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From Landau’s Hydrodynamical Model

to Field Theory Models of Multiparticle Production:
A Tribute to Peter Carruthers on his 61st Birthday

Fred Cooper
Theoretical Division, Los Alamos National Laboratory,
Los Alamos, NM 87545
(November 21, 1996)

We review the assumptions and domain of applicability of Landau’s Hydrodynamical
Model. By considering two models of particle production, pair production from strong
electric ficlds and particle production in the lincar ¢ model, we demonstrate that many of
Landau’s ideas are verified in explicit field theory calculations.

PACS numbers:

1. INTRODUCTION

In the carly 1970°s Peter Carruthers [1] [2] (at the
prodding of one of his graduate students Minh Duong
Van) realized that Landau’s Hydrodynamical model [3]
explained the single particle rapidity distribution dN/dn
of pions produced in the inclusive reaction P-P — «
+ X extremely well.(scc Fig. 1) He then asked me to
think about the effect of adding thermal fluctnations and
with the help of Graham Frye and Edmond Schonberg
at Yeshiva University (and also some help from Mitchell
Feigenbaum) we found the correct covariant method of
adding thermal fluctuations to the hydrodynamic flow
which is now called the Cooper-Frye-Schonberg formula
[4], [5]. Based on thesc ideas we were able to fit. hoth the
transverse momentum distribution as well as the rapidity
distribution extremely well (see Fig. 2).

The hydrodynamical model, which was considered
“heretical” when applied to proton-proton collisions,as
opposed to Feynman scaling models, was resurrected by
Bjorken [7] in 1983 to describe relativistic heavy ion col-
lisions. The use of the hydrodynamical model to study
heavy-ion collisions is now a sophisticated mini-industry
using 3-dimensional fliid codes and sophisticated cqua-
tions of state hased on lattice QCD. The cffects of reso-
nance decays have also been recently included. A recent
fit to single particle inclusive spectra for Ph-Pb collisions
at 160 AGeV and S-S collisions at 200AGev [8] is shown
in Fig. 3.

FIG. 1. Comparison of the experimental C.M. rapidity
distribution of ontgoing pions from Proton Proton collisions
at The ISR at (a) prsr = 15.4 GeV/c and (b) prsr = 26.7
GeV/c compared with the no adjustable parameter result of
the Landau Model from [2]
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FIG. 3. Fit of recent Pb+Pb and S+S data of the NA49
and NA35 collaborations by Schlei et. al. [8]

After the initial successes of the hydrodynamical
model, Carruthers and Zachariasen [9] [10] made the first
transport approach to particle production based on the
covariant Wigner-transport cquation. This further work
of Pete's inspired me and my collaborators David Sharp
[11} and Mitchell Feigenbaum [12] to study particle pro-
duction in A@'in a mean field approximation using the
formalism espoused by Carruthers and Zachariasen. Qur
cfforts in the 70’s were hampered by two factors: first
we were not sure what the appropriate field theory was,
and sccondly computers were not large enough or fast
cnough to perform accurate simulations of time evolu-
tion problems. This covariant transport theory approach
turned out not to he the most convenient way to study
initial value problems and would later be replaced by a
non-covariant approach where the time was singled out.

Starting in the mid-80’s two new approaches were
taken to understand time evolution problems in field the-
ory, both rclated in spirit to the covariant transport ap-
proach of Carruthers and Zachariasen which utilized a
mean ficld approximation to close the coupled equations
for the distribution functions. The first method was to
assume a Gaussian ansatz in a time dependent variational
method in the Schrodinger picture, [13] [14]. The second
method was to directly study the time evolution of the
Green’s functions in the Heisenberg picture in a leading
order in large-IV approximation [15] [16] [17].

Both these methods, which are mean-field approxima-
tions, lead to a well posed initial value problem for the
time cvolution of a field theory. In the mean-field ap-
proximation, we discovered that one has to solve at least
10,000 cquations for the Fourier modes of the quantum
ficld theory in order to be in the continuum limit (i.e.
for the coupling constant to run according to the contin-
uum renormalization group). Thus, although much of the
formalism was worked out by me and my collaborators
in the mid and late 80’s, [18] it was not until the ad-
vent of parallel computation that numerical algorithms
were fast enough to make these calculations practical.
The first initial simulation attempts were presented in
Santa Fe in 1990 at a workshop on intermittency that
Pete asked me to help organize [19]. These first simula-
tions took weeks of dedicated machine time. With the
advent of the connection machine CM-5 at the ACL at
Los Alamos simulations can now be done in a few hours
finally making scrious studies possible.

In the past few years, we have been able to consider two
aspects of Relativistic Heavy Ion Collisions. The first as-
pect is connected with the production of the quark gluon
plasma. The model we used was the popping of quark-
antiquark pairs out of the vacuum due to the presence
of Strong Chromoelectric fields. The mechanism we used
was based on Schwinger’s calculation of pair production
from strong Electric Fields [20]. Using this model and as-
suming boost invariant kinematics we were able to show




that many of Landau’s assumptions were verified-namely
that from the encrgy fow alone one could determine the
particle spectrum, and that the fluid rapidity spectra was
the same as the particle rapidity spectra when oncis in a
scaling regime. Also the hydrodynamical prediction for
the dependence of the entropy density as a function of
the proper time was verified at long times. Numerical
evidence for this will be displayed below.

