on 7y, So it is that in some cases two
reduced cells satisfying the convention may result for a particular lattice,

differing only in the angle ¥, the result being different oriéntations of the

""same' reduced cell in the lattice.

III. COMPUTER PROGRAMS FOR LATTICE TRANSFORMATIONS
AND CELL REDUCTIONS
Two Fortran computer programs are described in this chapter for
general lattice transformations and cell reductions in direct space. The
first described is RCELL, a computer program uscd soley [or obtaining
reduced cells directly from primitive triclinic or monoclinic cells.

The second described is TRACER, a much more general program which
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may be used for general cell transformations in direct space, for cell
reductions only or for general cell transformations followed by cell
reduction. TRACER is designed to perform the same operations as
RCELL with the added feature that if cell reduction is desired,the input
cell may be primitive or centered, and if centered,may be transformed
by the program to a primitive cell and then reduced without reloading
the program. Program RCELL is restricted to the reduction of primi-

tive cells only in obtaining reduced cells.

"A. RCELL,

A Fortran Cell Reduction Program
1. GENERAL INFORMATION

Program RCELL, written in IBM 7074 Fortran language, is a com-
puter program for the reduction of primitive cells by the procedure
discussed in Chapter 1I. The orientation of the reduced cell defined in
this programu is that established for é triclinic lattice, that cell whose
edges are the three shortest non-coplanar translations in the lattice,
labelled so as to have ¢ <a <b and oriented so that the angles & and 8
are non-acute.

The essential input consists of four cards: a title card, a card
specifying the form of the six cell parameters of the cell to be reduced,
a card containing the six lattice parameters, and a stopper card coded
so as to allow more than one cell to be reduced without reloading the

program.
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The output consists of the input data, the old parameters (real
and reciprocal), the new parameters (real and reciprocal) of the reduced
cell together with the transformation matrix and its inverse for the
original cell to the reduced cell, the new parameters (real and reciprocal)
of the reduced cell in its conventional orientation togethcr with the Lrans-
'i()rmation matrix and its inverse for the original cell to the reduced
cell in its conventional orientation, the trigonometric values (sine and
cosine) of the real and reciprocal angles of the conventional reduced cell
and the scalars corresponding to the conventional reduced cell for use
with Tables 2 and 3 for the determination of unit cells of higher symmetry.

The program has been written in full Fortran with a minimum of
indexing. All arrays are one=-dimenocional. Tlere are no subroutines.
The sequential instructions in the program follow exactly the reduction
procedure outlined in Chapter II, Example 1, and the rules outlined on
pages 13-17. Example 1 in Chapter 1 has beon included in this report
for a twofold purpose., It il”lustrates the step-by-step detailed mechanics
of solving for the reduced cell and it provides a worked out example to
aid in following and interpreting the Fortran statements in the Symbolic
Program Listing. | |

The program itself is divided into five parts according to its
function. Partl isusedfor reading in the input data and setting it up for
use in Part 2. It is used in calculating the cell parameters in direct or
reciprocal space, depending upon the form of the input, and for calculat-
ing the trigonometric values of the cell angles. The formulas which

are uscdare the following (from Buergerl, Tables 20 and 21):



\
k’
i

) !
a;,i_ = > ” '
- a sin 8 sin ¥y
R : 1
b sin 0% sin ¥
ck = . 1
c sin of* sin B
N 1
a' = e 5 3 ote
a* sin f sin y*
- !
b = s : Y s PO
b* sin G sin y*
: 1
c =

“»

c* sin O sin B%

cos O

cos f°

cos ¥
cos O

cos f3

cos ¥

89

cos cos ¥ - cos &
sin 8sin Y

[ —
R—

COs 0XCcos Y - cos f3
sin O sin ¥

1.
3R

. _ COs 0cos B-cosY
. s asin f

cos fB% cos ¥Y* - cos O
sin 8% sin y*

cos ‘¢ cos y* - cos fB%
sin % sin y*

cos O* cos fB%* - cos y*
sin Q% sin B*

V = abc sin & sin 8 sin y*

Vi = 1/V

Part 2 transforms the original cell to.its reduced cell, which may

or may not conform to convention.

The final matrix elements which are

generated for the transformation of the original cell to its reduced cell

are represented in the program as a one-dimensional array, N(I),. where

Iis a subscript, and is definéd as follows:

original
cell
A N
B =| Ny
C N,

reduced
cell
N3A a
N6' b
Ny o

The matrices printed out in the output correspond to the direct trans-

formation matrix defined as
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| original reduced
cell cell
A P11 P12 M3 a
B J5ny oy Pp3 b
C n3) N3, Aag ¢
where ny, = Nl’ nl.?. = Nz, ete,

Part 3 transforms the reduced cell obtained in Part 2 to the con-
ventional orientation established for the triclinic system. Part 4
calculates the trigonometric sines and cosines of the angles of the con-
ventional reduced cell. Part 5 calculates the six Niggli scalars, which
are defined on page 29.

As indicated in Chapter II a primitive monoclinic cell may be
reduced Lo obtain a new cell with more orthogonal axes. For a dis-

cussion regarding this use of RCELL, see page 110.

2. INFPUL DATA

1. Title card -- 1 card -- FORMAT (16A5)
Any alphanumeric information, This will be printcd back vul
as a heading on each page of output.

2. Control card -- 1 caid -- FORMA'l' (I1)

1 if the cell parameters on the Parameter card are

in direct space.

f

2 if the cell parameters on the Parameter card are

in reciprocal space.
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3. Par‘am.et'e‘;;; card -- 1 card
. Column | _ ‘
1 -~1(:)v ‘ : FORMAT (Fld.'é), lattice parameter a (or a*).
»All - 20 . FORMAT (F10. 6), lattice parameter b (or b¥).
21 - 30  FORMAT (F10.6), lattice parameter ¢ (or c¥).
-31' - '40 - FORMAT (F10.6), latticé parameter & (or o).
41 - 50 F.O"RMAT (F10. 6), lattice para;neter Blor B*).
51 - 60 FORMAT (F10. 6), lattice parameter y(or.y¥*).
Note: T};e .clell edges are in (4) in direct space and (13."1) in

' reciprocal space; the angles are in degrees and decimal fraction.

4. Stopper card -- 1 card -- FORMAT (I1)

0 (or blank) if no more cells are to be reduced.

=1 if anbther cell is to be reduced.
Note: Thi‘s card allows reduction of more than one cell without
reloading the program. Thus, any number of sets of data may be

processed. -Each set consists of items 1 through 4.

3. RﬁNNING DECK ARRANGEMENT

Program RCELL is on the Iowa State IBM 7074 library tape under
the name RCELL44SLL. In using Lhe tapc a typical run will consist of

the following cards:

14 18 78
1 card: , _ (Start Account Card) POGO
1 card: ALTSW ALL OFF POGO

1 card: Z LLOAD @RCELL44SLL@ POGO
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76
4 cards per cell: . (Data Cards)
1 card: WTM
1 card: (End Account Card) POGO

All variables are stored in COMMON, locations 19800 - 19975,
and may be called with a POGOZ dump. The time estimate is approxi-

mately 1 minute for rednction of 10 cells.

4. SAMPLE INPUT AND OUTPUT

Example 1 on page 19 showed by hand calculation the reduction
of primitive 16-DL methyloctadecanoic acid whose lattice parameters

are reported in the litera.ture6 as being

©

a= 5404 w= 145° 38!
b= 7.54 B = 105° 42!
¢ =51.8 y= 60° 18

The same cell may be reduced by this program, using the following

input data:

vam— € FOR COMMENT

T FORTRAN STATEMENT

R Sjeis 10 15 20 25 30 35 40 45 0 5y 80 65 70 ».

18-DL J[METHIYLQCTAQEcANQIc ACID | . : I R T N

| i1 L 1 1 L 3 s L I 1 2 2 —t
5.40 L 1.54 L 54 .8 145.63333 105.7 L 603 . L]

(0] L ' ' A ! — 1 ) L s ) ——l. L _to !

Fig. 9. Input data for sample problem.

The output is shown on the next two pages.
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95

SYMBOLIC PROGRAM LISTING

PROGRAM RCELL

DESCRIPTION. CELL REDUCTION PROGRAM

LANGUAGE.
DATE.
PROGRAMMER .

FULL FORTRAN FOR IBM 7074 '
FEBRUARY 1965 {FINAL VERSION)
STEPHEN L. LAWTON ‘

GLOSSARY OF SYMBOLS

A
AA
AB
ABSAB
ABSBC
ABSCA
AL
ALPHA
ALS
ALSTAR
ANGLE(3)
AS
B
BB
8C
BE
BES
BESTAR
BET
RETA
BS
C
CA
CcC
COSAL
COSALS
CUSBE
COSBES
COSGA
COSGAS
cs
0(3)
DET
GA
GAMMA
GAS
GASTAR
1
1AXIS
ICONT
ICYCLE
INPUT
10UTPTY
ISIGN
J

DIRECT CELL PARAMETER, A~

A=A

A#B#COSGA = SCALAR PRODUCT OF A WITH B

ABSF(AB)

ABSF(BC)

ABSF(CA) )

DIRECT CELL PARAMETER. ALPHA, IN RADIANS

DIRECT CELL PARAMETER, ALPHA, IN DEGREES
RECIPROCAL CELL PARAMETER, ALPHA-STAR, IN RADIANS
RECIPROCAL CELL PARAMETER, ALPHA-STAR, IN DEGREES
DIRECT CELL PARAMETERS ALPHA, BETA, GAMMA IN NEW CELL
RECIPROCAL CELL PARAMETER, A-STAR

DIRECT CELL PARAMETER, 8

Be8 :

BeCeCOSAL = SCALAR PRODUCT OF B WITH C

DIRECT CELL PARAMETER, BETA, IN RAD[ANS
RECIPROCAL CELL PARAMETER, BETA-STAR, IN RADIANS
RECIPROCAL CELL PARAMETER, BETA-STAR, IN DEGREES
MODULUS OF INVERSE MATRIX, IN FLOATING POINT
DIRECT CELL PARAMETER, BETA, IN DEGREES
RECIPROCAL CELL PARAMETER, B-STAR

.DIRECT CELL PARAMETER, C

C#A«COSBE = SCALAR PRODUCT OF C WITH A
CeC
COSF{AL)
CASFLALS)
COSF(BE)
COSF(BES)
COSF(GA)
COSF{GAS) .
RECIPROCAL CELL PARAMETER, C-STAR
DIRECT CELL PARAMETERS A, B, C IN NEW ORIENTED CELL
MODULUS OF DIRECT MATRIX, IN FLOATING PUINT
DIRECT CELL PARAMETER, GAMMA, IN RADIANS
DIRECT CELL PARAMETER, GAMMA, IN DEGREES
RCCIPROCAL CELI PARAMETER, GAMMA-STAR, IN RADIANS
RECIPROCAL CELL PARAMETER, GAMMA-STAR, IN DEGREES
INDEX
AXIS (VECTOR) HELD CONSTANT. 1=A, 2=8, 3=C
CODE FOR NEXT JOB
NUMBER OF CYCLES IN REDUCED CELL ROUTINE
SPECIFICATION CODE FOR CELL PARAMETERS READ AT [INPUT
PROGRAM SECTION NUMBER . :
NUMBER OF ACUTE ANGLES IN REDUCED CELL
INDEX



JA CODE FOR SHIFT IN A-AXIS. JA=0 NO SHIFT, JA=1 SHIFT

JB CODE FOR SHIFT IN B-AXIS. JB=0 NO SHIFT, JB=1 SHIFT
Jc CODE FOR SHIFT [N C~AXIS. JC=0 NO SHIFT, JC=1 SHIFT
JF JA ¢+ JB + JC

JJ INDEX.,

JL INDEX.

K2 CODE FOR REDUCTION OFf REMAINING TWO AXES

KK CODE FOR PARAMETERS IN CONVENTIONAL CELL. 1=A, 2=8, 3=C
L INDEX

LM INDEX

M INDEX )

MAX LARGEST CELL PARAMETER READ AT [INPUT. 1=A, 4=B, 7=C
N(9) ELEMENTS OF DIRECT TRANSFORMATION MATRIX

NA(9) MATRIX ELEMENTS OF CELL (N) TO CELL (N+1)

NB(9) MATRIX ELEMENTS NF CELL (1) TO CELL (Ntl)

NCHECK INDEX CONTROLLING REDUCTIUN Ur CUELL PARAMETER

NET MODULUS OF DIRECT TRANSFORMATION MATRIX, IN FIXED POINT
NI(9) ELEMENTS OF INVERSE TRANSFORMATION MATRIX

NSTOP INDEX CONTROL. WHEN NSTOP = 3, REDUCTION CYCLE COMPLETE
NTEMP(9) TEMPORARY STORAGE LOCATION FOR MATRIX ELEMENTS

NTURN INDEX CONTROL '

PN INTEGER (FLOATYING PT.}

QMAX THE LARGER OF TWOD CELL PARAMETERS

QQOMAX THE LARGEST OF {ABSAB, ABSBC, ABSCA)

SINAL SINF(AL)

SINALS SINFLALS)

SINBE SINF(BE)

SINBES SINF(BES)

SINGA SINF{GA)

SINGAS SINF(GAS)

STORE TEMPORARY STORAGE LOCATION FOR NEW SCALAR PRODUCT
SUM BC + CA + AB ’

TITLE(16) ALPHANUMERIC TITLE READ AT START OF PROGRAM

v CELL VOLUME IN DIRECT SPACE

VS CELL VOLUME IN RECIPROCAL SPACE

X TEMPORARY LOCATION FOR CELL PARAMETER A, B OR C

XX XaX

xy TEMPORARY LOCATION FOR SCALAR PRODUCT AB, BC OR CA
XY2 TEMPORARY LOCATION OF NEW SCALAR PRODUCT

Y TEMPORARY LOCATION FOR CELL PARAMETER A, B OR C

Yy YsY

Y? TEMPORARY LOCATION POR SCALAR PRUDUCT AB, BL OR CA

1 TEMPORARY LOCATION FOR CELL PARAMETER A, B OR C

X TEMPORARY LOCATION FOR SCALAR PRODUCT AB, BC OR CA
X2 TEMPUORARY LOCATION OF NEW SCALAR PROODUCT

T4 Ze7

zEeNaNalaEslelalgNeNalalalaslalaiaNuNeelaEalalelalalaNalaEalaNa B laNaNalalaloNaNalaNeNaNaNaNeNal

DIMENSION TITLEL16)y N(9)y NAI9)s NBI(9)y NII9), DI3), ANGLE(3)},
NTEMP(9)

COMMON TITLE,INPUT,A4ByCyALPHA,BETA,GAMMA,AS,BS,CSyALSTAR,BESTAR,
GASTAR,SINAL,SINBE,SINGACOSAL,COSBE COSGA,SINALS,SINBES,
SINGASyCOSALS+COSBES,COSGAS,AL+BE,GA+ALS,BES,GAS,V,VS5,A8,
BC.CA.X'V'l'XV'VZQZXiXK'VY'Zl'XYZ'ZXZ'OMAX'MAX'N'D'ANGLEv
IOUTPT  NSTOPsK2 4 KKy NCHECK s PNy STORE s I 9 JJyJLsMyL s LMy NTURN,
NTEMP, ISIGN, ICONT,ABSAB,ABSBC,ABSCA,QOMAX, IAXIS,ICYCLE,
JAJIByJCyJFySUM NAYNByNI yNET.DET,RET,J

-

OVt & DN -

PART 1. INPUT

[aXaNeRaXal

9999 READ 1000, {(TITLE(I), I = 1,16)



[aXa s Xakake)

97

READ 1001, INPUT
1000 FORMAT (16AS5)
1601 FORMAT (I1)

10UTPT = 1 :

IF (INPUT - 1) 61, 61, 62

61 READ 1002, A, By Cy ALPHA, BETA, GAMMA
GO T0 71

62 READ 1002, AS, BSy CS, ALSTAR, BESTAR, GASTFAR

1002 FORMAT (6F10.6)
GO 10 72

T1 SINAL = SINF(ALPHA « 0.01745329})
SINBE = SINF(BETA «# 0.,01745329)
SINGA = SINF(GAMMA # 0.01745329)
COSAL = COSF(ALPHA = 0.01745329)
COSBE = COSF(BETA « 0.01745329)
COSGA = COSF(GAMMA s 0.01745329)

81 ALS = ACOSF{(COSBE » COSGA - COSAL) /7 (SINBE = SINGA))
BES = ACOSF({COSAL # COSGA - COSBE) / (SINAL # SINGA})
GAS = ACOSF({COSAL # COSBE - COSGA) / (SINAL # SINBE})
SINALS = SINF(ALS)

SINBES = SINF{BES)
SINGAS = SINF(GAS)
AS = 1. / (A # SINBES e SINGA)
BS = 1. / (B « SINALS = SINGA)
CS = 1. 7/ (C » SINALS & SINBE)
ALSTAR = ALS # 57.295780
BESTAR = BES & 57.295780
GASTAR = GAS # 57.295780
GO TO 99
72 SINALS = SINF(ALSTAR = 0.01745329)
SINBES = SINF(BESTAR » 0.01745329)
SINGAS = SINF(GASTAR # 0.01745329)
COSAILLS = COSFIALSTAR # 0.01745329)
COSBES = COSFIBESTAR = 0,01745329)
COSGAS = COSF(GASTAR # 0.01745329)
AL = ACOSF({COSBES ¢ COSGAS - CUSALS) /7 (SINBES = SINGAS))
BE = ACOSF((COSALS # (OSGAS - COSBES) / (SINALS += SINGAS))
GA = ACOSF{{COSALS & COSBES - COSGAS) / (SINALS » SINBES))
SINAL = SINF(AL)
SINBE = SINFIBE)
SINGA = SINFI(GA)
COSAL = COSF(AL)
COSBE = CUSKHiBE)
COSGA = COSF(GA)
A = 1. / (AS & SINRE # SINGAS)
B = 1. / (RS # SINAL *= SINGAS)
C = 1. /7 (CS = SINAL # SINBES)
ALPHA = AL = 57.295780
BETA = BE = 57.295780
GAMMA = GA ¢ 57.295780

99 Vv = AsBeCeSINAL*SINBE®SINGAS
VS = l./V
GO TO (65, SOl, 67), IOUTPT

OQUTPUT OF PART 1.
CALCULATED CELL DATA.

