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ABSTRACT

The renormalized Brueckner-Hartree- Sock (RBHF) theory 

for many-body nuclear systems has been generalized to permit 

calculations for intrinsic states having permanent defor­

mation. Both Hartree-Fock and Brueckner self-consistencies 

are satisfied, and details of the numerical techniques are 

discussed. The Hamada-Johnston interaction is used in a 

study of deformations, binding, size, and separation ener­

gies for several nuclei. Electromagnetic transition rates, 

moments, and electron scattering form factors are calcu­

lated using nuclear wave functions obtained by angular 

momentum projection. Comparison is made to experiment as 

well as to predictions of ordinary and density-dependent 

Hartree-Fock theory.
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Deformed BruGcUner-Hartree-Fock Calculations'^

by

W.F. Ford and R.C. Braley 
NASA-Lewis Research Center 

Cleveland, Ohio U.S.A.

and

R.L. Becker and M.R. Patterson 
Oak Ridge National Laboratory^

Oak Ridge, TN U.S.A.

INTRODUCTION

The connection between the nuclear many-body problem and 

the prediction of properties of finite nuclei has become a 

subject of great interest in the last few years. Advances in 

computational technology have made it possible to drop the 

’’closed-shell-core’1 assumption which was common to most nuclear 
structure calculations^"^ Thus it has become feasible to attempt 

to bring the so-called ’’inert core” into active participation.

Our understanding of the properties of nuclei has been 

extended significantly by the Hartree-Fock method and variations 

thereof. The HF approach is of course a very natural starting 

point for microscopic studies of nuclear systems because of its 

simplicity and because it gives, by definition, the best inde­

pendent-particle basis for the nucleus. HF calculations, in the

+Invited paper presented to the Symposium on ’’Present Status 
and Novel Developments in the Many-Body Problem” (Rome, 
September 19-23, 1972), to be published in the Proceedings.

#Research sponsored by the U. S. Atomic Energy Commission under contract 
with Union Carbide Corporation.
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past, have been restricted to the use of (1) phenomenological
(2)effective interactions or (2) effective interactions based

(3)directly on nuclear matter calculations. Such interactions
(4have been used in studies of both spherical and deformed nuclei.

Some of the more recent calculations using interactions of the

latter type have baen quite successful in predicting a large
(5)

number of nuclear properties.

Although such studies have been invaluable in contributing

to our knowledge of nuclear structure, one would nevertheless

prefer to begin with a "realistic" nucleon-nucleon interaction

and, with as few approximations as possible, calculate nuclear

properties based on a many-body theory. The initial framework

for such an approach was provided by the pioneering work of
Brueckner and Goldston!^, which was followed by a large number

of papers clarifying their theory and extending it beyond appli-
(7)

cations to nuclear matter. There still remain uncertainties 

in the many-body theory because of a lack of understanding of 

the two-body interaction and some questions regarding the im­

portance of higher-order Brueckner-Goldstone diagrams and
(8)

three-body clusters. However, if one hopes to understand

the structure of nuclei in terms of a true microscopic picture,

a Brueckner-Hartree-Fock (BHF) calculation seems to be the most

reasonable approach presently available.

Application of the BHF methods to finite nuclei was first
(9)

cari'ied out by the Oak Ridge groups. They investigated
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spherical, closed shell nuclei, and it was demonstrated by

Davies et.al. that self consistent BHF calculations could be

made easily and reliably, although they found the nuclei to
(10)

be underbound and too small. The inclusion of higher-order 

diagrams, representing occupation probabilities, in BHF cal­

culations by Becker led to substantial improvement in the 

single-particle energies, and it was found that depletion 

factors for normally occupied single-particle orbits are of
(n)the order of 15 percent. Subsequently Davies and McCarthy

showed that the binding energies also improve when these
(12)

higher-order diagrams are included.

Until recently Brueckner-type calculations were restricted 

to infinite nuclear matter and spherical closed-shell nuclei. 