The second problem we considered was the dynamics
of a non-equilibrium chiral phase transition. In this case
because of the phase transition, one can obtain single par-
ticle spectra which are different from a local equilibritun
flow such as that given by Landau’s model. We found
that when the evolution proceeds through the spinodal
regime, where the effective mass hecomes negative, low
momentum modes grow exponentially for short periods
of proper time. This leads to an enhancement of the low
momentum spectrum over what would have been found
in an equilibrinm evolution. While considering this sce-
ond problem we realized that the Cooper-Frye-Schonberg
formula was valid even in a field theory cvolution. pro-
vided one interprets the ficld theory interpolating num-
ber density as the single particle phase space distribution
function of a classical transport theory [17].

It is safe to say that much of my carcer was stinulated
hy Pete encouraging me to understand mmnltiparticle pro-
duction in high cenergy collisions and by him freely shar-
ing all of his intuition about this subject. It has taken
20 years to show that our original thinking back in 1973
was mostly correct!!

Landau’s model [3] of multiparticle production was
based on very few assumptions. He first made an assump-
tion about the initial condition of the fluid. Namely. he
assumed that after a high energy collision some substan-
tial fraction (= 1/2) of the kinetic cnergy in the center of
mass frame was dumped into a Lorentz contracted disc
with transverse size that of the smallest initial nuclei. He
then assumed the flow of encrgy was describable by the
relativistic hydrodynamics of a perfect fluid having an
ultrarclativistic equation of state p = £.(This assump-
tion was later modificd by later workers as knowledge
first from the bag model and then from lattice QCD be-
came available). The motion of the fluid is described
by a collective velocity field u*(zx,t). Once the collec-
tive variables, energy density, pressure and collective ve-
locity are postulated, along with the equation of state.
the equations of motion follow from the conservation of
energy-momentum. The same assumption of a perfect
relativistic fluid is used in Cosmology. One solves the
Einstein equations for the curvature assuming an cnergy
momentum tensor that is a perfect fluid. (sce [21} )

The rest of the dynamics is embodied in the initial
and final conditions. We stated already that the initial
condition is to assume that the initial energy density dis-
tribution is constant in a Lorentz contracted pancake. In
owr field theory calculations using strong ficlds. we will
assume that all the encrgy density is in the initial semi-
classical electric (chromoclectric) ficld. and equate the

energy density E?(w,t) with Landaw’s &(z,t). Thus we
will not attempt to derive this initial condition but will
retain this assumption. However various event generators
do find similar energy densities to those obtained from a
hydrodynamical scaling expansion. The final boundary
condition is to state that when the energy density € re-
duces to a critical value g, which is approximately one
physical pion/ pion compton wavelength® in a comov-
ing frame, then there are no more interactions and one
then calculates the spectrum at that “freeze out” surface.
The original method of Landau to determine the parti-
cle distribution was to identify the pion velocity with the
collective velocity and assume that the number of parti-
cles in a bin of particle rapidity was equal to the energy
in that bin divided by the energy of a single pion having
that rapidity. An alternative was to assume the number
distribution was proportional to the entropy distribution.
This ansatz was later modified by myself and my collab-
orators by assuming there was a local thermal distribu-
tion of pions in the comoving frame at temperature T,
described by

gl k) = g={exp[Fu,[/Te) - 1} (1.1)

The particle distribution was then given by:

3N BN
BES = = = [ ga, k)k*
Bl mdkdy / 9(w, R)Edoy,

where o/, is the surface defined by £ = .. We will ver-
ify that both ideas can be justified by our field theory
calculations.

Let us now let us look at the hydrodynamics of a per-
fect fluid. In the rest frame (comoving frame) of a perfect
relativistic fluid the stress tensor has the form:

(1.2)

T, = diagonal (e, p,p,p) (1.3)

Boosting by the relativistic fluid velocity four vector
u(a.t) onc has:

Ty = (2 + p)uu” — pg"” 1.4
i

From a hydrodynamical point of view, flat rapidity
distributions scen in multiparticle production in p-p as
well as A-p and A-A collisions are a result of the hydro-
dynamics being in a scaling regime for the longitudinal
flow. (More exact 3-D numerical simulations with sophis-
ticated equations of state have now been performed. The
interested reader can see for example [8]).