65 PRINT 1004

OUTPUT OF INPUT AND THE OTHER
(ORIGINAL CELL)



98

onoOOon

1004
1005

13
1008

14
1007

1008
75

1011
1012
1013
1014
1015
1016
1017
1018

175

382

176
401

404
407

91

PRINT 1005, (TITLE(I), I =

FORMAT (1H1)

FORMAT (1HK, 4X, 16AS5 // )
13, 14

IF (INPUT - 1) 13,

PRINT 1006

FORMAT {(1HJ, 3X, 27H INPUT DATA IN DIRECT SPACE //

GO TO 16
PRINT 1007

1416)

FORMAT (1HJ, 3X, 31H INPUT DATA IN RECIPROCAL SPACE // )

PRINT 1008

FORMAT {1HLs» 9X, 33H OLD PARAMETERS
PRINT 1011, A, ALPHA ’
PRINT 1012, B, BETA
PRINT 1013, Cy GAMMA
PRINT 1014, AS, ALSTAR
PRINT 10185, BS, BCLSTAR
PRINT 1016, CS, GASTAR

PRINT 1017, Vv

PRINT 1018, VS

FORMAT (1HKy 15X,
FORMAT (1H , 15X,
FORMAT (1H 4 15X,
FORMAT (1HJy 15X,
FORMAT {1H , 15X,
FORMAT (1H , 15X,
FORMAT (1HJ, 15X,
FORMAT (1lH 4 15K,

A
‘B

Cc
Ae
Be
C»
v
Vs

GO TO (174, 701, 889), 10U

PART 2.
TIUUTPT = 2
ICYCLE =}
AB = A » B » COSGA
BC = 8 = C » COSAL
CA = C # A » COSBE
DO 175 J = 149
N{J) =0
NA(J) = O
NEY) 5 )
N(S) =1
N({9) =1
NA(Ll) =1
NA(S5) =1
NA(9) =1
NSTOP = 1
K2 = 0
ABSAB = ABSF(AB)
ABSBC = ABSF(BC)
ABSCA = ABSF(CA)
QCMAX = MAX1F(ABSAB, ABSBC
IF (QQMAX - ABSAB) 176, 40
IF (QQMAX - ABSBC) 890, 40
QMAX = MAX1F(A,B)
IF (QMAX - A} B84, 91, 92
QMAX = MAX1F(B,C)
IF (QMAX - B) 84, 93, S4 .
QMAX = MAX1F{C,A)
IF (QMAX = C) 84, Y5, 96

IAXIS = 2
GO TO 1

F9.4,
F9.b,
F9.4,
F9ab,
F9.6,
F9.6,
F9.3)
FO.6,
TPY

14X,
14X,
14X,
14X,
14X,
14X,

/7 )

» ABSCA)

1y 176
4y 407

(CRIGINAL CELL) )

10H
10M
10H
10H
10H
10H

ALPHA
BETA

GAMMA
ALPHAe
BETA «
GAMMASs

oo onn

TRANSFORMATION OF ORIGINAL CELL TO

F10.4)
F10.4}
Fl10.4)
F10.4)
Flo.4)
F10.4)

REDUCED CELL



92 1AXI1S
GO 10
93 JAXIS
GO 1O
94 [AXI1S
GO TO
95 TAXIS
GO 10
96 TAXIS
GO TO

— =~

1 MAx = 1
GO TO 10
2 1Aax]sS =1 .
QMAX .= MAXLF(B.C)
IF {(QMAX - 8) 87, 101, 102
101 K2 =1
GO TO 30
102 K2 = 2
GO TO 50
3 IF (K2 - 1) 88, 121, 122
121 TAXIS = 2
GO T0 50
122 1AXIS = 3
GO TO 30

4 MAX = 4
GO TO 30
5 TAXIS = 2
OMAX = MAX1F(A,C)
IF (QMAX - A) 87, 201, 202
201 kK2 =1
GO TO 10
202 K2 = 2
GO TUu 50
6 IF (K2 - 1) 88, 123, 124
123 1AXIS = 1
G0 TO 50
126 [AXIS = 3
GN TO 10

7 Max = 7
GO TO 50
8 IAXIS = 3
QMAX = MAXL1F(A,B)
IF (QMAX - A) 87, 301, 302
301 K2 =1
GO 70 10
302 k2 = 2
GO 10 30
9 IF (K2 - 1) 88, 125, 126
125 taAxIS =1
GO TO 30
126 1Ax1S =2 2
GO TO 10
84 PRINT 2010
2010 FORMAI1 (iHL, 83H SERRORS - STATEMENT Nil. 401 PLUS 001 CARD, 404 PL
1US 001 CARC OR 407 PLUS 001 CARD.)
GO TOD 890
87 PRINT 2011
2011 FORMAT (1HL, T7H SERRORS - STATEMENT NO. 2 PLUS 00L CARD, 5 PLUS O
101 CARD OR 8 PLUS 001 CARD.)
GO TO 890




100

88 PRINT 2012
2012 FORMAT (1HL, 35H.SERRORS — STATEMENT NO. 3, 6 OR 9.)
GO TO 890 . .

(aNaNal

REDUCTION OF A. (QMAX = A)
K
|8

10

*
-
WoHHno
- 3 X
o

[a]
>

NCHECK = 1 :
GO TO (85, 11, 12), IAXIS
11 I = 2 '
GO 70 100
12.1 = 3
GO TO 300

15 A
8
c
AB
8C
CA

M~
<

hwwnuw

~ <
x ~

NCHECK = NCHECK - 1
IF (NCHECK) 46, 17, 17
17 IF (1 - 2) 86, 12, 11
46 MAX = MAX ¢+ 1
NSTOP = NSTOP + |
IF (NSTOP - 3) 1R, 18, 601
18 GO TO {1y 24 3y 44 S5» 6, 7y 8, 9), MAX

REDUCTION OF B. (QMAX = B)

[N e Xel

30 X
Y

» O

z

Xy
Yl
123

HowBruuna
-]
[a]

> O
= »

NCHECK = 1 ,

G0 TO (32, 85, 31), lAXIS
311 =6

60 TO 100
321 =4

GO TO 300

as

nu

>

@
Howowy
XN X
™~ <X

NCHECK = NCHECK - 1
IF (NCHECK) 46, 37, 37
37 tF UL - 4) 86, 31, 32

C REDUCTION OF C. (QMAX = C)



[aNaNal

50

51

52

55

ST

85
2015

86
2014

100

110
120

130
150

142
143

144

160

200

230

250
242

X =¢
Y = A

7 =8

XY = CA

YZ = AB

Ix = BC

NCHECK = 1

GO TO (51, 52, BS), IAXIS
1 =7

G0 10 100

1 =8

GO TO 300

A =¥

8 =12

cC =X

AB = YZ

8C = 2X

CA = XY

NCHECK = NCHECK - 1
IF (NCHECK} 46, 57, 57
IF (I - 7) 86y 52+ 51

PRINT 2015

FORMAT (IHLy 47H SERRORS — ERROR IN AXIS DESIGNATION IN PART 2.)

GO TO0 890

PRINT 2014

FORMAT (1HL, 38H $ERRORS — STATEMENT NO. 17, 37 OR S57.)
GO 10 890

REDUCTION OF X. ABSF(X.Y) GREATER THAN (Y»82)/2

XX = XeX
YY = YsY
PN = 0.

IF (ABSFIXY) - 0.5 ® YY) 444, 444, 110

IF (XY) 120, 444, 200

XY2 = XY 4 PNsYY

IF (XY2) 130, 150, 150

STORE = XvY2

PN = PN ¢+ 1.

GO 1O 110 ’

IF (ABSF{XY2) - ABSF(STORE)} 143, 142, 142
PN = PN = 1.

NA(I) = PN

X = SORTF(XX 4 2,%PNsXY + PNePN#YY)

IX = IX + PNeYZ

IF (ABSF{XY2) - ABSF(SFORE}) 160, 170, 170
XY = XY2

GO 10 520

XY = STORE

GO 7O 520

XY2 = XY = PNsyYYy

IF {(XY2) 250, 250, 230

STORE = XY2

PN = PN + 1.

GO TO 200

IF (ARASF{XY2) - ABSF(STORE}} 243, 243, 242
PN = PN - 1. .

101



102

243 NA(l) = =PN

X = SQRTF{XX ~ 2.2PNeXY + PNePNsYY)
IX = IX - PNeY?

GO TO 144

REDUCTION OF X. ABSF(Z.X) GREATER THAN (Ze#2)/2

[a N aXal

XX
13
PN ,
IF. (ABSF(ZX) — 0.5 o IZ) 444, 444, 310
IF (ZX) 320, 444, 400

IX2 = IX + PNell
IF (2x2) 330, 350,
STORE = 2x2

PN = PN + 1.
60 1u 310

IF (ABSF(ZX2)
PN = PN - 1.
NA(I) = PN

X = SQRTF(XX ¢+ 2,#PN#7X + PNaPNeZ2)
XY = XY + PNeYZ

IF (ABSF(ZX2) - ABSF(STORE)) 360,
Ix = IX2

G0 TG 520

IX = STORE

GO TO 520

XeX
182
0.

300

310
320
isn
33

350
342
343

- ABSF({STORE)) 343, 342, 342

344 370

3160

370,
370

400 IX2 = IX - PNe#l2
I1F {(2X2) 450, 450,
STORE = 1IX2
PN = PN ¢+ 1.
GO TO 400

IF (ABSF(ZX2)
PN = PN = 1.
NA(I) = =-PN .
X = SQRTF{XX — 2.#PN#ZX + PNePNall) h
XY = XY - PNeYZ

GO TO 344

430
430

450 ~ ABSF{STORE)) 463, 463, 462

463

acoOoo

520 NB8(1)
NB(2)
NB{3)
NBl4)
NB(5)
NBt(6)
NB(T7)
NBI(8B)
NB(9)

wonowonnegn

NA(L)=N(1)
NA(1)®N(2)
NAUL)}eN(3)
NAl&4)aN{1)
NA(4)eN(2)
NAL4)eN(3)
NA({T)eN()
NA(T)eN(2)
NA(T)eN{3)

00 S21 J = 1,9

N{J)

IF IN(J))

540
521

N({J)

NA(J)
NA{1)
NA(S5)
NAL9)
444 GO TO

(

OUTPYT (OF PART 2.

NB(J)
521,
0

0

1

1

1

540,

LK SR BE B BRI R

NA{2)eN(4)
NA(2)eN{S}
NA(2)eN(6)
NA{S5)aN(4)
NA(S)eN(S)
NA(S)eN(6)
NA(B)#N(4)
NA(B)eN(5)
NA(8)=#NL6)

521 .

LR 2R B L JE BE B IR J

NA(3)eN(T)
NA(2)aN(D)
NA(3)=N{9)
NA(6)eN(T7)}
NA(6)eN(8)
NA{6)eN(9)
NA(9)eN(T)
NA{9)eN(8)
NA(9)eN(9)

601, 15, 15y 35y 601y 35, 559 554 601),s 1

(REDUCED CELLI



OO0

aN e

601 COSAL = 8C / (BeC)
COSBE = CA / (C=aA)
COSGA = AB / (AeB)
AL ACOSF (COSAL)

103

BE = ACOSF(COSBE)
GA = ACOSF{COSGA)
SINAL = SINF(AL)
SINBE = SINF(BE)
SINGA = SINF(GA)
ALPHA = 57.295780 » AL
BETA = S57.295780 = BE
GAMMA = 57.295780 = GA
GO TO 81
A TEST IS NOW MADE TO DETERMINE IF THE CELL JUST ORTAINED
IS THE REDUCED CELL. IF ONE OR MORE OF THE AXES CAN BE FURTHER
REDUCED, THE PROGRAM RETURNS TQO STMNT 382 FOR ANUTHER CYCLE.
501 IF (ABSF(AB) - 0.5 = AsA) 502, 502, 381
502 IF (ABSF(AB) - 0.5 « B#B) 503, 503, 381
503 IF (ABSF(BC) - 0.5 * BaB) 504,.504, 381
504 IF (ABSF(BC) — 0.5 » CeC) 505, 505, 381
505 IF (ABSF{CA) - 0.5 ®» C#C) 506, 506, 381
506 IF (ABSF(CA) - 0.5 = AwA) 66, 66, 381
381 ICYCLE = ICYCLE + 1
GO TO 382
66 NET = N{1)#{N(S5)#N{9) — N(B)I#N(6)) — N(2)#{N(4)#N[9) - N(T)eN{6))
1 + N{3)#(N(4)eN(B) ~ NIT)aN(5))
DET = NET
NI{L) = (N(5)eN{9) — N(8)eN(6)) / NET
NI(2) = —(N{2)eN{9) = N{(B)®N(3)) / NET
NI(3) = (N(2)eN(6) — N(S5)#N(3)) / NET
NI(4) = —(N(&)eN(9) - N(T)=N(6)) / NET
NI{S5) = (N(1)®N(9) - N(7)aN(3)) / NET
NI(6) = —(N(1)eN(6) — N(4)#N(3)) / NET
NI(T) = (N(&)aN(B) — NIT)#N(5)) / NET
NI{8) = ~(N(1)eN(8B) — N(7)#N(2)) / NET
NT(9) = (NULJ&NLS) - Nig)eNI2)) / NET
BET = NI(1)#(NI(S)}#NI{9) — NI(B)sNI(6))
1 - NI(2)#(NI(4)«NI{9) - NI{(T)eNI(6))
2 + NI(3)e(NI(4)eNTI{B) - NI{7)&NI(S))
DO 64 I = 1,9
IT (NI({I})) 64, 63, A&
63 NI(I) = 0
64 CONTINUE
IF (10UTPT - 2) 582, 582, 583
582 PRINT 1027
1027 FORMAT {1HL, 9X, 32H NEW PARAMETERS (REDUCED CELL) )
GO 10 75 i
701 PRINT 1028
PRINT 1029
PRINT 1030, N(1), N(2), N(3), NI(1),y, NI(2), NI(3)
PRINT 1030, N(4)y N(5)y, N{6)y NI{4)y NI(S)y NI(6)
PRINT 1030, N(7), N(8), N{9), NI(7), NI(8), NI(9)
PRINT 1031, DET, BEY
1028 FORMAT {1HJ, 25X, 25H TRANSFORMATION MATRICES )
1029 FORMAT {(1HJ, 23X, TH DIRECT, 13X, 8H INVERSE )
1030 FORMAT (1HJ, 20X, 314, 8X, 3[4 )
1031 FORMAT (1HJ, 21X, 6H MOD = FS5.2, 9X, 6H MOD = F5.2 )
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- PART 3. TRANSFORMATION OF REDUCED CELL TO CONVENTIONAL
REDUCED CELL. THE CONVENTION IS C LESS THAN A LESS THAN B,
WITH ALPHA, BETA OBTUSE. )

alaNaXeNal

IOUTPT = 3
JA = 0
JB = 0
JC = 0
NTURN = 1
KK = 3
IF (MIN1F(A,B,C) - A) 702, 611, 999
611 40 = T
M= b
GO 1O 721
702 Ir (MINLF(A;B,C) = B) 8612, 613, 999
612 JC = 1 ’
JJ = 7
‘Moz 0
GO TO 723
613 JJ =17
M = -3
GO TO 722
703 NTURN = 2
KK = 2
IF (MAXIF(A,B8,C) - A) 999, 614, 704
614 JJ = &
M = -3
GO 10 721
704 IF (MAX1F{A,B,C) - B) 999, 615, 616
615 4B = | ’
JJ = 4
M =0
GO 10 722
616 JJ = &
M =3
GO 10 7123
706 NTURN = 3
KK = 1 :
IF (D(2) - A) 710, 707, 710
710 IF (C(2) - B) 999, 708, 709
707 IF (MINITU(DC) = B) 822y 821y 999
621 JJ = 1
. M =6
GO TD 723
622 JJ = 1
M =3
. GO TDo 722 :
708 IF (MINLF(A,C) - A) 623, 621, 999
623 JA = 1
JJ = 1
M =0
GO TO 721
709 IF (MINIF(AB) = A) 623, 622, 999

721 DIKK) = A
ANGLE (KK) = ALPHA
664 JL = JJ + 2

00 665 L = JJ,JL
LM =L + M Co
665 NTEMP{L) = N{(LM)

GO TO (703, 706, 739), NTURN
722 D(KK) = B



[aNaNeNaNel

anoo0o

723

739
730

21
801

802

69

4441
6661

43

4442
hh62

44

4443
6663

[2XaXaXaka]

79

4444

ANGLE (KK) = BETA
GO TO 664
D(KK} = C
ANGLE (KK) = GAMMA
GO TO 664

0O 730 I = 1,9

N(L) = NTEMP(I)
A = D(D)
B = D(2)
C = 0t3)
ALPHA = ANGLE(L)
BETA = ANGLE{2)
GAMMA = ANGLE(3)

THE FOLLOWING SECTION CHECKS TO MAKE SURE ALPHA AND BETA ARE
EACH EQUAL TO OR GREATER THAN 90 DEGREES.
LESS THAN 90 DEGREES, THE PROPER ADJUSTMENTS ARE MADE.

ISIGN = 0

IF (ALPHA - 90.0) 21,
ISIGN = ISIGN + 1

IF (BETA - 90.0) 22,
ISIGN = ISIGN + 1

801,

802,

IF (ISIGN - 1) 831, 69, 79

ISIGN = 1

EITHER ALPHA OR BETA IS LESS THAN 90 DEGREES.
ANGLE AS ITS SUPPLEMENT AND SET GAMMA
{TWO ANGLES MUST ALWAYS BE TRANSFURMED SIMULTANECUSLY.)

GAMMA = 180.0 - GAMMA
DO 6661 I = 7,9

N(I) = =N{ID)

I[F (N(T)) 6661, 4441,
N(IY = 0

CONTINUE

IF (ALPHA - 90.0) 43,
ALPHA = 1AN.0N - ALPHA
DO 6662 1 = 1,43

N(I) = =N{I)

IF (N(1)) 6662, 4442,
N(D) = O

CONTINUE

GO TO A3l

BETA = 180.0 - BETA
DO 6663 I = 4,6

N{T}) = =N(I)

IF IN(I)) 6663, 4443,
N{I) = 0

CONTINUE

GO Y0 831

ISIGN = 2

REDEFINE ALPHA AND BETA AS

6661

44,

6662

6663

801

802

44

DIRECTIONS OF A AND 8.

ALPHA = 180.0 ~ ALPHA
BETA = 180.0 - BETA
D0 6664 [ = 146

N{T} = =N{1}

IF (N{1)) 6664, 4b4s,
N(I) =0

6664

IF UNE OR BOTH ARE

REDEFINE THAT
180.0 - GAMMA,

ITS DWN SUPPLEMENT AND REVERSE THE

105



106

[aFaNalaXel

s NaslaKaNa

a¥alaNaRaXe)

6664

831
832

833
835

67
583
1026

68"

1038

889

999

1054

633
634

6135

641

CONTINUE

A CHECK IS MADE TO DETERMINE IF THE SYSTEM HAS GONE FROM
RIGHT-HANDED TO LEFT-HANDED OR VICE VERSA., [IF JF = 1 THE SYSTEM
HAS REVERSED. 1IF JF = 0 OR 3, [T HAS NOT REVERSED.

JF = JA ¢+ 4B ¢+ JC

IF (JF - 1) 71, 832, 71
DO 835 I = 1,9

NI(T) = =NIUD)

IF (N(I)) 835, B33, 835
N(I) =0

CONTINUE

Go 10 ™M

-OUTPUT OF PART 3

GU TO 66

PRINT 1026, (TITLE(L)y I = 1416}

FORMAT (1H4, 4Xy L6AS 7/ )

PRINT 1038 ' .
FORMAT (1HJ, 9X, &5H NEW PARAMETERS (CONVENTIONAL REDUCED CELL))
GO TO 75

PRINT 1028

PRINT 1029 '

PRINT 1030, N(1)y N(2), N(3)y NILL)y NIL2}, NI(3)

PRINT 1030, N{4), N(S), N(6)y NE(&)y NI{S)y NIL&)

PRINT 1030, N{T), N(B), NI{9)y NI(T)y NI{B)y NI(9)

GO 710 633

PRINT 1054

FORMAT (1HL, 17H SERRORS - PART 3)

OUTPUT OF PART 4. TRIGONOMETRIC VALUES OF THE ANGLES UF THF
CONVENTINNAL, REDUCED CELL.

