

SC-TM 65-183

THE KINETICS OF THE REACTIONS
OF KO₂ AND KOH WITH WATER

R. E. Cuthrell, 1133
Sandia Laboratory, Albuquerque

April 1965

ABSTRACT

This report gives the results of a kinetic study of the reactions of potassium hydroxide and potassium superoxide with water vapor and carbon dioxide, describes the equipment used, and furnishes the mathematics required for calculating time dependent concentrations.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DISTRIBUTION:

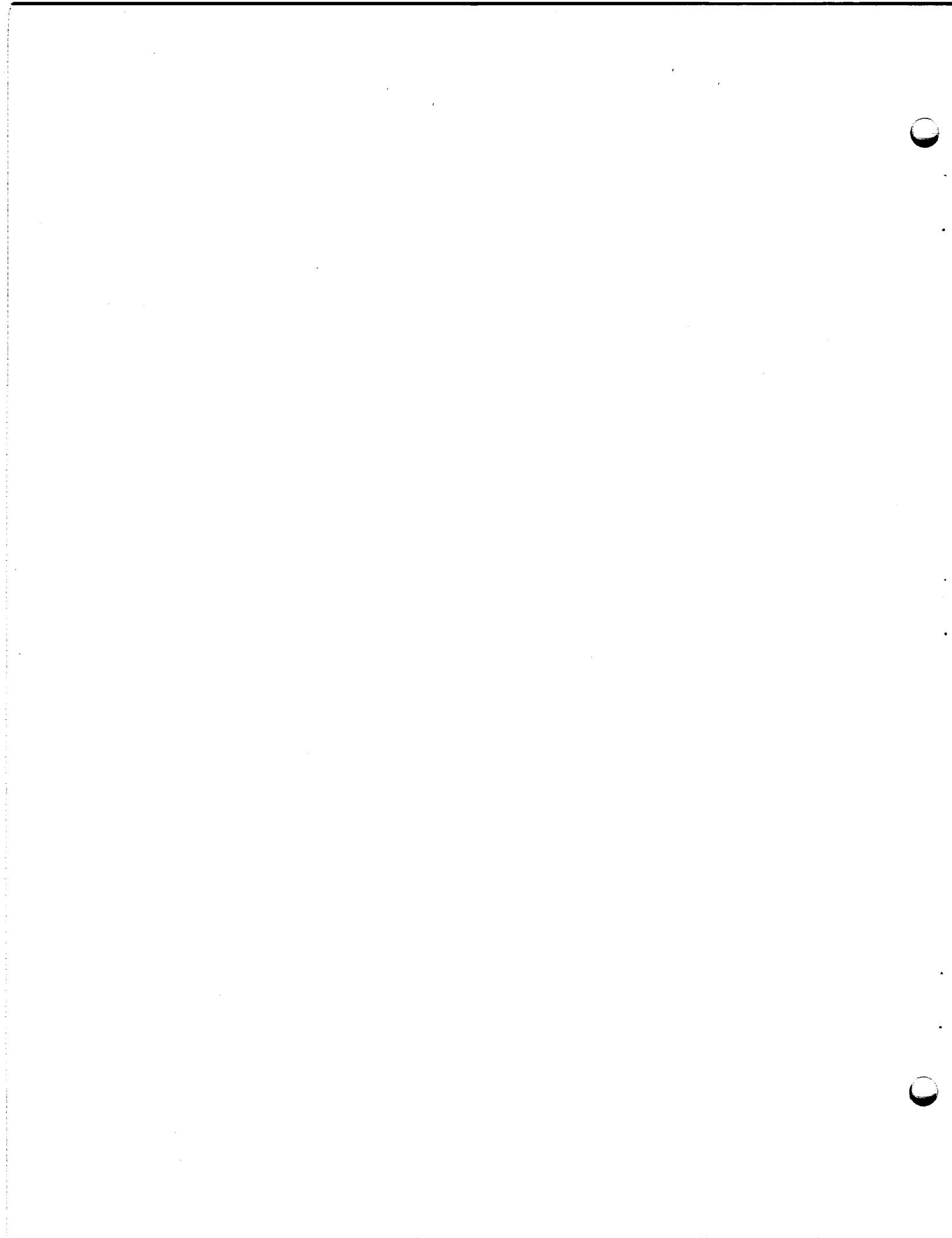
C. F. Bild, 1100
R. R. Sowell, 1110
E. R. Frye, 1112
G. W. Dyckes, 1113
W. M. O'Neill, 1120
J. C. Russell, 1121
B. H. Van Domelen, 1122
J. E. McDonald, 1123
R. E. Fisher, 1124
L. M. Berry, 1130
D. R. Adolphson, 1131
C. W. Jennings, 1133
R. E. Cuthrell, 1133 (15)

