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Abstract

We present a numerical method for solving Poisson’s equation, with variable coefficients and
Dirichlet boundary conditions, on two-dimensional regions. The approach uses a finite-volume
discretization, which embeds the domain in a regular Cartesian grid. We treat the solution as
a cell-centered quantity, even when those centers are outside the domain. Cells that contain a
portion of the domain boundary use conservative differencing of second-order accurate fluxes,
on each cell volume. The calculation of the boundary flux ensures that the conditioning of
the matrix is relatively unaffected by small cell volumes. This allows us to use multi-grid
iterations with a simple point relaxation strategy. We have combined this with an adaptive
mesh refinement (AMR) procedure. We provide evidence that the algorithm is second-order
accurate on various exact solutions, and compare the adaptive and non-adaptive calculations.

1 Introduction

In this paper we present a numerical method for solving the variable-coefficient Poisson equation,
with Dirichlet boundary conditions,

V-6V¢=pon R, ¢=gond, (1)

on a bounded two-dimensional region 2, where 8 = B(z,y) > 0. Our approach uses a finite-volume
discretization, which embeds the domain in a regular Cartesian grid. We treat the solution as cell-
centered on a rectangular grid, even when the cell centers are outside the domain. We discretize (1)
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on each cell by applying the divergence theorem on the intersection of that cell with Q. This leads
to a conservative, finite-volume discretization on the cells that intersect 9. Thus, the discretized
operator is centered at the centroids of partially covered cells, in contrast to the solution values,
which are centered on the rectangular grid. The fluxes at the cell edges are computed using
second—order accurate differences of the cell-centered values of the solution. In cells away from the
boundary, the algorithm reduces to the standard five-point discretization for (1), with a truncation
error that is second order in the mesh spacing. On the boundary, this discretization results in a
first-order truncation error; however, this boundary truncation error induces a solution error that
is third-order in the mesh spacing, so that the overall solution is second-order accurate. For each
partially covered cell, the flux through the boundary is calculated using only values from other cells.
This leads to a linear system whose conditioning properties are uniform independent of the smallest
partial cell volume, and are essentially the same as that of a problem without irregular boundaries
having the the same rectangular mesh spacing. This allows us to use multi-grid iterations with a
simple domain-decomposition point relaxation strategy. We have combined this with an adaptive
mesh refinement (AMR) procedure, based on the block-structured approach of Berger and Oliger
[9]. We show evidence that the algorithm is second-order accurate for various exact solutions, and
compare the adaptive and non-adaptive calculations.

Our motivation is to provide a conservative discretization of engineering problems, such as
viscous fluid flow or heat conduction, on changing domains. Numerical algorithms for these appli-
cations require the solution of elliptic equations on irregular domains. Generally, such equations
are derived from a conservation law by using a control volume analysis, along with assumptions
about the fluxes of conserved quantities through 'the surface. This point of view, when applied to a
numerical method, has traditionally led to conservative finite-volume formulations. In particular,
Cartesian grid embedded boundary methods can have advantages over structured or unstructured
grid methods, because of simpler grid generation. The underlying regular grid also allows the use
of simpler data structures and numerical methods over a majority of the domain. Accuracy is
maintained at the boundaries using a more complicated algorithm, but this extra work is on a
one-dimension-smaller set of points.

The approach taken here is motivated by two sets of ideas. The first is that of using conservative
volume-of-fluid representations of fronts and irregular boundaries [12, 7, 27, 2]. In this approach,
the irregular boundary geometry is represented locally by intersecting the domain  with each
rectangular cell and approximating the operator using a conservative, finite volume discretization.
These methods have been very successful for a variety of problems involving hyperbolic conservation
laws in in two and three space dimensions, particularly when useéd in concert with AMR. The second
set of ideas motivating our approach is that of Young, et al. [31], in their treatment of steady
transonic potential flow around complex bodies. They used a variational formulation based on
rectangular finite elements, where nodal values of the solution could be inside or outside the domain.
However, the corresponding volume integrals were only over the regions of each cell, that were inside
the physical domain. These two sets of ideas were first combined for solving the incompressible Euler
equations using a projection method, in [5]; the algorithm required solving a Poisson equation with
Neumann boundary conditions. They included both variational and conservative (MAC-based)
forms of the projection operator. We have modified the conservative formulation in [5], to make it
formally consistent, and added a means of imposing Dirichlet boundary conditions that maintains
the good conditioning of the matrix. : :

A variety of finite difference discretizations for (1) for the case of irregular boundaries have
been presented; a good summary can be found in [20]. The “immersed boundary” method ([28] for
example), uses discrete delta functions on domain boundaries, to enforce no-flow boundary condi-
tions for incompressible flows on changing domains. This method is extremely flexible, although it
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has been shown to lose accuracy in some situations [20]. A related approach called the “immersed
interface” method [20], uses a rotated coordinate system and interface jump conditions to find a
stencil with genuinely first-order accurate truncation error. This has been successfully applied to
a variety of problems with immersed boundaries [21], and has recently been augmented with fast
solution methods, such as GMRES [22] and multi-grid [1] algorithms. The practical extension of
this method to problems in three dimensions, and those with variable coefficients, is still bemg
pursued.

Another approach was presented by McKenney, et. al. [25], which used a fast multipole and
boundary integral method for Laplace’s equation, in conjunction with a finite-difference method
for Poisson’s equation with discontinuous right-hand side [24]. Their method was second-order
accurate, even in very complicated regions, and had near-optimal work estimates. Extension of
these methods to the variable-coefficient case or to three dimensions is pending. One significant
contribution to the approach has been made by Greengard and Lee [16]). They combined a similar
integral equation approach with spectral approximation on an adaptive quad-tree data structure.
The resulting combination was extremely well-suited for smooth right-hand sides with compact
support.

Adaptive solutions of problems like (1) have been dominated by the finite element method
([6, 15, 19], in addition to many others). This approach has the advantage of a rigorous theoretical
framework, and a vast number of optimized commercial implementations. Two factors that must
be considered, however, are grid generation strategies for complicated domains, and performance
of the resulting data structures. Generally, when applying the finite-element method to moving
boundary problems, one must take great care that the grid generated is of good quality everywhere
(see, for example [30]). In addition, close attention must be given to efficient organization of the
resulting data structure.