However, since most nuclei do not fall in this class, it is 

of interest to extend the BHF approach to include nonspherical 

and/or open-shell nuclei. The light deformed nuclei provide 

a good starting point for a study of this nature, since the 

number of particles involved is small enough to keep the problem 

tractable and the simple HF approximation is sufficiently well 

understood to provide guidelines for what is recognized to be 

a rather complicated problem.

The aim of this paper is to indicate how one goes about 

doing such a complicated calculation, to point out some of
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the conceptual difficulties which arise for the case of deformed

nuclei, and then to discuss some results for several light

deformed nuclei. Some preliminary accounts of this work have
(13)

been reported previously.

BRUECKNER THEORY FOR DEFORMED SYSTEMS

The application of Brueckner theory to spherical closed- 

shell nuclei is relatively straight forward, since the uncorre­

lated ground states of such nuclei are simple and have good 

angular momentum. The single-particle Hamiltonians are there­

fore rotationally invariant, and standard techniques may be 

used to obtain a relative Bethe-Goldstone (BG) equation. Details

of such Brueckner and BHF calculations have been presented
(9) (10)by Becker, MacKellar, and Morris, and by Davies and McCarthy.

On the other hand, the treatment of open-shell nuclei is

not at all simple. The formalisms developed thus far for nuclei

with several particles outside a core involve either an energy-
(14) (15

dependent effective Hamiltonian (Block-Horowitz and Feshbach,.

or more recently an energy-independent effective Hamiltonian
(16)arrived at by folded-diagram techniques (Baranger and Johnson)

. (17 )and Kuo, Lee, and Ratcliff). While these techniques are ex­

tremely valuable in providing a formal basis for the shell model, 

they are complicated in practice and it is at present desirable 

to look elsewhere for simpler means of calculating properties 

of open-shell nuclei.
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The theoiy of rotational nuclei has been aided considerably 

by the concept of a deformed intrinsic state, and the present 

paper provides the first detailed discussion of Brueckner theory 

for nuclei for which such a model is reasonably valid. The for­

mulation is restricted to the simplest cas-:, that in which there 

is an isolated rotational band. We employ the approximation 

in which the states of good angular momentum in the band are 

obtained by projection from a single deformed, intrinsic state. 

This method appears promising because the simpler HF calculations 

with effective interactions have demonstrated that such projected 

wave functions yield reasonable dynamic as well as static pro­

perties of light nuclei.

Our approach is based on the non-degenerate Brueckner-
(7)Goldstone-Brandow renormalized linked-cluster expansion (LCE), 

starting from a deformed, determinantal, intrinsic state, ,

which is an eigenstate of an unperturbed Hamiltonian, ^ , con­

taining a deformed self-consistent field, Li « The LCE generates

combination of the various states of the rotational

band, the must be degenerate in intrinsic energy; so we

define
2

(1)
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where the proper choice of moment of inertia,J , involves
(18)a self-consistency requirement. Subtract!Subtraction of the trans­

lational and rotational energy operators is important for con-
on <f>vergence of the LCE. However, the effect of K

is not very great, and for light nuclei is almost cancelled by 

the Coulomb correction. We therefore treat these terms in 

first-order perturbation theory. The rotational energy, however, 

is expected to have an influence on the deformations, and con­

sequently should be treated exactly.

The addition of the correction terms of course makes the 

BHF problem more complicated. In this case the Brueckner reaction 

matrix satisfies the equation

(2)

(3a)where

(3b)and

Here the Pauli operator, Co/ , prevents scattering into occupied

states, 2^2, is a nucleon-nucleon interaction having short range

repulsion, and and p-^ are the single particle total angular

and linear momentum respectively. For each different matrix ele-
/

ment of ) in the final HF representation, the starting

r
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to

energy 60 is a sum of single-particle energies which are cal-
/

culated from G]^2 ^ t^ie course of achieving self-consistency0
/

A Bethe-Goldstone (BG) equation appropriate to i-s obtained

in the usual fashion by defining a correlated two-particle wave
J, 7function . The equation is of the familiar form

(4)
l^

However the solution of this equation is substantially more diffi­

cult than the standard BG equation because the one-body Hamilton-
^—T'Nians appearing in the Greens1 function are no longer rotationally

invariant. Furthermore, the Pauli operator depends on orbitals
/

which are now deformed. Finally, ljI , and

hence varies from nucleus to nucleus.

