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SOME SIZE EFFECTS IN METALS IN THE FAR INFRARED °

David Burnham Tanner, Ph. D.
Cornell University, 1972

The far infrared‘transmission of lead thin films and
of small metallic particles has been measured. In both of
these systems, the sample size strongly affects the infrared
response. The thin film measurements were made at tempera-
tures near the superconducting transition temperature, where‘
fluctuations in the superconducting order parameter gi?e_
an extra contrlbutlon to the conductivity. This extra
conductivity exists both above and below Tc and has 1ts
largest value at frequenc1es below a characterlstlc frequency

16kBT |T T N

Th 4Tc

UF T
Caleulations from tﬁe time dependent Ginsburg-Landau theory
of the extra conductivity give a‘good.description of the -
data; | | |
_ The small partlcle measurements were made on powder
‘samples of Cu Al, Sn, and Pb The dlameter of the partlclesA
‘ranged from 65 A to 350 A. All of the samples showed
absorftion which was very small at low frequencies and which
1ncreased more or less linearly as the frequencies increased.
There was no change in the absorbtion as the temperature was
varied from 1.2° to 20° K, and there was no evidence for a
superconducting energy gap below the bﬁlk superconducting

transition temperature in the Sn or Pb samples.



All of these ﬁeasurements were made using a new He?®
refrigerator to cool the bolometer-detector. This cryostat
used charcoal to absorb the He’ﬂgas. There are .no moving
parts iﬁ the He® gas sygtem, insteéd-éycling is accomﬁlished

by changing'the'temperaturé of the charcoal.



CHAPTER 1

INTRODUCTION

This thesis is a description of two experiments in which
the sample size greatly affects the far infrared responée of
the metals studied. One is the far inffared transmission of
thin films of lead at the superconducting transition temperature
and the other is the far infrared transmission of small
particles of various metals. ‘ |

The thread that ties these two problems togethef is fhe
‘quantization of the wave vector, i, of the electrons. The
free electron mo_del1 of a metal beginé with a free particle
Schroedingef equation for the Fourier ccmponents of the:eiectron
wave function. Beéause the metal has surfaces which the electrons
';annét penetrate, periodic Boundary conditions are introduced: |

Y, (x+L,y,z) = ¢,(x,y,2)
K K
and similarly for y and z. The wave function is of the form
1 _ik-¥ |
v, = e
e v |
with the boundary conditions restricting the components of the

wave vector to

_ 2T an
kx =0, T T °°°

and similarly for ky and kz . The energy eigenvalues afe

_ 12k?

€ T "Im
. 2 _ 12 2 2
with k< = kx + ky + kz'

Atcording to the Pauli principle, two electrons are put

in each energy level until all the N electrons are used up. The

- -1-
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uppermost filled level, the Fermi level, has the largest

momentum value

S‘HZN)%'“

_ m
kg = ( v =z

where a is a lattice parameter. The Fermi energy is

Er = 7m

A2 (3n2N)3/

This energy depends-oniy on the concentration of electrons and
not on their number or the volume. The density of states does,
however, depend on the volume.

Vmk _ V. Eﬂ}}ég}é

D(E) =
md2 2n? A2

Now, the general way that one calculates physical quantities
is to Fourier transform the appropriate equation into momentum
space and calculate the quantity for one component of the
wave vector, e.g. asAFi. Then at the end another Fourier trans-
form regains the total quantity in real space. If there are a
large number of values of the'momehtum (if L>>a) then an integral
transform'may be performed but if one or more of the dimensions
of the sample is small then ﬁhe component in those directions

must be summed. The behavior for various dimensionalities 1is

1 -1t TF ;43K -ikeTo. _ ,» k2dk -ik-T
3D: V_ii - t -(-2?)3 e Fﬁ = é ’2,"2 e FK
k dk v
1. -ik.T d?k i?-? 1. 1 -ik.T '
2D: gzie F Zf——— Fp = =3 f iker
Vz % aq; am TR T, T2 k
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o1 -ike?F 1 = dk, _i%.3
1D: v E e 'Fi X kzk -i 5 e Ff
K ©TxXTy
.1 o -ikeT o .
OD: v e A Fk remains unchanged.
> ,
K

From the foregoing a simple argument arises as to why
transitions are broadened in fewér than three dimensions. If
one or more dimensions is small (not many times larger than.
the lattice parameter) then there are only a few momentum
values allowed; the sum has only a few terms and willvnot
approximate a step. It is not possible to get a sharp
discontinuity with only:a few terms in a Fourier series.

