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ABSTRACT

Some popular iterative solvers for non-symmetric systems aris-
ing from the finite-element discretization of three-dimensional
groundwater contaminant transport problem are implemented and
compared on distributed memory parallel platforms. This paper at-
tempts to determine which solvers are most suitable for the contami-
nanttransport problemunder varied conditions for large scale simula-
tions on distributed parallel platforms. The original parallel
implementation was targeted for the 1024 node Intel Paragon plat-
form using explicit message passing with the NX library. This code
was then ported to SGI Power Challenge Array, Convex Exemplar,
and Origin 2000 machinesusing an MPlimplementation. The perfor-
mance of these solvers is studied for increasing problem size, rough-
ness of the coefficients, and selected problemscenarios. Thesecondi-
tions affect the properties of the matrix and hence the difficulty level
of the solution process. Performanceis analyzed in terms of conver-
gence behavior, overall time, parallel efficiency, and scalability. The
solvers that are presented are BiCGSTAB, GMRES, ORTHOMIN,
and CGS. A simple diagonal preconditioneris usedinthis parallelim-
plementation forall the methods. Ourresultsindicatethatall methods
are comparable in performance with BiCGSTAB slightly outper-
forming the other methods for most problems. We achieved very
good scalability in all the methods up to 1024 processors of the Intel
Paragon XPS/150. We demonstrate scalability by solving 100 time
steps of a40 million element problem in about 5 minutes using either
BiCGSTAB or GMRES.

BACKGROUND

The groundwater contaminant transport problem commonly in-
volves the solution of the advection—dispersion equation (ADE).
Some of the common numerical methods employed to solve the ADE
include standard finite—elementsorfinite—differences, mixed method
of characteristics, and particle tracking methods. For a single solute
undergoing equilibrium adsorption and decay the ADE is given by
(Huyakorn and Pinder, 1983; Istok, 1989]

R-‘(?’—f =v.(D-Vc)—V'(CV)—ARC'%("’CO) M

where v is the 3x1 velocity field vector, D is the 3x3 dispersion tensor
dependent onv, cis the concentration field, R is the retardation factor,
and g(c—cp /0 represents the source termn with g being the volumetric
flux, @ being the medium porosity, and ¢y being the injected con-
centration (e.g. from injection wells). The velocity field v is usually
obtained from the solution of the groundwater flow equation [Mahin-
thakumar and Saied, 1996). For saturated flow v is given by

0v = —-KVh 2

where A is the computed head field from the groundwater flow equa-
tion, K is the 3x3 hydraulic conductivity tensor (usually diagonal),
and @ is the porosity. The elements of the 3x3 dispersion tensor D are
given by --

A v
D; = ar|v|d; + (aL'aT)‘m + Dy, 3

where ¢ and ar are longitudinal and transverse dispersivities as-
sumed to be constant, D, is the coefficient of molecular diffusion as-
sumed to be constant (usually very small), and d;; is the Kronecker
delta (if i=j, 0;j=1 else d;=0). For linear equilibrium adsorptionreac-
tions the retardation factor R is given by
K

R=1+252 @
where K is the adsorption distribution coefficient and g is the bulk
density. K4 can be spatially variable for some aquifers.

In recent years lot of attention has been devoted to the numerical
solution of ADE especially for advection (or convection) dominated
problems [e.g. Noorishad et al., 1992]. As a rule of thumb, for stan-
dard finite-element methods the time step size (4£) and the discretiza-
tion should be such that Cr< 1, Pe <2, or Cr-Pe <2 to obtain stable
non-oscillatory solutions [Noorishad et al., 1992; Perrochet and

. Berod, 1993]. Here the Courant number Cris defined as Cr=max (vx-

At/dx, v At/dy, v, A t/dz),and the grid Peclet numberis defined as Pe=
max (dx,dy,dz)/ay; where vy, v, v; and dx, dy, dzarethe velocity com-
ponents and grid spacingsinux, y, zdirections, anday is the longitudi-
nal dispersivity. The upstream weighted formulation is a slight modi-
fication of the standard finite element method intended to deal with
advection dominated problems (i.e., large Pe’s) albeit withsomeloss
of accuracy [Huyakorn and Pinder, 1983; Lapidus and Pinder,
1982). Even if the Cr and Pe conditions are satisfied, standard finite
element methodscanstill suffer fromnumerical problems foraquifers
with highly heterogeneous K—fields (such as those arising in geosta-
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tistical simulations) where the resulting velocity field obtained nu-
merically can vary strongly from elementto element. Higher order fi-
nite-element methods, random-walk particle tracking methods
[Tompson, 1993; LaBolle et al., 1996] and mixed methods [Neuman,
1984; Chiang et al., 1989] were devised to deal with some of these
difficulties.