PRINT 634
FORMAT (1HL, 9X, 73H TRIGONOMETRIC VALUES OF THE ANGLES OF THE CON
LVENTIONAL RENUCFN CELL )

SINAL = SINF{ALPHA « 0.01745329)

SINBE = SINF(BETA * 0.01765329)

SINGA = SINF(GAMMA « 0,.01745329)

COSAL = COSP(ALPRAA & U.01743329)

COSBE = CCSTI(DRETA * U.ULT725329)

COSGA = CCSF{GAMMA « 0.01745329)

SINALS = SINF{ALSTAR s 0,01745329)

SINBES = SINF(BESTAR & 0.01745329)

SINGAS = SINF(GASTAR # 0.01745329)

COSALS = COSF(ALSTAR # 0.01745329)

COSBES = COSF(BESTAR e 0.01745329)

COSGAS = COSFIGASTAR = 0.01745329)

PRINT 635

FORMAT (1HK, 28Xy TH ANGLE . 6X, SH SIN , 7X, SH COS )
PRINT 641, ALPHA, SINAL, COSAL

PRINT 642, BETA, SINBE, COSBE

PRINT 643, GAMMA, SINGA, COSGA

PRINT 644, ALSTAR, SINALS, COSALS

PRINT 645, BESTAR, SINBES, COSBES

PRINT 646, GASTAR, SINGAS, COSGAS

FORMAT (1HJ, 15X, TH ALPHA , Fl3.4, 2F12.5)
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662
643
644
645
646

871
880

a8l
882
883

890
1070

89

FORMAT (1IH , 15X,
FORMAT (1H » 15X,
FORMAT (1HJ, 15X,
FORMAT (1lH , 15X,
FORMAT (1H , 15X,

OUTPUT OF PART 5.

REDUCED CELL.

PRINT 880

FORMAT (1HLy 9X,
1 CELL )

AA
aB
cc
AB
BC
CA

AeA
BeB
C=C

Wow oo oWonu

PRINT 881, AA,

AeBsCOSGA
BeCeCOSAL
CeAesCCSBE
SuM = BC + CA + A8

BB,

PRINT B82, BC, CA,

PRINT 883, SUM

FORMAT {1HK,y 15X,
GH R(3,3)
FORMAT {1HJ, 15X,
"9H R(1,42)
FORMAT (1HK, 15X,

READ 1070, ICONT

FORMAT (11)

IF {ICONT) 89,
STOP 89

END

89,

TH BETA
TH GAMMA ,
TH ALPHAS,
TH BETA =,
TH GAMMAS«,

cc
AB

9H R(1,1)
= F7.2)

9H R(2,43)
= F7.2)
28H R(2+3)

9999

Fl3.4,
Fl3.4,
F13.6,
Fl3.4,
Fl13.4,

= FTl.2y

2F12.5)
2F12.5)
2F12.5)
2F12.5)
2F12.5)

5Xy 9H R{2,2)

+ R{3,1) + R(1,2)

= F7.2, 5X, 9H R{(3,1)

FT.2,
F1.2,

F7.2)

5X,

5Xy
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SCALARS CORRESPONUiNG TO THE CONVENTIONAL

S6H SCALARS CORRESPONDING TO CONVENTIONAL REDUCED
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B. TRACER

A General Fortran Lattice Transformation - Cell Reduction Program

1. GENERAL INFORMATION

Program TRACER, written in IBM 7074 Fortran language, is an
expanded version of RCELL. It is a computer program far general ccll
transformations in direct space (using matrices supplied by the useri,
for cell reductions only or for general cell transformations followed by
cell reduction. Typical examples of ils uses are

1. Transformation of lattice axes in direct space and reciprocall
space (Z\,-l) from an old cel} to a new cell, e.g., Monoclinic P21/n to
P21/c, using a transformation matrix supplied by the user.

2., Transformation of a prituitive triclinic or monoclinic cell to its
reduccd cell.

3. Reduction of primitive monoclinic cells, using the cell reduction
technique incorporated in the program, to locate a better monoclinic cell
with shorter and more orthogonal axes.

4. Two or more transformations in sequence, using malrices sup-
plied by the user, to transform each cell consecutively to the next cell
and to calculatc the cell parameters of each inltermediate cell and the
final cell, e, g » F-triclinic to P-triclinic to I-orthorhombic.

5. Two or more transformations in sequence, transforming the
first N cells to new cells using matrices supplied by the t;ser and then
letting the program transform the Nth cell to its reduced cell, e.g., F-

triclinic to P-triclinic to reduced cell.
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6. Matrix multiplication of two or more transformation matrices.

The tabulated transf(‘)rmations of lattices for the triclinic and mono-
clinic systems appearing in Appendix VII cover transformations frequently
encountered in crystallography and may be used in routine work with the
program. Suppose, for instance, one has a face-centered triclinic cell
and it is desired to obtain the reduced cell. Before the reduced cell can
be found the.face—centerec‘i cell must first be converted to a primitive
cell. Being unique, the program is always able to locate it starting with
any arbitrary primitive triclinic cell in the lattice. The same reduced
cell is always obtained, as will the matrix fo; the transformation of the
original centered cell to. the reduced cell, regardless of the intermediate
primitive cell., The transformations on pages 174 - 175 will be found
particularly useful in this regard for obtaining such intermediate primi-
tive cells at this step. (Note that they may be used on any centered cell
belonging to any one of the seven crystal systems.)

The essential input consists of the six lattice parameters (real or
reciprocal), the matrices to be used for the consecutive transformations
of cells which will not be reduced by the program as well as any
alphanumeric information identifying each cell. The reduced cell, if
desired, does not have to be obtained directly from the original cell but
‘may be obtained from a cell previously obtained by other transformations
(see No. 5 above); it must; however, be the last cell in any sequence of
transformations, that is, after the reduced cell is obtained '"by the pro-

gram'' one may not transform the cell to a new cell without reloading the
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program. A maximum of eight consecutive transformations may be ap-
plied to any one original cell (controiled by the DIMENSION statément
for output only). Provision has been made for allowing more than one
compound to be run without rfeloa.ding the program.

The output consists of the matrices used and generated for the
. latticc axcs in direct space, the lattice paramelers (real and reciprocal)
of the original cell, all intermediate cells and the final cell, and the
sine and cosine values of all angles in each cell. In the case of the
reduced cell the program prints out two cells, as inh the case of program
RCELL, the second being just as .rearrangemeﬁt of the first and cor-
responds to the convention established for the triclinic reduced cell,
namely, that cell whose edges are the three shértest non-caplanar
translations in the lattice, labelled so as to have ¢ <a <b and oriented
" so that the angles & and 8 are non-acute. Included also are the scalars
of the reduced cell for use with Tables 2 and 3 for the determination of
unit cells of higher symmetry. (For a discussion of the use of the
"direct' and "inverse' matrices in the output, see Appendix IIIL.)

As indicated above, this program (and RCELL, as well) may be
used to reduce a primitive monoclinic cell to ﬁnd a monoclinic cell with
shorter and more orthogonal axes. This is one of the reasons why the
two orientations of the reduced cell are printed in the output. The ﬁ'rst ‘
of the two reduced cells is that obtained directly from the original cell
"before'' reori-entation of axes. In using the program for this purpose

the new angle will, in 50% of the cases, become acute after rcduction.
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This results from the natural sequence in the reduction process. Accord-
ing to Section C in Chapterll, the appropriate ""obtuse'' angle of the new
cell is the supplement of the acute angle with the corresponding changes
in axial directions and transformation matrices (rules i - v, Section C).
Consider, for example, the reduction of a primitive monoclinic cell to

a new monoclinic cell with the following new lattice parameters and

transformation matrix:

a = 10.65A4, a= 90° 1 0 1
b = 16.81 g=87.62° , matrix: [ O 1 0
c = 8.44 y = 90° 0o 0 1

If it is desired that 8 be non-acute, the changes to be made are as
follows (two choices):
(a). Set 3 =180° - 87.62° = 92, 38°,
set abc — abc

1 0 1 T o T

and set 0 1 0 — 0 T 0
0 0 1 0 0 1 ’

92. 38° (as in (a) above),

or (b). Set 3= 180° - 87.62°

set abc — abc

1 0 1 1 0 1
and set 0 1 0 —_ 0 T 0
0 0 1 0 0 T

The program has been written in full Fortran using one-, two- and

three-dimensional arrays. The generation of the matrices in the output
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1

is defined in the usual sense on page 90. The matrix elements of all
primitive cells to their reduced cells are in fixed point; all othel; matrices
are in floating point. TRACER is essentially an expanded version of
RCELL so that the cell reduction routine is virtually the same. The
routine which calculates a new cAell from an old using the matrix supplied
at input uses the method and forinulas in Appendix IV. After all axial
transformations have been compleled, a test is made to determine the
total number of consecutive transformations executed for any one com-
pound; if more than two have been made, all N matrices are multiplied
together according to the rules of matrix multiplication outlined in

Appendix VI.



2. | INPUT DATA
1. Title card -- 1 card -- FORMAT (16A5)
Any alphanumeric information. This will be printed back out

as a heading on each page of output.

2. Control card -- 1 card
Column
1 -3 FORMAT (I3), =1 if the cell parameters on the
Parameter card are in direct
space.
= 2 if the cell parameters on the
Parameter card are in
reciprocal space.
4-6 FORMAT (I3), number of Cell Specification cards to
be read; (ITOTAL).
7-9 FORMAT (I3), number of'Tr_a;nsformation cards to be
read; (MATRIX).
3. Parameter card -- 1 card
Column

1-10 FORMAT (F10. 6), lattice pé.rameter a (or a¥*).
11 - 20 FORMAT (F10. 6), lattice parameter b (or b*).
21 - 30 FORMAT (FIO. 6), lattice parameter c (or c¥).
31 - 40  FORMAT (F10. 6), lattice parameter o (or o).
41 - 50 FORMAT (F10. 6), lattice parameter 8 (or g8*).

51 - 60 FORMAT (F10.6), lattice parameler ¥ (or ¥¥).

Note: The cell edges are in (1) in direct space and (£7%) in

reciprocal space; the angles are in degrees and decimal fraction.
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4. Cell Specification cards -- ITOTAL cards

Column

1

4 -5

FORMAT (I1),

FORMAT (11),

cell number. (The original cell is
cell number 1.)

(blank)

1 if the cell is te be transformed to
a new cell nging the matrix oupplied
on the Transformation card.

2 if the cell is to be reduced to its

reduced cell by the program.

3 final cell. No transformation to be
applied.

(blank)

6 - 80 FORMAT (15A5), Any alphanumeric information de-

Note (1).

scribing the cell, e.g., lattice type
and crystal system. Left justify.
This will be printed back out as a

heading.

These ITOTAL cards include the original cell, all

intermediate cells and the final cell. They must be arranged

"in increasing order of cell number.

Note (2).

The reduced cell is to be considered as one cell,

not two, even though the program will output the reduced cell

in two orientations: one whose lattice parameters were obtained

by direct transformation from the previous cell and the same
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reduced cell but with its lattice parameters rearranged so as
to conform to the convention established for the triclinic system.
5. Transformation cards -- MATRIX cards -- FORMAT (9F8. 5)

One card per matrix, arranged in order of use. Each matrix is
used for transforming one cell to a new cell, e.g.,

Cell (1) to Cell (2) == 1 card

Cell (2) to Cell (3) -- 1 card, etc.
These cards are included only when needed; if MATRIX = 0,
these cards are omitted (sce sample problems). The order of
punching is P(1, 1), P(1, 2), P(1, 3) P(2,1), P(2,2), P(2, 3), P(3,1),
P(3, 2), P(3,3).

6. Stopper card -- 1 card -- FORMAT (I1)

0 (or blank) if no more compounds are to be processed,
=1 if another compound is to be processed.

Note: This card allows more than one compound to be processed

wilthout reloading the program. Thus, any number of sets of

data may be processed. Each set consists of items 1 through

6.
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. 3. RUNNING DECK ARRANGEMENT

Program TRACER is on the Iowa State IBM 7074 library tape under
the name TRACER3SLL. In using the tape a typical run will consist of

the following cards: . : A
14 18 " 78

1 card: . (Start Account Card) POGO
1 card: ALTSW ALL OFF POGO
1 card: Z LLOAD @TRACER3SLL@ POGO

(Data Cards)

1 card: . WTM.

1 card: (End Account Card) ' POGO

All variables are stored in COMMON, locations 19000 - 19975,
and may be called with a POGOZ dump. The time estimate is approxi-

mately 1 minute for transformation or reduction of 10 cells.
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4. SAMPLE INPUT AND OUTPUT

SAMPLE PROBLEM 1

It is desired to find the reduced cell of triclinic 16-DL methyl-A
octadecanoic acid, space group PI, with lattice parameters a = 5. 40,
b= 7.54, c = 51.8 A., o = 145° 38', B = 105° 42', ¥ = 60° 18'. The

desired transformation is

P-triclinic ———>' Reduced cell

cell (1) cell (2)
—- € FO? COMMENT

vkt L8 FORTRAN STATEMENT . |
L sley 10 1} 20 15 30 s 40 a3 50 LN 60 _ ¢y A1
(6-0L] METHYLOCTADEC AN ACID ! L t : VIR D | ; !
1 0 ) ) L ) ) \ ) A ) . )

5. 40, L 7.54 ; 51.8_145.63333, 105.7, .60 .3, f o !

i 2 _[TRICLUNIC ~ PRIMITIVE L : ) . n " : ' v
2 3 |REDUCED CELL. . X . . . . . 1 1 L
b , . . B . . . ) T : T

Fig. 10. Input data for sample problem 1.

The computer output for sample problem 1 has not been included in this

report.

SAMPLE PROBLEM 2

It is desired to carry out two separate transformations, using

matrices found in Table 9. The transformations of interest are

lo
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T oo
a) Compound A ° T o
| | M'onoclihic ézl/n ° T - quociinic PZi/c
cell (1) | - cell (2)
| 101
b) Compound B 010
| Mbnoclinig Ia e 1. 0 OA -+ Monbclinic Cc
cell (1) | E ' ‘ . cell (2) |

The lattice parameters of cell (1), compound A, area = 7.62, b = 4.10,
c =13.2A., B= 110° 20' (b-unique) and those of cell (1), compound B,

area =10.2, b= 12,4, c = 16.8 A., = 99° 00' (b-unique).

e € FOF COMMENT

istatwn]e ' FORTRAN STATEMENT
i slej? 10 13 20 23 30 38 40 45 50 38 _60_ 65 — 70 7:‘
coMPOUND A L i . ! ) N - L . N .
ool 1, ) A \ : . . . , L L . Ly
7.62 L 4.10 L 13.2 ,90.0, 110.33333,° L.90..0 .
|1 MON@CLINIC, - P21/N X , \ . ” , . : o
2 3 uﬁocumc. - P21/c | L . . L L L L Lo
o 0.0 L0.0, 0.0 ., =1.0 0.0 . 1.0 ,0.0, 1
i A L . . . X . . L . . . e
ICOMPQUUIND B 2 f L L L L L 1 L L i )
| 2 1t L L 1 L ! | \ s L ] I 1
10..2, L 12.4 L 16.8, . 980.0 1 99.0 . .90.0 . .
L1 CLINIC, - 1A , : ) . A , . . . .
g_;_ﬂﬁic.umc. - ¢c . ; . . . , . . .
tlo . 0.0 1.0, 0.0 .. 1.0 0.0 ., ={.0 . ,0.0, 0,0
o . , 1 T . R CT ] 1 ' .

Fig. 11. Input data for sample problem 2.

The outptit for sample problem 2 has not been included in this report. -
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SAMPLE PROBLEM 3

It is desired to find the reduced cell of face-centered triclinic
nickel dimethylglyoxime whose lattice parameteré were observed on a
single crystal orienter to be a = 10. 360, b = 18.037, ¢ = 25.760 A.,

d: 127.03°, B =129.81°, ¥ = 90.51°. The matrix for the transformation
of the face-centered triclinic cell to a primitive triclinic cell is

110/110/303 (obtained from page 175). The consecutive transformations

of interest are %_ % 0

Lo e

2 2
F-triclinic =—————» P-triclinic —————— Reduced cell |,

cell (1) cell (2) cell (3)
;== C OR COMMENT

g Stattwtit g |
NUMBER 18 FORTRAN STATEMENT i
O 1 L 14 0 15 2 23 1 35 40 Y] U S 0 ey 'i
NICKEIL| DIMETHYLGLY®XTIME \ 1 L 1 1 i ! e ol e I:
| 3 | 1 i 1 1 1 1 ] 1 i 1 1, [ e :
ilo].360, 18.037 2,5.760, 127.03, 129 .81, 90.51, L
1 TRICLINIC - F-CENTERED L L 1 i 1 ' ek Ve et
I
2 2 JRICLINIC - PRIMITIVE 1 1 L ) ! ) L i .,....A._l.”l:
s 5 |mleoucen eELL | . . e . b et |
ol.5 ., 0.5 0.0, _-~0.5 0.5, 0.0, 0.5 ,0.0.,. ..0.5
[¢] L I Y 1 1} ] . ‘,‘ 1 i L 2 _i N PO P !

Fig. 12. Input data for sample problem 3.

The output to this problemn is shown on the next six pages. For a
discussion and an analysis of the output, see Example 3, page 67, par-

ticularly steps 4-6.
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5.

SYMBOLIC PROGRAM LISTING

PROGRAM TRACER

DESCRIPTICN. LATTICE TRANSFORMATION -~ CELL REDUCTION PROGRAM

LANGUAGE.
DATE.
PROGRAMMER.

GLOSSARY OF

A

AA

AB
ABSAB
ABSBC
ABSCA
AL
ALPHA
ALS
ALSTAR
ANGLE(3)
AS
AXIS(3)
B

(A
CELLIIS,12)
Cos(3)
COSAL
COSALS
COSBE
COSBES
cosGa
COSGAS

CS

0(3)

DET
DIM{64+12)
GA

GAMMA

GAS
GASTAR

1

IAXIS

FULL FORTRAN FOR IBM 7074
FEORUARY 1969 (FINAL VERSIUN)
STEPHEN L. LAWTON

SYMBOLS

DIRECT CELL PARAMETER, A
AeA
AsBesCOSGA = SCALAR PRODUCT OF A WITH B
ABSF{ABR)
ABSF{BC)
ABSF{CA)
DIRECT CELL PARAMETER, ALPHA, IN RADIANS
DIRECT CELL PARAMETER, AlPHA, IN DEGREES
RECIPROCAL CELL PARAMETER, ALPHA-STAR, [N RADIANS
RECIPROCAL CELL PARAMETER, ALPHA-STAR, IN DEGREES
DIRECT CELL PARAMETERS ALPHA, BETA, GAMMA IN NEW CELL
RECIPROCAL CELL PARAMETER, A-STAR
DIRECT CELL PARAMETERS A, B, L UF NEW LELL
DIRECT CELL PARAMETER, B
BeB
BeCeCOSAL = SCALAR PRODUCT 0OF R WITH C
DIRECT CELL PARAMETER, BETA, IN RADIANS
RECIPROCAL  CELL PARAMETER, BETA-STAR, IN RADIANS
RECIPROCAL CELL PARAMETER, BEFA-STAR, IN DEGREES
MODULUS OF TRANSF. MATRIX FOR CELL(N+#1l) TO CELLIN)
DIRECT CELL PARAMETER., BETA: IN NEGREES
RECIPROCAL CELL PARAMETER, B-STAR
DIRECT CELL PARAMETER, C
CeAsCOSBE = SCALAR PRODUCT OF C WITH A
CaC

ANY ALPHANUMERIC INFORMATION DESCRIBING THE CELL
COSF OF NEW ALPHA, BETA, GAMMA
COSF(AL)
COSF(ALS)
COSFI{BE)
COSF{BES)
COSFIGA)
COSFIGAS)
RECIPROCAL CELL PARAMETER, C-STAR
DIRECT CELL PARAMETERS Ay By C IN NEW ORIENTED CELL
MODULUS OF TRANSF. MATRIX FOR CELLIN) TO CELL(N+1l)
STORAGE LOCATIONS FOR A, 8, C, ALPHA, BETA, GAMMA
DIRECT CELL PARAMEIER, GAMMA, IN RADIANS
DIRECT CELL PARAMETER, GAMMA, IN DEGREES
RECIPROCAL CELL PARAMETER, GAMMA-STAR, IN RADIANS
RECIPROCAL CELL PARAMETER, GAMMA-STAR, IN DEGREES
INDEX
AXIS (VECTOR) HELD CONSTANT. l=a, 2=B, 3=C
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ICONT
ICYCLE
ICYCLY
IDENT
IHKL12)
INPUT
I0UTPT
ISIGN
ISUM
ITOTHL
yrent

JA
JB
JB2
JC
JF

MAX
MM(3,3,3)
N(S)
NA(9)
NB(9)
NCHECK
NN(3,3,3)
NQ(12)
NSTOP
NTEMP(9)
NTURN
P({3,3,3)
PN
Q(3,3,3)
QMAX
CCMAX
Si3,3,14)
SINAL

-STNALS

SINBE
SINBES
SINGA
SINGAS
STORE
SUM
TITLE(16)
v

Vs
W(3,3,3)
X

XX
XY

CODE FOR NEXT JOB

NUMBER OF CYCLES IN REDUCED CELL ROUTINE

NUMBER OF CYCLES IN ROUTINE

{(NOY USED IN PROGRAM)

CODE FOR PROGRAM SECTION

SPECIFICATION CODE FOR CELL PARAMETERS READ AT INPUT
PROGRAM SECTION NUMBER :

NUMBER OF ACUTE ANGLES IN REDUCED CELL

TOTAL NUMBER OF CELLS INVOLVED [N PROGRAM

TOTAL NUMBER OF CELL IDENTIFICATION CARDS READ IN

INDEX

CODE FOR SHIFT IN A-AXIS, JA=0 NU SHIFT, "JA=1 SHIFT
CODE FOR SHIFT IN B8-AXIS. JB=0 NO SHIFT, JB=1 SHIFT
INDEX .

