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TI33 DISSOLUTION AND DIFFUSION OF OXYGEN I N  ZIRCONIUM 

by 

W .W . Doerf f l e r  (NRC Fellow) 

ABSTRACT 

Measurement of t h e  d i f f u s i o n  c o e f f i c i e n t s  of  oxygen 

i n  a-zirconium by two methods have confirmed t h e  r e s u l t s  of  

Pernsler (for measurements of t h e  d i s s o l u t i o n  ra.ces of anodic  

ox ides )  and t h e  r e s u l t s  of Davis (by microhardness measurements 

on specimens frorn prolonged thermal o x i d a t i o n ) .  

Repeated d i s s o l u t i o n  of anodic f:il.ms and d i s s o l u t i o n  

of thrin 'cherifla.1 f i l m s  gave h ighe r  vallJes for t h e  d i f f u s i o n  

c o e f f i c i e n t  and sugCested t h a t  t h i s  may be a f 'unctfon of  the 

oxygen con ten t .  

Oxidation i n  a i r  gave a'iornalous microhardness curves 

showing a much longer  ' t a - i l '  'Ghan expected from t h e  r a t e  of oxygen 

d i f f u s i o n .  This may be  i n d i c a t i v e  of some i n t e r a c t i o n  between 

oxygen and n i t rogen  , w i t h  n i t r o g e n  d i f f u s i n g  a h e a d  of  t h e  oxygen 

g r a d i e n t .  I n  t h e  absence of oxygen, t h e  d i f fu , s ion  c o e f f i c i e n t  

for n i t r o g e n  i s  much sma l l e r  t han  t h a t  for oxyg?n. 

Chalk River , Ontario 
I4ay 1965 
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THE3 DISSOLUTION A N D  DIFFUSION OF OXYGEN I N  ZIRCONIUM 

by 

W .W. D o e r f f l e r  (NRC Fellow) 

1. INTRODUCTION 

The d i f f u s i o n  c o e f f i c i e n t s  of (oxygen i n  zirconium 

determined by Pemsler (1) and Davis, e t  , a l .  ( 2 )  show d i f f e r e n c e s  

of  up t o  t h r e e  o r d e r s  of magnitude a t  te :aperatures  below 650"~. 

To i n v e s t i g a t e  t h e  reasons for t h i s  d iscrepancy,  both sets of 

measurements have been repea ted  under t h e i r  r e s p e c t i v e  e x p e r i -  

mental c o n d i t i o n s .  

EXPERIMENTAL n c. 

2.1 Mate r i a l s  

Table I sh.ows t h e  p r i n c i p l e  i m p u r i t i e s  i n  t h e  two 

d i f f e r e n t  ba tches  of c r y s t a l - b a r  zirconium used i n  t h e  p re sen t  

o x i d a t i o n  s t u d i e s  on pure zirconium. T h e  average g r a i n  s i z e  

of ba tch  1 was about 0.5 - 1 mm and of ba t ch  2 about 2 - 3 mm 

i n  d iameter .  Specimens of  Zircaloy-2 and Zr-3 w t $  A1 were 

a l s o  used; an  a n a l y s i s  for t h e  Zircaloy-2 i s  given i n  Table I; 

no a n a l y s i s  i s  a v a i l a b l e  f o r  t h e  zirconium-aluminum a l l o y .  

The specimens were about 30 x 15 x 3 mm, and were pol i shed  

mechanically on s i l i c o n  ca rb ide  papers  (120 and 400 g r i t ) ,  s o  

t h a t  0.5 - 1 mm from each s i d e  of t h e  specimens were removed 

and f i n a l l y  pol i shed  on 6 Lrn diamond l a p s .  

were then  pol i shed  chemical ly  i n  a s o l u t i o n  o f  39% "03 ,  

The specimens 
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57.5% H20 and 3.5s I IF  f o r  about 5-10 minutes.  

2 . 2  Procedure 

Nechanically and chemical ly  pol ished zirconium 

specimens were oxidized e i t h e r  a n o d i c a l l y  i n  a s a t u r a t e d  

s o l u t i o n  o f  ammonium bora t e  o f  p~ 8 a t  room temperature o r  

thermal ly  i n  a f’urnace i n  oxygen (760 torr) and i n  a i r  

(760 t o r r )  a t  e l evs t ed  temperatures .  No s p e c i a l  p recaut ions  

were taken to p u r i f y  e i t h e r  gas .  

