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I. INTRODUCTION 

This report is the first semi-annual pwogrees report on 

? , .  . AEC sub-contract AT (30-1)-3451, covering the period 1 July 1964 
1" 
I t o  31 December 1964. During th i s  report period, the primary 
I. 
I .. 

ef for t  has been devoted to  the construction of the necessary 

I 

I experimental apparatus as  well as the performance of i n i t i a l  
' 

I 
1 

experiments .with zircbnium and tantalum. The development of 

an. experimental method for measuring of metal flame temperature 

I is  also in  progress. The ab i l i t y  t o  measure the metal flame 

.temperature w i l l  inable the further verif icat ion of the c r i t e r i a  

put for& by the Princeton group and w i l l  provide, as  well, 

' high temperature vapor pressure data of metal oxides such as 
. . . , 

aluminh oxide, strontium oxide, zirconium oxide, tantalum 

I 
I oxide, etc.  Analytical and experimental work on the igni t ion .  

of aluminum is reported as  well. These researches are described 

i n  'four sections, which form the main body of the report.' 

It is  f e l t  tha t  the time devoted to  the construction and 

I 

! . modifitation of the apparatus during t h i s  report period w i l l  
I 

permit the investigations outlined i n  the proposal. t o  be car- 

r ied out more .effectively during the next r.eport period, 
I 
I d 

l - .  
I ,  .I 



I. The Iqnition and Combustion of Tantalum in  Oxyqen 

C Preliminary experimental work has started on the ignit ian 
I 

, . 
b 

and combustion of tantalum wires i n  oxygen-argon mixtures. ' Work . 

on c a l c i y  w i l l  proceed when pure specimens , a re  availab1e;in near . +. 

h i  

wire or  wire form. t ,  
.. , 
:  anta alum wires of .03OW di'meter and 11 cm lengtli were mounted . . 

\ 

- in  the electrodes i n  a E-shaped configuration as  shown i n  Figure 4 1 .  

. 

\ 
The following photographs were taken through the window a t  the'  ' 

r igh t  center of Figure 1. The experiments t o  be described &re . ' 

performed i n  pure oxygen a t  pressures ranging from 50 rnm Hg t o  

5 atm. 

The sequence i n  the ignition and combustion of tantalum is 
- .  

' - as fcillows: as the wire is heated e lec t r ica l ly .  a uniform red 

0 glow progresses from the ho t tes t  ro ion' of the .wire. usually 

near the geometric center, towards the electrodes. A few seconds 

l a t e r ,  the hot tes t  portion of the wire becomes white hot; t h i s  

zone is  considered to  be the ignition zone and appears' to  consist  . . .  

o f ' a  solid-phase reaction. The wire then breaks near the center .' . 

and apparently is consumed by a sol id  phase reaction as  shown i n  
. . 

Figure 2 ,  which was photographed a t  500mm Hg of oxygen. A s .  shown. ' , ,  ' 

'the' flame is  proceeding upwards. Note the ripples o r  waves feeding 

the molten ba l l  of metal and oxide a t  the lower end i f  the wire. 

" Occasionally, these molten ba l l s  f e l l  t o  the bottom of the chamber. 

L I f  the  combustion zone regressed as fa r  as . the electrode blocks, 

rather  spectacular fragmentation was observed as  the combustion 

zone was quenched.and supercooled a t  the electrode, An example 

id-shown i n  Figure 3. which was a t  5 a h  gf pure ' , 

I '  
- oxygen. The small pa r t i c les  given off  appeared t o  continue t o  ' 
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burn. 

In the pressure regime from 300 mm Hg to  1 atm, the samples 

a t  t h e  electrodes then, expanded and burst a fey times, very similar 

t o  a child blowing a soap bubble. 

A s  the oxygen pressure was increased, the duration of the 
n n 

reaction decreased. 

m e  pt;oducts of combustion most Jikely consist o f ,  Ta and ., 

Ta205 and. assumed the shapes of hard"glassy spheres and b r i t t l e  

flakes (which were formed when the molten ba l l s  quenched on the 

chamber bottom). White, brown, and black products were found 

together. ' 

f i e  vapbr-phase combus t ion cr i ter ion,  tha t  the. boilin& point 

of the m e e l  oxide be higher than the boiling point of the metal, .. . 

cannot be checked readily for tantalum, as  boiling point values 
Il . . 

for the oxside (Ta205) are not available. Wide discrepancies in  

Ltle bpiling point of' the metal have been found, with values of 

4100 ( R e f a l ) ,  5430 (Ref. 2 ) ,  and 6 1 0 0 ~ ~  (Ref. 3)  given.,. However, 

from.,+he qcperimental evidence discussed here, it appears tha t  

tantdum Wrns in  the sol id phase under the particular, '  experimental 

con+itions, which' could be taken to  indicate tha t  the ,boiling 

poi* of ,?the oxide is less"  'than tha t  of the metal. 

D u r i q  the next report period experiments on the ignition 

and wmbustion of tantalum w i l l  be continued, i n  mixtures of 

oxygw, n4trogen, carbon dioxide, water vapor, and argon. The 

possibi l ihies  of vapor phase flamgs i n  some pressure region w i l l  

be examined carefully. 
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11. The ~ombhs t i on  o f  Zirconium i n  Oxyqen and Oxvqen-~rqon Atmos~heres,. 

Zirconium wire sample6 ,020" diameter and l l ' c m ,  l eng th 'have  . . . . 
I 

been i g n i t e d  by r e s i s t a n c e  hea t i ng  and bu rnede in  atinospheres of ' ' 

. . . . . , '  . 
3 , . i .  

, oxygen and' oxygen-argon a t  va r ious  subatmospheric p ressures .  
I 

1 The wires  a r e  mounted i n  the -e lec t rodes ,  ho r i zon t a l l y .  The vo l t age  

1 .  
. .  . 

I # 

, r i se  is l i n e a r  with time, ' , . 
1 
: .. A s  the  wire is heated i t s  sur face  passes  through s eve ra l  

1% I . .  :\ . , - 
<-.. . co lo r  changes including b lue ,  gold and purple. All o f  t h e s e .  

- 

co lo r  changes occur before t h e  w i r e '  glows r e d .  hbt .  A s  h ea t i ng  
1 

continues,  a h o t  spo t  occurs  on t he  w i r e  - as ind ica ted  i n  Figure 4 

which i s  a photograph o f  a heated zirconium w i r e  i n  pure  oxygen 

'at 50  mm Hg t o t a l  pressure .  