J. J. Kane, 1511
F. R. Sweet, 1524
O. M. Fligner, 1524
D. W. Ballard, 2564
E. P. Quigley, 2565
J. M. Brierly, 8115
Attn: C. W. Schoenfelder
W. F. Carstens, 3410
R. S. Gillespie, 3413 (4)
B. R. Allen, 3421
M. G. Randle, 3428-1, Bldg. 836
M. G. Randle, 3428-1, Bldg. 880
E. A. Paxton, 8232-1
R. C. Smelich, 3427-3 (5)

Issued by Sandia Corporation,
a prime contractor to the
United States Atomic Energy Commission

LEGAL NOTICE

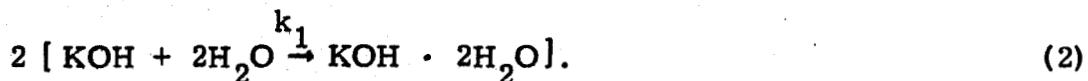
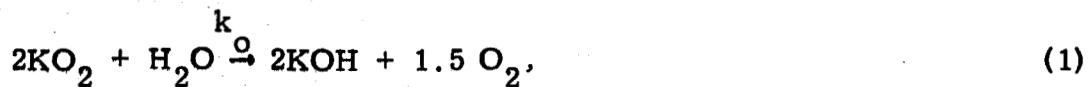
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

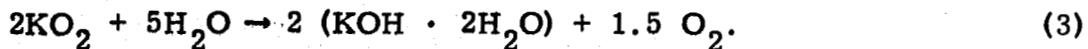

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

TABLE OF CONTENTS



	<u>Page</u>
Order and Rates	5
Procedure and Results	6
Conclusions and Recommendations	10
APPENDIX A -- DERIVATION OF THE RATE EXPRESSION	11
APPENDIX B -- SAMPLE CALCULATIONS	14
GENERAL REFERENCES FOR KO ₂	16


THE KINETICS OF THE REACTIONS OF KO_2 AND KOH WITH WATER

Order and Rates

The kinetics of the reactions of potassium superoxide and potassium hydroxide with water have been determined to be first order with respect to water for the former and second order with respect to water for the latter according to Equations 1 and 2.

These two equations may be added to obtain Equation 3 which has been reported in the chemical literature.*

The reaction rate constants (Table I) were computed from time dependent measurements of the moisture remaining in the nitrogen atmosphere over the solid reactants KO_2 and KOH.

* Mel'nikov, A. Kh., et.al., Zh. Neorgan. Khim 7, 1228, 1962;
C. A. 57, 10766b.

TABLE I
REACTION ORDERS AND RATES AT 22 (+1)^oC
AND 20 PSIG N₂

<u>Order</u>	<u>Rate Constants</u>	<u>Reaction</u>
1st	$k_o = 0.351 (+0.006) \text{ hr}^{-1}$	Eq (1)
2nd	$k_1 = 4.66 (+0.04) \times 10^{-2} \text{ hr}^{-1} (\text{m/l})^{-1}$	Eq (2)

Procedure and Results

Moisture was added to dry nitrogen by bubbling the nitrogen through an aqueous-sulfuric acid solution. When the water level had stabilized around 1000 ppm (by volume) the reaction chamber containing the KO₂ or the KOH was pressurized and, after a reaction time interval, the nitrogen was analyzed by means of a Consolidated Electrodynamics Corporation moisture monitor. Figure 1 shows a block diagram of the apparatus used in these experiments and Figure 2 shows typical curves for the reactions. In all cases the solid reactants were in large excess as compared to the amount of moisture in the nitrogen atmosphere and it is assumed that this will be the case in most practical applications.