The r e f l e c t i v i t y  o f  t h e  specimen was measured as  

a func t ion  of wave l eng th  using a Beckman Spectrophotometer 

i n  comparison w i t h  an  unoxidized specimen as s tandard .  The 

curves  were recorded au tomat i ca l ly ;  t y p i c a l  examples a r e  

shown i n  F ig .  1. From the  reflection-minima t h e  th i cknesses  

of t h e  oxide fi lms were c a l c u l a t e d  f o r  t h e  f i r s t  t h r e e  o r d e r s  

using a value of n = 2 for t h e  average r e f r a c t i v e  index of 

t h e  f i l m  (3) .  

For t h e  de te rmina t ion  of d i f f u s i o n  c o e f f i c i e n t s  under 

t h e  experimental  cond i t ions  of Pemsler, anodic f i lms  were 

prepared w i t h  a s tandard  th i ckness  (710 k 10 1) which was 

confirmed by the  Beckman Spectrophotometer.  For thermal ly  

oxidized specimens t h e  dependence o f  t h e  minima of r e f l e c t i v i t y  

f o r  t h e  f i r s t  t h r e e  o rde r s  on temperature and time i s  shown i n  

Table II. 
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The time for t h e  f i l m  to d i s s o l v e  i n  vacuum 6Id 
t o r r )  a t  va r ious  temperatures  was determined o p t i c a l l y .  A 

beam of l i g h t  from a tungs ten  f i l amen t  lamp was d i r e c t e d  onto 

the  su r face  of t h e  oxidized specimen ( i n s i d e  t h e  fu rnace )  

and r e f l e c t e d  onto a CdS pho toce l l .  The photocurrent  was 

measured by a Ke i th l ey  Model 610 e l ec t rome te r  and then  recorded.  

.4 c a l i b r a t i o n  of t h e  measuring Instrument  for d i f f e r e n t  oxide 

f i l m  t h i cknesses  was made. ,"ifter each d i s s o l u t i o n  experiment 

t h e  temperature  was r a i s e d  above t h e  d i s s o l u t i o n  temperature  

( t o  6oo0c f o r  30 minutes)  t o  ensure t h a t  t h e  oxygen d i s s o l u t i o n  

was complete. For t h e  c 2 l c u l a t l o n  of  t h e  d i f f u s i o n  c o e f f i c i e n t s  

t h e  Pemsler a n a l y s i s  (1) was used. 

To i n v e s t i g a t e  t h e  experimental  cond i t ions  used by 

Davis ( 2 ) ,  thermally oxidized specimens were mounted on edge 

i n  b a k e l i t e ,  ground down approximately 2-3 mm, t hen  mechanical ly  

and chemical ly  pol i shed .  The oxygen g r a d i e n t s  i n  t h e  metal  

were determined by microhardness measurements made w i t h  a Tukon- 

T e s t e r  designed for t h e  de te rmina t ion  of Knoop and 1 3 6 " ~  diamond 

pyramid hardness  numbers us ing  53, 100 and 200 g loads .  The 

r e s u l t s  a r e  t h e  average of 3-". t r a v e r s e s  made on each specimen 
, .  

a t  d i f f e r e n t  p o i n t s  (F lg .  2 ) .  D i f fus ion  c o e f f i c i e n t s  were 

c a l c u l a t e d  i n  two ways; firstly, from t h e  depth of p e n e t r a t i o n  

( t aken  at t h e  minimum i n  t h e  microhardness t r a v e r s e ) ,  and 

secondly,  from t h e  s lope  of t h e  s t e e p  p a r t  of  t h e  curve.* 

. , . . . . . . 
*The ve ry  high hardness  va lues  (>3000 KHX) c lo se  t o  t h e  s u r f a c e  were 

ignored as  t h e y  were thought to a r i s e  from t h e  i n d e n t e r  ca t ch ing  
on a s t e p  produced a t  t h e  metal-oxide i n t e r f a c e  dur ing  e t ch ing .  I n  
some i n s t a n c e s  t h e s e  hardness  va lues  were h ighe r  than  t h a t  es t imated  
f o r  diamond ( 8 ) .  
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Ind iv tdua l  readings  were reproducib le  w i t h i n  20%. The 

d i f f u s i o n  c o e f f i c i e n t s  were c a l c u l a t e d  u s i n g  t h e  a n a l y s i s  

of Davis. 