A similar argument comes from K. Wilsom.2 All of the
measured quantities are calculated‘by perfqrming thermodynamic
averages. These involve sums of the form reKT , where H is the
Hamiltonian of the system and the sum goes over all possible
configurétions in the system. There can only be a singularity
of a discontinuity if there is an infinite sum.

The next chapter, Chapter II, is a discussion of the far
infrared techniqués used in this work and the apparatus built
during‘it. Among the fofmer is Fourier transform‘spectrosc0py
and among the lattef is a helium three temperature detector

3
and has an associated

system that uses charcoal to adsorb the He
evaporator for making thin films.
Chapter III is on the contributions of superconducting

fluctuations to the far infrared transmission of thin films.

The dc resistive transition of a thin film made from a super-
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conductor is not sharp in temperature as in the bulk metal
but is rounded off and has a certain intrinsic width.?® This

S as being due to fluctuations of the

has been explained*s
superconducting order parameter.which cause small regions of

the film to become superconducting (have finite order paraméter
or density of superconducting electrons).' In these regions

the pairs can be freely accelerated by the field and they will
short out the normal regions ardund then. The resistance of

the film is thereby‘reduced. The fluctuations have only a

finite lifetime. The metal is above its transition temperature
and so the supeféonductivity cannot be sustainéd indefinitely.

As the temperature is reduced towards the transition temperature,
Tc’ the lifetime of ;he flqctuations becomes longer and their
strength increases until at Tc‘the superconductivity freezes in.

The characteristic frequency of the fluctuations (the inverse of

the effective relaxation time) is
16k T |T-T |

‘“’F*I_F"E—‘ _T—

The measurements discussed in ChapterAIII‘show an incréasé in
the conductivity above the conductivity of the normal state at
frequéncies below WE- In the superconducting state (below Tc)l
there is a similar contribution to the conductivity by the
fluctuations. In both temperature ranges, the conductivities
| can be calculated using time dependent Ginsburg-Landau theory;
and'thg traﬁsmission of the film célculated from the conductivities.
These calculations agree with the measurements quite well,

Chapter IV gives the results of measurements on small

‘metallic particles. These are powders made up of spherical

<
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particles of the metel, all with diameters around 100 R.
these samples- there is a size quantization of the electron
energy levels, givenAby |

Ao 2. 2Ep

D(Ep 3N

where EF-is the Fermi-eﬁergy and N 1is the number of electrons.
For an 100 X diameter particle N~10 000. The electrons have
a mean energy level spacing on the order of an meV, rather than
being in a band. This will affect the behavior of the metal
substantially. One might expect that light with photon energies
beloﬁ the energy spacing of the Fermi surface and the first
level above the Fermi surface would not be absorbed and wouldv
penetrate a collection of these particles rather readily. As
the photon energles are increased the samples begin to absorb.
Because of size inhomogeneities and particle irregularities
there wili not be absorption in bands. It will instead
increase with increasing frequendy~. Chapter IV presents data

on measurements of small" partlcles of copper, alumlnum tin,

lead and carbon




CHAPTER II
~FAR INFRARED TECHNIQUES AND APPARATUS

1. General.
The far infrared lies at the extreme long wavelength end

of what may be called the optical region of the electromagnetic

"spectrum. It is characterized by the use of continuous sources,

mirrors, lenses, and gratings. It is geﬁerally considered to
extend frdm 2 to 200 cm” ', where the frequency is measured in
wave nqmber or invefse centimeter, and is the inverse of the
wavelength: ; = 1/x = v/c. dneAmay convert from wave number
to other energy units by the following reiations:

-1 : -
1 cm™ = 30GH, = .124 meV = 1.44° K = 1.99x10" ' ° erg.