That is for v = z/t (no size scale in the longitudinal
dimension) the light cone variables 7, n:

(1.5)

become the fluid proper time 7 = ¢(1 — v2)/2 and fluid
rapidity:

n=1/2Inf(t - 2)/(t+2)] = 1/2In[(1 —v)/1+v)]|=0a
(1.6)

z = tsinh;t = T coshp




Letting u® = cosha;u® = sinha, we have when v = st
that 7 = a, the fluid rapidity. If one has an effective
equation of state p = p(g) then one can formally define
temperature and entropy as follows:

e+p="Ts;de =Tds;Ins = /(]S/(s +p) (1.7)
Then the equation:
w0 Ty, =0
becomes:
9" (s(r)u,) =0 (1.8)
Which in 1 4 1 dimensions becomes
ds/dt + s/ = 0 or sT = constant (1.9)

The assumption of Landau’s hydrodynamical model is
that the two projectiles collide in the center of inass frame
leaving a fixed fraction (about 1/2) of their energy in
a a Lorentz contracted disc (with the leading particles
going off). The initial cnergy density for the flow can
then be related 6o the center of mass encrgy and the
volume of the Lorentz contracted disk of energy. It is
also assumed that the flow of energy is unaffected by the
hadronization process and that the fluid rapidity can be
identified in the out regime with particle rapidity. Thus
after hadronization the number of pions found in a bin
of fluid rapidity can be obtained from the energy in a
bin of rapidity by dividing by the encrgy of a single pion
having that rapidty. When the comoving energy density
become of the order of z, we are in the out regime. This
determines a surface defined by

eeTr) =ms[V; (1.10)

On that surface of constant 7,

_ dE _ 1

=" / Tﬂlldﬂ
mgqu® dy  m;cosha , dn
doy, = Ay (dz. —dt) = drna*rp(coshn. — sinh 7))
IN
£d—7l- = ﬁ[(s + p) coshiar cosh(s) — a) — pcoshn)
(1.11)

where A is the transverse size of the system at freezeount.
If we are in the scaling regime where n = o then

dN A,

= ES(TI)'
which is a flat distribution in fluid rapidity. At finite en-
ergy, where scaling is not exact, only the central region
is flat and instead one gets a distribution whiclr is ap-
proximately Gaussian in rapidity. Exact munerical sim-
ulations (see for example [5]) show that the isocncrgy
curves do indeed follow a constant 7 curve in the central

region, so that the scaling result does apply for parti-
cle production in the central rapidity region at high but
finite center of mass energy.

In Landau’s modecl one needed an extra assumption to
identify the collective fluid rapidity o with particle ra-
pidity y = 1/2In[(E; + pz)/(E= — px)], where px is the
longitudinal momentum of the pion. What results from
our ficld theory simulations of both the production of a
fermion-anti fermion pairs from strong Electric fields (the
Schwinger mechanism [20]) as well as in the production of
pions following a chiral phase tranisition in the o model,
is that if we make the kinematical assumption that the
guantum cxpectation values of measurables are solely a
function of 7 we will obtain a flat rapidity distribution for
the distribution of particles. We can prove, using a coor-
dinate transformation, that the distribution of particles
in fluid rapidity is exactly the same as the distribution
of particles in particle rapidity. Furthermore we also will
find that it is a good approximation to use eq. 1.11 to
determine the spectra of particles. For the full single par-
ticle distribution E ;‘,’—J\-'; we will find that the Cooper-Frye
formula is valid with the identification of the interpolat-
ing number density with the single particle distribution
function of classical transport theory.

II. PRODUCTION AND TIME EVOLUTION OF
A QUARK-ANTIQUARK PLASMA

Our model for the production of the quark-gluon
plasma begins with the creation of a flux tube contain-
ing a strong color electric field. If the energy density of
the chromoclectric ficld gets high enough (see below) the
quark-anti quark pairs can be popped out of the vacuum
by the Schwinger mechanism [20]. For simplicity, here we
discuss pair production (such as electron-positron pairs)
from an abelian Electric Field and the subsequent quan-
tum back-reaction on the Electric Field. The extension
to quark anti-quark pairs produced from a chromoelec-
tric field is straightforward. The physics of the problem
can be understood for constant electric fields as a simple
tunncling process. If the electric field can produce work
of at least twice the rest mass of the pair in one compton
wavelength, then the vacuum is unstable to tunnelling.
This condition is:

h
eE— > 2mc?
me

. . . 2,3
which leads to a critical electric field of order 2",: ec

The problem of pair production from a constant Elec-
tric field (ignoring the back reaction) was studied by J.
Schwinger in 1951 [20] . The WKB argument is as fol-
lows: Onc imagines an clectron bound by a potential
well of order [15] & 2m and submitted to an additional
clectric potential eEx . The ionization probability is pro-
portional to the WKB barrier penetration factor:




Vo/e .
exp[-—?./ da{2m(Vy—|eE|2)}/*] = exp(—%mz/|cE|)
(<]

In his classic paper Schwinger was able to analytically
solve for the effective Action in a constant background
clectric field and determine an exact pair production rate:

w= [a'1172/('2‘.7r2)]ig:(—i++1 exp(—nmm?/|eE|).

n=1

By assuming this rate could be used when the Electric
field was slowly varying in time, the first back reaction
calculations were attempted using semi classical trans-
port methods. Here we directly solve the field equations
in the large-N approximation [16]. We assume for sim-
plicity that the kinematics of ultrarelativistic high encrgy
collisions results in a boost invariant dynamics in the lon-
gitudinal (z) direction (here z corresponds to the axis of
the initial collision) so that all expectation values are
functions of the proper time 7 = 12 — z2.We introduce
the light cone variables 7 and #, which will be identified
later with fluid proper time and rapidity . These coor-
dinates are defined in terms of the ordinary lab-frame
Minkowski time ¢ and coordinate along the heam direc-
tion z by

(2.1)

z=rsinhy , #t=r7coshn.