Further  hea t ing  causes t he  w i r e  t o  break. Two s m a l l  spheres  . ' . 

are seen t o l ' r eg r e s s  from the p o i n t  a t  which t h e  w i r e  breaks.'. 

1 
.Figure 5 shows ' . a .  zirconium wire burning i n  pure  oxygen' a t  500. nun .Hg 

t o t a l  pressure .  The speed a t  which these  spheres  regress is g r e a t l y  
. . 

a f f ec t ed  by t he  percentage o f  oxygen i n  the ,  atmosphere. ' Figure 6 
- . I  

: a i l l u s t r a t e s  t h e  spheres  i n  a f u r t h e r  s t a g e  o f  combustion a s  they'  . 

approach t h e  e lec t rodes .  The atmosphere con ta ins  60"A oxygen - 
400A argon a t  a t o t a l  p r e s su re  o f  50 mm Hg. 

The p ~ o d u c t s  o f  combustion inc ludes  two shiny grey-black 
. - 

, spheres whiqh usua l ly  remain a t t acned  t o  t h e  unburned ;ire a t  the ' 

- elec t rodes . ,  The. wire su r f ace  i s  genera l ly  white c l o s e '  60 t h e  . . 

1 , .  p o i n t  a t  which combustion has  occurred. Further  from t h i s ' h o i n t ,  
? 

t h e  wire su r face  is  much darker .  'It has  been no t i ced  , tha t  this , . . I 
I I 

darker  surface coa t ing  w i l l  f i a k e  ofk  the w i r e  i f  it is ben t  
, 

' .  a. - I - _  I . - : s h a r p l y  ., ., . .. + . I > .  . ., . . ,  

) 
* ,  

. . I . ;'. . , 
. ,  . . . . 

. ( i  . 
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. . 
h t u r e  work w i l l  inc lude  runs  a t  p ressures  t o  20 atmospheres. 

' S t i l l  photos and motion p i c t u r e s  w i l l  be taken i l l u s t r a t i n g .  ign i -  
. . 

t i o n  and combustion i n  t h e  var ious  p r e s su re  regimes.,' Photomicro- 

graphs w i l l  be taken of the products  o f  combustion. , It is  a1s.o 

hoped that i d e n t i f i c a t i o n  of the products  can be,made by X-ray 

d i f  f r a c t i d n  ana lys i s .  The effects of o t h e r  atmospheres inc luding 

n i t rogen  and carbon d ioxide  w i l l  a l s o  be inves t iga ted .  Comparisons 

w i l l  be made w i t h  t h e  work o f  o t h e r  i n v e s t i g a t o r s  when more .de t a i l ed  

experiments have been completed. 

The research  described i n  the following s ec t i ons  inc lude  

.measurement of m e t a l  flame temperatures by spec t rograph ic ' and  tw- 

pa th  techniques as -11 as experimental and t h e o r e t i c a l  work'on . 

aluminum p a r t i c l e  i gn i t i on .  , , 
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111. Metal Flame Temperature Measurements I- L i t t l e  re l iable  data ex i s t s  i n  the l i t e r a tu re  on the 'temper- 
I 

atures of metal flames. Qlassman (4) has concluded, from thermo- 

dynamic calculations, tha t  the temperatures of metal flames are 

I limited by the boiling point of the oxide produced, as there 

i s  insuff icient  heat o f .  reaction to  vaporize a l l  the ox$de. The 
"' 

purpose of the present research is to  t e s t  this 'hypothesis. I f  
I 
i it is  correct, measurement of metal flame temperature' as  a func- , 

3 .-tien of ambient.pressure can yield vapor-pressure data not cur- - I  . 
1 

. . . . I . '  rent ly available .for many refractory oxides. 

1 Because of the high temperatures of metal flames, these 
1 
I 

temperatures must be measured opt ical ly,  rather ,than'by sol id  I- 
1 . probes, th~ermoco~ples, etc. Because of the small physical dimen- 
I 

. sions of the flakes of metal wires, ribbons and par t ic les ,  the 

use of .a water-cooled calorimetric probe (as used i n  arcje'ts) 

would a1 t e r  the quantity being measured. 

-Because of the high luminosity of these flames, which 

contain light-emitting, absorbing and scattering *oxide par t ic les ,  

l i n e  ,reversal temperature measurements are not applicable. . 

Wolfhard and Parker (5) have shown tha t  because of norkgrky 

a emission from metal flames containing micron-sized oxide part- . 
j 

cles ,  .color temperatures d i f f e r  widely. from t rue  t'empeyatures . , . . . 
, . . ' ,  

Because of 'eca t ter ing  by par t ic les ,  We brightness temperature 

, I  - does not e w a l  the t rue  temperature, even for an i n f in i t e ly  

thick flame. 
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I I 

The technique used i n  t h e  p r e sen t  research  is  a modif ied.  

two-path method u t i l i z i n g  a background source.  Light  from a . . 

1 .' t u n g s t ' n  st%ip-filament lamp is fmageb i n  t h e  flame by a Yens 

a sy8tem. Th& l i g h t  from 'the sour=e issflmodulated by a chopper disc 
h ? 3 .  * r* ' ti 
k il t o  d is . t inguish  it from the l i g h t  ̂ emitked by t he  flame. The fl&e : . 

, . 
(and s ~ u r c 0 )  a r e  imaged by another  l e n s  on an aper tu re  which . s e l e c t ?  . , '  

, . 
. the po r t i on ,  of  t he  flame t o  be observed. The l i g h t  is chopped. * . .  

.. . . -, 

' again a t  a lower frequency t o  permit use of  AC , amplifiers. A ' .  . . 

'narrow. wavelength region i s  se l ec t ed  by i n t e r f e r e n c e  and dye ' f i l ters ,  . - -  . , 

' . and th% l i g h t  is  then  de tec ted  by a, photomul t ip l ie r .  1 .  
' . 0  

. . E$ssn t l a l l y ,  the absorbtivity o f  ithe flame . i s  determined by. ' . 

the at%enu&ion of  .the t ransmi t t ed  bet*: The photomultipl , ier is 

. ca l ibna ted  [in terms o f  b r igh tness  temperature be f o r k  each ,run,' .using : 
I. .. R r? . I I 

r! k 
. . -1 tungsten . . ;%amp. and o p t i c a l  pyrometer? Thus, the measurement G f  

t he  in$ensi ty of .  emi t ted  l i g h t  yields;  t h e  b r igh tness  temperaturk 

. o f  the].flaqe.  ' By Ki r chho f f t s ' l aw ,  the absorbtiv$ty . r. equa l s  i the '  . . . 

