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ABSTRACT

The status of diode-pumped, transverse-gas-flow cooled, Yb-5-FAP slab lasers
is reviewed. Recently acquired experimental performance data are combined
with a cost/performance IFE driver design code to define a cost-effective
development path for IFE DPSSL drivers. Specific design parameters are
described for the Mercury 100J/10 Hz, 1 kW system (first in the development
scenario).

Key Words: diode-pumped solid state laser; Yb:S-FAP; inertial fusion energy
(IFE), turbulent gas cooling; regenerative amplifier; fusion power reactor.

2. INTRODUCTION

The development of efficient (>50%) room-temperature semiconductor laser
diode arrays as power-scalable (>>kW) pump sources for solid state lasers has
significantly improved the prospects for developing a solid state laser system
with characteristics suitable for driving an IFE central electric power plant [1-4]:
efficiency >10% and average output power >10 MW. In order to exploit diode
pump arrays for this application, it is also necessary to: 1) identify and develop
advanced crystalline laser gain media with energy storage lifetimes that are long
compared to the typical 0.3 msec lifetime of Nd-doped laser materials, and that
have favorable bulk mechanical, optical, and thermal properties; 2) develop an
efficient laser gain disk cooling architecture that permits adequate surface

cooling (~ 1 watt/cm2) while maintaining adequately high beam quality (<few x
diffraction limit) and an acceptable B-integral (<~2.5); and 3) develop a concept
for protecting the last optic in the laser beam delivery system against the
anticipated neutron flux.

In response to these needs, we have: 1) identified, developed, and characterized
the novel gain material, ytterbium doped strontium fluorapatite (Yb:S-FAP), as
an attractive candidate gain crystal that possesses the combination of optical,
physical, thermal, and spectroscopic characteristics required for an IFE laser
driver [5-9]; 2) developed and characterized the gas-flow-cooled, disk-face-
pumped architecture [1,10-12]; and 3) conceived of and progressively assessed
the heated, refractive quartz last-optic concept to withstand the neutron flux
within an GW, IFE power plant [13,14]. All of these advances have been
incorporated into a system design code that describes the cost and performance



of a gas-cooled, diode-pumped Yb:S-FAP driver for an IFE power plant [4,15-17
I

This paper reviews the point design of a Yb:5-FAP DPSSL IFE driver system and
summarizes experimental data obtained on the first integrated test of a helium-
gas-flow-cooled diode-pumped Yb:S-FAP slab laser [12], designed and built to
validate the gas cooling approach to IFE driver lasers. Based on this work, we
discuss a scenario for the cost-effective and timely development of a diode-
pumped Yb:S-FAP IFE driver.

3. GAS-FLOW COOLED Yb:SA-FAP SLAB LASER EXPERIMENT

C. D. Marshall, et. al. [9] have developed and reported on a laboratory
experiment designedto explore the performance of transverse, turbulent helium-
gas-flow-cooling of a Yb:S5-FAP diode-pumped slab laser. Figure 1 shows a
schematic view of the experimental set-up and Figure 2 shows a photo of the 5 x
19 x 19 mm Yb:S-FAP slab gain element mounted in the fixture design to allow
for the flow of helium over both slab faces at a 0.07 Mach number. Figure 3
summarizes the achieved performance. In the free-funning long-pulse mode of
operation, the maximum output energy of 2 joules was obtained with a power
slope efficiency of 51% and an electrical energy efficiency of ~9%. The pulse
repetition rate was increased up 25 Hz, producing an average power output of 50
watts, before thermal fracture of the slab occurred. The helium cooling gas

removed heat from each surface at a flux up to >3 watts/cm?2 before slab fracture
occurred. This result was quite satisfactory, since IFE driver design analyses [4,
16] indicate that the amplifier slabs in an optimized Yb:S-FAP IFE driver will

require only about 0.75 watts/cm?2 of heat flux removal per slab surface.
Interferometric imaging of the thermally loaded Yb:S-FAP slab indicated that less
than an optical wave of distortion was thermally induced in the slab, even at the
highest loading imposed. These experiments clearly validate the concept of
turbulent gas-flow-cooling of face-pumped, face-cooled slabs for high average
power (>>10 kW) applications, such as the IFE driver.

4. A TFE DRIVER DEVELOPMENT SCENARIO

The worldwide development and construction of flashlamp-pumped Nd-glass
laser systems needed to successfully carry out single-shot inertial fusion research
to date has taken more than two decades. Figure 4 shows the series of Nd:glass
lasers developed and constructed at LLNL, culminating with the National
Ignition Facility expexted to operate just past the turn of the century. In light of
the long development and construstion timelines for major programmatic
facilities, it seems prudent to soon depart along the development path for high
repetition rate, post-NIF laser drivers. In doing so, it will be important to define
demonstration systems lying along the path that logically and progressively



reduce residual technical risks (in the various major subsystems and in system
integration), and provide progressively more useful experimental capabilities,
while minimizing the aggregate development cost. Because the diode-pumped
solid state IFE driver is highly modular in scaling to high average power, the IFE
DPSSL driver development path can be constructed with this investment
characterisatic.