The Minkowski line clement in these coordinates has the
form

ds® = —dr? + d2? + dy? + 72dn? . (2.2)
Hence the metric tensor is given by
Juv = diag(—-1,1,1, TZ). (2.3)

The QED action in curvilinear coordinates is:
S= / ditiy (dctV)[—-;-\Tl’y"V,,\Il + %(vj,\ii)s"\p
= 1
—imPP — :IF,,,,F’"’]. (2.4)
where

V, 0 = (8, + T — ied,)T (2.5)

Varying the action leads to the Heisenberg ficld equa-
tion:

F'Vu+m)¥T =0, (2.6)

1 73 .
I:"YO (a‘r + ?‘2;) + 7L 0L+ ,‘T( {7 ’C'-"u) + ”'] T=0,

2.7)

and the Maxwell equation: E = E;(1) = —Ay(7)

L) _ ([ = 2 ([0 ). (29

T dr

We expand the fermion field in terms of Fourier modes
at fixed proper time: 7,

P(x) = / [(lk]Z[bs(k)zp:s(T)eikneip-x
+di (—K) P (T)e e~ iPx), (2.9)

The ‘{!),’fs then obey

dr 27

l 1 . .
[‘/0 (—(— + —) +ivy ko +ivimy, + m} Yies(r) =0, (2.10)

Squaring the Dirac equation:

N ofd 1Y . 3 fiea
Uie = | =% E-*-E —iyL-ki —iy'my+m xs\/;‘
(2.11)

PP xs = AsXs (2.12)

with Ay, = 1 for s = 1,2 and A; =
then get the mode equation:

~1 for s = 3,4, we

d? oy -
(F + UJ& - 7‘/\37‘-1]) fli(T) = 0, (2.13)
wi =7h+ kL +m? w, = ﬁ—}fé. (2.14)

The back-reaction equation in terms of the modes is

1dE(r) _

2e o
—— =) / [dK](K5 + mP)A|fL 12, (2.15)
s=1

A typical proper time evolution of E and j is shown in
fig. 4. Here an initial value of ¥ = 4 was chosen.
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FIG. 4. Proper time evolution of E and j as a function of
u = In(%) for an initial £ = 4.

A. Spectrum of Particles

To determine the number of particles produced one
needs to introduce the adiabatic bases for the ficlds:

()= /[dk] P AL TYuges(r)e ™" wm

+AOH (s Yo ()’ SR (2.16)

The operators by(k) and I)_g") (k; 7) are related by a Bo-
golyubov transformation:
b (k) = D afu(7)bs(K) + B (T)dl(~K)
d®(—k;7) =Y Bra(r)bs(K) + i (T)di(~k)  (2.17)
One finds that the interpolating phase space munber den-

sity for the number of particles (or antiparticles) present
per unit phase space volume at time 7 is given by:

n(l )= (0mlbOF(k; 7O (k;7)[00) = > 188 (1F

r=1,2 ERY

(2.18)

This is an adiabatic invariant of the Hamiltonian dy-
namics governing the time evolution of the one and two
point functions, and is therefore the logical choice as the
particle number operator. At 7 = 7 it is equal to our
initial number operator. If at later times one reaches
the out regime because of the decrease in energy density
due to expansion it becomes the usual out state phase
space number density. Although this does not happen
for the above pair production in the Mean field approxi-
mation,(becausc we have not allowed the electric field to
dissipate due to the production of real photons), reaching
an out regime does happen in the ¢ model if the energy
density decreases as a result of an expansion into the
vacuumn.

The phasc space distribution of particles (or antipart-
cles) in light cone variables is

we(7) = Flleys oL, 7) N (2.19)
Nl\7) = s ALy = . R

! w2dz? dk? dndky
A typical spectrum is shown in fig. 5 which

shows the effect of the Pauli- exclusion principle.
The raw results and also the results of averaging
over typical experimental momentum bins are shown.
This latter result compares well with a transport
approach including Pauli-blocking effects (see [16])
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FIG. 5. Comoving spectra of fermion pairs, before and after
binning for an initial clectric field E = 4 at 7=400