z
The far infrared is one of the more inaccessible spectral
regions on account of the small ampuht of enérgy available from
radiant sources at these'frequencieé.
One may estimate the output of the mercury arc lamp‘used
as a source in these experiments, in a spectrum peéked at -
30 cm'y, to be 50 uW ihtoAa f/1.4 collecting mirror. To make

these estimates one integrates the Rayleigh-Jeans® law to find

the radiated power from zero up to a frequency, v, to be

3
v _ 21 , kTv
(o) - 3 c 2

P

where the area.of the source, A, is 5 cm? and its temperature,
T, is 5000° K. Of this power perhaps 1 uW makes it to the

detector.-

There are three ways to overcome this energy limitation:

-6-

ol
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improve the output oflsources, use more sophisticated spectro-
scopié fechniques, and improve theAsensitivity of detectors.
The first possibility has not yet occurred; the'mercufy arc
lamp used in these experiments is very similar to the one used
by Hagen and Reubens’ in the first far infrared experiments

on metals at the beginning of this century. There has been

no improvement in far infrared sources in the last sixty years.

On the other hand spectroscopic techniques and detectors have

improved dramatically in that time.

2. Interferometry.

The spectroscopic method used in' these expériments is
called interferométry or Fourier transform spectroscopy. Instead
of dispersing the source output into different angles according .
to frequency as with a grating one generates an interference
between two beams, sorting the radiation according to phase

difference. To understand this, consider the figure at the

right. It shows a Michelson oD
interferometer, with source S, - e
detector D, beam splitter B, and ‘ ’ )
e o > —>

mirrors M (moveable) and M' S ‘\\B

‘ - A M!
(fixed). Initially, let S be v rﬂj
a monochromatic source and the M '
' Fig. 1. Michelson

dlstapces from the beam splitter Interferometer

to the mirrors be the same. Then there is no phase difference
between the two beams when they recombine, they interfere
constructively, and the signal at the detector is a maximum.

Now move mirror M away from the beam splitter a distance %X,
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introducing a phase difference %X between the two beams.

They interfere destructively as they are 180° out of phase

and, the intensity at the detector is zero. Another %\ step
brings the beams in phase again and the detector sees a maximum
signal again. The signal continues to vary sinusoidally‘as

M is moved along. Fourier‘transforming the cosihe wave so
obtainedigiveé the delta function frequency dependence 6f the

‘source. Now let the source have a width from v; tov,, and

move mirror M away from zero phase A
: I
difference as before. The signal
- - 3 - ) - - >
will initially vary as before but TR ”
will damp out until at some phase N ‘

difference, Am,vz will be out of

phase and vy will be in phase.

N
B ~ " rd
‘ a
)

At this point one is said to have . .
. ‘Figure 2. Resolution

resolved the line. The resolution

is Sv= 1/Am.

The advantage of interferometry was first pointed out by
Fellgett.® It is that, as opposed to grating spectrometers,
an interferometer has the entire spectrai region of interest
incident on the detector all of thé time, rather than just one
resolutidn width. If, now, one is detector noise limited then
the signal to noise ratio is increased only as the square |
root of the integrationltime. If one increases the signai by
the'number of resolution widths in the spectrum as one does
with an interferometer*compared to a grating machine, then the
entire spectrum can be taken with the interferometer in the

same time that the grating machine needs for one resolution

_e‘/.



width.

Interferometry has been discussed in detail by Strong,?
Cenzel,1° Nolt,!! and Richards!? in particular the latter.
The interferometer used in these measuremént; is a lamellar
grating interferometer described by Nolt, Kirby, Lytle, and
Sievers.!'>'%,!* In a lamellar grating the wave division is
accomplished by a set of interleaved plates. These plates are

efficient down to the ‘lowest frequencies while the dielectric

film in a Michelson is not. This instrument is useful from

1

2 to 70 cm ', and is shown in Figure 3.

3. DetectorsA - o . ©

The infrared détector used in all of this work was a germanium
bolometer operating at 0.3° X first discovered by Drew and Sievers!S®
and described by Drew.!® This type of detector is probably the
most sensitive far infrared bolometer in general use todéy and

=14

has a measured noise equivalent power of NEP of 3 x 10 Watt

-13

cbmpared to the NEP of 5 x 10 Watt réported by Low!’ for 2.1° K
Germanium bolometer. This fifteenfold increase in sensitivity.
arises from two factors. There is a reduction of thermal noise due
to a decrease in the detector operating temperature and there is a
large increaseAin responsivity due to the steeper slope of the
resistance Versusﬂtemperature curve at the lower temperature. This
second effect is the more important. Later in this chapter a He?
refrigerator will be described that lead to an improvement in
detector noise figures over those described by Drew and Sievérs.

