It_A-UR- ‘96“@@99 @o,\zﬁ-?(;ﬁ/;?’% - =g

Title: | DANTSYS/MPI - A SYSTEM FOR 3-D DETERMINISTIC
TRANSPORT ON PARALLEL ARCHITECTURES

RECEIVED
FFR 14 1397
Author(s): | R.S. Baker | 0 ST'

R.E. Alcouffe

CISTRIBUTION OF THIS DOCUMENT IS UNLIMITED NS

Submitted to: | OECD/NEA Meeting, 2 - 3 December 1996, Paris, France

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the HFe——=
United States Government or any agency thereof.

Los Alamos

NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity empldyer, is operated by the University of California for the U.S. Department of Energy
under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory

requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Form No. 836 5
orm No.
ST 2629 10/91

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

DANTSYS/MPI - A SYSTEM FOR 3-D DETERMINISTIC TRANSPORT ON PARALLEL
ARCHITECTURES

Randal S. Baker (rsb@lanl.gov) and Raymond E. Alcouffe (rea@lanl.gov)
Transport Methods Group, MS B226
Los Alamos National Laboratory
Los Alamos, NM 87545

Introduction

Since 1994, we have been using a data parallel form of our deterministic transport code DANTSYS [1]
to perform time-independent fixed source and eigenvalue calculations on the CM-200's at Los Alamos
National Laboratory (LANL). Parallelization of the transport sweep is obtained by using a 2-D spatial
decomposition which retains the ability to invert the source iteration equation in a single iteration (i.e.,
the diagonal plane sweep). We have now implemented a message passing version of DANTSYS, referred
to as DANTSYS/MPI, on the Cray T3D installed at Los Alamos in 1995. By taking advantage of the
SPMD (Single Program, Multiple Data) architecture of the Cray T3D, as well as its low latency commu-
nications network, we have managed to achieve grind times (time to solve a single cell in phase space)
of less than 10 nanoseconds on the 512 PE (Processing Element) T3D, as opposed to typical grind times
of 150-200 nanoseconds on a 2048 PE CM-200, or 300-400 nanoseconds on a single PE of a Cray Y-MP.
In addition, we have also parallelized the Diffusion Synthetic Accelerator (DSA) equations which are
used to accelerate the convergence of the transport equation. DANTSYS/MPI currently runs on tradition-
al Cray PVP's and the Cray T3D, and it's computational kernel (Sweep3D) has been ported to and tested
on an array of SGI SMP ‘s (Symmetric Memory Processors), a network of IBM 590 workstations, an IBM
SP2, and the Intel TFLOPs machine at Sandia National Laboratory. This paper describes the implemen-
tation of DANTSYS/MPI on the Cray T3D, and presents a simple performance model which accurately
predicts the grind time as a function of the number of PE's and problem size, or scalability. This paper
also describes the parallel implementation and performance of the elliptic solver used in DANTSYS/MPI
for solving the synthetic acceleration equations.

The Diagonal Plane Sweep

In [2], we discuss our implementation of the diagonal plane sweep. To summarize, the transport operator
on the left hand side of the first-order form of the source equation, i.e.,

Qe V¥ E Q) +o,¥(E D) = S} E B) M

may be viewed as a lower diagonal matrix. Thus, given a known source on the right (the result of inner

and outer iterations over scattering and fission sources), the source iteration equation may be solved for
the angular flux exactly in one iteration by performing an ordered sweep for each Sy direction. While this
sweep is an inherently sequential operation, there actually exists a 2-D diagonal plane of cells which can
be solved simultaneously, i.e., in parallel, when sweeping directions in a given octant (see Fig. 1). We
map this diagonal plane onto a 2-D processor mesh, thus achieving 2-D parallelism for 3-D calculations.

