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SOME SIZE EFFECTS IN METALS IN THE FAR INFRARED

David Burnham Tanner, Ph. D.

Cornell University, 1972

The far infrared transmission of lead thin films and

of small metallic particles has been measured. In both of

these systems, the sample size strongly affects the infrared

response.  The thin film measurements were made at tempera-

tures near the superconducting transition temperature, where

fluctuations in the superconducting order parameter give

an extra contribution to the conductivity.  This extra

conductivity exists both above and below Tc and has its

largest value at frequencies below a characteristic frequency.

16kBT  T-Tcl
WF-          TAh      c

Calculations from the time dependent Ginsburg-Landau theory

of the extra conductivity give a good description of the

data.

The small particle measurements were made on powder

samples of Cu, Al, Sn, and Pb.  The diameter of the particles

ranged from 65 A to 350 A.  All of the samples showed

absorption which was very small at low frequencies and which

increased more or less linearly as the frequencies increased.

There was no change in the absorbtion as the temperature was

varied from 1.2' to 20' K, and there was no evidence for a

superconducting energy gap below the bulk superconducting

transition temperature  in  the Sn or Pb saniples.
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All of these measurements were made using a new He3

refrigerator to cool the bolometer-detector.  This cryostat

used charcoal to absorb the He 3 gas.  There are .no moving

parts in the Hes gas system, instead cycling is accomplished

by changing the temperature of the charcoal.



CHAPTER I

INTRODUCTION

This thesis is a description of two experiments in which

the sample size greatly affects the far infrared response of

the metals studied. One is the far infrared transmission of

thin films of lead at the superconducting transition temperature

and the other is the far infrared transmission of small

particles of various metals.

The thread that ties these two problems together is the

quantization of the wave vector, i, of the electrons.  The

free electron modell of a metal begins with a free particle

Schroedinger equation for the Fourier components of the.electron

wave function. Because the metal has surfaces which the electrons

cannot penetrate, periodic boundary conditions are introduced:

00(x+L,y,z) = 4-,(x,y,z)
K                                             K

and similarly for y and z. The wave function is of the form

1           ilt. r
111+ = V  e
E

with the boundary conditions restricting the components of the

wave vector to

27T   47Tk = 0, T ' -r· ···X

and similarly for k  and k The energy eigenvalues are
Y      Z

li 2 k 2
E   =
K    2m

with k2 = k2 + k2 + k2.
x y z

According to the Pauli principle, two electrons are put

in each energy level until all the N electrons are used up.  The

-- -1-
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uppermost filled level, the Fermi level, has the largest

momentum value

r 3.Tr 2 N, 31  7T

k F=l v  J  -a

where a is a lattice parameter. The Fermi energy is

E   _ 412  (31r 2N)'3'5F -2m L V

This energy depends only on the cohcentration of electrons and

not on their number or the volume.  The density of states does,

however, depend on the volume.

D(E) = VInk - V  (- 11)VIEVSTr/M2  271 2 42

Now, the general way that one calculates physical quantities

is to Fourier transform the appropriate equation into momentum

space and calculate the quantity for one component of the

wave vector, e.g. as. F&.  Then at the end another Fourier trans-

form regains the total quantity in real space.  If there are a

large number of values of the momentum (if L>>a) then an integral

transform may be performed but if one or more of the dimensions

of the sample is small then the component in those directions

must be summed. The behavior for various dimensionalities is

. kzdk -i£·; -3D:   £8ifk.*FfE * S  -p 3 8ifi.r  =f          e       Ffi
0  2 2

K

1.

1 -i*·* 1  d 2k -ii.; 1- 00

2 1  -ii.; F 

k dk
2D: V E e Fi +JES-l e    Fi = f. f        e

kz(21)
2

KZO
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.*
+ co dk

-1 ·r -   1           2 -ii•;
l D:                i     e                          r f     +K          I                f          --Zir      e                          Fl2

K                                     .      kxky- 00

OD: -E e Fk  remains unchanged.
1   -i ·*  +
V+

K

From the foregoing a simple argument arises as to why

transitions are broadened in fewer than three dimensions.  If

one or more dimensions is small (not many times larger than

the lattice parameter) then there are only a few momentum

values allowed; the sum has only a few terms and will not

approximate a step. It is not possible to get a sharp

discontinuity with only a few terms in a Fourier series.

A similar argument comes from K. Wilson.2  All of the

measured quantities are calculated by performing thermodynamic
H

averages.  These involve sums of the form EeRT , where H is the

Hamiltonian of the system and the sum goes over all possible

configurations in the system.  There can only be a singularity

or a discontinuity if there is an infinite sum.

The next chapter, Chapter II, is a discussion of the far

infrared techniques used in this work and the apparatus built

during it.  Among the former is Fourier transform spectroscopy

and among the latter is a helium three temperature detector

system that uses charcoal to adsorb the He3 and has an associated

evaporator for making thin films.

Chapter III is on the contributions of superconducting

fluctuations to the far infrared transmission of thin films.

The dc resistive transition of a thin film made from a super-
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conductor is not sharp in temperature as in the bulk metal

but is rounded off and has a certain intrinsic width.3  This

has been explained4,5 as being due to fluctuations of the

superconducting order parameter which cause small regions of

the film to become superconducting (have finite order parameter

or density of superconducting electrons).  In these regions

the pairs can be freely accelerated by the field and they will

short out the normal regions around them. The resistance of

the film is thereby reduced. The fluctuations have only a

finite lifetime.  The metal is above its transition temperature

and so the superconductivity cannot be sustained indefinitely.

As the temperature is reduced towards the transition temperature,

T - the lifetime of the fluctuations becomes longer and their
C'

strength increases until at Tc the superconductivity freezes in.

The characteristic frequency of the fluctuations (the inverse of        

the effective relaxation time) is
1    16kBT  T-Tcl

WF       =       'FF

-

THi T
C

The measurements discussed in Chapter III show an increase in

the conductivity above the conductivity of the normal state at

frequencies below wF.  In the superconducting state (below Tc)

there is a similar contribution to the conductivity by the

fluctuations. In both temperature ranges, the conductivities

bcan be calculated using time dependent Ginsburg-Landau theory,

and the transmission of the film calculated from the conductivities.

These calculations agree with the measurements quite well.

Chapter IV gives the results of measurements on small

metallic particles.  These are powders made up of spherical



-5-

particles of the metal, all with diameters around 100  .  In

these samples· there is a size quantization of the electron

energy levels, given by

4EF

   -  D (EF)   =  3. N

where EF is the Fermi energy and N is the number of electrons.
0

For an 100 A diameter particle N-10,000. The electrons have

a mean energy level spacing on the order of an meV, rather than

being in a band. This will affect the behavior of the metal

substantially. One might expect that light with photon energies

below the energy spacing of the Fermi surface and the first

level above the Fermi surface would not be absorbed and would

penetrate a collection of these particles rather readily.  As·

the photon energies are increased the samples begin to absorb.

Because of size inhomogeneities and particle irregularities

there will not be absorption in bands. It will instead

increase with increasing frequency. Chapter IV presents data

on measurements of small particles of copper, aluminum, tin,

lead and carbon.



CHAPTER II        ·

FAR INFRARED TECHNIQUES AND APPARATUS

i

1.  General.

The far infrared lies at the extreme long wavelength end

of what may be called the optical region of the electromagnetic

spectrum. It is characterized by the use of continuous sources,

mirrors, lenses, and gratings.  It is generally considered to
-1

extend from 2 to 200 cm , where the frequency is measured in

wave number or inverse centimeter, and is the inverse of the
-

wavelength: v = 1/1 = v/c. One may convert from wave number

to other energy units by the following relations:
1 -16

1 cm = 3OGH  = .124 meV = 1.440 K = 1.99x10 erg.Z

The far infrared is one of the more inaccessible spectral

regions on account of the small amount of energy available from

radiant sources at these frequencies.

One may estimate the output of the mercury arc lamp used

as a source in these experiments, in a spectrum peaked at

30 cm-1, to be 50 UW into a f/1.4 collecting mirror.  To make

these estimates one integrates the Rayleigh-Jeans 6 law to find

the radiated power from zero up to a frequency, v, to be

pv _ 27T  kTv 3
0-3A

C 2

where the area of the source, A, is 5 cm2 and its temperature,          3

T, is 5000' K.  Of this power perhaps 1 UW makes it to the

detector.

There are three ways to overcome this energy limitation:

-6-
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improve the output of sources, use more sophisticated spectro-

scopic techniques, and improve the sensitivity of detectors.

The first possibility has not yet occurred; the mercury arc

lamp used in these experiments is very similar to the one used

by Hagen and Reubens 7 in the first far infrared experiments

on metals at the beginning of this century. There has been

no improvement in far infrared sources in the last sixty years.

On the other hand spectroscopic techniques and detectors have

improved dramatically in that time.

2.  Interferometry.

The spectroscopic method used in these experiments is

called interferometry or Fourier transform spectroscopy. Instead

of dispersing the source output into different angles according

to frequency as with a grating one generates an interference

between two beams, sorting the radiation accordingto phase

difference.  To understand this, consider the figure at the

right. It shows a Michelson o D

interferometer, with source S,

detector D, beam splitter B, and              '*04    C
0 > '\ )

mirrors M (moveable) and M'        S \
B

A                M'
(fixed) . Initially, let S be                   V

a monochromatic source and the IVIt  '

distances from the beam splitter Fig. 1. Michelson
Interferometer

to the mirrors be the same. Then there is no phase difference

between the two beams when they recombine, they interfere

constructively, and the signal at the detector is a maximum.

Now move mirror M away from the beam splitter a distance #A,
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introducing a phase difference #A between the two beams.

They interfere destructively as they are 180' out of phase

and the intensity at the detector is zero. Another 41 step

brings the beams in phase again and the detector sees a maximum

signal again. The signal continues to vary sihusoidally as

M is moved along. Fourier transforming the cosine wave so

obtained gives the delta function frequency dependence of the

source.  Now let the source have a width from vl to v2' and
move mirror M away from zero phase    A

I
difference as before. The signal                                         '

will initially vary as before but                             >
0, 14  D

will damp out until at some phase /1

I
difference. 8 .v2 will be out of'      m

phase and vl will be in phase.                                ,
aAt this point one is said to have

Figure 2. Resolution
resolved the line. The resolution

is av= 1/Am'

The advantage of interferometry was first pointed out by

Fellgett.8  It. is that, as opposed to grating spectrometers,

an interferometer has the entire spectral region of interest

incident on the detector all of the time, rather than just one

resolution width. If, now, one is detector noise limited then

the signal to noise ratio is increased only as the square               b

root of the integration time.  If one increases the signal by

the number of resolution widths in the spectrum as one does

with an interferometer compared to a grating machine, then the

entire spectrum can be taken with the interferometer in the

same time that the grating machine needs for one resolution
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width.

Interferometry has been discussed in detail by Strong,9

11 12Genzel,10 Nolt, and Richards in particular the latter.

The interferometer used in these measurements is a lamellar

grating interferometer described by Nolt, Kirby, Lytle, and

Sievers.11,13,14 In a lamellar grating the wave division is

accomplished by a set of interleaved plates.  These plates are

efficient down to the lowest frequencies while the dielectric

film in a Michelson is not. This instrument is useful from

2 to 70 cm-1, and is shown in Figure 3.

3.  Detectors                                            c

The infrared detector used in all of this work was a germanium

bolometer operating at 0.3' K first discovered by Drew and Sievers 15

and described by Drew. This type of detector is probably the16

most sensitive far infrared bolometer in general use today and
-14

has a measured noise equivalent power of NEP of 3 x 10 Watt

compared to the NEP of 5 x 10- Watt reported by Low 17 for 2.10 K13

Germanium bolometer. This fifteenfold increase in sensitivity

arises from two factors. There is a reduction of thermal noise due

to a decrease in the detector operating temperature and there is a

large increase in responsivity due to the steeper slope of the

resistance versus temperature curve at the lower temperature.  This

second effect is the more important.  Later in this chapter a Hes

refrigerator will be described that lead to an improvement in

detector noise figures over those described by Drew and Sievers.

4.  Electronics

A block diagram of the entire far infrared· experimental

1



FAR INFRARED INTERFEROMETER

9

MI

F 3Fl M3 1-7
=1                                                                   4.4.:·

...11

"15 11= 1

8                                                       H
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          1 3
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11     'l

Fig. 3.  Top view of the interferometer.  Fl, F2, and F3 are low pass filters; Ml-M6 are mirrors;
I. is the lamellar grating.
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arrangement is shown in Fig. 4.  The signal from the detector

is amplified and rectified by a phase sensitive amplifier and

digitized by a voltage to frequency converter plus frequency

counter or scaler. The digital data is then sent on line to

a PDP 11 computer. During a run, while the interferogram18

is being taken, the computer Fourier transforms the current

number of points and displays the spectrum or ratio to a

previously obtained spectrum on an oscilloscope, using

a program written and described by Kahan. The computer also19

controls the interferometer stepping motor. This allows the

computer to check for noise spikes in the incoming data and

retake a point if it detects one. At the end of a run the

spectrum or ratio may be plotted on an X-Y recorder and the

interferogram  is punched on paper tape.  More sophisticated

analysis programs are also available for off line use.

5.  Charcoal Pump System.

This section describes the construction and operation of

a cryostat using cooled charcoal to pump on the Hea used to

cool the detector that was built by the author during the course

of these experiments.  It is unique in that the He 3 gas system

has no moving parts; the Hes is permanently stored in the

cryostat.

This apparatus is shown diagramatically in Fig. 5.  The

drawing also shows an evaporator insert in place in the cryostat.

The main system will be described first.  At the bottom of the

figure is the detector section vacuum can. This isolates the
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V                  CRYOSTATr------ 7
Hg ARC FIR LAMELLAR FIR 1                       1
LAMP    Nvvvw  I NTERFEROMETER  x„-A./-2 SAMPLE,vp

DETECTOR    CHOPPER
1                      1

 REFERENCE
L J

W
LOCK- IN
AMPLIFIER                                   '

¥
.

V-F CHART
CONVERTER RECORDER

F 1

X-Y
SCALER OSCILLOSCOPE TELETYPE RECORDER

V h                a               8

PDP 11
COMPUTER

CONTROL PULSE
W

INTERFEROMETERPRESET STEPPING                  'INDEXER MOTOR

Fig. 4.  Schematic diagram of the data acquisition system.
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L-3

, 1 P 9

I R '\./\./-+ )
I =0=0-n I1          „                 =271

/-Basket for evaporation

He# at
4.20 K

Ir:jir- Copper sample holder

-Quartz subsfrates

with thermometers
and heater

It / \
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pump  1  1 1

1 1

- - Quartz vacuum
- 7 windows/

C --
[m                     C-             3

| 1       He# pot at  10K

\1                 .,pot .0.3.KF 1\5/1 -

Fig. 5. Sketch of detector cryostat and evaporator.insert. Glass
liquid helium and liquid nitrogen dewars surround the
cryostat.



13-

0.3'K Hes section and the 10 K pumped He4 section from the

outer 4.2' K bath.  The can is connected with an indium 0-ring

to the flange above it as is the quartz vacuum window through

which the far infrared radiation passes on its way from the

sample section to the detector section. The radiation goes

down a short section of 4 inch brass light pipe which takes

it through th 1' K section.  Then comes a condensing cone

which reduces the cross sectional area of the radiation from

6 to 3/16 of an inch while increasing the maximum angleth

that it makes with the axis of the light pipe from 180 to 900.

The radiation then enters the hemispherical integrating cavity

where sits the detector.

The detector is the very piece of germanium used by Drew

in his He 3 refrigerator, re-etched and with new leads soldered

on.  The ground lead which serves as the heat sink to the 0.30 K

bath is now .025 inch diameter OFHC copper wire, increasing the

thermal conductivity considerably over that of Drew's .010 inch.

The signal lead is Tophet "A" which is .001 inch in diameter

and has a resistance of 140 0/foot. The detector etching

solution was a mixture of 5 parts HF, 5 parts HCH2COOH, and 8

parts HNO3.  The leads were soldered on with indium solder

using an ultrasonic soldering iron and no flux. It is not known

what effect the decay of the unstable indium isotope has on the

detector noise performance.

The charcoal pump is located in a vacuum can just above

the detector section.  The charcoal pump is in cross section an

eccentric annulus surrounding the sample section and has a

volume of 400 cms..  It is filled full with cocoanut charcoal
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obtained from Arthur B. Little Co.20 This charcoal has a

relatively large grain size, about 2mm in diameter, so that

the Hes can circulate freely in the pump. The charcoal

was put in the pump through a 4 inch diameter hole in its

bottom flange after which a brass plug was soldered in place.

The pump line from the pump to the He 3 pot is a 3/8 inch

diameter stainless steel tube, except for ·the condenser in

the 1' section which is a copper rod with seven 1/16 inchth

holes in it. The stainless tube goes through the entire

length of the charcoal pump but has many slots sawed in it

to allow passage of the gas and prevent the charcoal from                 

falling into the Hea section.  A 1/8 inch tube goes from

the top of the pump to the cryostat top plate where there is             I

a pressure gauge and needle valve to seal the Hes in.  There

is currently three stp liters of He3 gas in the system, at

a pressure of 12 atmospheres.

The charcoal pump is surrounded by a vacuum can to give

thermal isolation from the outside 4.2' bath.  The bottom

flange of this vacuum can is also the top flange of the

detector vacuum can.  This is an unfortunate arrangement as it

causes the needle valve through which the inner 1' can is

filled to be placed above the charcoal pump vacuum section.

Initially the pumping line for this 1' pot passed through the
.:

charcoal pump and it was not possible to fill the inner can

with the charcoal pump warm.  As a consequence the system

had to be modified ·to bring the He4 pump line through the

charcoal pump with a double walled section, for vacuum thermal
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insulation.  A better arrangement would have the charcoal pump

and its vacuum isolation moved upwards a few inches and the

needle valve placed below it with the needle valve actuating

rod passing clear through the charcoal pump section.

Along with the He 3 fill line there are also going up to

the top plate the He4 pump line, two needle valve actuating

rods, the sample section, and two pumpout tubes for the two

vacuum sections which also carry electrical leads for the

various thermometers, heaters, and the detector and its load

resistors. In the pump section there are three heaters and

two 1 KQ carbon resistors. One of these is connected externally

to a battery, series resistor, and 50 microammeter as a

ohmmeter-thermometer. In the detector section there are 1 Kn

carbon resistors on both the He4 and Hes cans.  There is a

heater on the He 3 can. There are two detector load resistors:

a series connection of eight  950 Kn metal film resistors and

one of two 750 Kn wire wound resistors.

The sample section is a 24 inch O.D. stainless steel tube

which extends from the cryostat top plate to the flange which

carrys the quartz window. There is a conical· depression in
this flange above the window to act as a guide in alignment

of the lower light pipe of the sample insert.  The distance from

the bottom of the'sample insert top plate to the 9/16th  inch

diameter of this cone is 404 inches. There is a needle valve

in the wall of the sample section located just above the charcoal

pump. If opened this valve allows liquid helium to. enter the

sample section; if closed the sample may be left in vacuum.
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However this latter arrangement apparently only works if the

needle valve is closed tightly at room temperature after which

it cannot be opened when the cryostat is cooled down.  It is

not possible to make a leak tight seal at low temperatures with
the valve currently used.

The sample section used here is similar to others built               I

earlier in our laboratory and permits a wide variety of general            I

or special purpose sample inserts to be used and also allows

samples to be changed by merely unbolting them from the top,

lifting them out, and inserting the new sample, without having

to break any low temperature seals. In fact, samples can be

easily changed while the detector is running.