For the remainder of this paper, we will give the details of the algorithm and its implementation.
In Section 2, we describe the discretization in one dimension, and provide some analysis of the
accuracy of the method, as well as the conditioning of the resulting linear system. We then describe
the non-adaptive algorithm for two dimensions in Section 3. In Section 4, we discuss our multi-grid
iterative method; Section 5 explains the modifications needed to include adaptive mesh refinement.
In Section 6, we presént numerical test cases and demonstrate the method’s accuracy. Finally, the
last section contains our conclusions and plans for future work.

2 One-Dimensional Algorithm
- Consider the Poisson equation with Dirichlet boundary conditions, in one dimension:
Pz = p for z € [0, £], with ¢(0) = &%, ¢(¢) = &7. (2)

We discretize the interval [0, £] with IV finite difference cells, by first choosing a volume fraction for
the last cell, A € (0,1], and then defining the grid spacing as

_t
N_1+4A°

Then the size of each finite-difference cell is Az, except for cell N which abuts z = £, which is AzA
wide. We denote by z; i+L the locations of the edges of the cells; thus, ; TR Az, 1=0,...,N-1,
while z, +1 = £. Our dlscretlzed solution is denoted as ¢;, 7 = 1,..., N, the values of Wluch are

Az =
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Figure 1: Diagram of the second-order stencil for the gradient at z = £. A quadratic polynomial is fitted to
the two values of ¢ in neighboring cells, and the value at the interface; the value in the last cell is not used in the
calculation.

centered at the ceﬁters, of cells of lengtﬁ Az:

o ((-2)8). =1

Note that ¢y is assumed to be centered at the center of the regular, “Cartesian” cell, rather than
at the center of the last irregular cell, even if the center of the Cartesian cell is outside the problem
domain. In that case, we are assuming that the solution ¢ can be extended smoothly a small
distance beyond the rightmost boundary, and that discrete solution approximates the value of that
extended solution. The discretized right-hand side, however, is centered on the irregular cell:

' T, L +$i+l. »
pi =P'(——2 5 2) )

Our approach is then based on a conservative discretization of (2) on each full or partial cell.

. Fi+.§— - F_
(Lg)i= —t2 =3

L T i

(3)
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~

On interior edges, we use centered differences to approximate gradients on cell edges:

-F’i'l"% = %%Ax—@.’ i= 1"”7‘N—1

Note that this same gradient discretization is used on the interior edge of the partial cell, NV,
abutting z = £ (Figure 1). This expresses the idea that values of the solution are cell-centered,
even if those centers are outside the domain. In addition, these gradients are accurate to O(Az?),
and in the interior of the domain, the discretization (3) reduces to the standard three-point finite
difference scheme. It is well-known that the cancellation of these errors in the gradient, for constant
grid spacing, yields a second-order accurate discretization of (2).

To approximate a gradient at z = 0, we fit a quadratic polynomial through the values 0, ¢,




and ¢, and evaluate its slope at z = 0:

P, =

= o (91— 6 - 589

This is a standard, second-order finite difference discretization. For the gradient at z = £ we apply a
similar one-sided difference stencil, but using values only in other cells. The second-order difference
stencil can be written as

Fy =g i 7 (( ¢N—1) Z—i— (i’f - ¢N—2) Z—;) (4)

The difference formula is depicted in Figure 1, for the gradient at z = £. For partial cell N abutting
z = {, the resulting difference formula is

where gy is value of p, at the center of the irregular cell N.

The truncation error of this method can be completely analyzed. Let ¢§ be the value of the
exact solution at centers of Cartesidn cells: ¢f = ¢((i + 3)Az). Then the truncation error 7 is
defined as

7 = pi — (L¢%);
Note that 7, like p and (L¢°), is centered on the irregular grid. The error £ = ¢ — ¢¢ satisfies the
following system of equations:
LE=71,3"=8 =0 ‘ (6)

We have the following error estimates for 7:

7 = ClAiB
r; =CiAz%,i=2,...,N~-1 (7
™ =Cn&E A

In the estimates (7), Ci,...,Cn_1 are functions of Az that are uniformly bounded in Az, 3,
provided ¢ is smooth. Cp is a function of Az and A that is uniformly bounded as both those
quantities vary. At first glance this estimate of 7y may seem singular as A — 0, but the singularity
is matched by that in the denominator of the expression defining the operator in (5). Ultimately,
this leads to an estimate of £ = O(Az?), uniformly in A. We demonstrate this as follows.

Multiplying both sides of (3) by z; +1 7 %L and summing, we obtain

Fi.;.% = FN.*.% + Yicjen D2T; + ADzTN
=Fy 1 +A2° 3 oy Ci+ CNA? i $> 0
= FN+1 + Az? El<j<N C;+ CNAZ2+ CiAZ2 i i=0

—FN+1 +.D 1A$2

(8)

where the D;’s are uniformly bounded in Az, ¢, and A. Given this expression for the fluxes, we can
solve for the &’s:




& = %(3@ +Fy)
&' = fl + El<_7<z AZEFJ_*___, = 27' "7N
=(i— 2)A.:z:FN_*_% + E;Az?

(9)

Again, the E;’s are uniformly bounded in Az, ¢ and A. Combining (8), (9), and the boundary
condition (4), we obtain the following relation for Fi, L .

AzFy, =—26v-1+§ €N- (10)
= (__z.(g dl) + (E dz))FN+1 + (—LEN 9 — —ZEN_;[)A.’I:
Solving for Fiy, 1, We finally obtain:
dzEN 2 dzEN 1 .
Fyyi= Wdy ¥ d2) Az (11)

Thus, Fy, 1 is O(Az?), uniformly in A. From this and the estimates (9) we obtain the result that
£ is O(Az?) uniformly in A.

