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ABSTRACT

The renormalized Brueckner-Hartree- Sock (RBHF) theory
for many-body nuclear systems has been generalized to permit
calculations for intrinsic states having permanent defor-
mation. Both Hartree-Fock and Brueckner self-consistencies
are satisfied, and details of the numerical techniques are
discussed. The Hamada-Johnston interaction is used in a
study of deformations, binding, size, and separation ener-
gies for several nuclei. Electromagnetic transition rates,
moments, and electron scattering form factors are calcu-
lated using nuclear wave functions obtained by angular
momentum projection. Comparison is made to experiment as
well as to predictions of ordinary and density-dependent

Hartree-Fock theory.
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INTRODUCTION

The connection between the nuclear many-body problem and
the prediction of properties of finite nuclei has become a
subject of great interest in the last few years. Advances in
computational technology have made it possible to drop the
""closed-shell-core'l assumption which was common to most nuclear
structure calculations”™"” Thus it has become feasible to attempt
to bring the so-called '"inert core” into active participation.

Our understanding of the properties of nuclei has been
extended significantly by the Hartree-Fock method and variations
thereof. The HF approach is of course a very natural starting
point for microscopic studies of nuclear systems because of its
simplicity and because it gives, by definition, the best inde-

pendent-particle basis for the nucleus. HF calculations, in the
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past, have been restricted to the use of (1) phenomenological
(2]

effective interactions or (2) effective interactions based

(3]

directly on nuclear matter calculations. Such interactions
have been used in studies of both spherical and deformed nuclef.
Some of the more recent calculations using interactions of the
latter type have baen quite successful in predicting a large

(5)
number of nuclear properties.

Although such studies have been invaluable in contributing
to our knowledge of nuclear structure, one would nevertheless
prefer to begin with a "realistic" nucleon-nucleon interaction
and, with as few approximations as possible, calculate nuclear
properties based on a many-body theory. The initial framework
for such an approach was provided by the pioneering work of

Brueckner and Goldston!”, which was followed by a large number

of papers clarifying their theory and extending it beyond appli-
cations to nuclear matter}7) There still remain uncertainties
in the many-body theory because of a lack of understanding of
the two-body interaction and some questions regarding the im-
portance of higher-order Brueckner-Goldstone diagrams and
three-body clustersﬁs) However, 1if one hopes to understand
the structure of nuclei in terms of a true microscopic picture,
a Brueckner-Hartree-Fock (BHF) calculation seems to be the most
reasonable approach presently available.

Application of the BHF methods to finite nuclei was first

(9)
cari'ied out by the 0Oak Ridge groups. They investigated



spherical, closed shell nuclei, and it was demonstrated by
Davies et.al. that self consistent BHF calculations could be
made easily and reliably, although they found the nuclei to
be underbound and too small}IO) The inclusion of higher-order
diagrams, representing occupation probabilities, in BHF cal-
culations by Becker led to substantial improvement in the
single-particle energies, and it was found that depletion
factors for normally occupied single-particle orbits are of
the order of 15 percent.(n) Subsequently Davies and McCarthy
showed that the binding energies also improve when these

(12
higher-order diagrams are included.

Until recently Brueckner-type calculations were restricted
to infinite nuclear matter and spherical closed-shell nuclei.
However, since most nuclei do not fall in this class, it 1is
of interest to extend the BHF approach to include nonspherical
and/or open-shell nuclei. The light deformed nuclei provide
a good starting point for a study of this nature, since the
number of particles involved is small enough to keep the problem
tractable and the simple HF approximation is sufficiently well
understood to provide guidelines for what is recognized to be
a rather complicated problem.