Qurfocus hereisnottoinvestigate therobustness and accuracy of
the finite-element method, but to investigate different solvers for
large scale simulations. A similar analysis was performed by Peters
{1992] for a simple 2-D system with varying Crand Pe numbers. We

.should note here that in some instances of our tests we violated the Cr
and Pe conditions resulting in some numerical oscillations. The de-
gree of these oscillations was monitored by the maximum and mini-
mum concentrations in the solution.

KRYLOV SUBSPACE METHODS

Krylov subspace methods forsolving alinearsystem Ax = bare
iterative methods that pick the j-th iterate from the following affine
subspace

X Ex + I{j(A,ro),

where x,is the initial guess, r, the corresponding residual vector
and the Krylov subspace Kj(4,ro) is defined as

K{(A,ro) = span{re, Ary,...,A 'r}.

These methods are very popular for solving large sparse linear
systems because they are powerful and yet offer considerable savings
inboth computation and storage. In particular, for three~dimensional
problems, iterative solvers are often much more efficient than direct
(banded or sparse) solvers. Some of the more popular Krylov meth-
ods are Preconditioned Conjugate Gradients (PCG), Bi-Conjugate
Gradient Stabilized (Bi—-CGSTAB), Generalized Minimal Residual
(GMRES), Quasi-Minimal Residual (QMR), and Adaptive Cheby-
chev [Barret et al., 1994; Saad, 1996]. Of these, PCG is used for only
symmetric positive definite systems.

NUMERICAL IMPLEMENTATION

The three—dimensional formof ADE given by equationisdescre-
tized using linear hexahedral elements based on the Upstream
Weighted Galerkin Formulation [Huyakorn and Pinder, 1983; Huya-
kornetal., 1985]. The time steppingisimplemented using a variable
weighted finite—difference scheme where the weightw canvary from
0 to 1 (w=0,explicit; =0.5, Crank-Nicolson; w=0.67, Galerkin;
w=1,0 fully implicit). However, inall the tests that were performed in
this paper we adopted w=0.5 which corresponds to the Crank-Nicol-
son approximation. The upstream weighting factor a is assumed be
the same in all three—directions. Although the code has been imple-
mented to handle distorted and non-uniform grids, the tests per-
formed in this paper use only uniform rectangular grids. A compre-
hensive mass balance checker which checks formassbalancesineach
time step has been implemented as outlined by Huyakorn et al.
{1985]. The mass matrix and the zeroth order terms are evaluated us-

ing a lumped formulation [Huyakorn, 1983]. The full matrix is as-
sembled only during the first time step or when the boundary condi-
tions change; only the right hand side is assembled at all other time
steps. The previous time step solution is used as initial guess for each
time step.

‘The finite—element approximation of the ADE results in amatrix
equation of the form Ax=>5, where A is a sparse, non~-symmetric ma-
trix. For a rectangular grid structure and “natural ordering” of un-
knowns matrix A has a 27-diagonal banded non—zero structure. In
this implementation the non-zero entries of the matrix are stored by
diagonals. This enables vectorizing compilers to generate extremely
efficient code for operations like a matrix vector product, which are
used in Krylov methods.

PARALLELIZATION

Our parallel implementation was originally targeted for the Intel
Paragon machines at the Oak Ridge National Laboratory’s Center for
Computational Sciences (CCS). The code was then ported tothe SGI/
Power Challenge Array, SGI/Cray Origin 2000, and Convex Exem-
plar machines at NCSA (National Center for Supercomputing Ap-
plications) using an MPI (Message Passing Interface)
implementation. Since most of our performance and scalability tests
were performed on the Intel Paragon XPS/150 at CCS, we describe
this architecturebriefly here (forease of reference wereproduce some
of the information already given in Mahinthakumar and Saied
[1996]). The XP/S 150 has 1024 MP (multiple thread) nodes con-
nected by a 16 row by 64 column rectangular mesh configuration®. In
our implementation we used these nodes only in single threaded
mode. In single threaded mode, each node is theoretically capable of
75 Mflops (in double-precision arithmetic). Each node has a local
memory of 64 Mb. The native message passing library on the Paragon
is called NX.

