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APPLICATION OF STOCHASTIC DIFFERENTIAL
GEOMETRY TO THE TERM STRUCTURE OF INTEREST
RATES IN DEVELOPED MARKETS

YU'RI TARANENKO AND CHRIS BARNES
Los Alamos National Lab, XCM, MS-F645, Los Alamos,
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This paper deals with further developments of the new theory that applies stochas-
tic differential geometry (SDG) to dynamics of interest rates. We examine math-
ematical constraints on the evolution of interest rate volatilities that arise from
stochastic differential calculus under assumptions of an arbitrage free evolution
of zero coupon bonds and developed markets (i. e., none of the party/factor can
drive the whole market). The resulting new theory incorporates the Heath-Jarrow-
Morton (HJM) model of interest rates and provides new equations for volatilities
which makes the system of equations for interest rates and volatilities complete and
self consistent. It resuits in much smaller amount of volatility data that should be
guessed for the SDG model as compared to the HJM model. Limited analysis of
the market volatility data suggests that the assumption of the developed market is
violated around maturity of two years. Such maturities where the assumptions of
the SDG model are violated are suggested to serve as boundaries at which volatil-
ities should be specified independently from the model. Our numerical example
with two boundaries (two years and five years) qualitatively resembles the market
behavior. Under some conditions solutions of the SDG model become singular
that may indicate market crashes. More detail comparison with the data is needed

before the theory can be established or refuted.

1.1 Dynamics of Forward Interest Rates in Heath-Jarrow-Morton Model

1 Introduction

In the HIM model [Heath, Jarrow, Morton, 1992] forward interest rates F (¢, T)
evolve according to

dF(t,T) =Y _ we(t, T)or(t, T)dt + Y _ ow(t, T)dW* (1)
k k

under the equivalent martingale probability measure, Where £ is time at which
one can contract for a loan at continuously compounded interest rate F(¢,T")
starting at time 7' and maturing an instant later, dW* are independent Brow-
nian motions, o(t,T’) are corresponding volatilities of forward rates,

T
vi(t,T) = /t  oult, Wi @
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are corresponding volatilities of pure discount bonds that are given by

T
P(t,T) = exp{— / F(t, 5)ds) 3)

Heath, Jarrow, Morton [1992] have shown that under a simple non-singularity
condition on the volatility functions oy (¢,T)

T
/ o2(t, T)dt < +oo a.e. @ (4)
0

the equivalent martingale measure (for the pure discount bonds) is unique that
guarantees unique prices of contingent claims if one can solve equations (1) for
forward rates F(¢,T). That brings us to the following question.

1.2 What is Needed to Solve HIM Equations?

First, we have to provide the initial term structure of interest rates F(0,T)
and the initial term structure of volatility 0%(0,7) for all 0 < T < T},,4, where
Timaz 18 maximum maturity we are interested in. Such information can be
obtained from market observations. Then we have to make some guess about
the future dynamics of volatility. We want to underline that only after making
an additional assumption about dynamics of interest rate volatilities o (¢, T)
for t > 0 we can solve equations for forward rates and then derive prices of
contingent claims.

For example, if we assume that there is only one Wiener process driving
the yield curve and that its volatility is independent of time and maturity, that
is

o(t,T) =0, = const (5)

then we can solve equations (1) for a particular case of first arbitrage free model
introduced by Ho and Lee [1986). Let us give another example suggested by
Heath, Jarrow, Morton [1992]

ok(t,T) = o}*(T ~ t) x min(F(t,T),A) (6)

where oi*(T — t) is a function of time left to maturity that is for forward
rate of given maturity this function is constant and A is a positive constant.
For small interest rates oi*(T — ¢) is close to lognormal volatility of interest
rates. When we examined market data for normalized perturbations of forward
interest rates, that is
Fi+ AL, T)-F(t,T)
F(¢,T)v/(At)
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Figure 1: Principal components of lognormal volatilities.
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we found that functions 04*(T;onst) changes slowly with time showing normal-
ized variations of up to 25 %-per-year. An example of principal components
of lognormal volatilities of forward rates is shown in Figure (1).

1.8 How to Do Better on Volatilities?

The volatility assumption (6) discussed in the previous section is a good one to
start with, but how can we do better than that? One of the ways to go is to use
neural nets or other methods that predict future volatility variations without
identifying driving forces for that or as an alternative for curious minds one can
try to find fundamental principles that provide dynamic equations for volatility
functions. In the rest of the paper we explore one of the latter possibilities.

2 Relating Stochastic Differential Geometry to Interest Rates

In this section we give qualitative introduction to stochastic differential geom-
etry (SDG), show how we conform general SDG equations to the HIM model,
and then discuss what is needed to solve them and what advantages they pro-
vide in comparison to HJM equations.