I I .  
' emiss iy i ty ,  : and t hus  t h e  t r u e  temperature may be ebmputed.? ' Using 

- Wientq law,!: t h e  foilowing equat ion  is e a s i l y  der ived;  f o r  an iso-  

therm?$, fiojpscatbsring flame: I 

- !  Where '2  i d :  the t r u e  temperature;', TBr , t h e  br ightne 'ss  tempkkature . . 
- . .  

' i . . . . 
J .  a t  wavblengkh , C2 is Planck'b second r a d i a t i o n  constant = ch/k, I 

. . 

and efi i s , k h e  spectral emi s s iv i t y  of  the flame. . . The wavelength 
- .. . . . : 

I . .' o f  o b s e r v a t i o n  is .chosen t o  avoid . a l l  .emission bands'-and. l i n e s  i n  . . 
. I . . . .  ' 

, , ... , I' , ! .  ' _ '  . ", . , .i' .., .. . 1-1 ' -. ' . '  - ,  
'j. .' ., , : . . . -  _. I ' ?I' 

., ;~,::'; .: .>, .3, .+,  .; I '  . ' . I . .  . ' : ' ; I . * . .  . , , . 
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I 

the flame spectrum, thereby avoiding the p o s s i b i l i t y  of  non- I 

, equil ibr ium rad ia t ion .  The r ad i a t i on  observed is thus continuous 
' ' 

& 

emission from the  oxide p a r t i c l e s  (which a r e  t a t  t h e  gas :temperature 
. . . . . 

I . . 
. . .  

because o f .  t h e i r  small  s i z e )  . , . . . .  
s .  

, '? rl n 
Because of s c a t t e r i n g  by t h e  o d e  p a r t i c l e s ,  t h e  s i tGa t ion  . 

' 0  1 
! 1 I . f . 

i s  not; a s  .s>mple a s  + shown above. kn eqi  (1) . . Axso, the, . flame -* :d: .:'? 
t 

- .  

i s  no t  i s o d e r m a l ,  and because of i t a n s m a l l  s i z e ,  the. temperature !. ) 

I A - 
grad ien t s  a r e  q u i t e  l a rge .  To c o r r e c t  f o r  these e f f e c t s ,  d t .was  

! 

t r a c t a b l e )  cis (6).  I I i 9 .  . . 
. . 

necessary t o  so lve  t h e  equat ion o f  r a d i a n t  t r a n s f e r ,  inc luding 
I 

emission, absorbt ion  and i s o t r o p i c  s ca t t e r i ng .  The equat ion o f  
, Q . 4  

. i 
. . !  

. a 11 9 I ; .  gv= m a s s  ex t i nc t i on  c o e f f i c i e n t  a t  frequency'? , 
ergs  , ' 1  r~ I ' ! kv = monochromatic oadiant '  i n t e n s i t y ,  I 

2 ! 

cm -sec - s te rad ian-  i a 6 

. t r a n s f e r  f o r  ' a  p lane-para l l e l  geometry (used t o .  make the Rathematics , 
, 

~ I Y ( Z P J ~ ~ =  I? (Tp,-?)-Z (qv) . ; 
7 r 

f.7 - P4-r c .  . I " 5' f.1 i;: 

frequency i n t e r v  I: I 

" 

- 1  I eq* (2) .  . 
1, .& 9 2 I .men : ' . = ~ C O S ~  .. , ,  . 

. b  . 6 r: 
. .  . ;.e = angle  with negat ive x-axis 

, ci R 
6'1 :r = o p t i c a l  thicknes;' = 1 2 v p d x  . 

a 6 '  . 'a E. 
. :r '= dens i ty  of emi t t e r s  

, . 
E! = monochromatic " sgurce  funct ionw,  defined below 

i ,  r - 
1 

, 

t 
1 

t 

I i c 

The "albedo f o r  s i n g l e  s c a t t e r i n g " ,  a , i s - d e f i n e d  as  the . . 
f r a c t i o n  04 the t o t a l  l o s s  from a beam due t o  scatte;ing, i n  

' i n f in i t e s i rda l  element o f  lengfh. '  Thu,e, (1%) is the ' f r a c t i on  
1 

a b s o r b ~ d .  It may r e a d i l y  be shown t h a t  
I 

I '  . 
I ,  I. . , .  ;- 
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'.. + . 
Qsca 1 

= ............... eq. (3a) 
CQ Qscat Qabs . l+~abs/osca 

1 
= e*.ooooo...oi....@q~ (,3b) Idam Qsca + Qabs l + ~ s c a / ~ a b s  

' where Qsca and Qabs are the scattering: and absorbtion efficiencies - .  . , b .  

of the oxide part icles (assumed spherical) i n  the flame (7) .  
4 ; i 6 

For the radiation emitted by the flame, the source function is: 

%=91:&/,~+~~0@&(77 . .  eq. (4a) 

f . . 
The f i r s t  temi denotes scattered l ight ,  the second term 'emitted . . 

- 

ahv3 I 
light# and.@ym= ca eqr-j# the Planck function. Since no 

1 chopper-modulated l i g h t  is being generated,in the flame, the source 

I- function forr the modulated l igh t  from t the background sourceq"is : . . 

. I 

eq. a . '(4b),*' 

. . Thus, ,the'dquations .of transfer to be solved, and their  boundary * 

. . .  . '  
. . . conditio.ns, are: . . . . .  

- '  

i A=-1 w - ~ z J ~ ( I - ~ ) B + ( T ) . '  . : .  . eq: iial.: 
. # 

I , 

1 I . I1 for the emitted ' l ight  . ' 

b 1 , . .  . .  
. , 

where 'Zr; . is the optical thickness of ' the flame. . ,. 

3 .  . . 
i,uw@~= rv- fi T w  

. eq. (5b) ': 
' . I )  . ' . 

.xv~0,,u<o) =& g X(p3 6 .  

I v ( q  # y>o) =C! 
, for the transmitted l igh t ,  

I 
l i ,' , , . .  L i . ; . . 
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1-  . - . -  
Fo being the f l ux  inc iden t  from t h e  background source aqd 

1- . being the n.Dirac d e l t a  function., (This assumes t he  incid0n.t .  f l ux  , 
# * .  

i' . . 
i s  a co l l i na t ed  beam i n  the d i r e c t i o n  /U = -1 . The r e s u l t *  

obtained &ill apply 'even f o r  beams of moderate convergence.) 
' - 

Solving equat ion  (5b) formally,  one f i nds  that t h e  term i n  'Iy is 
a. 