CODE FOR SHIFT [N C-AX1S. JC=0 NO SHIFT, JC=1 SHIFT
JA + JB + JC

INDEX

INDEX

INDEX

CODE FOR REDUCTION OF REMAINING TWO AXES

CODE FOR TRANSFER TO + FROM MATRIX INVERSION ROUT{INE
STORAGE FOR K L

CODE FOR PARAMETERS IN CONVENTIONAL CELL. ‘l=A, 2=8, 3=C
INDEX ' ’
INDEX

INDEX

PAGE CONTRGL FOR QUTPUT

INDEX

INDEX

INDEX

NUMBER OF TRANSFORMATION CARDS READ IN

LARGEST CELL PARAMETER READ AT INPUT., 1=A, 4=B, 7=C
MATRIX ELEMENTS (IN FIXED PT.) FOR CELL{(N®¢1) TO CELLI(N)
ELEMENTS OF DIRECT TRANSFORMATION MATRIX TO RED. CELL
MATRIX ELEMENTS OF CELL (N) TO CELL (N+1) IN RED. SECT.
MATRIX ELEMENTS OF CELL (1) TO CELL (N+1) [N RED. SECT.
INDEX CONTROLLING REDUCTION OF CELL PARAMETER

MATRIX ELEMENTS (IN FIXED PF.) FOR CELL{N) TO CELL(N+1)
IDENTIFICATION VARIABLE

INDEX CONTROL. WHEN NSTQP = 3, REDUCTION CYCLE COMPLETE
TEMPORARY STORAGE LOCATION FOR MATRIX ELEMENTS

INDEX CONTROL

MATRIX ELEMENTS (IN FLOATING POINT)

INTEGER (FLOATING PT.)

MATRIX ELEMENTS (IN FLOATING POINT)

THE LARGER OF TWO CELL PARAMETERS

THE LARGEST OF {ABSAB, ABSDC, ABSCA)

MATRIX ELEMENTS (IN FLDAT PT.) FOR CELL(N+1) TO CELLIN)
SINF(AL) :

SINF(ALS)

SINFI(BE) .

SINF(BES)

SINF(GA)

SINF{CAS)

TEMPORARY STORAGE LOCATION FOR NEW SCALAR PRODUCT

BC + CA + AB

ALPIIANUMERIC TITLE READ AT START NF PROGRAM

CELL VOLUME IN DIRECT SPACE

CELL VOLUME IN RECIPROCAL SPACE

MATRIX ELEMENTS OF ORIGNAL CELL TU FINAL CELL

TEMPORARY LOCATION FOR CELL PARAMETER A, B OR C

XX

TEMPORARY LOCATION FOR SCALAR PRODUCT A8, BC OR CA

127
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ez X2XskaXaXslakaksXsXsXaXsXalakaks

XY2

Yz

X
X2
1

1000 FORMAT
1001 FORMAY
1002 FORMAT
1003 FORMAT
1C04 FORMAT
1005 FORMAT
1006 FORMAT
1007 FORMAT
1008 FORMAT
1CE )
1009 FORMAT
1010 FORMAT
1011 FORMAT

TEMPORARY LOCATION OF NEW SCALAR PRODUCT

TEMPORARY LOCATION FOR CELL PARAMETER A, B OR C
Yoy

TEMPORARY LOCATION FOR SCAtLAR PRODUCT AB, BC OR CA
TEMPORARY LOCATION FOR CELL PARAMETER A, B8 OR C
TEMPORARY LOCATION FOR SCALAR PRODUCT AB, BC OR CA
TEMPORARY LOCATION OF NEW SCALAR PRODUCT

e

SENBINNIINITRNINIRERRRSRES
FRMAT STATFMFNTS

SERSNERVEREBBRIBRRTANNNGEED

{16A5)

(313)

(6F10.6)

(1Xy

12+ 2X, 15AS5) -

(9FB8.5)

{1H1)
{1HK,
{1HL,
(1HL,

{1HL,
(1H ,
(1H

4Xy 16A5) .
3X, 44H INPUT DATA OF ORIGINAL CELL IN DIRECT SPACE )
3X, 48H INPUY DATA OF ORIGINAL CELL IN RECIPROCAL SPA

3Xy 40H LATTICES USED IN PROGRAM /)
9Xs TH CELL (411,4H) s 15A5)
99Xy TH CELL (411451H) REDUCED CELL CONFORMING TO TR

LICLINIC CONVENTION )

1012 FORMAT

(1HL,

83H SERROR$ - STATEMENT NO. 401 PLUS 00l CARD, 404 pPL

1US 001 CARD OR 407 PLUS 001 CARD. )

1013 FORMAT

101 CARD OR @

1014 FORMAT
1015 FORMAT
1016 FORMAT
1017 FORMAT
1018 FORMAT
1019 FORMAT
1
1020 FORMATY
1021 FORMAT
1
1022 FORMAT
1023 FORMAY
1024 FORMAT
1025 FORMAT
1026 FORMAT
1027 FORMAT
1028 FORMAT
1029 FORMAT
1030 FORMAY
1031 FDRMAT
1032 FORMATY
1033 FORMAT
1034 FORMAT
1035 FORMAT
1036 FORMAT
1037 FORMAT
1038 FORMAT

{1HL,

(1HL,
(1HL,
{1HL,
(1HL,
{1HL,
(1HK,

(1K
{1HK

(1H4,
{1LKHK,
(1HK
(B,
(1H
(1HJ,
(1H &
(1H
{1HJ,
11H ,
(1HK,
(1HK,
(1HJ,
(1H ,
(1H
(1HJ,
(1H ,

TTH SERRORS - STATEMENT NO. 2 PLUS 001 CARD, 5 PLUS O
PLUS 001 CARD. )

35H $ERRORS — STATEMENT NO. 3, 6 OR 9. )}

47H SERRORS — ERROR IN AXIS DESIGNATION IN PART 1. }
38H S$SERRORS$ - STATEMENT NO. 17, 37 OR 57. }

18H SERRORS - PART 2. )}

3Xy 39H TRANSFORMATION MATRICES /)

12Xy TH CELL (,sI1411H) TO CELL (4I141H),
12X, TH CELL (,11,11H) TO CELL (yI141H) 7/ )
11X, 3F7.2, 12X, 3F7.2 /7 )

12X, 19H CELL (1) TO CELL {(,I1l,1H),

12Xy 7TH CELL (,I1+13H) TO CELL (1) /7 )

4Xy 16AS5 /7 )

9X, 29H LATTICE PARAMETERS OF CELL (,11,5H) -- ,15A5)
15Xy 6H A = F9.4y 14X, 10H ALPHA = F10.4)

15Xy 6H B = F9.4, 14X, 10H BETA = Fl0.4)

15Xy 6H C = F9.4, 14X, 10H GAMMA - = F10.4)

15X, 6H A® = F9.6, 14X, 10H ALPHA® = F10.4)

15Xy 6H Re a F9.6s 14Xs 10H RETA = = F10.4)

15Xy 6H C® = F9.,6, 14Xy, 1OH GAMMA® = F10.4)

15X, 6H V = F9.,3)

15X, 6H Ve = F9.6, // )

99Xy 44H NATURAL TRIGONOMETRIC VALUES OF THE ANGLES )
28Xy TH ANGLE , 66Xy SH SIN , 7X, SH COS )

LSXy TH ALPHA , F13.4, 2F12.51

15X, 7H BETA , Fl3.4y 2F12.5)

15X, TH GAMMA , F13.4y 2F12.5)

15Xy, 7H ALPHA®, F13.4, 2F12.5)

15Xy, 7H BETA =, Fl3.4, 2F12.5)
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1039 FORMAT ( 15X, TH GAMMA®, F13.4, 2F12.5) ) .
1040 FORMAT (1HL, 9Xy 44H SCALARS CORRESPONDING TGO THIS REDUCED CELL )
1041 FORMAT (1HK, 15X, 9H R{l,1) = FT7.2, 5Xy 9H R(2,2) = FT.2, 5X,
1 9H R(3,3) = F7.2)
1042 FORMAT (1HJ, 15X, 9H R{2,3) = FT.2y SXy 9H RI341) = FT7.2» S5X,
1 9H R(1,2) = F7.2) . ’
1043 FORMAT (1HK, 15X, 28H R12,3) + RI(3,1) ¢ R{1,2) = F7,2)
1044 FORMAT (1H , 16X, 314, 21X, 314 7/ } ’ .
1045 FORMAT (1HK, 9X, 29H LATTICE PARAMETERS OF CELL (,f1431H) -- CONVE
LNTIONAL REDUCED CELL ) Co
1046 FORMAT (1H + 16Xy, 6H MOD = FB.4, 19X, &6H MOD = F8.,4 / )
1C70 FORMAT (I1) '
ssssasennssanss
INPUT
J
ssesssasssncces
DIMENSION TITLE(16)y NQ(12)y CELLULS412)y P{343,412),.Q(3,3,12),
1 Wi(3,3412)y IHKL(L22}, DIM(6,12)y AXISI3), COS(3),
2 ANGLE(3), KG9}, NI(9)y D(3), NTEMP(9), NNI(3,3,3),
3 MM(34344)y S(3,3,15), DET(15), BETI(15), NA[9), NB(9)
COMMON INPUT, ITOTAL+MATRIXyAyBsCyALPHA,BETA,GAMMA,AS,85,CS,
1 ALSTARBESTARGASTAR,ICYCLT,ICYCLE+IQUTPT,ISUM,SINAL,
2 SINBEOSINGA'CUSALQCDSBE'COSGA'ALS;BESQGASQS‘NALSvS|NBES|
3 SINGAS yCOSALS+COSBESsCOSGAS,AL+BEyGAyV VS NSTOPK2,AB,8C,
4 CA,)ABSAB,ABSBL s ABSCAMAX,QMAX ,QUMAX s TAXIS 9 X9 Y 3Z o XY Y21 X,
S NCHECK ¢ XXo YY 3 ZZ 4PNy XY2,2X2¢STOREyNTURN AAyBB3CColoJdyKyL oM,
[ KKyJJesJLo LMy ISIGNySUM KXo LL K& oL2yTITLE NQy IMKL,AXIS,COS,
7 ANGLE,LINE yNyDyNTEMP,CELLyDIM,NN,MM,P,Q,W,DET,BET K8,
8 JAYJBR,JC+JFyJB2,NAYNB
9999 READ 1000, (TITLE(I)y I = 1416)
READ 1001, INPUT, ITOTAL, MATRIX
GO TO (61, 62), INPUT
61 READ 1002, A, B, Cy ALPHA, BETA, GAMMA
GO 70 70
62 READ 1002, AS, BS, CS, ALSTAR, BESTAR, GASTAR
70 00 82 J = 1,170T7AL :
B2 READ 1003, NQ(J)y (CELL{I4J)y I = 1,15)
IF (MATRIX) 600, 600, 78 o
78 DO 83 K = 1,MATRIX .-
83 READ 1004y ((PUIyJdeK)y J= 143)y I = 1,3)
essssnecsssanscsensenRs RS
MATRIX INVERSION
SNBNIRNIBIRINNNINBNTRNNRAS
5550 GO YO (5551, 5552, 5553, 5553), K&
5551 L = 1 _
GO TO 5554
5552 L = K
GO TO 5554
5553 L = L2
5554

IH

DETIL) = P(lylyL)@iP{2424L)8P(3,34L) - P(3,2,L)8P(2+3,L))

129
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1 = Plle2sL)o(P(291sL)®P{3,39L) —~ P(341yL)8P(2,3,L1})

2 + Pl143,L)0(Pl2s1sL)oP(3,2,L) — P{3,41,L)eP(2,2,L))
Sflelol} = (PU2424L)8P(3,3,L) -~ P{3,2,L)#P[2,3,L)) / DET(L)
ST1,2,L) = —(Pl1y24L)®P(3,3,L) = P(3,2,L)eP(1,3,L)) /7 DET(L)
SUl¢3eL) = (P{192oL)0P(2,3,L) - Pl242yL)2P(1,3,L)) / DET(L)
SI241sl) = —(P{2,14L)eP(3,3,L) - P(3,1,L)eP(2:3,L)) / DET(L)
S12424L) = (PUlydsL)®P(3,3,L) - P(3,1,L)8P(1,3,L)) /7 DET(L)
S(2v3.L) = "(P(lol'L)'P(2'3.L) - P(ZQI'L,'P(1'30L,, / DET(L)
S(3,1sL) = (P(2,1,L)eP(3,2,L) - P(3,1,L)8P(2424L)) / DET(L)
S(3,24L) = =(P{LsloL)oP(3,24L) = PU(3,1,L)#P{)142,L)) / DET(L)
S(3,35L) = (P(LlslyL)SP([2,2,L) - P21, L)eP{1y2,L)) / DET(L)

DD 5555 1 = 143

D0 5555 J = 1,3

tF (S{l,d,L)) 5555, 5559, 5555
5559 Sil,J,L) = 0.0
5555 CONTINUE

BET(L) = 1./0ET(L}

IF (K& - 1) 5558, 5556, 5558
5556 IF (L - MATRIX) 5557, 5558, 5558
5557 L = L + )

GO TO 5554
5558 GO TO (600, 603, 68, T7772), K4

C
C
C (XXX XERRTIYRSRZEIRZZ R SRR X 2 X X 4
C
c MISCELLANEOUS PROCESSING
c
C SENRENRBERNBNINERRERNSERBEBRNRBRRONRY
o
C
600 ICYCLT = 0
ICYCLE = 0
IOUTPT = 1
K =1
fHKL(L) = 1

I = NQUITOTAL ~ 1)

GO TO (112, 116), 1
112 ISUM = ITOTAL

GO 7O 80
116 1SUM = TT0TAL + 1
80 GO TO (71, 72), INPUT

C

71 SINAL = SINF{ALPHA o 0.01745329)
SINRF = SINFIAFTA # N.N1T764532Q)
SINGA = SINFIGAMMA & 0.01745329)
COSAL = COSF(ALPHA » 0.01745329])
COSBE = COSF(BETA « 0.0176458329}
COSGA = COSF(GAMMA » 0.01745329)

81. ALS = ACOSF((COSBE » COSGA - COSAL) / (SINBE » SINGA})
BES = ACOSF((COSAL #® COSGA - CDSBE) / (SINAL » SINGA))
GAS = ACOSF{{(COSAL & COSBE - CGSGA) / (SINAL = SINBE))
SINALS = SINF{ALS) ’

SINBES = SINF(BES)
SINGAS = SINF{GAS)
CUSALS = COSF(ALS)
COSBES = COSF(BES)

COSGAS = COSF(GAS)

AS = 1. /7 (A = SINBFS » SINGA)
BS = 1. / (B » SINALS # SINGA)
CS = 1. /7 (C » SINALS # SINBE)
ALSTAR ALS # 57.295780
BESTAR BES * 57.295780

Hon
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72

99

65

"GO TO

67
63

64

107

108
73

13

111

113

GASTAR
GO 1O

SINALS
SINBES
SINGAS
COSALS

= GAS ® 57.295780

99

SINF(ALSTAR
SINF(BESTAR
SINF(GASTAR
COSF(ALSTAR

0.01745329)
0,01745329)
0.01745329)
0.01745329)

* e 6 8

CO$BES
COSGAS
AL = ACOSF((COSBES »
BE ACOSF{(COSALS »
GA = ACOSF((COSALS »
SINAL SINF(AL) -
SINBE SINF(BE)
SINGA SINF(GA)
COsAL COSF(AL)
COSBE COSF(BE)
COSGA COSF(GA)

A 3 1. / (AS = SINBE # SINGAS)
B = 1. / (BS » SINAL # SINGAS)
C = 1. / (CS = SINAL # SINBES)
AL & 57.295780

BE » 57.295780

GA e 57.295780

COSF(BESTAR 0.01745329)
COSF{GASTAR « 0.01745329)
COSGAS - COSALS) /7 (SINBES « SINGAS))
COSGAS - COSBES) / (SINALS & SINGAS))
COSBES - COSGAS) / (SINALS = SINBES))

T
o n

L LI T N S T

@
m
-
-4
nan

= A#BsCaSINAL®SINBE=SINGAS

= 1./V
GO TO (65, 65, 777), 10UTPT
DIM(1,K)
DIM(2,K)
DIM{3,K)
DIM{4,K)
DIM(5,K)
DIM(6,K)
I = IHKL({K)
{67, SO01L,
(K - 1) 64,
(ISuM - K)

A

B

c
ALPHA
BETA
GAMMA

41), 1
64y 63
41, 41,

IF
IF 113
PRINT
PRINT
GO TO
PRINT
GO 10
PRINT 1008

PRINT 1009

DO 13 J = 1,1TOTAL

PRINT 1010, Jy, (CELL(I,J), I =
I = NQUITOTAL - 1)

GO TO (113, 111), 1

J=J+1
PRINT 10L1l, J
I = NQ(K)

GO TO (5000,

1005
1006,
{107,
1007
73

(TITLE(D), I =
108), INPUT

1,16)

1+15)

500t), I

(A2 XX AR X R R AR RS RZZZZ SRS RSN RS RER R RN RN J

TRANSFORMATION USING MATRIX SUPPLIED THRU INPUT

LA 22X AR R X R X S RS RR R R RS S RSN R RS ESEEE R AR X ]
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CALCULATION OF THE NEW A, B C

[aNakal

5000 ICYCLT .= ICYCLT + 1
00 117 l = 1,3 :
117 AXIS{I)= SQRTF((P(l.loK)!A)OOZ + (P(Iy2.K)eB)we2 + (P(Is3,K)eC)ee?

1 4+ 2.#(P{1y1,K)eP(1,2,K)2A#BoCOSGA
2 + PllslyK)sP(1,3,K)eAeCeCOSBE
3 + P(1,2,K19P(1,3,K)sB8eCeCOSAL))
c
c CALCULATION OF THE NEW ALPHA, BETA, GAMMA
¢ .
J = 2
L =23
UU 1Y 1 = 1,3
COS(I) = (P(JyLloKIaP{LyloKIwARA + PlJIe24K)®P{L,2+K)eBeB
1 + P(Ji3;K)ePIL,3,K)eCe(
2 4 {PUJy 1K) ePIL 24K} & PLJs2,K)6PILy1,R)I#AGBELCUSULA
3 + (PlJeleK)eP(Ly3sK) ¢ PlJe3,K)aP(Ly1lyK))eAsCsCOSBE
4 + (PUJy2+K)eP(Ly3yK) + P(J'31K’OP(Lo2'K’"ﬂ.C'COSAL'
5 /7 (AXISt(J)eAXISIL))
ANGLE(I) = ACOSF(COS(I)) = 57, 295780
GO TO (115, 16, 19}, 1
115 J = 1
GO 10 19
16 Lt = 2
19 CONTINUE
A = AX1S(1)
B = AXIS(2)
C = AXIS{(3)
ALPHA = ANGLE(1)
BETA = ANGLE(2)
GAMMA = ANGLEI(3)
K = K+ 1
THKL(K) = 1
GU 1u 11}
C
C
(o SRR IR RN RN RN R RN RNENE R NERRERNRRERRISREORERONORRARNNSRES
c .
C IRANSFUKMAT IUN U REUULED LELL
[
o P T N T Y Y Y N TN N NN R LR g
c
c
C PART 1. TRANSFORMATION.
c
C
5001 K = K + 1
THKL(K) = 2
ICYCLE = 1
AB = A » B » COSGA
BC = B « C #» COSAL
CA = C » A » CCSBE
CO 175 J = 149
N({J) = 0
175 NA(J) = O
N(1l) = 1
N{S) = 1
N({9) = 1
NA(L1l) = 1
NALS) = 1
NA(9) = 1
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<176
401

404
407
91
92
93
94
95

96

101
102

121
122

201

202

123

124

301

302

NSTOP = 1

K2 = 0

ABSAB = ABSF(AB)

ABSBC = ABSF(BC)

ABSCA = ABSF(CA) ,
QQMAX = MAX1F(ABSAB, ABSBC, ABSCA)

IF {CQMAX - ABSABJ 176, 401, 176
IF (QQMAX - ABSBC) 890, «D4, 407
QMAX = MAX1F(A,B) ' .