We can obtain more detailed information regarding the effect of the larger truncation error in
the irregular cell. We compute £p, the contribution to £ from 7n separately, by solving

(Lép): =0ifi#N (12)
(Lép)n =17n

Using the explicit form of the solution given above, we find in that case that

2
A i INEZ L o(Acd) i=0,...,N
: (R-)¢

so that £p = O(Az®), uniformly in A. Thus we observe that the apparently singular contribution
to the truncation error in the irregular cell does not lead to a singularity in the error estimate, due
to the multiplication by the length of the cell in (8). In fact, &p, the contribution to the error, is
two orders smaller than 7, uniformly in A.

This fact can be understood from the point of view of potential theory. We can view the error
equation (6) as being approximated by a continuous potential theory problem for (2), in which the
charge is piecewise constant in cells with values given by the 7;’s. In that case, the contribution to
the field £ from 7y, in the sense of (12 is given by a dipole located at £ of strength

(Total charge in the cell) x (Length of the cell) = Ty x (Length of the cell)? = O(Az®)

uniformly in A. The reason this is a dipole, rather than a monopole with charge AAzTy, is that
the effect of the homogeneous Dirichlet boundary condition at £ on the field induced by 7 can
be represented by an image charge with the same total charge, but of opposite sign, located at a
distance %AA:Z: to the right of £. We have shown that the conclusion from this potential-theoretic
model is rigorously correct in one dimension. For the extension of this algorithm to two space
dimensions in the next section, we will use this idea to interpret the various contributions to the



8000 ! ; — : ; ; !
2600
2400
2200
2000

1800

cond(DL)

1600

1400

1200

1000

A

Figure 2: The effect of volume fraction A, on the two-norm condition number of the linear system, DL, where D
is a diagonal matrix with ones on the diagonal, except for Dnn = A, for our system (dashed) and a piecewise-linear
Galerkin discretization, with IV — 1 variables, on the same grid (solid).

error observed numerically.

Finally, we wish to emphasize that the use of a stencil for the irregular boundary flux that
is well-separated from the boundary is essential. The use of such a stencil leads to the uniform
boundedness of the conditioning of the linear algebra as A approaches zero. This is definitely not
the case with more conventional Galerkin approximations on this kind of irregular grid. In Figure
2 we plot the condition number of the volume-weighted matrix versus A, with N = 50, along with
that of a piecewise-linear Galerkin discretization, with N — 1 degrees of freedom and the same cell
sizes. Note that we have effectively eliminated the problem of poor conditioning in the presence
of arbitrarily small volume fractions. The price we pay is that the matrix is not symmetric due to
the gradients calculated from quadratic polynomials. Also, the solution may not satisfy a discrete
maximum principle, since the centering of ¢y will be outside the domain if A < %

3 Two-Dimensional Case

The algorithm in the previous section extends naturally to more space dimensions, because it is
based on a finite-volume formulation. The dependent variables ¢ are cell-centered on a uniform
rectangular grid: ¢;; = ¢((i — 3)Az,(j — 1)Ay), where ¢ is a solution to (1). The operator
is discretized by integrating (1) over the control volume of each cell; however, to calculate this
integral we must first define how the domain boundary is represented. We use a piecewise-linear
representation in each cell, which is defined by the intersection of the domain boundary, or “front,”
with the cell edges (Figure 3). The volume fraction and front normal are then determined from this
representation. In each cell (¢, 7), a simple relationship exists between the inward-facing normal n,
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Figure 3: Diagram showing (a) the control volume formulation, which is based on the divergence of appro-
priately-centered fluxes, and (b) how a properly-centered normal derivative is found by interpolating between two

neighboring values.

the area of the front A¢, and the area fractions, called apertures, a € [0, 1], of the cell edges:
A{jng’j = A$ (ai_*_%’j - ai_%,j) i+ Ay (ai’j.*_é_ - ai’j_%)j . (13)

For full cells, all aperture values are unity, implying that A’ is zero, and A = 1, while in partial
cells Af is non-zero. Note also that this interpretation disallows very narrow (with width less than
Az) “fingers” of the boundary that enter and exit through the same cell edge. A similar algorithm
can be used for three dimensions, where the cell faces are defined analogously, and they in turn
define the front normal and area. See [27] for a discussion of this kmd of geometry discretization,
and some of its limitations.

The first step in the derivation is to integrate (1) over each cell’s control volume, and take the
divergence of surface fluxes. In order to best approximate the surface integral of these fluxes, they
are centered at the midpoint of each full or partial edge, as in Figure 3(a). The resultmg dlfference
operator can be written as

. @ o— —1 ] ' } f
(L¢)1,J —  AzAyh;; (’Fi'*";‘yj - 'Fi"'%rj + 'Fi’j'l';_ - E’ -5 -Fi’j) (14)
= Pij,

where we have introduced the volume fraction, A; ; € [0,1], and F, the flux through each surface
of the control volume in Figure 3(a). For full edges, the flux is found by first calculating a gradient
of ¢ normal to the face, using central differencing of neighboring cell values. Note again that ¢
is treated as a cell-centered quantity, even when that center is beyond the domain boundary (as
demonstrated in Figure 3). Finally, to calculate F, the gradient is multiplied by 8, evaluated at
the midpoint of the face, and the area of the face. For the full edge at (7 + %, 7), this reduces to

($it1,5 — Pij)
Fippi =AY By - | (15)

For full cells, it is obvious that this reduces (14) to the standard five-point finite difference stencil



Figure 4: Diagram of the second-order stencil for the gradient normal to the interface, ¢/. Two values are found
on the neighboring grid lines, using quadratic interpolation. The gradient is then calculated by fitting a parabola to
the interpolated values and the value at the interface.

for (1). In partial cells, some of the apertures a are non-unity, implying that A’ is non-zero. In
that case, we must do some additional work to construct second-order accurate fluxes.