, . 
I rl 1 n 

' s m a l l ,  f o r  small  values of  t h e  acceptance.cone angle o f  t h e  de t ec to r ,  

and may be. approximated, y i e ld ing  the following r e s u l t ,  f o r  the t rans -  

, 

Where em& is the  half-angle o f  t h e  de t ec to r  acceptance cone. , Even f o r  
f i e  . 1,. 

a s  l a r g e  as lo0,  . t he  second term i n  eq. (6) &.has a m a x i m u m  . ' - . e m a x .  # I  
Z 

value o f  '.0066, and ' is neg l ig ib l e  f o r  o p t i c a l  th icknesses  less than 
.r I P 

about 3 .  1 1  Thus, f o r  o p t i c a l  th icknesses  smaller than thia,. ' the . . 
, , 

I ' -  

o p t i c a l  th ickness  is given by the f ami l i a r  expression: 
r' 

l i d  , 

while f o r  p i c k e r  flames, the connecdion i s  r e a d i l y  computed from" 
P 

eq. .(6). ' 
I .  I .  

' I  , . 
.Returning to .eq. '(5a) f o r  t h e  l i g h t  emit ted by the flame, 

. . I : . ' : I  . l e t  u s  make the following subs t i t u t i ons :  I 

y . , *  

Where f(Z),  varying between 0 and )1 , deacr ides '  .the te&eraturb  ' , , 

p r o f i l e  i n  ,$he flame, and Tmrx is  t h e  m'akimun, temperature along ,any: , . , 

\ ' . :- 
4 

- .  + .  
, . 

8 ,  . . 
I .  , I 

I '  . . * *  . *$ : ; . ; . . . * t i  . ,  . . -  + , ,.. , + * .  

, +  . , ' ,  . . t  ... . . , \ 
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given l i n e  of s i g h t .  . The r e s u l t i n g  non-dimensionalized iequation is: 
9 .  

Formal! so lu t i on  o f  t h i s  equation' y,ields: 
. 

,&CO ! ,  ?/lc +-Yfl VP *-V# d ,  - ~ V & P ]  = - q e  i,e ~ ~ $ ~ ( ~ - a ) e . J e  0 .  ~ l r ) . .  P 
eq. (7a) 

eq. ' (7b.I 

If J(7) . (describing t he  temper8ture . p r o f i l e ,  is known. ' t he  - ' 
, second' i n t e g r a l  i n  eqs. (7a) and (7c) . . c'an be evaluated. 3~ however, :., 

I . i s  no t  y e t  known a s  a funct ion  o f  . A so lu t i on  could be obta ined . - 
I by assuming] a n  39 , and r e f i n i n g  it by i t e r a t i o n  between eqs. (7) : 

I -1. and t h e  d e f i n i t i o n  Z-aJ,~vdp. - I n  the p re sen t  work. was 

1 found more convenient t o  u t i l i z e  t he  Schuster-Schwartzchild approxi- . 

I mat ion '  (8) c: I n  t h i s  approximation, t h e  in tegro-di f  fegenf i a l  , ,- 
" # ,  

I '  

I 
. equatibn (6a) is replaced by i p a i r  o f  ordinary  d i f f e r e n t i a l  - 

1 equat ions which are solved f o r  an approximate fZ;. This is  then 
k 

i n se r t ed  i n  eqs.' (7a) and (7c) .  . 

By expanding f (r)  i n  a Fourier  series i n  t h e  i n t e r v a l  ( '0, f;;')' 
I '  

-a 

t h e  i n t eg ra t i ons  ind ica ted  i n  eqs. ('(7)may be performed . . i q  . closed , , . 
, ,. ' I  

. , 

I . 
- .  . , 



. . 

, 
f o A .  a n d ' a ' s o l u t i o n  obtained i n  terms o f  the  Fourier  ~ o e f i c i e n t s  4- 

1 of  of 5 (t ) . The , f r a c t i o n  of t he  blackbody r a d i a t i o n  corregponding ; 

. . 
corresponds ' to an e f f e c t i v e  ernissivi ty f o r  t h e  flarpe. ' ~hus; i n  , .  

? 
p lace  'of e;. (1) , the r e l a t i o n  between br ightness '  temperature . . and 

4 1  

eq. .,.:(8)) ' 

. . , . 
BY. s u b s t i t u t i n g  various '  a r b i t r a r y  funCtions f o r  f (t)' i n . .  . . .  . , 

eqs. (7)  afEd '(8) ., it was: found that t he  r e s u l t a n t  temperature - , 

cnr+ections ;were- r e l a t i v e l y  i n s e n s i t i v e  t o  the shape o f  the emission 
I' 

' p r o f i l e  &(r), depending only upon ' i ts average value.. :Thus a . . , 

. . 1.. . , 
sine-wave i;hd a triangular-wave p r o f i i e  produced near ly  i d e n t i c a l  

xesu l t s .  . . . . . * .  
. , 

In  ord/er t o  es t imate  t he  shape of  this prof i l e . ,  an Apparatus.  ' 

n .. 
was const rzc ted  a s  shown i n  Figure 7. .! This .allows s h u l t a n e o u s  , - 

I '; ., 2-path temperature measurements along severa l  l i n e s  of  s igh t  ' .  . 

I through t h ~  flame. By assuming a c y l i n d r i c a l  (or sphe r i ca l )  flame 

1 compoqed of  concentr ic  isothermal  zones, an ana ly s i s  was performed 
*, , 

which t r a n s l a t e s  t he  br ightness  temperature and absorbt ion measure- 
! 

:men@ $long .+everal l i n e s  of  s i g h t  i n t o  approximate temperature and 

continuous scanning w a s  a l s o  derived,  These a n a l y s e s , i n  c y l i n d r i c a l  + 
, 

4 .  . -  . - ., 

emi t t e r  concentra t ion  p r o f i l e s .  An a l t e r n a t i v e  technique would be 
,- 1 

1 t o  have a s i n g l e  de t ec to r  r ap id ly  and continuously scan t h e  image 

2 

of  t h e  flamg -along a r a d i a l  l i n e ,  e i t h e r  by means of  a r o t a t i n g  

scanning d i s c  o r  an iconoscope tube, An ana ly s i s  r e l evan t  t o  such 
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. . 

