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Abstract

This overview describes an application of contemporary geometric
topology and stochastic process concepts to structural crystallogra-
phy. In this application, crystallographic groups become orbifolds,
crystal structures become Morse functions on orbifolds, and vibrating
atoms in a crystal become vector valued Gaussian measures with the
Radon-Nikodym property. Intended crystallographic benefits inciude
new methods for visualization of space groups and crystal structures,
analysis of the thermal motion patterns seen in ORTEP drawings,
and a classification scheme for crystal structures based on their Hee-
gaard splitting properties.

1 Introduction

Geometric topology and structural crystallography concepts are combined to define
a research area we call Structural Crystallographic Topology, or just Crystallo-
graphic Topology. The first paper in the series[29] describes basic crystallography
concepts (crystallographic groups, lattice complexes, and crystal structures) and
their replacement topology concepts (orbifolds, topological lattice complexes, and
Morse functions). To make the present paper seif contained we discuss those topics
again, but from a different perspective, so there is little direct repetition.

The new additions are: (1) the loosely defined Morse function used previously
is replaced by a stochastic Morse function, based on the Radon-Nikodym prop-
erty, which provides crystallographic thermal motion analysis capability as well as
topological partitioning of global thermal motion density; (2) the topological lattice
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CRYSTALLOGRAPHIC TOPOLOGY 2

complexes are extended to include the invariant, univariant, and divariant non-
characteristic (pseudo-symmetry site) orbits thus, providing better algebraic and
pictorial characterization of crystallographic 3-orbifolds; and (3) a method for topo-
logical characterization and classification of crystal structures is introduced which
uses Heegaard splitting of a Morse function (crystal structure) on a 3-orbifold (space
group) into two handlebody 3-orbifolds separated by a Heegaard surface 2-orbifold.

For a known crystal structure, experimentally derived atomic thermal motion
Gaussian density functions can be used to find all peak, pass, pale, and pit critical
points and their stochastic separatrices, by using the Radon-Nikodym principle for
pairs of neighboring atoms and stochastic negotiation for larger chemical clusters.
This provides a critical net graph of the stochastic Morse function for global ther-
mal motion density. We then add geometric representations for the rotation axes,
inversion centers, and mirrors of the crystal’s space group, and calculate all inter-
sections (within a fundamental domain of the unit cell) with the stochastic Morse
function Heegaard surface, which is a constant density surface partitioning (passes
+ peaks) and (pales + pits) into two disjoint sets. ,

The fundamental domain is topologically cut out and wrapped up to super-
impose all symmetry equivalent boundary points, thus producing a Euclidean 3-
orbifold closed space representation of the crystal structure, space group, and Hee-
gaard surface. The Heegaard surface provides Heegaard splitting[51] of the space
group 3-orbifold and critical net into a pair of handlebody 3-orbifolds[65] with the
shared 2-orbifold Heegaard surface (usually hyperbolic) between them.

To derive new (hypothetical) crystal structures, or classify those in existing
data bases, one can transmute the Heegaard surface and critical net using vari-
ous techniques of 3-manifold topology.[28,51] The transmutation procedure requires
topological transformations. Qur plan is to characterize these transformations by
determining the topological differences between pairs of related known crystal struc-
tures, and we mention an existing topology procedures we plan to use for this, which
involves Surf theory discriminants.[49,50,39]

- The stochastic Morse function also provides a framework for stochastic thermal
motion analysis[31] of ORTEP thermal ellipsoid patterns.[32] A full description is
forthcoming for this vector-valued Gaussian measure approach, which is based on
the Radon-Nikodym principle of absolute continuity between Gaussian measures.

1.1 Background

By topology we mean distortion invariant properties of spaces and objects rather
than their topographic description. Qur topological approach to structural crystal-
lography strips away all metric detail. Instead we describe crystallographic geom-
etry questions in terms of connectivity in a Morse theory sense, such as/ what is
the smallest number of minimum negative gradient downhill and minimum positive
gradient uphill path segments required to get from peak (atom) A to peak Bin a
thermal motion density map and how many equivalent paths exist?

The distortion invariance allows us to take a crystallographic unit cell from the
infinite crystal and adjoin the three sets of matching faces to form a 3-torus (embed-
ded into Euclidean 4-space) producing a closed topological space with more manage-
able mathematical properties than our original infinite Euclidean space. However,
a unit cell will contain from 1 to 192 equivalent subunit polyhedra (i.e., fundamen-
tal domains or asymmetric units) depending on the space group of that crystal;
thus it is more advantageous to “orbi-fold” the fundamental domain polyhedron by
matching up all equivalent pairs of surface regions. This produces a Euclidean 3-
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orbifold,[61,12,13,29] which is the quotient space E?/G with E® Euclidean 3-space
and ¢ one of the 230 space groups; thus we end up with the remnants of the space
group {and crystal structure), modulo all symmetry, in the form of a closed space
locally made up of differentiable (Hausdorff) submanifolds.

The orbi-folding eliminates the symmetry related repetition and puts all space
groups on a more equal footing. Thus, the 3-orbifold from a cubic space group has
roughly the same complexity as that from a monoclinic example. However, we now
find ourselves deep into the convoluted machinery of topology. The adjective deep
is meaningful because very little theory in topology is near the surface. The 230
{or 219 affine space group orbifolds if handedness is ignored) Euclidean 3-orbifolds
have an amazing variety of underlying topological spaces and we must learn to
manipulate spaces such as D? (3-ball), S® (3-sphere), RP? (real projective 3-space),
RP? suspensions, 5% x S, lens spaces, solid Klein bottle, and others.

There are two basic methodologies used in topology. The first is combinatorial
PL-topology (piece-wise linear), and the second is smooth manifold topology. The
first uses subdivision such as triangulation, analysis of the subcomponents, and a
tiling of the subcomponent results. PL-topology has many very powerful algorithms
while smooth manifold topology has fewer methods available. However, our current
plan is to continue our crystallographic topology studies in the smooth manifold
domain since, in our view, this allows us to be compatible with a wider range of
crystallographic theory and applications. Thus, in our present study we use Morse
theory, Gaussian measures, Radon-Nikodym density, and Cerf theory rather than
a possible alternative based on triangulation, tiling, Voronoi diagrams, and normal
surface analysis.

There are also triangulation/tiling methods available for crystal structure pre-
diction and classification which do not use either Morse theory or Euclidean 3-
orbifolds. For example, the D-symbol approach, described by Dress, Huson and
Molnar,[10] uses the graphs of the singular sets for orbifolds separated from their
underlying topological spaces. Friedrichs and Huson[19] find that there are 195
different “orbifold graphs” present in the 219 affine space groups and that abelian
invariants can be used to differentiate space groups within the conflict sets.

1.2 Organization Outline

The crystallographic thermal motion analysis problem is described in section 2, and
an approach to this problem based on vector-valued Gaussian measures with the
Radon-Nikodym property described in section 3. Radon-Nikodym density provides
a partitioning between pairs of Gaussian measures suitable for defining the Morse
function and critical net of section 4. Crystallographic groups are discussed in sec-
tion 5, and crystallographic lattice complexes in section 6. Underlying topological
spaces, spherical 2-orbifolds, and Euclidean 3-orbifolds are discussed in section 7.
Heegaard splitting of Euclidean 3-orbifolds and critical nets on 3-orbifolds is de-
scribed in section 8, and example crystallographic Heegaard surfaces in the form of
quadrilateral Haken normal surfaces shown in section 9. A tabulation of crystallo-
graphic Heegaard surfaces in the appendix is described in section 10, and suggestions
for further research given in section 11.

2 Crystallographic Methods and Published Results

A high precision crystal structure analysis of a small (1-50 atoms in fundamental
domain) to medium (50-300 atoms) crystal structure routinely includes refinement




Figure 1: Phenylhydroxynorbornanone (0.5 Probability Ellipsoids)

of six anisotropic temperature factor parameters, in addition to the three mean posi-
tional parameters, per atom. With proper scaling, these thermal motion parameters
for an atom form the symmetric 3x3 cumulant matrix for the characteristic equation
of a trivariant normal probability density function, which is herein referred to as a
Gaussian measure[60] since we sometimes use it in a stochastic process context in
this paper.

