

FEB 18 1965

LA-RC-6899
83768

Invited paper to be presented by L. B. Asprey at The International Conference on Protactinium Chemistry, July 2-8, 1965, Orsay (S-et-O), France.

MASTER

PREPARATION AND PROPERTIES OF SOME ALKALI FLUORIDE
1
COMPLEXES OF PENTAVALENT PROTACTINIUM

BY L. B. Asprey, R. A. Penneman, and F. H. Kruse

Los Alamos Scientific Laboratory, University of California,
Los Alamos, New Mexico, U. S. A.

CONF-650728-3

English Summary:

Complex fluorides containing pentavalent protactinium and alkali fluoride have been made, both from aqueous hydrofluoric acid solution and by fluorine oxidation of intimately ground mixtures containing PaF_4 and alkali fluoride. The major part of the work has been done on the rubidium - Pa(V) - fluoride system. X-ray data are reported. Correlation of the properties of the complex fluorides of pentavalent protactinium with those of pentavalent uranium are made.

French Summary:

On a préparé des complexes fluorures qui contiennent du protactinium pentavalent et de l'alcali fluorure à partir d'une solution d'acide aqueux fluorhydrique aussi bien que à partir de l'oxidation fluor de mélanges intimement moulus qui contiennent du PaF_4 et de l'alcali fluorure. On a fait la plupart du travail sur le système rubidium fluorure - Pa(V) . On expose des données-rayons X. On fait la corrélation des propriétés des fluorures complexes du protactinium pentavalent avec celles de l'uranium pentavalent.

This paper was submitted for publication in the open literature at least 6 months prior to the issuance date of this Microcard. Since the U.S.A.E.C. has no evidence that it has been published, the paper is being distributed in Microcard form as a preprint.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

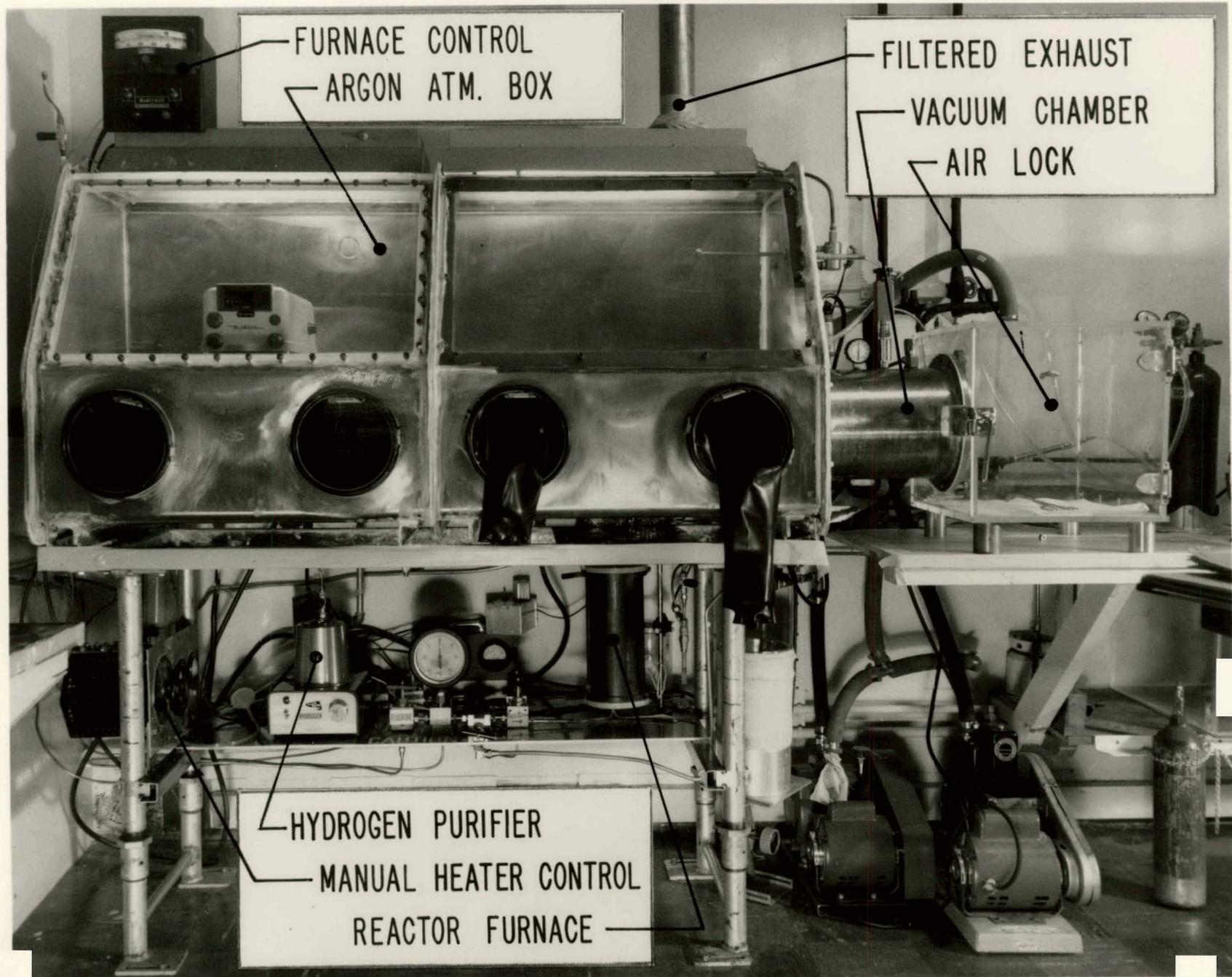
Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

