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Microwave Reflection Techniques for 
Dense Plasma Diagnostics

Susumu Takeda4*' and Takashige Tsukishima

The microwave reflection method for measuring 
the electron density whose plasma frequency is 
higher than the probing frequency is described in 
detail. Various expressions and formulas which 
are useful for a variety of experimental conditions 
are given. A method to extend further the measur­
able density range is proposed. The fringing field 
effects are considered when a waveguide is used as 
a probe. References are given to the experimental 
works which substantiate the theoretical analyses. 
Also included are the analyses of reflection by a 
non-uniform boundary and also by an inhomogeneous 
plasma.

1. Introduction

The determination of the electron density, including its spatial 

distribution, has been one of the first requisites in plasma researches. 

Among other methods, microwave techniques have been extensively used 

because of great simplicity in handling and interpreting the results.

The microwave methods hitherto developed may be divided into l) the 

cavity method and 2) the propagation method which is applicable to plas­

mas in a waveguide as well as in free space. The cavity method and 

the waveguide propagation method are mainly used for fundamental 

studies of small scale laboratory plasmas, while the free space propa­

gation method has been widely used in various high-temperature devices.

A shortcoming of the conventional transmission method is the basic 

difficulty of investigating the density distribution, as well as a 

certain cumbersomeness of the arrangements. Another difficulty resides

Present address, Nagoya University, Nagoya, Japan
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in the fact that an electron density whose plasma frequency exceeds the 

probing frequency is not measurable. Thus, even with 3 mm waves the 

maximum measurable density is 1014/cc. In order to overcome 'these dif­

ficulties, a new reflection method was proposed by one of the authors.1 

While the conventional reflection method or cutoff method is only for 

locating plasma,2 the present method admits measuring an electron den­

sity higher than critical. The method is thus different also from that 

of S. C. Lin et al.,3 who determined sub-critical densities by measuring 

reflected power. The principle is based on the fact that the electron 

density of a uniform plasma bounded by a plane boundary is related, in 

an extremely simple manner, to the phase angle of the reflected wave at 

the boundary. Since the interaction between the incident microwave and 

plasma is limited within a narrow region near the boundary, in other 

words, the penetration distance is very small when the density is high, 

the measured value by the present method is essentially local.

The proposed method was first applied successfully to a uniform 

afterglow plasma produced in an X-band waveguide.4 Later, an electron 

density as high as 1016/cc of a shock produced plasma was also measured 

with the same X-band (9000 Mc/sec.) microwave.5 A K-band (35 Gc/sec.) 

microwave reflection probe has been used to obtain the density profile 

of CANDLE plasma (A magnetically confined argon arc) at the National 

Bureau of Standards, Washington, D. C. The values obtained by this 

microwave probe have fitted remarkably with those obtained by other 

techniques such as the Stark broadening of and Langmuir probe.6

In the course of these experiments, a number of formulas and
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expression have been derived to acootmt for a variety of boundary 

conditions. It is the purpose of the present paper to collect these 

results in one place, although some of them have been published else­

where. Also included are recent analyses of reflection by a non-uniform 

boundary and also by an inhomogeneous plasma.

The idea described in Chapter 4 has been proposed by S. Takeda, 

and the calculations in Chapters 6 and 7 have been made by T. Tsukishima.

2. Principle of Reflection Method

A plane electromagnetic wave, e^^ z\ propagating along the 

z-direction in vacuum with angular frequency uu and propagation con­

stant ko, is reflected by a plane boundary, z = 0, separating a homogen­

eous plasma (z > o) and vacuum. The reflection coefficient, R, is given

by
k -k

R k +k ’ (1)

where

K = O' - j 0 (2)

a and P are the phase and attenuation constants in the plasma. They 

are related to plasma parameters,

u) 2/uj2 E T), 
P

v/u) E 6,
(3)

where w and tu P
incident wave, v 

by

are the plasma frequency and the frequency of the 

the collision frequency of electrons in the plasma,
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(4a)

M.
x2 i 2 ji

1+6 J ’ (4b)

when there Is no magnetic field.

Equations (l), (2), (4a) and (4b) give the complex reflection 

coefficient R as a function of 7] and 6. They can be inverted to 

give T) and 6 as functions of the modulus, |r|, and phase angle, W, 

of the reflection coefficient R = |R|e^.