The amount of water remaining, b, after time t, may be found by the integrated rate expression, Equation 4*, where a is the initial water concentration in moles/liter and e is the constant 2.7183:

$$b = \frac{k_o a}{e^{k_o t} (k_1 a + k_o) - k_1 a} \quad (4)$$

*See Appendix A for the derivation of Equation 4 and Appendix B for a sample calculation.

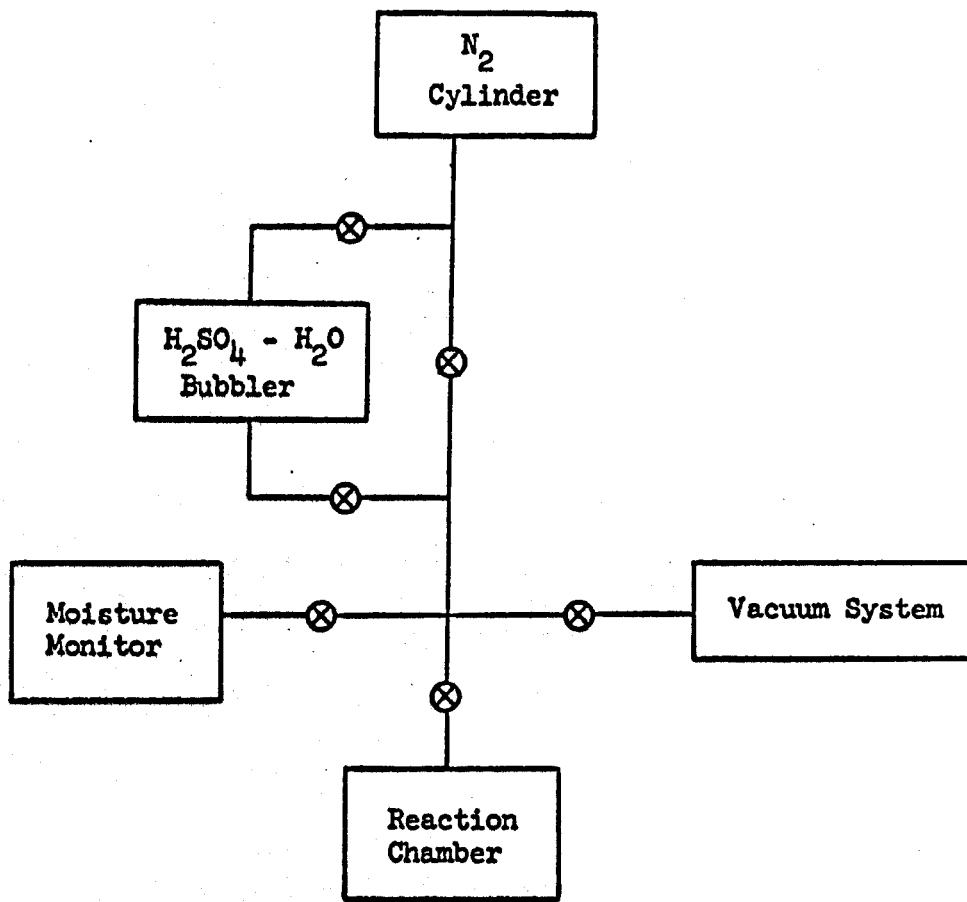


Figure 1. Diagram of Reaction Apparatus

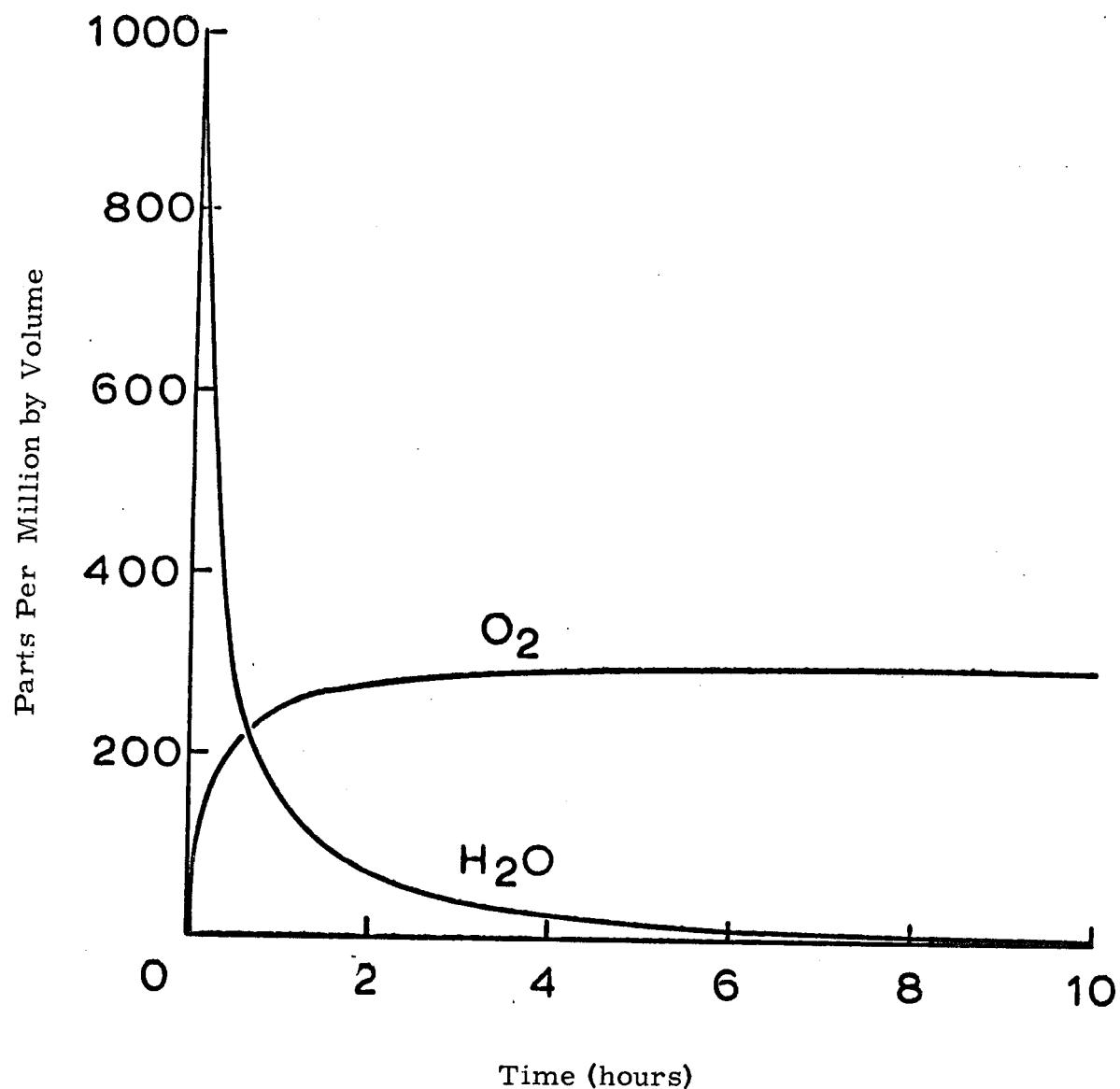
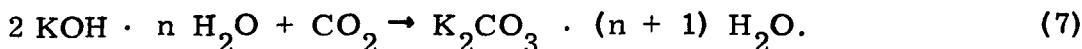


Figure 2. Reaction Curves

When the expression of concentration in terms of parts per million by volume is more convenient, the constant k_1 in Equation 4 may be replaced by k'_1 . The latter may be computed by Equation 5,

$$k'_1 = \frac{Pk_1}{RT}, \quad (5)$$


where P is the absolute pressure in atmospheres, R is the gas constant, 0.08205, and T is the absolute temperature in degrees Kelvin. The first order constant k_0 is independent of concentration units. The amount of oxygen evolved, c, may be calculated by Equation 6 where a and b are as defined previously.