3. RESULTS 

3 .1  D-j-ssolution of Anodic Oxides 

The ra tes  of  decrease  of t h i ckness  of anodic oxide 

f i l m s  ( i n i t i a l l y  710 

o f  time at 1I5O0C, L18O"C and 550°C are  shown i n  Fig.  3. Di f fus ion  

c o e f f i c i e n t s  c a l c u l a t e d  from the l i n e a r  p a r t  of t h e s e  curves 

are shown i n  FLg. L l  and are compared with d i f f u s i o n  c o e f f i c i e n t s  

c a l c u l a t e d  from t h e  t ime a f t e r  iihich t h e  whole oxide l a y e r  

dissppe2red ( p o i n t s  a ,  b and c i n  F ig .  3 ) .  For  ease  o f  

expertmentatioii ,  t h e  second method o f  e s t i m a t i n g  oxide d i s s o l u t i o n  

m s  used subsequent ly .  

10 i) i n  vacuum (lom7 torr) as a f u n c t i o n  

Repeated grorvth and d i s s o l u t i o n  of an anodic  oxide 

on t h e  same specimen under the same experimental  cond i t ions  

shoved t h 2 t  t h e  average d i s s o l u t i o n  r a t e  of t h e  oxide f i l m  i s  

h ighe r  on t h e  second and subsequent occasions than  i n i t t a l l y .  

On r e p e t i t i o n ,  however, r e l a t i v e l y  sma l l e r  i n c r e a s e s  i n  t h e  

d i s s o l u t i o n  r a t e  were observed (F ig .  5 ) .  The diffus-ion 

c o e f f i c i e n t s  a t  600"~ g e n e r a l l y  l i e  below t h e  s t r a i g h t  l i n e  

through t h e  o t h e r  p o i n t s .  T h l s  may r e p r e s e n t  a sys temat ic  

e r r o r  introduced by t h e  method of c a l c u l a t i n g  the c o e f f i c i e n t s  

from t h e  t i n e  taken  for t h e  oxide to d i s s o l v e  completely.  
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3.2 Dissolution of Thermal Oxides 

Dissolution of oxide films thermally formed on 

zirconium at 400°C to thicknesses approximately, the same as the 

standard anodic film thickness was observed to be more rapid 

than that of the anodic oxide (Fig. 6). A specimen was oxidized 

in oxygen at 400°C for 1, 2 and 3 hours and the thicknesses of 
the oxide layers determined by using the Beckman spectrophoto- 

meter. One part of the reflectivity curves is indicated by 

Fig. 7. The specimen was then annealed under vacuum 

torr) at the same formation temperature for 216 hours t o  

dissolve the oxide layer. Curve 4 in Fig. 7 shows the result. 
No decrease of the oxide film th.ickness could be found; taking 

the diffusion coefficient of 1.6 x cm2/sec for 400°C by 

extrapolating the middle line in Fig. 4, a decrease of the 
oxide thickness of 130 A would be expected, giving the reflectivity 

0 

minimum at the wave length shovm in Fig. 7 

3.3 Microhardness Measurements 

The microhardness curves were found to pass through a 

minimum at the point where the gradient meets the interior of the 

specimen (which showed a nearly constant hardness). These 

minima were used as the penetration distance of oxygen into 

the metal for calculating the d i f f u s i o n  coefficients; a second 

figure f o r  this coefficient was obtained from the slope of the 
. -  . -  

steep par t  of the gradient. 

Grs 
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Resul t s  of measurements on specimens oxidized i n  

oxygen (o r  a i r )  a t  500-800°c are presented i n  Table I11 and 

Fig .  8 ,  i n  comparison w i t h  t h e  o t h e r  published r e s u l t s  (1, 2, 

4, 6 ,  7 ) .  Figures  9 and 10 show t h e  hardness g rad ien t s  i n  

t h e  metal f o r  specimens oxidized a t  6oo0c i n  a i r  and oxygen 

r e s p e c t i v e l y  from which the d i f f u s i o n  c o e f f i c i e n t s  were 

ca l cu la t ed .  

Pure zirconium, Zircaloy-2 and 22-3 w t %  A 1  specimens 

were oxidized a t  6 0 0 " ~  f o r  22 hours and t h e  oxygen g rad ien t s  

measured (Fig.  11). These resu l t s  were confirmed by a repeat 

experiment. Another zirconium specimen was c u t  l i k e  a wedge 

and, a f t e r  po l i sh ing ,  oxidized a t  800°C f o r  24 hours. After  

this time, t h e  edges and the  t h i n n e s t  part  of t h e  metal wedge 

( th ickness  (500 pm) were covered by w h i t e  oxide l a y e r s .  

parts of t he  wedge showed only  a b lack  oxide layer. Microhardness 

Other  

measurements showed t h a t  t he  oxygen g rad ien t s  had already met i n  

the  p a r t  where t h e  white oxide l a y e r  was formed (Fia .  1 2 ) ;  a 

r epea t  confirmed t h i s  observat ion.  