Since a direct solution of Equation (2) is impractical, we 

shall generate the matrix elements of G^2 () by means of a 

two-step process. We begin by considering a reference equation 

which only involves rotationally invariant objects

(5)

Here



(o) 'and Q are chosen to resemble h]i and Q as much as possible

and yet leave a soluble problem: i.e„, harmonic oscillator fun­

ctions are used and U to) is a shifted oscillator well (9)

Having found 0^2^^ we maY obtain G-^2 ( ) from the relation

a a

— UJL Lli

either by iteration or inversion. (Note that the dimensions 

of the matrices to be inverted are very large, because of the 

deformation of the orbitals.)

We still have a problem, however, in that ) changes
/

from nucleus to nucleus because of the dependence of on A

and , This difficulty can be circumvented by considering
instead the quantity G^^odi ) which satisfies

„L0) f>CO) nC0^
ClizL“» ^Viz~ Viz1------  •

12
(7)

It is clear that the usual G-matrix constructed for

calculations on spherical nuclei, and is valid for any nucleus

in the chosen model space. From it, by means of a transformation
(19 )similar to the Gell-Mann-Goldberger two-potential theorem ,

we may obtain ) as follows:
Co) [ nCo) r)co)
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where the coe^T'. '-.s express the deformed orbitals in terms

of a spherical oscillator representation, that is,
AI A / - 2_j ^ ^ •

k K
Note that the ‘operacor j4 in Eq„ (11) differs from the one ordi' 

narily (p/'/2m) used in HF calculations £~see Eq. (3b)J:

_ h2 'r2T - VTrj '^n -5 ^

The method of Davies, Baranger, Tarbutton, and Kuo may be 

used to obtain the matrix elements of {J in terms of ):

<0.1 Li I k> = | [(a-lh ll> aiUk> (12)

with
'Y' t (

^S^^i2Cer^f (1")
a 1 0 k( k2 2

ksk4 “ cf cf ^ .
<3 b

The RBHF single particle energy 0^ r=r unless ^ is a
particle and $ a hole, in which case 0^ ~ 0^ . is

the occupation probability for orbit X . The structure of ti 

results in a double self-consistency requirement: the orbitals 
X. are eigenstates of (T4 + U), and U itself depends on the ener­

gies of the filled orbitals. It therefore appears that, in order 

to do BHF correctly, we must recalculate the reaction matrix after 

each iteration in a self-consistency procedure. Fortunately this
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can be avoided by the technique introduced by McCarthy and Davies , 

in which each matrix element of G is expressed as a power series:
N
a =/ (14)

If the reaction matrix is calculated for several starting energies, 

the coefficients An may be obtained by a suitable fitting procedure. 

Once the reaction matrix is obtained as a function of starting 

energy, it would be possible after each iteration in the BHF problem 

to use equation (6) to make the Pauli corrections. As mentioned 

earlier, since J is not sharp the matrices involved are vex-y large, 

so that a solution by matrix inversion is impractical. Happily, 

it has been found that the once-iterated form of (6) is quite ac­

curate for light nuclei. Consequently an acceptable procedure would
/

be to make use of G-^60 ) for G-^60 ) on the first iteration, and 

thereafter to precede each iteration by an '’orbital correction" to 

the previous 0^2(0° )• This would continue until self-consistency 

is reached.