Experimental determination of the dynamic correlation between the motions of
various atoms and the mathematical modeling required is usually rather expensive
and time consuming; thus, crystallographers usually use much simpler procedures
for interpretation of their thermal motion ellipsoid patterns without resorting to
spectroscopic measurements and normal mode analysis, or neutron scattering mea-
surements and lattice dynamics interpretation. '

2.1 Thermal Ellipsoid Patterns

Many crystal structure papers include a thermal eilipsoid drawing (often made by
our ORTEP({14] program) of selected atom clusters such as a molecule, if present,
as shown in Figure 1. The ellipsoids represent a constant density surface for the
atomic Gaussian measure and enclose a stated fraction of the total probability
density, often 0.5. The global pattern of thermal ellipsoids in the drawing provides
a visual summary of the time and lattice averaged thermal displacements of the
atoms. Prominent modes of molecular or lattice vibrations, such as the wag of
a carbonyl group, are often readily apparent from the figure. Some readers use
the reasonableness of the pictorial ellipsoid pattern to judge overall reliability for a
published crystal structure before studying the numerical results. :

2.2 Mechanistic Models for Thermal Motion

There are mechanistic thermal motion analysis models available such as the Schomaker
and Trueblood rigid body motion model(58] and its various extensions such as our
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segmented rigid body model,[30] but these are not used routinely because the diver-
sity of major large amplitude thermal displacement modes in crystals makes analysis
of rigid body calculation results difficult. However, these simple mechanistic models
can sometimes provide interesting information.®

2.8 Crystallographic Density Maps

Topological studies of electron density maps experimentally derived using x-ray
diffraction (which sees electrons) are now an important tool in crystallographic
charge density studies. Quantum chemistry effects such as lone pair electron den-
sities between covalently bonded atoms are often readily observable in such maps,
particularly for experimental results at very low temperatures where thermal mo-
tion is minimal. Studies using neutrons rather than x-rays produce nuclear density
rather than electron density maps since neutrons see nuclei rather than electrons;
consequently, joint x-ray and neutron studies are advantageous for a cleaner sepa-
ration of the thermal motion effects from the quantum wavefunction effects. Figure
1 is from our unpublished neutron diffraction study, which insures reliable thermal
ellipsoids for even the light hydrogen atoms that are troublesome in x-ray studies.

One can also work with calculated thermal motion density maps by summing
all the atomic Gaussian density functions, then numerically finding the critical
points[22] and their topological separatrices in the summed thermal motion density
function. Such a thermal motion map does not have the noise (experimental and
quantum) present in the experimentally derived electron density maps.

There is a significant difference between observed (or calculated) map criti-
cal point[22] (and thermal motion) analysis and the stochastic critical point (and
thermal motion) approach described next. The stochastic approach does not sum
the individual Gaussian density functions but instead works with multiple pairwise
differences to determine stochastic, rather than topological critical points and sepa-
ratrices. The critical point analysis features of the results from these two approaches
are similar but the analysis details are quite different. The stochastic approach also
provides some interatomic motion correlation results without superimposing mech-
anistic assumptions.

3 Radon-Nikodym Density

While researching thermal ellipsoid pattern interpretation problems, we found some
interesting stochastic process results involving the Radon-Nikodym derivative of
one measure with respect to a second measure, which for Gaussian measures{60] is
a classic concept in mathematical analysis[52] and probability theory.[23,46] When
used in a probability setting, the derivative is called the Radon-Nikodym density.
Much has been written on the subject of when can this be done, particularly the

%The rigid-body mean-square-displacement model has 21 parameters in a 6x6 symmetric “TLS”
matrix with 3x3 submatrices for translation T, libration L, and screw coupling S. The parameters
are adjusted by least-squares refinement to the experimental pattern of thermal eliipsoids. The
segmented rigid-body has a series of rigid groups arranged as branches on a tree with upper
branches “riding” on lower branches. Flexible joints between segments are constrained by adjusting
only selected parameters of the associated TLS matrix. For the molecule in Figure 1, two segments
were used with the phenyl group riding on the norbornanone cage. After subtracting out mean-
square displacements estimated for the hydrogen atoms’ internal molecular motion, a satisfactory
fit to the experimental thermal ellipsoids was obtained. The rather unusual pattern of ellipsoids on
the phenyl group in Figure 1 is due to screw components in the phenyl TLS, which may physically
arise from a buckling distortion within the cage (i.e., as the body hiccups, the molecule tosses its
head and twists its neck).
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books by Diestel and Uhl{11] and Bourgin.[4] The main criterion is that there be
“absolute continuity of two Gaussian measures defined on the same Hilbert space,”
which for crystal structure thermal motion is satisfied by the fact that we have pairs
of Gaussian measures interacting in the same physical Euclidean 3-space. We call
the use of this equation for coupled thermal motion the stochastic thermal motion
-approximation. :

8.1 Two Interacting Gaussian Measures

Derivation of the following equations is given in Gihman and Skorohod|[23, pp 486].
Also see Richter[46, pp 44] for a likelihood function multi-Gaussian measure exten-
sion.

The characteristic equations for Radon-Nikodym density, in orthogonal covari-
ant coordinates of crystallographic reciprocal space,

®(z) = exp(iakz ~ %(ZtBkZ)), k=12, (1)

define two adjacent atoms with mean vectors a;,a; and temperature factor matri-
ces: By, B>. A modern description of the vartous crystallographic structure factor
equations which can be used to derive these quantities is given by Coppens.[9] The
(direct space) Gaussian densities in contravariant components are:

-1
p(z) = (I—jr—’;—s/—lzexp(—(z —ax)' By (z —ak)) k= 1,2 (2)

Using B, 1/2 a5 a transformation matrix, we define

b= B{l/z(az —ay), 3)
e(z) = By 'z - ay), (4)
D2y = B;'/*(B, - By)B; '/, (5)

where D, ; is a Hilbert-Schmidt matrix (for atom 2 with respect to the reference
atom 1) with 3 eigenvalues and eigenvectors denoted Ax and e, k = 1,2,3, respec-
tively. The Radon-Nikodym density, ws,1(z), defined as the derivative of p(x) with
respect to uj{z) is given by the equation

3

U 1) = eop(- (3 (eheta) o ~taft +20) + b= 5D, 6)

n=1

When we set

P2 (@) = wra(e) = 1 = =—(@) = wra(o) = G2 (@), ™
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we obtain the equation for the topological separatrix surface separating the two
Gaussian thermal motion measures wq,;(z) and wy 2(z). In addition, for any point
y on the separatrix,

wm(y) = p2(y) = wai1(y) =wi2y) =1 (8)

3.2 Radon-Nikodym Gradient Fibers

The gradient fibers in the w (i.e. Radon-Nikodym) density space are of stochastic
importance. At the a; site, wy (x) density is a minimum and increases along an
wa 1{(z) fiber which terminates at the separatrix with ws1(z) = 1. At that point
another fiber, w; »(z), starts with a value of 1 and decreases in value to a minimum
at the as site. Gradient w fibers radiate in all directions from the two Gaussian
centroids, and for ¢ = 1 they all terminate at the separatrix. The solid elliptical
cone angle of gradient fibers meeting the separatrix increases from an vanishingly
small number to 27, as ¢ increases from ¢; to 1. Thus, Radon-Nikodym interaction
between Gaussian measures is proportional to the separatrix area between them, or
by Stokes rule, proportional to the perimeter of that area.

3.8 Three Interacting Gaussian Measures

The above two-Gaussian-measure results may be extended to three measures by the
differentiation chain rule

duz _ dpa diiy
duy  dusdp’

If the above equations are generalized to have an arbitrary origin and coordinate
system and all three w densities are simultaneously unity in that coordinate system,
the three separatrices intersect. Thus, we obtain the surprisingly simple result

Pl =2 = U3 S Wy Twe3 =Wy TwWi2 =Wy =wi3 = L

This result, which can be generalized even further, has interesting crystallographic
symmetry implications as described in section 4.2. :

Given three Gaussian measures in a triangular arrangement, we obtain three
separatrix surfaces, one between each of the three measures. If the three Gaus-
sians are related by a 3-fold axis, the separatrices will intersect on that 3-fold axis,
and there are a number of less symmetrical possibilities, some analogous to the 2-
dimensional expanding circles discussed by Siersma.[56] However, we will not pursue
that approach, since in 3-dimensions the tetrahedron is the simplest fully symmetric
configuration, which we discuss below in the Morse Theory section.