The operation of the rig is as follows.  The night before

pump out the glass dewar double wall section and leave about

100u of air pressure in it, pump out the helium and sample volume

and backfill it with an atmosphere of helium gas, pump out the
charcoal pump vacuum insulation and add about 100U pressure of

air there, and if necessary pump out the .detector can vacuum

and backfill it with an atmosphere of ·helium gas. Fill the

liquid nitrogen dewar.  The next day, refill the nitrogen dewar
and begin transferring liquid helium.  The charcoal traps in

the detector section will collect all of the helium exchange

gas there by the time the inner cans are at 20' K.  When the
1

liquid helium level has reached the needle valves the inner 1'

can will fill after some coaxing and should be pumped down, first

closing the needle valve.  Since the charcoal pump is still at

77' K the Hes will condense against the 1' section and drip down
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into the He 3 pot.  This process takes from twenty minutes to

half an hour and can be followed by watching the pressure gauge

and the thermometers on the l' and He 3 cans.  Condensation is

complete when the temperatures of these two cans stabilize at

their lowest value, around·10 Meg Q.

After condensation, add the smallest possible amount of

helium exchange gas to the vacuum can surrounding the charcoal

pump and speed up the transfer, which has been gQing very slowly.

When the charcoal pump has cooled to 20' K it begins to pump

and the He 3 bath is pumped down to 0.3' K very quickly; about

ten minutes is all it takes. When sufficient liquid helium has

been transferred refill and.pump down·„to 1' pot and everything is

ready to start taking the data. The total start-up time, from the

beginning of the helium transfer to the start of the first

interferogram, is about one and a half hours, although it can

be done in less than an hour.

The signal from the detector stabilizes very rapidly and

remains very stable; the signal level changes less than one

percent over a period of six hours. The three stp liters .of

Hes gas provides a running time of thirty-six hours at an

estimated temperature of 0.30' to 0.31' K.  This estimate was

made from the detector resistance which is, when the light

pipe is blocked off, 10 Meg Q.

One  curious and unforeseen feature  of this cryostat  has

been named the autorecondense mode. This effect arises when

changing samples.  Placing a warm sample insert into an already
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cold and operating cryostat blows off all of the liquid helium

in the sample section.  Heat is then transferred to the charcoal

pump which warms up.  The He 3 is deabsorbed and condenses

against the 1' section.  When the sample cools down or when

liquid helium is retransferred, the charcoal pump repumps down

the Hea bath and one is ready to take data for another thirty-

six hours.

A normal recondense requires care in this system if one

does not want to retransfer. The best method found to date is

to add a tremendous amount of heat to the charcoal pump in a

very short time, for example thirty watts for two minutes.  The

charcoal pump warms up very quickly to 400 to 500 K and enough

He3 is condensed to last for six to ten hours. The charcoal

pump then cools down during the next five minutes or so and

pumps down the He 3. If one is lucky there will be liquid

helium above the charcoal pump and sample after this operation.

The detector in this system has, in comparison with Drew's

detector, about twice the responsivity for large signals due

perhaps to the increase in thermal conductivity of the gound

lead.  The hoise voltage for small signals, estimated from

the noise in low infrared intensity conditions, is 20 nV. Part

of this factor of three or so improvement is due to the increased

first grid resistance of the type D preamplifier in the PAR21 HR-8

lock in amplifier.  This resistance is lOOMQ, up by a factor

of 10 from the old type A preamp.  The 300' K noise voltage of

this input resistor is shorted out more fully by the detector

with the type D preamp.
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6.  Evaporator

The usual sample insert for this cryostat is a five

position. sample rotator in a 24 inch.can with the associated

light pipes, right angle bends, and top plates.  One special

purpose insert constructed for these experiments is the

evaporator shown in place in the dewar in Fig. 5. The

evaporator is a long tube, 2 inches in diameter with a quartz

vacuum window at the lower end.  Near the top plate is a spiral

wound tungsten basket from which the evaporation takes place.

The substrates which are polished quartz blanks are clamped to

the copper sample holder about twenty inches below the baskets.

The sample holder is a two position sample rotator. In one

position the substrate is in position for evaporation and after

evaporation a rotation of 180' brings the film into the far

infrared beam and places the other substrate in position for

evaporation. The substrates are held by brass clamps against

indium pads for good thermal contact to the copper block.  Attached

to the sample holder are a heater and two thermometers, a 1 kn

carbon resistor for the resistance bridge, and a 330Q carbon

resistor for the Artronix temperature controller. There are

four leads connected to each film in order to allow the film

resistance to be measured using a four probe technique. These

leads are attached with indium solder to four narrow gold strips

that had been evaporated onto the substrates before they were

mounted.  The copper sample holder is hollow and there exists

the capability of transferring liquid helium into it through

the hollow rotator rod, but this has not proven to work very well.
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At top plate of the evaporator insert there are electrical

feed throughs for the basket and the sample holder wiring and

also an ionization gauge. On the bottom plate is a layer of

charcoal.  The sample holder, light pipe and can surrounding

the sample holder are all carried on the evaporator top plate.

There·is on the bottom of thetube a stub of light pipe, which

is picked up by a conical piece on the main light pipe. This

stub passes through the bottom of the evaporator and ends with

the quartz vacuum window holder. This vacuum window is sealed

with an indium 0-ring like the detector section vacuum  window.

In operation, the evaporator is inserted into the cryostat

when both are warm. It is pumped out with an oil diffusion

pump to the 10-5 torr range.  Then it is sealed off and the

cryostat cooled down.  As the cryostat cools to nitrogen

temperature overnight the pressure in the evaporator rises to

near 1 X 10-4 due to outgassing.  When liquid helium is trans-

ferred the pressure at the ionization gauge, goes to the 10 7

range.  After the detector cryostat is operating and the liquid

helium filled,-the evaporation is done.  This is the time that

one could transfer helium into the sample rotator. If this is

done the helium will last for only twenty minutes and then the

sample holder will warm to 30' K.  If not done the sample holder

will cool to 40' K in an hour.  During the evaporation, the             h

dc resistance of the film is monitored, mostly to determine

when the film becomes electrically continuous.  This is done by

putting 60 microvolts in series with a 10 kn resistor across

the leads to the film, and measuring the voltage across the
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film with a Fluke voltmeter. As the film resistance22

decreases during deposition the- voltage measured by the Fluke

will also decrease. With this arrangement it is always

possible to get a continuous film and easy to get close to

a desired resistance.
0

The evaporation rate is about 2 A per minute; it takes

three minutes to get a continuous lead film. After two films

have been deposited sufficient helium exchange gas is added

to the evaporator volume to bring the film temperature to 4.2' K

and the far infrared measurements begin.

7.  Manufacture of Small Particles.

The methods of preparation of the small particle samples

were developed by  R.A. Buhrman23 and he also did the actual

sample preparation.  Here I will describe what I have learned

by watching him.  His thesis will give more details.

The majority of the samples studied were made by the smoke

method.  A tungsten boat containing the metal was prepared.

This was put in bell jar inside a glass cylinder of five inches

diameter on which the particles were collected. The system

was evacuated and then helium gas was bled in. The helium

pressure depended on two things:  what size particles were

wanted and what the atomic weight of the metal was. The larger

the particle or the heavier the. metal the higher the gas pressure.

Typical pressures for copper were .5 to 2.5 mm He, for tin 1

to   5  mm  He.

After the gas was in the boat was heated up until the metal

.was evaporating at a good rate and oxygen was bled in slowly.
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The metal atoms coming off the boat collide with helium atoms

and other metal atoms as they do a random walk to the collecting

surface.  They also pick up oxygen and when they are completely

oxidized stop growing. It is possible to get quite small range

in sizes by this method.  After the evaporation the smoke was

brushed .off of the glass surface and collected.

The other sample preparation method was called the sludge

method. In this, chunks of the metal of interest were placed

in a beaker of acetone.  An RF discharge between two electrodes

there spark cut small chips off.  As the discharge continued

the chips were cut down smaller and smaller.  Because the field

tended to stay in the larger chunks they were the ones reduced

in size, which helped to keep uniform size.  After a while a

colloidal  suspension of particles in the acetone had been

prepared.  This could be centrifuged to eliminate the larger

particles.  Afterwards the acetone was evaporated with a hot

plate to create a dried mass of small particles known as sludge.

The smoke has proven to be better in all ways than the

sludge and all but the earliest samples were made by this method.

The smoke forms a loose dry powder with a density only a few

percent of the bulk metal.  It is black in most cases, as it

scatters visible light; some of the larger sizes are greyish.

To do the far infrared experiments between 1/2 and 2 mm of the          h

powder were clamped between two pieces of polyethelene, using

a brass or nalgene tube as a spacer, and mounted on a standard

sample rotator ring.



CHAPTER III

FLUCTUATIONS

1.  General.

This chapter is a discussion of the far infrared trans-

mission of thin films of lead or lead-bismuth near the super-

conducting transition temperature. It is in this temperature

interval that the effects of fluctuations in the superconducting

order parameter are expected to give the biggest contribution

to the film conductivity. It is in the far infrared frequency

region that the effects .of the lifetimes of the fluctuations

are seen.

Here is how the chapter will proceed.  There will first be

a review of previous results of experimental and theoretical

work on the fluctuation problem.  Next comes a derivation of

the conductivities in the time dependent Ginsburg-Landeau theory

of phase transitions. This is followed by a section on the

nohinfrared properties of my films; such as thickness, dc

resistance, transition temperature and the like.  Finally there

are the far infrared measurements and their comparison with

theory.

2.  Previous Work.

It has long been known that the resistive superconducting24

transitions of thin films were broader than those of bulk samples,

but it was only with the papers of Glover and of Ferrell and25

Schmidt26 that anybody realized that there was any physics in

the effect.  At the suggestion of the latter, Glover measured

the resistance of an amorphous bismuth film and found the

-23-
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conductivity varied as (T-Tc):3.  Shortly·before this Aslamazov

and Larkin27 had published the first of a pair of papers in

which they calculated the conductivity due to fluctuations

using the microscopic theory and obtained the now famous result

e 2T

a' = C

16rlid(T-Tc)

where d  is the film thickness and a' is the extra conductivity

due to the fluctuations. The measured conductivity is

a = a' +  N.  This result depends only on the thickness of the

film and not on any other parameters. The constant,

e 2            -5  -1
TO = I-6:K = 1.5 x 10   0

This result was obtained to within a few percent in measurement

on several thicknesses of bismuth films by Naugle and Glover. 28

Apres cela, le deluge.  Many, many experimental measure-

ments of the dc resistive transition appeared.  A good number

of these were on aluminum films (see for example Strongin et al29

and Masker and Parks ) where the Aslamazov-Larkin results were30

not obtained; the transition being wider by a factor of ten.

This has been explained by Maki 31 who adds another therm to

the conductivity.

Measurements of the transition of lead films were made by

Smith et a132 who found the Aslamazov-Larkin result; by Testardi,
3

Reed, et a133 who found the·transitions in most samples to be

narr6wer than Aslamazov-Larkin by about a factor of two; and by

Thompson et a134 who find the transiton to be much narrower

than Aslamazov-Larkin. It is not clear what a mechanisim in
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lead is that would cause.the transition width to be narrowed;

it is possible to think of many reasons why the transition

width might be broadened (inhomogeneities, uneven thickness,

strains, and the like) but few that would go phe other way.

The only suggestion is that of Thompson et a134 who suppose

that the film might be composed of loosely connected grains.

The conductivity above the transition temperature was

calculated using the time dependent Ginsburg-Landau equation

at essentially the same time by both Schmid35 and Schmidt. 36

Schmid.obtained the dc conductivity, getting the same result

as Aslamazov and Larkin. Schmidt also gets this result for the

dc conductivity and he further calculates the frequency depend-

ence of the fluctuation conductivity. This extra conductivity

shows a peak at zero frequency whose height increase and whose

width decreases as the transition temperature is approached.

Schmidt has also calculated the conductivity as a function

of frequency below the transition temperature and finds similar

results. Later in this chapter a derivation of the fluctuation37

conductivities will be presented that is similar to Schmidt's.

There have been measurements of the fluctuation conductivity

in the microwaves by two groups.  D'Aiello and Freedman 38

measured the transmission of aluminum films both above and below

TC at 20 GHz (.67 cm-1) and found no extra conductivity.  Their

results did not agree with the Schmidt theory.  Lehoczky and

Briscoe39 measured· the transmission and reflection of lead films

both above and below the transition at three frequencys (.7, 1.2,

and 2.3 cm-1) and found excellent agreement with Schmidt's theory.
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3.  The Phenomenon

The physical picture of the fluctuation phenomenon is as

follows.  As the superconductor is cooled down towards its

transition temperature, small superconducting regions appear

in it caused by fluctuations.  These grow and decay in the

course of time. The material cannot sustain bulk super-

conductivity but there is the possibility that small·volumes

in it can be superconducting for a while. Pairs will form

for a short time, and while they exist they can be accelerated

freely by an electric field.  The conductivity of the material

is increased as the fluctuations short out the normal material

around them.

The size of the fluctuations is given by the Ginsburg-
40Landau coherence length.  This is the length over which the

electron wavefunctions remain coherent,

1 Tc 1 &(T) = E
 IT-T I

C

where E  is the BCS coherence length which is independent of
0

temperature and equal to 980 A in lead. There are fluctations

in samples of all dimensionality, including the bulk.  Their

importance increases as the number of dimensions large compared

to the coherence length is reduced. This is because the

fluctating regions can save energy by touching the surfaces             '

of the sample.  The relative energies required are proportional

to the volume of the fluctuations:  <3:&2D:EA in 3D, 2D, 10.

As the temperature approaches the transition temperature

from above the size of the fluctuations will increase and so
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will their lifetime.  It takes longer for a larger volume to

decay. It will be shown shortly that the effective lifetime

is                   Tr di      T
1                    cT =-=F w
F   16kBT   T-Tcl

At the transition temperature the lifetime becomes infinite

and bulk superconductivity sets in. The dc conductivity is

infinite. However below T  and at finite frequency the conduc-C

tivity is finite and fluctuations in samples of restricted

geometry will increase the conductivity. Just below the

transition temperature the number of superconducting 'pairs is

small and fluctuations in the normal electrons cause increases

in the conductivity above the BCS value for finite frequency.  As

the sample is cooled away from the transition temperature the

conductivity due to the fluctuations decreases, because the

superconductivity becomes more stable.

Thus there is an effect of fluctuations both above and

below the superconducting transition. The fluctuation components

of the conductivity have similar (although not exactly the same)

forms in both regions.  The real part  is a maximum at zero

frequency, rolling off at the characteristic relaxation rate wF

to zero.  The imaginary part is zero at zero frequency, rises to a

peak near wF and then drops to zero again.  It should be pointed

out that the regular conductivity (that not  involving

fluctuations) is  quite different in the two regimes.  It is

constant and real above the transition and has the BCS form and

is complex below.
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4.  Ginsburg-Landau Theory.

Here I will present a calculation of the extra conductivity,

that due to superconducting fluctuations, using the time dependent

40form of the Ginsburg-Landau theory of second order phase

transitions.  This theory begins with an expansion of the

free energy in terms of the order parameter, 2(x,t), of the

system

4
FS-FN = fdV(a1212 + 481£14 + - Iv212)2m*

where a-(T-Td) so that it is positive above the transition

temperature, Tc, zero at it, and negative below it.  B is

roughly independent of temperature. For a spatially uniform

order parameter, minimizing F with respect to 4 leads to

(« 0     T,TC

<0>= 0  =1
-0  11,9 4

Il-j T<T
CB       c

for the equilibrium value of 2.  So <f> is zero above the

transition but not below it, which is just what we would like

it to be.  However, above Tc there will be fluctuations

in the order parameter and the mean square fluctuation, <1012>,

can be calculated very easily.  Thermal averages of a quantity

are done by weighting it with the free energy and integrating.              3

The Fourier transform of free energy expression is, keeping

terms only to second order in the order parameter, which is small
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FS-FN = fdaX £Ii, 11'i, (t) 111£ (t) 2m*· (62 -
hz  1    V2)ei(£-*').I

Doing the volume integral leads to a Kroeniker delta, 6, , ,
'

times the volume V. The k' sum can be immediately done.

12       *
FS-FN = v- E Wk   (t)  11'k(t) (--1 + k 2)2m* k               E

where & is the Ginsburg-Landau  coherence length.  If £>>Eo

h 2             c
T i

  Tc    1 4   =   1.4811  VF     Tc      4ECT) = { 14= 6(0) =  .746-   ,
2m(a) T-T u IT-T | H 28 T-T

C                    C                      C

0 Tls
C= 980A

T-T
C

The third and fourth forms are from the microscopic theory (28  is

the energy gap) and the last is for lead.  If £<<60  6(0) = (60£)6

where Z is the mean free path. The Fourier transform of the

order parameter, which appears in the free energy is defined by

-il2· 

2(x,t) =  W (t)e

Now thermal averages of time independent quantities are calculated

by weighting the fluctuations with the free energy associated

with them. h2(1+E2kz)

fdlll,kl 2 e-IP. 111'k' 2   fd|,1,kl 2 e-'Zm"EzkBT   |0k| 2 *   2
<|Rk(0)120              F        =         -h2(1+ Ezkz)14.12k

57- fd 1 11'k' 2   e   2m* E 2   kBT        .  k

fdlpk12 e
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and
m*k T

<|*k(0)12, =
B      E 2

o     V ha  1 + E2kz

above the transition temperature.

Below T  there are also fluctuations in· the ·order parameter
C

producing deviations from the equilibrium value.  It is the

presence of this non-zero equilibrium value that ihtroduces

complications in the superconducting regime.  The order parameter

can be decomposed into the equilibrium part, 4 , and two non-

equilibrium parts, the real (longitudinal) part, 0, and the

imaginary (transverse) part,  0.

0=0  +0+00

Putting this into the free energy formula, multiplying out and

then only keeping terms of second order in the fluctuations,

yields the following formula for the free energy

62

F S- FN      =      f d v{      11     a     111 0-2allit  1   2      +       2m      { (V 111)   2      +       (V 0)2)   }

The Fourier transform of the free energy is

h 2FS - FN = ia V*02 + Vymi  I {( 2 +k2). 1*k(t) 12  + k210k(t) 12}
k   &2

h 2where below T.E= . ·The mean square fluctuations are
C'

2m(-a)
\.
*

m*k T

<i4k(0)12, =    B
     E-2

112V 2+k 2E2

m*k T

<itk(0)12, =    B   102V k2
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The Ginsburg-Landau theory also provides a formula connect-

ing the current to the order parameter.

3(x,t) = e*h  {9*(x,t) Vt(x,t) - Vt*(x,t) 2(x,t)}
2m*i

The mean square fluctuations calculated above are not sufficient

to give even the dc conductivity. It is necessary to average

over all time differences between the current densities. For

this, an equation describing the time evolution of the fluctuations

is required. This is the time dependent Ginsburg-Landau

equation.  This equation has been discussed by Abrahams and

Tsuento,41 Caroli and Maki,42 and Schmid.43  The form that will

be used here is

8 k T T-T 1< 2

 t lt(x,t)  = - TBh  C T c)  {1 +   1 lk(x,t) 1 2- --Vz}jk(x,t)
CC

One should note that this resembles the Schroedinger equation.

The.arguments and results of the calculation are different

in details depending on whether the system is above or below its

transition temperature. It will be done first for above the

transition temperature and then the deviations for below the

transition will be discussed.