Once the RBHF problem has been solved for the intrinsic state, 

then states of good angular momentum are obtained by projection

(15)

using standai'd techniques. It should be noted that we project from 

the uncorrelated state. The problem of projection from the corre-
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lated states has not yet been solved. However, for most of 

the properties which will be discussed here it is felt that 

this deficiency will not be too significant.

The RBHF method is known to provide very reliable predic­

tions of nuclear separation energies. In the case of deformed 

nuclei one is generally resigned to the use of the ’’intrinsic 

separation energies” for comparison with experiment. It is well 

known that the rotational motion of the nucleus will affect

these energies. A method for obtaining more physically meaning-
(20)ful separation energies has been suggested to us by D.J. Rowe.

If one assumes a purely rotational spectrum and that Koopmans’ 

theorem is valid (which has been discussed by R.L. Becker and 
M.R, Patterson for RBHF^®^) then one can show that the corrected 

separation energy is given by

(16)

where 0^ is the intrinsic separation energy and is

the total angular momentum of the (A-l) particle system in its 

ground state.

APPROXIMATIONS

The program for obtaining the deformed G-matrix outlined 

in the previous section is quite ambitious, and will normally 

be carried out subject to certain simplifying approximations. 

The crudest of these is to ignore AV completely in obtaining
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Gi2> i.e., set • Some measure of the effect of £V
can be obtained by including it in the definition of L[ , so that

13

occ ^
<a.lUlt>> —*• <a.lUlt>- Zca-A-liX-UlbA)

^ J J 0 (17)

A more consistent approximation would be to treat A V per­

turbative ly, using
(o) -i^r i

Cl O(co) = 0cln ^c°) ^ /)^0)
1 4- U(2 Cto) Q

6t) '12. J
(18)

Calculating the matrix elements of U by means of Eq. (13) 

may be greatly simplified if certain approximations are made con­

cerning the energy dependence of the G-matrix. It is the excep-
/

Cion, <~J . 1"
closure with respect

the G-matrix which 
to the 5 -sum. For

prevents one 

the present

from using 

calculations
0is replaced by an energy independent of b , thus en­
abling us to carry out the sums on and <5 . This approximati on

has been investigated by Davies and Baranger and found to be quite
(10)

reliable for light nuclei.

It is well-known that the particle-particle matrix elements 
of Ll are off the energy shell; however, calculations are simpli­

fied if the ”on-shelln prescription is used. It is felt this(10)
will not affect the hole states significantly, and it is these

in which we are most interested.
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The matrix elements of G-^ ) which are required in

order to begin the self-consistency problem are obtained from

single-oscillator-configuration (SOC) calculations of the type
/u/. 2''-

discussed •by"Drr—Becker in these proceedings, The SOC matrix 

elements are obtained by first solving the reference BG equation 

with a shifted osc:llator spectrum and the Eden Emery approxi­

mation for the Pauli operator, and then making Pauli corrections 

to the reference G-matrix. The "off-shell'1 behavior of the

particle-particle matrix elements was accounted for approximately
civ-f-!. (-<• ) AT { ■ ??

as in-method (1) of Dr-^—Becker' s -presentation, and the shift para­

meter, C. was chosen so as to make the low-lying "particle” states 

nearly self-consistent.

When the deformed nuclei of interest are of the semi-closed- 
19 28 32shell variety ( C, Si, S) one can carry out a SOC calculation 

and secure a set of matrix elements of G-j^°)(^> ) with which to 

begin the RBHF problem. In this case the shift parameter and 

"spherical-Pauli-corrections" probably give a reasonable approxi­

mation to the final values that would result from a self-consistent 

calculation.
ATUnfortunately, the situation is not quite,simple for an open

20 24 .shell nucleus (e.g., Ne, Mg). Here the iterative procedure must 

begin with matrix elements of G12 (60 ) for the nearest closed-

shell or semi-closed-shell nucleus. In this case it is more im­

portant to make the Pauli corrections. If they are ignored one 

must rely on trends of shift parameters in other nuclei to

r
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determine shift pai'ameter for the nucleus of interest.

