

Invited paper to be presented by L. B. Asprey at The International Conference on
Protactinium Chemistry, July 2-8, 1965, Orsay (S-et-O), France.

LA-NC-6900

CONF-650728-4

83768

V FEB 18 1965

FLUORIDE COMPLEXES OF TETRAVALENT PROTACTINIUM

L. B. Asprey and R. A. Penneman

MASTER

Los Alamos Scientific Laboratory

University of California, Los Alamos, New Mexico, U. S. A.

English Summary:

The compound $(\text{NH}_4)_4\text{PaF}_8$ has been made from NH_4F and PaF_4 . It is iso-structural with $(\text{NH}_4)_4\text{UF}_8$, $(\text{NH}_4)_4\text{NpF}_8$, $(\text{NH}_4)_4\text{PuF}_8$, and $(\text{NH}_4)_4\text{AmF}_8$. Details of the syntheses of this and other alkali fluoride complexes will be given along with structural data.

French Summary:

This paper was submitted for publication in the open literature at least 6 months prior to the issuance date of this Microcard. Since the U.S.A.E.C. has no evidence that it has been published, the paper is being distributed in Microcard form as a preprint.

On a préparé le composé $(\text{NH}_4)_4\text{PaF}_8$ à partir de NH_4F et de PaF_4 . Il a la même structure que $(\text{NH}_4)_4\text{UF}_8$, $(\text{NH}_4)_4\text{NpF}_8$, $(\text{NH}_4)_4\text{PuF}_8$, et de $(\text{NH}_4)_4\text{AmF}_8$. On décrit la synthèse de ce complexe et d'autres complexes alcali-fluorure et on présente des détails des données structurales. -

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

INTRODUCTION

Fluoride ion is known to form stable complexes with the tetravalent states of the actinide elements. Indeed, for the heavy elements americium and curium, fluoride complex stability is sufficiently great so that even their tetravalent states (which are unstable with respect to reduction to the aqueous trivalent state by more than 2.5 volts) can be studied in aqueous fluoride.²

Complexes of tetravalent protactinium have not been reported previously in the literature. In aqueous fluoride, there would certainly be competition between the stabilizing effect of fluoride on both tetravalent and pentavalent protactinium.

^{3, 4} The sparingly-soluble M_2PaF_7 type is well-known. As mentioned above, Asprey and Penneman showed that tetravalent americium is stabilized with respect to trivalent americium in saturated ammonium fluoride solution. However, Haissinsky, Muxart, and Arapaki subsequently showed that when PaF_4 is dissolved in saturated ammonium fluoride solution it must be protected from air or it undergoes oxidation to the pentavalent state.⁵

In the work to be reported at this meeting, we chose to work with freshly prepared anhydrous PaF_4 and attempted to make several complex fluorides by intimately mixing PaF_4 with alkali (or ammonium) halides and subsequently heating the mixture in an atmosphere of hydrogen and/or hydrogen fluoride.

^{6, 7} Similar work by us on ammonium fluoride and UF_4 , and by Thoma and co-workers on the alkali fluoride- UF_4 compounds⁸ had provided X-ray data for a series of fluoride complexes containing U(IV) and we anticipated that the $Pa(IV)$ compounds would be similar. We had previously observed similarities with the pentavalent salts for $MPaF_6$ and MUF_6 compounds ($M = K, NH_4, Rb$).⁹

Experimental

Formation of PaF_4 . — Amounts of Pa_2O_5 up to 100 mg. were placed in platinum dishes in a nickel reactor and heated at $350^\circ - 500^\circ\text{C}$ in a stream of hydrogen and hydrogen fluoride. Details of the reactor are shown in Fig. 1. At 500° , the red-brown PaF_4 was well-sintered and appeared to have crept up the sides of the platinum dish during the reaction; some weight loss was observed. When formed at 350°C , however, the PaF_4 product showed the expected gain in weight from $\text{PaO}_{2.5}$. Both preparations gave the X-ray powder pattern typical of anhydrous PaF_4 (and of UF_4). The preparation and purity of the protactinium is described in our first paper.

Preparation of $(\text{NH}_4)_4\text{PaF}_8$. — A sample of PaF_4 was ground with an excess of NH_4F in a Mullite mortar in an inert atmosphere (Argon). X-ray analysis of the product using 0.2 mm. Lindemann glass capillaries, with $\text{Cu}\alpha$ radiation gave the pattern of $(\text{NH}_4)_4\text{PaF}_8$. It was identified by comparison with $(\text{NH}_4)_4\text{UF}_8$ whose formula and X-ray properties are well-known.^{6,7} The comparison is given in the following section.

X-ray Properties of $(\text{NH}_4)_4\text{UF}_8$ and $(\text{NH}_4)_4\text{PaF}_8$. — Figure 2 shows a diffractometer tracing obtained from $(\text{NH}_4)_4\text{UF}_8$. The corresponding $(\text{NH}_4)_4\text{PaF}_8$ was too radioactive to permit taking of diffractometer data. Therefore, visually estimated intensities obtained from a powder diffraction film of $(\text{NH}_4)_4\text{PaF}_8$ are given in the upper part of the figure. Other results will be given at the meeting.