5.  Fluctuations Above the Transition.

Above T  the time dependent equation becomes, ignoring
C

the fourth order term

8k T  T-T

 t     9 (x,  t)       =      -            Tr             C      T     c)(1 -  5  2 9  2)  lk(x,  t)
C

If we substitute for 0(4,t) its Fourier transform

h                                  .1-
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0 (; ,  t)      =         0*£ C t)      e-1 2'i

8k T  T-T

 -E  *  ( t)    =    -       11·        C   T   c   )     (1   +   E 2k 2 )    111£ ( t)
C

8kBT T-Tr.-   C  & )(1+E2kz)t
and

W k(t)     =    W k(0)     e                               C

lili T

This gives the time dependence. It is convenient to define a

characteristic frequency or effective relaxation rate of the

fluctuations as
16k T  T-T

WF= -1 = Tr  (Tc)TF
C

It is this frequency that the far infrared measurements are

designed to check. Then
WFt

- -7--(1+ £ 2 k 2 )
111£(t)     =    11,£(0)     e

The next step is to substitute into the current equation the

Fourier transforms. For the current use

J( ,t) = fd3x J(&,t) e- q'X

Shortly the long·wavelength limit (8=0) will be taken.  The

equation for the current becomes

3(A,t) =      f daxe-ii.&   E , 11' *(t) 0£, (t)

e
(ilt'+i&)

e Ni -i(£-*')

2m*i V

*
Next, exchanging the integral and summation and doing the volume

integral yields a Kroeniker delta, 6Q $, - times the volume V.'li

Doing the sum of &' then gives, letting  2£+j+  or  +i-  
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e*ii
J(i, t) =   In* V   £ 11 *-i (t) 11'£+i (t)

mut +
*+

e*lf   +   9-- (2 + (;2(YE+30 2 + E2(12-3·)2) *TE-3 (0) 11,1:+ (0)=--m-Kvfke
where the solution of the time dependent equation has been

substituted.

At this point an expression relating the current to the

conductivity is required. It is necessary to average over all

time differences between the current densities, i.e. to use

the current-current correlation function. A form of time

dependent perturbation theory called time dependent linear

response theory can be used to connect the current-current

correlation function to the conductivity.  This is worked out

in Appendix C, or see the article by Martin44, and the result

is
.·lfw

FE 1 -
allvl  = f#1  (1-e      )v f    dt  cos  wt  <Ju ( ,t)  Jv(- ,O)>00

diw

EE 1 CO
allv 2 = 151 (1-e   )v 6 d t sin wt <Ju ( ,t) Jv(- ,O)>0

where al is the real part of the conductivity and 02 is the

imaginary part.  The indices U and v refer to the spatial

coordinate directions of the conductivity tensor.  The

subscript on the correlation function means that the function

is calculated using the wave functions of the unperturbed

system.  This is the central result of the linear response

theory: the response of the system to an external perturbation

.depends only on the properties of the unperturbed system.
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Now                                                    2

e*0 2 -wft(1+62(k2+ ))
<Ju CE, t) Jv(-1,0)>0 = (--iipr .) V2 Ei,kllk've                 x

X <0*(0) 0(0) 4*(0) 111(0)>
0

k-   1,+3  k'.3  k'- 

The expectation value may be written in the mean field

approximation

*                                                           *

<0  +(0) 0  +(0)  0*  +(0) 0   +(0)>O = <9  +(0) 0 +(0)>O Xi-2    1 +  1 '+ 
fi,- 

TE-a
 E ,- SZL2                                                           2

*

X<0 +(0) 0 +(0)>b
12+       12,+12

The mean field approximation is valid if the fluctuations do
+

not interact with each other. Then those responding to -  are
+

independent of those responding to   and the decomposition may

be made as indicated.  Now the wave vector of the electromagnetic

radiation, a, is much smaller than that of the electrons, £.

It has served its purpose and may be conveniently set to

zero at this point.  Then

k.Ju(o,t) .Jv(0,,0)>0 = (-e-  )2V2 E  k k'  e-WFT(1.+2;21<2)"
*,i 'Uv

* *
<0£(0) PL, (0)>0 <0*(0)  0*, (0)>0

but <0 0* > 6 <14+12> so the  ' sum can be done immediately
  lk, lt, ' k 0
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and
p*Ii 2 -WFt(l+Ezk2)

<JU (0't) Jv CO,0)>  = (--m-*-) V2 E k k e
<| *  (0)     2  ,2  Uv

From above
m*k T

<1* (0)12>0
B     E 2

v:112 1+Ezkz

The conversion of a to a scalar requires an angular averageuV

which depends on the number of dimensions, n. The result is

1a   = -0 6
Uv n Uv

The real part of the conductivity is now, with e* = 2e

*(1)

2 e 2 (kET)2 IF-'r
64 k2     co            W t(1+1&2ki)

1  = (3) dw
V   (1+42k2)2 0

0 (w) (1-e B)n f dt cos wt e- F

*W
p

k T -'R-T
al(w) = Est ( Tc 1 -8- (1-e  B

n k262
KE     T - T   ' liw )V i w12C                 (1+62k2)((1+62k2)4 +  2)

(1)F

The imaginary part of the conductivity is

rit)

2 e 2 (kBT)

-

E-T
64 k2    -           -Wft(1+E2k21B

a 2 (w)   = (=*) -hw (1-e )11 E f dt sin wt e
V   (1+62k2)2 0

·liw

T k T -rf
=   :e-   (      c   1    --8       (1-e   B   i    w_ n r k2 E 2

Lrn T-T -tr(l) , WF Vit                           2C                                                        ((1+<21 2)2     (1+&21 2)2+m_2)
liw F

k T ETBB
With the exception of the term -(1-e ) this is the same

lill)

result for al that Schmidt obtains.  At.low frequencies,

liw<<kBT, this term reduces to unity. Notice that the complex
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conductivity can be written
-N(.O

FIT
7Te 2  Tc   kBT k 2&4

0    =    a l-    0 2    =   3:H-(T-T    )    7-    (1- e       B    )    v   S
--t

c            k (1+62kz)2 ((1+E2kz)+i )
0                                  1

This is similar to the Drude form. (a =
1+IwT )

The above equations must now be evaluated for various

dimensionalities of interest. In the case of this work this is

for two dimensions and zero dimensions. The conductivities for

the other dimensions are given by Schmidt.

In two dimensions (thin film)

8 +2 d 2k - 1 E f- x=kE  1V     d             - iFF k o
+ iR[E2 kz o

Z f kdk E f-xdx
kz A  (27r) 2               z

2·r r·   4 T r     6.I r                                                                                                                                                                                                                               .1,Now, kz = 0,7;7,-7...  If d<<E then only the kz = 0 wave

vector of the fluctuations will be excited since the maximum

27T

Fourier component of the fluctuations has k-   .  Thus the
only term in the k  sum which contributes and the only one

Z

which gives a singular result has k  = 0.Zliu
2 T k T -Irr .e     c)-8-(1-e B)f x 3 dx

01(w) = 17;I (T-T   -Tiw
C                                           0                                                       ,., 2

(ltx2)((1+XZ) 2 t 29
li O)                                                                                                                                                                                                                                                                                                                  Ak T I E-'r w

1    WF              WF                     ··· 2=   ez ( Tc ) -8. (1-e B ) -I (Tr-2tan- (-) - -·w gn(1+5-2-))16hd       T-T liw W WC                                            wF
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and

- iw
2 T k T I F-T                          -

x 3 dx

«2('») -4'li   (T-T ) -- w (1-e B ) w-- f
c                    Fv                        2

(1+X 2 ) 2 ( (1+X 2 ) 2 +E-_ 
(A)

F

-liw
e 2    T

k T
-FT      w                     WF            WF             - 1    WF                  w 2

=  161id  (T-   1  )Bi -  (1-e  B  )  -   (-2+Tr-w  -2  -is  tan      --cd+Zn(1+wfz) )C

At low frequencies, w<<wF' these become
2 T

1  w 2
a 1 (w)    =    16 d    C    TCT    )     (1 -3 -2-)C                        WF

2    Te.c .   w
G 2  (W)      =     1 (itd      LT- T     J      ;rc  -F

while at high frequencies, irw>>kT, they both are zero.  The dc

conductivity of the film calculated by this method is the same

as the formula discovered by Aslamazov and Larkin from

microscopic considerations,

2 T
c -e 'C,

D      -   167rd L T -.T   J
CC

As T approaches Tc from above,it and the low frequency
T

conductivity increase  proportional to (  C) while the
T-T

C
T-T

C-
roll-off frequency, wF' decreases as ( T  ).  The integrated

C
area under the conductivity curve, then, remains roughly

constant as the temperature is varied. The imaginary part

of the conductivity is zero at zero frequency, has a peak
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near wF and then decays to zero at high frequencies.  Fig. 6

is a picture of these conductivities versus frequency for one

of the films.

In zero dimensions one obtains the result that in first

order there is no conductivity. For, if one takes k  =k  =k  =0
1

zxy
al=0                                    1.

'2 = 0

In second order take k=   where D i s the diameter of the
particle, n=3 since all three dimensions are the same, and

V = 303 to find
*hfu

9e 2 T k T -  Ir           2
0 1    =    Ff&    (T -     1      = is     (1-e           1     71     E#                                                   1

c                D 4
(1+Ii&2  <(1+T2* 2    W2   

D2        D2      w 2F

but    >> 1
liu

9e 2
r    C l

T k T
-EBT        D 2

al
-

LT- T   J    -: id   (1- e         )    -                           -21r 41TD        C                         1& 2
1 +  w 2D 4

7r 4 (11 F 2 E 4

Similarly,
-11:6)

ge 2 r T k T lEIT
c    )    _L    (1-e   B    )    w_      0 2 E 4                                      1a 2    +    ZEIi    LT-Tc         liw                                  WF              D 4 2, ·2 2 r 2 2 (1 2

(1+ ir 1, )2((1+T s) +
2-)D                D           (11F

-irL,                                                                                             '
T k T -ET

=   ez  (- c ) -8- (1-e B ) -w 21    1
27T 41iD 1- T           IRA)

c               wF 64 1 + w2D4
2,-4

7TWF 4
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T   4
C .

Now, E = EolT-T J   and this just cancels the other factors of
C

T-T 16k T T-T
< T c) everywhere since  wF =    T  C T c) .   Then

C                                             C
irw

k T  -FT  o
9e 2 B B   D        1

a = ---(1-e   )-1 iw
E 22 'MiD                              D#
0   1  +  rlfw

i l 6 TrkBT )  2     60 4

-1'Iw
-

9 2 E-T      D*                               1e
02

= (1-e   ) -
32·ir 3.liD                        404 11(1) 2 D4

1+ (167rkBT) 6-;70

At low frequencies, 1Ro<<kBT,

9 e 2                0 2                              liw    0 2         -
- (1-( )L)

al - 2 4ED
1&02 16wkBTEo'

ge2     D*

'2 = 327rhiD *64 (E )0                      ·

E04while at high frequencies, lito>>kBT -
D 4

9(162) e2 ckBT , 3 6020-)
1           2 Tr 2-PID           1  -hw             D 2

9(16)2ez     Bk T
a2 321AD -=ifis

The result is that fluctuation conductivities (in this model)

of small particles are small and almost independent of

temperature.
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6.  Fluctuations Below the Transition.

The above results are, as mentioned, only valid for

temperatures above the transition temperature.  They must

be modified to calculate the extra conductivity below Tc.

In this region there are fluctuations which cause an increase

in the conductivity at finite frequencies above that due to

the quasiparticles (e.g. above the BCS value).  This extra

conductivity dies out as the system is cooled away from the

transition and the superconductivity becomes more stable.

At the transition it should join smoothly with the results

calculated above T .
C

Recall

8kBT (T-T_)                                   -2-1   111 G,t) = -

4*                    {  1        +       111'12        -        7-     V  }       0(2  ,  t)3t .maTriT T
C

with -2=2 0+0+i t
Upon substituting for 2 this can be separated into two

relaxation equations
8k T T -T

3 ,+ B    r
at *Ix,t) = -miT  C  T ){2-6292}4(*,t)

C

* 0(*x,t) = 8 T (T -T)E29.20(I,t)
C

-*2where E62 = . . . . Now, inserting the Fourier transforms of
zml-aJ

0 and 0 and solving
WFt

x (13, t)       9 (l£,0) e  7---(2+E2k2)
WFt

0(£,t)   0(lt,0) e-7- 62k2
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where, below T .·C'
16k T  .T·.-T

"F = «B  C Tc )
is the negative of wF above Tc.  (Both, then, are positive.)

The next step is to insert this into the current equation, which

operation produces

e**V +
3( ,t) =  2m* a 1!lo {11,( ,t) + i 0( ,t) -111*( - ,t) + i$*( - ,t) }

+ +

+  e*liV  F  £   (11'* (lt-1    t)   «   i   0* (lt-3, t) ) (11, (£+3·)   +   i   0 (lt+30 12m* f 2,

If the current-current correlation function is calculated·

and Fourier transformed as before, the conductivities are found

to be
trw

2 T k T -ET4Ae 2
7T e

al (w)
=

111_ 6 ((1)) + 7Ii-- (T ST)  i - (1-e B ) B „z xm     --0
C

X£ 1 +k 2 E 2

k                                               ..2
(2+k262) ((1+k262 2+1-)

(1)

F

1Tio

4 e
2 1   7Te 2

T k T
- E---      n E'         w    x

07  (W)       =     --m-    *0     w     +     -=Tr--      (T      3 T)       = i;i      (1-e                )      -17-    G.--
c                            F

1
xI
k                       w 2(2+1<242)((ltk242)2 t -2)

WF

The first term in each of these is just the London form for the
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conductivity of a superconductor:  the real part is infinite at

w = 0 (an,infinite dc conductivity) and zero everywhere else

and the imaginary part goes as 1/w.  The second terms are the

conductivities due to superconducting fluctuations and are the

ones of interest here.  The London terms will be replaced by

the correct  bulk conductivities from the BCS theory of super-

conductivity when they are needed.

Then the extra conductivity due to superconducting fluctuations

is given in the second term of the equation above. In the usual

way the sums are evaluated by replacing them with integrals in

those directions in which the sample dimensions are much larger

than the coherence length and the k=0 term is taken in the

other directions.

The formulae are, for thin films
-mt)         W

e 2          k T -12-T F W
al = lend (TT T)  -r w(1-e B)   F         -1 WF   F       w2(A-2 tan  _w _ _w £n4(1+21)C                      W 21 + -                     WF

WF 2

1Tio
T k T -FT

-1  NF W ..21

0 2    "    1  ind    (T-Sr)       =#s (1-0    B ) (Tr-2  tan     -+-Enkl+=21)
c                     N 2             W WF     wF1+ -

wF

These have similar form as above Tc.  Fig. 7 is a picture of the
.>

conductivities below T .
C

For small particles
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4(0

al - ge2 E2(01 (T c )2kBT(1-e B)   1
F-T

< D) T-T  W                               2

c                    1 + w

WF 2

+Yiw W.
k Tge262(0) ( TC ,2--8  (1--e BT)   (OF

G 2 = 4 D 3 T-Tc'  ··Kw              w21+.2
('OF

This is quite different than above T .  Here the conductivities
C

increase as (Tc-T)-2 as the transition is approached.

7.  Discussion of the Calculations.

Figures 6 and 7 show the behavior of the conductivities

above and below Tc respectively for one of the films.  Above Tc'

the real part is equal to the dc conductivity at zero frequency

and falls off to the normal state conductivity at high frequencies.

The imaginary part is zero at zero frequency, rises to a peak and

then falls off.  Notice that the peak frequency is around twice

WF.  The characteristic frequency wF is indicated by a cross mark

on each of the curves.

Below T  the real part looks like the real part above Tc veryC

near the transition and then goes over to the Mattis-Bardeen form

as the temperature is decreased. There 'is little temperature

dependence at low .frequency. . The imaginary part has  the 1/w form

with little temperature dependence near Tc, beginning to grow as

the temperature falls.

The results obtained here, both for temperature above and

below the transition are the same as those obtained by Schmidt
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Fig. 6.  Real and imaginary parts of the conductivity of a film above the transition temperature.
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if the frequencies are restricted to low enough values that

- «W
k T rr
-= S    (1-e   B    )=1

This factor forces the extra conductivities to fall off to zero

faster at high frequencies (by a factor of 1/w) than do Schmidt's

results.

There are some problems with this theory. It does not in

45
general obey the Ferrell-Glover   sum rule on the real part of

the conductivity (although the two dimensional case comes close

to obeying it) .  In addition, in the very clean limit (long

relaxation time) it does not give the correct·results.  If the

relaxation time for collisions were longer than the decay time

of the fluctuations then the current from the fluctuating regions

should continue on in the normal metal for a time comparable to

the relaxation time. Considerations of momentum conservation in

the clean limit by Eilenberger led to his calculating that the46

complex conductivity in the normal state should be multiplied by

a factor (1 + iwT)-2 where T is the relaxation time due to

collisions of the normal electrons.

This theory also becomes invalid very close to the transition

temperature where it gives an arbitrary large value for the
T

C .
conductivities at finite temperatures.  The factor (T-T J goes to        2

C
infinity at Tc.  Patton47 has developed a microscopic theory of

fluctuations which can be used right through the transition.  In
T

his theory T-Tc is replaced everywhere that it·appears by n, where
C

n is the solution of a nonlinear equation which varies according
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to the dimensionality of the sample.  These are in two dimensions

A2            7/8 9(3)
n      =      g n     TI     +      n c  (g n     .871       -1);      n  -      =

c                  2   4 3NoE2(0)dkBT

and in zero dimensions

n  =  En  'IT  +  - 12   ;    nc2  =      7/8  p (3)
c     n               Tr2NnkTo    B

where   A

,p(3) = 1.202  (Riemann Zeta.Function)
0   16N e 2 k T

o    B

n=V=I D 3
6

For n>nc, these equations all become

T-T

n = En   +  T c  for T-Tc<<Tc
C

At T=T  the function n(T) is non-zero so the conductivitiesC

do not diverge at the transition.  The width of the critical

region is defined by nc.  In two dimensions it reduces to

n =
4  .1 6 e  2      8-l-Z-     =       '  0  e  2      RNO      =      1.0      x      1 0-  S n-   1  R C         'IT 411               N

slightly smaller than To in the Aslamazov-Larkin formula

8.  General Properties of the Films.

For the purpose of this experiment measurements were made on

seven lead films and one blank substrate.  The films were produced

two by two in the evaporator insert and helium-three cooled

detector system described in Chapter II.  The films have been

numbered Pb 1 through Pb 7. For the first six films, Pb 1
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through Pb 6, the basket in the evaporator was charged with an

alloy of lead (Cominco 99.999%) with 4 At. % bismuth (Cominco

99.9999%). The purpose of the bismuth was to decrease the normal

state conductivity. This was felt to be unnecessary so Pb 7 was

made from the pure lead alone.

Various parameters useful in discussing the films are displayed

in Table I. The temperature at which the films were deposited is

shown in the first line. This is also the highest temperature to

which the films were submitted until the end of the measurements

and so indicates the state of annealing of the films.  As the

experiments progressed and the experimenter became more adept at

the use of the apparatus this temperature wandered around. It

was always less than 50' K.  The major anneal in an amorphous

film should occur near the Debye temperature which in lead is 96' K.