I- : .  and spherical geometries were made mathematically tractable only 

J - by neglecting scattering. Thus, the f ina l  solution i e  an i t e ra t ive  , 

, . one between the multipath prof i le  determination and the plane- 
' .  

. *- 
para l l e l  s ~ a t t e r i n ~  conection 'given by eqs (7) and (8)' - .  a For 

example, the experimental brightness,temperature and absorption , . 
6 r *  0 I . b 

measuremenes are used to  obtain an approximate temperature prof i le .  

T h i s  is  inserted in  eqs. (7 )  and (8) , which yield the value of the 7 

maximum temperature along each l i n e  of sight.  These are compared 

with the aiproximate p rof i l e  and used to  ,correct . .  . I i t ,  etc. . . 

Application of ~ c i t t e r i n ~  correctioni an@ an' assumed t&nperature;, . . , .; 
prof i le  , totdata  taken ea r l i e r  on a single-aperture 2-path apparatus 

on magnesium ribbons burning i n  a i r  a t  1 atm. pressure, yielded P 

1 . . 
. Tmax =! 3275g0~ f 65O , in  gbod agreement with the MgO boiling point 

0 1  3 3 5 0 ~ ~ ~ :  The uncertainty was due to variations i n  the l i t e r a tu re  ., . . . . I t  

values of $he bulk emissivity, &, 05 MgO, which was used i n  e s t i -  ' 

+ 

mating thegratio of absorbtion to  scattering: . I , 

I Is 
Attempts have been made to  measure metal flame temperatures 

9 

1 - 
4 n 

spec t roscd ' i ca~ ly  by means of rotat ional  and vibrational temperatures 
i I 

of A10 and MgO calculated from the band spectra of the .Al-O2 and 
, . 

. 11 
~ ~ - 0 ~ ' '  flames. Densitometer tracings' of typical flame-. spectra are : . . 

I - .  I I I .: I, I 4  
given in  Figures ': 8 and 92 The instrhment 'used was A '  1.5 'meter ' ,.- c 1 

\ \ 

E I' ; 

, . Bausch and Lomb grating spectrograph, with dispersion of 15. 8/mm , : 
- I !  r: 

in  f i r s t  order.' 
. .  R i 1 

A s  s h a h  i n  the t rac ings ,  no rotat ional  structure '  is resolved 
1 . ' .  , ! 

. . , i n .  the ' M ~ O  spectrum, while tha t  'in tlie A 1 0  . s p e c t r q  is pa r t i a l l y  ., . . 

reso1;ed. : This difference i n  behavior' is  surprikirig, ..as ' t h e  maayk 
'.. 

. . . - 
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and s t r u c t u r e s  o f  t h e  two molecules a r e  very s imi l a r .    he' type 

o f  e l e c t r o n i c  t r a n s i t i o n .  5-2 is  a l s o  t he  same, and t abu la te4  

l i n e  spacings I $ ( N \ ,A  ) a r e  similar. 
h n 

~ t t e m ~ t s  were made t o  measure v ib r a t i ona l  temperatures of 

magnesium f&es burning i n  a i r  a t  pre&ures from 10Omm , ~ g  - t o  
I 

. , 

atmospheric: Magnesium was used, 'as l h g e r  burning tines a r e  

more e a s i l y  obtained and i g n i t i o n  more r e a d i l y  achieved i n . a i r  

f o r  magnesium than f o r  aluminum. 

The i n t e n s i t y  o f  a v i b r a t i o n a l  band i s  given by: 

eq. (9)J-t 

 where:^. E31) = v ib ra t i ona l  energy ?f i n i t i a l  state ' (above, the 
. / *.r ...I Y zero p o i n t  energy) L 

. . 
?. 1 = emitted i n t e n s i t y  . . 

3 . , * .  f i  F constant  
X '7 .  . <  

7/ = frequency of  emission 
7 !: 31' = i n i t i a l  s t a t e  

I 

nu = f i n a l  s t a t e  
1 

' '&c"= t r a n s i t i o n  p robab i l i t y .  qt4%" .* ' 

eq. - ~ ( 1 0 ) .  
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I f { I * , ,  ii Brinkman and Ornstein (9) assume i n i t i a l l y  that 
I 
, . / ea 

approximately'constant for a l l  % . That is, the sum oaf trano- 

i t i on  probabil i t ies  from a given i n i t i a l  s t a t e  t o  a l l  f ina l  s t a t e s  . 
1 

is independkt of the i n i t i a l  s ta te .  With t h i s  assumption, eq.' (10) 

.may be transformed to: t 

. eq. (11) 

and an approximate vibrational temperature computed.  his may 'be 

inserted in:eq. ( 9 ) ,  and conected t ransi t ion probabil i t ies  com- 

puted, #'and the solution refined by i terat ion.  

The application of t h i s  technique requires the measurement of 
. , 

5ntensities.s of many bands having the same i n i t i a l  s t a te ,  so tha t  

the suriunation on the r ight  side of eq. (10) can be made. This , 

is easi ly done for the A 1 0  spectrum. However, i n  the flame spectrum 

of magnesium, only the bands for which & = ~ , f  1 are + b i b l e ,  and 

only the f i r s t  of these with any appreciable intensity.  

However, i f  one ambient.pressure and i ts  asso'ciated .(unknown) 

flame temperature are taken as a standard, and a l l  intensi t ies .  

normalized with respect t o  it, then L -+ may be obtained as 
f ;  

a function of pressure, without making any assumptions. regarding 

the t ransi t ion probabili t ies.  I f  the hypothesis, tha t  the metal 
- 

flame temperature is very close t o  the boiling point of the.'oxide, 

is true,  then a p lo t  of VS.(#-$)should be a s t ra igh t  l i n e  of 

slope d h / ~  . 
Because of low p la te  sens i t iv i ty ,  the sca t t e r  i n  the experimental 
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. . 

d a t a  was too  g r e a t  f o r  any such r e l a t i o n  t o  be apparent. ' The 
' I  . 

. , . . .  

- 
experiment' w i l l  s h o r t l y  be repeated with more s e n s i t i v e  p l a t e s .  , , 

4 

1- . '  Vibrational and rotational tempexatuxe measurements o f  alum'inum . , 

. . . . . 

' flames w i l l  a l s o  be made. . . 