On a partial edge, the centering of the gradient and § should still be the midpoint of that edge.
Therefore, to calculate the normal gradient, we have chosen to linearly interpolate between values
at the midpoints of full edges. More specifically, m Figure 3(b), the partial edge (i + 3 3,J) has
midpoint m, aperture a, and neighboring edge (i + 1,7 + 1), the flux is found using the formula:

_ (1+a) (P14 = $i5) | (1= ) (biv1jun = Gijs1)
F"'*'é"-"' = a2y pfn [ 2 Az 2 Az ] (16)
where the quantity in brackets is the interpolated gradient, ¢I 5 at m. This reduces to (15)

when a = 1, and provides a second-order accurate a.ppromma,tmn of the fluxes through cell edges.

To obta.m a consistent discretization of (14), Ff should also be based on quantities centered
at the midpoint of the front. Because only the normal component of the gradient contributes to
the resulting flux, we have chosen to calculate it using values along a line normal to the interface,
and passing through its midpoint (see Figure 4). As in one dimension, we employ a three-point
gradient stencil, using values from cells other than the current cell. To do this, we select the first
pair of grid lines that intersect with the line normal to the interface, but do not pass through
the current cell. We then interpolate between values along each grid line (marked with circles in
Figure 4), to the intersection points (marked with boxes in Figure 4). To obtain a second-order
accurate gradient, we must use quadratic polynomial interpolation along grid lines, and then apply
the gradient formula as in one dimension:

e BE-te-w) e

Here we have used &f for the value of ¢ on the front; this is given by the Dirichlet boundary
condition at the front’s midpoint. Interpolation along grid lines determines ¢§ and ¢Z, at the




points distance d; and dy away from the interface. Finally, we can evaluate the interface flux,
Pl=pialy, (18)

given 7, the value of 8 at the midpoint of the front.

By constructing the gradients in this fashion, we impose one more constraint on the discretiza-
tion of the domain: the interpolation stencil must not reach into cells with zero volume. For the
quadratic gradient stencil, this may imply certain constraints on the discretization of the domain.
However, the fact that a zero-volume cell is within two rows of another partial cell would indi-
cate that the local boundary is substantially under-resolved. Such domains are more appropriately
treated with adaptive mesh refinement, which is described in Section 6.

Using arguments similar to the one dimensional case, we can compute the local truncation error.
We assume that ¢ = ¢(z,y) is a smooth solution to (1), for the case that p, 3, and 9% are smooth.
We further assume that ¢ can be extended smoothly to a slightly larger open set containing Q.
Then for Az, Ay sufficiently small, we can define the truncation error 7; ;:

Tij = pig = (L9%)ig 19
5 = wlG-Dae,(- Doy o)

Note that here, as in one dimension, the dependent variable ¢° is centered on the rectangular
Cartesian grid, while the truncation error is centered at the centroid of the partial cells. In that
case, we have the following estimates of the truncation error:

7;; = C;;Az? for interior cells (20)
= C; ;52 for partial cells

Here Az = % for some fixed @ > 0, and the coefficients C; ; are bounded independent of Az, A,
and (%, 7). For interior cells, we obtain the standard centered-difference cancellation of error so that
the local truncation error is O(Az?). On the partial cells, that cancellation does not take place, so
that the standard Taylor-expansion arguments, plus the fact that the truncation error in the flux
calculations is O(Az?), lead to the estimate given above. Based on a similar potential-theoretic
argument as discussed in the one-dimensional case, we expect that the estimates (19) are sufficient
to guarantee second order accuracy of the the solution. Specifically, we consider the error equation

L) =7,E=¢—¢ | (21)

If we approximate this as a continuous potential theory problem with a piecewise constant charge
7; ; on each cell, we expect the contribution of each cell to £ to be proportional to the total charge
on that cell. For an interior cell (%, ), the total chatge is 7;,; X @Az? = O(Az*). There are O(z5r)
such cells, leading to a contribution of O(Az?) to £&. The total charge in an partial cell (z,7) is
7.5 X AaAz? = O(Az3), uniformly in A. However, the contribution to £ from that charge is a
dipole field that is one order smaller in Az, i.e. O(Az*). This is because of the influence of the
homogeneous Dirichlet boundary condition, whose effect on the field induced by the charge in the
partial cell can be represented as an image charge of the same strength but of opposite sign located
a distance O(Az) away from the partial cell just outside the boundary of the domain. There are
O(<) such cells, so that the contribution to the error is O(Az?), uniformly with respect to the
range of values taken on by the A; ;’s. We will verify in detail this behavior in our discussion of the
results below.
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Figure 5: Diagram of the coarsening strategy for the multi-grid method. The coarse grid preserves the apertures
and volumes of the fine grid, but uses a coarser, piece-wise linear representation.

4 Multi-Grid Iterations

In order to efficiently find the solution to the linear system derived from (14), we have adopted
the use of multi-grid iterations [10]. The multi-grid method is based on combining simple point-
relaxation schemes and a hierarchy of coarser grids. After applying point relaxation on the finest
grid, a correction term is found by representing the fine-grid residual on the next coarsest grid,
and using point-relaxation there. This is applied recursively, down the hierarchy of grids, until the
problem is coarsened enough to be solved directly. The correction terms are then interpolated back
up the hierarchy, while applying point-relaxation at each level. In all, this is called a multi-grid “V-
cycle”. Multi-grid methods have the dual benefit of low memory overhead and theoretically-optimal
convergence rate. Generally, the method’s difficulties are in defining appropriate “coarsened” op-
erators, along with restriction and interpolation functions; poor choices can result in significantly
slower convergence. )

The grid hierarchy is generated as follows. The coarse grid’s spacing in each direction is twice
the fine grid’s, and a coarse grid’s apertures and normals are defined exactly like those of a fine
grid: intersection points of the domain boundary with coarse-cell edges define the apertures, which
in turn define A/ and n (Figure 5). However, a coarse cell’s volume is defined as the sum of its
corresponding four fine-cell volumes; this is required to maintain the flux-difference form of (14).
The interface gradient stencil is then determined from this coarse interface representation. This
definition of the geometry does have one drawback: it still requires that the interface not cross any
coarse cell edge more than once. In addition, the limitations of the finite-difference stencil for ¢
must be considered. On very coarse grids, these constraints can be violated, and so they determine
the end the coarse-grid hierarchy.