We now need to relate this quantity to the spectra of
clectrons and positrons produced by the strong electric
ficld (the production of electrons and positrons from a
strong clectric field is our prototype model for the pro-
duction of the quark gluon plasma from strong chromo-
clectric fields). We introduce the particle rapidity y and
my = y/k} +m? defined by the particle 4-momentum
in the center of mass coordinate system




ky, = (my coshy, ky,my sinhy) (2.20)
The boost that takes onc from the center of mass coor-
dinates to the comoving frame where the energy momen-
tum tensor is diagonal is given by tanhn = v = =/t. so
that one can define the “Auid” 4-velocity in the center of
mass frame as

u* = (coshn,0,0,sinh7) (2.21)
We then find that the variable
2
wp = {fm3 + —2 = k" u,, (2.22)

has the meaning of the energy of the particle in the co-
moving frame. The momenta k, that cnters into the
adiabatic phase space number density is one of two mo-
menta canonical to the variables defined by the coordi-
nate transformation to light cone variables. Namely the
variables

t+4=z
T = (1 - 2%)!/? 7)=%—ln( + >

have as their canonical momenta

= Et|t — kz[T ky=—FEz+th-. (2.23)

To show this we consider the metric ds® = d7* — 72di)?
and the free Lagrangian

m dal’ da¥

2.9
L= 5 I s ds (2.24)
Then we obtain for example
dr Or, dt dz
ky = m— = m[(a)zd 0~), —1
Bt~ k. -
—T—— = k'u, (2.25)

The interpolating phase-space density f of particles de-
pends on k), k3, 7, and is y-independent. In order to
obtain the physical particle rapidity and transverse mo-
mentum distribution, we change variables from (1, ;) to
(z,y) at a fixed 7 where y is the particle rapidity defined
by (2.20). We have

BN
ndy dli:

d*N

d";’f: = = / mdz d.’l,'"i J f(l"nv]l"_l_-, 7') (226)

where the Jacobian J is evaluated at a fixed proper time
'r :

7= |90y Oky[0z| _ |0OkyOn
on/dy 9n/o= dy 0=
_ macosh(n—y) _ Ohy, (2.27)
cosh) =

We also have

-~

y). (2.28)

Calling the integration over the transverse dimension the
cffective transverse size of the colliding ions A we then
obtain that:

B3N
wdy dk?,

kr =mycosh(n—y); ky;=—Tmysinh(n—

BN

4 (2.29)
ndndki

= ‘4,_1_ /(”f-,]f(kn, k..L; T) =

This quantity is independent of y which is a consequence
of the assumed boost invariance. Note that we have
proven using the property of the Jacobean, that the dis-
tribution of particles in partical rapidity is the same as
the distribution of particles in fluid rapidity!! verifying
that in the boost-invariant regime that Landau’s intu-
ition was correct.

We now want to make contact with the Cooper- Frye
Formalism. First we note that the interpolating number
density depends on &y, and k& only through the combi-

nation:
52
— 2 N — 1.4
wk—-wm + — = k*u
L Tz H

Thus f(k, k1) = f(ku*) and so it depends on exactly
the same variable as the comoving thermal distribution!.
We also have that a constant 7 surface (which is the freeze
out surface of Landau) is parametrized as:

(2.30)

do!* = A3 (d=,0.0.dt) = A)dn(coshn,0,0,sinh ) (2.31)

We therefore find

Ktda, = Agmy7cosh(n —y) = A |dk,] (2.32)
Thus we can rewrite our expression for the field theory

particle spectra as

PN

wdy di =AJ'/ dhinf (ks B, 7) = / F(Fuy, T)k*doy,
qd. i

(2.33)

where in the second integration we keep y and 7 fixed.
Thus with the replacement of the thermal single particle
distribution by the interpolating number operator, we get
via the coordinate transformation to the center of mass
frame the Cooper-Frye formula.

Schwinger’s pair production mechanism leads to an En-
ergy Momentum tensor which is diagonal in the(r,7,z1)
coordinate system which is thus a comoving one. In that
system one has:

T" = diagonal {e(7),py(7),pL(T),pL(T)}  (2.34)
We thus find in this approximation that there are two
separate pressures, one in the longitudinal direction and
onc in the transverse direction which is quite different
from the thermal ecuilibrium case. However only the
longitudinal pressure enters into the “entropy” equation.




Only the longitudinal pressure enters info the “en-
tropy” equation

stp= Ts (2.35)
d(er) .
~gr TPi=Eiy

d(ST) _— chla

dr T

In the out regime we find as in the Landau Model
sT = constant

as is seen in fig.6.
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FIG. 6. Time evolution of s7 as a function of 7

Here we have used 2.35 and the thermodynamic rela-
tion:

de =Tds

to calculate the entropy from the cnergy density and lon-
gitudinal pressure. An alternative cffective entropy can
be determined from the diagonal part of the full density
matrix in the adiabatic mumber basis. The encrgy density
as a function of proper time is shown in fig.7.
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FIG. 7. Time evolution of 7 as a function of 7

For our onc-dimensional boost invariant flow we find
that the energy in a bin of fluid rapidity is just:

dE

= / T““da,. = A 7coshne(T) (2.36)

dn

which is just the (1 + 1) dimensional hydrodynamical re-
sult.Here however z is obtained by solving the field theory
cquation rather than using an ultrarelativistic equation
of state. This result does not depend on any assumptions
of thermalization. We can ask if we can directly calculate
the particle rapidity distribution from the ansatz:

dN 1 dE A,
mcoshndny ~ m "~

(2.37)

dan

We sce from fig. 8. that this works well even in our case
where we have ignored rescattering, so that one does not
have an cquilibrium equation of state.

a
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FIG. 8. The ratio of the approximate rapidity distribution

(% cf‘;h m %) and cxact rapidity distribution as a function of

7.