' p e  uqe of spect roscopic  temper7;ture measurements presumes . , 
. ' 

t h e  ex i s t ence  o f  fhermal equi l ibr ium between t h e  i n t e r n a l  :mddes .: , , 

. I 

o f  th6 mol&ules. However, ~ a y d h n  (1%) and o t h e r s  h a d  shown t h a t  1 

l a c k ~ b f  equi l ibr ium may e a s i l y  be 'detected by depar tu res  of t he  

p l o t t e d  d a t a  from l i n e a r i t y .  Er ro r s  due t o  absorbt ion  

w i l l  be s m a l l  f o r  bands i n  a small  wavelength i n t e r v a l ,  a s  a l l  

bands . w i l l  %e s i m i l a r l y  a t tenuated ,  and logarithms of  i n t e n s i t i e s  

P .  , I  . I .  ' f a r e  p lo t t ed .  * 
I .  . . 

f Errors  may e x i s t  due t o  t h e  averaging.  along a l i n e  o f  s i g h t ,  , , 

and tlCe tiqe-averaging ' i nheren t  a n  lqng photographic exposures o n  
? .  . . 

a n  unsteady flame. Coheur and .Coheur: (11) have repor ted  r o t a t i o n a l ,  ' 

. . 0 +, . , 
, I  . 

, . Cempe~?atur(s o f  t h e  o rde r  of  4000, K -1 300° f o r  A 1 0  i n  sou ices  -- 
' 

as d ive r s e   as exploding wires ,  a r c s  conta in ing  ~ l '  o r  AIZOg: and, 

spark9 between aluminum e lec t rodes ,  a t  p ressures  ranging 'from 
$ 

, . a.$mospheriq t o  near  vacuum. The processes  i n  t he  a r c s  a r e  not  

energy-limited a s  a r e  those i n  flames. Brinkman and ~ r ' n s f e i n  ( 9 ) 

I " 

have . ~ e a s u y e d  a t c  temperatures of  t h e  o rde r  o f  6 5 0 0 ° ~ b y  CN band 

a I spec t ra .  Coheur and Coheur conclude t h a t  t h e  A 1 0  temperature ..meas- . . 

I .ured 3s s i v p l y  an optimum ' temperature f o r  the, ,  formati& and emission* 

of A 1 0 .  c e r t a i n l y ,  a t  -.,.-. :lower 'temperaturSJ. A ~ O  : A u l d  tend.  t o  c o n -  : 
. .  I , - .. 

-. ,. . 
dense,:hto' A 1 2 0 2  . orj.:AliOg, and a t  temperatures. much i n  exce s s  of . , . 

. . - -.. . . -  
.4000%, ' d i s sod i a t i oq  : t o  A 1  . . .and . . .  0 w6uld occur.  Hoyever,, - . ,  be&ule . . ,+.: 

. . . . *. . . . - a,.. ' .: 
1 .  A . . - ; -.,*.-, -,* 

1 . . o f  t h e  -hide' ekperimentel *&roi- i i i  -.the=+ r a s u l t s .  .. ( a . range . .  ( - . .  o f .  ' .. , . 
. I '  
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' .*. . 1 .  

I "  I V  I q n i t i o n  of  Aluminum P a r t i c l e s  

Metal p a r t i c l e  i g n i t i o n  t imes and c h a r a c t e r i s t i c s  can be 

important i q  any s i t u a t i o n  i n  which t he  metal  is  intended t o  burn. 
' 1  , . 

~ i s t o r i c a l l y ,  much a t t e n t i o n  has  been focused on aluminum. . I n  t h i s  
.c' 
f4 s e c t i o *  a n$w ana ly s i s  i s  discuss$d wh;ich w i l l  incorpor&te many" 

more o'f t he  ' impor t ' k t  va r i ab l e s  which may inf luence  t he  i i k t i o n  o f  

aluminum p a r t i c l e s  under a wide v a r i e t y  of  experimental condi t ions .  

This  ana ly s i s  w i l l  be 'completed s h o r t l y  and experimental v e r i f i c a t i o n  

w i l l  cpunence. 

and Macek (12,~14)'. s tud ied  t h e  i g n i t i o n  of s i n g l e  . I . . .  

aluminum p a e t i c l e s  - i n j e c t e d  i n t o  a premixed gas dlame oni ;a  f l a t -  . 

flame b u r n e ~  - by photographing t he  p a r t i c l e  I I t r a c k s  and not ing  the 
1 

p o i n t  ~f i g r i t i o n  by t h e  sharp inc rease  i n  br ightness .  They, . . . 

repor tgd  ig i j i t ion  temperatures approximately t h a t  of  the mel t ing  .I I 

p o i n t  of  aluminum oxide, and i g n i t i o n  \ t imes.  o f  the order  08- 

I t e n s  o@ mil&iseconds . I g n i t i o n  t i m e s  i.computed on the b a s i s  of, 

conduc$ive ambient gas' were cons i s t en t  w i t h ' t h e i r  experimental . ] 
r e s u l t s .  c 

. . 

' ~ o w e t e r ,  the condi t ion  p r e v a i l i n g  i n  a regime where? the re  , , . , 

. a r e  l a r g e  concent ra t ions  of  burning p a r t i c l e s  d i f f e r  from t h e  . :, , . . . ' . , ,. 

1 .  

above exper,iments. A l a r g e  f l u x  of r a d i a n t  energy from the I 

, I of  p a r t i c l e , s i z e s  i n  any commerically ava i l ab l e  metal  powder,. 
i 

l a r g e r  unigpi ted  p a r t i c l e s  may f i n d  themselves surrounded by 1 .  I 1 

, burning p a r , t i c l e s  can produce s i g n i f i c a n t  r a d i a n t  hea t i ng  of ' 

I 

incoming 'pa , r t i c l e s .  I n  add i t i on , ,  bec.ayse o f  t h e  d i s t r i b u t i o n  . 
- 

smal le r  buzning p a r t i c l e s ,  and thereby heated  both r a d i a t i v e l y  ~. 
t . , . - .  ._ - . 

i ' . ,. I ' \ . u ,  ' , k  * , '  . 
. +. ,.,:+::..:;, , . . . , . 4 ) '  

' :- . I*:, !. . . . I ' I !  - .  . *  1, , . . . '. . . . I ,  , '. ' . . .  . 
.A i . . 1 .  r-. 

. ' . .  : .; ".  . :" .. 8 
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1 
i 
! 

and conductively by theae par t ic lee ,  as noted by wood (15): 
I 

In the present work, a burner has been constructed pro- 

ducing a quasi-flat  premixed flame of propane, O2 and N2, and. . 
$ 

I capable of passing large concentrations of metal pa r t i c les  (Figures 10 
." 

