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Abstract

Dyson-Schwinger equations are presented as a nonperturbative tool for
the study and modelling of QCD at finite-T. An order parameter for de-
confinement, applicable for both light and heavy quarks, is introduced.
In 2 simple Dyson-Schwinger equation model of two-flavour QCD, coin-
cident, 2nd-order chiral symmetry restoration and deconfinement transi-
tions occur at T ~ 150 MeV, with the same critical exponent, § ~ 0.33.

1. Introduction.  The Dyson-Schwinger equations [DSEs] provide a non-
perturbative, continuum approach to solving a quantum field theory; familiar
examples are: the gap equation in superconductivity; the Bethe-Salpeter equa-
tion, which describes relativistic 2-body bound states, such as mesons com-
posed of light quarks; and the covariant Fadde’ev equation, which describes
relativistic 3-body bound states, such as baryons. The DSEs are a system of
coupled integral equations, whose solutions are the Schwinger functions (Eu-
clidean propagators), and a weak coupling expansion of the DSEs reproduces
all of the diagrams of perturbation theory. Therefore, in any modelling of QCD
in this approach, one has a tight constraint on the behaviour of the solution
of the DSEs at large spacelike-g®.[1] The DSEs thereby provide a means of
extrapolating what is known about the QCD Schwinger functions at large-¢*
into the small-¢? (infrared) regime.

The nonperturbative nature of the DSEs entails that they provide a natural
framework for the study of confinement, dynamical chiral symmetry breaking
[DCSB] and observable effects of bound state substructure. In recent years
there have been many successful applications of the framework to the calcula-
tion of exclusive processes at zero temperature. The approach is distinguished
by the feature that it unifies the treatment of both hard and soft physics; i.e.,
once a model for the infrared behaviour of the connected gluon 2-point func-
tion (gluon propagator) is chosen, one can calculate observables on the entire
range of accessible energies and momentum transfers, as illustrated in Refs. [2].
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Figure 1: Dyson-Schwinger equation for the quark self energy (QCD gap equa-
tion): D is the dressed gluon propagator; I' is the dressed quark-gluon vertex;
the quark propagator S(p) = 1/[iv-p+Z(p)], (p) = iv-p[A(p®) — 1]+ B(p?),
is obtained as the solution of this nonlinear integral equation.

The phenomenological success of the approach is founded on the important
qualitative observation that the gluon vacuum polarisation diagram, tied to -
the existence of the 3-gluon vertex, generates a significant enhancement of the
gluon propagator for ¢> < 1GeV? with an integrable singularity at q? = 0.[3]
Without fine-tuning, this ensures quark confinement and DCSB, because the
gluon propagator is the primary element of the kernel in the DSE for the quark
self energy, represented diagrammatically in Fig. 1.

2. Dynamical Chiral Symmetry Breaking. The quark condensate is
defined via: (Gq), = — f: (%)’Ttr [S(p)]- One aspect of DCSB is the statement
that, when the current-quark mass is zero, one nevertheless has (@) Z0. In
terms of the dressed quark mass function, M (p?) = B(p?)/A(p?), this is equiv-
alent to the statement that, when the current-quark mass is zero, the quark
DSE in Fig. 1 yields M (p?) # 0, Fig. 2. DCSB is more than simply a nonzero
quark condensate, however. It is also a mass-enhancement mechanism with
observable consequences in QCD. One means of quantifying this is the ratio
M }3 /m (), where mg(u) is the current-quark mass and MF, the Euclidean

constituent quark mass, is the solution of p? = M;(p?).
flavour |u/d| s |c| b | ¢

LA |400|20|5|2.5|—>1

(1)

Eq. (1) indicates that the dynamical enhancement of the mass is extremely
important for the light quarks and, although it diminishes with increasing
current-quark mass, it remains significant even for the b-quark. The magnitude
of (gq), and this ratio are sensitive to details of the gluon propagator.

3. Quark Dyson-Schwinger Equation. The Matsubara formalism is
the natural framework for nonperturbative studies at finite-T'. In this case the




3.0

chiral limit
— —= u-quark
~==—- s-quark
—-— c—quark
—— b-quark

2.0 f cerreenen p=M(P)

Mip)

-
—_—
-
—
—
———
———

-~
-
~e——

4.0 6.0 8.0 10.0
p (GeV)

Figure 2: M;(p®), f labels the quark flavour, obtained as the solution of the
quark DSE using the one parameter gluon propagator of Ref. [4], which drives
DCSB since M (p?) # 0 in the chiral limit.

renormalised dressed quark propagator is specified by [7]

S7Hp,wn) = 7 TAD,wa) +1swaC (P, wn) + B(p,wn) (2)
= Z$7 - P+ Za(ivawn + Mim) + ' (P, wn) ®3)

where: w, = (2n + 1)7T; My is the quark bare mass; Z$ and Z, are wave
function renormalisation constants; and the regularised self energy is

S (p, wn) = 17 - FT4 (D, wn) + 14w T(P, wa) + Sp(p, wn) - (4)

The quark DSE is a system of three coupled nonlinear integral equations:
) Ag o, 1
w(p,wr) = /l .39 Dy (p — g, wi — wi) b1 [P (g, w)Tu(g, wi; P wi)] (5)

where F = A,B,C; Pa = —(Zfl/ﬁz)l’—);_’ﬁ, Pp = Zl,_PC = —(Zl/wk)i_'y4; YA
and Z7 are vertex renormalisation constants; and fﬁl =Ty " (%%
The renormalisation conditions are S~(p, wo)lp2 b=t = 5 - P+ tyawp +
mpg. Given D,,, the gluon propagator, and T',,, the quark-gluon vertex, it is
straightforward to solve these equations numerically.