RESULTS

Reaction matrix elements have been calculated as functions

of the starting energy for the Hamada-Johnston (HJ) and Reid

soft-core (RSC) interactions assuming spherical configurations
for and and used to calculate Li for the first

iteration in the solution of Eq. (11). Intrinsic and projected 
1216 20properties of u, 0, and Ne have been calculated using the 

two interactions referred to above. The RBHF equations are 

solved subject to the conditions that the intrinsic states possess 

axial symmetry and that the single-particle orbitals be four-fold 

degenerate. Whenever possible the results are compared with the 

calculations of Zofka and Ripka (ZR) obtained with a density-
(4)

dependent interaction, and those of Lee and Cusson (LC) obtained 

with a velocity-dependent interaction.

jximations to the intrinsic Hamiltonians, with

from experiment. The lowest-energy self-

consistent solution possesses an oblate shape. Intrinsic proper­

ties of C are presented in Table!. Expectation values are with

respect to the uncorrelated intrinsic wave function. For both 

interactions the corrected Hamiltonians yield lower absolute 

values of binding energies and separation energies, and larger

radii and deformations.(defined as The binding

energies are generally in good agreement with experiment and the
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radii are slightly low compared to experiment. Both the ZR 

and LC predictions yield lower binding energies, and although 

LC obtain good agreement for the radius, ZR overestimates the 

radius by about 127o. Both the ZR and LC results yield larger 

radii and deformations than RBHF. The occupation probabilities 

are all of the order of 807,. The separation energies predicted 

by RBHF were obtained using Eq. (16), and while all of the results 

are in good agreement with experiment, the results obtained with
the HJ interaction and H - ^7zJ are closest to the 

measured values. Results with density-dependent and velocity- 

dependent HF underestimate and overestimate, respectively, the 

energy of the most tightly bound positive parity state. Know­

ledge of the gap size enables us to determine the energy of the
12first unoccupied orbit in C to be roughly 5MeV; this is in

good agreement with the measured separation energy of the last 
13neutron in C. This is to be expected, as pointed out earlier

-L- At-: • r■by—Dr-^ -Becker, since an analogue of Koopmans' theorem for separa-
(21)

tion energies has been established for RBHF.

There are, of course, uncertainties regarding the choice 

of shift parameter. The effect of the shift parameter on various 

intrinsic properties is demonstrated in Figure 2 where the cal­

culations were made using the RSC interaction. It is noted that 

the energies increase linearly with choice of C-value (in this
OXc-'

range), however the size and deformation ,is not affected appre­

ciably.
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Solutions other than the ground state were also obtained 

self-consistently. These are shown in Figure 1, and were 

obtained with the HJ interaction and with the intrinsic Hamil­
n.

tonian, J1 • The lowest prolate configuration is found to lie 

at about 7 MeV which is very near the measured o’ excited state
at 7.65 MeV. A spherical 0+ state is found at about 10 MeV, 

and another prolate solution is predicted at about 19 MeV.

Physical states of the nucleus are obtained by projecting 

states of good angular momentum from the uncorrelated intrinsic 

wave function. The projected energies are not presented since 

such a calculation would require the projection from a correlated 

state, or the construction of an effective interaction. Both 

of these methods are presently under investigation. The proper­

ties which may be obtained from consideration of single-particle 

operators are shown in Table 2. The results do not differ signi­

ficantly for the two interactions used and it is noted that moments

E2, and E4 rates are larger when The pro­

jected HF results of LC are all bigger than the largest of the

RBHF results. However this is expected since their radius and

deformations are larger. Another consequence of these differences

is that the electron scattering form factors of Lee and Cusson

are slightly better than the projected RBHF calculation. The 
(23) (24)elastic and inelastic electron scattering are shown in Fig­

ures 3 and 4. The Born approximation has been used to obtain 

the curves which are compared with experiment. None of the cal-
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dilations give particularly good results for the elastic scat­

tering, but the inelastic form factors are fit rather well. The 

RBHF results with the HJ interaction and the largest deformation 

yield the best fit obtained with our wave functions; they are, 

however, too low by about 207o. In figure 5 the single particle 

densities are compared for the HJ and RSC interactions. The wave 

functions with the largest deformation and radius was used for 

each case.