The aim of this paper is to indicate how one goes about

doing such a complicated calculation, to point out some of



the conceptual difficulties which arise for the case of deformed
nuclei, and then to discuss some results for several light
deformed nuclei. Some preliminary accounts of this work have
(13)
been reported previously.
BRUECKNER THEORY FOR DEFORMED SYSTEMS
The application of Brueckner theory to spherical closed-
shell nuclei is relatively straight forward, since the uncorre-
lated ground states of such nuclei are simple and have good
angular momentum. The single-particle Hamiltonians are there-
fore rotationally invariant, and standard techniques may be
used to obtain a relative Bethe-Goldstone (BG) equation. Details
of such Brueckner and BHF calculations have been presented
. (9) , (10)
by Becker, MacKellar, and Morris, and by Davies and McCarthy.
On the other hand, the treatment of open-shell nuclei 1is
not at all simple. The formalisms developed thus far for nuclei
with several particles outside a core involve either an energy-
(14) (15
dependent effective Hamiltonian (Block-Horowitz and Feshbach, .
or more recently an energy-independent effective Hamiltonian

(16)

arrived at by folded-diagram techniques (Baranger and Johnson)

..(17)

and Kuo, Lee, and Ratcliff) While these techniques are ex-
tremely valuable in providing a formal basis for the shell model,
they are complicated in practice and it is at present desirable

to look elsewhere for simpler means of calculating properties

of open-shell nuclei.



The theoiy of rotational nuclei has been aided considerably
by the concept of a deformed intrinsic state, and the present
paper provides the first detailed discussion of Brueckner theory
for nuclei for which such a model 1is reasonably wvalid. The for-
mulation is restricted to the simplest cas-:, that in which there
is an isolated rotational band. We employ the approximation
in which the states of good angular momentum in the band are
obtained by projection from a single deformed, intrinsic state.
This method appears promising because the simpler HF calculations
with effective interactions have demonstrated that such projected
wave functions yield reasonable dynamic as well as static pro-
perties of light nuclei.

Our approach is based on the non-degenerate Brueckner-
Goldstone-Brandow renormalized(7)linked—cluster expansion (LCE),
starting from a deformed, determinantal, intrinsic state, ,
which is an eigenstate of an unperturbed Hamiltonian, *, con-

taining a deformed self-consistent field, Ll ¢« The LCE generates

combination of the wvarious states of the rotational
band, the must be degenerate in intrinsic energy; so we

define

(1)
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where the proper choice of moment of inertia,J , involves
(18)
a self-consistency requirement. Subtraction of the trans-

lational and rotational energy operators is important for con-

on <£>

vergence of the LCE. However, the effect of X

is not very great, and for light nuclei is almost cancelled by
the Coulomb correction. We therefore treat these terms in
first-order perturbation theory. The rotational energy, however,
is expected to have an influence on the deformations, and con-
sequently should be treated exactly.

The addition of the correction terms of course makes the
BHF problem more complicated. In this case the Brueckner reaction

matrix satisfies the equation

(2]
where (3a)
and (3b)
Here the Pauli operator, Co/ , prevents scattering into occupied

states, 272 is a nucleon-nucleon interaction having short range
repulsion, and and p-" are the single particle total angular
and linear momentum respectively. For each different matrix ele-

/
ment of ] in the final HF representation, the starting



energy 60 is a sum of single-particle energies which are cal-
culated from Q<2 ~ t"ie course of achieving self-consistencyl

A Bethe-Goldstone (BG) equation appropriate to g i-s obtained
in the usual fashion by defining a correlated two-particle wave

]

function ! . The equation is of the familiar form

l/\

However the solution of this equation is substantially more diffi-

cult than the standard BG equation because the one-body Hamilton-

A TY'

ians appearing in the Greens! function are no longer rotationally
invariant. Furthermore, the Pauli operator depends on orbitals
which are now deformed. Finally, 1j ’ , and
hence varies from nucleus to nucleus.

Since a direct solution of Equation (2) is impractical, we
shall generate the matrix elements of G2 () Dby means of a

two-step process. We begin by considering a reference equation

which only involves rotationally invariant objects

(3)

Here



and Q(O) are chosen to resemble hji and Q as much as possible
and yet leave a soluble problem: i.e,, harmonic oscillator fun-

to)

U 1s a shifted oscillator well(g)

ctions are used and

Having found 07"27"" we ma¥Y obtain G-"2 | ] from the relation

‘l a

p o1 Y

either by iteration or inversion. (Note that the dimensions
of the matrices to be inverted are very large, because of the

deformation of the orbitals.)

