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Abstract

World modeling is defined as the process of
creating a numerical geometric model of a real
world environment or workspace. This model is
often used in robotics to plan robot motions
which perform a task while avoiding obstacles.
In many applications where the world model
does not exist ahead of time, structured lighting,
laser range finders, and even acoustical sensors
have been used to create three dimensional maps
of the environment. These maps consist of
thousands of range points which are difficult to
handle and interpret. This paper presents a least
squares technique for fitting range data to planar
and quadric surfaces, including cylinders and
ellipsoids. Once fit to these primitive surfaces,
the amount of data associated with a surface is
greatly reduced up to three orders of magnitude,
thus allowing for more rapid handling and
analysis of world data.

1. Introduction

For the past seven years, Sandia National
Laboratories has been active in the development
of robotic systems to help remediate DOE’s
waste sites and decommissioned facilities. Some
of these facilities have high levels of radioactivity
which prevent manual clean-up. Tele-operated
and autonomous robotic systems have been
envisioned as the only suitable means of
removing the radioactive elements.

Early prototype systems have demonstrated the
feasibility of using a computer generated
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graphical interface to navigate and control these
systems. Much like a video game, this graphical
environment contains a 3 dimensional (3D) map,
or world model, of the facility. The traditional
method of generating the model has been to use
3D CAD tools. Unfortunately, this is a very
manual, time consuming operation, primarily due
to the time needed to collect the measurements.
Blueprints are often unavailable and rarely match
the as-built conditions. Changes, modifications,
or simply adding or moving equipment around
add many hours to construct the model. The
problem is increased when data cannot be
gathered because access to the facility is limited
due to environmental hazards. One solution is to
use remotely deployed range sensors. These
devices are used to scan over an area, and
provide 3D surface information that can be used
to create a surface map [1].

These sensors are capable of generating
extremely dense range data which when
converted directly to a world model may contain
hundreds .of thousands of polygons [2]. The
world model created from many scans is so large
that even the newest, most expensive computer
graphics workstations have a difficult time
displaying this data in real time. In addition, this
type of brute force representation of objects
makes it impossible to perform automated path
planning or disassembly because of the
exorbitant computational cost of considering each
scanned point on the surface.

What is needed is a way to reduce the data sets to
a finite number of primitives. Luckily, the
facilities that we are interested in are mostly man-
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made, and a significant number of man-made
objects can be segmented into primitives such as
planes, cylinders, and spheres. For example,
walls, cabinets, tables, barrels, pipes, and
hemispherical domes can be fit with these -
primitives.

In the past, researchers have investigated fitting
range data using free-form surface models such
as B-splines, NURBS, or Dual Kriging [3][4].
These techniques fit parametric equations, often
low order polynomials, to scattered data points
within a rectangular patch. The control points of
each patch are defined such that smooth surfaces
are generated between adjacent patches over an
entire surface. More recently, Garcia [5][6] has
developed triangular meshes which incorporate
uncertainty into the control points through shape
modifiers. The goal of this paper is not to create
smooth surfaces that precisely model the surface,
but to create simple primitives that approximate
the real data and are easy to represent in a world
model. Similar work in finding planar and
quadric surfaces for inclusion in a world model is
described in [7]. In [7], the object is recognized
and its position and orientation determined by
comparing model surface patches from a user
selected shape to scene surface patches. In this
work, no pre-defined user selected surfaces are
needed.

This paper describes how to fit large range data
sets to planes, cylinders, and spheres using a
least squares approach. Section 2 describes the
least squares fit routines for planar surfaces, and
Section 3 describes the least squares fit for
quadric surfaces. Section 4 presents
experimental results, and Section 5 summarizes
the results and concludes with suggested future
research and development.

2. Planar Fit

This section describes how to fit dense range
map data to a planar surface using a least squares
technique. It is assumed that the range data has
already been segmented to isolate points on the
plane from non-planar points. Currently, this is
performed manually in a 3D graphical
environment developed in AVS from Advanced
Visual Systems, Incorporated. Once segmented,
the points are sent to a routine which uses the
following least squares technique to fit the points
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to an implicit representation of a plane. From
this implicit representation, the position and
extent of the plane are determined.