3.4 Vector-Valued Gaussian Measures

In crystals the minimum configuration of interest will always be three or more
neighbors around any reference ellipsoid; thus vector-valued measure theory is re-
quired-{11,4,40] We may consider a vector-valued probability measure £ = (1, ..., tts),
where all component measures are pairwise mutually absolutely continuous, or one
where only the neighboring measures p; are pairwise absolutely continuous, while
the more widely separated measures have w = 0.[60] For thermal motion analysis
we would use fairly large local “coherence zones”, but for the present topology ap-
plication we simply use local zones large enough to partition space into polyhedra
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around the atoms. These cage-like polyhedra are called dented bodies or dentable
sets by Diestel and Uhl, ({11] and Bourgin.[4] The term dentable carries a stochastic
meaning: if a set of measures is not dentable, it does not have the Radon-Nikodym
property. We refer the reader to the above references, and Ledoux and Talagrand([40]
for details.

4 Morse Functions and Critical Nets

A critical point of a smooth function f occurs at z if and only if (3f/8z) = 0
and (8%f/8%z) = M, with M a 3x3 symmetric matrix with non-zero determinant
(M| # 0). For convenience we name the critical points, “peak”, “pass”, “pale”, or
“pit” if the eigenvalues of M have the sign sets (-,--), (-,-,+), (-,+,+), or (+,+,+),
respectively. A Morse function is a differentiable function on a smooth 3-manifold
which has no degenerate critical points (i.e., no zero eigenvalues). A Morse function
is homotopy equivalent to a CW-complex (i.e., closure finite, weak topology, cell
complex). We represent a crystallographic Morse functions as a critical net, which
is a l-dimensional (graph) representation of the CW-complex. The critical net .
gives all minimum gradient paths connecting peaks to passes to pales to pits. The
maximum gradient paths between peaks and pits also could be included{21, see
figure in final chapter] but we always omit them from illustrations. '

4.1 Probability Flow Scenarios

Crystallographers might visualize the following model as simply a series of modified.
ORTEP drawings made at increasing probability levels. The modification is that the
4th-order intersection curve{57, pp 101-105]of two adjacent ellipsoids is calculated
at high probability levels where overlap occurs, and is the only feature drawn.
In addition, simultaneous intersection of three or more ellipsoids are calculated[1,
Ch.7] and drawn. The scenarios may aid construction of an algorithm for computing
critical point graphs, if an incremental separatrix growth approach is taken.

1. We can consider the Gaussian measure mean sites a;,a; to be ellipsoidal
wavefront sources producing expanding thermal ellipsoids over a time interval
t = 0: 1, with total enclosed density for each ellipsoid equal to t. Thus at
t = 0.5 the total enclosed density is 0.5. At time ¢, the two ellipsoids touch
at a single point y;. In the time interval t;:1 the separatrix surface expands
outward to infinity from y; to form a curved, but not closed, surface. If the
two thermal ellipsoids are related by a mirror of symmetry, the separatrix
surface will be planar.

2. Now assume we have four identical spherical Gaussian measures on the vertices
a1, az,as,aq of a regular tetrahedron. We again use expanding probability as
a scenario generator:

(a) At t = to, spherical wavefronts start expanding in 3-dimensions about
the four vertices of the tetrahedron (the 4 peaks).

(b) At t = t;, spherical wavefronts from two neighboring vertices collide at
the center of each of the six edges of the tetrahedron (the 6 passes).

{c) At t = t, + €, six two-dimensional separatrix surfaces between pairs
of spherical wavefronts start to develop (as circular separatrix-fronts)
normal to each of the six edges of the tetrahedron with a pass as its
center.
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4.2

(d) At t = ty, three circular separatrix-fronts from three passes collide at
the center of each of the four triangular faces of the tetrahedron {the 4
pales).

(e) At t = #;+ ¢, one-dimensional triseparatrix lines between three spherical
wavefronts start to develop (as vectorial trisepratrix-fronts) perpendicu-
lar to each face of the tetrahedron, and extending from a pale.

(f) At t =t3, the four spherical wavefronts, six circular sepratrix-fronts, and
three vectorial triseparatrix-front lines all collide simultaneously at the
center of the tetrahedron (a pit)®.

Geometric aspects of Radon-Nikodym Property

The above tetrahedron can be distorted somewhat and the spherical distributions
replaced by anisotropic Gaussians without changing the topology of 4 peaks, 6
passes, 4 pales and 2 pits.

1

The only exact change possible is an ellipsoidal expansion of the vertices about
the center of the tetrahedron, and that distortion ellipsoid shape then used as
wavefront generators at the four vertices.

More complex distortions of the tetrahedron will require four different ellipsoid
wavefront generators. In addition, the triseparatrix lines may no longer be
single, and the critical levels (¢,%1,%2,t3) may form bands of discrete levels.
It then becomes necessary to “stochastically negotiate” a triseparatrix line or
alter the Morse function. This negotiation is a key factor in the stochastic
thermal motion analysis to be described in a later publication.

" All atoms related by symmetry have their positions and thermal ellipsoids

related by that symmetry, and symmetry equivalent atoms will have separa-
trices on all the special position Wyckoff point, line, and plane sites of their
space group. The simplest applications of the Radon-Nikodym property will
be for simple high symmetry crystal structures, particularly those with octa-
hedral, tetrahedral, and dihedral crystallographic point group operators. A
related tetrahedron example was discussed in a previous section.

One can also partition each Gaussian measure into two components:{23] the
first with Radon-Nikodym coherence and the second without that coherence.
This assumption is equivalent to the Busing and Levy [3] riding model which
we use in our segmented rigid body model.[30] :

. The fact that we can also consider “normal modes”, with independent coher-

ence, leads to considerable flexibility in thermal motion analysis through use
of multiple vector-valued Gaussian measures as will be discussed is a separate

paper.

bActually there are two pits - the second is on the point at infinity for the Euclidean repre-
sentation of the 3-sphere S3, since we can really only count critical points in a closed manifold
such as S3. A second possibility is to put mirrors on all faces of the tetrahedron forming a 3-disk
(3-ball), D?, which would reduce the count to 2 peaks, 3 passes, 2 pales, and 1 pit, since the count
on mirrors is divided by two. A third critical point bookkeeping possibility is to consider only the
surface polyhedron (S2 topology) and use the Euler relation vertices - edges + faces = 2. The 3-
torus and the 3-sphere each have the Euler-Poincare relationship peaks — passes + pales —pits = 0
(i.e., x = 0), while the 2-sphere has x = 2. x is called the Euler characteristic.
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Figure 2: Stereo Drawing of Face Centered Cubic Critical Net, in Fm3m

4.3 Critical Net Graphs

The critical net graph has critical points as graph vertices and topological lines be-
tween the successive types of critical points as graph lines. Figure 2 is a stereoscopic
pair of drawing illustrating the critical net for the face centered cubic (FCC) type
of crystal structure (e.g., copper) which contains both tetrahedral and octahedral
polyhedra, with one of each shown in the drawing. In our critical net drawings,
ellipsoids are used to distinguish the four types of critical points (rather than to
represent thermal motion as in Figure 1). The large spheres, elongated ellipsoids,
flattened ellipsoids, and small spheres represent peaks, passes, pales, and pits, re-
spectively. »

Figure 3 shows dilithium oxide, Liz O, the dual of FCC, where the peaks and pits
(also passes and pales) are interchanged so there is one “chemical cage” polyhedron
with two types of atoms. The largest sphere for oxygen and the next largest for
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Figure 3: Stereo Drawing of DiLithium Oxide Critical Net, in Fm3m)
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Figure 4: Sodium Chloride Critical Net

lithium. The pale of FCC is arbitrarily shown as coplanar within the tetrahedron
and octahedron faces of Figure 2, but is required by symmetry only to be on the
3-fold symmetry axis between the two pits. If the pale is centered between pits in
Figure 2, the pass is centered between peaks for its dual in Figure 3. The centered
position is called a non-characteristic or pseudo-symmetry site (see Section 6.2).

Figure 4 show the critical net for sodium chloride (space group Fm3m), but if
both peaks are identical it becomes the simple cubic structure structure (Pm3m).
For simple structures such as the above, all or most of the critical points are on
special positions of the crystal’s space group . For these fixed point structures the
critical net can be determined through the rules stated in the next subsection.

For a more complex crystal structure, such as that shown in Figure 1, which
has no atoms in special positions, the Radon-Nikodym calculations described above
can be used with averaging for the cases where minor splitting of critical points or
separatrices occur, assuming the crystal structure parameters are available.

4.4 Morse Theory

Morse theory[21,54,55] explores questions such as: What does a manifold know
about the Morse function on that manifold, and vice-versa? For a crystal structure
Morse function, let the manifold be a 3-torus (unit cell) with given space group
symmetry. If the space group has singularities, they must be compatible with
the critical net of the Morse function. We find the following Euclidean 3-space
characterizations useful.