We still have a problem, however, in that ] changes
/
from nucleus to nucleus because of the dependence of on A
and , This difficulty can be circumvented by considering

instead the quantity G”"odi ) which satisfies

»L0) £>C0) nco”
CrrzL“» ~Viz~ Vizl-—-———- \
(7)
12
It is clear that the usual G-matrix constructed for

calculations on spherical nuclei, and is wvalid for any nucleus

in the chosen model space. From it, by means of a transformation

9
similar to the Gell-Mann-Goldberger two-potential theoreé ),

we may obtain )] as follows:

Co) [ 1200) r)co)
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10
where the coe’T'. -5 express the deformed orbitals in terms

of a spherical oscillator representation, that is,

A

NN )

A/ - 2.3
k K

Note that the ‘'operacor 3t in Eq, (11) differs from the one ordi'

narily (p/'/2m) used in HF calculations £~see Eq. (3b)J:

T - VTIrj ' n = e

The method of Davies, Baranger, Tarbutton, and Kuo may be

used to obtain the matrix elements of {J in terms of )

QlLilk> = | [(a-lh 11> a1Uk>

(12]
with
Y’ t (
ASAA2Cer M a"
A 10 klk2 2
ksk4 “cf cf N .
<3 b

The RBHF single particle energy O™ 1= unless © 1is a
particle and $ a hole, 1in which case o~ ~ 0on . is
the occupation probability for orbit X . The structure of ti

results in a double self-consistency requirement: the orbitals

X. are eigenstates of (T! + U), and U itself depends on the ener-
gies of the filled orbitals. It therefore appears that, in order
to do BHF correctly, we must recalculate the reaction matrix after

each iteration in a self-consistency procedure. Fortunately this



11
can be avoided by the technique introduced by McCarthy and Davies ,

in which each matrix element of G is expressed as a power series:

= (14)
If the reaction matrix is calculated for several starting energies,
the coefficients An may be obtained by a suitable fitting procedure.
Once the reaction matrix is obtained as a function of starting
energy, it would be possible after each iteration in the BHF problem
to use equation (6) to make the Pauli corrections. As mentioned
earlier, since J is not sharp the matrices involved are vex-y large,
so that a solution by matrix inversion is impractical. Happily,
it has been found that the once-iterated form of (6) is qgquite ac-
curate for light nuclei. Consequently an acceptable procedure would

/

be to make use of G—"60 ) for G—"60 ) on the first iteration, and
thereafter to precede each iteration by an '"orbital correction" to
the previous 072 (0° )¢ This would continue until self-consistency
is reached.

Once the RBHF problem has been solved for the intrinsic state,

then states of good angular momentum are obtained by projection

(15)

using standai'd techniques. It should be noted that we project from

the uncorrelated state. The problem of projection from the corre-
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lated states has not yet been solved. However, for most of
the properties which will be discussed here it is felt that
this deficiency will not be too significant.

The RBHF method is known to provide very reliable predic-
tions of nuclear separation energies. In the case of deformed
nuclei one is generally resigned to the use of the "intrinsic
separation energies” for comparison with experiment. It is well
known that the rotational motion of the nucleus will affect
these energies. A method for obtaining more physically meaning-
ful separation energies has been suggested to us by D.J. Rowe}?O)
If one assumes a purely rotational spectrum and that Koopmans
theorem is wvalid (which has been discussed by R.L. Becker and

M.R, Patterson for RBHEF"®”") then one can show that the corrected

separation energy 1is given by

(16

where o~ is the intrinsic separation energy and is
the total angular momentum of the (A-1) particle system in its
ground state.
APPROXIMATIONS

The program for obtaining the deformed G-matrix outlined
in the previous section is quite ambitious, and will normally
be carried out subject to certain simplifying approximations.

The crudest of these is to ignore AV completely in obtaining
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/ e (C)
Gi2» i.e., set ' Some measure of the effect of £V
can be obtained by including it in the definition of L[ , so that
occ ~
<a.lUlt>> —* <a.lUlt>- Zca-A-11X-UlbA)
~ JIJ 0 (17)

A more consistent approximation would be to treat A V per-
turbatively, using

o o =)
CL O(co) = Ocln’c’) ™ 1 4 1J(2 Cto)
) (18)

Calculating the matrix elements of U by means of Eq. (13)
may be greatly simplified if certain approximations are made con-

cerning the energy dependence of the G-matrix. It is the excep-

/
Cion, <~J ., 1™ the G-matrix which prevents one from using

closure with respect to the 5 -sum. For tpe present calculations
> is replaced by an energy independent of b , thus en-

abling us to carry out the sums on and < . This approximatiOn

has been investigated by Davies and Baranger and found to be quite

(10|
reliable for light nuclei.