4, Electronics

A block diagram of the entire far infréred~experimenta1



Fig.

3.

FAR INFRARED INTERFEROMETER

-0T-

10 cm

e

Top view of the interferometer.

I is the lamellar grating.

F1, F2, and F3 are low pass filters; M1-M6 are mirrors;
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arrangement is shown in'Fig, 4. The signal from the detector
is ampiified and rectified by a phase sensitive amplifier and
digitized by a voltage to frequéncy converter plus frequency'
counter or'acaler. ‘The digital data is then sent on line to

a PDP 11 computer.'®

During a run, while the interferpgram
is being taken, the computef Fourier transforms the current
number of points and displays the spectrum or ratio to a
previously obtéined spectrum on an oscilloscope, using

® The computer also

a program writteh'and described by Kahan.'®
controls the interferometer stepping motor. This allows the
coﬁputer to check for noise spikes in the incoming data and
retake a point ‘if it detects one. At the end of a run the

spectrum or ratio may be plottedlqn an X-Y recorder and the

interferogram is punched on paper tapé. More sophisticated

analysis programs are also available for off line use.

5. Charcoal Pump System.
This section describes the cdnstructién and operafion of

a cryostat using cooled charcoal to pump on the He?® used to
cool the detector that was built by the author during the course
of these éxperimehts. It is unique in that the He? gas system
has no moving parts; the He® is permanently stored in the
cryostat.

VThis apparatus is shown diagramatically in Fig. 5. The
drawing also shows an'evaporétor insert in place in theAcfyostat;'
The main system will be described first. At the bottom of the

figure is the detector section vacuum can. This isolates the
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+ - __ _CRYOSTAT _
- ISTAT . _

LAMP_INAAAAS |\ TERFEROMETER A ${SAMPLE \~{DETECTOR

CHOPPER y

* REFERENCE b— = - — =
¥
LOCK-IN
AMPLIFIER — ~
v
V-F | CHART
CONVERTER RECORDER
 J
| | c X—Y
SCALER |  |OSCILLOSCOPE TELETYPE RECORDER
* Y S 4 A
POP il
COMPUTER
%CONTROL PULSE
ORESET __ | INTERFEROMETER S
 STEPPING
INDEXER | MOTOR

Fig. 4. Schematic diagram of the data acquisition system.



Charcoal

pump

Tr—————Basket for evdporation

| _——Quartz substrates

Copper sample holder
with thermometers
and heater

Quartz vacuum
windows

He? pot at 1°K

|_—He® pot at 0.3°K

Fig. 5. Sketch of detector cryostat and evaporator insert.

liquid helium and liquid nitrogen dewars surround the
cryostat. '
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0.3°K He® section and the 1° K pumped He* section from the
outer;4,2°'K bath. The can is ;onnected with an indium O-ring
4to the flange above it as.is the quartz vacuum window thfough
which the fér infrared radiation passes on its way froﬁ the
sample section to the detector section. The radiation goes
-down a short section of % inch brass light pipe which takes

it through th 1° X section. Then comes a condensing cone
which reduces the cross sectional area of the radiation from
H to,3/16th of an inch while increasing the maximum angle
tﬁat it makes with the axis of the light pipe from 18° to 90°.
Thé radiation then enters the hemispherical integrating cavity
where sits the detector.

The detector is the very piece of germanium used by Drew
in his He? refrigérétor, re-etched and with new leads soldered
on. The ground lead which serves as the heat sink to the 0.3° K
bath is now .025 inch diameter OFHC copper wire, increasing the
‘thermal conductivity considerably over that of Drew's .010 inch.
‘The signal lead is Tophet "A" which is .001 inch iﬁ diameter
and has a resistance of 140 Q/foot. The detector etching
solutidn was a mixture of 5 parts HF, 5 parts HCHZCOOH, and 8
parts HNO;. The leads were soldered on with indium'solder_
using an ultrasonic scldering iron and no flux. It is not known
what effect the decay of the unsfable indium isotope has 6n the
detector noise performance.

