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The mechanical'design of a fast reéétor can greatly effect
its safety under a loss of coolant accident. While misinforma-.
tion on deadlines prevent a more complete discuésion, in the five
minutes allotted to us, we can discuss one of the dominant safety
features of the Settled Bed Fast Reactor concept - a concept that
we introduced at this conference 1ast yéar. This safety feature
can be of importance not only for reactors having fuel elements
consisting of packed beds of fuel particles in random or ordered
arréngement but also for other reactor concepts.

In the SBFR there is a sodium region above the core and each
" of the axial blankets to provide head room for fluidization.
Slide one shows an elevation of one conceptual design. Immediately
above and below the core are the sodium regions which are con-
sidered here.' For both of these regions there is a strong nega-
tive reactivity effect when the sodium expands.

Slide two shows the local sodium expansion coefficient at
power as a function of position in this reactor. As in most fast
reactors there is a local positive effect at the center of the
core, and this becomes negative at the core edge. Here, however,
there is a still stronger negative effect as we move into the
sodium fegion. The overall-fempgrature coefficient in this
sodium region is many times stronger than the core sbdium and

Dopﬁler coefficients.
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The temperature.coefficient in the sodium_region is a de-
layed one - due to the sodium transit time through the core - of
the order of magnitude of a 10th of a second. 1In the present caée
this is a powerfully stabilizing influence. Slide three shows the
time behavior of the reactor power when the inlet sodium temperaé
ture is reduced 100°C and maintained at that lower temperature;
this corresponds to a reactivity increase of ~$0.4. Even for this
drastic temperature change, the peak power exceeds the original
power level by less thah 50%. The various turﬁing points of this
curve can be related to the passage of the cold front through var-
ious regions of the reactor, but our time limit here prevents dié-
‘cussing this. Slide four shows the core sodium temperature at sév—
eral positions as a function of time for the same perturbation. |
The peak exit temperature rise exhibited is only 25% above the ini-
tiél value. The time behavior exhibited here was obtained from a
multi-region space and time solution of the reactor equations, |
which was programmed at Brookhaven National Laboratory. |

The sodium regions were introduced into the SBFR because of

bed engineering requirements. However, a similar high leakage re-
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gion might well be 6f benefit in other reactor designs as well.

The location, the size, and the composition of such a region can.

<

all be adjusted to obtain desirable stability properties. This



might be considered for use in many fast reactor designs. For
fuel elements containing ordered arrays of fuel particles such

as in the Brookhaven National Labo;atory Countercurrént Reactor
concept presently under study these parameters of location, size,
and composition are set by the fashion in which the individual
fuel particles are stacked in the fuel element. Since the
ordered bed fuel element can be designed so to be disassembled

and reassembled periodically, these parameters can be altered

when necessary.



sSlide 1

Axial Flow Settled Bed Reactor
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Slide 2

Sodium Temperature Coefficient vs. Position in

Axial Flow Reactor
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POWER LEVEL, MW

FIG.3 POWER TRANSIENT DUE TO A PERMANENT DROP OF IOO °C IN
REACTOR INLET SODIUM TEMPERATURE
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LOCAL CORE SODIUM TEMPERATURE

AFTER 100 °C DRCP IN REACTOR INLET SODIUM TEMPERATURES

FIG. 4 VARIATION OF LOCAL CORE SODIUM TEMPERATURES
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