Fig. 1 — Details of Protactinium Reactor.

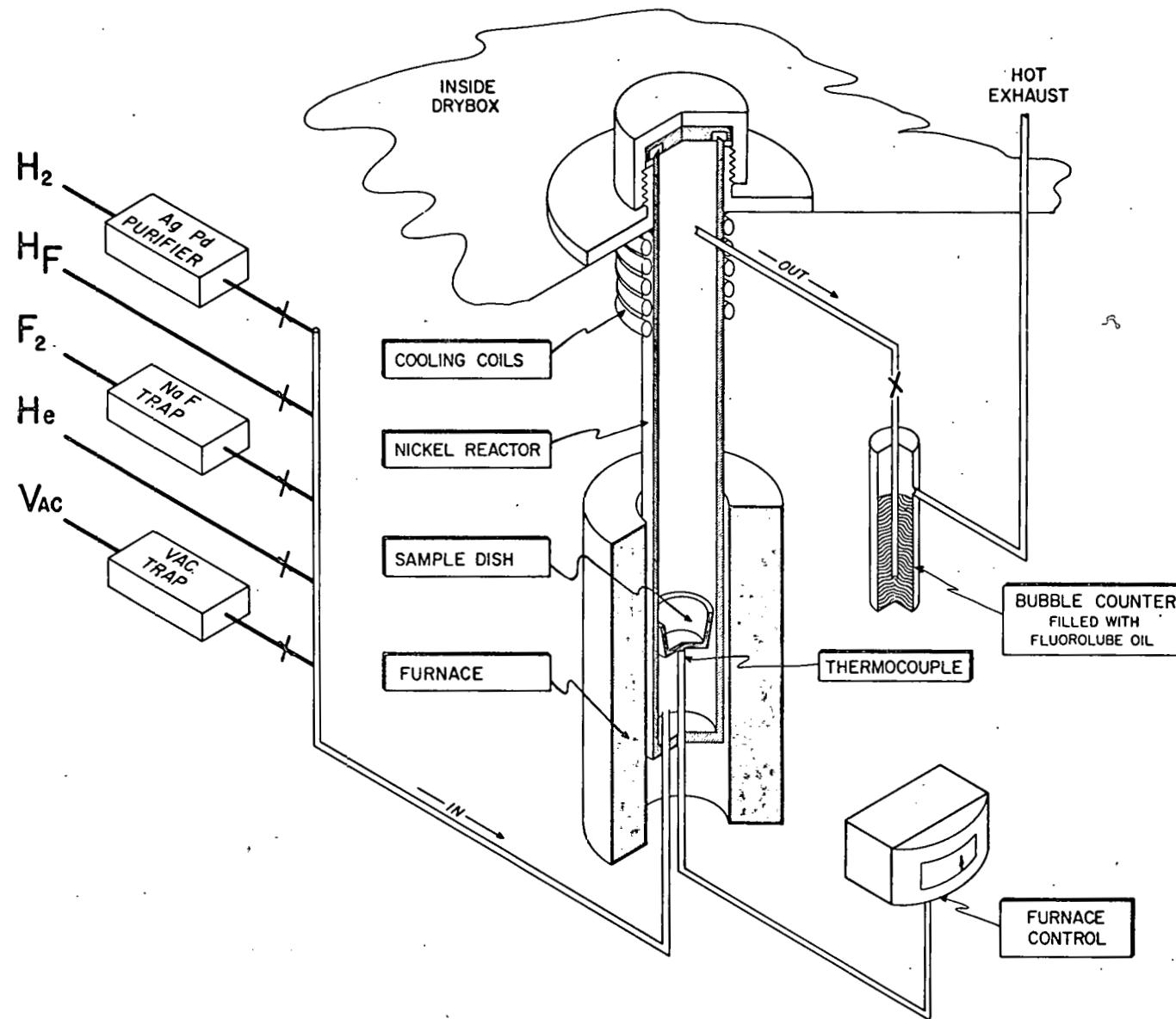
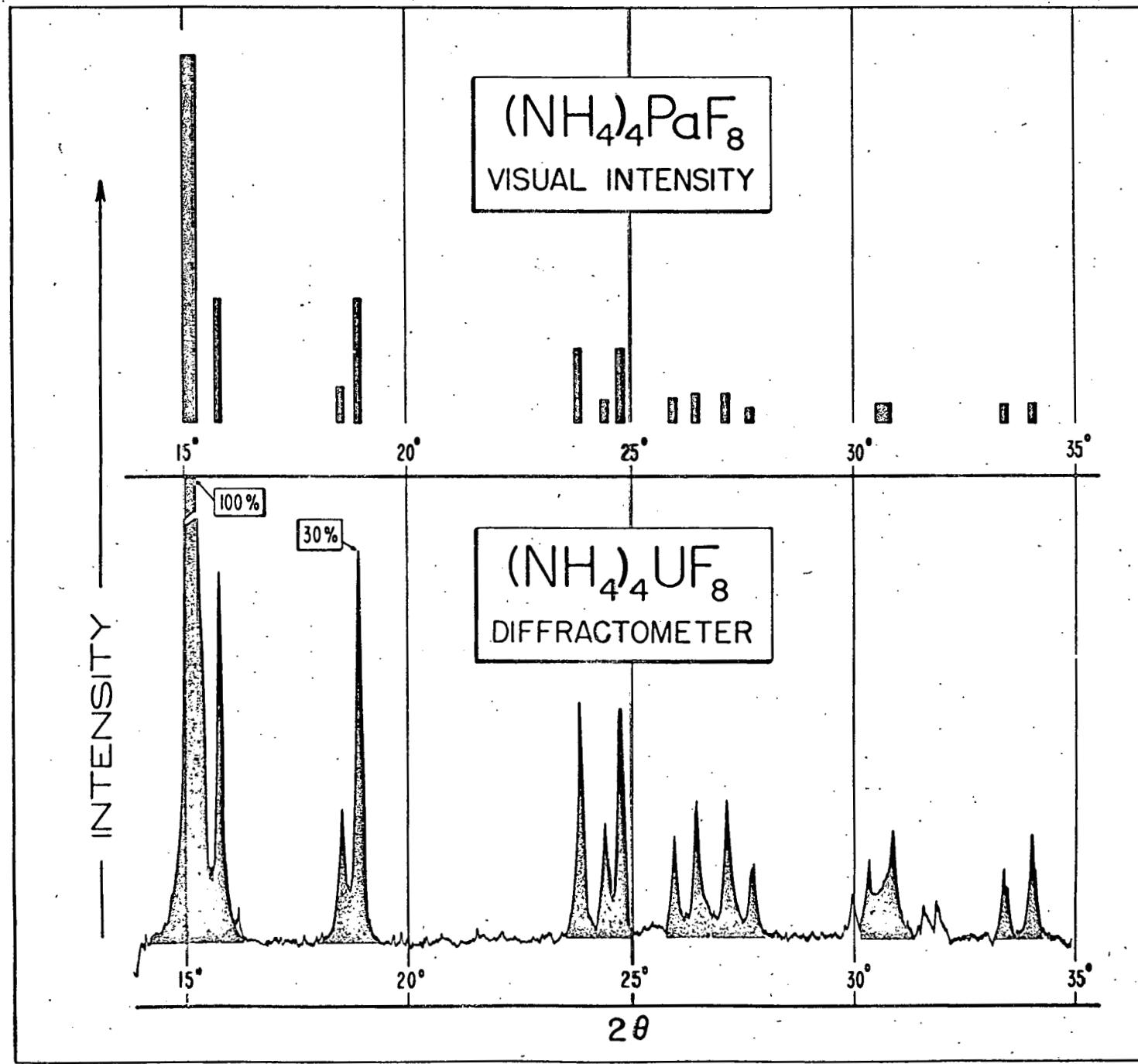