Unlike 3-D spatial decompositions which require iterations to solving the source iteration equation, our
2-D spatial decomposition retains the ability to invert this equation in a single sweep, an important ad-
vantage in neutronics calculations where the mesh cells are often optically thin. However, as can also be
seen from Fig. 1, the diagonal plane does not completely fill all the processor mesh when the diagonal
plane is near the corners, resulting in a loss of Parallel Computational Efficiency (PCE), where PCE is
defined to be the amount of useful work performed in a single sweep divided by the amount of total work.
For a large cubic mesh, the PCE can be shown to be only 33%. Note that this does not mean that the code
is only 33% parallel, but that 67% of the cells solved (in parallel) are actually dummy, or "ghost", cells.
However, the PCE can be raised by reordering the data so that the sweep for the next discrete direction
(Method 1, Successive in Angle) (see Fig. 1) or octant (Method 2, Simultaneous in Angle) is initiated by
a processor as soon as it completes the previous angle/octant, while the downstream processors continue
to work on the previous angle/octant. Using these variants, the PCE for large cubic meshes improves to
86% for Method 1 (S4) and 50% for Method 2. Although Method 1 has a higher PCE, Method 2 proved
to be more computationally efficient on the SIMD (Single Instruction Multiple Data) CM-200 due to the
overhead costs of gather/scatter and shift operations on this machine [2]. Thus, Method 2 was implement-
ed in our production code DANTSYS (THREEDANT) on the CM-200 in 1994,

Implementation of the Diagonal Plane Sweep on a T3D

Due to the SIMD nature of the CM-200, the diagonal plane sweep was performed over the entire / x J x
K sized problem mesh. However, on the Cray T3D, we can improve the PCE of the diagonal plane sweep
by taking advantage of its SPMD architecture [3]. Let N; x Ny represent the 2-D processor mesh onto
which the J x K problem mesh is mapped such that the largest J and K mesh dimensions on any PE are
Jc=[JIN;] and Ko=[K/Ngl, where [x] is the ceiling function equal to the smallest integer larger than or
equal to x. Let [~represent the number of /-planes to be solved by a PE before communicating the result-
ing edge fluxes to the downstream PE's. Then, while we continue to use the diagonal plane sweeping al-
gorithm over the space /I x Ny x Ng, we use a simple sweep along rows to solve the balance equation
within a PE for all cells in a "chunk” of size I x Jo x K. We refer to this method as Method 3 (Simul-
taneous in Angle + Block Sequential). Method 3 results in a PCE of

IXJxKxMx?2
(NJ+NK—2+I/ICxMx2)(ICxJCxKCxNJ'xN

PCE= (2)

e,

where M is the number of angles per octant. The numerator in Eq. (2) is the number of phase space cells
solved in one sweep of the mesh for one pair of octants (quadrant), while the first term in the denominator
is the number of steps to sweep through the diagonal plane space for all angles in an quadrant, and the
second term is the number of phase space cells solved at each step. The first term accounts for the loss in
parallel efficiency due to the diagonal plane sweep over the PE space, and the second term accounts for

S4 Quadrature

— X

Angle 1 (down)

Angle 2 (down)

—

b

Angle 3 (down)

x

Angle 4 (up)
{
X Angle 5 (up)
i Angle 6 (up)

Figure 1. The Diagonal Plane Sweep '

the loss in parallel efficiency due to load imbalancing. For a 128 x 128 x 128 mesh with an S, triangular
(M = 6) quadrature on 64 PE's and I~ = 4, Eq. (2) results in a PCE of 96.5%. While I~ = 1 provides the
largest possible PCE, we have found that, when communications latencies are considered (see below),
the overall computation time is generally minimized with I~ = 4 on the T3D.

A Performance Model for the Diagonal Plane Sweep

Performance models are a necessity on parallel platforms for truly understanding actual versus ideal (lin-
ear) speedup, and estimating performance for varying problem sizes and machine configurations. We
have constructed such a model for the diagonal plane sweep algorithm in DANTSYS/MPI.

