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This paper deals with further developments of the new theory that applies stochas- 
tic differential geometry (SDG) to dynamics of interest rates. We examine math- 
ematical constraints on the evolution of interest rate volatilities that arise from 
stochastic differential calculus under assumptions of an arbitrage free evolution 
of zero coupon bonds and developed markets (i. e., none of the party/€actor can 
drive the whole market). The resulting new theory incorporates the Heath-Jarrow- 
Morton (HJM) model of interest rates and provides new equations for volatilities 
which makes the system of equations for interest rates and volatilities complete and 
self consistent. It results in much smaller amount of volatility data that should be 
guessed for the SDG model as compared to the HJM model. Limited analysis of 
the market volatility data suggests that the assumption of the developed market is 
violated around maturity of two years. Such maturities where the assumptions of 
the SDG model are violated are suggested to serve as boundaries at which volatil- 
ities should be specified independently from the model. Our numerical example 
with two boundaries (two years and five years) qualitatively resembles the market 
behavior. Under some conditions solutions of the SDG model become singular 
that may indicate market crashes. More detail comparison with the data is needed 
before the theory can be established or refuted. 

1 Introduction 

1.1 Dynamics of Forward Interest Rates in Heath-Jarrow-Morton Model 

In the HJM model [Heath, Jarrow, Morton, 19921 forward interest rates F( t ,  T )  
evolve according to 

k k 

under the equivalent martingale probability measure. Where t is time at which 
one can contract for a loan at continuously compounded interest rate F(t ,T)  
starting at time T and maturing an instant later, dWk are independent Brow- 
nian motions, ~ ( t ,  T )  are corresponding volatilities of forward rates, 
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are corresponding volatilities of pure discount bonds that are given by 
m 

Heath, J a m w ,  Morton [1992] have shown that under a simple non-singularity 
condition on the volatility functions Uk ( t ,  T) 

lTcg( tyT)dt  < +m a.e. Q 

the equivalent martingale measure (for the pure discount bonds) is unique that 
guarantees unique prices of contingent claims if one can solve equations (1) for 
forward rates F(t, T). That brings us to the following question. 

1.2 

First, we have to provide the initial term structure of interest rates F(0,T) 
and the initial term structure of volatility Uk(0, T) for all 0 5 T 5 Tmaz where 
T,,, is maximum maturity we are interested in. Such information can be 
obtained from market observations. Then we have to make some guess about 
the future dynamics of volatility. We want to underline that only after making 
an additional assumption about dynamics of interest rate volatilities O k  (t, T) 
for t > 0 we can solve equations for forward rates and then derive prices of 
contingent claims. 

For example, if we assume that there is only one Wiener process driving 
the yield curve and that its volatility is independent of time and maturity, that 
is 

then we can solve equations (1) for a particular case of first arbitrage free model 
introduced by Ho and Lee [1986]. Let us give another example suggested by 
Heath, Jarrow, Morton [1992] 

What is Needed to Solue HJM Equatiom? 

c.(t,T) = c.0 = m s t  (5 )  

uk(t,T) = d$(T - t )  x min(F(t,T),X) (6) 

where dC(T - t )  is a function of time left to maturity that is for forward 
rate of given maturity this function is constant and X is a positive constant. 
For small interest rates e ( T  - t) is close to lognormal volatility of interest 
rates. When we examined market data for normalized perturbations of forward 
interest rates, that is 

F(t + At, T) - F(t ,  T) 
F(tY T) m 
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Figure 1: Principal components of lognormal volatilities. 
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we found that functions dn(Tconet) changes slowly with time showing normal- 
ized variations of up to 25 %-per-year. An example of principal components 
of lognormal volatilities of forward rates is shown in Figure (1). 

1.3 

The volatility assumption (6) discussed in the previous section is a good one to 
start with, but how can we do better than that? One of the ways to go is to use 
neural nets or other methods that predict future volatility variations without 
identifying driving forces for that or as an alternative for curious minds one ma 
try to find fundamental principles that provide dynamic equations for volatility 
functions. In the rest of the paper we explore one of the latter possibilities. 

How to Do Better on Volatilities? 

2 Relating Stochastic Differential Geometry to Interest Rates 

In this section we give qualitative introduction to stochastic differential geom- 
etry (SDG), show how we confurm general SDG equations to the HJM modei, 
and then discuss what is needed to solve them and what advantages they pro- 
vide in comparison to HJM equations. 