# 11). Because of the large number. 'smali s ize  and close spacing of . 

, the d r i l l ed  holes i n  the water-cooled burner p la te ,  the individual 
. . .  

. flame cones of the premixed gas merge into a nearly f l a t  flame 

. with a maximum i r regular i ty  of the order of 1 mm. Since igni t ion 
i 

distances are of the order of centimeters, to  the particles.,  the 

flame i d  f l a t .  I 
! - 

Part icles  are entrained into the gas stream i n  a.mixing , 

I . . 
1 chambertiin which tangential j e t s  of the gas mixture impinge upon 
I 
I a I ~ y e r  of aAuminum powder. The concentration of aluminum powder 

I i s  detepined by switching the gas streams for a known time ' - 

. interval  from the burner t o  a f i l t e r  which traps the par t i c les  
I 

. and is  &aterl;weighed. Commercially available aluminum powder is 

I separated- in+o re la t ive ly  narrow cuts ( ystandard deviation 

from me-) by a i r  e lu t r ia t ion .  Because of heat losses, t o  . the  

water-cooled,burner, the burned-gas temperature can be as' much 

as 3 5 0 ~ ~  below the computed adiabatic flame temperature of the 

mixture, and+,estimation of the t rue temperature by a heat balance . 

on the cooliqg water is not accurate enough. Instead, the true 

temperature 4s measured by l a  D-line reversal ( w i t h  no par t i c les  i n  
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3 the  flame). The temperature drop can be reduced by increaeing the 
I 

? 

? gas stream ve loc i ty .  This both decreases  heat t r a n s f e r  t o  t h e  
I 

1 burner  and idc reases  t h e  mass flow, thus ' r educ ing  t he  temperature 
1 

f drop. 
! . . 9 .  rl 

I 
I 

Burned gas v e l o c i t i e s  a r e  on t h e  o rder  o f  500 cm/sec. 

Though the  f i n a l  p a r t i c l e  v e l o c i t y  is c l o s e  t o  the gas v e l o c i t y , "  

i 
t t h e  p a r t i c l e s  take  an apprec iable  d i s t ance  to  a t t a i n  t enn ina i  ve loc i t y .  
! 

1 'Hence, experimental ly measured i g n i t i o n  d i s t ance s  a r e  converted 
! 
1 t o  i g n i t i o n  t i m e s  by i n t e g r a t i o n  o f  t h e  equat ion o f  motion f o r  

1 t h e  parhicle, assuming S toke ' s  law drag. I , 
! - 

i The t h e o r e t i c a l  ana ly s i s  of  p a r t i c l e  i g n i t i o n  proceeded i n  

1 - s e v e r a l  : stages': r 

I 5 

1 
LI :I a )  I g n i t i o n  was defined a s  a t ta inment  o f .  t he  

1 oxide m e 1  t i n 9  po in t ,  which Friedman (U,U,l4) showed t o  be approxi- 
. . .  

mately t h e  i g n i t i o n  temperature.  F i r s t ,  t h e  temperature h i s t o r y  

4 of  an aluminqm p a r t i c l e  hea ted  by conduction from h o t  arnbienf. . . 

gases and byn,radiation from a plane  black body a t  t h e  .metal  

flame tgmperature (the b o i l i n g  p o i n t  o f  t h e  metal  ox ide ) ,  was . 

j . , .  
s tud ied ,  Radiant h e a t  l o s s  from the p a r t i c l e  was' a l s o  considered 

I even where . hea t i ng  was pure ly  conductive. Some t y p i c a l  ' r e s u l t s  . 
1 
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I' I C 

,' , . .. r l  . TABLE I[., ' 

, 
I. 

Ambient GasTempetature = 2 5 0 0 ~ ~  
1 2 . . ' 

Aluminum Particle Emissivi ty = -40 
-. 

I ,  . 

- p a r t i c l e  ~ i h e t e r ,  
-- Micrcms-' : 

g .: 
. . "35 p - P  + 

Calculated I g n i t i o n  Time, Mil l iseconds 

Conduction Conduction Conduct ion  
With , Without and' Radiant . 

Radiant Loss ~ a d i a n t  L,oss Heating With 
'Radiant Loss 

Thus, these  ca l cu l a t i ons  'show t h a t  r ad i a t i on ,  both a s ,  h e a t  

inpu t  dnd 'as  l o s s ,  can be important f o r  l a r g e r  p a r t i c l e s .  Indeed, 

it may e a s i l y  be shown t h a t  t he  r a t i o  o f  r a d i a t i v e  h e a e  inpu t  (or  
' I 

l o s s )  ko cofiductive h e a t  inpu t  i s  prorjbrtional t o  p a r t i c l e  'diameter. ' 

p I :  I. 

For p a r t i c l e s  smal ler  i n  diameter than 10  microns, t h e  r a d i a t i v e  

con t r ibu t ion  is neg l ig ib le ,  Further ,  because o f  theL, low Reynolds 

number ( i n i t i a l  Re = 1, Fina l  R e  ~5 . 01) , conductive h e a t  transfer 

has been considered r a t h e r  than convective. ' . 

I . t ." 
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b)  The nex t  s t e p  was a somewhat more soph i s t i c a t ed  model 

of t he  hea t ing  proceas. The cloud of burning p a r t i c l e s  

r a d i a t e s  less i n t ense ly  than  a black body, un less  i t s  th ickness  

and/or concent ra t ion  a r e  very g r ea t .  The r a d i a t i o n  from the ' 

rl I I 

b u r i i n g  cloud of p a r t i c l e s  and i ts dependence on concent ra t ion  
* '  

w a s  computed by so lv ing  a s impl ie ied  r a d i a t i v e  heab t r a n s f e r  

problem, . sub j ec t  t o  t h e  grey-body assumption, and assuming . 

. t h a t  e ach  i nd iv idua l  burning p a r t i c l e  r a d i a t e s  a s  a black .' 

body. The l a t t e r  approximation i s  app l i cab le  s i n c e  the 

r a d i a t i o n  from each burning p a r t i c l e  i s  r e a l l y  emi t ted  by 

a ,dense' cloud o f  micron-sized incandescent p a r t i c l e s  surrounding 

. it, and the d i s t ance  between burning p a r t i c l e s  i s , l a r g e .  I 

. , 

r e l a t i v e  t o  the diameter of  t h e i r  flame zones.. 