We model the total time per iteration as

T,ma4x(N;+Np-2+1/1,xMx2)
(ICxJCxKCxTcomp+IC.x(JC+KC)x(TbW+Tbnd)
+Tlat+Tsync+po)

+TS€I’

3

where T¢opmp is the average computation time (source moments, angular source, balance equation, and
flux moments) per cell, T, is the time spent in calculating boundary data, Ty, is the average time per
diagonal plane step spent in synchronization, T}, is the communications latency, and Tp,, is the commu-
nications time (bandwidth). T, is the serial overhead per iteration outside of the sweep, while 7y, is the
serial overhead per each step of the diagonal plane sweep. Note that this model is an approximation in
the sense that 7, should be broken out into at least two separate components, one (computation time
for balance equation) which is multiplied by the number of diagonal plane steps to sweep through the
mesh times the maximum number of spatial cells assigned to a processor, and one (computation time for
source moments, angular source, and flux moments) which is a multiplied by only the maximum number
of spatial cells assigned to a processor. For simplicity, we use one combined parameter here. Since the
time spent in solving the balance equation comprises the majority of the total solution time, and since /
Ic xM x 2> Njy+ Ng - 2 for the modeled problems, this is a reasonable approximation. Note also that
T comp Will be a function of problem dependent Sy and Py orders, while the others will not. 7, will also
be a function of the spatial differencing method and the amount of (problem dependent) negative flux
fixup, if any, for Diamond Differencing with Set-to-Zero Fixup.

Values for the above parameters were determined by instrumenting the computational kernel Sweep3D
of DANTSYS/MPI. Sweep3D is a small test code which performs the diagonal plane sweep plus the inner
iteration. Typically over 95% of the (transport) time in DANTSYS/MPI is spent in these two areas, so
Sweep3D is a representative model for DANTSYS/MPI. The values determined from Sweep3D were
Tpng = 0.31 usecs/cell face, Ty, = 0.153 usecs/cell face, Ty, = 11.6 usecs, Ty, = 11.7 usecs, T, = 12.5
usecs, and T, = 2,575 usecs.

As an aside, we used the CRI performance analysis tool Apprentice to examine the 50 x 50 x 50 mesh
problem on a single PE. Using the FLOP count from the Apprentice, the single PE performance of
Sweep3D for this problem was 15.0 MFLOPs. The peak performance of the DEC Alpha PE used in the

T3D is 150 MFLOPs, However, the Alpha PE used in the T3D has only an 8 KByte Direct Mapped cache,
and the transport algorithm in Sweep3D performs only 1.4 FLOPs/Load. Thus, memory bandwidth/laten-
cy, not PE speed, is the limiting factor. This is typical of most physics codes with large data sets run on
cache-based microprocessors.

Application to Assembly 6

Assembly 6 is a critical assembly consisting of a highly enriched uranium spherical core surrounded by
a beryllium-oxide reflector. This assembly is experimentally known to have an eigenvalue of unity. Be-
cause of mirror symmetry, only one-cighth of the assembly was actually modeled by the mesh. All cal-
culations were performed using an S, product quadrature set (M = 9) in conjunction with multigroup
ENDF 12-group P, prompt neutron cross sections on a 94 x 94 x 94 spatial mesh. The diagonal plane
sweep algorithm was implemented in conjunction with diamond differencing in space. No fixup was
needed in this problem. The value of the & eigenvalue calculated by DANTSYS/MPI is 0.9965 with a
convergence criteria of 0.001.

We first examine the validity of our model. Assuming the values of Tpng, Tpy. Tiar Tsyncs Tdp> a0d Ty
determined from Sweep3D are still valid, and examining Eq. (3), we see that Eq. (3) predicts a linear re-
lationship between the total cell computation time and the number of cells solved per PE, with slope
T comp and a Y-intercept of zero. Figure 2 shows the result of this prediction when DANTSYS/MPI is used
to calculate Assembly 6 for 64 to 512 PE’s. We see that the relationship is indeed linear, and that our
model is valid when used to predict performance for typical problem sizes on up to hundreds of PE’s.