The chafcoal pumﬁ is located in a vacuum can just above:
the detector section. The charcoal pump is in cross section an
eccentric annulus surrounding the sample sectién‘and has ‘a

volume of 400 cm®.. It is filled full with cocoanut charcoal
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obfained from Arthur B. Little Co.2? This charcoal has_é
relatively large grain size, abdut 2mm in diameter, so that
the He® can circulate freely in the pump. The charcoal

was put in the pump through a % inch diameter hole in its
bottom flange after which a braés plug was soldered in place.
The pump line from the pump to the He? pot is a 3/8 inch
diameter stainless steel-tube, except for -the condenser in

the 1° section which is a copper rod with seven 1/16th

inch
holes in it.. The stainless tube goes‘through'the entire
length of the charcoal pump but has many slots sawed in it
to allow passage of the gas and prevent the charcoal from
falling into the He?® section. A 1/8 inch tube goes from
the top of the pump to the cryostat top plate where there is
a pressure gauge and needle valve to seal the He® in. There
is currently three stp liters of He® gas in the system, at
a pressure of 12 atmospheres. | |

The charcoal.pump is surrouﬁded by a vacuum can to give

thermal isolation from the outside 4.2o bath. The bottom

flange of this vacuum can is also the top flange of the

detector vacuum can. This is an unfortunate arrangement as it

causes the needle valve through which the inner 1° can is

filled to be placed above the charcoal pump vacuum section.

Initially the pumping line for this 1° pot passed thfqugh the

charcoal pump and it was not possible to fill the inner can
. with the charcoal pumﬁ warm. As a éonsequence the system
had to be modified -to bring the He" pump line through the

charcoal pump with a double walled section, for vacuum thermal

af



ST
insuiation. A better arrangement would have the charcoal pump
and its vacuum isolation moved upwards a few inches and the
needle valve placed below it with the needle valve actuating
-rod passing clear through the chafcoal pump section,

Along with the He? fill line there are aiso going up to
‘the top plate the He" pump line, two needle valve actuating
rods, the sample section, and two pumpbut tubes -for the two
vacuum sections which also carry eiectrical leads for the
various thermometers, heaters, and the detector and its load
resistors. In the pump section there are three heaters and
two 1 K@ carbon resistors. One of these is connected externally
to a battery, series resistor, and 50 microammeter as a
ohmmeter-thermometer. In the detector section there are 1 KQ
carbon resistors on both the He“ and He?® cans. There is a
heater on the He® can. There are two detector load resistors:

a series connection of eight 950 KQ metal film resistors and
one of two 750 K@ wire wound resistors.

The sample section is a 2% iﬂch 0.D. stainless stéel tube
which extends from the cryostat top plate to the flange which
carrys the quartz window. There is a conical depression in
this flange above the windbw to act as a guide in alignment
of the lower light pipe of the sample insert. The distance from
the bottom df the sample insert top plate to the 9/16th inch
diameter of this cone is 40% inches. There is a needle valve
in the wall of the sample section located just'above the charcoal
pump. If opened this valve allows liquid'helium to. enter the

sample.seétion; if closed the sample may be left in vacuum.
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" However this latter arrangement apparently only works if the
needle valve is closed‘tightly at room temperature after which
it cannot be opened when the cryostat is cooled down. It is
not possible to make a leak tight seal at low temperatures with
the valve currently used.

The saﬁple section used here is similar to others built
earller in our laboratory and permlts a w1de variety of general
or spec1a1 purpose sample inserts to be used and also allows
samples to be changed by merely unbolting them_from the top,
lifting them out, and inserting the new sample, without having
to break any low temperature seals. In fact, samples can be
easily changed while the detector is running.

The operation of the rig is as follows. The night.before
pump out the glass dewar double wall section and leave about
100p of air pressure in it, pump out the helium and sample volume
~and backfill it with an atmosphere of helium gas, pump out the
charcoal pump vacuum insulation and add about 100u pressure of
air there, and if necessary pump out the .detector can vacuum
and backfill it with an afmosphere of helium gas. Fill the
liquid nitrogen dewar. The next day, refill the'nifrogen dewar .
and begin transferring liquid helium. The charcoal traps in
the detector section will collect all of the helium exchange
gés there by the time the inner éans are ét 20° K. When the
liquid helium level has reached the needle valves the inner 1°
can will £fill after some coaxing and shouldlbe pumped down, first
~closing the needle valve. Since the charcoal pump is St111 at

77° X the He® will condenseé against the 1° section and drip down
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into the_.He3 pot. Tﬁis process takes from twenty minutes to
half an'hour and can be followed by watching the preséﬁfe gauge
and the thermometers on the 1° and He® cans. Condensation is
complete when the temperatures of these two cans stabilize at
their lowest value, around 10 Meg Q.