INTRODUCTION

Numerous compounds in the form of non-oxygenated fluoride complexes of the types M_aXF_{5+a} where X is a pentavalent heavy element and M is an alkali ^{2, 3, 4, 5, 6} or ammonium cation, have been prepared. In the 5f series, the ^{2, 3, 4, 5, 6} pentavalent uranium system has been studied extensively, particularly from the point of view of crystal structures of the compounds having various stoichiometric ratios of alkali to uranium.

Several synthetic routes to the preparation of these compounds have been developed. One method consists of heating in an inert atmosphere an intimate mixture of UF_5 and the desired alkali fluoride in some specific stoichiometric ratio. Such preparations are micro-crystalline powders, yielding excellent X-ray powder diffraction patterns. A second method involves the dissolution of UF_5 in concentrated aqueous HF followed by addition of an alkali fluoride. Crystals large enough for X-ray single crystal analysis are often obtained. Still another method which works even for the light alkalis utilizes anhydrous HF containing an alkali fluoride in solution. ⁶ Addition of UF_5 to this produces a blue solution characteristic of the UF_6^- complex. Slow evaporation of the solution yields large single crystals (up to several millimeters) suitable for optical studies. Complex compounds of pentavalent protactinium have been made by the first method, the only difference being that a mixture of PaF_4 and the alkali fluoride were treated with fluorine to give $Pa(V)$. The second method used Pa_2O_5 instead of PaF_5 as the starting material. X-ray powder patterns were used as the primary means of identification.

EXPERIMENTAL


Materials. — Pa_2O_5 and PaF_4 were used as starting materials. The protactinium was that originally purified by the British workers and subsequently found to contain niobium impurity. Analysis of a 100 mg. portion showed our material to contain 2.2 percent Nb. This was reduced to < 0.1 percent by two precipitation steps utilizing K_2PaF_7 . The PaF_4 was prepared by hydrofluorination of Pa_2O_5 in the presence of hydrogen. Anhydrous RbF was prepared by fluorination of commercial RbF at 300°C .

Technique. — Solution preparations were made using Reagent Grade materials. Platinum or polyethylene ware was used. Anhydrous reactions were carried out in an inert Argon atmosphere. The apparatus is shown in Fig. 1. Sapphire was usually used for fluorinations, platinum for hydrofluorination. The reactor was constructed of nickel.

X-ray powder diffraction patterns were obtained using a Debye-Scherrer 114.6 mm. camera with Ilford-G film and filtered Cu radiation. The samples were sealed in 0.2 mm. diameter Lindemann glass capillaries. Single crystal studies were made using Weissenberg and Buerger precession cameras. Optical studies were made using a Zeiss polarizing microscope.

Chemical analysis was performed on the uranium compounds only. Stoichiometry was established for the Pa compounds by weighing out the exact amounts of alkali fluoride and protactinium oxide or tetrafluoride to give the desired ratio. Analogy of the structure to U compounds (where possible) was used to confirm the formula of the protactinium compound.

Fig. 1. -- Dry Box Assembly.