4. Confinement.  The question of confinement can be addressed by study-
ing the analytic properties of quark and gluon propagators. The absence of a




Lehmann (or spectral) representation for these 2-point functions is a sufficient
condition for confinement since it ensures the absence of quark and gluon
production thresholds in colour-singlet — singlet S-matrix amplitudes. In
perturbation theory it is impossible for interactions to eliminate the Lehmann
representation for a 2-point function, however, as elucidated in Refs. [5, 6], the
nonlinearity of the nonperturbative fermion DSE makes this possible. There-
fore the analytic structure of the propagators in QCD cannot be assumed but
must be calculated. The possible nonexistence of a Lehmann representation
complicates, and may even preclude, a real-time formulation of the finite-T'
theory.

The presence or absence of a Lehmann representation can be studied using

T 5

Ag,(2) =T z / dp p sin(pz) o, (p, wn) = s ZA .(z) . (6)

47ra: T

For a free fermion o5 (p, wn) = M/ (w2 +p>+M?) and A% (z) = Me™=Vr,
illustrating that the n = 0 term dominates the sum in Eq. (6). In this case the
mass function M(z,T) = — & (ln |A%, (:c)l) = V@?T? + M? and one observes:
1) M(z,T) isolates the poles in the propagator; and 2) finite-T" effects only
become important for T ~ —47:’—, where, in an interacting theory, M is most
naturally identified with M fE From Fig. 2 one therefore expects that light
quarks only feel the effects of temperature for T ~ 150 MeV.

An alternative example is provided by D(p,,) = Wﬁ—iri%" which
has complex conjugate poles shifted from the real-p? axis by a distance b? and
hence no Lehmann representation. In this case A} (z) =e™* cos(ba:) and one
notes that complex conjugate poles are signalled by zeros in AY(z) or poles
in M(z,T); i.e., these features signal confinement. This observation has been
employed successfully in Ref. [6].

5. Two-flavour DSE Model of QCD. A minimal, finite-T" extension of
the one-parameter DSE model of QCD described in Ref. [4], is introduced in
Ref. [7]. It is specified by the finite-T" gluon propagator

gsz,,(p, Qn) = PpLu(p’Qn)AF(py Qn.) + PZ;J(p)AG(p; Qn) ; Qn = 2naT (7)

0; xand/or v =4,
P,FI':,(P) { P
ij

DiPj : 8
__p'2_1'7 IJ;V=1;23 ()

with PL(p) + P (p. ps) = buv — PuDu/ a1 Pabai v =1,...,4; Ap(p, Q) =
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Figure 3: Chiral symmetry, x(T'), and deconfinement, v(T’), order parameters.

D(p, Qn; mD) and AG(p: Qn) = D(pa Qn; 0)1

1 — ol—(P*+02+m?)/(4m})]

p? + Q2 4+ m?

2
D(p, i) = 4r°d | rmibons®() +

m3, = eT?, ¢ = 4n’de, ¢ = (Nc/3 + Nf/6), is the T-dependent “Debye-mass”
obtained in perturbation theory, which vanishes at T = 0. There is no simple
analogue in Ag(p, Q).

The single parameter in Eq. (9) is m;, which characterises the boundary
between the infrared and ultraviolet regimes of the model. Requiring that the
model provide a good description of 7 and p observables at T' = 0 fixes the
value of m; = 0.69 GeV. This corresponds to a length-scale of 1/m; = 0.29 fm.

5.1 Results. For T ~ 0 the numerical solution of Eq. (5) yields A% (z) with ze-
ros; i.e., a confined quark. An order parameter for deconfinement is v = 1/7{,
where z = 77 is the position of the first zero in A% (z). Deconfinement is
observed if, for some T = T, v(T¥) = 0; then the poles have coalesced on
the real axis and the quark propagator has developed a Lehmann represen-
tation. This confinement order parameter is valid for both light and heavy
quarks. As discussed in Sec. 2, the quark condensate and the scalar piece of
the fermion self energy are equivalent order parameters for DCSB. For simplic-
ity we use the latter; i.e., X = Bm(u)=0(0,wp). The T-dependence of these order
parameters is shown in Fig. 3, which illustrates that the model has coincident
[T. ~ 150 MeV], 2nd-order chiral symmetry restoration and deconfinement




transitions with the same critical exponent, By ~ 0.33. Analysing the fits, the
difference between this critical exponent and that of the N = 4 Heisenberg
magnet, By =~ 0.37, is statistically insignificant. However, the transitions can-
not be described by a mean-field critical exponent. The transition temperature
agrees with that obtained in recent lattice-QCD simulations of 2-flavour QCD.

f= and m, are insensitive to temperature until 7' =~ 0.7 T, which is illus-
trated by the fact that, even at T = 0.97T,, I'z_,, is only reduced by 20%.
However, as one reaches T, there is a dramatic effect: the pion pole contribu-
tion to the quark-antiquark 7-matrix is eliminated; i.e., the pion, as a true
quark-antiquark bound state, disappears from the spectrum: quark-antiquark
correlations above T, are too weak to bind.

6. Closing Remarks.  Although the DSEs have been widely used in the
study and modelling of hadronic observables at T' = 0, their application at
finite-T is in its early stages. As a Poincaré invariant, continuum framework
that allows the study of both DCSB and confinement, the common domain
between DSEs and lattice-QCD simulations is large. DSE studies provide a
complement to lattice-QCD, which, once constrained on the common domain,
can be used to explore QCD in those regions currently inaccessible to lattice
simulations, such as finite density and the effects of temperature on bound
state properties.
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