2.1 

The goal of this section is to describe a Brownian motion on a curved manifold. 
We consider an example of a two-dimensional manifold [Malchankou et. al., 

19951. Let us consider a point XI on the surface and a patch of a tangential 
plane in this point, we denote it Tx, . Then we proceed to a neighboring point 
X2 and construct Txa. In such a way, we can cover the entire surface with 
such patches obtaining a polyhedron. Crucial points of this construction are: 
i )  the surface is a manifold, ii) the covering is a Euclidean space. A Wiener 

Qualitative Understanding of Stochastic Diflerential Geometry, 

process (a martingale) 
dWqdWp = Gqpdt 

is defined in a Euclidean space. This means that a Wiener process appears 
on the covering while a particle is moving on the surface. Now we should 
adjust both phenomena. Consider for that a surface with fluctuating forces 
(Wiener processes) and a particle in the point X I  on the surface. This point 
also belongs to the covering Txl. Hence the particle undergoes a random shock 

d 2 1  = d i d 1  (9) 

dZ2 = d2&2 (10) 

jumping to a point XZ on the surface. In this new point it again undergoes a 
shock 
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and so forth. The matrix b defines mobility of a particle. Here we should em- 
phasize that all differentials considered in this section are of the Stratonovich's 
type, which allows us to use the standard differential calculus [Gardiner, 19941. 

Now our task is to connect 01 and a2. Note for that that matrix b being 
in fact a rotating operator, can be constructed of two vectors TI and j'2 

.=( jT j ;  ) 
j," R 

which gives a frame of reference for the patch considered. While moving from 
one patch to another, this frame changes its orientation. Let us recall that the 
total change of a vector, 5, due to moving from one point to another consists 
of two parts [Dubmuin et. al., 19921 

68 = dl? + rlk? (11) 

Where I' is the connexion. The fist  term in (11) is the conventional differential 

and the second one allows for a change of the frame of reference. Since matrix 
B is constructed of two vectors and T -  it is transformed following the same 
rule, 

&? = d 6  i- r 6 d f  (13) 

Now we make an assumption of fair game or we aIso call it an assumption 
of developed markets, which means that none of a single party/factor ca31 
influence the whole market. In mathematical terms it means that the total 
change of 6 should be zero 

66=0 (14) 

that results in 
cli? = - r e d 2  

what along with the equation for the elementary shock 

gives us the equations of Stochastic Differtntial Geometry on a curved manifold. 
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2.2 Fitting SDG Equations to KJM Model, [Makhankov et. al., 19951 

To have SDG equations that describe evolution of the interest rates and their 
volatilities we have to find the connexion r that satisfies the arbitrage free 
model (1) of interest rates. For the purpose of comparing SDG equations with 
HJM equations for forward interest rates we have to write them in the same 
form of stochastic differentials. We chose to write SDG equations in the Ito 
representation that will make them compatible with HJM equations that are 
given in the It0 form (1). Assuming that the phase space is a Riemannian 
manifold, the inverse of the Riemannian metric is given by 

4 

So the Ito form of equations (16) written in a component form is 

Where drXi  indicates Ito differentials. Whereas if we go &om continuous 
maturity in HJM equations (1) to finite maturity then they become 

k k 

with index i = l,Nm where Nm is the number of maturities. If we match 
volatilities and drifts in both equations then 

Substituting this expression for rij into equation 
volatilities 

dscj = 2 4  

(15) we get equations for 

(21) 
k 

where sub-index S underlines that equations are written for Stratonovich dif- 
ferentials. Equations for forward rates are 

k 

Same equations written in Ito differentials are: 

k k 
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k k 

where vj'(t) are 

k=l 

and ATk is the time interval between maturities for k > 1 and TI - t for k = 1. 
Equations (21), (22) is Stratonovich form of SDG equations conformed to 

the HJM model of interest rates, Ito form of SDG equations for the interest 
rates and volatilities is given by (21), (22). 

2.3 What i s  Needed to Solve SDG Equations? 

Before we give answer to the above question let us quickly examine our set 
of equations. We note that a set of equations for forward interest rates (23) 
is exactly the same as in the HJM model (1) which makes the SDG model 
arbitrage free. In addition to the rate equations the SDG model provides 
a set of equations (24) for volatilities. This extra set of equations restricts 
possibilities of volatility changes and consequently guarantees that we have to 
provide smaller amount of extra information to solve for forward rates and 
volatilities. In terms of initial conditions for interest rates and volatilities the 
SDG model has the same requirements as the HJM model, i.e. F'(0) and ai(0) 
are needed. If we assume that the whole yield curve satisfies the developed 
market condition (i.e., the fair game assumption (14)) and conforms to the 
SDG model then we do not need anything else to predict volatility and interest 
rate dynamics for time range up to Tmoz (i.e., the maximum maturity range 
for which initial conditions were specified). Here we see an advantage of the 
SDG model as compared to the HJM model as the latter requires additional 
assumptions (see section (1.2) for more details) about the volatility dynamia 
before it can solve for interest rates. 