After condensation, add the smallest possible amount of

helium exchange gas to the vacuum can surrounding the charcoal

pump and speed up the transfér, which has been going very slowly.

When the charcoal pump has cooled to 20° K it begins to pump
and the He?® bath is pumped down to 0.3° K very quickly; about

ten minutes is all-it takes. When sufficient liquid helium has

been transferred refill and pump down.to 1° pot and everything is
ready to start taking the data. The total stért?up'time, from the

- beginning of the helium transfer to the start of the first

interferogram, 1is about one and a-half hours, although it can
be done in less than an hour.

The signal from the detector stabilizes Vefy rapidly and
remains very stable; the signal level changes less than one
percent over a period of six hours. The three stp liters of
He?® gas provides a running time of thirty4six hours at an
estimated temperaturé of 0.30° to 0.31° K. This estimate was
made from the detector resiétance which is, when fhe light
pipe is blocked off, 10 Meg Q.

~ One curious and unforeseen feature of this cryostat has_
been named the autorecondense mode. This effect arises when

changing samples. Placing a warm sample insert into an already
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cold and operating cryostat blows off all of the liquid helium
in the‘sample section. Heat is then transferred to the charcoal
pump which warms up. The He® is deabsorbed and condenses
against the 1° section. When the sample cools down or when
liquid helium 1is retransferred, the charcoal pump repumps down
the He® bath and one is readybto take data for another thirty-
six-hours. | .

A normal recondense requires care in this system if one
does not want to retransfer. The best method found to date is
to add a tremendous amount of heat\to the charcoal pump in a
Avery short time; for example thifty watts for two minutes. The
charcoal pump warms up very quickly to 40° to 50° K and enough
He® is condensed to last for six to ten hours. The chafcoal
pump then cools down during the next five minutes or so and
‘pumps down the He®. 1If one is lucky there will be liquid
helium above the charcoal pump and sample.after this operation.

The detector in this system has, in comparison with Drew's
detector, about twice the responsifity for large signals due
- perhaps to the increase in thermal conductivity of the gound
lead. The noise voltage for small signals, estimated from
the noise in low.infrared intensity conditions, is 20 nV.  Part .
of this factor of three or so improvement is due to the increased
first grid resistaﬁce of the type D preamplifier in the PAR2! HR-8
lock in amplifier. This resistance is 100MQ, up by a factor
of 10 from the old type A preamp.' The 300° X noise voltage of
this input resistor is shorted out more fully by the detector

with the type D preamp.

C o
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6. Evaporator

The usual sample iﬁseff for this cryostat.is a five
position,éample rotator in a 2% inch.can with the associated
light pipes, right'aﬁgle bends, and top plates. One special
purpose insert constructed for these experiments is the
evaporator shown in place in the dewar in Fig. 5.  The
evaporator is a long tube, 2 inches in diameter with a quartz
vacuum window at the lower end. Near the top plate is a spiral
wound’tungsten basket from which the evaporation takes place."
The substrates which arelpolished quartz blanks.are clamped fo
the copper -sample holder about twenty inches below the baskets.
The sample holder is a two position sample rotator. In one
position the substrate is in position for evaporation and after
evaporation a rotation of 180° brings the film into the far
infrared beam and places the other substrate in position for
evaporation. The substrates are held by brass clamps against
indium pads for good thermal contact to the copper block. Attached
to the sample holder are a heater and two thermometers, a 1 k@
carbon resistor for fhe'reSistance bridge, and a 330Q carbon
resistor for the Artronix temperature controller. There are
four leads connected to each film in order to allow the film
resistance to be measured using a four probe technique. ‘These
leads are attached with indium solder to four narrow gold strips
that had been evaporated onto the substrates before they were
mounted. The copper sample holder is hollow and there exists
the capability of transferring liquid helium into it through

the hollow rotator rod, but this has not proven to work very well.
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At top plate of the evaporator insert there are electrical
feed throughs for the basket and the sample holder wiring and
also an jonization gauge. On the bottom plate is a layef of
charcoal. The sample holder, light pipe and can surrounding
the sample holder are all carried on the evaporator top plate.
There is on the bottom of the tube a stub of light pipe, which
is picked up by a conical piece on the main light pipe. This
stub passes through the bottom of the evaporator and ends with
the quart:z vacuum window holder. This vacuum window is sealed
with an indium o-ring like the detector section vacuum window.