It is well-known that the particle-particle matrix elements

of LI are off the energy shell; however, calculations are simpli-

fied if the ”"on-shelln prescription is used. It is felt this
(10|
will not affect the hole states significantly, and it 1is these

in which we are most interested.
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. (0) . . .

The matrix elements of G- ] which are required 1in
order to begin the self-consistency problem are obtained from
single-oscillator-configuration (SOC) calculations of the type

/u/‘ ZH_
discussed °*by"Drr—Becker in these proceedings, The SOC matrix
elements are obtained by first solving the reference BG equation
with a shifted osc:llator spectrum and the Eden Emery approxi-
mation for the Pauli operator, and then making Pauli corrections
to the reference G-matrix. The "off-shell'l behavior of the
particle-particle matrix elements was accounted for approximately
civ-f- (<] AT 1?2

as in-method (1) of Dr-"—Becker's -presentation, and the shift para-
meter, C. was chosen so as to make the low-lying "particle” states
nearly self-consistent.

When the deformed nuclei of interest are of the semi-closed-

shell variety (19C,28Si,325) one can carry out a SOC calculation

and secure a set of matrix elements of G-j*°) (*> ) with which to

begin the RBHF problem. In this case the shift parameter and
"spherical-Pauli-corrections" probably give a reasonable approxi-

mation to the final wvalues that would result from a self-consistent

calculation.
AT
Unfortunately, the situation is not quite,simple for an open
20 24

shell nucleus (e.g., Ne, Mg) . Here the iterative procedure must
begin with matrix elements of G12 (60 ) for the nearest closed-
shell or semi-closed-shell nucleus. In this case it is more im-
portant to make the Pauli corrections. If they are ignored one

must rely on trends of shift parameters in other nuclei to
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determine shift pai'ameter for the nucleus of interest.
RESULTS
Reaction matrix elements have been calculated as functions
of the starting energy for the Hamada-Johnston (HJ) and Reid

soft-core (RSC) interactions assuming spherical configurations

for and and used to calculate Li for the first

iteration in the solution of Eqg. (11). Intrinsic and projected
properties of j'%?'60, and 20Ne have been calculated using the
two interactions referred to above. The RBHF equations are
solved subject to the conditions that the intrinsic states possess
axial symmetry and that the single-particle orbitals be four-fold
degenerate. Whenever possible the results are compared with the
calculations of Zofka and Ripka (ZR) obtained with a density-

(4)

dependent interaction, and those of Lee and Cusson (LC) obtained

with a velocity-dependent interaction.

jximations to the intrinsic Hamiltonians, with
from experiment. The lowest-energy self-

consistent solution possesses an oblate shape. Intrinsic proper-

ties of C are presented in Table!. Expectation values are with
respect to the uncorrelated intrinsic wave function. For both
interactions the corrected Hamiltonians yield lower absolute
values of binding energies and separation energies, and larger
radii and deformations. (defined as The binding

energies are generally in good agreement with experiment and the



16
radii are slightly low compared to experiment. Both the ZR
and LC predictions yield lower binding energies, and although
LC obtain good agreement for the radius, ZR overestimates the
radius by about 1270. Both the ZR and LC results yield larger
radii and deformations than RBHF. The occupation probabilities
are all of the order of 807,. The separation energies predicted
by RBHF were obtained using Eg. (16), and while all of the results
are in good agreement with experiment, the results obtained with
the HJ interaction and H- &7 =J are closest to the
measured values. Results with density-dependent and velocity-
dependent HF underestimate and overestimate, respectively, the
energy of the most tightly bound positive parity state. Know-
ledge of the gap size enables us to determine the energy of the
12

first unoccupied orbit in C to be roughly 5MeV; this is in

good agreement with the measured separation energy of the last

neutron in 13C. This is to be expected, as pointed out earlier
-I- At- 0 T
Bby—Dr-"-Becker, since an analogue of Koopmans' theorem for separa-

(21]
tion energies has been established for RBHF.