1. Morse Inequalities: Let ng,n1,n2,n3 be the number of peak, pass, pale, and
pit critical points, respectively, in the Morse function on the 3-torus. The
Morse inequalities for the unit cell contents are: ng—nj;+ns > 1l,n3—ns+n; >
1,n0 ~ny > 2,03 —ny > 2,10 > 1,n3 > 1, and the Morse equality is

ng —ny +ng —ng = 0. (9)

The equation and inequalities are helpful constraints on verifying that we have
a true Morse function and have found all the critical points. The equality
also provides a calculation of the Euler-Poincare characteristic, which is the
expected y = 0 of Euclidean 3-space, but here we are using Morse function
critical points rather then the usual Betti numbers as coefficients.
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2. Fixed points: If the space group has fixed point singularity sites, then one
and only one critical point of the Morse function must reside on each of these
sites. Any remaining critical points of the Morse function will be positioned
on lower symmetry sites.

3. Critical Net Arcs: The arcs of the Morse function critical net represent gradi-
ent lines; thus they cannot pass through a fixed point symmetry site, rotation
axis, or mirror of the space group since that would generate an additional
Morse function critical point at the point of intersection.

4. Wagon Wheels: We observe that crystallographic critical nets have wagon
wheels of pales around peak - pass - peak linear axles and wagon wheels of
passes around pit - pale - pit linear axles with minor distortions allowed. This
may be related to the transversality theorems of Morse theory. The wagon
wheels observed to date have 3, 4, 5, and 6 spokes, with the 5-spoke example
being a hypothetical Morse function which fits onto the B-type [29] cubic
space groups.

5. Wagon Wheel Axles: A useful Morse function constraint based on the wagon
wheel property is that there must be one and only one wagon wheel axle
at each peak and pass. We can express this in terms of the “Q rule”: @
(resp., Q2) = (order of Wyckoff multiplicity on pass-to-peak arc (resp., pale
to pit arc)) / (order of the Wyckoff multiplicity on pass (resp., pale)) = 2, if
and only if the pass (resp., pale) is not degenerate. Instead of using Wyckoff
multiplicity ratios, one can use group order ratios which is the convention
used in the mathematical literature. Keep in mind that the two ratios are
reciprocal.

5 Crystallographic Groups

The crystallographic groups [24] describe discrete rigid motions. A n-dimensional
space group has a normal free Abelian subgroup of rank n, which is maximal Abelian
and has finite index.[26]. ' '

5.1 The Unit Cell

Each 3-dimensional space group has one of 14 different Bravais lattices as the
Abelian subgroup, L, mentioned above. The quotient G/L = T3, with T? a 3-
torus group, defined as the direct product of 3 copies of the torus group ' = R/Z,
with R the additive group of real numbers and Z the additive group of rational
integers. The 3-torus concept may be interpreted in two different ways. First, it is
considered as T3 = I x I x I (I=interval) with cyclic boundary conditions where at
any time the size of each I is arbitrarily set to include as many copies of the paral-
lelepiped unit cell as we wish for the calculation or illustration at hand. Secondly,
it may be considered a topological torus where the cell is distorted to bring each of
the three opposite pairs of unit cell faces into physical contact T? = S* x S* x §*.
The two models are homeomorphic. The first interpretation is the traditional one
used in distortion-sensitive metric crystallography. However, we normally use the
second interpretation in distortion-invariant crystallographic topology.

T is the finite unit cell for the infinite space group G, and contain m (m=1 to
192) symmetry equivalent fundamental domain (asymmetric unit) polyhedra. m is
the general position Wyckoff multiplicity of the unit cell. There may also be special
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Wiyckoff sites (points, lines, and planes) in the unit cell. Each will have Wyckoff
multiplicity m/q where g is the order of the local symmetry group (on that site),
which is one of the 32 point groups discussed below. Each of these special Wyckoff
sites in the unit cell represents a characteristic orbit of the space group.

. 5.2 Nomenclature

A space group G projected along one of its three distinctive non-parallel axes (choice
depending on the crystal class: i.e., triclinic, monoclinic, orthorhombic, tetragonal,
trigonal, hexagonal, or cubic) gives one of the 17 infinite plane groups J, sometimes
called wallpaper groups. The three plane group projections, J;: j = 1,2, 3, are not
necessarily different. A symbol for the Bravais lattice, L, and a distinctive space
group generator from each of the three projection axes, are adjoined to form the
space group symbol.

Ezample - A space group’s full symbol, 432 (normally shortened to Fd3m)
tells us that this is a cubic space group {orthogonal axis a = b = ¢) with (a)
face centered unit cell (F); (b) 4; screw axis along e, with diamond glide planes
perpendicular to a; (c) 3 axis along the a + b+ ¢ body diagonal; and (d) 2-fold axis
parallel to the b + ¢ face diagonal, and a mirror plane perpendicular to that axis.

5.3 Classification

Space groups, G[24], stripped of all translation components other than their Bravais
lattices, project to the 73 arithmetic crystal classes[63], A, which modulo the Bravais
lattices become the 32 geometric crystal classes (i.e., point groups: discrete cyclic (2,
3, 4, and 6 only) dihedral, tetrahedral, and octahedral members of the orthogonal
group O(3)), K. The classification hierarchy may be represented by surjective
(onto) mapping arrows in a commutative diagram,[26]

- K(32) —»

- L(14) » (),

G(230) — Go(219) — A(73)

with G, the affine space groups (handedness ignored), and C the coproduct of K
and L over A. As an example, v

- 622 —

P6522 — P6, 522 — 622P SPS Hezagonal.

There is also a group extension (short exact sequence)(2,62]
0-L—-G,» K1,

where G, is the symmorphic (no screw axes or glide planes) member of the arith-
metic crystal class. Short exact sequences have interesting mathematical properties
we will not explore here. However, it tells us that K = G,/L. There appears to be
no simple mathematical algorithm which generates G from K and L.

6 Lattice Complexes

Lattice complexes have been known to crystallographers for over 70 years, but
have not been used much in recent years. However, we find them to be invaluable
landmarks for the crystallographic orbifolds.
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6.1 Characteristic Lattice Complezes

1. Invariant Lattice Complex:[24,17,29] These sites are all the fixed point Wyck-
off sites in a space group unit cell, and all lie on a superlattice within that
unit cell, which for the cubic crystal family divides the cell into 8 x 8 x 8
parts. Various patterns are formed on that superlattice, and each pattern
is given a one letter name{17] which characterizes that pattern. Translation
of the pattern, expressed in multiples of 1/4,1/4,1/4 within the cell, is indi-
cated by the number of postfix primes. Prefix symbols (, +, -, etc.) indicate
other transformations, and a subscript 2, such as £, indicates doubling of the
lattice complex in all 3 directions within the cell.

2. Invariant Lattice Complex Nomenclature[17,24] and Algebra[17,29): For the
cubic family there are 16 invariant lattice complexes. Their nomenclature
and algebraic relations follow: D(diamond) = F +F', D" = F + F"'; F(face
centered) = P + J, Fj; = T + T"; I{(body centered) = P + P", [, = D
+ D" = P, + P; J(jack), J* = J + J"; P(primitive); P, = F + F";
S(Schoenflies Sy), S* = S + ’S; T(tetrahedral), *V,”V(Schoenflies V'), V*
= *V + ~V; W(“non-intersecting rows”), W* =W + W", W, = V* 4+ S*;
TY,"Y(“Y-shaped”), ¥Y* = *Y + *Y”, “Y* = “Y + ~Y”, and Y** =
+Y* + -y *",

3. Characteristic Univariant, Divariant, and Trivariant Lattice Complexes: These
are lines with an invariant member on each end, mirror planes containing
a graph of univariant members, and the entire set of invariant, univariant,
and divariant members, respectively.[17,37,24] In the cubic space groups, each
trivariant lattice complex is unique to one space group, but this is not the case
in other crystal families. A divariant, univariant, or invariant lattice complex
can occur in several different space groups.©

6.2 Non-Characteristic Lattice Complezes

A characteristic invariant lattice complex of a space group may or may not appear
as a characteristic lattice complexes in the subgroups (i.e., daughter space groups)
of the parent space group. If it disappears but the neighboring lattice complexes
it is connected to in a monovariant lattice complex do not disappear. it becomes
a non-characteristic {pseudo-symmetry) invariant lattice complex, A more formal
description follows.