Figure 4 shows a sequence of diode-pumped Yb:S-FAP laser driver systems (here
named Mercury, Venus, Terra, and Helios) with increasing output energy and
average power that might logically developed during the next several decades.
Table 1 summaries some of the key distinguishing characteristics of these
demonstration systems, including the areal size of the Yb:S-FAP gain slab
utilized, the number of beamlets pumped, the total pump arrays peak and
average powers, and the system output energy and average power. All of the
systems are designed to operate at a pulse repetition rate of nominally 10 Hz.

The Mercury system produces an output of 100J/1kW at the fundamental 1047
nm wavelength (Using an expected ~80% conversion efficiency, the output at 349
nm is ~80J/0.8 kW). Mercury uses 22 gain slabs of 3 x 5 cm? transverse
dimensions (a 4x area scale-up from presently available slabs) and demonstrates
the full functionality of the proposed IFE driver (analogous to the NIF Beamlet)
architecture. The transverse slab dimensions are sufficiently large so as to
reasonably minimize edge thermal distortion effects on the output beam, while
restraining the required pump array power (and cost). This laser requires a
pump array peak and average power of 900 and 4.5 kW (fundamental),
respectively.

The Venus system produces an output of nominally 5.4k]/54kW at 1047 nm (4.3
kJ/43 kW at 349 nm). Venus uses gain slabs of 10 x 16.6 cm?2 transverse
dimension, the largest slab size needed for all following systems. Three full-
dimension beamlet apertures are pumped in the Venus laser to evaluate the issue
thermal beam cross-talk between contiguous beamlets positioned along the gas-
flow-cooling direction. The required pump array peak and average power
increase to 11.4 and 0.135 MW, respectively.

The Terra system produces an output of nominally 27k]J/267kW at 1047 nm (21
kJ/214 kW at 349 nm). Like the Venus system, Terra uses full aperture 10 x 166.6
cm? gain slabs (slab development risk resolved on the Venus system). Terra
incorporates 15 beamlets, corresponding to a full beamline. Terra requires a
pump array peak and average power of 56 MW and 670 kW, respectively.

The Helios system is essentially a full IFE driver, suitable to drive a 1 GW, IFE
power plant. It produces an output of nominally 4.6 MJ/51 MW at 1047 nm (3.7
M]/41 MW at 349 nm).



5. THE NEAR FUTURE AND MERCURY DEVELOPMENT

Beginning with the 1997 fiscal year (October 1996), LLNL will commense the
design and constution of the Mercury laser. Envisioned as a three year effort, the
next year will focus on risk reduction of the major subsystem technologies: 1)
Yb:S-FAP slab growth to the 3 x 5 cm? size, 2) development of an ASE slab edge
cladding, and 3) optimized design and development of the InGaAs pump array
unit cell. We will also conduct as CDR to produce a Mercury system point design
to guide subsystem risk reduction efforts toward optimum component
specifications. The second year will center on engineering design of the system,
fabrication of major system pump array and laser gain elements, and
procurement of long-lead system utilities. The thrid year will complete activities
of the swecond year, and carry out integration of the functional Mercury system.

This paper is based on the team work of a great many LLNL colleagues, notably
Chris Marshall and Steve Payne, as well as Kathleen Schaffers, Mark Emanuel,
Jay Skidmore, Barry Freitas, Larry Smith, Laura DeLoach, Charles Orth, Steve
Sutton, Howard Powell, and Mike Campbell. I am also pleased to acknowledge
the contributions to Yb:S-FAP crystal growth by Bruce Chai of the University of
Florida at Orlando.
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Modular Yb:S-FAP slab gas-cooling manifold
allows for flexible slab configurations &

x 19 x 19 mm Yb:S-FAP slab
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Multiple decade long development cycles are required

to carry new ICF laser architectures to maturitv |
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Table 1