:The gas temperature and ve loc i t y  a r e  n o t  r e a l l y  cons tan t ,  

bqt decrease a s  t h e  metal p a p t i c l e s  a r e  heated  and acce le ra ted  

by. t h e  h o t -  gas stream. Indeed, a simple h e a t  balance shows 

t h b t  f g t  any given i n i t i a l  gas  temperature,  t h e r e  is a maximum 
. . 

coficentratbn of metal  t h a t  can be added before  t h e  gas  coo l s  . . 

below w e  i g n i t i o n  temperature and i g n i t i o n  does no t  occur.  

To,es t@iate  t h i s ,  consider  conductive hea t i ng  only 
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metal Where3 /Umax = maxirum mass fraction Metal 
C = metal  s p e c i f i c  h e a t  
Pm 

? I '  r l 

C P gas s p e c i f i c  h e a t  
P4 

T a = p a r t i c l e  ignitionp. temperature I is, m 

T 
go = i n i t i a l  h o t  gas temperature 

To = i n i t i a l  p a r t i c l e  temperature e4 31 room temperature 

Actual ly,  more metal can  be added than shown by eq . (2 ) ,  

because o f ? - r ad i a t i ve  hea t ing ,  b u t  it h a s  ,been shown experimental ly 

t h a t  such a m a x i m u m  metal  concent ra t ion  can e x i s t .  

The v g r i a t i o n  i n  gas teniperature was taken i n t o  account i n  

'Ire computer ,, i n t e g r a t i o n  o f  t he  system .. o f  d i f f e r e n t i a l  equat ions  
? 

desc r ib ing  the hea t ing  process .  The cool ing o f  t h e  h o t  ambient 

gas (and cdnsequent reduct ion  o f  conductive p a r t i c l e  hea t ing)  

and t h e  r a d i a t i v e  hea t ing  of  t h e  p a r t i c l e s  have oppos i t e  e f f e c t s  

en i g n i t i o n  time, a s  metal  powder concent ra t ion  is increased.  I n  

genera l ,  t h e  n e t  e f f e c t  i s  t o  decrease the v a r i a t i o n  of i g n i t i o n  

t i m e  with m e t a l  concent ra t ion .  For some combinations o f  i n i t i a l  

gas t e m p e r ~ t u r e ,  th ickness  of  t he  burning p a r t i c l e  cloud and 

p a r t i c l e  e q i s s i v i t y ,  t h e  l i m i t a t i o n  on metal p a r t i c l e  concent ra t ion  

mentioned above no longer  e x i s t s :  i .e. ,  i n  these  cases r a d i a t i v e  

hea t i ng  inc reases  more r ap id ly  than conductive hea t i ng  decreases  

due Yo cool ing  of  the gas. 
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c )  Photographs o f  p a r t i c l e  i g n i t i o n  on t h e  f la t - f lame 

burner ( F i g ~ + e ~  12,13 79.p averago diameter A 1  p a r t i c l e s .  

P=l  a h .  Ug=350 cm/sec., T = 2420 OK) show that i g n i t i o n  
go 

occurs  over a range of  d i s t ances ,  due t o  t he  d i s t r i b u t i o n  o f  
r l  

p a r t i c l e  diameters i n  t h e  sample. An average i g n i t i o n  d i s t ance  

was obtained from such photographs, both o p t i c a l l y ,  and by 

photodensitometric scanning of  the negat ive,  and co r r e l a t ed  

with t he  average particle diameter (determined by photomicrography)r' 

The ana ly s i s  described i n  b )  p red ic ted ,  i n  c e r t a i n  cases,  t h a t  no 

i g n i t i o n  wbuld occur under condi t ions  where i g n i t i o n  was 'observed 

experdmentrally. This is  probably due t o  t he  presence of  p a r t i c l e s  

1 smal ler  Wan the mean, which igrpite first, and then conductively 

1 and radia tdvely  h e a t  the l a r g e r  p a r t i c l e s  u n t i l  they i g n i t e .  
I 
i 
1 A new. ana ly s i s  ha s  the re fore  been made, considering the' 

\ - 

I ;ample t o  b e '  composed of a number of; ,groups o f  p a r t i c l e s ,  each. 

I groupi of  m e  diameter,  and fol lowing t he  h i s t o r y  o f  ea=h group. ' . 

i This ana lye i s  t akes  i n t o  account the.; following e f f e c t s :  

, I .  ' r. I 1. Radiat ive hea t ing  apd h e a t  loss 

2. Conductive hea t i ng  of  p a r t i c l e s  by gas ' tl 

3. Variable gas tempexature, dens i ty  and v i e c o s i t y  

4. Variable gas ve loc i t y  , .  

I . .  

I i . 5. Conductive hea t ing  o f  gas by burning p a r t i c l e s  

6'. Decrease i n  diameter o f  burning p a r t i c l e s  ' 

-as w e l l  a s  i g n i t i o n  d i s tances  and t imes,  t l i i i&alysis  ' ' 

w i l l  determine burning d i s tances  f o r  each s i z e  o f  p a r t i c l e ,  and 

1 
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.the variat ion o f  intensity o f  

comparishn with densitometric 

being ptogrammed for computer 

the metal flame w i t h  distance (ear 

tracings). This analysis is. now 



. . 
. . 

. -  - 
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I .Work n rill continue on the  combustion 1 1  n of tantalum and I 

I 

zirconium over a wide range of  environmental condit ions o f '  . 
5 d 

pressu$e ' and - gaseous species  presgnt ,  - as - d,iscusse$ i n  tne , . .  

p r o p o s ~ l .  ~ ' i m i l a r  s t ud i e s  of  calcium, and o ther  metals w i l l  

, . 

V. Proposed .Work f o r  the  Next Report Period , 

\ 

. , . 

. . 
be made. In tens ive  e f f o r t s  w i l l  be made t o  determine i f  tantalum ! .  

and zirconium s a t i s f y  the' vapor phase burning c r i t e q i a .  i n  any . . ; 

. . . . . . environmental conditions. '  . . 

The t o - p a t h  metal flame temperature measureinents w i l l  

contin6e. ' 6ribrational and r o t a t i o n  teinperature measurement3 of ,, ' 

aluminum f l ~ e s  w i l l  a l s o  be-cont inued I ,  using more s e n s i t i v e  I 

plzjtes; Ign i t ion  times , .  w i l l  be computed and compafed"with.. . . . 

experihentai  data.  - 
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