The implicit equation of a plane is
" f(%,9,2) =neX+nyy+n,z+1=0 ¢))

where n,, n,, and n, are constants which
represent the plane’s normal vector. The least

squares solution minimizes the expression
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i=1

Taking the partial of S with respect to n, n,, and
n, and setting the partials equal to zero, the least
squares solution is

n=A"lp ©))
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From Equations (3) and (4), a data set which
might contain several thousand points can be
reduced to three parameters n,, n,, and n,. In
addition to these three parameters, we also want
to determine the extent of the plane. One way of
doing this is with the following algorithm.

1. Project all points onto the planar surface
determined by Equations (3) and (4). The
projection of any point 7; onto the plane is
given by

-
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where the perpendicular distance from the
plane to the origin is




(6)
\/ ny + ny + nz .
and the normal unit vector of the plane is
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2. Find the center of the points.
Fg = (7). @®)

ni=1

3. Find the point which is the farthest distance
from the center. Define this maximum point
as the x-axis of the plane. The y-axis can be
determined from the cross product of the z-
axis () and x-axis.
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4, Find the points which form the extent of the
plane. One way to do this is to imagine a
deformable circle in the plane whose m node
points around the circle are the planar points
that are furthest from the center within a
discretized sector of the circle. The angle of
each point with respect to the plane’s x-axis
is given by

(ep),- = “tanz((xp)i’(yp)i) (11)

where
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The points that form the extent are given by

and

S g A e e i e v e e,

e [[7), 7]
(%); = (?p)l e (D) §
J [7:(2] 3) ( ) ~R2i-D)
m Pii™ m
(14)
for j =1,...,m. The operator must select m.

Figure 1 is an example of planar fitting. The
spheres show the vertices of the original data set.
The surface polygons were created using the
circular algorithm presented above. The outer
vertices of the surface polygons use the projected
planar vertices from the original data set. The
common center vertex is derived from the
centroid calculation. The advantage of this
method is simplicity and therefore speed. With a
reasonable number of divisions, it captures edge
detail a convex hull would miss, without the
complexity of a perimeter search based on a
threshold length.

Figure 1. Planar fit.

3. Quadric Fit

This section describes how to fit dense range
map data to a quadric surface, which includes
cylinders, ellipsoids, cones, and hyperboloids.
Once the data is fit to a quadric equation, the
parameters of the quadric indicate the type of
quadric, e.g., cylinder, ellipsoid, etc. These
parameters can also be used to determine the
position and orientation of the object as well as
variables such as the radius of a cylinder.




The implicit equation of a quadric surface is
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where a, b, ¢, f, g, h, u, v, and w are constants.

The least squares solution again minimizes
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Taking the partial of S with respect to g, b, c, f;
& h, u, v, and w and setting the partials equal to
zero, the least squares solution is
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Once the quadric coefficients are known, it is
possible to determine the type of quadric from the
rank, determinant, and eigenvalues of the
following matrices.

a h g u
a h g b f v
D=k b f| and E=
g f cw
g f ¢
u v w 1
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Let A, A, A, =eigenvalues(D).

The following table is used in this decision.

Table 1. Types of quadrics [8].

Quadric Surface rank(D) | rank(E) | sign | Nonzero
of Ags Agy
det(E) | A;same
sign? |

Real ellipsoid 3 4 - yes

Imaginary 3 4 + yes

ellipsoid

Hyperboloid of 3 4 + no

one sheet

Hyperboloid of 3 4 - no

two sheets

Real quadric cone 3 3 no

Imaginary quadric 3 3 yes

cone

Elliptic paraboloid 2 4 - yes

Hyperbolic 2 4 + no

paraboloid

Real elliptic 2 3 yes

cylinder

Imaginary elliptic 2 3 yes

cylinder

Hyperbolic 2 3 no

cylinder

Real intersecting 2 2 no

planes

Imaginary 2 2 yes

intersecting planes

Parabolic cylinder 1 3

Imaginary parallel 1 2

planes

Coincident planes 1 2

Real parallel 1 1

planes

~ To find the position and orientation of the quadric
surface, let us consider a real ellipsoid centered
about the origin (body coordinates).
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Translating and rotating the cylinder, the position
of the ellipsoid with respect to world coordinates
is