In fact there is a big change in resistance in these films between

80' K and 100' K.  Most of the films became discontinuous at these

temperatures and all increased their resistance.  Strongin et a148

have measured the resistance of several lead films on different

substrates and find that some annealing begins even at 7' K, the

transition temperature and continues as the temperature is

increased. By evaporating the films at a higher temperature than

ever reached during repeated passes through the transition region

any problems due to changing residual resistance during the

experiment were avoided.  At the end of the infrared experiments

the resistance was generally measured as the films were warmed

up to nitrogen temperatures. The resistance would increase

slightly, indicating that there was no major annealing going on.

N             --



Table 1

Various Film Parameters

F i l m    number                                                                     1                                         2                                   3                                       4                         5                                   6                                  -7

Deposition 0
temperature       K       15         20         40         50     26        30        25

Evaporation
time min        14         5          3          3      2         3         3

Evaporation
pressure Torr lx10-6 lx10-6 9x 10-7 2x10-6 7%10-7 7x10-7 3x10-6

DC Square

resistance     R  0 442 100 5470 22,100 3010 910 1430

FIR sheet A
resistance RO(w) 300         80       1600       -- 820 440 1100   1

N
FIR Trans-
mission Tn/Tq .5  '      .1 .88 1.0 .76 .61 .81

Thickness d         22         44         10                 14 ·20 12,7
Transition

temperature T .ok 6.92 6.423 6.64 6.914 6.844   6.660C.

Aslamazov
Larkin

1

parameter TO
9- .98x10 .96x10-5 .89x10-5 .89x10-5

-5

Patton
parameter       nc ·62x10 .60x10-6 .54x10-6 .54x10-6

-6

Critical T RIT .100 .054 .026 .064o m cwidth
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The nexttwo rows give the time that the evaporation took

and the pressure at the beginning of the evaporation.  This

pressure was measured by the ionization gauge at the top of

the evaporator.

The square or sheet resistance·in the normal state is the

major parameter of the films. It is given in the next two rows

of the table. . The dc square resistance is just

RNO = 3  =R wNL

where a  is the zero frequency electrical conductivity of the0

film RN the measured residual resistance and d, L, and w are

its thickness, length, and width respectively. The conductivity

and thickness are not easy to measure in independent ways for a

thin sample but the square resistance can be gotten by multiplying

the measured residual resistance by the ratio of width to length.

Another  and perhaps more reliable measure of the square resistance

can come from comparing the infrared transmission of the films

to that of a blank substrate. The formulas for calculating this              

are given in Appendix B, section 5.  The transmission versus R 

is shown in Fig. 86.  The infrared measure of R  is equal to the

dc value when wT<<1. This is surely the case for these very thin

films. The far infrared transmission ratios from which the square

resistances were calculated are shown in the next row.

Inspectian of Table 1 shows that the far infrared values for

0R  are in some cases almost a factor of four smaller than the dcN

values, the deviations being the largest in the thinner films.  I

would like now  to argue that the far infrared value is by far
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the more accurate. In the first place the geometry of the film,

as shown in Figure 8 at right,

was far from ideal. It was Fate it

Curre M tnia
1      -           f '71bxc_t

con'tac·   jZZG--=r·394
wider than it was.long and 7  -area of

it had curved sides whose
,     )      rad..4104   »l I n 4-re reci

contribution to the conduc- «--» area of
 t \Wi

tivity is hard to estimate. 2.. 'e
-* curren-t

Any decrease in the effective confact

width of the film would lower

Figure 8. Film Geometry'
its square resistance. Secondly,

the far infrared radiation tends to average over point imperfections

in the film. The infrared radiation measures the average conduct-

ivity in an area approximately the wavelength squared.  Because of

this it is insensitive to small holes or cracks in the film.

Similarly, it is insensitive to a few scratches in the substrate

which, if across the film, would seriously affect the dc resistance.

49The thickness can be estimated in two ways. For a very

50thin film one would expect the mean free path to be

8£ = -d
3

assuming diffuse scattering at the surface.  Then the conductivity

is

a = 8nezd3mVF

and the square resistance is
3mV

RO =     F
8 ne 2 d 2

mV
F                                         51values  for - have been published by Cody· and Miller (for lead

ne2
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mVF         -11- = 1.5x10 Q cm2) so the thickness can be calculated from
ne 2

R.0
N

A check on this can be obtained for those films that exhibit

temperature dependence in the resistance between the lowest

temperatures and liquid nitrogen temperature. Then

RO(T)   -  R l=  p (T)  2

where p(T) is the bulk resistivity at the temperature T. In the

case of Pb 7, the second value given for the thickness came from

this calculation. For the othets only the first estimate was

available.

The last four items in the table, transition temperature,

Aslamazov-Larkin parameter critical width, and Patton parameter

were obtained from analysis of the dc resistive transition as

discussed in the next section.

Four of the films, Pb 3, Pb 5, Pb 6, and Pb 7, produced                I

successful simultaneous measurements of far infrared transmission

in the fluctuation region, dc resistance, and temperature. The

experiments on three of the films were unsuccessful for various

reasons: The detector system was unacceptably noisy during the

run on Pb 1 and Pb 2. In addition, Pb 2 was quite thick so that

its transmission was too low. Pb 4, on the other hand, was too

thin; it was almost perfectly transparent.  Qualitative fluctuation

effects were observed in both Pb 1 and Pb 4, but a detailed

comparison with theory was not made. The films which did not

produce successful fluctuation measurements are included in this
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section for the sake of completeness; they will not be mentioned

again.

9.  The DC Conductivity.

In Fig. 9 is plotted the resistivity ratio, 1  , of. the films

versus temperature.  As can be seen, the resistive transition is

broad; the films exhibit considerable extra conductivity; and there

is something of a tail in the resistance below the
transition. It

is the presence of this tail (whether a real or bogus phenomenon)

that makes determination of the transition temperature difficult.

Not immediately evident from the figure, but true nonetheless, is  

that the transition is narrower by about 40% in all of these films

than would be predicted by the Aslamazov-Larkin formula

1      1

RN=  a=1+ To- (T c )
-eE     =       1.5*10 -  5      9 -      ,  3#1"     =     RNOd T-T ;  TO = 16

R   aN       aN      c

It is thus necessary to determine an empirical value for the

constant r8 applicable to these films.  This requires the

extraction of two parameters (Tc and T ) from one set of dat
a.

Here is how it is done. By eye the dc resistance is extrapolated

to zero according to R-(T-Tc).  This eliminates the tail and

gives a first estimate for Tc.  Using this Tc the constant TI

is calculated for each of the resistance points. This gives

several values for T .  Those for temperatures rather far from

T  are the least sensitive to variations in it and their average
C

is used to calculate a new value for T . Continuing theC

process, requiring both reasonableness and consistency in the

results quickly leads to good estimates in both Tc and  0.  These
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Fig. 9.  Resistive Transition of the films.
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are given in the ninth and tenth rows of the table. The final

value for T  was between 1 and 30 millidegrees K below the firstC

graphical estimate, not a major change.  All of the films had

values for T  within 5% of the average .93 x 10-5,
0

In Fig. 10, then, is plotted the conductivity ratio- 2
'aN,

versus distance from the transition, T-T . The solid line shows
C

the calculated conductivity from the Aslamazov-Larkin formula

(using the smaller value of T ). The dotted line shows the result
0T-T

of replacing   TC in this equation by Patton's n.  The value for
C

n  that was necessary to fit the data was in all cases .06  .
C                                                                         0

This is shown in the eleventh row of the table. This is an

order of magnitude less than calculated above but using the larger

value produced far too small a value for the conductivity ratio

(less than one at Tc) in all of the films.  It should be emphasized

that n is never zero at finite temperatures. Hence the conductivity

in the films due to fluctuations is.never infinite.

There is an unfortunate amount of scatter in the conductivity

points but it appears that Patton's expression gives a better fit

to the data. Most of the errors in the data are due to uncertain-

ties in measuring the temperature. Temperature errors are always

.01' K.  In the case of Pb 6 they are larger than .this because

the substrate was poorly anchored to the copper block on which

was mounted the heater and thermometers. This weak thermal

connection allowed the film temperature to drift somewhat as the

infrared radiation heated it and the exchange gas coupling to

the 4.2' helium bath cooled it.  This thermal contact was a
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somewhat smaller problem in the case of Pb 3 and Pb 6 and was

no problem at all in the case of Pb 7.  At the bottom of the
0table is the critical width. This is A T=T R  To N  c

All of the dc resistance measurements were made using the

standard four probe techniques. The current was provided by

dry cells and measured as a voltage across an external precision

resistor having a resistance near that of the film. The voltages

were all measured on a Rubicon portable potentiometer. The

current used was typically 4 microamperes.

10. Far Infrared Transmission Data.

In the next several figures are presented the results of the

far infrared measurements. The data are presented in two ways:

as transmission ratio versus frequency at a given temperature or

as transmission ratio versus temperature at a given frequency. In

the first case the various temperatures are the experimental

temperatures; in the second the frequencies are chosen at even

intervals. The measurements were, of course, all made as a

function of frequency at constant temperature using the far infrared

techniques described in Chapter II.  The interferograms  were all

of low resolution and as many as twelve of them were averaged to

produce one spectrum.

The following system was used to take the data.  After the

evaporation (see Chapter II) the films were cooled to 4.2' K by

adding exchange gas to the evaporator section.  After a couple of

interferograms had been recorded at this temperature, the samples
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were warmed up through the transition to around 9.5' K, where three

or four normal state runs were made.  Then the temperature was

reduced until the film resistance began to drop and the first

fluctuation r4ime data were taken.  The temperature was gradually

reduced through the transition, with three interferograms

taken at each temperature. Between five and·ten temperature points

were taken for each film.  The temperature was controlled by an

Artronix temperature controller which has the capability of

maintaining the temperature within 20 millidegrees during the

time it took to do the interferogram. The film resistance was

monitored constantly throughout the run and fine adjustments to

the temperature controller were made manually to maintain the

resistance at the desired value. The film resistance is a very

sensitive thermometer in the transition region. In this way             

the drift while an interferrogram was taken could be held to

+.0050 k. After the lowest desired temperature had been done

the temperature was raised to the normal state value again and

three. or four interferograms were recorded. From there the

temperature was lowered to the lowest value and the transition

region gone through in the increasing temperature direction with

the film resistance used to regain the desired temperature.  Next

came the normal state measurements again and then, if time permitted,

came another pass through the transition.  The last interferograms

were always taken at the normal state temperature.  After the

measurements were made on one film, the other film was rotated

into the beam and the outer liquid helium container (the 4.2' bath)
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was refilled. The entire sequence was repeated on the second film.

In all of the figures the vertical axis is the transmission

7F
ratio, - and the horizontal axis is either the frequency

aj-N
(in cm-1 along the bottom and hertz along the top) or temperature

difference, T-T . (in 'K).  The experimental data are shown asC'

points and the theoretical curves as solid lines.  Now, the

transmission curves have all been shifted vertically so as to

separate them; the places where the experimental curves all cross

one are indicated by the figures 1 on the left-hand side of the

plots and also by the dashed horizontal line on each side of the

data. On the left hand side is a scale or sort of ruler which

shows the magnitude of the changes in the transmission. Each

division corresponds to a one percent change in the transmission.

SFIn all of the plots of
·9N

versus frequency the theoretical

curves have been slid upwards by a small amount in order to make

them fall along the experimental points.  By fall along I mean

fit with the experimental points in the six to eight wave number

range. The theoretical curves never cross  one for T>T while the
C

experimental curves all do.  The amount of the required upward

shift varies with temperature, being .6% at the high temperatures

and 1.4% at the low temperatures.

There are error bars on representative points in all of the

figures. These are calculated from the standard deviation of the

spectrum and the value of the spectrum at the given ftequency.

Because of the low pass filter used to give a high frequency
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cutoff, the last few points of the spectrum are always nearly

zero and their standard deviation can be computed to give a

measure of the noise.

The conductivities used to calculate the theoretical curves

are found by adding the two dimensional fluctuation conductivities

calculated above and the appropriate regular conductivity: the

normal conductivity aN, above the transition and the BCS

conductivity, al + a2' below it.  As discussed in Appendix B

the normal state conductivity has a real part equal to the dc

conductivity and an imaginary part equal to zero. The super-

conducting state conductivity can be calculated from the tables

al    a2
published by Miller.52  These give the conductivities, 5  and -.aN.
as a function of frequency. For the four highest temperatures,

these conductivities are shown plotted in Figures Bl and B2.  From

these, plots of conductivities versus temperature for integer

wave number were prepared and the numbers for calculating the

total conductivities were taken from these curves.

The formulae used to calculate these curves are listed below.

The total conductivities for T>T are
C

-Mw                                                                                                 '

al              T k T -FT w
-1  WF   WF           (02EN -1+ To R (T-  1 -  - (1-e B)  (Tr- 2 tan  -w --w gn(1+  2))

c                                          WF

*W

G2 k T  - T WF       WF  WF 0 1-    WF                       W 2- TR
of Tc ) _  ;(1-e   ) --s (.2 + Tr.-E; -2.-E; tan  -z·+En(1+.2))aN    o N'T-Tc F
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for T<T
C

MB *W    W

'1   al          T k T -F-T _li
(1)=

+T O R N  (T      C T)       -An-(1 -  e      B      )                                               xaN   aN          c                     21 + ft-2
(0 F

1    WF             WF                               (i  2
x (1T- 2 tan- (--61 - -w En #(1+  2))

WF

liw

02   a M B         T k T -FT
1- -2+ To RN('r t.r) _L (l-e B)          x

aN          aN                                     c                lia                                                   w 21+2
(OF

W                                                                 2

x (1  -  2  tan- 1  --F   +    w     Enls (1+   I  ) )

The transmission and reflection of the film (the first surface

coefficients) are

4nGJ< =

(n+1+Zoald) 2  +  (Zoald) 2

Al = (n-1 + Zoal.d) 2 + (Zoa24)2
En+1  +  Zoald) 2+ .(Zo  02.d) 2

The transmission and reflection coefficients of the rear surface

are 4n
0--

J  2    -     (n+1)2

122       -         (51)   2
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The transmission of the entire substrate assembly is

A      91 92
9      =    1 -0  (R-1Z

where n is the index of refraction of the quartz (n= 2.11), z 

is the impedance of free space (z  = 3779) and

16k T   T-TBc T>T
Trif           T                      c

C
Wn =

r          -

16k T   T -TBc
di          T                    c

T<T.
C

The theoretical curves were generated from these equations using

a simple BASIC language program on a PDP 11 computer.

Figure 11 presents the results for Pb 3 as a function of

frequency.    Pb  3.was  the -

thinnest  film  (R  = -1600n)  and  had  the
most different temperatures.    With the exception  of the upward

shift, there has been no fitting of the data. The values of

To and Tc used are those from the dc.resistance measurements.

The fit between the experimental points and the theoretical

calculations is close to within the noise.

The four curves that extend to higher frequencies are the

result of overlapping measurements with three different high

frequency limits or cutoffs, taking the average in the overlap

region.  The cutoffs were 50, 21, and 14 cm-1.  The numerical

values of the transmission ratios differed by no more than .2%

in the overlap region.  The 21 cm i cutoff runs were used as a

standard and the others were fitted td them. The curves that

I           »
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stop.at the lower frequencies were measured only with the 21

cm-1 cutoff.

Figure 12 shows the transmission data for the same film

plotted against T-Tc.  The reader should first direct his

attention to the lowest curve. This shows the transmission at

12 cm-1.  The experimental points are taken unchanged from the

transmission dita in Figure 11.  As can be seen there is some

scatter, but the primary feature is a gradual decline in

transmission as the temperature is increased.  To eliminate this

shift in baseline, all of the high frequency ends of the data were

set to the theoretical value at 12 cm-1 for the appropriate

temperature. Then the points at the other frequencies are

calculated using this value of the 12 cm-1 transmission ratio.

That is, the points at the other frequencies are found by

subtracting from their value in Figure 11 their value at 12 cm-1

and then adding.the theoretical value at 12 cm-1

theo
9Fergs (w,T)_ C:IFe]cp(W,T) - fFFe]cp(12 cm-l T)+ 07 F (12 cm-1'T)

SI' 5N  3'N UN

This is equivalent to a renormalization of the normal state

transmission data. It appears from all this that either the

detector sensitivity·or the transmission of the sample assembly

is affected by near 1%/:K, by changing the sample temperature.

After this correbtion, the agreement between the experimental

poin'ts -and. the theoretical  line is adequate (il.2%) above  Tc
if not as satisfying as in the plots of transmission ratio versus

frequency. The reason for this is that in the former the .data
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points are from a single intensity ratio, whereas in the latter

they are each from a different one. In general, the larger

deviations appear at the same temperature difference, and are

probably systematic on the normalization.  The spike at T  isC

a breakdown of the theory and should be ignored.

The next three figures, Figures 13, 14 and 15, show the

transmission data for the other films, Pb 5, Pb 6, and Pb 7

respectively. In Pb 5 all of the runs were made at temperatures

above the transition temperature and with an 18 cm-1 high

frequency cutoff.  Pb 6 was the thickest film on which data were

taken.  All of the temperatures were above Tc again although

the error in the lowest temperature run (T-Tc = ·001' K) is

.005' K at least.  It could be either above or below Tc.  Both

18 cm-1 and 66 cm-1 cutoff runs were made.  Pb 7 was the only

all lead film.  There was no bismuth in the evaporant.  One of

the interferograms  was recorded for temperatures below Tc and
-1

both 16 and 40 cm cutoffs were used.

11. Discussion of the Data.

There are some seven questions about these experiments

which might be raised at this point. I will discuss them one

at a time.

Why are the experimental points invariably  higher than

the theoretical curves and is this serious?

There are three possibilities why this might occur.  The

Ferrell-Glover sum rule, which requires that the integral45

over all frequency of the real part of the conductivity be

independent of the phase transition, is not satisfied by the
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conductivities used here. The area under the conductivity curve

grows as the transition is approached and then drops again below

it. ·(See Figures 6 and 7)  The easiest way to fix this up would

be to have the conductivity ratio drop to slightly below one

and then rise slowly back to one. If this happened the transmission          I

ratios would be greater than one.  Another possibility is that

the normal state transmission as measured at 9.5' K is not the

same as that at the transition temperature (determined, say, by

applying a magnetic field). If the conductivity were to increase

slightly upon reducing the temperature the normal state trans-

mission would be lowered. The other possibility is that when

the sample is warmed up the detector is also warmed up.  This

would reduce its sensitivity and thereby reduce the measured

normal state transmission value. The first of these three

possibilities is serious, but the others are not, merely requiring

a renormalization of the normal state transmission data.

How are the results affected by changes in the magnitude

of w  ?F

The principal ·object of these experiments has been a measure-

ment of the frequency dependence of the fluctuations, to see if the

description given by the time dependent Ginsburg-Landau equation

is applicable.  This equation is not on as good a footing as the

rest of the Ginsburg-Landau theory.  Most of the frequency dependence

in the conductivities depends on wF' the relaxation rate in

this equation.
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16kBT         .IT.-Tcl
WF = 11*     T C

An attempt was made to fit the measured transmission data for Pb 3,

above T . with wF replaced by 1.5 wF and by .6wF.  In neither caseC'

did the resultant transmission curves agree with the data as well

as those calculated using wF.  The discrepancy was largest at the

temperatures closest to T .  For the larger value of wF theC

transmission curve was too steep and too small at low frequencies,

and the frequency where it had its greatest curvature was at too

high a frequency. The lower value produced deviations in the other

direction. From these considerations wF must be within 20% of

the nominal value.