For example, let us consider first the case for 6=0. Eqs. (4a) 

and (4b) then reduce to

u = k \/l-Tj ,
for T| < 1, (5a)P = 0, j

a = 0, ^
___ l for T| > 1. (5b)

p = Wti-i ,

Substitution of Eq. (5b) into Eq. Cl) gives

R • (6)
lnjsZj|-l

The phase angle, 0, is iamed.iately obtained from Eq. (6):

0=2 tan^VlK,

which indicates that o tends to rr as 'f] goes to O0. Thus, a plasma of

infinite density is equivalent to a perfect conductor as far as the

reflection coefficient is concerned. It is sometimes convenient to use
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<f> = tt - y rather than 9. Eq. (?) is then written as,

y = 2 tan-1 1
^T|-l

/ rV \iLq. 3o±vea lor i|, yiexas,

T| = sin2 9/2 

1
tan2 £ for T1 » 1

(9a)

(9b)

(8)

The Eq. (9) shows that the normalized density T] is readily obtained 

by measuring the phase angle cp. The value of cp is conventionally 

calculated from the shift of the standing wave appearing in the vacuum 

side. The standing wave E is expressed as,
"Jkoz

E = e + Re

j!
= 2e ^ Cos (kQz+ “). (10)

Accordingly, the shift of the standing wave minimum, S , as referred to
6 TT

the position for the perfect conductor, is obtained by putting koS+ ~ 

Then,

(11)k S = ^- = tan 1 —~
o 2 -/Tl-1

This shift of the standing wave can be expressed in terms of the attenua­

tion or penetration distance, d, defined by
1

d E e ’

k y Tj-l
for T] > 1 and 6=0

(12a)

(12b)

From Eqs. (8), (ll) and (l2b), we obtain the following relation:

k S = tan (k d) o ' o (13)
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Thus the shift of the standing wave is equal to the penetration depth of 

the incident wave into the plasma, provided kQd « 1.

For plasmas with 6^0, things are somewhat involved as is seen in 

Eq. (4)* However the expressions for T| and 6 in terms of |r| and 6 have 

been derived for Tj » 1 + 62; they are,1

62

n — 41 tan2cp - (1-|R| )2

r 1 + (1-lRl )2/tan2cp 1_ 1 
- 1 - (1-|R| )2/tan2cp

(14a)

(14b)

Noting kQS = cp/2 and tan ^ ^ tan cp, one can rewrite Eqs. (14a) and

(14b) in the following forms,

62

T1 = '

1 + 

- 1 -

1
tan2k0S - (1-|r|)2/4

(1-|r| )2/4 tan2kQS 

(l-|R|)2/4 tan2kQS -

2

1.

(15a)

(15b)

The values of T\ against tan cp are shown in Fig. 1 for various values of 

6- It is seen that the correction to T] due to finite § is relatively 

small. For time varying plasmas, it is more convenient to utilize a 

suitable couple of the standing wave signal. The normalized amplitude, 

h^, of the standing wave detector which is assumed to have an ideal 

square characteristic, is given by,
2-j 2k | z |

h = 7 |l + R’e ° | . (16)
Z

The numerical factor 1/4 is introduced in order to normalize all stand­

ing wave amplitudes to unit maximum for R = 1.
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Eq. (16) can be solved for Tj and 6 with two h 's observed at twoz
different positions. While the choice of these points is to some extent 

arbitrary, the four points shown in Fig. 2 are preferred to get concise 

expressions for 1] and 6. After some calculations and suitable approxi­

mations, the following relations are deduced: 

a) For T) » 1 + 62 ,

T| = (h3~h4)2
4

■ {l-(h3+h4)f
(17a)

f(h3-h4)3 + {l-(h3+h4)}Y_ 
^ (h3-h4)2 - {l-(h3+h4)}2J

The above equations reduce to

'll " 7~T—Ta , h3 h4
(18a)

j 4
(18b)

for 62 « 1. Eq. (l8a) can be slightly modified to give,

which is still

]£_ ___ 4___  ,
T|-l (h3-h4)2

applicable even for Tj >1, provided 6 <<: 1.