On the other hand, the assumption of developed markets may be not sat- 
isfied around some particular maturities. If the whole yield curve conforms to 
the SDG model then on average the dependence of volatilities versus matu- 
rity would be given by a smooth curve. However, our analysis of market data 
indicates a persistent perturbation in volatility functions around the two year 
term. Such a perturbation is clearly seen in all important principal compo- 
nents shown in Figure (1). We guess that such anomaly may be due to high 
demand for two year borrowing on the part of some strong party (e.g., US 
government) that drives the whole market. So, what it means for the SDG 
model? We have to identify maturities around which the SDG model may not 
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hold true and treat volatility and/or interest rate values at those maturities 
as boundary conditions when solving SDG equations (23), (24). Again, if we 
compare this case to the HJM model we see the advantage of the SDG model. 
The SDG model needs inputs of volatilites ak(t,T - t = T f b e d )  for very few 
maturities (e.g., Tfized equal to two years, seven years, and ten years) and 
then it solves for all other interim maturities whereas the HJM model requires 
input of future dynamics of all volatilities, e.g., Tfized has to cover zero to ten 
years with a step equal to one quarter. 

3 Solutions of SDG Model 

General equations for forward interest rate volatilities (24) are nonlinear and 
indicate interconnection of volatility functions of different principal compo- 
nents and maturities ai(t). So in general there is little hope for solving such 
equations analytically and most of the information is expected to be obtained 
through numerical solutions. 

3.1 Analytical Solution for Volatilities in Case of Single Factor Model 

Even if it is difficult to find analytical solutions of SDG equations (24) in the 
general case it turns out that we can find solutions for a case when the interest 
rates are driven by a single Wiener process [Makhankov et. al., 19951. In this 
particular case the volatility equations can be represented as 

dsa' = 2(vi" + O'AZ)CT~~W (26) 

that gives a chain type solution for ai 

It is seen from the denominator of this expression that the solution may become 
singular. At the same time, under different initial and boundary conditions the 
solution may be regular. More investigation is necessary before we can make 
definite conclusions about the nature of solutions of SDG equations (23), (24). 

3.2 Numerical Solution For Constant Boundary Conditions 

As it was noted in section (1.2) lognormal volatilities of forward interest rates 
demonstrate quasi steady behavior. In our following example we concentrate on 
finding a steady state solution of the SDG equations that might resemble such 
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Figure 2 Results of numerical solution. 

market behavior. For this purpose we solve SDG equations (24) numerically 
with the following assumptions: we use a single factor model, the initial term 
structure of volatility is flat (see Figure (2)), we introduce two “boundaries” 
(at two years and five years) at which volatilities are kept constant. In Figure 
(2) we show the initial term structure of lognormal volatility that is flat at 0.28 
(Le., 28 %-per-year) and the steady state that is established after a transition 
period. The steady state curve is expected value of volatilities obtained from 
Monte Carlo modeling of equations (24). Comparison of the steady state curve 
with a typical term structure of volatilites from the market shows qualitative 
agreement of two curves. 
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4 Conclusions 

We examine mathematical constraints on the evolution of interest rate volatil- 
ities that arise from stochastic differential calculus under assumptions of an 
arbitrage free evolution of zero coupon bonds and developed markets/fair game 
(i. e., none of the party/factor can drive the whole market). The resulting new 
theory incorporates the HJM model of interest rates and provides new equa- 
tions for volatilities which makes the system of equations for interest rates and 
volatilities complete and self consistent. It results in much smaller amount 
of volatility data that should be guessed for the SDG model as compared to 
the HJM model. Limited analysis of the volatility data suggests that the as- 
sumption of the developed market is violated around maturity of two years. 
Such maturities where the assumptions of the model are violated are suggested 
to serve as boundaries at which volatilities should be specified independently 
from the SDG model. Our numerical example with two boundaries (two years 
and five years) qualitatively resembles the market behavior. Under some con- 
ditions solutions of the SDG model become singular that may indicate market 
crashes. The present analysis does not allow us to make strong statements 
about validity of the theory. More detail comparison with the data is needed 
before the theory can be established or refuted. Especially valuable should 
be comparisons for dynamic situations in the market with high volatility and 
market crashes. 
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Figure 1 : Principal components of lognormal volatilities. 