What is the effect of a above T ?2c
Schmidt does not calculate a for the case of T>T and the

2                                c

data of Lehoczky and Briscoe do not require any such term.  On

the other hand the Kramers Kronig transforms do.  The effect of

including it in the calculation of the transmission ratios is to

depress the curve somewhat at frequencies near the peak in 02'

around wF' and at higher frequencies.  This increases the curvature

in the vicinity of wF and flattens the curves above it.  In order

to fit the far infrared measurements, a2 must be included in the

transmission ratio calculation.
1 ·M W

k   T              - E-1

Is the term - i (1-e ) necessary?

This factor in the conductivities is a result of the time

dependent perturbation theory used to calculate the conductivities.

For #w>>kT it falls off as 1/w..  If T = 6.SIK, the turnover
1

frequency  is  4.5  cm- . Measurements made below this frequency
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would notshow any need for this term.  Above this frequency it

is quite important. It forces the conductivities to zero faster

than they would otherwise, go. The* transmission ratios then rise

to one and flatten out faster than they otherwise would.  This is

required by the data.

What is the behavior in the critical region?

The critical region is defined as

A T=T R  To N  c
In this temperature distance from the transition temperature at

least half of the conductivity. is due to fluctuations so that the

volume of the fluctuations is large and they should be interacting

with each other. The simple theory is expected to break.  down.

However film Pb 3 has three of the spectra above T  and two belowC

in this critical region (.1' .K wide) . The calculations agree. with

the measurements as well within the critical region as without.

The reason may well be that within the critical region wF is very

small.  (wF = .35 cm-1 at the verge of it in the case of Pb 3).

The measurements are all on the high frequency tails of the

conductivities and these must be unaffected by interactions between

the fluctuations. Further, the deviations in the dc resistance

from the Aslamazov-Larkin result are often small.

Why is the difference between the experimental data and the

theoretical curves larger below the transition?

Again in reference to Pb 3 (Figure 11), these differences

seem to be due to the Mattis Bardeen conductivities rather than

the fluctuation conductivities. The data taken closest to the

transition (T-T( = -·007) where the fluctuations are the largest
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and the contribution from the quasi-particles the smallest give

the best agreement between experiment and theory. The situation

deteriorates as the temperature is reduced away from Tc.  To fit

the data, the energy gap needs to increase faster than the BCS

expression

8(T) = 1.678(0) (T -T)4
C

as the temperature is decreased.

In any event, the fluctuation conductivities are required to

fit the data. Figure 16 shows plotted the data and the calculated

transmission ratios using the Mattis-Bardeen conductivities alone

(dashed line) and the fluctuation conductivities plus the Mattis-

Bardeen conductivities (solid line). Two of the spectra for Pb 3

are used. In this figure there has been no fitting of data in any

way; the points and theoretical curves are all numerically equal

to the values on the figure.  At low frequency the fluctuations give

good agreement; at high frequencies. neither do well. If it is

allowed to shift the points up and down, they can be made to fit

fairly well with the fluctuations, but never with Mattis-Bardeen

alone.

What is the magnitude of the fluctuation effects compared to

the transmission ratio of the superconducting state (at 4.2' K) to

the normal state?

The fluctuation effects are quite small. For instance, in

the case of Pb 6 the maximum distance the transmission ratio in the

fluctuation temperature range above Tc ever gets from one is .96, a

4% variation. The transmissioh ratio for superconducting normal
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(4.20/9')of this same film is .75 at 2 cm-1.It rises to 1.27 at

22 cm-1 (the energy gap) and then falls off towards one.  It

varies 25% on either side of one. On this scale the transmission

ratios near Tc would appear virtually flat.

12. Summary and Conclusions.

In this chapter I hive presented calculations and measurements

of the frequency dependence of the fluctuation induced conductivity

of thin lead films in the vicinity of the superconducting transition

temperature.  The real and imaginary parts of,the conductivities

were calculated in the time dependent Ginsburg-Landau theory both

above and below the transition temperature.

Measurements of the transmission of far infrared radiation

through four thin lead films, as a function of temperature were

5 made. The dc resistance of the films was also measured. Both

types of measurements showed an increase in the conductivity near

T.
C

The experimental data is well described by the conductivities

calculated from the Ginsburg-Landau thoery. The relaxation rate

in the time dependent equation

16k T T-T
B

a)F
-

 K  ( Tcc)

is that which best fits the results of the measurements.



: CHAPTER IV

SMALL PARTICLES

1.  General.

This chapter describes experiments on the far infrared

transmission of arrays of small metallic particles.  The
0

particles are on the order of 100 A in diameter and their

infrared response is drastically affected by the size

limitation of the electron energies. The mean energy level

spacing at the Fermi surface is, for non-degenerate levels,

just the inverse of the density of states of the free electron

53
gas for one spin direction

A _12742 4  EF

D3m*kF
=3  N

where D is the diameter of the particle, kF and EF the Fermi

momentum and energy, and N the number of electrons.

Kub053 was the first to point out that the energy level

spacing changes the macroscopic behavior of the particles;

he calculated the specific heat and the magnetic susceptibility

of the particles. Further calculations were reported by
*

55Gor'kov and Eliashberg54 and by Denton et al. Measurements

of the spin lattice relaxation time and of the static magnetic

susceptibility have been carried out by Kobayashi et a156 and by

Buhrman. The situation with respect to these static properties58

is somewhat fluid at present.

The main theoretical difficulty in the problem comes in

-76-
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deciding what kind of ensemble average to use in calculating

the partition function. It is necessary to put into the

calculation a probability function; the probability that,

given a level at energy e, there is another level 6 away.

The simplest form would have an exponential form:

6
1
-  -I .  The problem of averaging over ensembles of randomly6e

separated energy levels has been extensively studied for the

case of level statistics in large nucleii. Dyson discussed59

it for various symmetries; he found three distinct ensembles.
.

54Gor'kov and Eliashberg applied these to the case of small

metallic particles to calculate, among other things, the

electromagnetic response. The applicability of the ensembles

depends on the strength of the spin orbit coupling. In the

case of "small" spin orbit coupling the orthogonal ensemble

applies, for "large" spin orbit coupling the symplectic ensemble

is used, and for a large magnetic field and "large" spin orbit

coupling the unitary ensemble is used. The exact meaning of the

terms "large" and "small" is not completely clear.  When the

spin orbit coupling is "large" there are big interactions

among the levels;  they are expected to repell each .other  and

fall into a more uniform arrangement; in this case a more

periodic behavior is expected than in the orthogonal ensemble.

2.  Electromagnetic Response.
I

The result of the calculation by Gor'kov and Eliashberg is

that the dielectric polarizability is (for small electric fields

and the diameter, D, less than the bulk mean free path)
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16 e 2D2    139 e 2D 3Xe -  5 8    900w hV A(w)F

where the first. term is the static polarizability, and is

frequency independent. VF  is the Fermi-velocity.    The

function A(w) is determined by the ensemble average used.

For light metals ("small" spin orbit coupling) the

orthogonal ensemble applies.  Expressed in terms of the

integral sin.(Si(X)) and cosine (Ci(X))

8    21'rtiw  28  ./pAw . TPK W TrMW Trli W&(w) =2- - sin
- Ahw Cil-r) Cs in--6-- - 7--- cos -r)ir·n w                               A

.i(2"0"   i -6.  ·i 6  cos  21"  -  , 46 Si(Yff'b (sin-E 8  -  1[ '  cos  4ft) 1

The limiting forms of this are;  for ·low frequencies tliw<<8

27r 2 *2'.,2  TYKW. i· 3 4(2W2
A (w)    =   -3           -      (2- in     A J -r--=-- ; y = 1.781···

&2                0   62

and for high frequecies 4w>>8

2'Ir*W 21PKN 28
A (w)    =   2   -   2 (ii: i)         -2 (9 w) 3   s i n        8      +   i<      8      -   79  +    (18Ii  )  3  x

2 70 w
x (3+  cos      A    ) )

For heavy metals ("large" spin orbit coupling) the symplectic

ensemble is used.

A (w)    =   2 - 2:ti" sin 211*(o Tilito 7T .    . Tr]i (O.. 'rlitw   +   11'Kw   sin   Trliw8    -  -r  (7 +  SiC-AJ J (cos  8          8            -r)

.i{*1   -   6  sin'  *t  +  *1(  +  St.(191)1 (411  cos  1 1  -  sin  *1  1
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The limiting forms of this are,  Aw<<A

2 #w    iA ((t))    =   gi (-A)       +T.5   (1 11)  5

and *w>>8 ,

Tr                 Tr* W Trii W Tr 71'fi WA(w) =2-2, sin 7---+i (-8+-cos -3  )2

In the case of the symplectic ensemble there are large periodic

variations in the polarizability with frequency while the

orthogonal ensemble yields a smooth function.

The dielectric constant is

€=E1+ if2 =1+.4A7 Xe

where N/V is the number of particles/unit volume and the

absorption coefficient can be calculated from

2cd El r- ,  61  
a =  ((2 41+622/612- -- ) 2

In the case that E2<<El then El=1 since Imxe-Rexe

W€2
a= -

C

= 139 N we2Ds
2 2 5   V licVF

Im A(w)

This should be compared with the result for classical
60

absorption by small particles (Mie theory) as discussed in

Appendix 2.
M 2 0    D 32A2 N  -  1       9       D 2

a= -3 V c     (         +     )
16A20 2 4Dc2

1
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Figure 17 shows the dielettric codstant as a function of frequency

calculated in this theory for the orthagonal and symplectic
0

ensembles.  These curves are calculated for a diameter of 100 A,

a filling factor for the particles,f,

N  ITD 3f= V --6-
of .03, and a Fermi velocity of 1.5 x 108 cm/sec.  The mean energy

level spacing using these numbers is

8 = 10.8 cm-1 = 1.35 meV = 15.60 K

and N/V = 5.7 x 1016 particles/cms.  Notice that since N/V-1/Ds

and the frequency dependent part of the polarizability, X -D 3e

these dielectric constants as a function of the ratio w/A are

independent of frequency.  To find the value of the dielectric

constant for a different particle size, merely multiply the
10.7cm-1

frequency axis by to get the appropriate frequency8 (D)
scale for the other size.

In Figure 17 the orthogonal ensemble is shown as a solid

line and the symplectic ensemble as a dashed line. The real

  parts of the dielectric constant, el, are not very interesting

having a value of 1.13 at high frequencies, and falling to 1 at

zero frequency.  The orthogonal case is smooth between while the

symplectic one oscillates a small amount.  The imaginary parts

rise with increasing frequency, becoming quite large at high

frequencies, with medium size oscillations in the orthogonal

ensemble and rather large ones in the symplectic case.  The
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the Gor'kov-Eliashberg model.
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magnitude of the imaginary part of the dielectric constant in the

case of the orthogonal ensemble is about twice that of the

symplectic ensemble.

Figures 18 shows the absorption coefficients, a, versus

frequency for both cases (solid line for the orthogonal ensemble

and dashed for the symplectic one).  These absorption coefficients
00

are calculated for two different diameters, 100 A and 200 A. The

curves are similar in shape for the two sizes; the frequency

scales are just different. The orthogonal ensemble shows smaller

Wiggles than the symplectic and is twice as large. If the

Wiggles are smoothed out, the high frequency absorption coefficient

is linear in frequency and extrapolates to zero at w =8. In the

cases when this theory applies, this gives a way to measure the

mean energf level spacing in the small particles.  A log-log plot

of the absorption coefficients shows that the low frequency tail
3.7

in the absorption coefficient goes to zero as w in the

orthagonal ease and something like col o in· the symplectic case,

although the little bump in the latter case makes determination

of this a bit difficult.

Figure 19 is a plot of the absorption coefficient of particles

which obey the Mie theory (see Appendix B).  Here the absorption

coefficient, which increases as w2, is three orders of magnitude
*

below that in the  Gor'kov-Eliashberg case.  This was calculated
0

for D = 100 A, 01 = Sx1016 and N/V = 5.7x1016/cm:
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3.  Superconductivity.

The size of the small particles might be expected to affect

superconducting behavior for two reasons. If the diameter is on
0

the order of 100 A then the mean energy level spacing is on the

order of kT . Further, if the diameter of the particle is lessC

than the coherence length of the electrons, the conditions for

long range order do not exist.  Anderson61 and Strongin et a162        1

have considered this and have concluded that if &>2 kT . there
C'

is no superconductivity. (The effective transition temperature

of the particles is zero). The particles exhibit the bulk

transition temperature when A = kT .C

Schmid63 has discussed the existance or lack thereof of

the energy gap in a superconductor without long range order.  His

conclusion is that there is no energy gap; the density of electron

states at T=0 rises linearly from zero at zero frequency to a

peak near the BCS energy gap after which it falls off to the

normal state value. This discussion ignores any influence of

finite energy level spacing (compared to the BCS gap).

Hurault64 et al considered the effect of fluctuations above

the transition temperature on small particles. A simple calculation

from Schmidt's theory (see Chapter III) yields only small66

fluctuation conductivities above the transition temperature. Hurault

et al included other diagrams than the Aslamazov-Larkin one in

their calculations and found an extra conductivity proportional

to 1/ln(T/Tc).  They have left out any effects of size quantization;

this limits consideration of their calculations to particles of
0

above 1000 A diameter.
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Buhrman58 has observed both fluctuations above Tc and super- ·

conducting behavior below Tc in the dc magnitization of the very

small particles upon which these far infrared experiments were

performed.  The magnitude of these contributions to the suscepti-

bility is quite small compared to the susceptability of bulk

superconductors. One might expect it to be reduced by the ratio

of the volume of the particle to the "volume" of a Cooper pair,

e.g. by D3/&03 or 10-4.  Other superconducting effects would be

reduced by the same amount. The point is that the surface acts

as a very strong pair breaker; an electron must be scattered when

it strikes the surface of an isolated ·particle.

The appearance of an energy gap in an array of small particles

would change the transmission of radiation with frequencies near

the gap in similar fashion to a thin film. Relative to the

transmission in the normal state, there would be a peak in the

transmission at the gap frequency and a decrease below it.

4.  Noninfrared Properties of the Samples.

During the course of these experiments far infrared measure-

ments were made on samples of carbon, copper, aluminum, tin, and

lead. Table II collects pertinant data on these samples. The

66
carbon was commercial lampblack, obtained from the Carbolac Corp.

All of the numbered metallic samples were made by the smoke method;

the other two were sludge. The sample designation is in the first

column of the table. In the second is the helium gas pressure, in

Torr, that was in the bell jar during the smoke evaporation. In

all of the smoke except Cu 1 oxygen was bled into the bell jar

during the evaporation.  To make Al 3 the helium was replaced by

argon.



TABLE II

PROPERTIES OF SMALL PARTICLES

Sample He Press. Diam. Var. Energy Level Filling Number
p                U       D Spacing Factor f Density

Torr               A       A           -1
cm meV 1017 cm 3

C                                 90 -- ..043 1.1

Cu 1                5                65       15      39 4.9 .025 5.2
21-86  2.6-11

Cu 2                 .5              70       10      31 3.9 .028 4.2
21-50 2.6-6.2

Cu 3 2.5 270       30 .55 .068 .027 .055    '
.40-.97 .049-.121                       v

Cu sludge 100       30      11 1.3 .12        36
5-30 .6-4

Al 1                 .5             150       12 4.2 .51 .04 .38
3.3-5.3 .41-.66

Al 2                 .5             400       40 .22 .027 .04 .023
.16-.30 .020-.037

Al 3 2 (Ar) 375       25 .27 .033 .04 .022
.22-.32 .027-.041

Sn 1                1               140       15 8.9 1.1 .018 .25
6.5-12 .81-1.5

Sn 2                5               150       25 7.2 .90 .018 .34
4.5-12 .56-1.5

Pb sludge 100? 30? 15 1.8 .12        36
7-40 .8-5
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The diameter is that determined by electron microscopy of the

samples. For each smoke evaporation there were two electron

microscope grids in the bell jar.  These were examined by

Buhrman58 under appropriate magnification and pictures were taken.

From these the diameter and its variation could be found. The

variation in size given in the table is a plus or minus amount

on the diameter which contains about 75% of the particles.  The

electron microscope slide for the copper sludge was prepared by

placing a drop of the colloid on the grid and letting it dry.

There were no pictures taken of the lead; its size'is estimated

from experience58 to be about that of the copper.

The next two columns give the energy level spacing in cm-1 and

meV.  The upper number is that calculated from the average size;

the lower two come from adding and then subtracting the variation

from this size. The last two columns in the table show the packing

density or filling factor of the particles, and the number per

unit volume. These·are calculated from

f = EW

N -  6f
V

AD 3

where p is the density of the bulk metal, W the weight of the

sample, V its volume and D the diameter of the particles.

There is one other important sample property that is not

included in the table because it is the same in all samples. This

is the electrical resistance of the samples which is in all cases

greater than 100 Meg 9 at 300' K.  This is the limit of the
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of the measuring apparatus and corresponds to a resistivity

in the powder of 1069cm.  Our samples are well isolated and

should be distinguished from  those called granular films where

there is considerable tunneling between individual particles

yielding resistivities on the order of 10-3 tO 10-4Qcm.  This

is an important distinction; particles which are closely connected

by tunneling will show quite different superconducting properties

as the Cooper pairs can easily pass from particle -to particle.

Size quantization will be affected also.

The typical weight of the samples was .01 to .03 grams, this

was spread over an area of 1.5 cm2 so that the samples were .1 to

.2 cm thick.  Perhaps the most surprising result of these experi-

ments is that metals of this thickness show large infrared

transmissions.

5.  Far Infrared Results.

The absorption coefficient, a, in the far infrared is shown

in the next several figures for some of the samples. It is

defined as

1I
a     =     -     I    En     I-

0

where I is the intensity transmitted through the sample, I  is

the incident intensity, measured by replacing the sample with an

empty sample holder, and £ is the length of the sample. For

small particles £ is defined as

W
2' = - T-*-
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where.W is the weight of the sample, A  its cross sectional area,

p is the density of the bulk meta% and f is the filling factor of

the powder.

-1 -1
The plots are of a in cm versus frequency in cm along the

bottom and GHz along the top. There has been one readjustment to

the data. This arises because the particles are such strong

absorbers at high frequencies that replacing the particles with

a blank hole causes the detector sensitivity to decrease slightly.

The signal is lower than it should be and the result is that the

particles appear to be more transparent than they really are or

could possibly be.  The absorption coefficients before adjusting

are negative.  Either the above explanation is correct, in which

case the addition of a constant value to the data is justified,

or the particles emit radiation at low frequencies.  The readjust-

ment typically comes to 20% of the value of the absorbtion

coefficient at 50 cm 1.
0

Figure 20 shows the results for carbon particles, 90 A in

diameter. This is intended to show the behavior of non-metallic
3/2

particles. It shows a smooth almost linear increase (-w ) in

absorption coefficient with frequency indicating nearly a constant

non-zero value for the imaginary part of the dielectric constant.