In the field theory calculation the expectation value
of the stress tensor must be renormalized since the clec-
tric field undergoces charge renormalization. We can de-
termine the two pressures and the energy density as a
function of 7. Explicitly we have in the fermion casc.

&(r) =< Trr >=175, /[dk]R,.,.(k) + E%/2

where

Ror(k) =208 + m®) G | P - o If ) —w
—(0? + m?) (7 + eA)?/(8.°7?)

1. ., .
py(r)T =< Ty >=1, / (KA R () — SE37* (238)

where

R””(k): 2|f+|2 - (2‘”)_1(60 + /\.‘;7-')_l - AseA/8w512

r' ‘
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FIG. 9. Proper time evolution of Z

ITI. DYNAMICAL EVOLUTION OF A
NON-EQUILIBRIUM CHIRAL PHASE
TRANSITION

Recently there has been a growing interest in the
possibility of producing disoriented chiral condensates
(DCC’s) in a high energy collision [22-24]. This idea
was first. proposed to explain CENTAURO events in cos-
mic ray emperiments where there was a deficit of neutral
pions [25]. It was proposed that a nonequilibrium chiral
phasc transition such as a quench might lead to regions
of DCC [24]. To sce whether these ideas made sense
we studied numerically [26]the time evolution of pions
produced following a heavy ion collision using the lin-
ear sigma model, starting from the unbroken phase. The
quenching (if present) in this model is due to the expan-
sion of the initial Lorentz contracted energy density by
free expansion into vacuum. Starting from an approxi-
mate cquilibrium configuration at an initial proper time

~AseE / 8w’ — Asm/4® 72 4 b ds(m + c:’.»"l)2 /(167 72) 7 in the disordered phase we studied the transition to the
(2.39) ordered broken symmetry phase as the system expanded

and

pu(r) =<Tyy >=< Tew >

= (r) Y (IR G + ) Rer = 22 R}
+E% /2. | (2.40)

Thus we are able to numerically determine the dynamical
equation of state p; = p;(<) as a function of 7. A typical
result is shown in fig. 9.

and cooled. We determined the proper time evolution
of the cffective pion mass, the order parameter < o >
as well as the pion two point correlation function. We
studied the phase space of initial conditions that lead
to instabilitics (exponentially growing long wave length
modes) which can lead to disoriented chiral condensates.

We showed that the expansion into the vacuum of
the initial energy distribution led to rapid cooling. This
caused the system, initially in quasi local thermal equi-
librium to progress from the unbroken chiral symmetry
phase to the broken symmetry phase vacaum. This ex-
pansion is accompanied by the exponential growth of low




momentum modes for short periods of proper time for a
range of initial conditions. This exponential growth of
long wave length modes is the mechanism for the produc-
tion of disordered chiral condensates. Thus the produc-
tion of DCC’s results in an enhancement, of particle pro-
duction in the low momentum domain. Whether such an
instability occurs depends on the size of the initial fluctu-
ation from the initial thermal distribution. The relevant
momenta for which this exponential growth occurs are
the transverse momenta and the momenta &,, = ~Ez+1p
conjugate to the fluid rapidity variable 77 = tanh™'(z/t).
We also found that the distribution of particles in these
momenta had more length scales than found in local ther-
mal equilibrium. When there is local thermal equilib-
rium, the length scales are the mass of the pion and the
temperature which is related to the changing encrgy den-
sity, both of which depend on the proper time 7.

When we reexpress the number density in the comov-
ing frame in terms of the physically measurable trans-
verse distribution of particles in the collision center of
mass frame, we find that there is a noticable distortion
of the transverse spectrum, namely an enhancement of
particles at low transverse momentum, when compared
to a local equilibritun evolution. We will consider two
cases, one in which therc is cxponential growth of low
momentum modes due to the effective pion mass going
negative during the expansion, and one where the initial
fluctuations do not lead to this exponential growth. Both
situations will be compared to a purely hydrodynamical
boost invariant calculation based on local thermal equi-
librinm. In determining the actual spectra of secondarics,
we find that the adiabatic number operator of our Jarge-
N calculation replaces the relativistic phase space den-
sity g(z,p) of classical transport theory in determining
the distribution of pariticles in rapidity and transverse
momentum, This makes it easy to comparc our results
with the hydrodynamical calculation in the hoost invari-
ant approximation which assumes the final pions arc in
local thermal equilibrium in the comoving frame.

The model we use to discuss the chiral phase transition
is the linear sigma model described by the Lagrangian:

L= %0‘1’ 0P — %/\((I) & —v?)? + Ho. (3.1)
The mesons form an O(4) vector ® = (o, w;) This can be

written in an alternative form by introducing the com-
posite field: y = A(® - & — v?).