The details of the multi-grid iteration scheme are straightforward, once the grid hierarchy is
established. The point relaxation scheme that we use resembles a multiplicative Schwarz algorithm
from domain decomposition [11]. On the partial cells, we perform one point-Jacobi iteration, while
holding the values in the full cells fixed. For iteration m, this is expressed as

-1 1/ -
ij = Pig I—Z(Pi,j—chZ} 1), (22)

where p is the diagonal entry of L;;. Note that even though u is O(AZ;), it cancels with the
operator’s denominator. We then perform one sweep of Gauss-Seidel relaxation on the full cells,

with either red or black ordering, while holding the partial-cell values fixed. The partial cells, along

11
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Figure 6: The stencil at the coarse-fine interface is represented. A value is found on a fine-level grid line, from
quadratic interpolation on the coarse level. This value, along with two values on the fine grid, is used to calculate a
gradient at the coarse-fine interface. Note that the coarse-grid stencil can shift when necessary.

with the full cells used in the stencil for (14), define a region of overlap between the two domains.
Although we can provide no convergence analysis for this approach ([11] might provide a good
starting point), the convergence rates for the entire multi-grid procedure demonstrate its efficacy.
The residual is restricted to the coarser grid by volume-weighted averaging; the definition of
the coarse volume then ensures that a constant 7 is coarsened properly. The finite-difference stencil
for the gradient on coarser grids is found in the same manner as on the fine grid. On the coarsest
grid, we apply the point-relaxation procedure as many times as there are valid points. This is the
simplest option, and requires no additional memory or data structures. The coarse correction is
then treated as piecewise constant on all cells when interpolating back up the grid hierarchy. This is
the least expensive approach, and point-relaxation quickly redistributes coarse corrections locally.

5 Adaptive Mesh Refinement

Oftentimes, the solution provided by a single, uniform discretization of the domain may not be
accurate enough. Large gradients in the solution or variation in the domain boundary can require
a finer grid spacing than is available with limited computer resources. An adaptive mesh hierarchy
enables one to increase grid resolution where necessary; such an approach can greatly reduce the
memory required to obtain a given level of accuracy. Our algorithm uses block-grid refinement,
based on the work of Berger and Oliger [9]. This permits us to use regular computational data
structures, instead of a linked, quad- or oct-tree object (for example, as used in [16]). The algo-
rithm is implemented in a hybrid C+4 and Fortran code, where complex organizational tasks are
accomplished in C++ data structure library, BozLib [29]. Single-block calculations are performed
in’ Fortran. An excellent discussion of the software issues that have been dealt with in BozLib, can
be found in a paper by Crutchfield and Welcome [14]. | ’

Our adaptive algorithm is based mostly on work and source code from Cartwright and Martin
[23], for adaptive solution of Poisson’s equation on rectangular domains. In particular, (14) is used
to discretize (1) in every cell, on all levels. Again, the burden of accuracy falls on the discretization
of edge gradients. Interfaces between fine and coarse levels have fluxes that are defined by the sum
of the more-accurate fine level fluxes (Figure 6). These are calculated using one-sided difference
stencils on the fine level, along with a value interpolated from nearby coarse-level cells. This is
required to maintain the accuracy of the gradient calculation on the fine grid. As is implied in
Figure 6, a quadratic polynomial is fitted to the values in three coarse-grid cells lying beside the
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fine grid. Then, a second parabola is fitted to the values normal to the boundary, using two fine
grid points and the value interpolated from coarse-grid cells. The gradient is then evaluated at
the coarse-fine interface. This procedure results in second-order accurate fluxes at the coarse-fine
interfaces, which in turn means the discretization of (1) has a first-order truncation error at the
coarse-fine interface. However, the coarse-fine interface is a one-dimensional set, so we expect the
error in the solution to be second order in the mesh spacing.

A detailed description of this algorithm, and the multi-grid iteration scheme used to solve the
resulting linear system, can be found in found in [23] or [26]. The changes required to extend this
algorithm to our embedded-boundary method are straightforward. The level relaxation scheme is
that described in the previous section, suitably modified to account for the coarse-fine boundary
conditions. The averaging and interpolation operators that transmit information between AMR
levels are also taken from the that multi-grid algorithm. Also, we use a simplified refinement
criterion, which forces refinement at all partial cells, along with suitably chosen buffer so that the
values required for the boundary interpolation stencil can be obtained using data from the same
grid level. All refined cells are grouped into block grids, for computational efficiency.

6 Numerical Results

We have chosen three simple problems to demonstrate the algorithm, and verify both the single-grid
and adaptive algorithms. For the first two problems, the domain is defined by the set

Q= {(r,0) : r £ 0.30 + 0.15 cos 66} .

The domain is sufficiently complicated to test the algorithm, without compromising the require-
ments of the finite-difference stencil mentioned in Section 3. ’

The boundary 92 is discretized by first representing it as a parameterization, r(6); we then
choose points in this parameterization, which are no more than aAz apart (the following calcu-
lations use o = 0.3). By connecting these points, we form a piecewise-linear representation of the
interface. The intersections of this representation, with the finest level’s grid lines, define the aper-
tures; these then define the area of the front from (13). We also include two modifications to this
grid generation algorithm. The first is related to the grid requirements described above and in [27};
if the boundary representation enters and leaves a cell through the same edge, the intersections with
that edge are ignored. In effect, this “clips” the boundary where it crosses the same cell edge twice.
The second modification, which occurs rarely in practice, is to adjust the boundary to remove cells
with volumes less than 1076AzAy. This amounts to shifting the boundary points by at most 0.1%
of the grid spacing, and incurs negligible error relative to that of the numerical algorithm.