In operation, the evaporator is inserted into the cryostat
when bofh are warm. It is pumped out with an o0il diffusion
pump to the 10 ° torr range. Then it is sealed off and the
cryostat cooled down. As the cryostat cools to nitrogen
temperature overnight the pressure in the evaporator rises-to
~mear 1 X 10 * due to outgassing. When liquid helium is trans-
ferred the pressure at the ionization gauge, goes to the 1077
range. After the detector cryostat is operating and the liquid
heljum filled, the evaporation is done. This is the time that
one could transfer helium into the sample rotator. If this is
done the helium will last for only twenty minutes and then the
sample holder will warm-to 30° K. If not done the sample holder
will cool to 40° K in an héur. During the evaﬁoration, the
dc resistance of the film is monitored, mostly to determine
wheﬁ the film becomes electrically continuous. This is done by
putting 60 microvolts in series with a 10 kQ resistor acroés

the leads to the film, and measuring the voltage across the
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film.with a Fluke?? voltmeter. As the film resistance
decreases during deposition the voltage measufed by the Fluke.
will also decrease. With this arrangement it is always
possible to get a continuous film and eésy to get close to
a desired resistance. |

The evaporation rate ié about 2 X per minute; it takes
three minutes to get a continuous lead film. After two films
have been deposited sufficient helium exchange gas is.aaded

to the evaporator volume to bring the film temperature to 4.2° K

and the far infrared measurements begin.

7. Manufacture of Small Particles.

The methods of preparatibn of the small particie samples
were developed by ‘R,A, Buhrman?® and he also did the actual
sample preparation. Here I will describe what I have learned
by watching him. His thesis will give more details.

The majority of the samples studied were made by the smoke
method. A tungsten boat containiné the metal was prepared.
This was put in bell jar inside a glass cylinder of five inches
diameter on which the particles were collected. The system
was evacuated and then helium gas was bled in. The helium
pressure depended on two thihgs: what size particles were
wanted.and what the afomic weight of the metal was. The larger
the particle or the heavier the metal the higher the gas pressure.
Typical pressures for copper were .5 to 2.5 mm He, for tin 1
to 5 mm He.

After the gas was in the boat was heated up until the metal

.was evaporating at a good rate and oxygen was bled in slowly.
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The metal afoms coﬁing-off tﬁe boat collide with helium atoms
and. other metal atoms as they do a random walk to the collecting
surface. They also pick up oxygen and when they are completely
oxidized stop growing. It is possible to get quite small range
in sizes by this method. After the evaporation the smoke was
brushed .off of the glass surface and collected.

- The other sampie preparation method was called the sludge
method. In this, chunks of the metal of interest were placed
in a beaker of acetone. An RF discharge'bétween two electrodes
there spark cut small chips off. As the diécharge continued
the chips were cuf down smaller and smaller. Because the field
tended to stay in the larger chunks they were the ones reduced
in size, which helped to keep uniform size. After a while a
colloidal suspension of particles in the acetone had been
prepared. This could be centrifuged to eliminate the larger
particles. Afterwards the acetone was evaporated with a hot
plate to create a dried mass of small particles‘knoﬁn as sludge.

The smoke has proven to be better in all ways than the

sludge and all but the earliest samples were made by this method.

The smoke forms a loose dry powder with a density only a few
percent of the bulk metal. If is black in most cases,\as it
scatters visible light; some of the laréer sizes are greyish.
To do the far infrared experimeﬁts between 1/2 and 2 mm of the
powder were clamped between two pieces of polyethelene, using
a brass or nalgene tube as a spacer, and mounted on a standard

sample rotator ring.