The set of points generated from a point X by the space group G is called a
crystallographic orbit A(Xg). If E is the symmetry (eigensymmetry) of this set of
points and E = G, then A(Xy) is a characteristic crystallographic orbit. However
if E is a supergroup of G, then A(X,) is a non-characteristic crystallographic orbit
with respect to G. These are tabulated in “The Non-characteristic Orbits of the
Space Groups” by Engel et. al.[15], and in papers by Koch|[36], and by Fischer and
Koch.[18] Non-characteristic orbits[15] are not exactly the same as limiting lattice
complexes[38] discussed in the lattice complex literature but the main differences
seem to disappear in the crystallographic topology application.

“There are 16 unique invariant cubic lattice complexes in the 35 affine cubic space groups
and 20 more in other crystal classes for a total of 36 in the 219 affine space groups.. There are
also 44 monovariant, 16 divariant, and 35 trivariant lattice complexes in the cubics and 62 more
monovariant, 89 more divariant, and 120 more trivariant lattice complexes in the remaining 184
affine space groups. Thus there are 402 lattice complexes in the 230 space groups.(17]
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1. Non-characteristic Invariant Lattice Complexes:[36,15] These are points of
pseudo-symmetry which are often the preferred sites occupied by Morse func-
tion critical points after the characteristic invariant sites of a space group have
been filled. They also provide additional landmarks for orbifold visualization
and algebraic characterization.

2. Non-characteristic Univariant, Divariant, and Trivariant Lattice Complexes:
The univariant and divariant non-characteristic lattice complexes (orbits) are
included in our on-line Euclidean 3-orbifold atlas.[33]. They are useful for
pseudo-symmetry crystallographic problems such as disorder, in addition to
providing convenient orbifold landmarks.

6.3 Wryckoff Sets

The different Wyckoff positions of a space group G may permute under an isomor-
phic mapping of G onto itself (i.e., under an automorphism of G). A Wyckoff set
is the collection of all Wyckoff sites that may be permuted by automorphisms of
G.[24, Sect. 8.3.2].

When an orbifold has more than one characteristic lattice complex with the
same topology lattice complex notation (defined below), they are members of the
same Wyckoff set. This is true for invariant, univariant, and divariant characteristic
lattice complexes.

6.4 Topology Notation for Lattice Complezes

The invariant lattice complex notation transfers directly to crystallographic topol-
ogy. However, the primes referring to translations in space-group space are omitted
since that information is implicit in the singular set graphs of orbifold drawings. We
found the standard crystallographic notation for the univariant lattice complexes
(e.g., [12xx for Im3m(h), Pn3n(h), and [432(h)) unsuitable since topology has
no coordinate systems or coordinate;, thus we had to derive new notation for our
on-line crystallographic orbifold atlas.[33)].

We also combine the lattice complex information with the Wyckoff site and
symmetry information and include non-characteristic invariant lattice complexes as
well. For example, the entries for the Wyckoff sets in the Euclidean 3-orbifolds
corresponding to the three space groups just mentioned become

Mult. | Lat. Complex | Group Graph | Wyck. Set | Space G.
241 TI2[]0*4 |43 <2 > 47 | hib-a Tm3m(h)
24-1 112{J5]J*4 43<2>42 | h:b-a Pn3n(h)
24-1 112[J5)J*4 43 < 2> 42 h:b-a 1432(h)

The 24-1 is the Wyckoff multiplicity and number of equivalent Wyckoff sites in
the Wyckoff set. In the lattice complex column, 112 and J*4 are the invariant lattice
complexes [ and J* at the ends of the univariant lattice complex, with Wyckoff
multiplicity 1/12 and 1/4 that of the univariant site; [J2] is a non-characteristic
lattice complex site half way between I and J, with Wyckoff multipiicity that of the
univariant site. The next column gives the groups-on-graph description (described
below) of the Wyckoff site, with the bracketed number indicating the order of the
rotation axis 2'(mm2) or 2-fold. The final column gives the univariant Wyckoff
symbol, h, and that for the two invariant Wyckoff sites, a and b, at the ends of h.
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7 Crystallographic Orbifolds

An orbifold [61] is a vector space modulo the symmetry group operating on that
space. The crystallographic orbifolds[12,13,29] of interest are E®/G, E?/J, and
S?/K. These are quotient groups of Euclidean 3-space, Euclidean 2-space, and the
2-sphere modulo the 230 infinite space groups, G, 17 infinite plane groups, J, and
32 finite point groups, K, respectively. They are finite, closed, and usually singular,
spaces called Euclidean 3-orbifolds, Euclidean 2-orbifolds and spherical 2-orbifolds,
respectively. Singular set diagrams for the two sets of 2-orbifolds, and the 36 cubic
3-orbifolds are illustrated in our previous paper.[29] In addition, all orientable Eu-
clidean 3-orbifolds, which includes those with underlying topological spaces, S* x
S? and several other lens spaces{47], are illustrated in Dunbar’s thesis.[12]

7.1  Underlying Topological Spaces

Fach Euclidean 3-orbifold has an underlying topological 3-space. The simplest are
in the cubic crystal class, where the underlying spaces are D3, S%, RP3, single RP?
suspension, and double RP? suspension. (i.e., 3-disk, 3-sphere, real projective 3-
plane, real projective 2-plane plus a 3-disk half boundary, and double real projective
plane, respectively). '

1. D3: The 3-disk is a silvered 3-ball, so named because it has a mirror on its
boundary and is a closed space since any vector from within which interseets
the boundary is reflected back into .the 3-ball.

2. §3: The 3-sphere is a 3-dimensional sphere embedded into a 4-dimensional
Euclidean space, but which can be visualized as a Euclidean 3-space with a
point at infinity. This is the next higher dimension analog of the projection of
a 2-sphere onto a plane which is constructed by drawing a straight line from
the north pole within the sphere to a point on the sphere, then continuing on
that line until it intersects the plane tangential to the south pole of the sphere.
The north pole itself projects to infinity in all directions in the plane, and is
called the point at 2-infinity. To draw lines on the 3-sphere we take some
topology artistic liberty and put the point at 3-infinity at some convenient
nearby location in Euclidean 3-space and simply curve the relevant geodesic
lines to go through that point (see orbifold F23 in Figure 5).

3. RP3: RP? is a 3-dimensional projective plane embedded into a 4-dimensional
Euclidean space. We cannot draw continuous lines of RP® in 3-dimensional
Euclidean space, but we can use the antipodal 3-ball convention where any
line that hits the boundary is transferred to the diametrically opposite point
and reenters the antipodal 3-ball.

4. RP? suspension: An RP? suspension is visualized as a cone with apex at
an orbifold point arising from a space group center of symmetry (I, 4, or 3)
which does not lie in a mirror. A 2-dimensional antipodal convention about
the cone axis is used at the cone surface so that any line that intersects the
cone surface from within is transferred 180 degrees about the cone axis and
reenters. A dual suspension underlying space has two antipodal cones glued
at their bases while a single suspension has a single cone with a silvered .D?
disk glued to its base. More complicated suspensions occur in orbifolds from
the lower symmetry space groups, such as the one with eight antipodal cones
from space group P1.
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Figure 5: The Six Tetrahedral Euclidean 3-Orbifolds

7.2 Spherical 2-orbifolds

1. Singular Set Components: On an orbifold drawing, all mirrors and lines (other
than construction lines) combine to form the singular set. Each of the singular
set components (mirrors, lines, and line intersections) is one of the 32 spherical
orbifolds with the name 1 for open space; 1’ for a mirror; 44 for a line labeled 4;
332 for the intersection of three lines labeled 3, 3, and 2; 4'3'2' for intersection
of lines 4/, 3’, and 2'; 41’ when a 4-axis meets a mirror; 23’ when a 2-axis
meets a 3'-axis; 0 for a stand-alone RP? cone point; 20 when a 2-axis meets
an RP? cone point; etc. See Johnson et al.[29] for a complete list and 2-

. orbifold drawings.