For the parallel implementation we used a two-dimensional
(2-D) domaindecomposition in the xand ydirections as shownin Fig
1. A 2-D decomposition is generally adequate for groundwater prob-
lemsbecause common groundwateraquifer geometriesinvolveaver-
tical dimension which is much shorter than the other two dimensions.
For the finite-element discretization such decomposition involves
communication with at most 8 neighboring processors. We note here
that a 3-D decomposition in this case will require communication
with up to 26 neighboring processors.
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Fig 1: Plan View of Two-Dimensional Domain Decomposition
(showing a 4x3 processor decomposition)
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We overlap one layer of processor boundary elements in our de-
composition to avoid additional communicationduring the assembly
stage at the expense of some duplication in element computations.
There is no overlap in node points. In order to preserve the 27-diago-
nal band structure within each processor submatrix, we performalo-
cal numbering of the nodes for each processor subdomain. This re-
sulted in non—contiguous rows being allocated to each processor in
the global sense. Forlocal computationseach processorisresponsible
only forits portion of the rows which are locally contiguous. Howev-
er, suchnumbering givesriseto somedifficulties duringexplicitcom-
munication and /O stages. Forexample, inexplicit message passing,
non-contiguous array segments had to be gathered into temporary
buffers prior to sending. These are then unpacked by the receiving
processor. This buffering contributes somewhat to the communica-
tion overhead. When the solution output is written to a file we had to
make sure that the proper order is preserved in the global sense. This
required non-contiguous writes to a file resulting in /O performance
degradation particularly when a large number of processors were mn-
volved,

All explicit communications between neighboring processors
were performed using asynchronous NX or MPI calls. System calls
were used for global communication operations such as those usedin
dot products, The codes are written in FORTRAN 77 using double-
precision arithmetic.

MODEL PROBLEMS

Two different model problems were setup for the tests. The first
one involves a single extraction well in the center of a square domain
extractingauniformly distributed cylindrical plume (Fig 2). Thissim-
ple problem was chosen since the velocity field for this problem is
analytically known and therefore eliminates the need for a flow solu-
tion. This scenario is justified for test runs which look at scalability,
parallel performance, and the performance of each solver when the
problem size is increased.
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Fig 2: Plan view of Model Problem 1
(for scalability and performance tests)

The velocity field for Model Problem 1 is analytically obtained
from the simple expression v=0y/(2rrd). Here Qy, is the pumping
rate, ris the radius from the centerof the well and dis the constant ver-
tical depth. This solution assumes infinite boundaries. The pumping
rate 0, and the initial radius of the cylindrical plume rp are setas de-
scribed in individual test cases.

For tests investigating the efficiency of each solver when the
roughness of the coefficients is increased (i.e., increase in the spatial
variability of the velocity field and reaction coefficients) we chosea
different model problem (Model Problem 2) shownin Fig 3. This set-
up corresponds to a contamination scenario where the contaminant
leaches from a single rectangular source (80 x 80 ) into a naturally
flowing groundwater aquifer. The dimensions of the aquiferare fixed
at 1600 x 800 x 20 with a uniform rectangular grid of size2x2x 1.
Therefore theproblemsizeis 801x401x21 whichresultsinamatrix of
size nn = 6.75 million.
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Fig:%: Vertical Cross-Section of Model Problem 2
(for convergence testing with velocity field variability)

The velocity field for Model Problem 2 is generated from the
solution of the steady state groundwater flow problem [Mahinthaku-
mar and Saied, 1996). Boundary conditions for this problem are as
follows: zero Dirichlet boundary at upstream end (x=0) and free exit

boundary (8¢/dx=0) at downstreamend (x= 1600) vertical boundary
faces; constant Dirichlet concentrations of ¢ = 100 at the rectangular
patch and ¢ = 0 elsewhere on the top horizontal boundary face; no
flow boundaries elsewhere. Initial conditionis c=100at the top rect-
angular patch and c=0elsewhere. For tests involving heterogeneous
K-fieldsorKy—fields(i.e. roughcoefficients), weobtained the spatial-
ly correlated random fields by using a parallelized version of the turn-
ing bands code [Tompson et al, 1989). The degree of heterogeneity is
measured by the parameter o, whichis an input parameter to the turn-
ing bands code.

PERFORMANCE RESULTS AND DISCUSSION

Inthissection we presentand comparethe performance of ourim-
plementations withrespecttoproblemsize,scalability,and roughness
of coefficients. The following selections and notations were used for
all performance tests unless otherwise stated:

e convergence tolerance = 1.e~10 (two-norm of relative residu-
al)

e restart parameter for GMRES = 10, ORTHOMIN =5 (reason:
ORTHOMIN takes up twice the memory as GMRES for the
storage of restart vectors)

e  upstream weighting factor o = 0.5, bulk density ¢ = 1.0, po-
rosity 6 = 0.3, decay coefficient 2 = 0.005, longitudinal and
transverse dispersivities ay=4.0 and ar=0.05, adsorption dis-
tribution coefficient Kz = 1.0.