1 o1, :
Ly = —5¢i{(0+x)éi + I Taxe +He (3.2)

The effective action to leading order in large N is given

by [26]

@, x] = /(I":v[Lg(‘I),x.H) + %Ntr mGy'l  (3.3)

Gy'(r,y) =0+ ()] §'(x~—y)

Varying the action we obtain:
O+ x(@)mi=0 [B+x(z)lo=4H, (3.4)

where here and in what follows, #;,0 and x refer to ex-
pectation values. Varying the action we obtain

X = —v? + /\(0'2 + 7. 7T) -+ )\NGo(a:, :L) (3.5)

If we assume boost invariant kinematics [5] [7] which re-
sult in fat rapidity distributions, then the expectation
value of the cenergy density is only a function of the
proper time. The natural coordinates for boost invari-
ant (v = z/t) hydrodynamical flow are the fluid proper
time 7 and the fluid rapidity n defined as

1
T = (82 = 22)1/2, = -2-log( ).
To implement boost invariance we assume that mean (ex-
pectation) vahies of the fields ® and y are functions of T
only. We then get the equations:

t—z
t+z

7710, 70, ®i(7) + x(7) ®i(7) = Hén
(1) = A(=v® + ®%(7) + NGo(z,2;7, 7)), (3.6)
To determine the Green’s function Go(z,y;7,7') we in-

troduce the auxiliary quantum field ¢(z, ) which obeys
the sourceless equation:

('r"a,. 70, —7T720% - 0% + _\f(:v))d)(:v,'r) =0. (3.7)

Go(x,y; 7)) =< T{é(z, 7) (y,7")} > .

We expand the quantum fields in an orthonormal basis:
1 .
d(n,x1,7) = =y / [@®K](exp(ikz) fi(7) ax + h.c.)

where ka = kg + kiZy, [d3K] = dk,d?k, /(27)%. The
mode functions and y obey:

. ].';2 - 1
fet (3 +EL+ (M) + 5) fu =0 (3.8)

X(1) = A(=e? + 830+ TN [IPHIAMP (142 m).
(3.9)

We notice that when x goes negative, the low momen-
tum modes with

E2y1/4
——— +kL <Ixl

grow exponentially. However these modes then feed back

into the \ equation and this exponential growth then
gets damped. It is these growing modes that lead to the

10




possiblity of growing domains of DCC’s as well as a mod-
ification of the low momentum distribution of particles
from a thermal one. The parameters of the model are
fixed by physical data. The PCAC condition is

6,,.4;',(9;) = fam27ni(2) = Hr'(x).

In the vacuum state xoo0 = m209 = H, so that g
fr=92.5 McV. The vacuum gap equation is

1
2./k2 +mZ’

This leads to the mass renormalized gap equation:

A
m2 = = ? + Af2 4 AN / [@®K]
0

X(1) —mE = =AfZ 4 \E(7)

20 [PRIAEI @+ 2m) - 5

2V E2 4+ m? } (310)

A is chosen to fit low encrgy scattering data as discussed
in [17].

If we assume that the inititially {(at 7o = 1) the system
is in local thermal cquilibrium in a comoving frame we
have

1

N = ———
6/30152 -1

(3.11)

where 8o = 1/Tp and E} = 4/ I;oij'— + I:ﬁ_ +\(70)-

The initial value of y is determined by the equilib-
rium gap equation for an initial temperature of 2004feV
and is .7fm ™2 and the initial value of o is just x’_{) The
phase transition in this model occurs at a critical temper-
ature of 160A/cV. To get into the unstable domain, we
then introduce fluctuations in the time derivative of the
classical field, We varied the value of the initial proper
time derivative of the sigma field expectation value and
found that for 79 = 1fm there is a narrow range of ini-
tial values that lead to the growth of instabilities. namely
25 < |o] < 1.3.

Fig.10 displays the results of the numerical simulation
for the evolution of y (3.8)-(3.9). We display the aux-
iliary field y in units of fm=2 , the classical ficlds &
in units of fm~! and the proper time in units of fin
(1fm~' = 197M/eV) for two simulations, onc with an
instability (6|, = —1) and one without (6|, = 0).

11

X
00
05 . . !
1.0 6.0 1.0 160
1 (fm)

FIG. 10.Proper time evolution of the y field for two differ-
cut initial values of 6.

‘We notice that for both initial conditions, the system
ceventually settles down to the broken symmetry vacuum
result as a result of the expansion. The evolution of the
quantities o and 7; are displayed for various initial con-
ditions in fig.11.
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FIG. 11Proper time cvolution of the o field and = field for
four different initial conditions with f. = 92.5MeV,125MeV.




To determine the spectrum of particles we introduce
the interpolating number density which is defined by ex-
panding the fields in terms of mode functions f which
are first order in an adiabatic expansion of the mode
equation.