2. Groups on Graph: The singular set of the orbifold forms a graph, and all
components of the graph (i.e., nodes and links) are spherical orbifolds. A
link between nodes is a subgroup of both nodes. The tetrahedron orbifold in
Fm3m (Figure 5) has 4'3'2/, 3'3'2', and 2'2'2’ nodes joined by 4'-, 3'-, and
2'-fold links, respectively. The group graph symbols for the univariant lattice
complexes are 3'2' < 4' > 3'2/, 4'2' < 3 > 32, 43 < 2' > 2'2' and 3'Y <
2> 22 with < 2 >,< 3 >, < 2" >, and < 2’ > the links. The Jo{W>*]J2
univariant lattice complex in Fm3m of Figure 5 (a link between a point at
the center of the 4’4’ line and the 2'2'2' vertex) is denoted 4’4’ < 1' > 222",
This particular link is relevant in a later discussion.
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3. Knots, Links and Braids: Most of the Euclidean 3-orbifold singular sets are
knotted graphs, but there is one pure knot, the figure eight singular set in the
3-orbifold for cubic group P2,3. There are several relatively simple links such
as the Borromean rings[62] of the orthorhombic space group 12,212, and the
four link looped chain of P222,({12]. Braids are plentiful in the crystallographic
3-orbifolds.[12,13]

4. The Odd Axis Effect: Crystallographic groups have only one rotation axis of
odd order, the 3-fold axis, and the rest are of order 2, 4 and 6. Even and
odd order functions often behave differently. In orbifold drawings, a Wyckoff
3’ site has different parts of the same Wyckoff mirror on the two sides of the
3' axis, while even order axes do not. An intersection such as 332 has the
same 3-axis ¢coming in and going out, and a 322 intersection has the same
2-axis coming in and going out. In these cases we denote different parts of
the same Wyckoff axis or mirror with subscripts. For example, note that the
F43m orbifold has one 3’ axis segmented into four parts and that a single
mirror covers all four faces of this silvered 3-ball orbifold. McCullough et
al.[43] discuss some aspects of this effect.

7.8 Ezample 3-Orbifold Drawings

The six cubic Euclidean 3-orbifolds with symmetry axes forming tetrahedra are
illustrated in Figure 5. They have underlying spaces D® and S2, as indicated, and
are the simplest crystallographic 3-orbifolds. Each orbifold in Figure 5 has two
drawings to minimize clutter in the labeling.

Left Figure: Capital letters indicate characteristic invariant lattice complex sites
if on a vertex and non-characteristic invariant lattice complexes (defined below) if
not on a vertex. The one digit numbers indicate rotation axis order and are primed
if that axis lies on a mirror.

Right Figure: Small letter symbols are the Wyckoff letters used in ITCr-A [24]
to identify specific Wyckoff sites. Letters at a vertex denote Wyckoff point sites,
letters on an edge denote Wyckoff axis sites, and bracketed letters denote Wyckoff
mirror sites.

Orbifold Atlas : A description of the 3-orbifold for Pm3m follows. This entry
is taken from our on-line world wide web orbifold atlas.[32] The 2* in the bottom
row of the group graph column denotes 2-fold pseudo-symmetry axis.

Muit. | Lat. Complex Group Graph Wyckoff Set
1-2 P 32 a.b
3-2 J 4'2'2 c,d
6-2 P6[-]J2 32 < 4> 22 era—d,f:b—c
8-1 P8[P,) P8 42 <3 > 4'2 g:a—b
121 | J4W*J4 42 <2 >42 |h:c-d
12-2 P12[-1J4 43 <2 > 4'2 ita—cj:b—d
24-2 m k:ehi,l: fhj
24-2 m ml: fgi,m2: egj
48.. 1 n:kim
C 481 P6[-]W*4 (2*=33 <1>22 |nl:g-h
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D332
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0222 ,

D4'3'2'

Figure 7: Sodium Chloride 3-Orbifold {1/8 of Fm3m Unit Cell shown)

8 Heegaard Splitting

Our interest in Heegaard splitting stems from the fact that a Morse function (crystal
structure) on a Euclidean 3-orbifold (i.e., wrapped up [orbi-folded] fundamental
domain of a space group) is split into two parts by a level density surface, called
the Heegaard surface, between the two types of saddle points.[51] This level surface
has peaks and passes on one side, and pales and pits on the other.?

Since topologists have developed a number of techniques for characterizing Hee-
gaard surfaces and transforming from one to another and crystallographers have
several tens of thousands of crystal structures, each one of which has a different
Heegaard surface, it seems worthwhile to study the Heegaard splitting literature to
see what might be useful to crystallography. Here we will just make a few prelimi-
nary observations that could lead to more productive crystallographic applications.
Compilations of data on small crystal structures, such as that by Hellner, Koch,
and Reinhardt[25], should be useful in future research.

4Viewed from the standard crystallographic perspective, there are atoms and bonds on one side
of the Heegaard surface and interstices on the other. This description reminds one of the minimal
surface studies carried out by a number of crystallographers.[53] There are a growing number of
topology papers(48,20] comparing minimal surfaces and Heegaard surfaces.
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Figure 8: Heegaard Splitting of NaCl on Fm3m 3-Orbifold

8.1 Heegaard Splitting of NaCl Critical Net on Fm3m Orbifold

Figure 6 shows the full critical net for a unit cell of NaCl (table salt), and Figure
7 shows the singular set for its space group. Both Figures 6 and 7 show a shaded
fundamental domain of the unit cell, which for Figure 7 is also the 3-orbifold since
it is bounded by mirrors. A detailed drawing of the NaCl Morse function is shown
in Figure 4.

1. Critical Net Graph: The composite of the fundamental domains from Figures
6 and 7 can be stretched out in the direction of the. arrows of Figure 6 by
pulling up on the peaks and down on the pits to obtain the critical net graph
on the right-hand side of Figure 8 with descending density sequence peaks,
pass, pale, and pit. The corresponding orbifold for Fm3m of Figure 5 is
then placed on the left-hand side of Figure 7, and the peak/pass/pale/pit
lattice complex sequence (F, F/J;/Ja/ P} from the left-hand orbifold drawing
is placed within the nodes of the right-hand critical net graph. The prime on
the first Jj indicates it is a non-characteristic lattice complex site.

2. Heegaard Surface Nomenclature: The Heegaard surface cuts the tetrahedron
orbifold parallel to the page on the left-hand drawing and cuts the distorted
critical-net-on-orbifold perpendicular to the page on the right-hand drawing.
Note that it cuts two 3'-axes, two 2'-axes, and the mirrors on the face of the
3-orbifold, which produces the orbifoid component 3'3'2'2'm of the Heegaard
surface symbol H3'3'2'2'm{1'}. The critical net component {1’} of the symbol
denotes that the Heegaard surface cuts a pass-to-pale link of the critical net,
which is not an axis of the orbifold singular set. Pass-to-pale links are usually
lower symmetry than the other links of the critical net. However, in those
cases where all the pass-to-pale links are part of the singular set, we move
that link to the curly brace. The H in the symbol indicates it is a hyperbolic
surface. The Heegaard surface is actually a 2-orbifold,[43,64,65] and we can
calculate the Euler characteristic for a 2-orbifold[7] directly from the orbifold
portion of the Heegaard surface symbol which gives x < 0; thus, this Heegaard
surface is a hyperbolic 2-orbifold. Most Heegaard surfaces are hyperbolic, but
we also found a few that are Euclidean y = 0, which we designate with a
symbol starting with E rather than H.

3. Handlebodies: The Heegaard surface, created by Heegaard splitting, parti-
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tions the manifold (or orbifold) into two handlebodies. A handlebody has a
genus, g (g = number of holes = number of handles), and is called a genus
g handlebody. Both handlebodies from a Heegaard splitting have the same
genus and a common boundary, the Heegaard surface. This means that all
holes in the handlebodies go through the Heegaard surface. The handlebodies
in Figure 8 are genus zero handlebodies since we are currently working with
tetrahedral orbifolds. Since the 3-orbifold in Figure 8 has a mirror boundary,
we should be using the term compression body[35] rather than handlebody,
" but for simplicity we will abuse topology terminology and use the term han-
dlebody even when the orbifold has a {mirror) boundary.

4. Handlebody Spines: The review article, “Heegaard splitting of compact. 3-
manifolds,” by M. Scharlemann[51] discusses several approaches to Heegaard
splitting. Since our main interest involves Morse functions, we will use the
methods described in his section 2.4, “Splittings as Morse functions and as
sweep-outs.” Sweep-outs are based on the spines of the two handlebodies
formed by the Heegaard splitting, and the spine X of a handlebody H is
defined as the finite graph in H to which H deformation retracts.® From our
perspective, the deformation retract for A, and H_ is simply those portions
of the critical net graph above and below the Heegaard surface, respectively.