IFE driver modularity enables a rational cost-effective development path l[g

Démonstration System _____
Demenstfatlo Systh Name Mercury Venus Terra Helios
Modularity léi" . sub-beamlet | 3-beamlets | beamline | 345 beamlines
Yb:S-FAP gain siab dimensions {(cm3) 3x5 10 x 16.6 10X 16.6 10 x 16.6
No. of beamiets pumped 1. 3 15 345
Total pump array peak power QDOII(W 1.4 MW 56 MW 20 GW
Total pump array average power 4.5 kKW | 135 kW 670 kW 230 MW
System output energy @ 1047 nm 100 J 54 kJ 27 kJ 4.6 MJ
System ouiput av. power @ 1047 nm | KW 54 kW 267 kW 51 MW
Risk reduced: | 1/10 area __s'Ia'b full slab
regen amp | beamlet | validate vaiidate
functionality cross-talk | beamline system
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DPSSLs provide a pathway for solid-state lasers
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The spectroscopic properties of Yb:S-FAP have
been previouslv measured and reported* om
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First demonstration of transverse, turbulent gas-flow-cooling
of a diode-pumped slab Yb:S-FAP average power laser
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Conventional strained InGaAs quantum structures

have been altered to produce 900 nm diodes €
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Our pump source consisted of a 22 bar stack of
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23-KW peak power InGaAs aser diade arrav
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Modular Yb:S-FAP slab gas-cooling manifold
allows for flexible slab confiaurations L
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Gas-cooled, diode-pumped, solid-state lasers are being
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The Yb:S-FAP GCS slab laser has produced 50 watt at 25 Hz* _Lg!

C. Marshall, et. al., Advanced Solid State Lasers, OSA Trends in Optics and Ph

otonics, TOPS Vol. 1, 1996
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Transverse, turbulent-gas-flow cooling of laser slabs is a viable method
of thermal management in diode-pumped solid state drivers for IFE




Interferometer traces show that the central region of the
crystal has <1 wave distortion due to thermal effects

B
&
Thermally loaded Predicted wavefront
with 3.5 W/cm?2 with ~2 W/cm?2
.§ oo Sealoars
: - § éf\x o f"-::_—-\\. \
\ /—""" —
) 3| =t
oy flow ﬁfﬁzﬁ::§§\
st i S s,
2 g éff’ “%m\
s S e e S
el d/2
- ()] =

o Edge distortion is from thermal
conduction out the sides and edge stress

¢ These edge regions will not grow larger
when the crystal aperture is scaled up
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which approaches 1 for large @
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Multiple decade long development cycles are required

to carry new ICF laser architectures to maturitv C
10° g
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* Terra laser can serve concurrently with NIF as a Nova-class rep-rated system

Uioae-pumped solid-state lasers (DPSSL) offer the option of
higher rep-rate, better beam quality, and more com pactness
for advanced ICF drivers and other applications
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IFE driver modularitv enab es a rational cast-affective devalanmant nath I@;

Scaling characteristic

Demonstration System

Demonstration System Name Mercury Venus Terra Helios
Modularity level ' sub-beamlet |3-beamlets beamline 345 beamlines
Yb:S-FAP gain slab dimensions (cm?) 3x5 10 x 16.6 10 x 16.6 10 x 16.6
No. of beamlets pumped 1 3 15 345
Total pump array peak power 900 kW 11.4 MW 56 MW 20 GW
Total pump array average power 4.5 kW 135 kW 670 kW 230 MW
System output energy @ 1047 nm 100 J 5.4 kJ 27 kJ 4.6 MJ
System output av. power @ 1047 nm 1kw | sakw 267 kW 51 MW
Risk reduced: | 1/10 area slab| full slab
regen amp. beamlet validate validate
functionality | cross-talk beamline system




trate IFE driver lfunctionality* Lg

The 100J Mercury laser system will demons

C. Marshall, LLNL, June 1996
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The Mercury laser architecture will extend our
previously successful gas-cooled laser designs

to 100X higher energy/power C
Y
by
Yb:S-FAP
7 slabs
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\vJ
g f pulse g
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100 J
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® Mercury will be the first fusion laser facility to incorporate:

- All laser-diode pumping
- Turbulent-gas cooled laser-slabs
- Advanced diode-compatible crystalline gain media

® Adopts succesfull Beamlet/NIF optical layout
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Mercury will deliver high peak power (>TW)
and high average power (>kW) for the first time

Peak power performance Average power performance
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¢ Chirped pulse amplification ¢ 50 to 100 J/pulse
(CPA) below 300 ps 9 J/cm? extraction fluence
11% efficiency (@1 to 10 ns)
B-integral < 2
23 Hz

The laser system will provide versatile shots-on-demand
for high energy-density physics experiments
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Summary ' lg

® A system model of a Yb:S-FAP IFE DPSSL driver has been developed

e An IFE DPSSL driver producing 3.7MJ & 41 MW at ~9% eff. is projected

e InGaAs pump diode arrays and Yb:S-FAP gain crystal technologies have
been advanced significantly in the past two years

e Transverse, turbulent gas flow cooling of a Yb:S-FAP laser slab has been
demonstrated with excellent beam wavefront properties

e The 100 J /1 kW Mercury laser system will demonstrate the functionality
of a diode-pumped, gas cooled IFE DPSSL driver
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