Figure 13 shows the  mfcrohardness t r a v e r s e s  observed 

a f t e r  t h e  oxida t ion  of specimens i n  a i r  and subsequent anneal ing 

i n  vacuum. A zirconium specimen was oxidized f o r  22 hours i n  a i r  

a t  700°C; it was then  c u t  i n  two p ieces .  One p a r t  was annealed 

under vacuum t o r r )  a t  the  same temperature of  700°C f o r  

1250 hours.  The r e s u l t  shows t h a t  t h e  shape o f  the  g rad ien t  
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has not  changed markedly and t h e  b lack  oxlde l s y e r  was s t i l l  

t h e r e .  The o t h e r  p a r t  of t h e  specimen w a s  annealed a t  8oo0c 
f o r  70 hours a l s o  under vacuum (10-7 t o r r ) .  

d i s so lved ,  bu t  most of t h e  oxygen remained near  t h e  o r i g i n a l  

s u r f a c e ,  and t h e  r e s u l t s  can be compared w i t h  (3 microhardness 

curve f o r  ano the r  specimen oxidized f o r  22 hours i n  a i r  a t  

'The oxide had 

800 O c  . 
4. DISCUSSION 

Good agreement was obtained w i t h  t h e  r e s u l t s  of 

Pemsler by us ing  h i s  experimental  cond i t ions  and method of 

a n a l y s i s .  V a r i a t i o n s  i n  t h e  experimental  method, however, 

changed t h e  apparent  d i f f u s i o n  r a t e  of oxygen :Lnto t h e  metal .  

Good agreement was a l so  obtained w i t h  t h e  rDesu:Lts of Davis on 

specimens oxidized i n  oxygen us ing  s imi la r  experimental  condi-  

t i o n s  and h i s  method of a n a l y s i s .  The diif'fuslon c o e f f i c i e n t s  

a f t e r  o x i d a t i o n  i n  a i r ,  c a l c u l a t e d  from the minimum i n  t h e  

hardness curve,  were h ighe r  even than  those  repor ted  by Davis. 

C o e f f i c i e n t s  c a l c u l a t e d  from t h e  s lope  of  t h e  steep p a r t  of 

t h e  g r a d i e n t  were i n  good agreement w i t h  o t h e r  published d a t a .  

W i t h  i n c r e a s i n g  time of ox ida t ion  i n  a i r ,  t h e  d i f f u s i o n  

c o e f f i c i e n t  ( ca l cu la t ed  from t h e  minimum in t h e  hardness cu rve )  

decreases  , s ince  t h e r e  was r e l a t i v e l y  l i t t l e  change i n  t h e  p o s i t i o n  

of t h e  minimum (Fig.  9 ) .  There was l i t t l e  change i n  the  s lope  

of t h e  g r a d i e n t  and t h e  whole g r a d i e n t  appa ren t ly  moved i n t o  

t h e  specimen. Microhardness g r a d i e n t s  which do not  change w i t h  
6d 
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exposure time a r e  a n a t u r a l  c o r o l l a r y  of  l i n e a r  ox ida t ion  

and have been observed by Wallwork and Jenkins  ( 5 ) .  

The hardness g r a d i e n t s  formed dur ing  ox ida t ion  i n  

a i r  show two prominent reg ions  of  d i f f e r e n t  s lope ,  whereas 

i n  oxygen only  one s lope  was observed. The s t e e p e r  p o r t i o n  

of t he  g r a d i e n t  i n  a i r  g i v e s  d i f f u s i o n  c o e f f i c i e n t s  ,amparable 

t o  those  f o r  oxygen and may r e p r e s e n t  d i f f u s i o n  of oxygen from 

t h e  a i r .  The par t  of t h e  g r a d i e n t  w i t h  t h e  lower s lope  may 

be due t o  some o t h e r  s p e c i e s  d i f f u s i n g  more r a p i d l y  than  

oxygen. Nitrogen on i t s  own dif'f'uses more slowly than  oxygen, 

bu t  it may be t h a t  when both s p e c i e s  are p resen t ,  t h e r e  i s  a n  

i n t e r a c t i o n  which r e s u l t s  i n  t h e  n i t rogen  d i f f u s i n g  more 

r a p i d l y .  Probs t ,  Evans and Baldwin  (4) found a complicated 

i n t e r a c t i o n  between n i t rogen  and oxygen when exposure was 

changed from one t o  ano the r  of t h e  t h r e e  media employed (oxygen, 

n i t r o g e n  and a i r ) .  