2.1 Qualitative Understanding of Stochastic Differential Geometry,

The goal of this section is to describe a Brownian motion on a curved manifold.

We consider an example of a two-dimensional manifold [Makhankov et. al.,
1995]. Let us consider a point X; on the surface and a patch of a tangential
plane in this point, we denote it T'x,. Then we proceed to a neighboring point
Xz and construct Tx,. In such a way, we can cover the entire surface with
such patches obtaining a polyhedron. Crucial points of this construction are:
i) the surface is a manifold, i) the covering is a Euclidean space. A Wiener
process (a martingale)

AW dW?P = §%dt (8
is defined in a Euclidean space. This means that a Wiener process appears
on the covering while a particle is moving on the surface. Now we should
adjust both phenomena. Consider for that a surface with fluctuating forces
(Wiener processes) and a particle in the point X on the surface. This point
also belongs to the covering T'x, . Hence the particle undergoes a random shock

dX: = 61dW, )

jumping to a point X, on the surface. In this new point it again undergoes a
shock . .
dXs = G2dW> (10)

4




and so forth. The matrix ¢ defines mobility of a particle. Here we should em-
phasize that all differentials considered in this section are of the Stratonovich’s
type, which allows us to use the standard differential calculus {Gardiner, 1994].

Now our task is to connect o1 and g2. Note for that that matrix ¢ being
in fact a rotating operator, can be constructed of two vectors 3'1 and Jz

it i3
=
a1
which gives a frame of reference for the patch considered. While moving from
one patch to another, this frame changes its orientation. Let us recall that the

total change of a vector, B , due to moving from one point to another consists
of two parts [Dubrovin et. al., 1992]

6B = dB +TBdX (11)
Where I is the connexion. The first term in (11) is the conventional differential

) |
dB = 5dX (12)

and the second one allows for a ghange of the frame of reference. Since matrix
& is constructed of two vectors 3, and 5’2 it is transformed following the same
rule,

66 = dé + [6dX (13)

Now we make an assumption of fair game or we also call it an assumption
of developed markets, which means that none of a single party/factor can
influence the whole market. In mathematical terms it means that the total
change of & should be zero

66 =0 (14)

that results in
do = -T'edX (15)

what along with the equation for the elementary shock
dX = 6dW (16)
gives us the equations of Stochastic Differential Geometry on a curved manifold.
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2.2 Fitting SDG Equations to HIM Model, [Makhankov et. al., 1995]

To have SDG equations that describe evolution of the interest rates and their
volatilities we have to find the connexion I' that satisfies the arbitrage free
model (1) of interest rates. For the purpose of comparing SDG equations with
HJM equations for forward interest rates we have to write them in the same
form of stochastic differentials. We chose to write SDG equations in the Ito
representation that will make them compatible with HIM equations that are
given in the Ito form (1). Assuming that the phase space is a Riemannian
manifold, the inverse of the Riemannian metric is given by

99 =3 oiol, gt =oF (17)
q
So the Ito form of equations (16) written in a component form is
) 1 . »
X' =5 D Tighdt+ ) &idwe (18)
kj q

Where drX? indicates Ito differentials. Whereas if we go from continuous
maturity in HJM equations (1) to finite maturity then they become
dF* = viodt+ Y ofdw* (19)
P2 k

with index 7 = 1, V,, where Ny, is the number of maturities. If we match
volatilities and drifts in both equations then

. 2 -
i = 0 L (20)

Substituting this expression for I‘;j into equation (15) we get equations for

volatilities ) _ ]
dsoi =2}y ofdw* (21)
k

where sub-index S underlines that equations are written for Stratonovich dif-
ferentials. Equations for forward rates are

dsF' = _oidWw* (22)
k

Same equations written in Ito differentials are:

dF =) vicidt+ ) oldw* (23)
k k
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dIU;" =2 Z o (V}V,’; + Z o“chI}V;-)dt + 2:/} E oLdw* (24)
% R .

1<i

where vi(t) are

i
vi(t) =) oFAT: +12(2) (25)
k=1
and ATy}, is the time interval between maturitiesfor k > land 71 —t for k = 1.
Equations (21), (22) is Stratonovich form of SDG equations conformed to
the HIM model of interest rates, Ito form of SDG equations for the interest
rates and volatilities is given by (21), (22).

2.3 What is Needed to Solve SDG Equations?

Before we give anuswer to the above question let us quickly examine our set
of equations. We note that a set of equations for forward interest rates (23)
is exactly the same as in the HIM model (1) which makes the SDG model
arbitrage free. In addition to the rate equations the SDG model provides
a set of equations {24) for volatilities. This extra set of equations restricts
possibilities of volatility changes and consequently guarantees that we have to
provide smaller amount of extra information to solve for forward rates and
volatilities. In terms of initial conditions for interest rates and volatilities the
SDG model has the same requirements as the HYM model, i.e. F*(0) and ¢%(0)
are needed. If we assume that the whole yield curve satisfies the developed
market condition (i-e., the fair game assumption (14)) and conforms to the
SDG model then we do not need anything else to predict volatility and interest
rate dynamics for time range up t0 Tinae (i.e., the maximum maturity range
for which initial conditions were specified). Here we see an advantage of the
SDG model as compared to the HIM model as the latter requires additional
assumptions (see section (1.2) for more details) about the volatility dynamics
before it can solve for interest rates.