(18c)

b) For Tj > 1 and 62 <<; 1,
-n h2Tj =! + - (19a)

6 “/lA1 - (hi+h2b (19b)

In deriving Eqs . (19a) and (l9b), o and j3 have been approximated by

a -k TI6/2AV1 (20a)
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(20b)p = k0 /ri=r

Eqs. (l8c) and (19a) simplify respectively to

ti2 1 1 (21 a)
Tl-1 = (l/2-h4)2 = (h3-l/2)2

and

T| = “ (21b)
hl

when §=0. Eq. (21b) will be seen to be exactly equivalent to Eq. (9a).

Since the phase and attenuation constants in a plasma filled wave­

guide through which the microwave excited to TEi0 mode propagates can be 

obtained by merely replacing T] in Eqs. (4a‘) and (4b) by 'n/(l_l2/x2c) 

where \ and Xc are the wavelength in free space and the cutoff wave­

length of the waveguide, the formulas in this chapter and in the follow­

ing chapters can be applied for a waveguide system provided T] is replaced 

by V(1-12A2c). Eqs. (19a) and (l9b) have been successfully used to 

determine T] and 6 in a recombination controlled afterglow plasma which 

was produced in an X-band rectangular waveguide. In this experiment an 

electron density as high as 1013/cc has been measured.4

3. Some Considerations for Reducing Experimental Errors 

3.1 Difference Method

In order to be able to measure a density as high as T] = 104 one has 

to measure within a reasonable error range a value of (h^-h^) as small 

as 2xl0-s or 1.1 degree in the phase angle. T) = 104 also corresponds to 

the shift of the standing wave minimum of S = (x/2tt) x 10-2cm - 5xl0-3cm 

for an X-band microwave of X = 3 cm. Thus the correct location of the 

standing wave detectors is of the primary importance.
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However, the errors in Tj and 6 due to the slight mis-location of the 

detectors can be to some extent avoided by a sort of difference method 

when it is possible to get an electron density much higher than those 

which are to be measured. Such a condition as above is often fulfilled 

in shock experiments.

Let h^' and h^' be the standing wave amplitudes for a plasma whose 

density is much higher than those of interest; then T| and 6 can be ex­

pressed in terms of

as follows;

T| =

Ah^ = h^ - h^,

^ s h4 " h!’

4

(22)

(Ah3-Ah4)2 - (Ah3+Ah4)2

(Ah3-Ah4)2 + (Ah3+Ah4) 
(Ah3-Ah4)2 - (Ah3+Ah4)2

2 2
r}- 1,

(23a)

(23b)

provided 6/VT| » fi'/VTi’ and (2rr/X.)(A + 4 x4^ ^ 1 > where A x^ an(:i

A x4 are the errors in the positions of the standing wave detectors for 

h3 and h^ respectively, and 6' and 'll’ are the values for the reference 

high density plasma.

Eqs. (23a) and (23b) reduce to

4T| :4h3-4h4)s

AhQ+Ah, 2 • 4 
Ah3~Ah4

(24a)

(24b)
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for 62 « 1. Note that (AhQ+Ah,) < (AhQ-Ah,) because of > 0 and
J 4 d 4 i

Ah. < 0.4
Eq. (24a) has been used to evaluate the electron densities from 1013 

to 3xl015/cc in a plasma produced by an electromagnet!cally driven shock 

wave into argon.5

3.2 Effect of Power Losses Along the Path Between the Plasma Boundary

and the Standing Wave Detectors

The power losses, such as the circuit loss due to the finite conduc­

tivity of the waveguide or some scattering loss between a horn antenna 

and the plasma boundary, have to be taken into account to get the correct 

values of T) and 6. When these losses are of pure dissipative type and

accordingly give rise to no phase shift, the standing wave signal, h ,z
given by Eq. (l6) is modified as follows:

1 , -j2k0|z|
hz =- |! + pRe (25)

Here, a correction factor, p, which is a real number less than one, is 

introduced to account for these power losses. The similar calculations 

as in the preceding chapter result in,

Tl 4
(h3-h4)2 ’

(26a)

h3-h4
[l + 4 {1 - 2(h3+h4)}] (26b)

provided T) > 1 and 62 « 1.