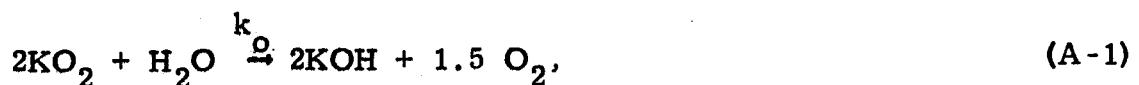
$$c = 0.3(a-b). \quad (6)$$

The average molecular weight of the potassium superoxide was determined titrimetrically to be 73.7, indicating a purity of about 96 percent as received from the supplier. The apparent density of the yellow solid was less than 1 g/cc, indicating a very large internal surface area (theoretical density = 2.14 g/cc). When small (1 cc) pieces of the superoxide were floated on water a considerable effervescence was noted as the reaction proceeded according to Equation 3. (Quantitative gas volumetric experiments confirm this stoichiometry.) There were no evidences of rapid combustion as would be expected if there had been unreacted potassium metal present, and it is thought safe to destroy potassium superoxide in this manner when the evolution of considerable quantities of oxygen does not present a hazard. An infrared spectrophotometric analysis of the oxygen evolved in the reaction showed no detectable infrared active species (H_2O_2 or organic impurities) at a cell pressure of 47 cm Hg.

Additional tests were made to determine whether the superoxide would react with dry CO_2 at an appreciable rate. Carbon dioxide, which had been dried over phosphorus pentoxide for 24 hours, was admitted to the reaction chamber (one atmosphere of pressure and 23^0C) where the gas remained in contact with

powdered KO₂. There was an initial decrease in pressure that was only slightly greater than the reading error and no change thereafter during a 24-hour period. The initial reaction was assumed to be the neutralization of impurity potassium hydroxide according to Equation 7.

Conclusions and Recommendations


Potassium superoxide was found to be a very active desiccant (0.633 lb H₂O/lb KO₂) capable of rapidly producing oxygen according to Equation 3 (0.337 lb O₂/lb KO₂). When the KO₂ is exhausted, the KOH · 2 H₂O formed will continue to serve as a desiccant and, in the presence of CO₂, will react according to Equation 7 to yield the hygroscopic (but nondeliquescent) carbonate.

In view of the reported explosive nature of potassium superoxide when in contact with certain organic chemicals, it is recommended that the KO₂ be stored in tightly closed containers when not in use and be protected from organic solids and vapors in vibration-tested containers when used as a desiccant or source of oxygen.

APPENDIX A

DERIVATION OF THE RATE EXPRESSION

When both KO_2 and KOH are present in a solid desiccant (i.e., the KO_2 has been exposed previously to small amounts of water vapor) and are in large excess with respect to the amount of water vapor, then reactions according to Equations A-1 and A-2 will occur simultaneously and independently.

The reactions were found to be first and second order with respect to water and the rate constants k_0 and k_1 were evaluated separately. The rate expression may be formulated as in Equation A-3:

$$\frac{dx}{dt} = k_1 (a-x)^2 + k_0 (a-x), \quad (A-3)$$

where a is the initial water concentration and x is the decrease in water concentration due to the reactions in time t .

Rearranging Equation A-3 gives

$$\frac{dx}{dt} = k_1 x^2 + (-k_0 - 2k_1 a) x + (k_1 a^2 + k_0 a). \quad (A-4)$$

Let

$$A = k_1, B = (-k_o - 2k_1 a), \text{ and } C = (k_1 a^2 + k_o a)$$

and, by substituting Equation A-4 and rearranging, the expression to be integrated is Equation A-5.

$$\frac{dx}{Ax^2 + Bx + C} = dt. \quad (A-5)$$

The expressions $B^2 - 4AC = k_o^2$, and $k_o^2 > 0$ indicate the logarithmic solution for the integral.