IF (QMAX - A} 84, 91, 92

CMAX 3 MAX1F{B,C)

IF (QMAX - B) B84, 93, 94

QMAX = MAX1F{C,A)

1F LQMAX - C) B4, 95, 96

1AXIS = 2

GO TO
IAXIS
GO 10
1AX1S
GO TO0
1AXIS
GO TU
TAXIS
GD TO
TAXIS
GO TO

1
3

L LI T [NV (I N TR R T ]
~N

MAX =
GO TO 10

1AXIS = 1

QMAX = MAX1F(B,C)

IF (QMAX - B) 87, 101, 102
K2 = 1

G0 TO 30

K2 = 2

G0 TO 50

IF (K2 - 1) 88, 121, 122
1AXIS = 2

GO 10 50

IAXIS = 3

MAX = &

GO T0 30 -

1AXIS = 2

OMBX = MAXLFUA,C) -

IF (QMAX - A) 87, 201, 202
K2 = 1

G0 TO 10

K2 = 2

GO TD SO

IF (K2 - 1) 88, 123, 124
1AX1S = 1

G0 TO 50

1AXIS = 3

60 YO 10

—

MAX = 7

GO TO SO

[AXIS = 3

QMAX = MAXLIFLA,B)

IF {QMAX - A) 87, 301, 302
K2 = ]

GO TO 10

K2 = 2

133
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GO 10 30
9 IF (K2 - 1) 88y 125, 126
125 1AXIS =1
GO T0 30
126 TAXIS = 2
GO T0 10
84 PRINT 1012
GO TO 890
87 PRINT 1013
GO TO 890
88 PRINT 1014
GO TO 890

acoo

REDUCTION OF A, (QMAX = A)
10 A
8
L
AB
BC
ca

x
-
W muw

NCHECK = 1

GO TO (85, 11, 12), IAXIS
11 1 =2

GO 10 100
121 =3

GO 10 300

15 A
8
"
AB
BC
CA

{ LI L LI I | I 1}

I}

NCHECK = NCHECK - 1
IF (NCHECK) 46, 17, 17
17 IF (1 - 2) 86, 12, 11
46 MAX = MAX + 1
NSTOP = NSTOP = 1
IF (NSTOP - 3) 18, 18, 601
18 GO TO (1ly 29 3¢ 49 5y 69 Ty 8y 9)y MAX

[aNalel

REDUCTION OF 8, (GMAX = B)

30 8
c
A
8C
CA
AB

8 4 W h

NCHECK = 1

GO0 TO (32, 85, 31), IAXIS
31 1 =6

GO TO 100
321 =4

GO TO 300

35 A
B
C

[ T 1]
< X M~
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(sl eNal

37

50

51

52

55

57
85

RA

100

110
120

130
150

142
143

l44
160

170

AB
BC
CA

X
XY
Yz

NCHECK = NCHECK - 1
IF {NCHECK) 46, 37, 37

IF

t1 - 4) 86, 31y 32
REDUCTION OF C.

LI T T ]
O@P>» 0O
>

NCHECK = 1
GO 7O (51, S2» 85), IAXIS

GO YO 100

10 300

W nw
<
~

NCHECK = NCHECK - 1
IF (NCHECK) 46, 57, 57

1F

(F - 7) 86y, 52, 51

PRINT 1015
GO 70 890
PRINT IN1A
GO TO 890

XX
Yy
PN
iF
IF
Xy
IF

2

REDUCTION OF X.

XeX

Yoy

0.

(ABSF(XY) = 0.5 ® YY) 444,
(XY) 120, 444, 200

= XY ¢ PNeYY

(XY2) 130, 150, 150

et 1

STORE = XY2

PN

= PN ¢ 1.

GO T0 110
IF (ABSFIXY2) - ABSF(STORE}) 143,

PN

= PN - 1.

NA(I) = PN
SQRTF{XX ¢ 2,4PNeXY ¢ PNePNuYY)

X

X
IF
Xy
GO0
Xy
GO

= IX 4+ PNeY2

(ABSF(XY2) - ABSF(STORE)}
= XY2

T0 520

= STORE

T0O 520

(QMax = C)

444,

160,

110

170,

ABSF(X.Y) GREATER THAN (Y®«2)/2

142, 142

170

135
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200 XY2 = XY — PNeYY

IF (XxY2) 250, 250, 230
STORE = XY2
PN = PN ¢+ 1.
GO TC 200

IF (ABSF(XY2)
PN = PN - 1.
NA({I) = -PN

X = SQRTF(XX — 2.#PNeXY + PNePNeYY)
IX = IX - PNeaY2

GO TO 144

230

250 243, 242
242

243

- ABSF(STORE)) 243,

REDUCTION OF X. ABSF{2.X) GREATER THAN (Zee2)/2

(s NaNel

XaX
L+
O.

jou xx
144
PN
1E (ABSF(2IX) = 0.5 = 22)
IF {(IX) 320, 444, 400
IX2 = IX ¢ PNe22
IF (ZX2) 330, 350,
STORE = IX2

PN = PN ¢ 1.

GO T0 310

IF {ABSF(2X2) - ABSF(STORE)) 343,
PN = PN - 1.

NA(1) = PN

X = SQRTF{XX + 2.,ePNeZX ¢+ PNePNaZZ)

XY = XY ¢ PNeYZ )

IF (ABSF(2IX2) -~ ABSF(STORE)) 360, 370,
IX = Ix2

GO T0 520

L% = STURE

GO 1O 520

4494,y %4%%. 310
310
320
350

330

350 342
342

343

342,

344 370
360 .
310

400 1x2 = 1IX = PNell
IF (IX2) 450, 450,
STORE = IX2

PN = PN ¢+ 1,

GO TO 400

IFf (ARSF(72X2) - ARSFISTORE))
PN = PN - 1.

NA{l) = -PN

X = SQRTF(XX = 2,ePN#lX + PNsPNell)
XY = XY - PN#YZ

GO YO 344

430
430

450 héed
462

463

463, 463,

520

540
521

NB(1)
NBL2)
NB(3)
NB(4)
NB(5)
NB{A)
NBI(T)
NB(B)
NB(9)
DO S21 J
N(J) = N
IF (N(J)
N{J) = O
NA(J)
NA(L)
NA(S)

L LI T B B [ | S T 1

NALL)eN(1)
NA(1)eN(2)

NA(L)eN(3)

NA(&4)eN(1)
NA({&4)eN(2)
Naf4deN(D)
NA{T)YeN(L)
NA(T7)eN(2)
NA{T)eN{3)
= 149
B(J)

) 521,

0
1
1

540,

L R R K IR R B AR 2 4

NA(2)eN(4)
NA(2)eN(5)
NA{2)eN(6)
NA(S)aN{4)
NA(S)eN(5)
NA(S)aN(6)
NA(B)eN(4&)
NA(B)eN(S)
NA(RIaN(A}

521

PER IR I AT RSP

NAI3)eN(T)
NA(3)#N(8)
NA(3)eN(9)
NA(G)aN(T)
NA(6)#N(B)
NALG) SN ()
NA(9) eN(T)
NA(9)sN(8)
NAITQYeN(Q)
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aOOODO

OO OO0

4b4

601

501
502
503
504
505
506
381

66

611

702
612

613

703
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NA(9) = 1
GO 70 (601, 15, 15, 35, 601, 35, 55, 55, 601), I

OUTPUT OF PART 1. (REDUCED CELL)
COSAL =-8BC / (8sC)
COSBE = CA / (CeA)

COSGA = AB / (AsB)
AL = ACOSF{COSAL)
BE = ACOSFI(COSBE)
GA = ACOSF{(COSGA)

SINAL = SINFLAL)

SINBE = SINFI(BE)

SINGA = SINF(GA)

ALPHA = 57.295780 ¢ AL
BETA = 57.295780 « BE
GAMMA = 57.295780 & GA
tL = 1

GO TO 602

A TEST IS NOW MADE TO DETERMINE IF THE CELL JUST OBTAINED
IS THE REDUCED CELL. 1IF ONE OR MORE OF THE AXES CAN BC FURTHER
REDUCED, THE PROGRAM RETURNS TO STMNT 382 FOR ANOTHER CYCLE.

A#A) 502, 502, 381
B«B) 503, 503, 381
8#*B8) S04, 504, 381
CeC) 505, 505, 381
CeC) S06, 506, 381
AepA) 66, 66y 381

IF {ABSF(AB) -
IF (ABSF(AB) -
IF (ABSF(8BC) -
IF (ABSF(BC) -
IF (ABSF(CA) -
IF (ABSF(CA) -
ICYCLE = ICYCLE
GO TO 382

L B BN BN BN )

PART 2. TRANSFORMATICON OF REDUCED CELL TO CONVENTIONAL
REDUCED CELL. THE CONVENTION IS C LESS THAN A LESS THAN B,
WITH ALFIIAy DCTA OBTUSE.

JA =0

Js = 0

JC = Q

K = K + 1

IHKL(K) = 3

NTURN = 1

KK = 3 :

IF (MINLF(A,B,C) - A) 702, 611, 999
JJ = 7

M= -6

GO 10 721

IF (MINIF(A,B,C) - B) 612y 613, 999
JCe = 1 :
JJ = 7

M =0

GO 10 723

JJ = 7

M= -3

GO 1O 722

NTURN = 2

KK = 2

IF (MAX1F(A4B,C) - A) 999, 614, 704
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6la JJ = 4
M = -3
GO TO 721
704 IF (MAX1F(A,B,C) ~ B) 999, 615, 616
615 JB = 1 ’
JJ = &
M =0,
GO T0 722
616 JJ = 4
M= 3
GO TO 723
706 NTURN = 3
KK = 1-
IF (0(2) - A) 710, T07, 710
710 IF (D(2) - B) 999; 708, 709
707 IF (MINL1FUB,L) - B) 822, 421, 999
621 JJ = 1
‘M= 8
GU U 723
622 JJ = 1
M =3
GO T0O 722
708 IF {(MIN1F{A,C) - A) 623, 621, 999
623 JA = 1
S Jdd =1
M =0
GO TO 721
709 IF (MIN1F(A,B) - A) 623, 622y 999

721 D(KK) = A
ANGLE (KK} = ALPHA
664 JL = JJ + 2
nn 465 L = JJ,J4L
LM =L + M
665 NTEMP({L) = NI(LM)
GO TO (703, 706y 739), NTURN
722 UIRK) = B
ANGLE (KK)
GO TO 664
723 D(KK) = C
ANGLE (KK}
GO TU o564

BETA

GAMMA'

739 DO 730 I = 1,9
730 N(I) = NTEMP(I)
A = 0(1)
8 = D(2)
C = 0(3)
ALPHA = ANGLE(1)
BETA = ANGLE(2)
GAMMA = ANGLE(3)

THE FOLLOWING SECTION CHECKS TO MAKE SURE ALPHA AND BETA ARF
BACH EQUAL YU UR GREATER THAN 90 DEGREES. IF ONE OR BOTH ARE
LESS THAN 90 DEGREES, THE PROPER ADJUSTMENTS ARE MADE.

[aXeNeNalal

223 LL = 2
ISIGN = 0 :
IF (ALPHA - 90.0) 21, 801, 801
21 ISIGN = ISIGN + 1
801 IF (BETA - 90.0) 22, 802, 802
22 ISIGN = ISIGN + 1 -
802 IF (ISIGN - 1) 602y 69, 79
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69

444]
6661

43

4442
6662

44

4443
6663

[aNaNalaNel

79

4444
6664

602

[aNaNaNaln o

-ED
832
833
835

821
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ISIGN = 1
EITHER ALPHA OR BETA IS LESS THAN 90 DEGREES. REDEFINE THAT
ANGLE AS ITS SUPPLEMENT AND SET GAMMA = 180.0 - GAMMA,
[TWO ANGLES MUST ALWAYS BE TRANSFORMED SIMULTANEOUSLY.)

GAMMA = 180.0 - GAMMA

00 6661 1 = 7,9

NtI) = =N(D)

IF (NU1)) 6661, 4441, 6661
N(I) = 0 '

CONTINUE :
IF (ALPHA - 90.0) 43, 44, 4&
ALPHA = 180.0 - ALPHA '
DO 6662 1 = 1,3

NII) = =N(ID)

IF INIT)) 6662, 4442, 6662
N{I} =0

CONTINUE

GO TO 602

BETA = 180.0 - BETA

DO 6663 1 = 4,6

NCI) = =N(I)

IF (N(I)) 6663, 4443, 6663
NiI) = 0

CONTINUE

GO TO 602

ISIGN = 2
REDEFINE ALPHA AND BETA AS ITS OWN SUPPLEMENT AND REVERSE THE

OIRECTIONS OF A AND B.

ALPHA = 180.0 - ALPHA

BETA = 180.0 - BETA

0O 6664 1 = 1,6

N(I) = =N(T)

IF (N(1)) 6664, 4444, 6664
N{l) = 0

CONTINUE

GO TO (821, 831), LL

A CHECK IS MADE TO DETERMINE IF THE SYSTEM HAS GONE FROM
RIGHT-HANDED TO LEFT-HANDED OR VICE VERSA. [IF JF = 1 THE SYSTEM
HAS REVERSED. IF JF = 0 OR 3, IT HAS NOT REVERSED. )

JE = JA ¢+ JB + JC

IF (JF - 1) 821, 832, 821
00O 835 1 = 1,9

N{I) = =N(DD)

IF (N(I)}) 835, 833, 835

N(I) =0

CONTINUE

K =K-=-1

NN{lyslstl) = N{1)
NN({1,2,LL) = NI(2)
NN(1,3,LL) = NI(3)
NN({2,14LL) = N(4)}
NN{2424LL) = NI5)
NN(2,3,LL) = N{6)
NN{3,1,LL) = NIT)
NN(3,2,LL) = N(B)
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[zEalelaNaNelaNeNale)

603

999

41
45

gesl

+8882

T
58
59
53
54

104

105

106

8883

8890

NN{(3,3,LL) = N(9)

PlLs14K) = N(1)
Plly2,K) = N(2)
P{le3,K) = Ni3)
P{2+1+K}) = Ni4&)
Pl2924K)} = N(5)
P12+34K) = NI(6)
Pi3yl,K) = NILT)
P(3424K) = NI(8)
P(343,4K) = NI(9)

K& = 2

GO TO 5550

MM({1,1,LL) = S(1,41,K)
MM{1y2,LL) = S(1,y24K)}
MM{L1s3,LL) = S(1y39K)
MM{2:14LL) = S{251,4K)
MMIZ2920LL) = 5(2,2,K)
MM{2433LL) = S12y3,K)
MMI3414LLY = SUDv1,K)
MM(3.2.LL) = 5(3'21K,
MM{3,3,LL) = S{3,3,K)
K = K + 1 -

IF (ITHKL(K) - 2) 81, 81, T1
PRINT 1017

GO 7O 890

BRGNS NERS NN BRNENRNNERENENNEENNENRBRBRVNNRRPBBATIBEBINEEBRRIRN

GENERATION OF MATRIX FOR TRANSFORMATION OF ORIGINAL

CELL TO FINAL CELL

I Z X E XXX YR SR XIS R S RNRNNRIREN YR RERY YRR N Y X 4

IF (170TAL - 3) 68,
K4 = 3

K =K + 1

[HKL(K) = 4

DO 8882 L = 1,ISUM
NN aB82 J4 = 1.3

00 8882 I = 143

Qilsdsl) = P(I,J,L)
IF (K& - 4) 56, 58,
K8 = K

GO 10 59

K = K8

IF (ICYCLE) 53, 53,
K =K + 1

L=K-13

M= K=~ 4

LL = L

no 105 1 = 1.3

D0 105 J = 1,43
WilsJyL) =

45: 45

58

5¢4

QUIo1oL)2QULyJoMI*QIT42,L)2Q(29JoM)I+Q(143,L)2Q(39dsM)

IF tM - 1) 8890, 8890, 106

DO 8883 I = 1,3
DO 8883 J = 1,3
QllsyJdel) = H(lpJ'L’
MaM- 1]

GO 70 104

1F (K4 - 3) 890, 8892, 8891
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8891

8892
8893

8887

68

798

799
800

750

751

743

152

155
740
T41

753

MM{LlodloL) o MMILs2,L),
MM{2¢loL )y MM(2y24L)

MM{3g1oL)oeMM{3424L)y

MM(LlolsL)gMMILl,20L),
MM{291oL) MM(242,0L),

MM(3414L)9yMMI3,24L),

L2 = L2 + 1

GO TO 8893

L2 = ISUM

00 8887 I = 1,3

DO 8887 J = 1,3

Plledoel2) = WllyJdyl)

GO. TO 5550

snesscscssnsnaes
ouTPUT
ssssccnccssssase

10UTPT = 3

"PRINT 1018

K =1

1F (ISUM - 5) 798, 799, 799

LINE = 2

GO YD 800

LINE = 3

I = NQ(K)

GO YO (750, 751), 1

KX = K + 1

PRINT 1019, K, KX, KX, K

PRINT 1020, PllyleK)oPl19y2+sK)ePlls34K),

PRXNT 1020' P(2.loK)'P(Z.Z,K).PIZvB.Kh

PRINT 1020, PU3,14K)¢yP(342¢K)9P(393,4K)y

PRINT 1046y DET(K),y BFT(K)

GO TO 755

L =1

KX = K ¢« 1

PRINT 1019, K, KX, KX, K

PRINT 1044y NN(19)1oL)gyNN(L92sL)eNN(1,3oL ),
MM(1,3,L)

PRINT 1044, NN{2,1,L)sNN{2,2+L)yNN(2,3,L),
MM{2,3,L)

PRINT 1044, NN(3¢LoL) o NN(342+L)sNN(3s3.L)},
MM{3,3,L)

PRINT 1046, DET(K), BET(K)

LINE = LINE ¢ 1

IF (LINE - 5) 752, 743, 743

LINE =1

PRINT 1022, (TITLE(L),y | = 1.+15)

L = 2

KX = K + 2 .