Alternate expressions for T] and § in terms of h-^ and h^ are 

possible: they are,
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'll 1 + h20/h10, (27a)

^20
6 ~ h10 *^1 (hio+^O^’ (27b)

with
hio = ^ - (hj-yj,

h20 " 2p [^(hq+hp)-1 + (hg-hq) j.
(28)

When 6=0, Eq. (27a) reduces to

T| - ------f------- >
h -

(29)

by noting that hq"*-^ = ^0r ^ = 0.

Eqs. (26a) and (26b) can again be rewritten in terms

defined in Eq. (22);

of Ahu and Zih.^ 4

'ri _ 2 bn = p •------------ (30a)

CM

1

, _ 2 Ah3+Ah4 (30b)
P Ah3-Ah4

Eqs. (26), (29) and (30) reduce to Eqs. (l8), 21b and (24) respectively

when p = 1.

Note that the introduction of the correction factor p does not re­

sult in any change in the shift of the standing wave minimum S, as is 

clear from Eq. (25) and the definition of p.

4* Further Extension of Measurable Density Range 

As is well known in transmission theory, a small phase shift can be 

expanded by making use of a suitable buffer dielectric plate of lg/4
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thickness. This idea is here utilized to extend further the measurable

density range. The reflection coefficient R at the surface of the 

dielectric plate, whose other side is in contact with plasma as is shown 

in Fig. 3, can be easily calculated to give,

k3Ao - (k2A0)2
R = Vk0 + (k2/ko)2

(31)

where
k3 = -jk/vl 

k_ = k Ae”
2 o

and £ is the specific dielectric constant of the plate. 

Substitution of Eq. (32) into (3l) gives

^ _ i + yws
K-, - - ------zr~— j

1 - yT|-i/e

(32)

(33)

which, when re-evaluated at a point off the dielectric boundary by a 

distance k/4, turns out to be

1 + yTl-l/e

1 - y Vl/e
(34)

The shift of the standing wave minimum, S^, is now given by

k S1 = tan A —— (35)
0 1 ^11-1

for Tl»l

Eq. (35) shows that is nearly £ times S of Eq. (ll). Accordingly the 

maximum, measurable value of 7] is risen up by a factor £2. Eq. (35) can 

be easily generalized to the case where n dielectric plates are placed 

in front of the plasma boundary, each plate being separated by a distance

12



\/h, from its neighbors. Then the shift of the standing wave minimum,

S^, observed in front of the n-th plate is given by
.nk S - tan ^ ~£—

° n a/tPI
(36)

It is noted that the first dielectric plate does not necessarily have to 

be in contact with the plasma; the plate located at distance k/2 from 

the plasma boundary gives the same result.

The technique described here can be also applied to plasmas whose

densities are less than critical. When the plasma shown in Fig. 3 is

replaced by a plasma layer of thickness L, of density T| < 1 and whose

other boundary is made in contact with a perfect conductor, the relection

coefficient evaluated at a distance A./4 off the dielectric plate is given

by ___ ___
, 1 + yi-Tj/e-tan k L/l-1|
\ = ------=-----------= • (37)

1 - y/l-Ti/e-tan k0Iy/l-ll

If we choose kL = 2mrr where m is an interger, we have tan k L \/l-T| = mirT] 
o o

for T| « 1. Thus the shift of the standing wave minimum, s|, is given by

koS^ « mnell, (38)

which is e times larger than that without the dielectric plate. The mini­

mum, measurable value of Tj is therefore lowered by a factor e. With 

n plates, being separated by a distance l/4 from each other, the shift of 

minimum observed in front of the n-th plate is,

k s' = mTTEn7]. (39)0 n

The other boundary of the plasma layer needs not necessarily be in con­

tact with the metallic conductor; the standing wave can be constructed 

from two signals in a bridge type circuit. One signal is taken directly



from the microwave oscillator, while the other is taken through the 

plasma layer. Thus the present technique covers a wide range of mea­

surable density, for instance, from Tj = 10~4 to 10s when two dielectric 

plates of e = 3*7 are used for a plasma layer whose thickness is \/2.

In a waveguide, e has also to be replaced by (e-\2/xc2)/(l-l3Ac2) .