There are, of course, uncertainties regarding the choice
of shift parameter. The effect of the shift parameter on various
intrinsic properties is demonstrated in Figure 2 where the cal-
culations were made using the RSC interaction. It is noted that
the energies increase linearly with choice of C-value (in this
0Xc-'

range), however the size and deformation ,is not affected appre-

ciably.
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Solutions other than the ground state were also obtained
self-consistently. These are shown in Figure 1, and were
obtained with the HJ interaction and with the intrinsic Hamil-
2.
tonian, JI + The lowest prolate configuration is found to lie
at about 1 MeV which is very near the measured O excited state
at 7.65 MeV. A spherical 0+ state is found at about 10 MeV,
and another prolate solution is predicted at about 19 MeV.
Physical states of the nucleus are obtained by projecting
states of good angular momentum from the uncorrelated intrinsic
wave function. The projected energies are not presented since
such a calculation would require the projection from a correlated
state, or the construction of an effective interaction. Both
of these methods are presently under investigation. The proper-
ties which may be obtained from consideration of single-particle
operators are shown in Table 2. The results do not differ signi-
ficantly for the two interactions used and it 1is noted that moments
E2, and E4 rates are larger when The pro-
jected HF results of LC are all bigger than the largest of the
RBHF results. However this is expected since their radius and
deformations are larger. Another consequence of these differences
is that the electron scattering form factors of Lee and Cusson
are slightly better than the projected RBHF calculation. The
elasti523)and inelasti524) electron scattering are shown in Fig-

ures 3 and 4. The Born approximation has been used to obtain

the curves which are compared with experiment. None of the cal-
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dilations give particularly good results for the elastic scat-
tering, but the inelastic form factors are fit rather well. The
RBHF results with the HJ interaction and the largest deformation
yield the best fit obtained with our wave functions; they are,
however, too low by about 207o. In figure 5 the single particle
densities are compared for the HJ and RSC interactions. The wave
functions with the largest deformation and radius was used for
each case.

The agreement between theory and experiment for separation

energies, size, deformation and electi-on scattering for C sub-
stantiates the rotational character of 0> 27, as has been
(24,26,27)

suggested recently by several authors.
f'lr

There has been a large number of BHF and RBHF studies which
have included 0, so we feel that it is not necessary to include
a detailed discussion of it here. However, for completeness a
comparison of BHF and RBHF calculations is included in Table 3
for two oscillator lengths in order to demonstrate how wvarious
properties are affected. The RBHF results are better, as expected,
and the radius increases with oscillator length. The RBHF single
particle energies are in good agreement with experiment, while
the ZR and LC results differ considerably from experiment for the
most tightly bound state. Efforts to obtain a deformed excited
+ .16 .
0 state 1in 0 have thus far been unsuccessful. This state has

been found, in standard HF studies, to be a 4p-4h state lying

some 20-25 MeV above the ground state. The 4p-4h states which
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we have investigated so far have been very unstable.

Of the even & - even N nuclei in the s~b shell, ”"®Ne has
proven to be most amenable to description by means of standard
HE theory. The various properties of this nucleus that are pri-
marily long range xn character may be obtained with good accuracy
from a prolate intii.- state with a rather large hexadecapole
moment . Those properties primarily short range in character
are usually not reproduced very well.

Our results for the prolate shape are compared with experi-

(25) (5)
ment and with the results of Lee and Cusson (SP energies are
also compared with ZR) in Table 4. The binding energies agree
for RBHF and velocity-dependent HF (VDHF), but are below the ex-
perimental wvalue of 8.2 MeV. Of course the predicted results
for binding energy will change considerably upon projection.
The radius and deformation are lower for RBHF in spite of the
fact that an oscillator length of 1.88 fm. has been used for the
RBHF calculations while LC use 1.67 fm. The single particle
energies differ greatly for RBHF and VDHF, but the density de-
pendent calculation of Zofka and Ripka(4 ) yields results close
to ours except for the most tightly bound state. Unfortunately
there are no measured values for separation energies in 20Ne.