PRINT 1019, K, KX, KX, K .

PRINT 1044y NN(lylyoL)yNN(1,24L)sNN{1s3,L),
MM(1,3,L) .

PRINT 1044y NN(2914L)sNNI2:,2+L)oNN(2y30L),
MM{2,3,L)

PRINT 1044, NN{3,1,L)¢NN(3,2+L)yNNI(3,3,L),
MM(3,3,L)

PRINT 1046, DET(K+1)y BET{(K+1)

LINE = LINE + 1

IF (LINE - 5) 741y 740, 740

LINE = 1

PRINT 1022, (TITLE(I)y I = 1+15)

K = K +-1

IF (ITOTAL - K) 753, 753, 800

IF (ITOTAL - 3) 742, 757, 757

141

STl oK) sS{1924K)9SU1s3,K)
S{2919K)9S12,2,K}4S5(243,K)
S{341,K)3S{3924K)yS(3,3,K)
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c

757 PRINT 1021, ITOTAL,ITOTAL .
PRINT 1020, P(1lyloL2)sPU1929L2)4P(1,34L2)y S{1919sL2)+S(1429L2),
1 S(143,L2)
PRINT 1020, Pl2¢19L2)4P(2429L2)sP12)3,L2)y SI2+141L2)+5(242,L2),
1 S(2,3,L2) . ! '
PRINT 1020, P(3o19L2)sP(3,24L2)4P(343¢L2)y S{3¢1+L2)+S5(342,L2),
1 St{3,34L2)
PRINT 1046, DET(L2), BET{L2)
IF (ICYCLE) 742, 742, 1758

758 K4 = &
JB2 = JTOTAL - 1
DO 7771 1 = 1,3
DO 7771 J = 143

7771 PUI,JyJB2) = NN(I,Je2)

AN TH ARAL

7772 LINE = LINE + 1
"IF (LINE - 5) 761, 760, 760

760 LINE = 1
PRINT 1022, (TITLE(I), I = 1,15)

761 PRINT 1021, 1SUM, ISUM ‘
PRINT 1020, P{1le14Ll2)4P(1929L2),P{1,3,L2)s S(1o1sL2)sS(Ls24L2),

1 St1,3,L2)
PRINT 1020, P{2414L2),P12,24L2)9sP({2y34L2)y S{2419L2),S5S(242+0L2),
1 S12,3,L2)
PRINT 1020, P{3,1,L2)4P(3,29L2)sP(3434L2)y S(3,1,0L2},5(3,2,4L2),
1 S(3,3,L2) .
PRINT 1046, DET(L2), BET{L2)
C
742 J = 0
756 4 = J + 1
PRINT 1022, (TITLEI(I}, I = 1,16)
IT {IHKLIJ) = 3) 771, 772, 771
771 PRINT 1023, J, (CELLII4J)y I = 1,15}
GO 10O 773
712 PRINT 1045, J
[
773 A = DIM(1,J)
B = DIM(2,J)
C = DIM(3,J)
ALPHA = DIM{4,J)
BETA = UIRI%,J)
GAMMA = DIMI(6,J)
GO TO 71
777 PRINT 10244 A: ALPHA
PRINT 1025, B, BETA
PRINT 1026, Cy GAMMA
PRINT 1027, AS, ALSTAR
PRINT 1028, BS, BESTAR
PRINT 1029, CS, GASTAR .
PRINT 1030, V '
PRINT 1031, - VS
[
SINAL = SINF{ALPHA & 0.01745329)
SINBE = SINF(BETA =« 0.01745329)
SINGA = SINF(GAMMA » 0.01745329)
COSAL = COSF{ALPHA » 0.01745329)
COSBE = COSF(BETA & 0,01745329)
COSGA = COSF(GAMMA # 0.01745329)
SINALS = SINF(ALSTAR » 0.01745329)
SINBES = SINF(BESTAR # 0.01745329)
SINGAS = SINF(GASTAR & 0.01745329)
COSALS = CCSF(ALSTAR » 0.01745329}
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208

890
9998

89

COSBES = COSF(BESTAR « 0.,01745329)
= COSF(GASTAR o 0.01745329)

COSGAS

PRINT 1032
PRINT 1033

PRINT 1034, ALPHA, SINAL,s COSAL
PRINT 1035, BETA, SINBE, COSBE
PRINT 1036, GAMMA, SINGA, COSGA

PRINT 1037, ALSTAR, SINALS,
PRINT 1038, BESTAR, SINBES,
PRINT 1039, GASTAR, SINGAS,

I = IMKL(J)

GO.TO (208, 871, 871}, 1
PRINT 1040

AA = AeA

‘88 = BeB

CC = CsC

AB = Ae*BeCOSGA

BC = Be#CeCOSAL

CA = CeAeCOSBE

SUM = A8 + BC + CA
PRINT 1041, AA, BB, CC
PRINT 10642, BC, CA, AB
PRINT 1043, SUM

IF {(ISUM - J) 890, 890, 756 .

REAC 1070, ICONT

IF (ICONT) 89, 89, 9998
PRINT 1005

GO 10 9999

STGP 89

END

143
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APPENDIX I. THE SPACE LATTICE

The periodic arrangement of atomic or molecular units in a crystal
may be conveniently expressed by representing the repeating units as
points. The result is a three-dimensional network of points in space

called a lattice or point lattice and the points making up this network are

the lé.ttice points. This framework has the property that it can be moved
about in space like a rigid body either by translation or rotation about a
given axis so as to bring the lattice points i;lto self-coincidence. .

As can be seen from Figure 13 a point lattice may be regarded as
dissecting space into a set of parallelepiped cells with a lattice point at

each corner. Each cell, or unit cell, is identical in size, shape and

Fig. 13. The Space Lattice
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orientation. The number of cells differing in size, shape and orienta-
tion in a lattice is infinite since there are an infinite number of possible
lattice rows. However, only three non-coplanar rows are required to
outline a cell in three~-dimensional space. The shape of this cell, and
hence the shape of the entire lattice; may be completely described by
_specifying the repeat distance between points along each nf the three‘
chosen directions in the lattice and by specifying the angles between these
three intersecting rows (Figure 13). The total number of parameters is
thus six: three crystallographic axes a, b, ¢ and three interaxial angles
o, B, ¥, where

& is the angle between sides b and c,

B is the angle between sides a and c,

Y is the angle between sides a and b.
A varlety of names are given to the six quantities which specify a three-

dimensional lattice. The three most commonly used are lattice parama

eters, lattice constants and cell dimensions.

Crystals contain symmmelry as a consequence of periodicity and
only certain types and combinations are allowed, giving rise to 32 point
groups and 230 space groups, each corresponding to possible combina-
tions of symmetry in a lattice. The net effect of symmetry is to re-
strict the axial lengths and angles to special values, resulting in cells
of various shapes. By dividing the point groups into classes according
to the principle axes of rotation, that i§, withn =1, 2, 3, 4 and 6 and,

if necessary, by further subdivision according to a common set of unique
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symmetry elements, the seven crystal systems result. These are
summarized in Table 4. The minimum esséntial symmetry elements
which define each system are shown in column 3. It is these elements
alohe which are responsible for fixing one or more of the six lattice
parameters summarized in columns 5 and 6.

. As is shown in column 4 of Table 4 the threefold axes which define
the rhombohedra)I and cubic systems lie along the body-diagonals rather
than coinciding with one or more of the three crystallographic axes. In
these two systems it is this element which controis the six parameters.
First, a threefold along a body-diagonal restricts a = b = c. The cubic
system then differs from the rhombohedral system only in the total
number of threefold body-diagonals; the former has only one whereas
the latter has four at 109°28' to each other. Such an arrangement of
threefolds restricts the angles o = B =7%Y= 90° for the cubic system
whereas no such restriction exists in the rhombohedral system.

The cells corresponding to the seven crystal systems and the
unique symmetry elements controlling their shape are shown in Figure
14.

It may turn out experimentally that two or more cell parameters
which are not required to be equal in magnitude may actually turn out
to bc accidentally equal, within experimental error. Such a cell is a
pseudo-cell and is always of lower symmetry than the parameters in-
dicate. For instance, if the B-angle of a monocliniccellis 90°, allthree

sides still unequal, it is only pseudo-orthorhombic and is still monoclinic



TABLE 4

NS
The Sevan Crystal Systems @
j .
Order of Crystal | Minimum Symmetry Require- Location cf Axial Interaxial
Principle Axis| Svstem | ments; unique elements Unique Elements| Lengths | Angles
1 Triclinic none | a#b#c | a#pty
: (Anorthic)
2 Monoclinic 1 (twofold, mirror) b-axis a#b#c | a= y=90°;8>90°
) Orthorhombic | 3 (twofolds, mirrors) a» b, c-axes a#b#c | a=8=y=90°
(Rhombic)
3 Rhcmbohedral 1 (threefold) body-diagonal a=b=cla=B=7y#90°
(Trigonal)
2or4 Cutic 4 (threefolds) body-diagonals; la = b =c| a=8=7y= 90°
(Isometric) o 109° 28! to each other
4 Tetragonal 1 (fourfold) c-axis a=b#c | a= B=7v=90°
6 Hexagonal 1 (sixfold) c-axis a=b#c |a=8= 90%y=120°




Tetragonal

Triclinic

Monoclinic

Hexagonal

- .Y
>
Orthorhombic
A
»
v.
5
-
Rhombohedral Cubic

Fig. 14. The seven crystal systems.

A
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by symmétry due to the absence of intersecting mirror planes or two-

fold axes. Likewise, an orthorhombic cell whose three sides are equal

in ie‘ngth is pseudo-cubic but still remains orthorhombic by symmetry

due to the absence of crystal units related by threefolds axes. |
Dependipg upon the three intersecting lattice rows. which are

choacn, cclls of a wide variely uf shupes and sizes are possible in a

given lattice. As can be seen from Figure 15 such cells are not restricted

to so-called primitive cells with a lattice point located at just the corners;

non-primitive or centered cells are also possible. -

Fig. 15. Examples of different cells outlined in a lattice

There are, in all, only three unique types of centering, namely
end-centering, face-centering and body-centering. These, together
with primitive, constitute the four lattice types. The primitive, or

simple cells, denoted by the symbol P, contain only one
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lattice point per cell, each point located at a corner and shared by eight
cells. The centered cells contain points in addition to those in the

corners. Thus, the body-centered cell, denoted by the symbol I, con-

tains one additional point at the body center. The end-centered cell,

denoted by the symbol A, B or C, also contains two points per cell butwith
centering on two faces, namely those Which are parallel and opposite'

each ofher. The symbol dénotes the face on which the centex;ing occurs
and is defined with the A face containing the b- and c-axes, the B face
containing the a~ and c-axes and the C face containing the a- é.nd b-axes.
In orthogonal systems this is equivalent to saying that the A face is nor-

mal to the a~axis, the B face normal to the b-axis and the C face normal

to the c-axis. The face-centered cell, denoted by the symbol F, exhibits
centering on all six faces, thereby inc‘reasing to four the number of
points per cell; those in the eight corners constitute one and those in the
six faces, each shared by two cells, constitute the other three.

The relative volumes of the primitive and centered cells of course
vary in exactlly the same ratio as the number of lattice points each con-
tains. That is, the 'Vo.lume of the cells of lattice type P:(A, B, C') :I:F is
in the ratio 1:2:2:4. A cell containing two latt;ice points is said to be
doubly primitive, three points triply primitive a.nd'four points quadruply
primitive.

In practice it would seem logical to outline the cell in a lattice
having the smallest volume, namely a primitive cell. Why then does

one concern himself with centered cells at all? The unit cell, it must be
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understood, does not literally '"exist'" as such in a lattice; they are only
a mental construction chosen at ones convenience. There are thus.' an
infinite number of cells which can be outlined in a lattice. On thé other
hand there is always only one unique cell of least volume whose axes
correspond to the primary rotation axes of the lattice a."s a whole. - This
is the cell in which one ic really interected for it io the only ccl} whicﬁ
displays the fqll symmetry of the lattice. As a result, this cell may
turn out to be centered with a repeating unit of structure in its faces or
body center. For this reason it is necessary that we retain centered
cells in crystal classification.

Al seve;'x crystal systems are capable of possessing centering.
Depending upon the system some of these centered cells can be trans-
formed to centered cells of smaller volume or transformed directly to
a primitive cell without losing its full symmetry. This merely amounts
to redefining in the lattice a new cell without destroying the 90° angles.
Fox; instance, a face-centered monoclinic cell may be redefined as an
end-centered monoclinic cell with half the volume and no loss in sym-
metry. It is not possible, however, for each of the seven systems to
have each of the three types of centering; somé types of centering‘ are
not consistent with the symmetry conditions. For instance, a cubic
cell cannot have centering on only one pair of opposite faces as the
symmetry would then no longer be cubic; rotation -aboqt'any.one of the.
four threefold body-diagonal axes would automatically generate cenfering

in the other pair of faces.

o
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As a convenient rule of thumb, the following order of reductions
are seen to hold for the '"possible' transformations of lattice types

within a crystal system:

A
F—>»]~—B —P lattice type
C : - '
4 2 2 1 pts. per cell; rel. vol.

The direction of the arrow indicates the-direction in which one lattice
type may be réduced to another, if possible. Thus, in the tetragonal
system two reductions are possible: a C centered lattice may be reduced
to a primitive lattice and a face-centered iattice to a body-centered
lattice, each with a reduction in both volume and total number of lattice
points. Note the order "I before (A, B, C)'"'; it is writte:n in this way be-
cause a monoclinic I lattice may be converted to an A or C monoclinic
lattice (B-unique) or A or B lattice (c-unique), the arrow indicating this
direction of transformation.

The primitive cells, plus those where the centering is unique, are
listed in Table 5 and shown in Figure 16. These are called the fourteen

Bravais Lattices.
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TABLE 5.

- THE FOURTEEN BRAVAIS LATTICES

Uniqué Alternative Direct
System | Lattice Types | Symbols for Other Relationship
' x : Orientations S
Triclinic P A B, C I F P(=‘A=B'=c=1v=,1=')'
'Monoc_"linic‘ P, c . A, B, I, F P(=B), C(+A=I=F) .
Orthorhombic| P, C, I, F A, B . C(=A=B)
Tetragonal | I", I C, F | | P(=C), I(=F)
Hexagonal | H P(H)
Rhombohedral |
Cubic P, I F
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Fig. 16. The fourteen Bravais lattices.
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APPENDIX II. VECTORIAL REPRESENTATION OF AXES
IN A DIRECT LATTICE

Since each point in the three-dimensi.ong.l lattice is related by
translation to an adjacent point (or any other point), such an array of
points may be defined by three non-coplanar vectors. These three vec-
tors each have magnitude and direction, corresponding to the distance
and direction the rigid lattice must be translated to arrive at self-
coincidence. Alternately, the three vectors may be considered as
representing the three arbitrary distances and diréctions one point must
be moved to generate all the other points to completely fill space.

For convenience, the vectors a, b and ?describing the point
lattice may be placed so that all three eminate from a single point, con-
veniently taken as the corner of a cell (Figure 17). Each vector will
then terminate at the next point along the lattice row. The length of the
three sides a, b and c of the unit cell correspond to the magnitudes of
the vectors and the angles o, B8, ¥ to the angles between each pair of

vectors.

I'ig. 17. A three dimensional parallelepiped, or unit cell.
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APPENDIX III

TRANSFORMATION OF LATTICE AXES, MILLER INDICES
AND ATOMIC COORDINATES

Given a cell defined by a set of coordinate axes, or vectors, in a
lattice it is sometimes desirable to fedefine in the laftice a new cell
possessing a new set of coordinate axes. Accompanying this change there
is a change in the intercepts which the new axes make with the various
planes, that is, a change in the Miller indices, as well as a change in

- the lattice axes in reciprocal space and the atomic céordinates of the
atoms. As is shown in Table 6 when transforming from cell (1), fhe
or:iginal cell, to cell (2), a new cell in the same lattice, the Miller in-
dices transform by the _é_ams matrix as the vectorial transformation of

1,

lattice axes in direct space 5 (no change of origin) whereas the
reciprocal axes and atomic coordinates both transform by a matrix

which is the transpose of the inverse of the matrix for the vectorial

transformation of lattice axes in direct spaceS.
Example

Consider the transformation of a C-centered monoclinic cell to a
body-centered orthorhombic cell, where A = a, B =band C = a + c.
Let cell (1) be the origiﬁal monoclinic cell and cell (2) the new ortho-
rhombic cell. Further, let N be the matrix for transforming the lattice
axes of cell (1)to cell (2) and its inverse, N-l, be that for cell (2) to

cell (1), that is
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CELL (1) TO CELL (2) CELL (2) TO CELL (1)

1 0 o0 | 1 0 0
N = 0 1 o0 N1 = 0 1 o0
1 0 1 1 0 1

- Knowing these two, the other transfurmalions of interest are thus known

immediately, as summarized below:

CELL (1) TO CELL (2)

1 0 O
Axes in direct space |
Miller indices ) o 1 0 =N
1 0 1
1 0 1
Axes in reciprocal space | -1
Atomic coordinates "o 1 0 = transpose of N
0 0 1
CELL (2) TO CELL (1)
1 0 O
Axes in direct space 4
Miller indices ) 0 1 0 = N
T 0 1
1 0 1
Axes in reciprocal space |
Atomic coordinates “ffo 1 0 = transpose of N
0O 0 1




Table 6. The transformation of lattice axes, Miller indices and atomic coordinates.
Description Transformation Matrix Definitions

(a). Vectorial fransforma— A=n,a +n,b +n,c a,b,c = real axes of cell (1)
tion of lattice axes g = b + N A,B,C = real axes of cell (2)
ir direct space, - fa0 22 B23C D 5 = elements of matrix N
cell (1) to cell (2). C=n,0 +n,b +n,c

(b). Transformation of H=n, h +n,,k +n,! h,k,8 = Miller indices of cell (1)
Miller indices, K =0 h+n.k+mn.d - H,K,L = Miller indices of cell (2)
cell (1) to cell (2). L 22 23 n, . = elements of matrix N

L =1,k +n,k +n,t =
31 32 33

(c). Inverse vectorial a =s8,A t5,B +s,,C a,b,c = real axes of cell ?3
transformation of _ -1 A,B8,C = real axes of cell (2
lattice axes in b = SaA + 52,8 + 555C N si'. "" = matrix elements of N inverse, Nl
direct space, ¢ = 85;A * 5,,B *+ 5,,C J
cell (2) to.cell {1).

(@). Vectorial transforma- | A% = t,0® + t,,b% + t,;c¥* a*,b¥,c* = reciprocal axes of cell (1)
tion of lattice axes B = 4. 0%+ 4..b% 4 t,.c* transpose A%, B8%,C* = reciprocal axes of cell (2)
in reciprocal space, = tad 22 23 of N1 ;. = matrix elements of N~ transposed
cell (1) to cell (2). | C¥ = tya® + tyb*+ tyyc* J

(e). Transformation of X, =t ;b7 ts3 X,,¥,,%, = fractional atomic coordinates
atomic coordinates, k. x4 tov 4t transpose in cell (1)
cell (1) to cell (2). | T2 = Pa®™ ¥aad, 23 % of N1 X,5¥2»%, = fractional atomic coordinates

' Z, = by x,F 6,7, + t;33, in cell (2)
tij = matrix elements of N1 transposed

661
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APPENDIX 1V, THE USE OF VECTOR MULTIPLICATION
IN THE TRANSFORMATION OF LATTICE AXES

A cell is transformed to a new cell by expressing the new coordinate
axes A, B, C, as vectors, in terms of the old with axes a, b, c. The
magnitudes of the six cell parameters in the new cell are then obtained
from the scalar products of the new veclurs exprcooed in termsg of the

original vectors whose magnhitudes are known. The method results from

the following two properties of the scalar (dot) product:

(i). The dot product of a vector with itself gives the square
of its magnitude.
(ii). The dot product of two non-zero vectors, divided by their

magnitudes, gives the cosine of the angle betwcen them.