The agreement between theory and experiment for separation 

energies, size, deformation and electi-on scattering for C sub- 
stantiates the rotational character of 0^> 2^, as has been
suggested recently by several authors.

f'lr

(24,26,27)

There has been a large number of BHF and RBHF studies which
have included 0, so we feel that it is not necessary to include

a detailed discussion of it here. However, for completeness a

comparison of BHF and RBHF calculations is included in Table 3

for two oscillator lengths in order to demonstrate how various

properties are affected. The RBHF results are better, as expected,

and the radius increases with oscillator length. The RBHF single

particle energies are in good agreement with experiment, while

the ZR and LC results differ considerably from experiment for the

most tightly bound state. Efforts to obtain a deformed excited 
+ 160 state in 0 have thus far been unsuccessful. This state has 

been found, in standard HF studies, to be a 4p-4h state lying 

some 20-25 MeV above the ground state. The 4p-4h states which
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we have investigated so far have been very unstable.
Of the even & - even N nuclei in the s~b shell, ^®Ne has 

proven to be most amenable to description by means of standard 

HF theory. The various properties of this nucleus that are pri­

marily long range xn character may be obtained with good accuracy 

from a prolate intii.- state with a rather large hexadecapole 

moment. Those properties primarily short range in character 

are usually not reproduced very well.

Our results for the prolate shape are compared with experi-
(25) (5) ,

ment and with the results of Lee and Cusson (SP energies are

also compared with ZR) in Table 4. The binding energies agree 

for RBHF and velocity-dependent HF (VDHF), but are below the ex­

perimental value of 8.2 MeV. Of course the predicted results 

for binding energy will change considerably upon projection. 

The radius and deformation are lower for RBHF in spite of the 

fact that an oscillator length of 1.88 fm. has been used for the 

RBHF calculations while LC use 1.67 fm. The single particle 

energies differ greatly for RBHF and VDHF, but the density de-
(4 )pendent calculation of Zofka and Ripka yields results close

to ours except for the most tightly bound state. Unfortunately
20there are no measured values for separation energies in Ne.

The projected properties underestimate the measured moments 

and E2 rates, and are also smaller than the LC results. Some 
improvement in the ^®Ne results is expected when the Pauli and 

spectral corrections are made.
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DISCUSSION

The aim of many-body theory is to provide a truly micro­

scopic description of finite nuclei, and further to allow 

prediction of nuclear properties with as few approximations as

possible. Of course a study of the type made here for deformed
02.)nuclei, and elsewhere for spherical nuclei , has elements 

of phenomenology introduced through the two-body interaction 

and the shift parameter. However, these are necessary steps 

required to gain an understanding of the connection between 

"realistic’' interactions and nuclear phenomena.

Overall agreement with experiment, after accounting for 

the various approximations, is fairly good. As in the case of 

spherical nuclei, however, saturation is not achieved and the 

nuclei are underbound. This seems to be a defect of BHF theory 

as currently formulated or employed. One possibility is that 

three-body clusters are necessary to achieve saturation--- indeed,

such consideration led Negele to adjust his potential phenomeno-
(3) (7)logically to fit nuclear matter. It has been suggested by Bethe

that such a technique be employed in BHF calculations. But until

self-consistent Pauli corrections are included in BHF calculations,

the question cannot be firmly answered. It is not unreasonable,

for instance, to believe that the density-dependence employed by
Negele^^, Meldner^28^, and Zofka-Ripka^4^ arises from the action

of the operator Q in the BG equation, and that this is poorly

approximated by current techniques.

r"
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One of the limitations of the present calculation is that

uncorrelated states are used to calculate nuclear properties.