5- Microwave Reflection Probe

Hitherto we have been mainly concerned about plane wave analyses. 

However additional problems arise when a microwave probe, as is illus­

trated in Fig. 4, is used to obtain the local electron density of a 

plasma in free space.

First of all, a part of incident microwave power is reflected at 

the probe end even when there is no plasma outside the probe, because of 

the abrupt change of geometry. Of course this type of reflection can be 

eliminated by using a suitable matching device such as three stubs or 

E-H tuner. The problem is whether the tuner, once matched for free 

space, has to be re-adjusted when the probe is inserted into plasmas.

An analysis has been made of the equivalent circuit based on the theory 

of the transmission lines; the result shows that the overall reflection 

coefficient is given by a product of a constant phase factor and the 

reflection coefficient of the plasma boundary, provided the system is 

matched initially for free space. This constant phase factor can 

experimentally be corrected for by referring phase to the metallic 

short case after the matching for free space is achieved.

The second and more serious problem is how to handle the distortion 

of the electric field outside the probe. Galejs has calculated the

14



admittance of a waveguide radiating into plasma,7 and Wait has given a 

formal solution to the radiation field outside a slotted conducting 

plane in a plasma environment.8 In both cases, the electromagnetic

wave propagates into the plasma through a slot antenna which is located 

in a perfectly conducting infinite plane.

Instead of having recourse to the rigorous, but cumbersome mathe­

matics, we develop here an heuristic and semi-empirical method.9 We 

first assume that the fringing field in vacuum can be expressed approxi­

mately by the field produced by a line dipole placed at distance Zq 

behind the probe end. Then the field strength at distance z from the 

probe end is given by EoZo2/(z+Zo)2. This has to be multiplied by the 

attenuation factor exp (-z/d) in order to give the field when plasma is 

present. Thus, to a first approximation, we obtain

E(8) =Eo(^S'
exp (- “) (40)

for the fringing field in plasma, where is the value at z =0, and Zq 

depends presumably on the ratio of the wavelength to the characteristic 

probe dimension. On the other hand, we can also express E(z) formally 

in terms of an effective penetration depth, d', as follows:

E(z) = Eq exp (- f>). (41)

To define d' in terms of d and Zq, the two expressions for E(z) are set 

equal at some point z = While the choice of such a point seems

arbitrary, we may argue on physical grounds that the best choice of Z^ 

would be Z-j- = d, where the field is roughly e-1 times Eq . The result 

is:

15



d' = d[l + 2 in(l+d/Z0)] 1. (42)

This equation reduces to the correct limit, d'/d = 1, for large T) or

small d, for it is just when d « Zq that fringing field effects are 

expected to be negligible. For d large, d’/d < 1 expresses the fact 

that a smaller effective penetration depth is here used to compensate 

for the field decrease caused by the effect of geometry. With Eq. (42), 

one can easily obtain the reflection coefficient, noting d' = l/jS' and 

d = l/|3. Or one may make use of Eq. (l2b) to compare T]' with Tj, where 

T| is the actual density just outside the probe and T|' includes the 

fringing field effect. In Fig. 5 are shown the values of d'/d and Tj'/T| 

against d/ZQ for various values of Zq/X. The value of remains to be 

determined experimentally. And this was done with a uniform argon after­

glow plasma produced in a cylindrical waveguide. The phase shift was 

simultaneously measured with an X-band microwave at the two ends of the 

chamber. At one end, the chamber was attached to a cylindrical wave­

guide of the same diameter as the discharge tube so that fringing fields 

are absent. The microwave probe was used at the other end. It consisted 

of a standard RG-52/U waveguide tapered to a 3 mm height so that the 

plasma in the cylindrical chamber is considered as a plasma in free space 

for the probe. The calculated and observed values of Tj' showed good 

agreement within the experimental range of T| < 10 when Z /\ was chosenO c>
equal to O.63.

A K-band microwave probe of the cross section 7x1 mm2 was success­

fully used to determine the density profile of an argon arc plasma. The
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densities measured by the probe fitted quite well with those obtained by 

other techniques such as the Stark broadening of H|3 line and Langmuir 

probe.6

6. Reflection by Inhomogeneous Plasma 

Need sometimes arises to take account of inhomogeneity of the 

electron density along the direction normal to the boundary surface, 

when one wants, for instance, to measure the density profile of a 

cylindrical plasma whose characteristic diameter is of a comparable 

order of magnitude as the wavelength of the probing signal.