The general form of the vectorial transformation of axes is given

by
new old
A e Mz ™3 a
B =] ny 1, mHps3 b
c N3y N3, Nig c /.

or as (a) in Table 6, page 159. To calculate the magnitude uf A, B, G,

o, B, ¥ in the new cell, the following expressions are used:

lal =/A . X cosOt':B'—d
lBl:JE-g cos B' =

|C|=\/E~E cos'y‘zA'B

lAllB |

>l
o




where

o w >

ol | >

o W >

o) o

= (n21a + nZZb + n23c) (n21a + n22b + n23c)
= (n31a + n32b + n33c) (n31a + ns, + n33c)

(nlla + anb + n13c)' (n21a + nZZb + n23c)

— — —

(n21a + n22b +n23c)- (n31a + n32b + n33c)

I

— —

= (nq) 2

In expanded form A-B becomes

>

)

= (nlla + anb + n13c)' (n21a + n22b + n2.3c)

(nj,2-nya +njya-n,,b 4+ njyaen,5

+ nlzb-nZIa + nlzb'nzzb + nlzb'n23c
+ n, ;c- nZla + n13c -nzzb + ny ¢ *n,3C

- 2 2 2
= (nynyy)a” + (n),n,5)b7 + (ny 50, 5)cC

+ (n1 of53 I n, 31122) bcueos &

+ )accos B

t(nyny5 0305,

+ (n +,n1 2n21) a b cos ¥

11722

a +n, b + n33c)’(n11a + anb + n13c) .

161
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When K = E this reduces to

A-A (nlla + anb + n, 3c)' (nlla + n, 2b + n13c')

(nlla)2 + (n1 2b)2 + (nl 3c)2

+ 2n bccosa

1213

+ 2n11n13a c cos fB

+ 2 abcos?y

1112
The other dot products may be similarly obtained.

The following example illustrates the use of these expressions.

Example
Consider the following axial transformation in a direct lattice:
new old
A T 1 o a
B =l Z2 6 1 B
c 1 0 0 s

The lattice parameters in the original cell are a = 5.40, b = 7. 54,
c =51.8 4, a=145°38", B=105°42', ¥y = 60°18'. Calculate the param-
eters A, B, C, o', B', 7' in the new cell.

al=V2&-&

B|=/B-B / (-22+65+42): (-2a +6B +<)

cl=/T-¢ =

1]

/(2 4B) (52 4D)
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cosa = B-C _ (-Z2a+6b+c)a
B||C ENE
s g - Cc.KX 2 (-24Db)
lc|lal lcllal
cos y! = A-B  _  (-a+b)'(-2a+6b+c)
|a||B] lal|B]

The length of the A-axis is

2 —_— —

A° = A.A = (-a+b) (<a+Db)

—_— —

(2a)-(-2) + 22-b+ b b

az + 2 ab cosy+ b2

n

= (5.40)% - 2(5. 40)(7. 54) cos 60°18' + (7.54)°
- 45.67,
A = /45.67 = 6.76 &,

and similarly B = 28.2 A,

C = 5.40A.

The magnitude of the angle « is

—

B-C _ (-2a +6b+<)-a _ -2a-a +6b-a +
Bllc| Bic] Bllc]
_ --2a2+6abcos‘y+accos_§

Bllc]

_ -2(5. 40)% + 6(5. 40)(7. 54)cos 60°18" + (5. 40)(51. 8)cos 105° 42!
128. 2)(5. 40)

— -
c-a

cos U=

= -0. 08529,
a = cos~1(-0.08529) = 94° 54,
k and similarly _ B =104° 16',
oy =92 36
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APPENDIX V. THE INVERSE TRANSFORMATION

Suppose a cell with axes a, b, c is transformed to a new cell with
axes A, B, C. The vectorial transformation of these axes in direct

space is given in the usual way by the following set of equations:

A =n,,2 +n]‘2b+n.l3c
B = n21a + n22b + n23c
C = n31a + n32b + n33c

The matrix for this transformation is -

1 ™2 ™13
N=1ra "2 "3
N3y T3z B33

'I'he inverse transtormation N-l, corresponding to the transformation of

the new cell back to the original cell, is then

N2 P23 M2 ™3 M2 T3
N3z TM33 32 133 N2 T23

A A A

Nl =

= N31 Paj3 M1 ™3 2 R
N3p D33 33 D33 o1 P23

A A a

' .

21 T2 1 M2 D1 M2
n3) T3 R Y) 21 P22

A A A
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where A is the determinant of the original transformation matrix:

Ny M2 M3
A= Nyy M2 23
N3 M3z f33

The derivation of the inverse, N-l, in actual praé;ice may be
carried out in a four step procedure. Startiﬁg with thé'.original matrix,
N, each element Dy is first replaced by its minor. The mipor of Dy
is the array of order one less than the original array éhd corresponds
to the array of elements left after st;iking out row i and column j.. Thus,

the minor of ny . is

etc. Second, a sign is attached to each minor to convert it to a cofactor,
qij’ the sign being (-l)i+j. Third, the transpose is formed, which simply R
involves the exchange of each cofactor 9 for qji' The result at this
stage is a mé.trix known as the adjoint of N. Finally, each transposed
cofactor--that is, each element in the adjoint--is now divided by the
determinant of the original matrix. The final result is the inverse

matrix N~ 1 .

Examgle.

Consider the following axial transformation in direct space and its

corresponding matrix, N:
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—_—  —» -—

A =-a+b T 1 o0
B =-2a+b +c, matrix: N= |2 1 1 ,
¢ =2 +c 1 0 1

It is desired to solve for the inverse transformation, N-l, to express

the vectors—a’, -TJ., T in terms of X,' _15., c.

Solution. The determinant of this matrix is

T 1 0
11 Z 1 Z 1
A=12 1 1 = T - 1 + 0
0o 1 1 1 1 0
1 0 1

-1 (1-0)-1(-2-1)+ 0(0 - 1)

i

i

-1+3 = 2
Proceeding by the stepwise process, writing down fi¥st the colaclors

(minors plus their sign), we have

11 Z 1 Z2 1
01 1 1 1 0
1 3 T
1 of |T o |T 1
- - =T T 1
01 1 1 1 0
1 1 1
7’
1 0 0 1
1 1 Z 1 21 transpose
1 1 1
] ; 2 2 divide each 1 T 1 ‘
N =I> _% % ‘ element 3 T 1

‘byA

]
[N
(N
(O

fu—y

p—d
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Hence, the transformation in real space of the cell with axes A, B, C’

back to the original cell with axes a, b, ¢ is

2 = 1K - 1B +1C
c = -iA + 1B +1C
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APPENDIX VI. TWO OR MORE TRANSFORMATIONS IN
SEQUENCE-(MATRIX MULTIPLICATION)

If the vectorial transformation from cell 1 to cell 2 is known and
that from cell 2 to cell 3 is kﬁown, it is sometimes desirable to know
the transformation from cell 1 to cell 3. In general, if the transforma-
tidn matrix from one cell to the next for n cells in successign is lknown,
the matrix for the transformation of the original cell to the uth cell inay -
be found by the method known as matrix multiplication.

The method of matrix multiplication proceeds as follows: Let D
represent the matrix for the transfofrhatioq from cell 1l to cell 2, E
the matrix for cell 2 to cell 3, F the matrix for cell 3 to cell 4, etc.,
and N the matrix for the transformation of cell (E-i) to cell n. The
matrix, Q, for the transformation of cell 1 to cell n is then given by

Q=N...HGFED.

Each matrix is left multiplied by the next matrix in succession; they are
non-commutative. This relationship states that first matrix D is left
multiplied by E to yield a new matrix, U, which corresponds to the trans-
formation of cell 1 to cell 3; that is, U = E D. ~ Then U is left multiplied
by F to yield the matrix V corresponding to the transformation from
cell 1 to cell 4; thatis, V= F U = F (E D). Proceeding in an analogous
manner until all the matrices have been accounted for, the matrix Q
becomes the matrix for the transformation of cell 1 to cell n. This is

summarized as follows:
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cell 1l to cell 3 U = ED

cell 1 to cell 4 V = FU = F(ED)

cell 1 to cell 5 - W = GV = G(FED)

cell 1 to cell 6 X = HW = H(GFED)
cell 1l to celln Q = N(N-1 ... HGFED)

'The actual multiplication of two matrices occurs in a row by
column manner; that is, each element of the row in the lefthand matrix
is multiplied into the corresponding element of the column in the right-
hand matrix and then the products are summed. For the product of the

two matrices ED in that order where the elements in matrix D = [d i'] and
J

in matrix E = [eij] , the elements in matrix F become F = [fij] » where

P
= Z
k=1

d

f.. = d €1 Kj

i e 1j + eiZde + ...+ eipdpj
(i=1,2 ..., m;j=1, 2, ..., nin an m x n matrix).

In three-dimensional lattice transformations 3 x 3 matrices are used

and are thus said to be conformable, that is, the number of columns in

D is equal to the number of rows in E, a strict requirement for matrix '

multiplication.

The following example illustrates the method of multiplying two

3 x 3 matrices together.



Examgle g

cell 1 — cell 2
A /“11 U2 Y3 a
Bl =]u 3 Y3 b
c \u31 135 Uis ¢

cell 2—+ ce’l 3
£ .{‘”11 Wiz Wis\[ &
E' ] = ' Wa1 Waz W3 B
—-v' . —
C \W31 Wiz Wiz [\ C

cell 1 — cell 3
ﬂ' / \ —
A Y11 %1z Y1\ U1 W2 M3 [ 2
-—o‘ _ . —
BU =1 Wa1 %oz Yoz || U1 Y2 "3 | | P
—.| L2 - -
c W31 W3z W33 [ \Uz1 Yaz U3 c

By matrix multiplication this reduces to

o

= . |
A W11 T WUy t Wisglayr W Uyt W plps t W glas Wy gt W sun gt Wy gugg

o}

—>' .
B Wartin t Waalay t Wastsyr Wo it Waplap F Wastsp Wolyz t Woolys b Wosug,

—_— —

' - 1
C W31t11 T Waplpy ¥ Waslayr Wil 5 F Waslss ¥ Wagllys, Wagllyg + Waolyg + Wosugg

W u
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APPENDIX VII.

THE TABULATED TRANSFORMATION OF LATTICES WITH CHANGE OF
AXES, LATTICE TYPE AND SPACE GROUP

As pointed out in Appendix I there are only fourteen Bravais
Lattices. Associated with these fourteen there are 230 space groups.
But as is shown in Table 5, page 154, other types of centering are also
possible, though not unique from the basic fourteen, simply by a change
in the orientation of the cell brought about by a change in one or more
of the axes defining the system. Consequently, these non-unique lattice
types then give rise to the numerous non-standard space groups, which
may be found in Appendix VIII.

It is often standard practice to convert cells with non-standard
space group symbols to their conventional orientations for at least one
of two major reasons: conversion or reduction of lattice types to the
standard Bravais lattices (e.g., body-centered monoclinic to C-centered
monoclinic, b-unique) or conversion of symmetry elements to alternate
orientations (e. g., n-glide to c-glide in the monoclinic system). In
order that each or both changes may be made, it is necessary that a
change be made in the axes defining the cell. Just exactly what changes
are made, of course, depends upon the crystal system involved. To
facilitate routine work in such conversions the space group transforma-
tions for the triclinic and monoclinic systems have been worked out and
appear on the following pages. Also included is the frequently used

rhomhohedral - hexagonal transformation,
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In the triclinic system the five lattice transformations are given
for reduction to the ""primitive' Bravais lattice. In the case of the three
end-centered cells, two have been given for each:>that appearing on the
left corresponds to a change in magnitude of one axis only, that on the
right to a change in two axes. The latter has been included for each of
these cases for routine work in cell reductions discussed in Chapter III.

In the monoclinic system both the first setting (c-unique) and
second setting (b-unique) are given. Related series of space group
transformations are divided according as b <a, a <b (c-unique) and
c <a, a <c (b-unique). In some cases the transformations are the same,
in others they are different, a fact which can be verified upon inspection
of the corresponding figures. As is shown in Table 7, which is to be
used only in conjunction wifh the transformations appearing on pages 177
through 190, ‘the new Y or B will increase or decrease depending upon
the ratio of the two original axes and the angle between them. In no case
should it ever change character, .that is, its cosine change sign, a
situation occurring only if the scalar product of the two original non-
unique axes is greater in absolute value than the square of the shorter
original non-unique axis (see Table 7). When fhis happené the mono-
clinic cell is capable of being reduced until the new angle is less than
the original angle and both are obtuse.

Finally, it may be pointed out that in the monoclinic system the
unique end-centered cells for c-unique are A and B and for b-unique A

and C. By convention the C-centered cell is taken as unique for the

ol
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second setting. The corresponding cell for the first setting, c-unique,
would be an A-centered cell if the axes were simply permuted thusly:
b—+c¢ c—a, a—b. | However, an A-centered cell is common to both
settings. So as to distinguish between the two settings when reporting
the lattice type, the B-centered cell has been accepted as standard for
the first setting and may be obtained directly from the second setting by

settinga = a, b — ¢, and ¢ — -b; that is

b-unique to c-unique to
c-unique b-unique

1 0 0 1 0

0 1 and o o T
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The five triclinic lattice transformations.

18.

Fig.
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Fig. 18 (continued).
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TABLE 7. The Change in the Monoclinic Angle With Change

in Cell Orientation”
MONOCLINIC
18t Setting - Unique Axis c

0% lab| <3a® Yoow > Yol
la b| = 3a’ Yo yold
a<b %a <|a.-b|<a.2 Ye 'y
la- b = Yyow = 90°
a.2 < |a' b! Y changes character
05 |a-b| b2 Yoew ” Yold
la-b| = $b° Y ew = Yold
b<a | b <lab]<b? Yoew <Yold
la-b| =b ymw = 90°
v < |a- b 4 y changes character

2nd Setting - Unique Axis b

2

0=lac|<za Brew 7Bora
o ef =4a° Brew = Pola
a<e | 32 <loel <a? Brew <Borg
la-c| = a? B oy = 90°
a2 < Ia' c| B changes character
0% lacl<de” Brew ~Ford
larc| = 3c? Brew = Polg
c <a §c2<|a-cl<c2 ﬁnew old
jor | = <2 s
az <la- cl B changes character

e

"The cell edges a, b, c correspond to the edges in the "original" cell.
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MONOCLINIC

(c-unique)

Fig. 19. The vectorial transformation of axes accompanying Monoaclinin
space group transformations (1st setting). '
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Table 8. The Monoclinic space group transformations (1st setting).

Space group Original Transformation Fig. 19
transformation axes matrix ge
Pa ———> Pb 100
b< a
P2/a — P2/b & <b 0 0 1 E
P2,/ ——> P2,/b ' 01 0
_ 0 0
Pb Pa b < a 1
P2/b —— P2/a 0 0 1 E
a<® 01 0

P2,/b — P2,/a

-—
O = =]

o
-

Pn —— Pb

rP2/n — P2/b

|

' |
S
i

|

1 0 0
11 0
00 1
11 0
- bcea 01 0 H
Pn ——— Pag 0 01
P2/n —>» P2/a
P2,/n— P2,/a 110
a(b 1 O I
0
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Table 8.‘ (cont.).

C—P
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Space group

Original

Transformation

transi'ormation axes - matrix - Tg. 19
o
01 0 J
0o 01
b<a —
0 1 0
g — P2 3+ 4 0 N
c2, —— P2, 0 0 1
cCm ————» Pm . —
c2/m ———» P2/m _ _? z 0
c2,/m —— P2,/m 1 0O K
0O 0 1
a<b —
1 0 0
3 O o
0 01
T 50
ca2/b ——= P2/b <a o7 o
J
c2,/b —— P2,/b <D o 0 7
b 7 0 0
c2/a —> P2/a <a 11, .
P P
C2,/a —> P2,/a a<b S
Ca —— Pb b < [+ %+ o
c2/a ———» P2/b a < 7T 0 0 K
c2,/a —— P2,/b 0o 0 1
Cc —— Pa b<a 01 0
0 0 1

CZI/C —_—

P2,/a
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Table 8. (cont.).

C—P

Space group Original Transformation Fig. 19
transformation axes matrix 18
01 0
b + 3 0 N
cd —— Pb <@ = E
0 0 1
c2/d ——» P2/D —
1 0 0\
o071/ |
t o
, b<a 010 1
¢d —————>» Pa 007
c2/q —— P2/a
Rk
c2,/d —> P2,/a a<b T 00 K
0 0 1
A—B
Space group . Original Transformation .
z 3 . Fig. 19
transformation axes matrix :
A2 ——» B2 b<a. 010
Am ——— Bm a<b 1 3 E
A2/m —— B2/m 0 0 1
‘ 01 0
Aa ——> Bb b<a 1o o
A2/a — B2/b a<h 0 o 1 E




lo

+
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Table 8. (cont.).
Space group Original Transformation .
., - . Fig, 19
transformation axes - matrix .
B2 — A2 01 0
b<a '
Bm ————> Am 1 0 E
a<hb -
B2/m ——= A2/m 0O 0 1
Bb ———» Aa b<a 010 E
1 0 O
‘B2/b ——>» A2/a a<b -
. 0 0 1
I—B
Space group Original Transformation -
: . Fige 19
transformation axes matrix
17 1 0
b<a 0 1 O H
12 — B2 o0 1
Im ——> Bm
I2/m ——» B2/m 110
a<b T 0 0 1
0 0 1
(1 10
b<a 7 00 F
Ia ——> Bb 0 01
12/a —— B2/b 171 0
a<b ( 7 00 1
0 0 1
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Table 8. (cont.). I —-—’A
Spa.ce group Original Transformation Fig. 19
transformation axes matrix &e
071 0
b<a -1 1 O L
12 — A2 0 O

Im —— Am

o

I2/m —> A2/m
a<hb

o = =]
O.—\
=l o o

Ib — = Ag

I12/b —— A2/a
0

o’
A
I
T — ] e
o = O
o = =l
- O O
~— e | S | ~——e——
-

—
o = =l

F—B

Space group Original Transformation Fige 19
transformation axes matrix =*
01 0
F2 ——> B2 b<a T % O N
Fm —— Bm 0 0

F2/m — B2/m
Fd —— Bb
F2/d — B2/b a<b

O v =l

O v+ O

-l o o
@]




lo
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Table 8. (cont.). F A
Spacc group Original Transformation . 1
transformation axes . matrix Fig. 19
3 %o
F2 — A2 b<a 07 o 3
Fm —— Am 0 0 7
F2/m — A2/m
Fd —— Aa 5 0
F2/d —> A2/a a<h 100 K
0 O
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MONOCLINIC
(b-unique)

A, pe—wp B. Be—=P

Fig. 20.

The vectorial transformation of axes accompanying
Monoclinic space group transformations (2nd setting).
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Table 9. The Monoclinic space group transformations (2nd setting).