Improvement in the agreement with experiment can be expected
(29)

when this limitation is removed . A precise theory for de­

formed nuclei will have to be developed for this purpose, how­

ever, inasmuch as our present methods, while based on successful 

HF studies, cannot be rigorously defended for BHF calculations.

In spite of this it seems apparent that.the deformations pro-
I
duced by HJ and RSC forces are inadequate to account for experi- 

i mental observations. The successful results obtained by LC 

w>ith the Saunier-Pearson force (which is adjusted to fit two- 

body data and nuclear matter) therefore tend to reinforce Bethe’s 

suggestion that BHF calculations for finite nuclei should be 

made using an interaction which has been shown to be successful 

in BHF calculations for nuclear matter.

• rr-
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Table 1.

Table 2.

Table 3.

Table A.

TABLE CAPTIONS

•j OIntrinsic properties of In the RBHF calculation
b=1.57-p>i, and 'k /2I=0.74 MeV; ZR used b^l. 67-|rya, 

and LC used 1<,54 ^ .

Projected properties of ^-^C. In the RBHF calculation 
b=1.57 'Pm, and "k /2I=0.30 MeV; in the LC calculation

b=1.54 j-m .
I CIntrinsic properties of -D0. The Hamada-Johnston force 

was used in all BHF and RBHF calculations.
Intrinsic and projected properties of ^Ne. The RBHF 

calculation was made using the Hamada-Johnston force 
~ jI ~ & ^C!z4 - 0,74 MeV, and b=1.88 -Pm

and LC used b=1.6 7 -Pryj .
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FIGURE CAPTIONS

Figure 1. Energies of the self-consistent RBHF solutions 
using the HJ interaction.

1 9Figure 2. The behavior of various intrinsic properties of 
as a function of the shift parameter0 The RBHF 
calculation was performed with b=1.57 -Pm, and
•ftVzi = <?.74 MeV; is the binding energy of
the lowest orbit, R, the uncorrected single-particle 
r.m.s. radius, and the L-pole
deformation.

Figure 3. Experimental and calculated elastic form factors 
for the scattering of electrons from 12c.
(--------- , RBHF with HJ interaction), (---- ,
RBHF with RSC), and (---- ' ----- , Lee-Cusson) .

Figure 4. Experimental and calculated inelastic form factors
for electron scattering from ^-2c. (------- RBHF
with HJ interaction and — ~k2), (--- ,RBHF
with RSC interaction and — 'iCJ"Z/zPl) > (—•—*  ,
RBHF with HJ interaction and H), and (---- ^—-- ,
Lee-Cusson).

Figure 5. Radial variation of the nuclear density of 12c. The 
RBHF calculations are performed with b=l.57 i-m, and

r



TABLE 1

INTRINSIC PROPERTIES

HAMADA-JOHNSTON REID SOFT CORE ZOEKA- LEE- EXPT

H H - h2J2/2I H H - h2J2/2I RIPKA CUSSON

-E/A,
.MeV

-7.28 -7.26 -7.53 -7.48 -6.4 -6.3 -7.7

A,
MeV

10.59 11.78 11.24 12.52 9. S 13.9

ut,
EM

2.39 2.41 2.36 2.38 2.68 2.47 2.4060.03

(r4)1/4,

EM
2.52 2.54 2.48 2.49

h -5.43 -5.76 -5.38 -5.72 -6.0 -5.88

64 0.507 0.625 0.493 0.617

<<

eA’

(l/2+, 0. 782) 
-37.45

(l/2+, 0.782) 
-36.96

(l/2+, 0.830) 
-40.26

(l/2+, 0.829) 
-39.63

-30.8 -68.4 -38.3+1

MeV (3/2', 0.796) 
-17.84

(3/2', 0.795) 
-17.39)