The norms used in the following analysis warrant some additional explanation. We must first
separate the computational domain into the adaptive levels, !, where [ is the number of cells
per unit length, in each grid direction. For example, Q% designates the set of all valid cells with
a grid spacing of Az = &, that are not covered by a finer level (i.e., Figure 10(a)). The entire
computational domain is then defined by @ = (JQ!. We note again that the domain boundary is
represented only on the finest level, which can be divided into two sets of cells: Qﬂ-, which consists ~
of full cells; and b, consisting of partial cells. The set of cells on the finest level is then just
Q! = Q% U Qb. Unless otherwise noted, cell counts for a level Q! refer to the number of uncovered
full or partial cells in Q; this excludes both dummy values outside the domain, and values covered
by finer levels. i
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Figure 7: For Problem 1, we plot (2) the magnitude of the volume-weighted truncation error and (b) the partial
volume, on Qp versus §. Note that the former is bounded, even for arbitrarily small volumes. '

We can now define a volume-weighted norm of a variable e on some set of cells, Q:

1 .
P
[le]l 2 =( S leilP AV S Ai,jV') ; (23)

(#.5)E% (5,7) €

where V! = AzAy is the full cell volume on a given level. An unweighted norm, ||- 2%, merely
removes A; ; from equation (23). Any co-norm, || - [|% is just the maximum value over the cells in
Q. We can now define the rate of convergence between two norms, e; and ez, with two different

grid spacings h; and hg, as _
r=lo (f—l-) / lo <£L—1-)
R = 08 €2 & hz

Thus with- Ay < ho, a rate of » = 1 for the two errors e; and e, indicates a first-order accurate
method. ' -

Problem 1. We first set § = 1, to demonstrate several results for Poisson’s equation. The
values of the right-hand side are given by the exact Laplacian of the solution,

Ap = 7r? cos 36,

evaluated at the centroid of each finite-difference cell. This is done to best represent the a,veré,ge
value in (14). Note that fourth-order derivatives of ¢ are discontinuous at the origin, and higher-
order derivatives are singular. Dirichlet boundary conditions on 9 are specified by the exact
solution: )
‘ o(r,0) = r* cos 36,

which has a maximum value of about £0.041 at » = 0.45 on 92. The exact solution ¢ enters into
the discretization by taking its value at the midpoint of the front in each cell, and using this as the
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Lol garye [« [fiardys [ » [NP] el [~ ] N7
40 |{ 1.20-1071 2.63-1072 208 || 1.66-103 400
80| 7.71-10~2 [ 0.64 | 1.45-10~2 | 0.86 | 420 || 4.15-10~% [ 2.0| 1824
160 || 4.20-1072 | 0.88 | 7.35-10"3 | 0.98 | 856 || 1.04-107%|2.0| 7712
320 || 2.18-10-2 | 0.95 [ 3.73-10723 | 0.98 | 1716 || 2.59-107% [ 2.0 | 31716
640 |[ 1.11-1072 [ 0.98 | 1.89-1073 | 0.98 | 3416 || 6.49- 1075 | 2.0 | 128604

Table I: The norms and convergence rates of the partial-volume-weighted truncation error are presented for Problem
1. The values in partial cells are first-order in the grid spacing, while values in the interior are second-order.

Il teel® T e T 0 leel® T [ Ued® T peg -]
40| 5.89-10~° | 5.85-.105 9.33-10°6 1.38-10°6 8.34-10°°
80| 7.35-107% | 7.36-10"6 | 3.0 || 1.33-107¢ | 2.8 { 3.97-10~7 | 1.8 | 1.02-107% | 3.0
160 || 1.17-10"% | 1.17-107% | 2.6 |[ 1.76-10~7 | 2.9 ( 1.05-10~7 | 1.9 | 1.07-10"7 | 3.2
320 || 1.67-1077 [ 1.68-10"7 | 2.8 [ 2.27-10"8 | 3.0 | 2.70-10"8 [ 2.0 | 1.80-10"% | 2.6
640 || 2.26-108 [ 2.27-10~8 | 2.9 || 2.86-107° | 3.0 [ 6.84-10"9 [ 2.0 | 5.02-1072 | 1.8

Table II: We present the two components of the solution error in Problem 1, and their corresponding convergence
rates. The error due to truncation error in the partial cells converges at a substantially higher rate than that due to
the interior truncation error.

value of &7 in (17).

We will first analyze the algorithm with uniform grid spacing over the domain. We compute
the truncation error 7, defined in (19), for this solution. In Table I, we can still see that AT is
O(Az) on Qp, consistent with the error estimate (20). In the same table we see that the interior
truncation error (7 on ), which is due to the standard five-point difference scheme, is O(Az?).
Because the domain is star-shaped, we can use 6 as an independent variable as we walk along the
interface. In Figure 7(a), we plot A7 versus the angle 6, in Qp only (partial cells); obviously, it is
certainly not a smooth function, and contains a substantial high-wavenumber component. This is
due to the error being dependent on many non-smooth factors, such as the apertures and distance
to interpolation lines. In Figure 7(b), we plot the volume fraction A as a function of . We see that
there is no “blow up” in A7 for small A.

We can also measure the error in the discrete solution, § , defined in equation (21). However, to
elucidate the resulting behavior, we have also computed solutions to two subproblems. Specifically,
we solve

Lép =71p
Lér =71
where Tp, 77 are, respectively, equal to the truncation error on the partial and full cells, and zero

elsewhere. In that case, £ = £p + £1, and £p, and &7 represent the. contributions of the error from
the interior and the irregular boundary, respectively. In Table II we see that £p converges at a

(24)
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Figure 8: Plot of the one-norm of the error in the discrete solution, &, and its two components: £p, from the
O(A<z) truncation error on Qp; and &z, from the O(Az?) truncation error on ;. Note that £p converges like O(Az?),
while £ converges as O(Az?).

rate 7 & 3 in the co-norm. Our explanation of this behavior is the potential-theoretic model for
the error on the partial cells described at the end of Section 2. The partial cells induce a dipole
distribution on the boundary, due to the homogeneous Dirichlet boundary condition for the error
equation. The field induced by this dipole distribution is O(Az?), uniformly in the range of values
taken on by the A’s. However, &y is is strictly second-order accurate. Table II demonstrates that
the overall solution error converges at a rate of » & 3 for coarser grids, and is then only second-
order accurate for finer grids. Figure 8 demonstrates this for the one-norm. Essentially, the error
on coarser grids is dominated by the effect of the truncation error in partial cells; for finer grids,
the effect of the interior truncation error begins to dominate.- Both £p and &7, converge to zero at
the stated asymptotic rates; however, their sum does not settle down to its asymptotic rate until
&r >> &p. This leads to some anomalous behavior in the convergence rate for £. For example, the
rate of convergence for ||£]|{ appears to be less than second order, even though both summands are
converging at rates greater than or equal to second order. The reason for this is easily seen in Figure
8. At the grid spacing where ||£p|| and ||£;]| are comparable, there is partial cancellation between
the two components of the error. At the finer grid spacings, as that cancellation diminishes because
of the more rapid convergence of £p, the convergence rate of ¢ decreases shghtly as it asymptotes
to {r.