5. Handlebody Spine Orbifolds: McCullough et al.[43] and Zimmermann[64,65]
call the orbifold singular set components in these deformation retracts han-
dlebody orbifolds. For our application where we are adding the critical net
of the Morse function to the orbifold, we could call them handlebody criti-
cal net orbifolds but prefer the shorter name handlebody spine orbifolds. In
our on-line orbifold atlas, they are called simply handlebody orbifolds. The
Euler constant for handlebody orbifolds can be calculated and some are tab-
ulated.[43,64,65]

6. Handlebody Groups on Graphs: The (+) and (-) handlebody orbifolds of
Figure 8 are 3'2' < 4' > 3’2’ and 3'3’' < 2' > 2'2', respectively. The unmatched
links 3’3’2'2’, the mirror m, and the pass to pale link 4’4’ < 1’ > 2'2'2' combine
to form the Heegaard surface symbol H3'3'2'2'm{1'}.

9  Quadrilateral Haken Normal Surfaces

A tetrahedron has seven Haken normal surfaces,[28,27] three of them are quadrilat-
eral surfaces, such as the one shown in Figure 8, and the other four are triangular
surfaces cutting the three edges extending from each vertex. Figure 9 shows the
three quadrilateral surfaces in each of the three tetrahedral 3-orbifolds of Figure 5
with underlying space D3. Crystal structures which have that quadrilateral Haken
normal plane as a Heegaard surface are identified on the figure and described below.

9.1 Normal Surface Automorphism

The Euclidean 3-orbifolds from Fm3m and F43m have automorphisms, which are
expressed as isomeric quadrilateral normal surface pairs corresponding to the crystal

®The definition of deformation retract in Chapter O of Allen Hatcher’s on-line book draft
Algebraic Topology I at http://math.cornell.edu/hatcher is accompanied by an informative set of
drawings.
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Figure 9: Normal Quadrilateral Haken Surfaces for Three Tetrahedr:«ﬂ Cubic Orbifolds

structure types face centered cubic (FCC} and zinc sulfide, respectively, as shown in
Figure 9. The dual (reversed critical point sequence) of FCC is the Li, O (lithium
oxide) structure shown in Figure 3, which is perhaps a better default characteriza-
tion than FCC because there is only one pit for Li; O and two for FCC. However,
the fact that there are so many FCC metals makes it a more familiar term to most
scientists. '

At first glance one might also expect Pm3m to have a pair of isomorphic quadri-
lateral normal surfaces since two of them have the same critical point sequence of
lattice complexes, P/J/J/P. However the descriptors for those two quadrilateral
normal surfaces are 3'22'2' and 4'3'4’2’ so they cannot be isomorphic. Only the
first of these two is a valid Heegaard surface/ To see why the quadrilateral normal
surface 3'2'2'2' of Pm3m is a valid Heegaard surface while 4'3'4’2’ is not, we use the
wagon wheel axle Q rule of section 4.4 to calculate @ = @2 = 2 for the former and
Q1 = @, = 4 for the latter. The critical netsare 3’2’ < 4' >2' < 2/ > 2' < 4 > 3%,
and 43’ < 2' > 2' < 4' > 2' < 2' > 4’3 which have critical point and separatrix-line
Wryckoff muitiplicities 1(6)3(12)3(6)1 and 1(12)3(6)3(12)1, respectively. Thus @i
= Q2 = 6/3 = 2 for the former and Q; = Q2 = 12/3 =4 for the latter. All adjacent

1
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multiplicity ratios are in fact useful. For the (valid) first series we see that there are
6/1 = 6 passes around each peak, 6/3 = 2 peaks around each pass, 12/3 = 4 pales
around each pass, 12/3 = 4 passes around each pale, 6/3 = 2 pits around each pale,
and 6/1 = 6 pales around each pit. Thus the wagon wheels around the peak-pass-
peak axis (and pit-pass-pit axis) have 4 spokes. The corresponding structure type is
called simple cubic. The only known real crystal with this structure is a-polonium
(Po, atomic number 84).

9.2 Symmetry Breaking Subgroup Sequence

Note that there are two NaCl structures in Figure 9. In addition, the simple cu-
bic structure is geometrically very similar to NaCl. Thus we have three related
structures on a series of normal subgroups of index two. The highest symmetry
structure, simple cubic Pm3m, is changed to a larger face centered cell, with P and
J going to P, and J>. The larger primitive cell changes to a face centered cell by
making adjacent peaks alternate between Na and Cl. Thus the old peak P, now
P,, splits into two F's (using the lattice complex identity P, = F' + F”) and the old
pass, now Jo, becomes a non-characteristic J; in the new space group Fm3m.

For the change from Fm3m to F43m, we split the remaining P; site into two
F sites (using the lattice complex identity P, = F'+ F”) and turn the remaining J
characteristic lattice complex site into a J; non-characteristic site, to form F43m.
The final space group may at first seem to be higher symmetry since it has 4 F
invariant lattice complex sites, but these are normalizer (automorphism) equivalent
sites, not symmetry equivalent sites. For a more graphic illustration of symmetry
breaking, see the cubic group/subgroup appendix and series of critical net family
diagrams in our previous paper.[29]

Critical Points
F/J:2/TT/FFF

i 2 33 5§7

32<3>2<3>32 (-) handlebody
H33222(11} Heegaard surface
332<1>22 (+) handlebody

Figure 10: Heegaard Splitting of FCC Critical Net on F23 3-Orbifold

9.8 Normal Surfaces in Triangulated Orbifolds

Figure 10 illustrates the non-planar Heegaard surface in the body centered cubic
structure, which can be represented by two Haken normal surface tetrahedra. This
process is the foundation of Haken normal surface (and almost normal surface)
analysis. The mathematical description of an arbitrary Heegaard surface in terms
of a large number of tetrahedra from a fine triangulation of an orbifold can present
nontrivial mathematical problems because of the integer nature of the equations
involved, but this is currently a very active research area.
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9.4 Heegaard Surfaces in Orbifolds with RP? Suspension Underlying Space

Certain crystal structure types, particularly those in the body centered cubic (BCC)

and diamond families, occur on space groups having 3-orbifolds with an RP? sus-

pension as the underlying space. An example is the BCC critical net on the Pn3

3-orbifold shown in Figure 11. One must be careful in the analysis of projective

spaces because the complete interior is unique and only the surface has the an-

tipodal property described previously. Note that the W* lattice complex point is

non-characteristic; thus the 2-axis out of the characteristic J* loops back to itself

and the (-) handlebody is denoted 2 < 2 > &. Consequently, W* is in the middle
of the 2-axis loop and the univariant lattice complex symbol for that handlebody

becomes J x 2[Wx]&.

9.5 Triply Periodic Minimal Surface

Figure 12 shows the Heegaard surface for a unit cell of the simple cubic structure
when the properly curved fundamental domain is repeated 48 times using the full
symmetry of the Pm3m space group. Figure 12 is actually Schwartz’s triply periodic
minimal surface[20] P, but the Heegaard level surface closely approximates it. The
full surface requires gluing such units together into a three dimensional repeating
array. This is a demonstration figure for Brakke’s Surface Evolver program.[5]
The heavy lines are mirrors of Pm3m which clearly outline the H3'2'2'2'm surface
motifs. The program seems capable of making such drawings for all the Heegaard
surface discussed above.

10 Heegaard Surface Kinship

The crystal structure types appearing in Figure 8 represent surprisingly diverse ma-
jor crystal chemistry families which develop increasingly complex Heegaard surfaces
as the number of different atoms increases. Terms like class, family, etc. are already
so heavily overused and ambiguous that it is hard to find a suitable traditional scien-
tific term for a crystallographic Heegaard surface classification. We have considered
terms like kin and kinship but need more experience with Heegaard surfaces and a
better feel for their usefulness before worrying about considering a classification.
A list of Heegaard surfaces directly related to and including the ones shown
above is included as the Appendix. The BCCs clearly show that Heegaard surfaces

0<3>2<3>0
W (+) Handlebody
2 HP2200{11}
Heegaard Surface @
2<2>& 2
(-) Handlebody 0
Antipodal Cone  Critical Net
Double Suspension on Orbifold
[W* = (W¥), I*=(J%),

2=(2)]

Figure 11: Heegaard Splitting of BCC Critical Net on Pn3 3-Orbifold
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Figure 12: Simple-Cubic Heegaard Surface Approximates Schwartz's P Surface (A Triply Periodic
Minimal Surface)

alone do not uniquely specify a crystal structure since there are a number of dupli-
cates in that group. Most of the data in the appendix are easily derived from the
critical net graphs in our first paper.

11 Whither and Yon

We routinely use “whither and yon” notebooks (to what distant place and beyond)
to periodically record our aspirations for future research. Our previous paper has
a section called “Where do we go from here?” which contains a number of research
needs in crystallographic topology, and we add a few additional suggestions below.