The projected properties underestimate the measured moments

and E2 rates, and are also smaller than the LC results. Some

improvement in the ”®Ne results is expected when the Pauli and

spectral corrections are made.
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DISCUSSION

The aim of many-body theory is to provide a truly micro-
scopic description of finite nuclei, and further to allow
prediction of nuclear properties with as few approximations as
possible. Of course a study of the type made here for deformed
nuclei, and elsewhere for spherical nuclei 2'), has elements
of phenomenology introduced through the two-body interaction
and the shift parameter. However, these are necessary steps
required to gain an understanding of the connection between
"realistic" interactions and nuclear phenomena.

Overall agreement with experiment, after accounting for

the various approximations, 1is fairly good. As in the case of

spherical nuclei, however, saturation is not achieved and the

nuclei are underbound. This seems to be a defect of BHF theory
as currently formulated or employed. One possibility is that
three-body clusters are necessary to achieve saturation--- indeed,

such consideration led Negele to adjust his potential phenomeno-
logically to fit nuclear matterﬁ3) It has been suggested by Bethe
that such a technique be employed in BHF calculations. But until
self-consistent Pauli corrections are included in BHF calculations,
the question cannot be firmly answered. It is not unreasonable,

for instance, to believe that the density-dependence employed by

Negele”™”, Meldner”28”" and Zofka-Ripka”4" arises from the action
of the operator ¢ in the BG equation, and that this is poorly

approximated by current techniques.
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One of the limitations of the present calculation is that
uncorrelated states are used to calculate nuclear properties.
Improvement in the agreement with experiment can be expected

(29)

when this limitation is removed . A precise theory for de-
formed nuclei will have to be developed for this purpose, how-
ever, 1nasmuch as our present methods, while based on successful
HF studies, cannot be rigorously defended for BHF calculations.
In spite of this it seems apparent that.the deformations pro-
duced by HJ and RSC forces are inadequate to account for experi-
- mental observations. The successful results obtained by LC
w>ith the Saunier-Pearson force (which is adjusted to fit two-
body data and nuclear matter) therefore tend to reinforce Bethe’s
suggestion that BHF calculations for finite nuclei should be

made using an interaction which has been shown to be successful

in BHF calculations for nuclear matter.

' re—
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Table

Table

Table

Table

TABLE CAPTIONS

110
Intrinsic properties of In the RBHF calculation
b=1.57-p>i, and 'k /2I=0.74 MeV; ZR used b"1l. 67-|rya

and LC used 1<,54 —

Projected properties of *-"C. In the RBHF calculation

b=1.57 '"Pm, and "k /2I=0.30 MeV; 1in the LC calculation

b=1.54 j-m

1cC
Intrinsic properties of -D0. The Hamada-Johnston force
was used in all BHF and RBHF calculations.

Intrinsic and projected properties of ~"Ne. The RBHF

calculation was made using the Hamada-Johnston force
~ Jl ~ & ~“Clz4 - 0,74 MeV, and b=1.88 -Pm

and LC used b=1.67 -Pyj
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

FIGURE CAPTIONS

Energies of the self-consistent RBHF solutions
using the HJ interaction.

The behavior of various intrinsic properties of L9

as a function of the shift parameter( The RBHF
calculation was performed with b=1.57 -Pm, and

e ftVzi = <?.74 MeV; is the binding energy of

the lowest orbit, R, the uncorrected single-particle
r.m.s. radius, and the L-pole
deformation.

Experimental and calculated elastic form factors
for the scattering of electrons from 12c.

(————————= , RBHF with HJ interaction), (-——-,
RBHF with RSC), and (-———=' —=——- , Lee—-Cusson) .

Experimental and calculated inelastic form factors

for electron scattering from "-2c. (——————— RBHF
with HJ interaction and —~ — ), (——— ,RBHF
with RSC interaction and —'iCJ"l/zPl))> (—— ——

N

RBHF with HJ interaction and H), and (—— *"——,
Lee—-Cusson).