With this in mind, we can also demonstrate some benefits of adaptive mesh refinement for this
problem, even though the right-hand side is evenly distributed over the whole domain. Table IIT
shows three cases using adaptive mesh refinement:

e Case 1: Two levels of refinement, with coarsest level Q0.

e Case 2: Two levels of refinement, with coarsest level 160,
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|| Level || Q80 52166 Q320 Q640 " Overall

Nin @ 896 4984 5880
Case1 || [l€)% | 1.05-10-%|1.36-10° 1.36-10~°
€2 || 2.87-10-7 | 2.24 . 10-7 2.51-10~7
N in O 5568 11160 16728
Case 2 || |I€|I% 2.36-10~7 | 2.58. 1077 2.58-10~7
lelg 9.39-1078 | 4.49.10-8 7.75-10"8
Nin Q| 4480 9664 21684 35828
Case 3 || llEN% 2.79-1077 | 3.20- 107 | 1.50 - 107 [ 3.20-10~7
leng' 1.02-10"7 | 8.40-10-8 | 2.35-1078 || 8.40-10-8
Neg 2244 8568 33432 132020 1
Uniform || €12 || 7.36-1076 | 1.17-107% | 1.68-10"7 | 2.27- 1078 || <
lene |l 1.02-10-6 | 1.07-10-7 | 1.80- 108 | 5.02- 10~°

Table III: Adaptive mesh refinement errors for the solution in Problem 1. Each case uses different levels of
refinement. We also give the results for uniform grid spacing; arrows indicate which sets of values to compare.

e Case 3: Three levels of refinement, with coarsest level 2160,

In each case, we refine only the boundary region, subject to the constraint that each grid block has
at least eight points in each direction (similar to Figure 10(b). By refining around the boundary, we
can reduce the impact of the larger truncation error there. For example, the error in the adaptive
solution for Case 1 and Case 2, is roughly that of the finest grid, yet both require fewer points
than a calculation with uniform grid spacing. However, the effect of the interior truncation error is
seen again in Case 3; the algorithm is not able to improve the solution significantly without global
refinement, since the truncation error in the interior is evenly distributed for this problem.
Problem 2. Here we include variation in the coefficient g,

B(r,0) =1—12,

which is evaluated at the midpoint of the actual edges in the finite-difference cell of Figure 3. The
right-hand side is then given by

V-V = (7r? — 15r*) cos 36,

so that the exact solution is the same as in the first problem. Again, the solution is evaluated
at cell-centers when calculating the truncation error, and the right-hand side is evaluated at cell
centroids. We can see from Table IV that the non-adaptive cases have results similar to those of
Problem 1.

We can also analyze the effectiveness of the multi-grid algorithm for this problem. Each multi-
grid iteration applies the point-relaxation scheme four times (7.e., four full sweeps of Gauss-Seidel
relaxation), before and after the coarse-grid correction is applied. Figure 9 plots the norm of the
residual, -

A (Ze™ - B2,
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Figure 9: Plot of the co-norm of the partial volume-weigilted residual, versus multi-grid iteration m, for the
single-grid (solid) and adaptive-grid (solid lines with plus signs) solutions of Problem 2.

versus iteration number, m, for all the calculations on a uniform grid. The solution ¢ is initialized to
zero, so that the initial residual grows as O(Az~2), due to the inhomogeneous boundary conditions.
Our multi-grid algorithm reduces the residual by about an order of magnitude per iteration, even
as its norm approaches the cutoff of 10711, There is a slight decrease in performance as the grid
spacing is reduced, so that the reduction rates are around 8.5 for the finest grid. The adaptive cases
are shown in Figure 9, also. Even with the coarse-fine interface relations, we are able to obtain
nearly an order of magnitude reduction in the residual per iteration, despite the unsophisticated
interpolation operator.’

Problem 3. We also wish to test the algorithm for problems without analytic solutions, to
demonstrate that values centered outside the domain do not cause problems. We solve Laplace’s
equation on 2 = T3 N Ty, where

Y1 = {(r,0): 7 > 0.25 4 0.05 cos 66}

and Y3 is the unit square centered at the origin. The Dirichlet boundary conditions are ¢ = 1 on
977, and ¢ = 0 on 87,.

A plot of the solution is given in Figure 11; we can see that it extends smoothly outside of 7,
and overshoots the boundary condition as a result. For equal grid spacing in both directions, the
maximum principal for Laplace’s equation dictates that there should be no overshoot for values of
A< %, while values in cells with A > % should be greater than one. Table V shows the number
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Lyl ogar® [~ ] e [0 nae [ -]
40 || 9.60- 102 5.86-10° 8.16-10-6
80 || 6.17-10-2 { 0.64 | 7.30-10"¢ | 3.0 { 9.57-10"7 | 3.1
160 || 3.36-1072 [ 0.88 | 1.17-107% | 2.6 | 9.58-10~8 | 3.3
320 [ 1.75-102 [ 0.94 | 1.68-10"7 [ 2.8 | 2.00-10~8 | 2.3
640 || 8.84-1073 | 0.99 | 2.28-10"8 | 2.9 | 6.00-107° | 1.7

T
Table I'V: We list errors and convergence rates for Problem 2. The results are very similar to those obtaired in
Problem 1.