«  timings were obtained by the dclock() (when using NX on
XPS/150) or MPI_wtime() (when using MPI on other sys-
tems) system calls. Timings reported are for the processor that
takes the maximum time. -

o For all the tests the following parameter values are noted
alongside tables or figures: nn = size of matrix or number of
unknowns ( = nx-ny-nz), np = number of parallel processors,
nt = total number of time steps for which the results are re-
ported.

Increasing Problem Size

This test was performed solely to test the performance of each
solver when the problem size is increased. Model Problem I wasused
in this test with rp=L/4, and 0,,=L/10 (set arbitrarily). The problem
size was increased from L=60 to L=1920. The vertical z dimension
was fixed at 10, Grid spacing was fixed in all three directions with
dr=dy=dz=1m. i.e. The problem size wasincreased from 60x 60x 10
for the 1 processor case to 1920 x 1920x 10 for the 1024 processor
case. As the problem size doubled in both xand y directions, the 2-D
processor configuration was also changed accordingly (i.e., problem
size 60 x 60 x 10 corresponds to 1 x 1 processor configuration, 120x
120x 10t02x2, ..., and 1920x 1920 x 10to 32 x 32). In Table 1 we
presentthetotal iteration counts andsolution timings forthe four Kry-
lov methods as the problem size increases. The timings and the itera-
tion counts are for the first 100 time steps of the simulation.

BiCGSTAB  GMRES(10)
jter time iter time Iter  time
40K 1 1237 568 2464 681 2349 741 1505 679
160K 4. 1516 582 3284 926 3068 978 2097 940
640K 16 1645 766 3348 965 3105 1013 2442 1103
25M 64 1109 538 2043 613 1933 664 1816 85l
1O0M 256 632 323 . 1073 329 1062 387 969 472
40M 1024 538 305 859 286 856 346 932 497

nn np OMIN(5) CGS

jter  time

Table 1: Effect of increasing problem size for Model Problem 1
(total iterations and time in seconds for 100 time steps)

FromTable 1 itisapparentthatthe convergence behaviordoes not
deteriorate with the increase in problem size for all the methods. The
iterations increase slightly inthe beginning and then decrease rapidly
asthe problemsizeincreases. Weattributethisto thefactthattheprob-

lem actually becomes easier for larger problems since av/dr at the

front (r < rg) decreases.
Scalability Test

The scalability test is performed by increasing the problem size
accordingly withthe processorcount.i.e. nninpiskeptapproximately
constant. Model Problem 1 is used with rp=20 and Q,,=10 for all the
problems. This is similar to the test performed in the previous section
except for the values of rp and Q,, which are kept fixed here. When
these are fixed we found that the total iteration count for each method

remained approximately constant as the problem size was increased
thus providing agood test for scalability. The results are shown inFig
4. Ttisevident from Fig4, that all methods have similar scalability be-
havior. This is mainly because the solution times for all the methods
are dominated by the matvec times (about 82% for BiCGSTAB and
CGS, and 71% for GMRES and ORTHOMIN) and they all use the
same matvec routine.
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Fig 4: Comparison of Scalability of Each Method
(nn/np maintained constant, times for 100 time steps)

Convergence Behavior

Convergence behavior for each method is shown in Fig 5 for
Model Problem 2 with 0=4.0 (see Table 2). Note that the horizontal
axis denotes the CPUtime and not theiteration count. Except CGS, all
the methods seem to exhibit a smooth convergence behavior for this
problem. We should note herethat the Courant number condition was
violated in this test case giving oscillatory solutions.
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Fig 5: Convergence behavior for Model Problem 2
(np = 242, first time step corresponding to 0 =4.0in Table 2)

) Parallel Performance for Fixed Problem Size

‘We measured the parallel performance of each solver for a fixed
problem of size 481 x481 x 11 (2.5M nodes) by increasing the num-
ber of parallel processors from 64 to 1024. The results are shown in
Fig 6.
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Fig 6: Speed up behavior for fixed problem size
(nt = 100, nn = 2.5M problem in Table 1)

From Fig 4 we see thatall methods have very similar speedupbe-
havior forthe casetested here. BICGSTAB and CGS seemto speed up
slightly better than either GMRES or ORTHOMIN.