Radial variation of the nuclear density of 12c. The
RBHF calculations are performed with b=1.57 i-m, and



-E/A,
MeV

A,

MeV
(g
EM
(rd)1/4,
EM

h

64

<<

eA’
Me

MeV

TABLE 1|
INTRINSIC PROPERTIES

HAMADA-JOHNSTON REID SOFT CORE ZOEKA- LEE- EXPT
. H - h232/21 " H-hogo2r  RIPKA - CUSSON

-7.28 -7.26 -7.53 -7.48 -6.4 -6.3 -7.7
10.59 11.78 11.24 12.52 9.§ 13.9
2.39 2.41 2.36 2.38 2.68 2.47 2.4060.03
2.52 2.54 2.48 2.49
-5.43 -5.76 -5.38 -5.72 -6.0 -5.88
0.507 0.625 0.493 0.617

U2+, 0.782) (1/2+, 0.782) (I/2+, 0.830) (U/2+ 0.829) _30.8  -68.4  -383+1

-37.45 -36.96 -40.26 -39.63
(372", 0.796) (3/2, 0.795) (3/2', 0.819) (372", 0.818) -17.6  -20.8  -18.8i0.5
-17.84 -17.39) -19.43 -18.91

(172', 0.818) (1/2', 0.819) (1/2', 0.837) (112", 0.838) -17.6  -20.1  -18.8ifl.5
-16.44 -16.83 -17.90 -18.27

45257 45257 44.0 44.0

CS-64506
TABLE 2

PROJECTED PROPERTIES

HAMADA-JOHNSTON ~REID SOFT CORE LEF-CLISSON  EXPT
W OH-fi2J221  §  H- 20221

R, EM 2.39 2.40 2.35 2.37 2.43 2.46i0. 025
2+ 4.68 4.94 4.52 4.76 532
4+ 5.62 5.85 5.43 5.65 6.38
2+ 0.89 0.98 0.71 0.90 1.02

Em4 4+ 2.16 2.68 1.98 2.48 2.75

B2, O++2+ 273 307 2532 2852 35.4 41.8+4

" EMé 24+-4+ 139 16.14 12.77 14.87 18.2

BE4), O+- 4+ 2265 3486 1884 2965 393.0

e4 + EM§
24— 4+ 576 88.5 48.1 75.6 116.0

CS-64507



b, FM

CALCULA.F ON BHF

-E/A, M
A, MeV
@2)12

eA’
MeV

C, MeV

RBHF
LC
EXPT

TABLE 3

160
1.57 1.77 1.67 1.67
RBHF BHF RBHF ZR IC  EXPT
Vo 62 7.3 6.2 7.0 75 79 798
18.0 16.9 172 158 17.0 20.6
229 2.40 2.38 2.45 2.72 252 2.6710.03
172+, 1.0) (V2+,0.79) 12+, 1.0) (1V2+,0.83) () 12+ 4315
-56.7 439 -54.9 -43.6 37 -64.1
(3/2', 1.0) (3/2",0.80) (3/2', 1.0) (3/2',0.82) (-) (3/2") 21.8
-30.0 213 283 -20.9 21 265
121, 1.0) (1721, 0.80) (1/2, 1.0) (12",0.82) () (12 21.8
-30.0 213 283 -20.9 21 2211
42,10  § 280 (12 1.0) (172,082 () (12) 157
-23.5 o) -22.6 -16.8 21 22111
50.46 48.64 42.62 40.64
TABLE 4
EA, A R, R4 @ 64
MeV  MeV FM M
RBHF 7.4 75 261 290 106 3.4
LC 74 99 269 - 117 ---
RBHF IC 7R
a2+,0) @24
48.02  -66.8 -38
12,0 42y
2865  -38.1 27
eA' 32,0 (32) ()
MeV 2293 277 21
2.0 d2y o
2041 239 21
a2+0 424 )
21523 -16.0 -14
R, (DAY B(E2;0+-24),  B(E22+-4+),  B(E24+-6+),
M FM* FM2 e2 + FM4 €21 FM4 e2 + FM4
2.72 -113 -14.5 152.7 773 66.9
2.80 -13.1 -23.8 208.0 82.0 92.1
2.8010.05  -27111 285140 128+13 95+11
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