. Since the carbon was ·handled in the same fashion as the metallic

particles, any effects from adsorbed gasses on the surfaces should

show up here; if there are any they add no. structure to the

dielectric constant. The data were taken at 2' K, but there is

no difference between this and 1.2' K and 4.20 K.
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0

Figure 21 gives the absorption coefficient for 65 A copper

smoke, Cu 1,. at 4.2' K.  This sample shows a high absorption

coefficient (higher than any other smoke sample). It shows

more structure  than the carbon, looking quite  like the absorption

coefficient of the orthagonal ensemble but with a lower value by

a factor of two.  The nearly linear section has a slight wiggle

and  extrapolates  to  zero  at  6.0    1.5  cm-A.
The absorption coefficients at 4.2'K of both Cu 2 and Cu 3

0

are shown in Figure 22. Cu 2 has an average diameter of 70 A and
0

Cu 3 of 270 A. The absorption coefficients are much lower in these

than in Cu 1. Cu 2 has a horizontal (zero) value at low frequencies

and then rises nearly linearly at high frequencies. The bend is

not as sharp as in Cu 1. The linear section extrapolates to

zero at 19 i 1 cm-1.  Cu 3 is already rising linearly at the

lowest frequencies. This section extrapolates to zero near zero

frequency.  There is a big bend at 30 to 35 cm-1 and then it goes

off linearly but more steeply than before.  As expected the larger

particles absorb more at a given frequency than the smaller ones

but the difference is only a factor of two instead of the factor

of four to eight expected.

Figure 23 gives the absorption coefficient at 4.2' K of the
0

100 A copper made by the sludge method.  This has a large absorption

coefficient (due in part to the denser array this manufacturing

method yields)  which is linear at high frequencies and has the

leveling off at low frequencies.  The high frequency data extra-
-1

polates to zero at 11 + 1 cm
0

In Figure 24 is shown the data for 150 A aluminum, Al 1, at
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04.2  K.  This is a high resolution run (r = .4 cm-1) and

there is a large amount of structure. This consists of short

straight sections separating three cycles of large oscillations.

The  oscillations ·are  at  2.3    t.1  cm-1 intervals. The

pattern repeats at 8.1  t.2 cm-1 intervals.  There are error

bars in a few places showing the noise on the data, which is

much smaller than the oscillations are. If the upper section is

extrapolated to zero, ignoring the oscillations, it intersects

at 13 il cm-1.  The spectrum shown was taken at 4.2' K but there

is no noticible difference between this and one at 2'K.

Figure 25 displays the results for the other two aluminum
0                      0

samples, Al 2 (400 A) and Al 3 (370 A), at 2 this time. Both0

have absorption coefficients considerabley larger than Al 1.

Neither absorption coefficient levels out at low frequencies.

Both extrapolate to zero below the lowest frequency measured.
0

Figure 26 gives the results for 140 A tin particles, Sn 1,

at two temperatures, 4.2' K and 1.2' K.  It shows the usual

behavior, with the straight upper section extrapolating to zero

at 13 +1 cm-1. There are some very small oscillations here, with

period 8 to 9 cm-1.  The low frequency end is almost flat.  The

inset at the upper left shows the absorption in the same region

at 1.2' K.  The superconducting transition temperature of tin is

3.4' K and the energy gap is at 9.2 cm-1 in bulk or thin film

tin samples.  Any effect of the superconductivity should show up

here. The two curves at the two temperatures are almost identical

point by point; no effect due to the superconductivity can be

seen. The data for Sn 2 was pretty much the same.
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In Figure 27 similar results are shown for lead sludge
0samples, 100 A diameter at 4.2' K.  The transition temperature

-1

in lead is at 7.2' K and the bulk energy gap is at 22.5 cm

This curve is practically indistinguishable from one taken at

90 or at. 200 or at 1.2' K.  These. samples simply exhibit no

temperature dependence nor effects of superconductivity.

The straight upper section extrapolates  to  zero  at  12.5  fl  cm- 1
and there is.the usual tail at low frequencies.

6.  Discussion of the Data.

Table III gathers together the important points from the

measurements.  The first column gives the sample designation,

the second its average diameter, the third the calculated value

of A (all of these from Table II), the fourth the intercept of

the more or less straight section with the x-axis which is an

experimental value for A, the fifth the measured absorption

coefficient at 40 cm-1, and the last this absorption coefficient

divided by f. Since the absorption coefficient more or less

scales with f this might help to eliminate any effects of different

packing densities on the data.

Considering the strong dependence of A on the diameter, the

rough agreement of most of the samples between the calculated

and experimental value is quite satisfactory. In the copper

smoke the calculated value comes out quite a bit high; in the

aluminum and tin somewhat low.  The two sludge samples, surprisingly,

were very close.

Although the absorption coefficients  at  40  cm  1  do not follow
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TABLE III

EXPERIMENTAL DATA ON SMALL PARTICLES

ExperiAental -1

Sample Diameter TheoTetical & Experimental 8 Absorptio_n   at  40  cm  - 1
A cm meV cm meV a(40 cm ) a(40 cm  )/f

C          90                                               3.4          79

Cu 1         65        39 4.9 6.0+.5 .74 (50) (2000)

Cu 2         70        31 3.9 19tl 2.4 2.7          97
»1

Cu 3 270 .55 .068      <3 <.3 5.3 190              2

Cu sludge 100        11 1.3 11+1 1.4          46          370

Al 1 150 4.2 .51 13&1 1.6 5.0 125

Al 2 400 .22 .027     <3        .3 13.6 340

Al 3 375 .27 .033 <3        .3 10.4 260

Sn 1 140 8.9 1.1 13+1 1.6 2.4 130

Pb sludge 100        15 1.8 12.5+1 1.5 43 340
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any pattern, dividing them by the filling factor, f, does bring

them into order with a couple of exceptions.  This number, a/f,

is proportional to the absorption per particle rather than the

absorption per centimeter of the collection and is shown in

Figure 28.  This is a log-log plot of the ratio of absorption

coefficient to filling factor versus diameter for the particles.

These data are shown as crosses in the figure and a dashed line

is drawn through them. The line has a slope of 2/3 meaning

that the absorption increases as D2/3.  Also in Figure 28 are

the same data with the number for carbon subtracted off. These

are shown as circles and fall into a somewhat straighter solid

line with slope 3/2 (a.D3/21.  Subtracting off the value for

carbon is done in an attempt to eliminate the absorption from

non-metallic causes and is of some value if the absorption due

to carbon is independent of diameter. This is a somewhat shaky

assumption. At any rate, the theory of Gor'kov and Eliashberg

predicts that the absorption should increase in the metallic

particles as Ds.  The classical Mie theory predicts an absorption

proportional to D2.  The result here of slope 2/3 or 3/2 is

smaller than either. The numerical values of the absorption

coefficients of the particles fall almost on the geometric mean

between the Gor'kov-Eliashberg theory and the Mie theory.  For
0

100 A particles, a filling  factor of .03 and at 40 cm-1, the

former gives an absorption coefficient of 200-350 cm-1, the latter

gives .1 and the experimental number, from Figure 28, is 3.

There are three samples that do not fit this variation of

absorption versus diameter at all. The two sludge samples are
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both a factor of three too large. These samples are not as clean

as the others and this may be the result of a residue of acetone

in them.  Acetone is a strong absorber above 30 cm-1 but opens

up and becomes transparent below 20 cm-1.  A much more serious

difficulty arises  iii the  case  of Cu 1. This sample has an

absorption coefficient some 20 times larger than Cu 2 which is

about the same size. This was the only smoke sample measured

which was made without oxygen in the bell jar. The electron

microscope pictures seemed to show that the particles had clumped

together. If these particles were not insulating they would act

as larger particles and, with the absorption increasing with

diameter these would make an impression on the measurement

out of all proportion to their size. If this were true, however,

the absorption coefficient should not level out at low frequencies

but continue downwards as in Cu 3. The large value in Cu 1 remains

a mystery.

The other major anamoly in the data is the structure in Al 1.

This consists of very regular well resolved oscillations at 2.3
1cm-  intervals modulated by ones at 8.1 cm-lintervals, producing

a beating effect.  In Fourier transform spectroscopy one must

always be on guard against such behavior because it can be caused

by two bad points in the interferogram or by two interference

patterns  in the sample. Both would. be Fourier transformed  into

such a pattern. Neither of these is the case in Al 1. The

pattern was visible in all of the spectra taken on Al 1 during

two different runs separated by a period of a month and on none

of the other samples run simultaneously. Because nine inter-

ferograms were recorded for Al 1 .and because the pattern was
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visible in all of them it was not due to two bad points in the

interferogram. If it were due to an interference pattern, the

pattern could only be in the Al 1 sample itself.  Al 1 was one

of five samples on a brass rotator disc which were placed in the

far infrared beam successively.  As the pattern was not observed

in any of the other samples it must be localized in Al 1.  Now,

the way the samples were mounted was a piece of 1 mil thick

polyethlene was placed over the hole in the brass sample rotator,

a short section (perhaps one mm thick) of brass or nalgene tubing

was put on it and the powder poured in, another sheet of polyethelene

was used to cover the powder and the whole assembly held down

with a piece of brass shim stock by screwing it to the rotator.

It seems inconceivable that the two polyethelene sheets would

be sufficiently flat and parallel to cause standing waves between

them. It seems that the structure seen in Figure 25 is a property

of the powder itself. The period of the oscillations is just about

half of the calculated mean energy level spacing in Table II.  Al 1

had the smallest percentage variation in size of any of the samples.

It is the sample in which structure is most likely to be found.

As might be guessed, Al 2 was an attempt to duplicate the

results of Al 1 with another sample. It turned out to be too

large and too uneven in size. Al 1 must stand alone and is not

completely understood.

A careful periual of Table .II will show what is by now clear:

that sample preparation is still somewhat of a hit or miss affair.

For example, Al 2 while made in the same He pressure as Al 1 is

larger than Al 3. Sn 2 was made in quite a bit larger pressures
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than Sn 1 but is almost the same size.  However, since all of the

samples were examined under the electron microscope the diameters

are well known and most of the features of the samples are a

function of the diameter.

There is also some question about the oxygen on the surface

of the particles. Electron microscope diffraction pictures show

a double ring pattern typical of fcc copper and outside it a

58single ring identified as sc
Cu20. The density of this.line

is less than the copper line, implying that perhaps 10% of the

particle is composed of the oxide. This oxide should be completely

transparent at the far infrared frequencies of interest. It

will reduce the diameter of the metallic small particle though.

Two layers of oxide on the surface will reduce the diameter
0

of the metal by 15 A or so. This is not an insubstantial amount

in the smaller particles. But, it is likely that the electrons

can easily penetrate two layers of oxide (this being a typical

layer in tunnel junctions) to reach the surface so that the

volume of the small particle will be the same whether oxidised

or not. The density of the electrons will be reduced proportionally

to the number of electrons bound to oxygen atoms. The effect of

the oxide will be to increase ·the energy level spacing.
One unexpected result of these experiments was the total lack

of temperature dependence in the samples, at the temperatures

studied.  The copper and lead sludge samples were studied at 1.2',

4.20, 90, and 200 K; the Cu 1 sample at 4.20, 90, and 250 K; Al 1

at 20 and 4.20 K; and Sn 1 and Sn 2 at 1.20 and 4.20 K.  None

of these showed any effects of temperature although a previously

unknown temperature dependent absorption in quartz was found
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during the course of these investigations.  The superconducting

samples did not change when cooled below their transition tempera-

ture.

As the frequency is increased the absorption continues to

increase.  Most of the samples studied were optimised in thickness

for the 10 to 40 cm-1 region and did not transmit sufficient

far infrared at higher frequencies to permit measurement of a

there.  One very thin copper sludge sample was measured in the

near infrared at room temperature; it showed a continuing

increase in the absorption with increasing feequency between

1000 and 4000 cm-1 (10 to 2.5  micron wavelength). In the

visible at room temperature almost all of the small particle

samples are black. Some of the larger ones show a slight blue-

grayish tinge.

7.  Summary and Conclusions.                                               1

Measurements of the absorption of small particles of copper,

aluminum, tin, and lead in the frequency range of the mean energy

level spacing of the electrons show qualitative agreement with the
I

calculations of. Gor'kov and Eliashberg. The absorption coefficient

is near zero at low frequencies, bends up at the mean energy

level spacing, and then increases with slight upward curvature

as the frequency increases. One sample of aluminum showed

structure at about the right interval to be due to the energy

levels.

The magnitude of the absorption coefficient is much smaller
0

than that calculated by Gor'kov and Eliashberg but larger than

given by the classical Mie theory.  The magnitude of a on a per
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particle basis increases steadily with increasing diameter but

does so more slowly than predicted by either theory.

The far infrared behavior of the small particles is

found to be independent of temperature in the region 1.2' to

25' K.  In particular the samples made of superconducting

material do not change when cooled below their bulk transition

temperature.
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APPENDIX A

FAR INFRARED MEASUREMENT OF THE ENERGY GAP OF V Si
3

1.  Introduction

V3Si.is one of a family of binary intermetallic compounds

which have some of the highest superconducting transition tempera-

tures yet known.  These compounds have the form M3Y where M is a

transition metal and Y is usually a semimetal or semiconductor.

Certain of them, including V3Si, undergo a cubic to tetragonal

lattice phase transitionl at temperatures above the super-

conducting transition.  The two temperatures in the case of V3Si

are T  = 21 'K (for the lattice or martensic transition) andm

T  = 17.1.'K (for the superconducting transition).
C

Previous measurements of the energy gap of V3Si and its

sister compound Nb3Sn have given varying results.  Levinstein

and Kunzler2 measured both compounds by tunnelling from a sharp

point contact into the sample.  The Nb3Sn was polycrystalline

and gave the result 28 = 3.6kTc.  The V3Si was a single crystal

with the tunnelling in the 110 direction and usually gave

28 = 1.8kT .but the value 28 = 3.8kTc was also found,  HauserC

et als measured the energy gap of a sputtered polycrystalline

V3Si film via the proximity effect on an Al-Pb tunnel junction

and found 28 = 3.8kTc.  Hoffstein and Cohen4 measured the gap

in Nb3Sn by tunnelling using the point contact method.  The

sample was a single crystal and the results varied depending

on the direction of the tunnelling. The gap was a maximum in

the 100 direction with 28 = 2.8 kT . There was a minimum in
C
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the 111 direction, with 28 = 1.OkT . In the 110 direction an
C

intermediate result was found, 28 = 2.2kT . Bosomworth and
C

Cullens measured the far infrared reflectivity of a poly-

crystalline NbiSn.film.  They found that the measured gap

was strongly dependent on the state of preparation of the

surface. It was initially at 28 = 3.8kT-, was reduced by half
C.

by sanding, and then restored by chemical etching.

The crystal structure of V3Si is called the B- tungsten or

A15 form. It is basically cubic with Si atoms at each of the

cube corners and one at the center. There are two V atoms on

each of the cube faces, with

two pairs (those on opposite

«»--030   , 1faces) parallel to each of                         0 56

the cube edges. The result XXX
is that, when the cubes are     ()
stacked up to make a

crystal, there are three Figure Al.  Crystal structure of V3Si

mutually orthagonal groups of linear chains of vanadium atoms.

These chains are pretty well separated from each other.

It was this feature that led Labb& and Friede16 to propose

their linear chain model for  these compounds. In the case of

V Si, the Fermi energy lies just above the bottom of a nearly
3

empty d-band.  There is a narrow peak in the density of states

at the bottom of this band. The distance between the bottom

of the band and the Fermi energy, EF-EM' is about 22 IK.  This
is much less than the Debye energy. Labb& and Friedel propose

that it is this narrowness of the electronic spectrum
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that provides the energy range limitations in these compounds,

rather than the narrowness of the phonon spectrum. If so,

the energy gap depends fairly closely on this difference. This

simple model has been reasonably successful in explaining many

of the properties of these compounds.

2.  Experimental Techniques.

The experiments were done in the cryostat shown in Fig. A2.

The samples were single crystal slabs of V3Si which were grown

in the MSC Materials Preparation facility at Cornell. The

boule was generally cylindrical and it was sliced lengthwise

several times with a spark cutter.  The resulting thin slabs

were chemically etched with a 50-50 mixture of HF and HNO3.

These pieces were then glued to the walls of the non-resonant

cavity.

The incoming far infrared radiation from a lamellar grating

interferometer enters the cavity through a condensing cone.

This demagnifies the radiation and increases its half angle,

as calculated by Williamson's' equation, from 180 to 900.

Once inside the radiation bounces around a few hundred times

off of the sample and finds its way to the exit cone which

converts it back to an 180 half angle. . From there it goes

down a standard light pipe, through a quartz vacuum window to -

a helium three temperature bolometer-detector.  A heater and

carbon resistor are attached to the cavity, to allow the

temperature to be adjusted and measured.  Temperature isolation

of the cavity from the detector was good enough that the

3,
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cavity could be heated above 30' K without adversely affecting

the detector.

The cavity is shown in cross section in Figure A2. It is

a right circular cylinder, 1.5 cm in diameter and 4 cm long.

The cones enter on the cylinder wall. The V Si slabs covered
3

roughly 4 of the surface area.

The non-resonant cavity can be analysed in terms of its

quality factor, Q, as ·discussed by Lamba or Townes and ·Schallow.9

This is defined as

Q = 21(Energy Stored in Cavity)
(Energy lost per cycle

WE
-

dE
HE

"

If there are several loss mechanisms in the cavity they are just

added reciprocally to find the reciprocal of the total Q. There

are three such in this experiment: losses out the two holes,

losses in the exposed brass walls of the cavity, and losses in

the V3Si samples mounted on the walls.  For the holes

87T V

Qholes = AA

where V is the volume of the cavity and A the total area of the

holes. For the walls

37TVR
0

Qwalls· = 21 SR

where S is the surface ·area and R the surface impedance of the

walls (whether brass or V3Si) and R .is the impedance of free
41

space (Ro = -E = 3770).  Then
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1         1                1                     1

+Q      +Q - Qholes brass walls   QV3Si walls

The transmitted intensity going to the detector is

I=i Q  I
1Qholes  0

In this experiment the transmission of the cavity was measured

at two temperatures, one with the V3Si superconducting and one

with it normal, and the ratio of these taken to eliminate any

frequency dependence not due to the sample.  So,·

I 3AR + 16S R + 16SRs=Qs-  o   BB    NIN   QN   3AR  + 16S R  + 16SR
o        B B         S

16SBRB
16SRN

In the event that <<1 <<1
3AR 3AR

0             0

·IS =1+ 16S
I        3AR (Rn-Rs)No

and the impedance difference, Rn-Rs, is proportional to the

intensity ratio minus one.

What these inequalities mean is that the transmission of the

cavity must not change a great amount if the simple formula is

to hold. This is indeed the case in these experiments.

3.  Experimental Results.

The difference in surface impedance between the normal and

the superconducting states in ohms as a function of frequency
1

in cm-  is shown in Figure A3. The experimental points are shown
-1

as points; a few have error bars on them.  Resolution is 1.5 cm

The superconducting data were taken at 4.29 K and the normal

state data at 20' K.  The. rise at the lowest frequencies is

due to absorption in the normal metal, which increases with
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1

frequency.  The peak at 12 cm  (=1.0 kTc) indicates the frequency

at which the superconductor begins to absorb; the surface impedance

of the normal metal continues to rise, but that of the super-

conductor rises more steeply still, so that the difference falls

as the frequency increases. This fall attains its steepest slope

at 46 cm-1 (=3.8kTc)·  At 53 cm-1 the superconductor absorbs

as strongly as the normal metal, and the difference continues

near zero to our upper frequency limit.

Now, in any superconductor the surface impedance does not

jump immediately to the normal state value at the gap frequency,

but rather rises with finite slope, these being typically, by

experiment
10

w  dR
=41                           (14 -31) w.wgThis slope decreases at higher frequencies.  Acording to the

BCS form of the conductivities the surface impedance should

generally does so much sooner. The maximum slope of the surface

impedance occurs at the gap frequency. It is probably justified

to take the maximum value of the energy gap in V3Si at the

frequency where the surface impedance difference has the maximum

slope.