Comparison with other machines

In Fig 7 we compare the performance of BICGSTAB on various
machines. Timings are reported for model problem 1 with size 241x
241 x 11 using 16 processors. This problem is the same problem re-
portedinrow 3 of Table 1. The total timeincludes initial setup, finite—
element matrix assembly, matrix solution and /O.
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Fig 7: Performance of BiCGSTAB on four parallel platforms
(np =16, nn=640K, nt = 100)

From Fig 7 we can observe that the SGI/Cray Origin 2000 gives
the bestoverall performance. However, considering thateach proces-
sor of the Origin 2000 is at least 3 times more powerful than the Intel
Paragon XPS/150, this performance is not that good. We should note
here that no additional effort was expended in optimizing the code for
architectures otherthan theIntel Paragon. From this figure wecan also
observe that the matrix solution time will dominate the total time as
longassufficienttimestepsaretaken (inthiscase 100timesteps). The

explicit communication time is insignificant for all the machines for
the 16 processor case.

Roughness of Coefficients

The efficiency of each solver as we increase the variability of the
K-field (denoted by parametero)is showninTable 2. Model Problem
2 (problem size 801x401x21) is used in this study with a fixed time
step size of 100 days for all cases using a 22x11 processor configura-
tion (np=242). The timings reported are for 10 time steps.0=0 corre-
sponds to a homogeneous K-field and o= 4.0 corresponds to an ex-
tremely heterogeneous K—field with more than4 orders of magnitude
differenceinsomeadjacentcell K~values. As weincreased o fromOto
4, the maximum Courant number also increased from 0.8 to 500. The
case with o = 4.0 did not produce an acceptable solution exhibiting
very high numerical oscillations. We attribute these oscillations not
simply tothe violation of the Crcondition butalso due to the disconti-
nuities in the velocity field. We note here that additional runs per-
formed for this case witha much smaller time step (0.1 day instead of
100 days) also exhibited some oscillatory behavior even though the
convergence of the Krylov solvers greatly improved.

o BiCGSTAB = GMRES(10) OMIN(S) CGs

Iter Time Iter Time Iter Time Iter Time
00 109 ' 402 195 475 194 514 113 411
Lo 257 916 454 109.1 457 1198 298 1037
20 356 1258 648 1551 649 1653 479 1648
30 449 1577 807 1897 813 2061 664 2274

40 515 1808 861 2195 985 249.1 78 2689

Table 2: Effect of K—field Heterogeneity
(nn=6.15M, np = 242, nt = 10)

Itisevident fromthe abovetablethat all methodsshoweddifficul-
tyinconvergence asoisincreased. Although BiICGSTAB performed
slightly better than the other methods the differences are withina fac-
tor of 2 of each other. )

We also performed some tests with variable Ky~fields (in equa-

* tion (4)) generated inasimilar fashion with o ranging from 0to4.The

convergence behaviorof all the solvers inthis case didnot change ap-
preciably with o. This behavior can be attributed to.the fact that any
variations in Kz would simply add randomly variable positive values
tothediagonal entries of the matrix thus adding noadditional difficul-
ty to the linear system solution.

Floating Point Performance

The floating point performance of all the methods were in the
range of 10-12 Mflops per processor on the XPS/150. For the largest
problem we obtained performances close to 10 Gflops on 1024 pro-
Cessors.

CONCLUSIONS

Our results indicate that all the solvers perform reasonably well
formost of the test problems. i.e., The overall performance is withina




factor of 2 of each other. Within these close limits the performance is
in the following decreasing order for most problems: BiCGSTAB,
GMRES(10), ORTHOMIN(S), and CGS. All the methods exhibit
very good scalability up to 1024 processors. This is demonstrated by
the fact that we are able to solve 100time steps of a40 million element
problem in around 300 seconds using either BiCGSTAB or
GMRES(10) (see Table 1). For all the methods tested, convergence
behavior is not sensitive to the problem size. This result is different
compared to the diagonal preconditioned conjugate gradient solver
(DPCG) used in the steady state groundwater flow problem [Mahin-
thakumar and Saied, 1996] where the convergence behavior deterio-
rated withincreasing problemsize. Since the number of iterations per
time step is also generally small for all the methods (compared to
DPCG in the steady state flow problem), we do not see any major ad-
vantage in using a method such as multigrid for this non-symmetric
transport problem [see Mahinthakumar and Saied, 1996]. This result
can be attributed to the fact that a steady state problem is generally
moredifficulttosolveinthelinearalgebrasensethanatransient prob-
lem, Convergence behavior of all the methods deteriorated when the
variability of the velocity field was increased or when the Courant
number was increased. However, these conditions affected the accu-
racy andtheoscillatory behaviorof the solution more than the conver-
gence behavior of each solver.
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