(3/2', 0.819) 
-19.43

(3/2", 0.818) 
-18.91

-17.6 -20.8 -18.8i0.5

(1/2', 0.818) 
-16.44

(1/2', 0.819) 
-16.83

(1/2', 0.837) 
-17.90

(1/2", 0.838) 
-18.27

-17.6 -20.1 -18.8ifl.5

c,
MeV

45.257 45.257 44.0 44.0

CS-64506

TABLE 2

PROJECTED PROPERTIES

HAMADA-JOHNSTON REID SOFT CORE LEF-CLISSON EXPT

H H - fi2J2/2I H H - fi2J2/2I

R, EM 2.39 2.40 2.35 2.37 2.43 2.46iO. 025

2+ 4.68 4.94 4.52 4.76 5.32

4+ 5.62 5.85 5.43 5.65 6.38

2+ 0.89 0.98 0.71 0.90 1.02
EM4 4+ 2.16 2.68 1.98 2.48 2.75

B(E2),
• EM4

0+ -* 2+ 27.3 30.7 25.32 28.52 35.4 41.8+4

2+-4+ 13.9 16.14 12.77 14.87 18.2

B(E4), 0+- 4+ 226.5 348.6 188.4 296.5 393.0
e4 • EM8

2+- 4+ 57.6 88.5 48.1 75.6 116.0
CS-64507



TABLE 3

160

b, FM 1.57 1.77 1.67 1.67

CALCULA. F ON BHF RBHF BHF RBHF ZR LC EXPT

-E/A, MeV 6.2 7.3 6.2 7.0 7.5 7.9 7.98

A, MeV 18.0 16.9 17.2 15.8 17.0 20.6
(r2)1'2 2.29 2.40 2.38 2.45 2.72 2.52 2.6710.03

eA’
MeV

(l/2+, 1.0) 
-56.7

(l/2+, 0. 79) 
-43.9

(l/2+, 1.0) 
-54.9

(l/2+, 0.83) 
-43.6

(+)
-37

(l/2+)
-64.1

4315

(3/2', 1.0) 
-30.0

(3/2", 0.80) 
-21.3

(3/2', 1.0) 
-28.3

(3/2', 0.82) 
-20.9

(-)
-21

(3/2')
-26.5

21.8

(1/2', 1.0) 
-30.0

(1/2', 0.80) 
-21.3

(1/2', 1.0) 
-28.3

(1/2", 0.82) 
-20.9

(-)
-21

(1/2')
-21.1

21.8

(1/2', 1.0 
-23.5

Oooo.CO r-J (1/2", 1.0) 
-22.6

(1/2', 0.82) 
-16.8

(-)
-21

(1/2')
-21.1

15.7

C, MeV 50.46 48.64 42.62 40.64

TABLE 4

-E/A,
MeV

A,
MeV

R2.
FM

R4,
FM

62 64

RBHF 7.4 7.5 2.61 2.90 10.6 3.4
LC 7.4 9.9 2.69 .... 11.7 ...

RBHF LC ZR
(l/2+, 0) (l/2+) (+)
-48.02 -66.8 -38
(1/2', 0) (1/2') (-)
-28.65 -38.1 -27

eA' (3/2', 0) (3/2') (-)
MeV -22.93 -27.7 -21

(1/2'. 0) (1/2') (-)
-20.41 -23.9 -21
(l/2+, 0) (l/2+) (+)
-15.23 -16.0 -14

R,
FM FM*

(^2)4+’

FM2
B(E2;0+-2+), 

e2 • FM4
B(E2;2+-4+), 

e2 ■ FM4
B(E2;4+-6+), 

e2 • FM4
RBHF 2.72 -11.3 -14.5 152.7 77.3 66.9
LC 2.80 -13.1 -23.8 208.0 82.0 92.1
EXPT 2.8010.05 -27111 285140 128+13 95+11
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