The next figure (Figure A4) shows the surface impedance

difference at various temperatures.  As the temperature is

increased the height of the peak is reduced and shifts to

lower frequencies. The zero impedance difference and the point

of maximum slope also shift to lower frequencies,  although the

latter is difficult to see on this figure. In the little box

at the bottom of the figure shows the results when the metal is

normal at both temperatures.  The surface impedance at 27' K

L
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differs from that at 18' K by at most a small amount.  It was

once suggested that the lattice phase transition was driven

by a soft optic mode.  This should be visible as an extra

absorbtion if this were the case. Within the limits of

the far infrared sensitivity there is no evidence for this;

no consistent structure is seen in such normal-normal differences.

This is pretty much of a dead horse though as there has been

shown to be a soft acoustic mode instead.

In Figure AS is shown the temperature dependence of the

three important frequencies. The upper curve is for the zero

impedance difference intercept, v3'the middle curve for the

maximum slope of the surface impedance,v2'and the lower curve

for the peak, vl,  where the superconductor begins to absorb.

The solid lines show the BCS expression for the temperature

dependence of the energy gap, scaled to go through Tc and the

points at 4.20 K.

4.  Summary and Conclusions.

Measurements of the surface impedance as a function of

far infrared frequency at various temperatures on single crystal

V3Si show a very anisotropic energy gap.  The gap at 4.20 K

extends from 2& = 1.OkTc to 28 = 3.8kTc.  This takes in the

whole range of reported gap values from tunnelling measurements

in V3Si.  Both the upper and the lower value for the energy gap

seem to follow the BCS form as a function of temperature and both

have the same transition temperature.

A disadvantage of these experiments is that it is not
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possible to assign a particular gap value to a given crystal

direction as was done in tunnelling experiments.4  A counter-

balancing advantage is that the state of the surfaces is less

important. In these extreme type II superconductors the

coherence length is much less than the penetration depth. In
0                 0

V Si E -40 A while A-2OOOA. Tunnelling measurements probe the3 0
material to the depth of the coherence length while far

infrared radiation goes into the penetration depth. It would

be expected then that the far infrared measurements would be

much less affected by damage to the surface.



APPENDIX B

INFRARED PROPERTIES OF METALS

1.  Maxwell's Equations

The purpose of this appendix is to discuss how the conduc-

tivity of a metal is connected to the measured properties thereof.

The conductivity is generally the result of a theoretical

calculation whereas it is not usually directly measured in the

far infrared frequency region. What is measured is variously

the reflection, transmission, impedance, phase shift, or optical

constants of the metal,depending of the geometry. The connection

may be made between the experimental and theoretical quantities

by solving Maxwell's equations in the metal and applying the

appropriate boundary condition#.

The first step is to stick the complex conductivitY into

Maxwell's equations. As soon as one begins to talk about the

conductivity it means that the discussion is limited to the

local limit, when there is a point relation between the currents

and the fields; the metal is in the normal skin effect region.

Fortunately, all of the systems discussed in this thesis are

in this limit.  There will be no discussion here of the anamolous

skin effect here.

Maxwell's equations are a set of four differential and three

constituative equations relating the four field vectors, 3,  , %,

and A, to each other and to the charge density,  p, and current,

 .  In Gaussian units they are
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1
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V-6 = 47Tp

V-g = 0

Vxt 1    3%

Ca-t

V x i  =i c J+1 3%C at

0 = El   3- alf  = liA

where el is the (real) dielectric. constant, al is the (real)

conductivity, and u is the permeability (u = 1 from now on) of

-iwtthe medium.  Using an e time dependence, the curl equations

become

'xt- = li  A
-t 41T

Vxit            r   a l      -     i    8    E l  

At this point various authorities diverge.  Tinkhamll defines the

imaginary parts of the conductivity and dielectric constant by

iw - iw
c = al + ia 2 = TiF (El + i £2) = --U E

wel
02 = -=F

so that

V xji    =    f (al    +     ia 2)  

Sokolov12 does the same thing with the complex polarizability,

Xe' defined by € =1+ 4 Xe

a =  .al + ia2 = -iw(Xe  + ixe2) = -iwxe1

(11(El-1)
a2 = -wx   =

-

4A
el

1
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and

V x A    =    12 (a l+i c 2)  - 1.8    

The first term is the current arising from free (mobile) charges,

the second from bound charges (polarization current) and the

third has to do with pure displacement current (not involving

charges).

Donovan merely puts
13

a=a 1 + ia2

directly into the equation in place of al' which seems pretty

simple. But then he has to argue that e, is the dielectric
1

constant of the bare lattice. It is then around one and

vxA = 1 (al + ia2)# - 18  
We should now compare 4 a2 with w

47Ta 2 47TaIT
(1)     2 T 2

= =P
; W2= =  4Aa 0/ T

4Tne2
w                                                      pm1+W 2 T

2 1+W2 T 2

The pure displacement term in Maxwell's fourth equation only

becomes important in the vicinity of the plasma frequency, e.g.

up in the visible or near ultraviolet. It may be safely ignored.

Finally,

vxA = iw A
C

-t 47T
VxH = -8(al+102)2

There are two commonly used models for the conductivity are

the Drude model for a normal metal and the BCS model of a super-

conductor.
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2., Drude Model

In the drude model the electrons are treated as a gas of

nonin'teracting particleg which are damped by collisions with

defects or phonons in the lattice. The collisions result in a

relaxation time T. The conductivities may easily be calculated

by writing an equation for the drift velocity, vd of an electron.

m( E +  )  d(t) =1= egeiwt '

If jd(t) = *d(0) e iwt

J+                                      1
m(-iw+ *) vd = -eE

The current is

ne 2 T    1
3 = aA = -ne4d =  m 1-iwT

where n is the number of freee electrons per'unit volume. Then

1
C=C0 1-iwT

ne 2Twhere a  = - in the dc conductivity. Taking the real ando m

imaginary parts yields

Go             GOW T
al

-
G 2 =

1+W 2 T
2

1 + w 2 T 2

The same result can be obtained with a little more difficulty
13from the Bolzman equation.

3.  Superconductors

A superconductor has no dc electrical resistance while the

reflectivity in the near infrared or visible regions is not

affected as the metal passes from the normal to the super-

conducting states. There is an energy gap in the excitation11
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spectrum of a superconductor and a photon can only be absorbed

if it has energy greater than the energy gap. The energy gap
0

of most superconductors lie, at T=0  K, in the far infrared

or microwaves.  For example,:that of lead is at 22.5 am-1.

The conductivity of a superconductor was first calculated

in the BCS model by Mattis and Bardeen,14 and by Abrikosov,

Gor'kov, and Khalatnikov. 15  Mattis and Bardeen calculated the

real and imagninary parts of the conductivity at T = 0' K in

terms of complete elliptic integrals. Numerical calculations at

finite temperature have been performed by Miller. These are16

shown in Figures Bl and B2 in the case of a superconductor with

T  = 7.20 K and an energy gap of 22.5 cm-1(lead).
C

At zero temperature there is a delta function in the real

part of conductivity at w = 0.  It is then zero until the gap

frequency where it begins to rise up towards the normal state

value.  The imaginary part goes as 1/w  and is one at the gap

frequency.  As the temperature is raised the delta function in

al broadens and the gap is reduced towards zero.  The overall

magnitude of the imaginary part is reduced but the shape remains

pretty much the same.

A sum rule for the real part of the superconducting

conductivity has been discussed by Ferrell and Glover17 and

18Tinkham and :Ferrell. It follows from the Kramers Kronig

transforms and from requiring that the imaginary part of the

conductivity be independent of the superconductivity if the

frequencies are taken to infinity (an experimentally observed

effect) that the integral over frequency 6f the real part of
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the conductivity is independent of the superconducting

transition.

dw Tr    ne 2

Of as
(w) f-a. (w) dw  =-- -0 1N 6          m

4.  Bulk Material.

This is the first of several sections dealing with the

classical electromagnetic behavior of samples of various

geometries and dimensionalities. In it will be discussed

the reflectivity, skin depth, surface impedance and fields

in the interior of a bulk metal.  Later will come discussions

of thin films and
X
&

small particles.

Consider the
E

arrangement shown 9 2----t

in Figure B3 at lA Su6tor Metal

index n :
O-- = 07+ L 0-1

right. This is the

geometry that will be 4 EL 4 Et

used in the rest of

P IzL                11£                      w   kvthis appendix. All       &-Il/
waves will be

'

17 +-7,=<

propagating in the
Mr    ry
a< Er i

plus or minus z Figure B3.  Metal-insulator Boundary

direction, the normal to the interface (the x-y plane).  The

radiation is plane polarized with the electric field along the

x direction and the magnetic field along the y direction. The

,propagation direction, the electric field and the magnetic field
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form a right handed set. Inside the insulator, of index n,

there is an incoming wave
.nw 1- Z

.nw

A. = E  Reic z
A- =· nE fe  c1      0                            1       0

and a reflected wave

: n OO ..nw
- 4--   Z                                       .   -1-   Z

 r--rEo Xec Ar = nr Eoy e  c

where we have had to decide the phase of the reflected electric

vector.  There is a 180' phase reversal on reflection from a

more dense medium.  One way to see this is to say that for a

perfect conductor, which is a perfect reflector, the tangential

component of the electric field at the surface must be zero.

This requires the electric field in reflected wave at ·the surface

to be in the opposite direction to that in the incoming wave,

i.e. a 180' phas.e reversal.

Inside the metal there is a damped transmitted wave

.  iNw z . iNE zA C= Ex e  t =Hye ct

where E and H are constants to be determined by the boundary

conditions at the surface. N is a complex propagation constant.

Then,
- Nw A

VxAt = ·y i -E E= 3.c Y H
H = NE

--  Noj                               -
VxAt = -xi -E E = flc(al+ia 2)xE

N 2 = i-(01 + ia )
47r

W 1 2
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If N = n+ ik

n 2 - k 2 = _ 4A a 2nk =-a.4 Tr

w 2 Col

and

n    =     (2 ) 1     ( 1/a.12    +    a.22    -    (3 2)1 5

27T 1  -
k = (_w) 2 (4012+ 022  + a2)4

The boundary conditions on E and H are that the tangential

components of both be continuous across the boundary (z = 0).

Eo(1-4) = E

nEI(1+r) = NE = N Eo(1-r)

N-n
r = N+E

This is the amplitude reflection component. To find the

intensity or power reflection coefficient the Poynting vector

for the incoming and reflected waves must be calculated.  At

present it doesn't matter, because both incoming and reflected

waves are in the same medium, but it will matter later so I will

do it correctly now. The Poynting vector is

g=_S_ X *
4A

The intensity reflection coefficient is the ratio of magnitudes

of reflected and incoming Poynting vector. If n is a unit

normal vector

g.  (rE)(nr*Eo)R= r   =    0           = Ir 12A

A-ion (Eo)(n Eo)
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(n - n) 2 + k 2
R =

(n + n)2+ k 2

as expected. This is the usual result. Notice that if wt<< 1

(low frequency or bad conductor) and if n=1 then 02 =0,

al = a >>w and0

n  -  k=  (11[ a  ) ;i60 0

(1-(2Aa ))2+ 1
1|Z  =                0                       .  1  -  2   C    w  1 1 i27TCT 1

( W  ))2 + 1(1 +  27Ta                      00

The absorptivity iS

a =   1   -  A  =  2(     W  )42Aa
0

This is the result found by Hagen and Reubens in the first19

far infrared experiments on metals.

The propagation constant N is, reasonably enough, called

the complex index of refraction. There are two other concepts

that come out of it very easily. The skin depth is a measure

of the distance that radiation penetrates into the metal. If

one substitutes N into the equation for #t

. (0 - .W W.
 

·2n lE  N
Z - 2n lE nZ  -E KZ

 t =.x NTH Eoe = x N+H Eo e     e

The skin depth 6 is defined as the damping length of the field

in the metal

6 = E-"
ook
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27Ta

In the low frequency limit, when k= C w 0) i

60 = r  (2 ) (21Ta w
0

is the classical skin depth.

The surface impedance is defined in terms of the ratio of

the electric to magnetic fields at the surface of the metal.

4 Tr     ECO)      _     4 TT     1
z=R+l x-C HCO)-EN

47T n- ik

c  n2+k,

The quantity  1[E Z o is called the impedance  of free space  and

is equal to 377 0 in practical units.
27Ta

In the low frequency limit, when n=k=     0)4
(ll

Z = (2TW )2 (1-i)
2

C a 0

- 513.(1-i)
0

5.  Simple Theory of the Transmission of a Film.

Before going into the detailed and involved calculation of

the transmission of a thin film, I would first like to present

a simple calculation based on the boundary conditions of the

field vectors as this is easier to follow. The film will be

treated as a surface sheet of current. This calculation is valid

if the film thickness is much less than the skin depth, the

wavelength, and any other characteristic lengths in the system.

The geometry is shown in Figure B4. The incoming wave has
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amplitudes E  and H.H=E.0' 0  0'

the reflected wave has amplitudes

E  and H H = E  and the 11,\n1 e-
r        rr     r

'.                1transmitted wave has amplitudes
Et -Ree spoce-

-

Substrote n

and Ht, Ht=nEt.  Then the                Eo  &     Etvectors E and E are anti-                   Ero                     r.

parallel again and 0

E  = -rE
r      o                          Figure B4. Thin film geometry

E  = tE defining r, tto

The boundary condition on the electric field is  that the tangential

components are continuous across the boundary (the film)

(Eo-Er) -Et = 0

1-r-t=0

The boundary condition on the magnetic field is that the tangential

component be discontinuous by the surface current at the inter-

face (in the film)
47T v

(H  + Hr) -H t -  cA
where K is the surface current. It is the current per unit area

and is equal to the current per unit volume times the film

thickness

47r     47T
.c     K=-cjd=(1     +     r     -t) E o

Now j=G E where E i s the field in the film. This is either

tE  or (1-r)E  which are the fields on either side and which

are (by the boundary conditions) equal.
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4..
-!L      dt   =    (1   +    r    -    t)
C

2
t=

47Tn+1+ - -a d
C

4 Tn-1 + -- ad
C                                                    -

T=

47rn+1 + -ad
C

These are the amplitude transmission and reflection coefficients.

To calculate the intensity coefficients it is again necessary

to use the Poynting vector. The transmission is
A  4 +* A

&t·n    E xH ·n    (t Eo) (nt*Eo)
03-- = +  A t t=

S ·n # xA*.A
0 00 8 2

0

= nlt12

4n=
4TT

In +1+ -E ad12

4n
=

(n+1 + ·4  ald)2 + (4A a2d)2
The reflection is

g 'A
R =    r  -    =I r' 2

 o'n

47T .47T 12
(n-1 + --E- ald) 2 .+. .l·-E 02 J=

4 T , 4'rr

(n+  1 + c- ald) 2  +  LE- 02d) 2
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And the absorbtion is

a.=l- A -7

13_ir d
al= C

47T 4      2
(n +  1 + 2- ald) 2 +   (E- a2d)

proportional to al as might be expected.

The above are the results for an infinitely thick substrate.

If the substrate has a rear surface (as it usually does) the

effects of the reflections at the rear surface, including

multiple internal reflections must be taken into account.

This is done here for a thick substrate. This is one which is

either thick or has the front and rear surfaces out of parallel

compared to the wavelength of the radiation  in the substrate,

eg d>>  or Ad>A .  If this is the case, then the phase of multiple

internal reflections need not be considered, the amplitudes add

incoherently, and one merely adds intensities.

With regard to the figure
Front Rear

at  right,  ·the · front surface  has
R. CE 0% SL

coefficients Trl and 02  and the _1; For,
1                      m,TO 4---* °31 °S, zo

rear surface has  2 and OL , then            (RS.[4
2

  by adding up the reflections TZA:ze•1---49,4<6 0-L(A.,(A,tr:ro

back and forth inside the S.24,(RI,4- (Rim.91«S,r p

transmission and reflection

of the entire assembly can be found.

Figure BS. Multiple internal
reflections
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63- A    =  03-1 03 2     (1+   R 102    +  .0 1 20122+ 111 

- 9192

1 -Rl .2

RA   -   CRI    +    00-     2   R2     (l +Al(k2    +   87 2 922    +     111)
1

92 712
= R,   +

1         1 421022

For an insulator of index n, no film

A    4n        A   (n-1) 2R =
(n+1) 2

(n+1)2

For a thin film on a substrate

DA =

16n2

47T                                    41T
(n+1)2((n+1  + - ald)2  +  (47 2d)2)  +  (n-1)2((n-1  + -.a,d)2  + .(-4- -02d) 2C              C                                 Cl

The expressions for the reflection and absorption are even

more complicated and are not reproduced here. All three coefficients

are shown in Figure B6 plotted versus film impedance for a film

in which a2 = 0, 01 = a  (eg a normal metal film at far infrared

frequencies). The substrate has index n=2 i n this calculation.

The impedance R  = 1/a d is the resistance that the film would

have if it were square . Comparing the far infrared transmission
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Fig. B6. Transmission, reflection, and absorption coefficients
of a thin  film on a substrate versus the square
resistance of the film.
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of the substrate assembly before and after film deposition

allows the determination of the square resistance of the normal

metal film.

6.  Transmission of a film.

The general problem of the transmissioff and reflection of

a film has been worked out by various authors interested in

reflection and transmission interference filters. The earliest

and clearest modern work that I know of is the paper by Hadley

and Dennison.. 20

The problem now is to calculate the fields in three regions

for normal incidence. A sketch

of the arrangement is shown i
n       1         21

Free Metal Sulss#,rai· .

Figure B7 at right.  The three space /7\41 Index n

regions, free space, metal -+ k)  =  1) + L k

Eoj
Bu

cr =  Or;  +. 2 al

film, and substrate have
<fl- -P -4>

altogether five travelling waves
r ED,                            E 1 1  ,   # 2

i 6/0

r NO nt 90in them. The whole problem »

involves matching boundary Eii,   M i· 

conditions at the two boundaries

z  =  0  and  z  =  d.

Figure B7. Thin Metal Film
on Substrate

In region 1 there is an incoming wave and a reflected wave

. 60 .W
A 1-Z -1- Z

#  = E x(e c -re c  )1 0

. (1) . (1)

. 1Ez -1-Z
Al = Eoy(e   +r e  c)

l-
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Similarly in region 2

- iNNE .  -iNE z
#       xe   c  +Exec2 =E 21 22

   iNS z „     -iNE  z

A2 = H2iy e  c  + H22y e   c

From the solution of Maxwell's equations inside the metal

H   = NE H   = -NE21     21      22      22

where the minus sign is required to keep the right handed plane

wave.  In region three there is only a single. wave

   inw z
CE  =t E x e3 0

inf z
H3=ntExe0

The boundary conditions are

E  =E       H =H a t z=01 2 1 2

E  =E       H =H a t z=d2323

Applying these at z=0

Eo(1-r) =E   +E21    22

Eo(1+r)
= NE + NE21     22

A t z=d
iNE d -iNE d inwc dC

E21 e  C  + E22 e =t E e
0

iNwc
d -iNT d ins d

NE e - NE e = tn E e   c21          22               0
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These four equations may be solved for the four unknown F 21'

E22' r, t

-iNw d
2 (N+n) e  c

821 -

iNw d iNE d
(N+n) (N+1)  e    c   - (N-1) (N-n)  e   c

iNw d
2(N-n) e  CE =

22               -iNw d iNS d
(N+n) (N+1)  e C -(N-1)(N-n) e c

-iNw d iNE d
(N- 1) (N+n) e C-

(N+1) (N-n)  e  cr=

-iNE d i NE    d

(N+1) (N+n)  e    c    -  (N-1) (N-n)  e C

-iNE d
4N

Ct=e -iNE.d iNE d
(N+1) (N+n) e c  -  (N-1) (N-n) e  c

The calculation of the power transmission and reflection

coefficients is then a tedious but straight forward algebraic

task. They are
1                    *tr = ntt* 4< = rr

·as before. The easiest way to attack the problem is to carry out
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the complex conjugation and multiplication first before

substituting N = n+ik.  Then substitute and collect terms,

and you will find, forging ahead, that the expression is indeed

real and that all of the exponentials have become sines and

cosines of either the circular or hyperbolic variety.  The

result is:

ly =

8(02+kz)n

((n2+k24·ng (n2+k2+1)+4nn2)cosh 2d k + 2n(n+1) In2+k2+n)sin h 2d k

-(In.2+k2-n2)(02+k2-1)-4nk2)  cos 2dE  + 2k(n+1)(02+k2+n)sin 2dSC                                 C

The expression for the reflectivity has the same denominator and

an equally large numerator, is not needed here, and is left as

an exercise for the reader.