RESULTS

Optical and X-ray Properties of MPaF₆ Compounds. — Optical examination shows that RbPaF₆ and RbUF₆ both give biaxial optic figures showing that they are of orthorhombic or lower symmetry. Single crystal X-ray examination shows that these compounds are pseudo-hexagonal but apparently monoclinic. There are a set of six compounds, KPaF₆, NH₄PaF₆, RbPaF₆, KUF₆, NH₄UF₆, and RbUF₆ which have very closely related structures. Further work is in progress and will be reported. Optical data on the uranium compounds has been completed and is given below as a guide to what the Pa compounds may be expected to be.

Table I
Optical Properties of Crystalline MUF₆ Compounds
(M = K, Rb, Cs, NH₄)

KUF₆

Light yellow-green chunky prisms or pseudo-hexagonal plates; parallel extinction.

Biaxial, positive

$$n_x = 1.480, n_y \cong 1.483, n_z = 1.524$$

2 V $\cong 25^\circ$ (Average of 30° calc and 20° visual estimate.)

Low dispersion

Small value of $n_y - n_x$ contributes to pseudo-hexagonal character of these biaxial fluoride complexes.

RbUF₆

Pale yellow-green laths or thick plates; parallel extinction. Internal striations and/or twinning parallel needle axis.

Biaxial, positive

$$n_x = 1.481, n_y \cong 1.483, n_z = 1.518$$

2 V $\cong 25^\circ$

Table I (Contd.)

CsUF₆

$a_0 = 5.417 \pm .004 \text{ \AA}$, $\alpha = 95^\circ 45'$; Rhombohedral KOsF₆ Structure Type.

Pale blue rhombs, rhombohedral cleavage, 45° extinction in thin rhombic plates. Polysynthetic twinning and striations parallel to rhomb edges evident.

Uniaxial, positive

$n_o = 1.468$, $n_\epsilon = 1.511$; birefringence = 0.043

NH₄UF₆

Yellow-green chunky prisms; parallel extinction but no striations or twinning was observed. Pseudo-hexagonal symmetry appeared, but not as evident as for KUF₆ and RbUF₆.

Biaxial, positive

$n_x = 1.488$, $n_y \cong 1.490$, $n_z = 1.520$

2 V $\cong 60^\circ$ (visual estimate)

2 V $\cong 30^\circ$ (calc. from approx. n_y)

Table II

X-ray Properties of RbPaF₆ and RbUF₆

<u>RbPaF₆</u>		<u>RbUF₆</u>	
d, Å	I/I ₀	d, Å	I/I ₀ [*]
6.00	S	5.96	66
5.85	S	5.78	14
4.18	VS	4.15	97
4.02	M	4.01	40
3.66	W	3.64	12
3.46	W	3.40	9
3.33	VS	3.31	100
3.00	M	2.97	19
2.91	M	2.89	13
2.67	MW	2.64	9
2.63	W	2.61	3
2.39	VW	2.38	6
2.23	S	2.21	37
2.20	S	2.18	18
2.09	M	2.07	14
2.01	M	2.00	24
1.90	M	1.89	11
1.86	M	1.87	11
1.81	M	1.81	28
1.79	W	1.79	8

* Peak height from diffractometer scan normalized to 100.

Discussion

Single crystal studies of these 1:1 MPaF₆ compounds will be reported at the Conference. The MPaF₆ compounds are isostructural with the MUF₆ compounds when M = K, NH₄ and Rb. They have lower symmetry than the corresponding MTaF₆ compounds. The compounds of the class M₂PaF₇ where M = K, NH₄ and Rb are not isostructural with either M₂UF₇ or M₂TaF₇. The rubidium compound, Rb₃PaF₈, is again isostructural with the corresponding uranium compound, Rb₃UF₈. X-ray properties of the above will be available at the Conference.

References

1. This work was performed under the auspices of the U. S. Atomic Energy Commission.
2. R. D. W. Kemmitt, D. R. Russell, D. W. A. Sharp, J. Chem. Soc. 1963, 4408 (1963); B. Cox, *ibid.* 1956, 876 (1956).
3. L. B. Asprey and R. A. Penneman, *Science* 145, 924 (1964).
4. R. A. Penneman, G. D. Sturgeon, L. B. Asprey, *Inorg. Chem.* 3, 126 (1964).
5. L. B. Asprey and R. A. Penneman, *Inorg. Chem.* 3, 727 (1964).
6. George D. Sturgeon, R. A. Penneman, F. H. Kruse, and L. B. Asprey, "Synthesis of Alkali Uranium(V) Fluoride Complexes in Anhydrous Hydrofluoric Acid", *Inorg. Chem.* - In Press.