11.1 Heegaard Splitting

Heegaard transformations: The mathematical literature on transforming Heegaard
surfaces is very convoluted and time consuming to understand. Some review articles
for the layman would indeed be welcome. At present our understanding suggests
that although normal surfaces seem to work, the mathematical problems in solv-
ing the required integer equations seem too formidable for the large scale problems
which could develop in crystallography. We are currently putting our efforts into un-
derstanding the Rubinstein-Scharlemann Graphic approach[49,50,39] which is based
on Cerf theory and uses a smooth manifold topology approach, rather than piece-
wise linear topology. This method provides a systematic procedure for comparing
two Heegaard surfaces.

Handlebody nomenclature: It seems advisable to use the handlebody orbifold
notation of Zimmermann[65] which records the routing of connections between the
two handlebodies as a braid to provide a more complete description of the singular
set topology. )

Invariants: The problem with most mathematical invariants is that they are
designed to prove theorems rather than provide physical information. However,
invariants such as the Heegaard numbers described by Zimmermann and others
may provide useful information if someone can give them a physical interpretation.
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11.2 Fundamental Group of an Orbifold

For orbifolds to be useful in crystallography, they have to apply equally to all space
groups. There are 10 spacegroups (13 if handedness is included) which orbi-fold
into Euclidean 3-manifolds, which have no singular set. Thus their orbifold drawing
would be a blank figure. The Euclidean manifolds put all their symmetry into
the fundamental group.[34] On the other extreme, the symmorphic space groups
form simply connected 3-orbifolds with trivial fundamental group and an extensive
singular set. The other space groups lie between these two extremes. Thus we
need some way of adding the fundamental group to the orbifold representation.
Unfortunately, fundamental groups often involve group presentation methods that
many physical scientists find not useful.

Stated another way, we need some way of representing screw axes and glide
planes, in an extended orbifold, as easily as we now show mirrors, rotation axes, and
inversion centers. These features are all shown in the ITCr space group drawings.[24]
In orbifold drawings, some screws axes show up indirectly in the helix core of a
twisted pair of rotation axes, but that is not a consistent representation.

Seifert, fibered Euclidean 3-orbifolds may be generated by lifting from base Eu-
clidean 2-orbifolds[6]. Although that approach does provide information (from ob-
structions) suitable for a rather awkward nomenclature[8] system for a large subset
of the Euclidean 3-orbifolds, that approach does not work for the cubic space groups
since the 3-axis through the body diagonal of the cubic interchanges fibration along
the cube edges.

11.8 Stochastic Thermal Motion Analysis

Though the thermal ellipsoids of structural crystallography contain large quantities
of information about thermal motion in crystals,they are usually published without
interpretation. A valid stochastic thermal motion analysis method is needed that
does not require extensive dynamic or mechanistic modeling for each new crystal
structure. It will be interesting to see how far the Radon-Nikodym property can be
taken in meeting that goal.

11.4 Category Theory of Crystallographic Topology

The paper, “Orbifolds, Sheaves and Groupoids”, by Moerdijk and Pronk{44] and
Pronk’s thesis[45], “Groupoid Representations for Sheaves on Orbifolds” show that
orbifolds correspond exactly to a specific class of smooth groupoids, and that each
such groupoid determines a category of equivariant sheaves. Expressing orbifolds
in these terms opens the possibility of reformulating all the primitives of crystal-
lographic topology into categories(41,42] which could provide even broader inroads
for crystallographic utilization of contemporary mathematical techniques

All the techniques described in the present paper might be classified as “bot-
tom up” approaches while category theory is basically a “top down” approach. For
many research problems it is highly desirable to be able to use both approaches. If
a problem seems intractable using the traditional techniques of that discipline, it
is sometimes possible to transform that problem to look like a completely different
problem, which has known solutions, by using category of categories homeomor-
phisms. This would not be a short term research project, but nevertheless it seems
to us both feasible and highly desirable. '




CRYSTALLOGRAPHIC TOPOLOGY 27

Acknowledgments

I gratefully acknowledge the assistance from my topology coworkers. From 1993
until my retirement in 1996, Bill Dunbar, Peter Brinkmann, and Jim Davis patiently
continued to explained the intricacy of topology until I finally started to understand
some of it. Klaus Johannson of the University of Tennessee, Knoxville continues
to show me the beauty of topology and supplies invaluable advice on numerous
occasions. My special thanks go to Mike Burnett for his warm friendship and close
professional collaboration during the past 15 years.

Post retirement continuation of the research is made possible by an understand-
ing spouse, the other Carol Johnson, and the kind assistance of the Chemical and
Analytical Sciences Division in providing retiree space and computing facilities at
Oak Ridge National Laboratory.

Research sponsored by the Laboratory Directed Research and Development
Program of the Oak Ridge National Laboratory, managed by Lockheed Martin
Energy Research Corp. for the U.S. Department of Energy under Contract No.
DE-AC05-960R22464.

U.S. GOVERNMENT PURPOSES NOTICE

"The submitted manuscript has been authored by a contractor of the U.S.
Government under contract No. DE-AC05-980R22464. Accordingly, the U.S. Gov-
ernment retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution or allow others to do so, for U.S. Government
purposes.”




CRYSTALLOGRAPHIC TOPOLOGY

Appendix - Cubic Crystal Structure Heegaard Surfaces

The line (203 - Fd3 - D/T/T/D - HP?3200{1}) signifies space group number 203
(ITCr number), with peak/pass/pale/pit invariant lattice complexes critical points
D/T/T/D, and hyperbolic Heegaard surface HP2320{1}. HP? in the Heegaard
surface symbol denotes the hyperbolic surface lies in an underlying topological space
with a single suspension projective plane RP2. The double suspension is denoted

by two zeros (00) in the hyperbolic plane symbol.

Struc. | ITCr | Sp. Gr. Critical Points Heegaard Surface
SCube 221 | Pm3m P/J/I/P H3'2'2'{2"}

207 | P432 P/JlIIP H322{2}

200 | Pm3 P/J/J/P H3m{2'2'}

215 | P43m P/I/J/P H3'3m{2}

226 Fm3c PQ/J2/J2/P2 H32m{1'}

195 | P23 PlJ/I/P H33{22}

219 | Fi3c P2/J2/J2/P2 H3300{1}
Na(Cl 225 | Fm3m FF/J‘)/J‘) /P2 H3’3’2’2'm{1’}

209 | F432 FF|Jy/ ]2/ P2 H3322{1}

202 FmZ_S ’ FF/Jz/Jz/Pz H33m{1}

229 | Im3m IJ*[4'W* /]y [ Py H3'2'2'2'2m{1'1'}
NaCl+ | 216 | F43m FFl I/ Jo/FF H3'33'3m{l}

: 196 | F23 FF|J2/J,|FF H3333{1}

BCC 229 | Im3m I[P JW*/J* H4'2'm{2}

432 | 1432 I/ Py /W*]J* H42{22}

204 | Im3 I/ P fW*/[J* HP?2'0m{1}

217 | I43m I[P fW*/J* HP?2'0m{1}

222 | Pndn I/Py JW*/J* HP?420{1}

224 | Pndm I/FF/W*/J* H2'm{22}

223 | Pm3n I/ /Ww/J* H2'm{22}

197 | 123 I/PfW*/J* HP?200{11}

201 | Pnd I/FF|W*/J* HP?200{11}

208 | P4,32 I/FF/WW/J* H2{2222}

218 | Pd3n /P /WW/J* HP?%200{11}

228 | Fdic LB Fy [Wo* [ Jo* HP?20{221}
CsCl 221 | Pm3m PP/P,/W*|JJ HA'2'4'2'm{1}
FCC 225 | Fm3m FPyJ3 | JyfF H4'322'm{1'}

209 | F432 FPR/3/ L/ F H4322{1}

202 | Fmd FP, /3] J,/F H322'm{1}
FCC+ 216 | F43m FFF|TT/Jy/F H3'2'32'2'm{1'1'}

196 | F23 FFF/TT/Jy/F H33222{11}
Diam 227 | Fd3m D/T/T/D H3'2'm{2}

210 | F4,32 D/T/T/D | H32{22}

203 | Fd3 D/T/T/D HP?3200{1}
ZnCl 216 | F43m FF/T/T/FF H3'2'32'm{1}

196 | F23 FF/T/T/FF H3232{11} -
NaTl 227 | Fd3m DD/TET|We*/J* | H2'2'm{221}

210 | F4,32 | DD/TERT/W,W,/J* | E22{2211}

203 | Fd3 DD/TET/W,*/J* | EP?220{11}
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