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ABSTRACT

The law wavefront of the NfF Beamlet demonstration system is corrected for static aberrations with a wavefront
conmol system. The system operates closed loop with a prob beam prior to a shot and has a loop bandwidth of about 3 Hz.
However, until recently the wavetlont con@olsystem was disabled several minutes prior to the shot to allow time to manually
reconfigure its attenuators and pro~ beam insertion mechanism to shot mode.

Thermally-induced dynamic variations in gas density in the Beandet main beam line produce significant wavefront
error. Figure 1 shows the Beamlet peak-to-valley wavefront aberration as a function of time after the Beamfet wavefront
controller is dkablcd. After about = acconds, the wavefiont error has increased to a new, Klgher level due to turbulence-
induced aberrations no longer being corrected. ‘fMs implies that there is a turbulence-induced aberration noiac bamdwidti of
less than one Hertz, and that the wavefront conmoller could correct for the majority of turbulence-induced aberration (about
one-third wave) by automating its reconfiguration to occur witiln one second of the shot. llds mrxhtication was recently
implemented on Beandeq we cdl this modification the @l system.
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Figure 1. Output wavefront evolution after interrupting closed loop deformable mirror control.
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2. OVERVIEW

Static and dynamic system aberrations, as shown in F&ure 2, degrade the quality of the propagated wave front.
Static aberrations include opticals figure errors and small scale errors inherent from material and machine tool operations.
Dynamic sources of turbulence include thermal buoyancy or turbulence in the system as well as pump-induced amplifier
thermal aberrations. Prior to implementation of the WI modifications, the adaptive optics system had the capability to
precomect for pump-induced aberrations but not for gas motion effects, as seen in F&ure 3.

Magnitude Temporal Spatial
(waves) dependence scale

Optics figure errors 2.5 static d14

Small scale errors 0.01-0.2 Static <d14

Pump induced 2.5-3 50msec CV4

Thermal effects 2.5-5 4 hours d13

Buoyancy (“turbulence”) 0.5-0.9 <seconds dllo

Notes: —Magnitude expressed as peak-to-valley wavefront aberation (waves at 1.05 m).
-d is beam size, nominally 34 cm.

Figure 2. Factors affecting wavefiont quality on Bearnlet.
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Figure 3. Beamlet adaptive optics performance without the %–l mdlfications.
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Initial operation of the Beamlet wavefront correction system employed manual reconfiguration for a shoti
termination of closed-loop operation, removal of polarization rotators in the cavity spatial filter, exchange of wavefront
sensor attenuators, and closure of a shutter on the cw laser. Figure 4 identifies the major components. These steps, which
took about 10 minutes, provided for normal propagation of a pulse through the laser chain and prepared the wavefront sensor
to record the pulsed wavefront. As suggested by Figure 1, however, useful correction for gas buoyancy effects requires that
closed-loop operation be continued to within about 1 second of shot time and that reconfiguration occur automatically on a
sub-second time scale.
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Figure 4. Major Beamlet subsystems and components modfied for ~–l operation.

To accomplish these changes, we installed a fast shutter, a high speed filter wheel, and rapid-acting pneumatic

translation stages for the polarization rotators and reflecting attenuator. These devices complete their activity within 500 ms,
and the closed-loop bandwidth of the mo&fied wavefront correction system is 3 Hz. This bandwidth, combined with the
short time between opening the loop and firing a pulsed sho~ is sufficient to significantly improve the waveffont quality of
the pulse. The cw laser provides continuous illumination of the wavefkont sensor as long as the wavefront loop is operating.
Closing its shutter when the loop is opened prevents unwanted light into the camera at shot time.

3. COMPONENTS

There are several key components to the ~–l wavefront control system. Continuous wave cw images are captured
by a 77 element Hartrnann-Shack sensor and a broadcasc video-type camera. Images are then digitized and processed by
image processing hardware and software. The software compares images to an archived calibration image and calculates
local slope errors based on image centroid analysis. Actuator stroke instructions are calculated by multiplying the slope erros
by an inverted response matrix. The instructions are relayed to the deformable mirror through actuator drivers. In this
manner, the wave front is corrected continuously.