P—P

Space group Original Transformation .
transformation axes matrix Fig. 0
Pc —— Pa . < (0 0 1
P2/c —— P2/a <a 010 E
P2,/c — P2,/a 0 0
Pa ——— Pc . (O 0 1)
P2/a —— P2/c <a 01 0 E
P2,/a — P2,/c 0 0
1 0 1
a<¢ (O 1 O) 1,
Pn ——» Pa 100
P2/n —— P2/a
P2,/n —— P2,/a 17 0 1
c.<a (O 1 O) M
0 0 1
- [1 0 0
a<ec (O 1 O) H
Pn — Pc 1 0 1 '
P2/n —— P2/c
P2,/n — P2,/c ( 0 T)
c<a 0 1.
1
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>
Table 9. (cont.). B —’P
tSpa.ce group Original Tra.nsfonfla'bion Fig. 20
ransformation axes nmatrix
7 00
010 J
3 o4
a<e¢¢e
0 %
B2 —» P2 0 1 o) N
B2, — P2, 7 0 0 '
Bm ———> Pm —
B2/m — P2/m (0 0 T)
B2,/m —= P2,/m 010 K
Yo
c<aég
0 %
(O 1 O) o)
0o 01
i 0 0
B2/a —— P2/a a<e (o T o') s
B2,/a — P2,/a c<a ) ;
. z 0 w
T 0 %
B2/c —> P2/ axe (O; o o
B2,/¢c —— P2,/c c<a 007
Bc ——— Pa . < '(o 0 T)
B2/c ——— P2/a <a 010 K
B2,/c —> P2,/a ¥ 0 %
Ba —— Pc M <o (% 0 ’%‘)
B2/a —— P2/c <a c_.‘) 10 N
B2,/a —> P2,/c 1 00




e

Table 9. (cont.).

B—P
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Space group Origihal Transformation Fig. 20
transformation axes matrix Ee
to 1
acece 0 1.0 N
Bd ———>» Pa 7]' 0o 0
B2/d ——> P2/a -
i Y
B2,/d — P2,/a =2
! I c<a 01 0 0O
' ‘ o017
1 0 O
ac<e 01 O 7
Bd ———> Pc¢ 1 O. 1
P B
B2/d ———> P2/c .
0 o0 1
B2,/d — P2,/c A
c<a 01 O K
to 3
Cc —A
Space group Original Transformation Fig. 20
transformation axes matrix Ee
cC2 —— A2 <o 0O 0 1
Cm —— Am 071 0 E
c<a
c2/m —— A2/m 1 0 0
Cc —— Aa a<ec 0 S !
' 0O 1 0 E
C2/c ——» A2/a c<a 10 o




Table 9. (cont.).

A—C

Original

Space group Transformation i
. . . lgo 20
transformation axes -matrix
A2 — (C2 ac<e 0 0 1
Am ——» Cm 01 0 E
c < a
A2/m —> C2/m 1 00
0 01
Ag —» Cc a<ec¢ —
A2/a — C2/ c<a °o 19 =
a ¢ 1 0 0
I —A
Space group Original Transformation s -
s L Fige 20
transformation axes matrix
1 0
ac<e¢g¢ 0 7 0] H
Im —— Am
I12/m —» A2/m 0 0 1
c<a 01 O I
1 0 1
“fo 0 7
ac<ec 0 1 O F
J¢c ——>» Ag 101
I2/¢c —> A2/a 007
c<a 010 1
17 0 1
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Table 9. (cont.). I e C
Space group Original Transformation | p.
. .. 1Se 20
transformation axes - matrix
1.0 1 |
a<ec ‘01 0 L
I2 —» C2 - T 0%0
Im ———— Cm -
I2/m —» C2/m - [T o
' c<a 0 1 (_) M
0O 0 1
1 0 1
a < cCc ’ 0] 1 . 0 L
) 7 00
Iq — Cc
12/ —> C2/c 10 1'
c<a 0 1 O G
7 00
F—=A
Space group Original Transformation 5
. . ige. 20
transformation axes - matrix
Yo 3
F2 _— A2 ac<c 0 1 0 N
Fm ——— Am 100
F2/m — A2/m -
1
Fd ——— Aa | 7 0%
F2/d — A2/a c<a c10 o
O 0 1




190

Table 9. (cont.).

F—C

Space group Original Transformation Fig. 20
transformation axes matrix ge
1 00
F2 — C2 a<ec 071 o0 I
Fm —— Cm 6 %
F2/m —>» C2/m -
Fd — Cc 0.0 1
F2/d —> C2/c c<a 010 K
1 1. -
z 0 =7
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Fig. 21. A primitive rhombohedral cell referred to a hexagonal lattice”.

4

The hexagonal cell is triply primitive, has a volume three
times the volume of the rhombohedral cell and contains three

211 122

lattice points per unit cell (at 000,37 3 and 33 -3-).

1. PRIMITIVE RHOMBOHEDRAL TO TRIPLY-PRIMITIVE HEXAGONAL

Vectorial Transformation

of Axes
Hexagonal Rhombohedral
cell cell
a,(H) = a, (R) -a, (R)
a,(H) = a, (R) - a5 (R)
c (H) = a; (R) + a, (R) + as (R)

Cecll Parainctcro of
Hexagonal Cell

a.. = 2a sing
H R 2

_ 4, .20,
Cy = 3aRJ1 --3-(s1n 2-)

°H _/ 9 _ .3

a - ., 2O

H 4 sin Vi

. 2 ) ;o
VH— 3VR—aH oy 8in 60
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2. TRIPLY - PRIMITIVE HEXAGONAL TO

PRIMITIVE RHOMBOHEDRAL

Vectorial Transformation of Axes

Rhombohedral Hexagonal

cell cell
1
a = = (2a + a + c..)
1R 3 lH ZH H
1 4
a, = =(-a + a + c..)
ZR 3 lH ZH H
a, = % (-a1 - 2a2 + cH)
R H H

_1 2
aR =3 5aH + c
.« 3ay 3
sin 5 = = = s
2 2./ H
1 _ .3 3 » 2 3
VR-—3—VH—a(1+ZCos 0- 3 cos Q)

3,..a . 3u.3 .«
2a (s1n§ s1n-2—) - sin »
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THE 230 SPACE GROUPS AND THEIR-ALTERNATE

ORIENTATIONS

No. Scl;;;%ﬁ.ies S:gzmmggid Other orienfcatior}s
Triclinic
1 C, P1 A Bl C1 11 F1:
2 cl, Sb P1 Al Bl cl 1 F1
Monoclinic (1st setting; c-axis unique)
3 Ca P2 c2
4 c: P2, C2,
5 Cs B2 A2 12 F2
6 Ces Cly Pm Cm
7 cz, C2 Pb Pa Pn Ca cd
8 c3, Ch Bm Am Tm Fm
9 C, Ch Bb Aa la Fd
10 Can P2/m c2/m
11 C3 P2, /m €2,/
12 C3y B2/m A2/m I2/m F2/m
13 Cs, P2/b P2/a P2/n c2/a c2/b c2/d
14 c3, P2, /b P2;/a  P2;/n c2, /a C2,/b c2,/d
15 Can B2/b A2/a 12/a F2/d
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No. Sc?;;gﬁiies Szgiiiid Other orientations?
Monoclinic (2nd setting; b-axis unique)

3 Ch P2 B2

A c? P2 B2,

5 c2 c2 A2 12 F2

6 ., 0! Pm Bu

7 ¢, ¢% Pc Pa Pn Ba Bd

8 c2, C3, Cm Am In Fu

9 c¢, Ch Ce Aa Ta Fd
10 Con P2/m B2/m
11 cé, P2, /m B2, /m
12 o, c2/m A2/m 12/m F2/m
13 Ct, P2/c P2/a P2/n B2/a B2/c B2/d
14 cs, r2,/c P2 /a P2 /na BY4/a B /e B2 /d
15 cs, c2/c A2/a 12/a F2/d

Orthorhombic
16 D), V' P222 P222 PR22 P222 P222 P222
17 D}, V7 PRiy R e P22,2 P22 PRER PR
18 D3, V3 P2y22 P22, P22, P22 P22 PR
19 | on v | P22 | P22z P22 PR P2 P22
20 D3, V° €222, A2,22  B222  B222 (222 A2 22
21 D¢, V°© c222 A222 B222 B222 c222 A222
20rthorhombic: cab, bea, acb, bac, cba
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No. |Schoenflies | Standard Other orientations™
symbol symbol
22 . DI, V7 F222 F222 F222 F222 F222 F222
23 D:, v I222 1222 I222 I222 I222 I222
9 '9 .
2| DL T I | I I 1322 1222 12322
25 cl, Pmm2 P2m  Pm2m Pm2n  Pmm2 P2mm
26 Ca Pme24 Pma  Pb2m  Pmb  Pem2;  P2jam
27 c3, Pee2 P2aa Pb2b Pb2b Pce2 P2aa
28 s, Pma2 P2mb Pe2m Pm2a  Pbtm2 P2cm
29 c3. Pca2, P24ab ?c21 b Pb2a  Pbe2, P2 ca
30 C3v Pnc2 P2na. Pb2n Pn2b = Pen2 P2an
7 .
31 Cav Png,I P21mn Pn21m Pm21n ~Pn:rr121 P21nm
32 cs, Pba2 P2cb Pc2a PcRa. Pba2 P2cb
9 . B
33 Ca Pna.,’a1 P2.1 lflb P021 n Pn21 a anz1 P21 cn
34 Cho Pnn2 P2nn Pn2n Pn2n Pnn2 P2nn
35 C,e Crm2 A2mm Bm2m Bm2m Cmm?2 A2mm
12
36 Cy2 Cme2, A2,ma Bb2,m Bu2,b Cem2, A2, am
37 cy Cce2 A2aa Bbzb Bb2b Cee2 A2aa
38 (3 Arm2 B2mm Cm2m Am2m Bmm2 C2mm
39 cl Abm?2 B2em  Cm2a  Ac2n  Bma2  C2mb
40 cis Ama2 B2mb Ce2m Am2a, Bbm2 C2cm
41 Cyl Aba?2 B2cb Cc2a Acla Bbaz Cacb
42 ci? Frm2 F2m Fm2m Fm2m Frm2 F2m
43 cy Fad2 F2dd - Fdzd Fd2d Fddz2 F2dd
4L, c2o Trm2 I2mm Im2m Im2m Tmm?2 I2m

a'Or Lhornombic:

cab, bea, acb, buc, cba
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No. ch;;%g%ies Sz;igzid Other orientations®

45 (o Tba2 I2ch Ic2a Ic2a Iba2 I2ch
4 22 Tma2 I2mb Ic2n  Imda  Ttm2 T2cm
47 Dy, V) Pmmm Prmm Pmrm Pmmm Pmmm Pmmm
48 Di,, V2 Pnnn Pnnn Pnnn Pnnn Pnnn Pnnn
49 D35 V3 Peem Pmaa, Plub Pbub Peem Prmaa
50 Diw, Vi Pban Pncb Pena  Pona Pban Pncb
51 D3, Vi Prma, Pbum Pmem Pmem Pmmb Pcim
52 D, V§ Pnna. Pbnn Pnen Pnan Pnnb Pcenn
53 Dins Vo Pmna Pbmn Pnem Pman Prmb Pcnm
54, D3, V§ Pcca Pbaa. Pbcb Pbab Pccb Pcaa.
55 D3y, V, Pbam Pmcb Pema Pcma, Pbam Pmeb
56 Dy, v)° Peen Pnaa Pbnb Pbnb Pcen Pnaa
57 Dan, V' Pbem Pmca. Pbma. Pcmb Pcam Pmab
58 Dy, V.2 Ponm Pmnn Prmn Pnmm Prnm Prnn
59 Dy, V2 Prmn Prm Pmnm Pmnm Pmmn Pomm,
60 Dy, W} Pben Pneca Pbna Penb Pcan Pnab
61 Dih, Vi Pbea Pbeca Pbca Pcab Pcab Pcab
62 Dyt s V° Prma, Pbnm Pmen Pnam Pmnb Pcmn
63 Din , VN Cmcm Amma, Bbmm Brmb Ccrm Amam
6/, Dav, VP Cmea Abma, Bbem Bmab Ccmb Acam
65 Dy, V.° Crmmm Anmm Brmm Brmm Crmm Ammm
66 D39, v° Ccem Amaa Bhbmb Bbmb Ccem Amaa,
67 D, V¥ Crmna, Abimm Bmem Bmam Crmb Acmm

&0rthorhombic: cab, bca, acb, bac, Tha.



197

No. ch;igi‘i.ies Sz%%ﬁd Other orienta.'bionsa"b‘
68 D32 s V 2z Ccea Abaa Bbeb Bbab * Cceb Acaa
69 D%, v23 Frrmm From From From - Frmm Frmm
70 D3y, Vi* | Fadd Fddd Fddd Fddd Fddd Fadd
71 D3y, VZ° Tmmm Tramm Trm Tnum Tmm I
72 D¢, v2¢ | Tbam Imcb  Tema  Tema: Ibam  Imcb
73 Dgz,uVﬁ? Ibea Ibea Tbca Tcab . Icab Icab
74 2%, v2° | Tma Tbom ~ Imem  Imam  Tmb I
Tetragonal

75 Ca P/ Ch
76 c? Pl Clyyg
77 (o P42 CA.Z
78 Ca Pl Chy
79 cs I FJ,
80 cs Thy Flyq
&1 S4 Pl cL
82 si I L
83 Cén P4/m C4/m
84 'c 2 Plo/m C4Q/m
85 Can PL/n Cl/a
86 Cd. Pho/n Cho/a

l‘ %Or'thorhombic: cab, bea, a.?b,.ba.g, cha. '
Tetragonal: a- and b-axes in same plane but 45° to those in the

standard orientation.
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Schoenflies| Standard  entati a
No. symbol symbol Other orientations
87 C 2 1//m F4/m
83 Can Tiy/a F4,/d
89 D4 PL22 C422
90 D2 P4212 01,221
7 D} P4]22 /), 122 ¥
92 D? PLy2,2 C4,22,
93 hA P 22 C4 ,R2
7A Dy P4 242 (342;’21
95 A P4322 0'4322
e [;
96 A 1343,21 2 01,3221
97 D$ 122 F422
o8 D2 T422 F, 22
9 Cay P/ Clmm
100P c2, P/l CAmb
101 Ci. Pliychn G4, me
102b Ca, PA,Zmu CAZmn
103 Ca, Plcc Clec
1 OAb (‘.iu Plino Cden
105 Cl, P me 042cm
- b 0 .
106 coh P/ be Cloeb
107 Cov T/mm F/mm
108 Ca T4cm F/me
8Tetragonal: a- and b-axes in same plane but 45° to those in the

_ standard orientation.
bgee footnote, p. 204.
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No. ch;;gﬁ?es S;;‘fﬂ%ﬁd Other orientations®
109 Cav Tmd Fl,q dm
110 oi2 Tycd Flyde
111 DSy, V! P/ 2m ' C4m2
112 D2,, V2 P42¢c Che2
113 D34, V3 Pi2ym ' Clm2,
114 Dg,, V4 Ph2;c Che2y
15 D34, V3 PZm2 CZi2m
116 Dé,, V& Plc2 Cl2c
117° DZ,, C? eZb2 CZ2b
118P De,, V& PZn2 C42n
119 D34, V3 TZm2 FZ2m
120 DY, VP The2 F/2¢
121 Dy, VY I/,.2m F/m2
122 DY, V& Ti2d F/d2
123 Dl P4/mm |  O4/mm
124 Di, PL/mce Ch/mee
125b n, P,/nitm €4,/ amb
126 | D3, P//nne C4/acn
127° | D3, P/,/mtm C4,/mmb
128 D¢, P//mnc C4/men
129 D7, P/,/nom C,/amm
130 D5 Pl/nee Ch/ace
aTe'bragona.l: a~ and beaxes in same plane but 45° to those in the

standard orientation.
Pgee footnote, p. 204. '
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No. ch;;ggiies Sz;zgiid Other orientations®?C
131 Dan P//mme Clo/mem
132 Do P//mem Clp/mmme
133° D4}, P4o/nibe C4,/ach
134° D2 Phy/anm | G4, /am
135> | o2 Ph/nbc | G4 /meb
136P D P4, o/mnm Cl..é/nmm
137 Dan P/ 2/nmc 042/3.0111
138 DL P4;2/nc:m Cly/ame
139 D4y 1/,/mmm F/,/mmm
140 D2 14/mem F/,/mme
141 Dy L4, /amd Fl, /ddm
142 Vi Thy /acd P4 /Ade

Rhombohedral (Trigonal)

143 Cs P3 H3
e

144, o8 P3, H3,
3

145 c3 P3, H3,

146 Y R3

147 cL , S P3 H3

148 C3i, Sé R3

149 D} P312 H32

&Tetragonal: a- and b-axes in same plane but 45° to those in the
standard orientation. :

bsee footnote, p. 204. .

CRhombohedral: orientation in the Internationale Tabellen (1935).
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No. ch;;gﬁies S:;nngiid Other orientations® b
150 D3 P321 H312
151 D} P3,12 H3 2
152 D? P3,21 H3,12
153 D3 P312 3,2
154 D3 P3,21 H3 J2
155 D] R32
156 Csv P3m1 H31m
157 C3v P31m H3m
158 C3 P3cl H3lc
159 3 P3lc H3c
160 c3, R3m
161 cS,
162 D34 P31m H3m
163 D3 P3lc H3c
164,  pi P3m1 H31m
165 D4, P3cl H31c
166 D3, R3m
167 D¢, R3c

Hexagonal.
168 Ce P6 H6
169 Cé P6, HE,
3Thombohedral: orientation in the Internationale Tabellen (1935).

Hexagonal:

ibid.
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Schoenflies| Standard . . a

No. symbol symbol Other orientations
170 Ce P6 5 H65

4
171 c? P6, H6,
172 c32 P64 H64
173 cs P6, H6
174 Can P6 HG
105 Cen P6/m H6/m
176 Ci, P63/m H63/m
177 Dg P622 H62
178 D3 P6122 H612

3
179 D} P6522 H652
180 D P6 22 H6,2
181 D2 P6422 H642

6 :
182 D¢ 96322 H632
183 Cs, Pémm H6éum
184 c2, Pbecec Hbce
185 c3, P6 3em Héme
186 C e P6 Fuc Héme
187 DL, Pém2 H62m
188 HET Pbc2 HZZC
189 D3, P62m Hém2
1.90 D¢, P62c Hbc2

3Hexagonal: orientation in the Internationale Tabellen (1935).
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No. Sc?;;ggiies S:;;%ziq Other orientations

191 Db P6,/mmn H6 /mrm

192 D 2,. P6/mcc H6/mcc

193 Dén P63/mcm H6/mme

194, D %: P6 3/Imnc H63/mcm
Cubic ‘

195 T ! P23

1% T? F23

197 7 123

198 T* P2,3

199 T° 12,3

200 T, Pm3

201 T+ Pn3

202 T+ Fm3

203 T? Fd3

204, Th imB

205 T8 Pa3

206 T, Ia3

207 0' P432

208 0%, P/4,32

209 oM F432

210 0* Fl, 32

211 0° 1432
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Yo. Sctsl;igg :lLieS Sz;‘-lnngiid Other orientations
212 0° P4432
213 0’ P4y 32
214 0° T4432
215 Te P43m
216 T3 Fi3m
217 13 143m
218 T4 P/3n
219 T4 Fi3c
220 % 1434
221 On Pm3m
222 oh Pnin
223 oa Pm3n
22/, Ok Pn3m
225 0% Fm3m
226 o% Fm3e
22 oy lrd3m
208 08 Fd3e
229 N Im3m
230 0;° Ia3d

According to the Errata of January 1962 for The International Tables
for X-Ray Crystallography, Vol. I (1952), "there is ... some ambiguity
in using the notation C4mb for space group 100 when it is referred to l

the C lattice because the glide plane parallel to the (110) now in-
volves a translation of (atb)/4 for which there is at present no
separate symbol, Similarly in space group 102, now called 042mn, the
glide after reflection across (110) is [(a+b)/4 + c/ 2]. Corresponding
glides occur in space groups 104, 106, 117, 118, 125, 126, 128, 133,
134, 135, 136 when referred to a C lattice."