10" ¢

0 --— Assembly 6

10° |-

Toomp = 2-88 Hsecs

Y-int = 17,082 +/- 6,606

Total Cell Time/It (Usecs)

5
10 . . e
10° 10°

Total Cells Solved/PE/It

Figure 2. Examination of Model Validity for Assembly 6

Figure 3 shows the actual grind times for the Assembly 6 calculation for 64 to 512 PE’s, the grind times

predicted by our model (using 7, = 2.88 usecs) for 1 to 512 PE’s, and the ideal grind time, assuming
a linear speedup from 1 to 512 PE’s, where the grind time for 1 PE is determined from our model. As can
be seen, the model predicts the actual grind times quite closely, given the parameter Ty, and the total
speedup obtained for this realistic application is 335 on 512 PE’s. The grind time for this application on
a single Cray YMP PE is ~400 nsecs, so the performance actually achieved on 512 T3D PE’s is equivalent
to that of 47 YMP PE’s.

10000 ———r —T
—— Ideal

2 |
o 3D E
o [
p—
O [
g 100 E
» wi o 3
F \\\\\\
'g. 512 T3DPE’s ~47 YMP PE’s
=10 - 8.47
6, E Speedup =335 g

1 10 100 1000

Number of PE’s

Figure 3. Assembly 6 Grind Times
Extrapolation to the Intel TFLOPs Machine

Sandia National Laboratory is in the process of acquiring a 4096 PE MPP from Intel, where the PE’s con-
sist of 2 PentiumPro CPU’s with 128 MBytes of memory. Using our model, we can predict the perfor-
mance of DANTSY S/MPI on this machine with an appropriate adjustment of parameters. Unlike the Cray
T3D, where DANTSYS/MPI uses a synchronous data passing communication library (SHMEM), we will
use a asynchronous message passing library (MPI) on the Intel machine, so Ty, is set to zero. Given the
larger cache and faster clock on the Intel machine, we estimate that a single PE performance of 20
MFLOPs (versus 15 on the T3D) should be achievable, s0 Tp,g, Tgp, and T, are set to 3/4ths of the T3D
values. Based upon preliminary performance estimates of the communications network, the parameters
for Ty,, and Ty, are set to 25 usecs and 0.0765 usecs, respectively.

The problem we model is an Sg (M = 6), Py calculation on a 256 x 256 x 256 mesh. On the T3D, T4y,
for this problem is 1.78 usecs, so we use 1.335 usecs for the Intel machine. Figure 4 presents the results
of our model for 1 to 4096 PE’s. In addition, Fig. 4 also presents some very preliminary test results from
actual Sweep3D calculations on up to 700 PE’s of the TFLOPs machine. These initial results are in good
agreement with our model predictions. Thus, we have confidence that our predictions of actual speedups

of over 2,300, and performance equivalent to that of over 500 YMP PE’s, are achievable.

4
10*
10° b — Ideal]

F wneme Model]
© TFLOPs

10° L

Grind Time (nsecs)

10 k- e 5, =
, | 4096 TFLOPs PE’s ~ 536 YMP PE’s

10 3
E Speedup = 2355]

P TN B E TN EY
10° 10' 10° 10° 10*

Number of PE’s

Figure 4. Predicted Performance on the Intel TFL.OPs Machine
Iteration Acceleration

Many transport calculations require some means of accelerating convergence in order to be practical.
DANTSYS uses Diffusion Synthetic Acceleration (DSA) to accelerate convergence of both the inner and
outer iterations. DSA has proven extremely valuable in accelerating convergence for calculations con-
taining highly scattering and/or fissile regions.

DSA works by using a lower-order diffusion-like equation to accelerate the solution of the higher-order
transport operator. Typically, one diffusion acceleration step is performed for every transport step. Thus,
an efficient means of solving an elliptic equation is essential in reducing the overall computation time.
However, in two or three dimensions, the solution of elliptic equations is a non-trivial problem. The mul-
tigrid method in conjunction with pre-conditioning by line inversions has proven most successful in the
past when used with DANTSYS, but an efficient multigrid scheme has yet to be developed for parallel
architectures. Thus we have also implemented a Conjugate Gradient (CG) diffusion solver in DANTSYS/
MPI because CG schemes are readily parallelized. Since each PE in DANTSYS/MPI contains all cells in
the /-dimension for a given J and K, we precondition by line inversions in the 7 direction, but use Red/
Black iterations over the cells in the J and K dimensions. Although not as effective a pre-conditioner as
line inversions in all three dimensions, this scheme is compatible with our 2-D spatial decomposition.
Furthermore, this scheme represents an extrinsic decomposition in the sense that the results do not vary
as the number of PE's is varied.