In order to have closed-loop wavefront control up to one second before a system shotj we require a Timing Sequence
Chassis. The Thing Sequence Chassis, as seen in Figure 5, monitors and controls the position of four components: the
deformable mirror, the cw shutter, a fas~ selectable neutral density filter wheel, the cw polarization rotators, and the anti-
reflectivdhighly reflective filter combination to protect the Hartmann output sensor. The shutter used to turn off the cw light
is a binary device. The filterwheel is a programmable, ten-position carousel, with filters graduated in half-step optical
densities. Both it and the cw shutter are remotely operable, electrically driven devices. The polarization rotator assembly
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consists of two elements mounted to an ti-ddven smvo positioner. The AR/HR device is also an aidriven device. The
Timing Sequence Chassis also determines the mcdc of the deformable -r contrnl system,

The majority of our equipment “talka” via fiber, with appropriate twisted pair and coaxial cable comections to
minimize capacitnr bank discharge signal interference. Devices provide their “status” by an array of optical limiting switches
providing logic to the DFh4 Tlndng Sequence Chassis. Much of the cabling tn devices installed in vacuum sLraciaJfalters are
shielded from UV radiation.
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4. THE TIMING SYSTEM

The ~-l DFM Thning Sequence Chaasis in Figure 5 monitors the Pulse Power System Timing Network rmd the
Regenerative Amplifier Trigger. The regenerative amplifier tiggera every 5 seconds. The “shot comxoller” then rends a
signal to the ~-l second DFM Timing Sequence Chassis to indicate that the next regenerative amplifier synchronization
signal will trigger the capacitor bank. The DFM Thing Sequence Chaasis waits 4 sccomis, then prepares for the shot by
initiating mnde changes of the compnnenta it contrnls. After confirmation that the components have moved fmm thcii cw
positions tn tbcii “system shot” positions, a “permissive signal” is sent to the capacitnr bank allowing dischacge for a system
shot. Tlds is usually accomplished with 5C0ms. If a “permissive” is not sent to the capacitor bank, the shot is abated and a
report is sent tn the shot controller to identify what opticaf compnmmt was impmpdy pesitiomed. When the wavefront
control system receives its signal tlom the timing system, it automatically unlocks the conmol loop and sets the Hartmann
output camera to diagnose the shot wavefront.
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5. %-1 MECmNICAL PERFoRMANcE

The mode transition time of ~–l system components was measured. The air-actuated, meclrdctdly dampened
componcnta moved irrweU under 1 wcond. F]gure 6 indicates the extracton time of tbe polarization rotator, our slowest
component. The ~-l gas pressure was set to 75 psi. Placing a photc-dicde near the H& output, we found that the full
system transition time from closure of the cw shutter to flaahlamp trigger was 955 rrra,as shown in Figure 7. Baaed on
Figure 6, a shotir system transition tirrrccould probably be achieved.
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Flgure 6. Polarization rotator extraction tirnc vs. gas pressure

f+gure 7.

t
Amplitude

L
7wa0x+A+a.#a,

T“’I’’’’ l’”

TI

Shutter-closure to trigger elapacd time

—955nr —

CW slgiratura from
photo diode located
near Hartmann
output sensor

JIIIIIIIIIIIIIIL

i

,..

,..,,...

,..

,..,..

,..

Psl
90

7Sr

Time +

5



6. CONCLUSIONS

We conducted a series of 22 shota to test the effectiveness of the ~–l wavetlont control system. Paira of rod shota
were tienbWwn flmtipshow mpmvi&tie~ lotigof tietincavity ~Efiem. Amdshoti sdefinedaaa low
energy shotwhere themain laser amplifiers mcnottired. Eachmds hotpairc onaistedo fashotwithtie%-1 system
engaged, and a shot without it engaged.

Referring to F@e 8, we see that the relative Saehl ratio or far-field brightness (normahzed to fuat cold shot) is

initially improvcdwiththe %-1 system in operation. However, after two flaatdamp sho@intwo houra, theopticstminis

sufficiency sa@mtiwiti tietieffWK tittiere isnosi~ificmt i~rOvement intiewave&Ont hmti%-l system.

A plot of the meaaurcd azimuthal average intensity for a typical rod shot with the&l and without the %–l syswm

operating is shown in F@e 9. These shota were made about an hour and a half after the first tlaahlamp shot of the

campaign. The peak imensity is about double and the intensity at angles from 4 to 8 I,Lradis reduced in the shot with the
active ~-l systcm compared to the shot without it.

More work is required to determine how much thermal loading the %–1 system can prefigure The high-repetition

ahot acquence in thk campaign intentionally denied the amplifier slabs the necessary cooling time. We believe that with a

slower repetition rate and longer intervals between shota, aa is planned for NIF, a k-l systcm will consistently improve the
focus of the laser.
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Flgurc 8. Relative Strchl ratios vs. time with and without %-l system
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Figure 9. Azimuthal-average intensity with and without ~-l system.
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