On the other hand, the assumption of developed markets may be not sat-
isfied around some particular maturities. If the whole yield curve conforms to
the SDG model then on average the dependence of volatilities versus matu-
rity would be given by a smooth curve. However, our analysis of market data
indicates a persistent perturbation in volatility functions around the two year
term. Such a perturbation is clearly seen in all important principal compo-
nents shown in Figure (1). We guess that such anomaly may be due to high
demand for two year borrowing on the part of some strong party (e.g., US
government) that drives the whole market. So, what it means for the SDG
model? We have to identify maturities around which the SDG model may not
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hold true and treat volatility and/or interest rate values at those maturities
as boundary conditions when solving SDG equations (23), (24). Again, if we
compare this case to the HIM model we see the advantage of the SDG model.
The SDG model needs inputs of volatilites ox (8,7 — ¢t = Tizeq) for very few
maturities (e.g., Tfizea €qual to two years, seven years, and ten years) and
then it solves for all other interim maturities whereas the HIM model requires
input of future dynamics of all volatilities, e.g., Trizeq has to cover zero to ten
years with a step equal to one quarter.

3 Solutions of SDG Model

General equations for forward interest rate volatilities (24) are nonlinear and
indicate interconnection of volatility functions of different principal compo-
nents and maturities o}(t). So in general there is little hope for solving such
equations analytically and most of the information is expected to be obtained
through numerical solutions.

8.1  Analytical Solution for Volatilities in Case of Single Factor Model

Even if it is difficult to find analytical solutions of SDG equations (24) in the
general case it turns out that we can find solutions for a case when the interest
rates are driven by a single Wiener process [Makhankov et. al., 1995]. In this
particular case the volatility equations can be represented as

dso? = 20°! + o' AT})odW (26)
that gives a chain type solution for o*

o*(0) exp[2 f(f dw,v*~1(7)]

——y = - (27)
1-26%(0) f; dw,AT;expf2 f§ dwzvi—1(z)]

oi(t) =

It is seen from the denominator of this expression that the solution may become
singular. At the same time, under different initial and boundary conditions the
solution may be regular. More investigation is necessary before we can make
definite conclusions about the nature of solutions of SDG equations (23), (24).

3.2  Numerical Solution For Constent Boundary Conditions

As it was noted in section (1.2) lognormal volatilities of forward interest rates
demonstrate quasi steady behavior. In our following example we concentrate on
finding a steady state solution of the SDG equations that might resemble such
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Figure 2: Results of numerical solution.

market behavior. For this purpose we solve SDG equations (24) numerically
with the following assumptions: we use a single factor model, the initial term
structure of volatility is flat (see Figure (2)), we introduce two “boundaries”
(at two years and five years) at which volatilities are kept constant. In Figure
(2) we show the initial term structure of lognormal volatility that is flat at 0.28
(i.e., 28 %-per-year) and the steady state that is established after a transition
period. The steady state curve is expected value of volatilities obtained from
Monte Carlo modeling of equations (24). Comparison of the steady state curve
with a typical term structure of volatilites from the market shows qualitative
agreement of two curves.




4 Conclusions

We examine mathematical constraints on the evolution of interest rate volatil-
ities that arise from stochastic differential calculus under assumptions of an
arbitrage free evolution of zero coupon bonds and developed markets/fair game
(i. e., none of the party/factor can drive the whole market). The resulting new
theory incorporates the HJM model of interest rates and provides new equa-
tions for volatilities which makes the system of equations for interest rates and
volatilities complete and self consistent. It results in much smaller amount
of volatility data that should be guessed for the SDG model as compared to
the HIM model. Limited analysis of the volatility data suggests that the as-
sumption of the developed market is violated around maturity of two years.
Such maturities where the assumptions of the model are violated are suggested
to serve as boundaries at which volatilities should be specified independently
from the SDG model. Our numerical example with two boundaries (two years
and five years) qualitatively resembles the market behavior. Under some con-
ditions solutions of the SDG model become singular that may indicate market
crashes. The present analysis does not allow us to make strong statements
about validity of the theory. More detail comparison with the data is needed
before the theory can be established or refuted. Especially valuable should
be comparisons for dynamic situations in the market with high volatility and
market crashes.
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Figure 1: Principal components of lognormal volatilities.