Figure 1. — PROTACTINIUM REACTOR
FLOW DIAGRAM

Fig. 2. — Comparison X-ray Data for $(\text{NH}_4)_4\text{PaF}_8$ and $(\text{NH}_4)_4\text{UF}_8$.

- (a) Visually estimated intensities from X-ray powder diffraction data, Ilford film.
- (b) Diffractometer scan of $(\text{NH}_4)_4\text{UF}_8$.

Discussion

From the present work, protactinium in the tetravalent state has been shown to form complex fluorides similar to those previously established with other tetravalent actinides. The $(\text{NH}_4)_4\text{MF}_8$ type of compound is now known for the series of elements where M = Pa, U, Np, Pu, and Am. The next lowest complex in the uranium series, $(\text{NH}_4)_2\text{UF}_6$, is known to have four polymorphs which have similar but different absorption spectra and X-ray diffraction patterns.⁷ A similar situation is very likely with the $(\text{NH}_4)_2\text{PaF}_6$ complexes, but we have not yet investigated them.

An active investigation of other alkali fluoride complexes of Pa(IV) is under way at this time. In particular, the cesium, rubidium, and potassium systems will be studied especially in regard to their synthesis and their crystal structures. Results of this work will be reported at the Conference.

References

1. This work was performed under the auspices of the U. S. Atomic Energy Commission.
2. L. B. Asprey and R. A. Penneman, Inorg. Chem. 1, 134 (1962).
3. A. V. Grosse, Proc. Roy. Soc. London A150, 363 (1935); J. Am. Chem. Soc. 56, 2501 (1934).
4. D. Brown and A. G. Maddock, Quart. Rev. 17, 289 (1963).
5. M. Haissinsky, R. Muxart, and H. Arapaki, Bull. Soc. Chim. France 2248 (1961).
6. R. Benz, R. M. Douglass, F. H. Kruse, and R. A. Penneman, Inorg. Chem. 2, 799 (1963).
7. R. A. Penneman, F. H. Kruse, R. S. George, and J. S. Coleman, Inorg. Chem. 3, 309 (1964).
8. R. E. Thoma, Inorg. Chem. 1, 220 (1962) and references therein.
9. L. B. Asprey and R. A. Penneman, Science 145, 924 (1964).