Table 1 below presents the results of DANTSY S/MPI calculations (128 PE's) on a benchmark LWR prob-

lem with and without DSA. The LWR benchmark calculation consists of 2 groups, SgPg, on a 100 x 100
x 100 mesh. The convergence criteria is 0.001. PBAL is the integral particle balance, TSWEP is the time
spent in performing the sweep of the transport equation, and TDSA the time for the diffusion equation
and Chebyshev acceleration of the fission source. The total time includes both TSWEP and TDSA, plus
time for calculating group sources, balance tables, etc. DSA reduces the number of iterations by over a
factor of 36 in this eigenvalue calculation, but the overall run time is only reduced by a factor of six due
to the cost of solving the diffusion equation. TSWEP does not decrease by a factor of 36 due to the extra
work required to calculate the leakages at every cell face for the DSA equations. We plan to investigate
other pre-conditioners that will hopefully prove more effective in solving the CG equations, and thus im-
prove the performance of DSA in DANTSYS/MPI. Additionally, the investigation of effective parallel
multigrid solvers is an active field.

Table 1: LWR1 Iteration Acceleration

Acceleration | & PBAL No. No. 1 rswep | TDsA Total
QOuters | Inners

No DSA 09641 | 4.17¢e-3 36 295 311.2secs | 1.2 secs 320.4 secs

With DSA 0.9625 | 1.90e-5 5 8 144 secs | 38.5secs | 53.7 secs

Code Structure

DANTSYS/MPI is divided into input (serial only), edit (serial only), and solver (serial/parallel modules).
Since the input and edit modules are neither CPU or memory-intensive, there is no need to parallelize
them. The input module prepares the cross sections, geometry information, and other data required by the
solver module. This information is stored in link files on disk, which are then read in by the solver module
to perform the actual calculation. The solver module memory requirements are driven by the storage re-
quirements for the flux moments, since we do not need to store the angular fluxes for our 2-D spatial de-
composition. In turn, the solver module writes a CCCC-standard RTFLUX file upon completion, which
may then be used by the edit module for post-processing. Parallel I/O is performed by PSFLIB, a local
CRI product which allows flexible yet efficient I/O to a single file from an arbitrary number of PE’s.

DANTSYS/MPI was originally developed in Fortran 77, but is migrating to full use of the features of
Fortran 90, especially automatic/allocatable arrays and array syntax. Communications on the T3D are
handied by CRI's Shared Memory (SHMEM) data passing constructs, but message passing constructs
based on MPI are currently being added for portability to other platforms. DANTSYS/MPI currently runs
on Cray PVP's (serial only) and the CrayT3D (serial/parallel). With the addition of MPI, we expect to
have a full parallel capability on all of these platforms plus the Intel TFLOPs machine, IBM SP2’s, and
clusters of SGI SMP’s.

References

[1]R. E. Alcouffe et al., “DANTSYS: A Diffusion Accelerated Neutral Particle Transport Code System”,
Los Alamos National Laboratory Manual LA-12969-M (1995).

[2] K. R. Koch, R. S. Baker, and R. E. Alcouffe, “Solution of the First-Order Form of the Three-Dimen-
sional Discrete Ordinates Equations on a Massively Parallel Machine”, Trans. Am. Nucl. Sci., 65, p. 198,

Boston, MA (1992).

[31 R. S. Baker, C. Asano, and D. N. Shirley, “Implementation of the First-Order Form of the 3-D Dis-
crete Ordinates Equations on a T3D”, Trans. Am. Nucl. Soc., 73, p. 170, San Francisco, CA (1995).