To choose a simple case for illustration, let us' consider a linear 

density ramp with a sharp cut at z = 0 where the reflection probe is 

located, as is depicted in Fig. 6. Since the gradient of the electron 

density is parallel to the direction of the propagation of the incident 

wave, the wave equation for the electric field strength, E, is simply 

given by10

^1+ k 2(1-T1) e = o,
dz3 °

with
T] = 0 for z < 0,

^ =\ + for z > 0.

The solutions for the region I and II, in Fig. 6, is given by

-jk0z jkz
EI=e +Re ,

En =A ^ (S) + B ’

(43)

(44)

(45)

(46)
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where

X = T| - 1, (47a)
K = f k0Z0x3//2, (47b)

and 1^/3(0 are the modified Bessel functions of orders ±l/3. The 

boundary condition thatE^^ has to vanish at z -* oo requires A = -B, since 

the asymptotic form of is given by11

I±l/3^^
5 -> CO

» (2ttO'1/2 [e? + e-C e"^2 ± (48)

The reflection coefficient R is obtained from Eqs. (45) and (46) by
dE]

putting Ej = an4
dEll
dz at z = 0.

After some calculations, we obtain

R
1+jK

where

K =
K 1 -2/3^ + XI 2/3^

-1/3 (0

(49a)

(49b)
z = 0.

o /pWhen koZQ(l|o-l)^ » 1, in other words, when the density gradient is

very small and/or T|o is very high, Eq. (49b) reduces to

K - yii0-i {1 + 1
4k Z o o

(TL-1) 3/2 } (50)

Hence, we have

R =

1 + j yi^-i {1 + ^ }

1 - ^V1 (1 + zix • >(u

(51)
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As is expected, Eq. (5l) reduces to Eq. (6) when Zq 0O, that is, when 

the density gradient approaches zero.

It can be shown that a WKB-type approximation method leads to the 

same result as Eq. (5l)* When the change in the electron density over 

a range considered is very small compared to the value at the boundary,

the electric field can be approximated by
„ z ___

-k0 j a/H-I dz
Ejj-Ce 0 , (52)

where C is a constant. The effective attenuation distance, d, is then 

defined by

, d ___
k ) '/T|-l • dz = 1. (53)

0 ^o

The integrand can be expanded as follows,

= A+ r -1
a/T| -1 I 1 + ---1

0 1 2Z (T| -1)
o o

(54)

Inserting Eq. (54) into Eq. (53) and solving for d, we obtain,

1
4k Z o o (VD

(55)

provided 4koZo(T|o-l)^ ^ » 1. Since d = l/p and R = (kQ+j p)/(ko-j 3) for 

a loss-less plasma, Eq. (55) gives the same reflection coefficient as 

Eq. (51).
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7. Reflection by Boundary Layer with Density Gradient

In the preceding chapters, it has been assumed that the reflection 

always takes place at a well defined boundary surface across which the 

electron density changes stepwise. However, there exists always a 

finite boundary layer in an actual plasma, at least, of the order of 

the Debye length. The boundary layer may become still thicker due to 

diffusion into the waveguide, when a waveguide probe is inserted into 

a plasma and when it is impossible, due to heat damage or charge accumu­

lation which might cause some undesirable effect on the plasma, to use 

a thin insulator to divide the plasma and vacuum.

Microwave reflection by a non-uniform boundary has been treated 

by many authors: Taylor has calculated reflections at linear density 

ramps12 and also at an inverse parabolic density profile,13 Wait has 

given a formal solution for a stratified plasma,14 Albini and Jahn have 

made numerical calculations of reflection and transmission coefficients 

for linear and "kinked" ramps, connecting uniform plasmas and for trape­

zoid geometries,10 and recently an exponential electron distribution has 

been attacked by Yen.15

Our problem here is to seek the phase shift of the reflection 

coefficient caused by the existence of a relatively thin boundary layer. 