0 e—iyk(T)
=i
WY,

where wi(7) = (k3 /72 + 2 4 x(7))1/2. This leads to the
alternative expansion of the ficlds:

dyy [dt = wy, (3.12)

d(n,xy,T) = -;Tl—ﬁ /[d“k] (exp(ika) f{(7) ak(T) + h.c.)
(3.13)

The two sets of creation and annihilation operators are
connected by a Bogoliubov transformation:
ar (1) = a(k, 7)ar, + Bk, 'r)af_k. (3.14)

a and 3 can be determined from the exact time cvolving
mode functions via:

0=
alk,7) = i(f,?"%‘i_i - ag;‘_ fr)
0
Bk, 1) = i( f,‘g%fl_’i - %LT’— Fre)- (3.15)

In terms of the initial distribution of particles ng (k) and
B we have:

k() = flg i, 7) =< al(T)ar(r) >

= ng(k) + |B(k, T)|2(1 + 2n0(k)). (3.16)

ny(7) is the adiabatic invariant interpolating phase space
number density which becomes the actual particle mum-
ber density when interactions have ceased. When this
happens the distribution of particles is

d°N
w2da’ di3 dndk,’

[k kp,7) = (3.17)

We now need to relate this quantity to the physical spec-
tra of particles measured in the lab. At late 7 our sys-
tem relaxes to the vacuum and ) hecomes the square of
the physical pion mass m?. As before, we introducec the
outgoing pion particle rapidity ¥ and my = /4 + m?
defined by the particle 4-momentum in the center of
mass coordinate system. The boost that takes one from
the center of mass coordinates to the comoving frame
where the energy momentum tensor is diagonal is given
by tanh#n = v = z/t, so that one can define the “fluid”
4-velocity in the center of mass frame as

w" = (coshn,0,0,sinhn) (3.18)

The variable

;2
— 2 N — .4
w,;_\/m + —= = kHu
L T2 u

has the meaning of the energy of the particle in the co-
moving frame. As discussed earlier the variables 7,1 have
as their canonical momenta

(3.19)

kr = Et|T —k:zfr ky=—FEz+th.. (3.20)

Changing variables from (1, ky) to (z,y) at a fixed T we
have

PN BN 2
Bk wdydk} T / mdz dwy J (ki)
=4y / ey f(Fony oLy T) (3.21)

This is again converted into the Cooper-Frye form by
noting that a constant 7 surface is parametrized as:

do* = A, (dz,0,0,dt) = A dn(coshn,0,0,sinhn) (3.22)

Thus
k'da, = Aymyrcosh(n —y) = Auldks]  (3.23)
and
BN
W = A_L/dlc,,f(k,,,k_l_, T)= /f(km ki, 7T)k*do,

(3.24)

This reconfirms the idea that the interpolating phase
space number density plays the role of a classical trans-
port phase space density function, as was found in our
calculation of pair production from strong electric fields
[16]

We wish to compare our nonequilibrium calculation
with the results of the hydrodynamical model in the same
boost-invariant approximation. In the hydrodynamical
model of heavy ion collisions [5], the final spectra of pions
is given by a combination of the fluid flow and a local
thermal equilibrium distribution in the comoving frame.

BN &N

B wdk3 dy = (325)

/ g(z, k)kHdoy,

Here g(a:, k) is the single particle relativistic phase space
distribution function. When there is local thermal equi-
librium of pions at a comoving temperature T¢(7) one
has
g(x, k) = g={explkfu,/T.) — 1} 1. (3.26)
In Figures 12 and 13 we compare the boost invari-
ant hydrodynamical result for the transverse momentum
distribution using critical temperatures of T, = 140,200
MeceV to the two nonequilibrium cases represented in
figure 10. Figure 12 pertains to the initial condition




6lr, = —1 In this case there is a regime where the ef-
fective mass becomes negative and we sce a noticable
enhancement of the low transverse momentum spectra.
We have normalized both results to give the same total
center of mass encrgy Eg,,. Figure 13 corresponds to the
initial condition ¢|,, = 0. Herc we notice that thercis a
little enhancement at low transverse momenta.

dofdt=-1 initial conditions
150,0 T T

mean field approximation

100.0 |

Ko EGN/AK

50.0

FIG. 12. Single particle transverse momentum distribn-
tion for & = —1 initial conditions compared to a local ecui-
librium Hydrodynamical caleulation with boost invariance.
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FIG. 13. Single particle transverse momentum distribution

for ¢ = 0 initial conditions compared to a local equilibrium
Hydrodynamical calculation with boost invariance.

So we see that a non-equilibrium phase transition tak-

ing place during a time evolving quark-gluon or hadronic
plasma can lead to an enhancement of the low momen-
tum transverse momentum distribution. In particular,
if a Centauro type event is not accompanied by such an
enhancement one would be suspicious of ascribing this
event to the production of disoriented chiral condensates
as a result of a rapid quench. For the case when we
have massless goldstone pions in the o model (H = 0)
[27],then x goes to zero at large times. In that case we
find the amusing fact that the equation of state becomes
p = £/3 at late times. This is true even though the final
particle spectrum is far from thermal equilibrium. This
cquation of state is shown in Fig 14.

10¢
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0.0

0.0 §0.0 1000 150.0

FIG. 14. Equation of state L as a function of r for the
massless & model where we start from a quench.
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