The r e s u l t s  of F ig .  11 may i n d i c a t e  t h a t  w i t h  

i n c r e a s i n g  hardness of t h e  metal  i n t e r i o r  i n  t h e  s e r i e s  

zirconium (91 KHN) Zircaloy-2 (180 KHN) and Zr-3 w t $  A1 (360 KHN) 

t h e  p e n e t r a t i o n  of t h e  hardness  g r a d i e n t  measured by t h e  minimum 

i n  t h e  hardness curve becomes l a r g e r .  The th i cknesses  of t h e  

oxide l a y e r s  were approximately 10, 30 and 300 pm f o r  zirconium, 

Zircaloy-2 and Z r - 3  w t %  A1 r e s p e c t i v e l y ,  and i f  t h e  d i f f u s i o n  

r a t e s  are t h e  same f o r  t h e s e  a l l o y s ,  one wou ld  expect  a decrease 

i n  t h e  th ickness  of t h e  d i f f u s i o n  zone w i t h  i n c r e a s i n g  ox ida t ion  

r a t e .  
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I n  t h e  case of t h e  wedge-shaped specimen, th .e  

oxygen appeared t o  have d i f f u s e d  i n t o  t h e  meta:L faster  i n  

t h e  t h i n n e r  parts of t h e  specimen. T h i s  may lie t h e  r e s u l t  

e i t h e r  of an  i n t e r a c t i o n  between t h e  two g r a d i e n t s  o r  of t he  

s t r e s s e s  r e s u l t i n g  from t h e  ox ida t ion .  The occurrence of 

white  oxide may be a consequence r a t h e r  than  a cause of t hese  

e f f e c t s .  

The r e s u l t s  presented here  cannot be explained by 

a simple a n a l y s i s  of t h e  d i f f 'us ion  process  us ing  a s i n g l e  

d i f f 'us ion  c o e f f i c i e n t  a t  each temperature, ,  Thus, t h e  r a t e  

of d i f f u s i o n  of oxygen a p p a r e n t l y  i n c r e a s e s  w i x h  i n c r e a s i n g  

oxygen con ten t  of t h e  metal  (and perhaps t h e  con ten t  of o t h e r  

i m p u r i t i e s )  as shown by: 

a .  E f f e c t  of re-anodizing specimens. 

b .  E f f e c t  of presence o f  d i sso lved  oxygen i n i t i a l l y  

( the rma l ly  formed fi lms).  

A s i m p l e  a n a l y s i s  would p r e d i c t  slower so:Lution of t h e  f i l m  

i n  t h e  second i n s t a n c e .  However, t h e  d i s s o l u c i o n  of oxygen 

i n  t h e  l a t t i c e  causes  an expansion which may permi t  e a s i e r  

movement of oxygen between a d j a c e n t -  i n t e r s t i t i a l  p o s i t i o n s .  

Thus, a l though t h e  number of empty i n t e r s t i t i a l  p o s i t i o n s  

decreases  w i t h  i n c r e a s i n g  o,xygen 'content,  t h e  :increased jump 

frequency may more t h m  bablance t h i s ,  .givkng a n e t  i nc rease  

In di f f 'us ion  c o e f f i c i c 2 t  w i t h  i n c r e a s i n g  oxygen con ten t .  

S t r e s s e s  s e t  up as  a r e s u l t  o f  t h e  oxygen gradfient may a l s o  6d 
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assis t  t h i s  process  (e .g .  by m u l t i p l i c a t i o n  of d i s l o c a t i o n s ) .  

S t r e s s i n g  of t h e  metal by t h e  presence of t h e  oxide f i l m  

may a l s o  in f luence  t h i s  p rocess ,  and thus  t h e  na tu re  of t h e  

oxide and i t s  r a t e  of growth may in f luence  t h e  d i f f u s i o n  by 

mechanisms o t h e r  t han  mere consumption of oxygen s a t u r a t e d  

metal. 

5 .  CONCLUSION 

The d i f f u s i o n  c o e f f i c i e n t s  for oxygen i n  zirconium 

c a l c u l a t e d  from t h e  r a t e  of d i s s o l u t i o n  of anodic oxide f i l m s  

b y  Pemsler  have been  conf i rmed .  