If, now, one puts in the long wavelength approximation

. 27r a.  n=k= l-) 4 and 2dEk = 2d/6<<1
CW

one recovers the transmission equation from the simple boundary

value problem.
4rl

47r

(n+1 + -c  ad) 2

This is the transmission of the film into the substrate

as before. To calculate the transmission of the entire film and
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substrate assembly, use, as before, the equation of the trans-

mission of a thick substrate.

7.  Non-normal Incidence.

The effect of rays not normal to the film surface has little

effect of the angles are not too big. It is then necessary

to consider two cases depending on whether the electric field

vector is parallel or perpendicular to the plane of incidence

(the plane defined by the normal to the film and by the

direction of electromagnetic propagation). The final result

is from Hadley and Dennison:
20

4n(1-sin20)4 (1- sin20)4
/Ji =

n 2

I n(1 _ sin20)4 + (1 - sin02)4 + 4-1 cd
n 2                       C

4n (l-sin02)6(1 _ sine2)i
n 2

5-11

In(l - sin20)4 + (l _ sin20)4  4A+ -ad
n 2      C

For a spectrometer with f/1.4 optics the maximum half

angle of the radiation with the axis of the system is 180.

Now sin (18') is .09 so the correction (1-sin218')4 is .95.

The main effect, then of off axis rays is to reduce the

apparant index of refraction of the substrate by 5%, or,

equivalently, increase the apparent structures of the film

by the same  amount.
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8.  Zero Dimensional Samples.

The problem of the optical properties of small metallic

particles (samples where all the dimensions are smaller than the

wavelength of the light)was first considered by Mie21  and

Debye.22  It is worked out in great detail by Born and Wolf.23

For the case in which I am interested the problem is given in

24a simpler form by Landau and Lifshitz. This is when the

particles are spherical and the wavelength of the radiation

inside the sample is longer than the sample dimensions. The

interior wavelength is the skin depth

21
6  =  -  =   (-c-) -in              2 iTa    w

0

where
27ra

n=
(   w   01 4

Typically for millimeter wave radiation(A = .1 cm). a  = 1018
0

sec-1 and w = 1012 sec-1 so that n = 103-104.  The ultra

long wavelength case obtains for particles with diameter
0

1000 A or less.

There are two mechanisms that must be considered which

will reduce the intensity of radiation transmitted through an

array of small particles, scattering and absorption. Of course,

scattering does not reduce the energy of the light; it merely

removes it from the beam. For a detector with large diameter

optics such as any far infrared one the maximum energy that

can be removed by scattering alone is the ratio of the

square of the acceptance angle to 4w. If there are f/1.4
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optics then a large amount of scattering reduces the transmitted

intensity to .06 the incident value. Because scattering increases

the effective path length through the medium it enhances any

absorption mechanism.

Because of the large wavelength the field around the particle

is quasi static. It causes the particle to be polarized. This

gives rise to fields at large distances; these are the scattered

radiation. The fields at great distance R are

 -,   -     (t) 2      (B   +   A  x  Al
02R

A

A' = n x #'

and where P and A are evaluated at retarded time t - R/c.

The energy flow per unit time unit area in the direction of

n is .the time average poynting vector

g, = -c- #-,xA,
47T

The intensity scattered into a solid angle de is

4

dI + (i' · ) R2dn = SI- V2('Xe2 + Xm21 )IO
C

C    2where I  = -- E   is the incoming flux density, and Xe and Xm
0   41T  o

are the electric and magnetic polarizabilities. These can be

calculated in this case from the static boundary value problem

because of the extreme long wavelength. They are

-4 02-co+i4 al-3  6-1     3
Xe =41  E-+2 =4-iT-

-4 02 + 2w+i47ral

x  = ·--3 {1 - 6i(6·12 + 3(1+i)   cot((1+i)26)}m   6'IT
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2   1-

where  6   =  (-L) -2.     In  this  case.   6<<D  and27ra W

Tr       D4 a'2.W 2 .     D2 a w

Xm --420   4  + '1
c                 4D c2

It can be neglected with respect to the electric term.

The differential scattering cross section is

4

ds = t V2(Ixe12+ 'Xm|2) sin20dnC

0         ,., 4
= -L- w- v2 sinzedn al >a2'w167r 2 2

The total cross section for scattering is

S = 87T W 4
3    2   V2 (1 xe 1 2+    1 x m'  2)

= 3  w4 92
2    C4

The absorbtion cross section is given by the tatio of

energy dissipated per unit time (Q) to the incident energy per

unit area unit time (S).

Q - _8-.3# - M. 3Ht     Dt

= 4 V(Xe 2+X m 2) 'El 2

where xe2 and xm2
are the imaginary parts of the electric and

magnetic polarizibilities respectively. Then

27T

S = c WV(xe2 + xm21
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9(1).cs 1

X    =e
2

(4Tral·) 2  +  (47[a2  -  2(00 2

D2aw

X 12= 4Dc 2

If a>>a 2' w

020 w
X       9w                    1
e 2                  Xm =

16,T
201 2  40C 2

and

771-2                       9                02S = .ljt D 3 (1)2(1 (       +     )
16.Tr 2 0 2 40c2

1

This calculation has found the cross section for one

particle while the experiment gives the absorbtion coefficient

for an array of 1018 particles.  The absorbtion coefficient,

a, is
N

a=Va
where N/V is the number density of the particles.

The transmitted intensity ·through the array is
-ag - a  . '4

I=I e =I e =I e
0            0            0

where I is the incident intensity, is the length of the
0

sample, and N/A is the number of particles per unit area

normal to the beam.

L



APPENDIX C

LINEAR RESPONSE THEORY

1.  General.

Linear response theory is a version of time dependent

perturbation theory applied to statistical systems.  It has

been discussed in detail in connection with correlation functions

by Martin. In this appendix I will attempt to show how to25

use it to find the connection between the current correlation

function and the conductivity used in Chapter III. This will

26
draw heavily on a set of lecture notes and a problem from Wilkins.

2.  The Density Operator

It is required to calculate the change in the expectation

value of an operator J from its equilibrium value due to the

application of a weak time dependent external perturbation

Hl(t).  Given la> a complete set of states and Pa  the probability

that the system is in the a state, the density operator isth

defined as

p  = EPala><al
a

The expectation value of an operator J is

<J> =  Tr PJ = E<BIPJIB>   E Pa<Fla><a|JIB>Ba
where the IB>are any complete set of states.  Now the Schroedinger

equation is
3,

i-]i - la>= HIa>at '

which implies
\

3
iii  -  p=   (H,p)3t

-148-
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Now, to do perturbation theory write H=H o+ Hl'P =P o+P
1

H  is the (solvable) unperturbed Hamiltonian and p  is the

density operator appropriate to it.  p  is independent.of Hl and

pl is proportional to it.  One likes to work in the interaction

representation; it is convenient to put the time dependence of

H into p.  So define0

I                     H o  t                 -t'tot
P=e De =P+P Io 1

i

HI = e He =H  +HAHot -*1-lot          I
o 1

and, neglecting terms of order H12

i h     ·TE     P   I       =       (Hl I  ,       p o)

3. Change of an Observable.

To find the change in the operator J when the time dependent

perturbation is turned on, suppose that this is done slowly from

time t = -oo. The change in the expectation value of J is then

<6JI(t)> = <JI(t)>H  - <JI(t)>   = TrpJ - <JI(t)>
Ho Ho

I
=   T      n      (t)    J(t)r 1

To find the value of plI at any time, integrate the equation

for the time derivative of it in terms of the commutator of HlI

and po.  to find

plI(t) = -4  ft(Hl•[(t'),po)dt' = -4  fO(t-t')(Hl:[(t'),po)dt'
- 00 - 00
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and <6JI(t)> = -% f-dt'0(t-·t') Tr((HI(t'),po)JI(t)}
- 00

= -  f-dt'0(t-t') Tr po(JI(t), HI(t'))}
- 00

using commutation properties of the trace.

4.  The Perturbation Hamiltonian.

Let

HI(t) = J+(t)U(t)

Where J (t) is the Hermitian conjugate of the observable J and

U(t) is an external potential.  At this point also drop the

superscript I.

5.  Fourier Transforming

With the above changes, the Fourier transform of the change
11

in the expectation value of J is

-iw'(t-t') iwt
<6J(w)> = 7 IT f dt f-dt' f-d , e, Uct') <pct) , J+(t')1 Se+ ie

- CO - 00 - CO

since the 0 (t-t') .is

.   oo  dw'   e -iw(t-t')
·0(t-t')= if   A- 00 w'  + i e

Make the following change of variables

w'+w-w , f-dw'+ f-dw'
- 00 - 00

t+t+t',  f-dt+_£-dt
- 00
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1 cO i w t '         oo            da '
<6 J (w) >     =    -2-iiK   f    d t 'U(t' )  e                    f                                       f-    d t    e i w' tw-w'+ie < Ip(t+ t'),J+(t  '  1  >000 CO 00

Notice that the expectation value of the commutator is taken

in the unperturbed system. (The density operator which was used

was p ) Because of this its value can only depend on the difference0

of the arguments, t+t'-t, only. In that expectation value the

arguments can be set to t and 0 respectively. The the first

integral is just the Fourier transform of the potential, U(w).

1         - dw' iw't·.<6 J C (0)>    =    U(W)    - f f-    d t e <Ljct), J+(0)1>027Th co-w'+ie
00 00

EU(W) X(w)

with X(W) defined appropriately.

The complex function X(w) can be shown to satisfy the Kramers-

Kronig relations by doing the following integral  in the co' '  UHP

f dw'' X(w") = 0W ' ' - (.0
C

X (to ' ' )d e' '
= iwX(CO) +Pfoo W't-W- 00 '/

or

1          .   R=X(w" )  d w' '
Imx (w) = F p f

- 00 W,1-w
...pl.-,-..r-t-" .-...lf....-/:L-'.1

60

1 Pf- Imx(w")dw"
Re X (W J     =    -7T -00

Col'-W

Figure Cl. Contour for Kramers-
Kronig

t
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6.  Electromagnetic Behavior

The frequency dependent conductivity is calculated by

considering the change in the expectation value of the current

operator J(x,t) due to an external vector potential A(x,t).

The pertubation Hamiltonian is

Hl = --1 fdax 3(I,t)·1(I,t)C

Except for the vector notation and the integral, this looks

like (mirable dictut) the Hl used earlier.  The electrical

conductivity is defined by

Ju(q,w) =aliv(ii,w) {  Av(q,w)}

where

JU( ,w) = 1 f d3x dt e JU ( ,t)
-i(4·i-wt)

The gauge used is the one where 0=0 and

iW

-c-  Av (4, w)    =   Ev (3, w)

The gauge l= % could also be used.

Since there are no currents without the external perturbation

<JU ( ' w)> =  <6 JU ( ,w)>

.+ +

= -  1   /d3xe-18.x fd3x,%(xi,w)·f
co,   dw'

21chV w-w'+i6 f-dteiw't- CO - 00

<  01.1 (4, t),     3 (*,O)J> 0

The translational symmetry of the system requires that

<JU(x,t)Jv(x',0)> depend only on Ii-I'l .  Using the
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convolution theorem, '.:...'*4:-»   .             ...........

F(I)  = fdt'g(x-x')4(x')  =   F(4)  = g(q)·lf(q),
-       -

the expectation value of the current immediately becomes

<Ju(4'w)> f dte
<011(*,t), 3(-4,0)3>0

*(4, W)  0     r- dw' co iw't
2 71' cliv , w-w'-i 6

CO CO

and

i           co    dw'a (4'w) =      f      f«'dt<18 u(4,t), Jv(-3,Oil>o (coswt+i sinwt)
1-1
V 2 TrilwV w-w'+i 6

00 CO

E C
Uvl + layv2

where a is the real and a the imaginary part of thepul W v  2

conductivity. Comparing this equation with the Kramers-Kronig

relations makes it immediately obvious that

allvl ( ,co)   =   2*wV  f-dt·E Up (Ellt),   Jv (- ,0) >0   coswt
- 00

alt,'2(9'w) = 31h V f-dt<  11(q,t), Jv(-9,01>0 sinwt
- 00

The only remaining task is to evaluate the expectation value of

the commutator.

Recall

<IFit), J(01>0 = Trpo{J(t)JEO) - J(0)Jct)}

= EPa<aIJ(t)J(0)la> - SPa<a|J(O)J(t)la>
a                                             a

= E  Pa<a|J(t)|B><B|J(O)la>  E B<BIJ(o) 
a><a IJ(t)IB:

0,8                          aB

<      where la> and ' B> have been exchanged in the second sum

=·I    P a<a l  J (t) |B> <B l  J (O)   l  a>     (1 - - )PaB                            a

,L
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For most ,situations the ensemble characterising the system is

canonical, e.g.
E a
ET

P   = e
a      Ea

Ee
RE

a

and 4111,
aB

<LFJ(t),J(03>0 = E P.<a|Jit)|B><BIJ(0)la>(1-e    )
kT

a B    U

-li

= (1-e ET) <Jit)J(O),0

so finally
··Mco

al = 21 cov (1-e-'ET) f-dt<Ju (j,t) Jv(-q,0)>0 coswt
00

4110
FT CO02 = 21Wv (1-e ) f dt<Ju(j,t) Jv(-q,0)>0 sinwt

00

are the expressions for the real and imaginary parts of the

conductivity.

7.  Fluctuation-Dissapation Theorem

The conductivities calculated in the previous section are

the ones used·in Chapter III, on fluctuations in a super-

conductor.  Another method of doing that calculation is to

use the fluctuation-dissapation theorem; this is the way that

Schmidt27 attacks the problem.  Returning to the middle of

section 5 and rewriting the equation for X(w)                  <
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1

X C (l) )      -          2912K        f =c» -  t:' i e     0  (20 '  1
- 00

with *W'

(1)((0') =  f-dt eiw't< (t),J+(O) >0 = (1-eFI-)
00

f-dte <J (t)J+(0)> O
iwit

00

called the spectral response function. Now consider

 (w') =  f dt e <{Jit),J+0)}>O
iwit·

00

where {J,J } E J J + J J. The expectation value of this is

<{J(t),J+CO)}>o = Trpo(J(t)J+CO).+ J+(0)J(t))

With an analysis exactly following that for the commutator

4(w') becomes
-Moj '

4(w') = (1+e ) f-dt e <J(t)J+(0)>O
Pr iw't

- 00

the only difference being the plus sign.  Next, write

<|J(0)12, = 1<J(O)J+(0)   +  J+CO)J(O)>0

1     - de -iwt
=   -2-   lim   f Twe 111((0)

te-0-00

1 oodw 0(W)
=I f i w 0(W) 0(w)- 00

1  00 dw diw
< | J(O) 1 2, -2- f  -Ffi $ (w) coth kT

- 00
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Now by using

x(w)      _-:L  foo  0 (w' ) dw'     =     K  p  5-0((0 ' ) d'CO '   -  7   f-6 (w-w')0(w') dw '21Fli- co w-w'+ie - 00 W-W' - 00

one gets

X   ((t))        = 21  - 20 $(w)
1     p  foot (w' )d w'   _   i

- 00 W-W

The first term is the real part of X and the second the imaginary

part, since.it is easy to show that 4 is real. (Take the complex

conjugate, let t become -t and you will recover 0.) Then

Co dw li W

<I JI 2, = -#f  - Im X(w)  coth IE-T
- 00

2A

This is the fluctuation-dissapation theorem.  At low frequencies,

hw 2 kTwhere coth FT,= -15, where 0+0 causing Imx+0 also, then from

Kramers-Kronig

<|J 2, = - ky f- dwImx(O)
A                        co

- 00

= -kT lim RA X(w)
W+0  V

and

x(O) = -1 <IJ'2>kT
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APPENDIX D

UNSUCCESSFUL EXPERIMENTS

The purpose of this appendix is to mention a few things

that didn't quite come off but which might be of some interest

or use.

1.  Coated Lead Films

The first attempts at the fluctuation experiments were

done on lead films grown in a separate evaporator  and then

mounted on a standard sample rotator. In order to protect the

surfaces of the films they were covered by an evaporated layer

of KCl after the lead evaporation but before removal from the

high vacuum.  The KCl protected the lead surfaces from oxidation.

The way it was done was as follows. First, KCl substrates were

cleaved, put into the evaporator and four narrow gold strips

were deposited for resistance probes. Then the evaporator was

opened and the mask was changed to a circular one.  After

evacuation the substrates were cooled to near liquid nitrogen

temperature and the lead and KCl evaporations followed in quick

succession. They were then warmed up, removed, leads were

soldered to the gold contacts, and they were mounted to a

variable temperature sample rotator.

The problem was that it was not possible to get continuous

films that transmitted enough to make the very sensitive measure-

ments needed for the fluctuation experiments. Measurements of

the transmission at 4.2' or 1.2' compared to that at 90' K

showed the peak at the energy gap first seen by Glover and

-157-
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28                                                             'Tinkham very nicely indeed. This might be a good method

for preparing samples designed for high pressure experiments on

superconductors.

2.  Coaxial Light Cones.

Following a calculation by R.K. Elsley on the low frequency

cutoff of cylindrical waveguides compared with a coaxial arrange-

'ment which has no such cutoff, a comparison was made between

the transmission at room temperature of a standard condensing

cone (1/2 inch to 3/16 inch) to a similar cone with a 1/16 inch

brass rod down the center. It was expected that the latter
-1

would show an improved transmission at around 2 cm

Well, it did, sort of. Compared to the standard cone the

coaxial one transmitted 90% at 2 cm-1 and 80% at 8 cm-1.  The

brass rod simply took up too much area. If a very thin wire

could be stretched down the center of a light cone or light

pipe and could be kept centered and straight it would probably

be worth doing.

3.  Crystal Quartz.

The first experiments on small particles were done with

the particles mounted on crystal quartz blanks. One can

imagine the delight when temperature dependence on these

samples showed a decrease in transmission at the lowest

-1
frequencies (beginning at 3 cm and becoming less at lower

frequencies) as the temperature was reduced.  There was another

absorbtion band at  25 cm  1.   One can equally imagine the                      
distress when this was found to be an artefact of the quartz
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on which the particles were sitting.

This is not really an unsuccessful experiment but rather

an uncompleted one.  There is a very low frequency absorbtion

in crystal quartz at very low temperatures. The problem

will arise in deciding whether this is due to the quartz

itself (unlikely) or to some impurity (and if so then what?).

.......

1.

1
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