$$\frac{1}{(B^2 - 4AC)^{1/2}} \ln \left[\frac{2Ax + B - (B^2 - 4AC)^{1/2}}{2Ax + B + (B^2 - 4AC)^{1/2}} \right] = t. \quad (A-6)$$

By substitution and rearrangement

$$t = \frac{1}{k_o} \ln \left[\frac{k_1 (a-x) + k_o}{k_1 (a-x)} \right]. \quad (A-7)$$

The evaluation of Equation A-7 between the limits $x = 0, t = 0$, and $x = x, t = t$ and subsequent rearrangement gives Equation A-8,

$$(a-x) = \frac{k_o a}{e^{k_o t} \cdot (k_1 a + k_o) - k_1 a}. \quad (A-8)$$

* Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 1964, p. 12, sec. 3.3.17.

The term $(a-x)$ is equivalent to b in the text and represents the water vapor concentration after reaction time t.

APPENDIX B

SAMPLE CALCULATIONS

The moisture concentration in parts per million by volume remaining in an enclosure after a given reaction time may be calculated by Equation 4 after first finding k_1 by Equation 5 of the text. For example, at 20 psig, 25°C, 2 hours reaction time, and an initial moisture level of 1000 ppm, the calculation would be made as follows:

$$k_1 = 4.66 \times 10^{-2} \text{ hr}^{-1} (\text{m/l})^{-1}$$

$$P = \frac{20 \text{ psig}}{14.7 \text{ psig/atm.}} + 1.0 \text{ atm.} = 2.36 \text{ atmospheres}$$

$$R = 0.08205 \text{ atm. deg.}^{-1} (\text{m/l})^{-1}$$

$$T = 273.2 + 25.0^\circ\text{C} = 298.2^\circ\text{ Kelvin}$$

$$k_1' = \frac{Pk_1}{RT} = \frac{(2.36)(4.66 \times 10^{-2})}{(0.082)(298.2)} = 4.49 \times 10^{-3} \text{ hr}^{-1}$$

$$k_0 = 0.351 \text{ hr}^{-1}$$

$$a = 1000 \text{ ppm initial H}_2\text{O}$$

$$e = 2.7183$$

$$t = 2 \text{ hrs}$$

$$b = \frac{k_o a}{e^{\frac{k_o t}{k_1}} (k_1 a + k_o) - k_1 a}$$

$$b = \frac{(0.351)(1000)}{(2.72)^{0.351 \times 2} (4.49 \times 10^{-3} \times 1000 + 0.351) - 4.49 \times 10^{-3} \times 1000}$$

$$b = 66.8 \text{ ppm H}_2\text{O remaining.}$$

The amount of oxygen generated in this period may be calculated by Equation 6 of the text.

$$c = 0.3 (a-b)$$

$$c = 0.3 (1000 - 66.8)$$

$$c = 933.2 \text{ ppm O}_2 \text{ generated.}$$

GENERAL REFERENCES FOR KO₂

1. Blumenthal, M., Roczniki Chem. 12, 119, 1932; C. A. 27, 13.
2. Carter, G. F., et. al., Acta Cryst. 5, 851, 1952.
3. Kassatochkin, W., and Kotow, W., J. Chem. Phys. 4, 458, 1936.
4. Mel'nikov, A. Kh., et. al., Zh. Neorgan. Khim., 7, 1228, 1962; C. A. 57, 10766b.
5. Neuman, E. W., J. Chem. Phys. 2, 31, 1934.
6. Templeton, D. H., and Dauben, C. H., J. Am. Chem. Soc. 72, 2251, 1950.
7. Todd, S. S., J. Am. Chem. Soc. 75, 1229, 1953.
8. Tzentnershver, M., and Blumenthal, M., Bull. Intern. Acad. Polonaise, Classe Sci. Math. Nat., 1933A, 499-522; C. A. 28, 4284.
9. Vedeneev, A. V., and Skuratov, S. M., Zhur. Fiz. Khim. 25, 837, 1951; C. A. 46, 5950e.