x x| |x
Y|=Ry |+ (22)
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where R is a 3x3 rotation matrix and (x,, y,, z,)
is the translated position of the ellipsoid. Solving
this equation for X,,Z and substituting into
Equation (21), we can show that the equation for
the ellipsoid with respect to the world coordinates
is
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Compared to the quadric equation, notice that the
eigenvalues of D' are the inversely proportional
to the ellipsoid radii squared, and that the




eigenvectors of D’ compose the rotation matrix
R

Normalizing the constant terms in Equatlon (23)
by letting

*o
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we find that D =—

From the second term on the right hand side of
Equation (23), the position of the ellipsoid in
world coordinates 1s related to the quadric
parameters u, v, and w by

X, u
Yo |= p Uy (25)
Zp w

Care must be taken when D is singular. This
will occur when there is a single translation along
only one axis. These special cases can be
identified by examining the elements of D.

From Equations (24) and (25), it can be shown
that

-1
u
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Finally, the radii of the ellipsoid are given by

-1
ri=|l— ,j=123 27
T J (27)
Therefore, the orientation of the ellipsoid is
determined from the eigenvectors of D, the
position is determined from Equation (25), and

the radii are determined from Equations (26) and
@7n.

The analysis for a real elliptic cylinder is the same
except that radius r, is zero. The height of the
cylinder is determined by projecting all data
points into the body coordinate frame and

looking at the maximum and minimum points
along the z-axis. This same type of analysis can
be applied to several of the remaining 15 quadric
surfaces, including real quadric cones and
hyperboloids.

4. Experimental Results

The above algorithms were tested on real data
sets from a laser range finder and a structured
lighting system. The next two figures area taken
from range data supplied by Coleman Research
Corporation from their laser range finder. This
test case shows a corner with a cylinder and a
box. Figure 2 has approximately 48,000 range
data points. A simple triangulation of this data
would generate around 96,000 polygons. Figure
3 shows the results of planar fitting (the box and
walls) and quadric fitting (the cylinder). The
polygon count for this image is around 150. The
additional polygons are kept to preserve
perimeter details on the planar surfaces. The
cylinder is represented with 24 faces. If
perimeter was not preserved, this image could
easily be reduced to 24 triangles, which is a 4000
to 1 data reduction.

Figure 2. Range data displayed as 3D points.




Figure 3. Quadric fit of 3D range data.

In addition to data reduction, primitive fitting can
be fairly insensitive to noise; particularly the
statistical noise seen along broad surfaces. Bad
readings, typically caused by reflectance
problems, are usually easily removed during the
segmentation step.

Figure 4 is an example of a real world scene
taken from Sandia’s structured lighting system.
The intensity image shows a 6 foot diameter
bowl, filled with vermiculite. It also contains a
large cylindrical piece, and on the outer edges are
two flat plates: one wood and one steel. The
model image shows the results of surfacing from
range data. The uneven surface of the
vermiculite does not lend itself to primitive fitting
without a severe reduction in surface location
accuracy. However, the cylinder and plates can
be modeled with high data reduction and minimal
loss of surface accuracy.

Figure 4. Intensity image and modeled image.

5. Conclusion

Two least squares algorithms were presented for
fitting both planar and quadric surfaces to three
dimensional scatter point data. From the
eigenvalues of the quadric parameters, it is
possible to distinguish between cylinders,
ellipsoids, cones, and hyperboloids. The
eigenvalues and eigenvectors can then be used to
determine the position, orientation, height, and
diameter of these surfaces. These algorithms
have been successfully tested on data from both a
laser range finder and a structured lighting
system. It should be noted that these images
were segmented by hand and then fit. Tests
showed that outliers in the data can result in
selecting the wrong type of quadric. In these
cases, the operator had to go back and remove
the outliers. Future work is needed to
automatically segment the images and to remove
outliers before least squares fitting of the data.
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