Lo e [ -1 par | r [#/r]
40 || 1.27- 102 2.82-10=3 8/104
80 || 4.32-1073 | 1.6 | 6.28-107% [ 2.2 | 0/208
160 || 1.27-1073 | 1.8 | 1.50-107% | 2.1 | 4/408
320 || 2.45-10"% (2.4 | 3.00-1075 | 2.3 | 0/820

Table V: We present results for Problem 3. The error between successive levels is approximately second-order in
the grid spacing. In addition, the last column indicates that relatively few cells violate a discrete maximum principal.

of cells, k£, in 2p that violate this criterion; we see that it is variable, but small, with respect
to the total number of points in Qp. For the finest grid, N = 640 and £ = 0. We assume that
this violation occurs when a partial volume, A = %, is in a region with significantly under-resolved
gradients.

To evaluate the convergence of the algorithm for the single grid case, we compare two solutions,
with a factor of two difference in grid spacing. To do this comparison, we must interpolate the
solution on the fine level, to the coarse grid cell centers. This is done with bilinear interpolation,
denoted with B, between the four fine-level solution values closest to the coarse grid cell center, as
in Figure 5. We can then define the error as the difference between the two results:

¢ =B¢t — ¢ on O .

We do this only for interior cells on the coarse grid, because the values needed on the fine level, in
order to interpolate to the center of a partial cell on the coarse-grid, are not necessarily available.
Table V contains the convergence rates for this error, which are roughly second-order in both norms.

To demonstrate the AMR algorithm, we compare the solution on each level, to the solution with
the finest uniform grid spacing, i. e., we replace ¢'*1 above with ¢34, where 040 is the finest grid
level in this case. Although the resulting errors are not appropriate for calculating convergence
rates, they are accurate up to the error on the finest grid. In Table VI, we see that the AMR
algorithm is able to improve the accuracy of the method substantially, by merely refining around
the boundaries. In Case 1, with two levels, we are able to obtain results with the accuracy of the
finest grid, with only 35% of the points; in Case 2, with three levels, this holds true with 17%.
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| Leve || % . Q160 0320 || Overall

N in Q% 4288 3096 7384

Casel || €I | 6.64-107%] 1.49-10-3 1.49.1073
leng || 1.48-107% | 3.71- 104 1.82-10~*

N in Qf 3792 3664 6148 13604

Case 2 lEle || 1.58-10~% ] 1.43-10% | 2.46.10~* || 2.46 - 10~*
el || 2.83-10-5 | 6.42-10-% | 7.45.105 || 3.83- 103
N in Q% 5016 20248 81476 f
Uniform || {1612 | 5.49-1073|1.49-10"3|2.45.10* | <

il | 8.06-10~* | 1.80-10~* | 3.00- 16-5

Table VI: Adaptive mesh refinement errors for the solutiorn in Problem 3. Errors are found by comparing the
solution to values interpolated from the finest result The last oW conta.ms results for uniform grid spacing; arrows

indicate which set of values to compare.

Figure 10(a) demonstrates the valid regions on which norms are computed, for for Case 1; Figure
10(b) plots the solution and block grid structure.

7 Conclusions

The algorithm described in this paper satisfies a number of desirable criteria. The finite-volume
formulation uses second-order accurate gradients for calculating surface fluxes. These gradients
are calculated from cell-centered quantities, even when those centers are outside the domain. The
truncation error for the resulting discretization for Eq. (1) is first-order in the mesh spacing only
along the domain boundary, and second-order in the interior. In our three test problems, the solu-
tion is found to be second-order accurate, on domains with significant curvature and variation. We
also observe numerically that the error induced by the truncation error at the boundary, converges
to zero like O(Az®). We have given a rigorous proof that this is the case in one dimension, and in
two dimensions have given a potential-theoretic model for the error induced by the discretization
on partial cells that accounts for this behavior.

Our analysis in one dimension demonstrated that our discretization is well-conditioned, even
in the presence of arbitrarily small or thin cells. In addition, the multi-grid algorithm uses only a
simple point-relaxation scheme, with volume-weighted restriction and piecewise constant prolonga-
tion operators, and we obtain nearly the same multi-grid reduction rates for the residual, regardless
of grid size or quality. This suggests that we retain a well—condltloned system in more than one
dimension.

We have demonstrated that our method is amenable to the introduction of adaptive mesh
refinement to improve the accuracy locally. We refine the cells containing portions of the domain
boundary; this simultaneously refines the geometry description, while reducing the effect of the
larger truncation error. The multi-grid framework attains reduction rates for the adaptive grid
hierarchy that are no worse than those .with uniform refinement.

There are a number of research directions suggested by this algorithm. More accurate geom-
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Figure 10: We present two plots of the first quadrant of Problem 3, Case 1. (a) represents the valid regions of
each level, and (b) gives grid block boundaries, and contours of the solution.

etry specifications, such as the sub-cell information used in [2], along with the ability to handle
thin “fingers,” will be required to effectively extend the algorithm to arbitrary three-dimensional
domains, and problems with internal interfaces. Similarly, it is necessary to extend the adaptive
version of the algorithm to allow embedded boundaries to cross refinement levels, a capability that
has proven useful in the hyperbolic case [7, 13, 27]. Applications such as viscous fluid flow and
heat transfer will require a conservative, time-dependent discretization; we are currently developing
such an algorithm for the heat equation. Adding a front-tracking algorithm [7] [12] to the current
method will allow us to treat moving boundaries, such as those found in the Stefan problem and
in studying fluid-structure interactions. Finally, there are a number of applications of the ideas
here in a more general setting. The formal truncation error analysis introduced here for centering
the fluxes (16) could be used in the conservative algorithm for elliptic equations with Neumann
boundary conditions discussed in [5], with the possibility of improving the rate of convergence in
that algorithm from the O(Az-7) reported there.- A similar approach could also be applied to
the algorithms discussed in [12, 27] for hyperbolic problems. However, in the hyperbolic case, it is
not obvious what the tradeoffs are between improved accuracy and robustness in the presence of
shocks and other discontinuities. The present work also suggests an approach to deriving conser-
vative boundary conditions for overset grid algorithm of the sort discussed in [17]. In this case, the
irregular boundary is not the boundary of the domain, but the boundary given by an overlapping

grid.
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