However, t h e  d i f f u s i o n  c o e f f i c i e n t  appears  t o  be a 

f u n c t i o n  of t h e  oxygen content  of t h e  metal  (e.@;. on repeated 

d i s s o l u t i o n  of anodic f i l m s  o r  d i s s o l u t i o n  of t h i n  thermal ly  

formed o x i d e s ) .  For  prolonged thermal ox ida t ion ,  where 

measurable d isso lved  oxygen g r a d i e n t s  a r e  p re sen t  a t  t h e  metal- 

oxide i n t e r f a c e ,  t h e  measured d i f f u s i o n  c o e f f i c i e n t s  a r e  h ighe r ,  and 

a r e  approximately i n  agreement w i t h  those  of Davis and Bgranger. 

During ox ida t ion  i n  a i r ,  there i s  appa ren t ly  some 

i n t e r a c t i o n  between t h e  d i f f u s i n g  s p e c i e s  p re sen t  (probably 

oxygen and n i t r o g e n )  which r e s u l t s  i n  anomalies i n  t h e  micro- 

hardness g r a d i e n t s ,  and hence i n  t h e  d i f h s i o n  c o e f f i c i e n t s  

ca l cu la t ed  from t h e  d e p t h  of  p e n e t r a t i o n  a lone .  
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I m p m  i t i e s 

-'i 1 

Mll  

S I  

Cr 

XI 

cu  

I i f  

0 

C 

Ta 

Ti 

Sn 

Zirconium 
Batch 1 

( l a r g e  g r a i n  size) 

0. 0025 

9.001 

a .  006 
0.001 

0.001 

0.015 

0.001 

0.0025 

0.006 

0.016 

--- 

Zirconium 
Batch 2 

(small  g r a i n  s i z e )  

0.005 

0.005 

0.005 

0.005 

0.005 

0.005 

0.005 

0.001 

0.007 

0.03 

Zircaloy-2 

0.004 

0.001 

0.007 

0.09 

0.001 

0.14 

0.05 

0.002 

0.006 

0.1 

0.008 

0.02 

0.002 

1.45 



TABLE I1 

VARIATION OF THE W4VE LENGTH OF M I N I M U M  REFLECTIVITY WITH 

'TIMl3 4ND TEMPERqTURE OF THERMALLY 3XIDIZED SPECIMENS 

Z i rconium 

B a t c h  1, 
T a b l e  1 

11 I 1  

I t  11 

Oxidation 
T e m p e r a t u r e  

( " c )  

300 

400 

500 

600 

E x p o s u r e  

2 

3 

1 

2 

M i n i m a  of' 
R e f l e c t i v i t y  

(l-4 

310 

IL200 

1300 
L150 
300 

1375 
485 
310 

2100 
925 
540 
1225 
725 
1275 
825 

1650 

Order of 
I n t e r f e r e n c e  

1 

3 



TABLE 111 

600 

600 

600 

700 

800 

550 
600 

603 

6 80 

600 

DIFFUSION COEFFICIENTS FOR OXYGEN IN ZIRCONIUM 

(AFTER THE AN9LYSIS OF DAVIS, ET ILL. ) 

Time 
(se4 

4 

6.0~105 

7.9~10 

3 ~ ~ 1 0 5  

4 7.9~10 
4 8.3~10 

5 

7 ,  8x105 
3.1~10 

3.0~105 
4 8.5~10 
..- 
3 1.O::lO 

Distance of 
Microhardness 
Minimum from 
Interface 

(Pm) 

60 

90 

80 

110 

170 

25 

35 
40 

50 
60 

~~ 

‘ltmosphere 

Air 
760 torr 

II 

I I  

II 

Oxygen 
760 torr 

I1 

II 

I t  

II 

Diffusion Coefficient 

(cm2 s e c - l )  

-1 1 
3.1~10 

-11 1.OxlO 
-1 1 1. kX10 

-1 0 

-10 
1.lxlO 

2.6~10 

-1 2 

-1 2 

-1 2 

-1 1 

-1 1 

1.5~10 

5.0~10 

4.0~10 

2.2x10 

2.7~10 

-1 2 

-1 2 

-1 2 

3.1~10 

1.2xlO 

1.3~10 

4. OxlO-” 
-10 2.3x10 

-1 2 

3,9xlO-’* 

3.9~10-l~ 
-1 1 1.8xlO 
-1 1 1.9~10 

1.3~10 

(1) Calculated from minimum in microhardness plot 

(2) Calculated from initial slope of microhardness plot 
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