Jahn has already given an answer for a special case. He has derived 

the following formula for the geometry shown in Fig. 7,lS
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rt =

, Rq r/ *\2 i J^2/ k0 . r- ^ /_ ^ \21^2 + 2kt [(1-^2) -l] + k0Zi k* + ?n# t-'--^2 - (l-fig) ]

^2
+ ^ [i-d-fisf] - ^ (1+ %) - [1-^2+ tt (1-^2)*]

(56)

<.^2 k Zn 0 20.

where
# 

0 2

ko =

</<
1+v2/uj2

O' - Jp.

d+J»)
(57)

In deriving Eq. ($6), the Bessel functions of the forms have

been approximated by the first few terms of their series expansions. 

Jahn has also shown that, for a special case of T) = 1 and 6=0,

Rj turns out to be

R. =
1 ~ j4kQZi

(58)J 1 + j ‘i^z, ’

provided k zx << 1. We see from Eq. (58) that the boundary layer with
zi

linear ramp over 7^ is equivalent to a step boundary located at z = ~ 

as far as the reflection is concerned.

Although Eq. (56) was obtained for T| < 1, it can be shown that 

Eq. (56) is also valid for T| > 1. Accordingly the statement made under
■ftEq. (58) can be generalized for T| > 1. To show this, we replace and

k2 in Eq. (56) by T| and -jk \/T|-l respectively, assuming 6=0, then

R -1 A + jB

with
 (l-Tl)2

A = T| + .koZl+ '(k^)2,

(59)

(60a)
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(60b)B = Tj JT]-l + | (T)-2) koZi+ * yihl ’(^Z!)2.

The third term in Eqs. (60a) and (60b) can be neglected when « 1.

Hence we have

1 + a/T1-1 • k z + j {// T|-l + (p- -l) k z } — _ _ _ _ _ _ _ _ _ _ _ _ _ Q x_ _ _ _ _ _ _ O
1 + //li-l • koZl- j (-/VI + (f -i) koZl} 

The Eq. (6l) divided by Eq. (6) yields,

R
1 +

1 +
v.

koZr
2

^^1-1 ~ j

• /vi + j

z_i

2

(61)

(62)

which reduces to

Rj/R = e ,5koZl, (63)

when
koz1/vI « 1. (64)

Eq. (63) implies that a boundary layer with linear ramp over Zl connect­

ing homogeneous plasma of density T] is equivalent to a step boundary 

located at z = z1/2 of a uniform plasma having the same density.

8. Concluding Remarks

One of the advantages of the reflection method lies in the fact 

that the ratio of the sheath thickness, which is supposed to be of the 

order of the Debye length 1^, to the penetration distance d does not 

depend on the electron density, but only a function of the electron 

temperature Tg: since = vTAJp and d = c/u)^, we have l^/d = v^c, 

where c and v^ are the light velocity and the mean thermal velocity of
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electrons. Thus, the thickness of the boundary layer can always be 

neglected compared to the penetration distance provided v^/c « 1.

Although we have mainly dealt with plasmas in the absence of a 

magnetic field, it is clear that the formulas can be used as they stand 

for magnetized plasmas if geometry is chosen such that k _[_ B and E 11 B, 

where IB is the magnetic field.

When the extraordinary mode of propagation is utilized, that is, 

when k I B and E I B, the condition uo 2 « ua 2 has to be satisfied.

The argument described in Chapter 6 suggests that a waveguide 

probe without insulating film at its end could be used for a diffusion 

experiment: the diffusion coefficient could be calculated from the

diffusion length at the probe end.
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Fig. 1. Relation between T| and tan cp for various values of 6.



Squared amplitude of standing wave in front of plasma 
boundary. The solid line shows the standing wave for 
a perfect conductor and the dotted line shows that for 
plasma.

Fig. 2.
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Fig. 3. Reflection by plasma through a dielectric plate whose 
thickness is k /4, where X is the wavelength in the 
dielectric.

MICRO WAVE PROBE
PLASMA

Fig. 4. Sketch of microwaye probe.



oL/Ze
Fig. 5* The values of d'/d and 1|'/T1 as functions of d/ZQ.



Fig. 6. Density profile of the inhomogeneous plasma having a 
linear ramp.

LINEAR RAMP

Fig. 7. Density profile of the boundary layer with a constant 
density gradient.