CHAPTER 111
FLUCTUATIONS

1. General.

This chapter is a. discussion of thebfar infrared trans-
mission of thin films ofllead or 1¢ad~bismuth near the super-
conducting transition temperature. It is in this temperature
interval that the effects of fluctuations in the superconducting
order parameter are expected to give the biggeét contribution
to the film conductivity.' It is in the far infrared frequency
region that the effects of the lifetimes of the fluctuations
are seen.

Here is how the chapter will proceed. There will first be
a review of previous results of experimental and theoretical
work on the fluctuation problem. Next comes a derivation of
the éonductivities in the time dependent Ginsburg-Landeau theory
of phase'tranéitions. This is followed by a section on the
noninfrared properties of my films; such as thickness, dc
resistance, transition temperature and the like. Finally there
are the far infrared measurements and their comparison with
theory.

2. PreviousAWofk.A

It has long been'knownz“ that the resistive supercondﬁcting
transitions of thin films were broader than those of bulk samplés,
but it was only with the papers of Giover25 and of Ferrell an&
Schmidt2® that anybody reglized that there was any physics in
the effect. At the suggeStion of the latter, Glover measufed

the resistance of an amorphous bismuth film and found the

-23-
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conductivity varied as (T-Tc)ﬁ;. Shortly before this Aslaﬁazov
and Larkin?’ had published the first of a.pair of papefs in
which they calculated the conductivity due to fluctuations
using the microscopic theory and obtained the now famous result

2
e“T
c

g' =
16ﬁd(T-TC)

where d is the film thickness and o' is the extra conductivity
~due to the fluctuations. The measured conductivity is
o =0' + oy. This result depends only on the thickness of the

film and not on any other parameters. The constant,

e? -1

T, = Tep = 1.5x 1077 @

This result was obtained to within a few percent in measurement
on several thicknesses of bismuth films by Naugle and Glover.2®

Apr;s cela, le déluge. Many, many experimental measure-
ments of the dc fesistive transition appeared. A good number
of these were on aluminum films (see for éxamﬁle Strongin et al??®
and Masker and Parks?®°) where the Aslamazov-Larkin results were
not obtained; the transition being wider by a factor of ten.

31 who adds another therm to

This has been explained by Maki
the conductivity. |
Measurements of the transition of lead films were made.by
Smith et al®? who found the Aslamazov-Larkin result; by Testardi,
Reed, et al®? who found the transitions in most samples to be
narrbwervthan Aslamazov-Larkin by about a factor of two; and by

Thompson et al®* who find the transiton to be much narrower

than Aslamazov-Larkin. It is not clear what a mechanisim in

w/
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lead is that would cause the transition width to be narrowed;
it is possible to think of many reasons why the transition
width might be broadened (inhomogeneities, uneven thickness,
strains, and the like) but few that would go ‘the other way.
The only suggestion is that of Thompson et al?"* who suppose
that the film might be composed of loosely connected grains.
The conductivity above the transition temperéture was
calculated using the time dependent Ginsburg-Landau equatioﬁ
at essentially the same time by both Schmid®® and Schmidt.?®®
Schmid-obtained the dc conductivity, getting thé same result
as Aslamazov and Larkin. Schmidt also gets this result for the
dc conductivity and he'further‘calculates the frequency depend-
ence of the fluctuation conductivity. This extra conductivity

shows a peak at zero frequency whose height increase and whose

width decreases as the transition temperature is approached{

Schmidt has also calculated the conductivity as a function

of frequency below the transition temperature and finds similar

results.?®?’ Later in this chapter a derivation of the fluctuation

conductivities will be presented that is similar to Schmidt's.

There have been measurements of the fluctuation conductivity

in the microwaves bY”fwb groups; D'Aiello and Freedman3® .

measured the transmission of aluminum films both above and below

TC at 20 GH:z (.67 cm-l) and found no extra conductivity. Their

results did not agree with the Schmidt theory. Lehoczky and

Briscoe?®? measured the transmission and reflection of lead films

both above and below the transition at three frequencys (.7, 1.2,

and 2.3 cm°1) and found excellent agreement with Schmidt's theory.
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3. The Phenomenon
The physical picture of thé fluctuation phenomenon is as

foilowé. As the superconductor is cooled ddwn towards its |
transition temperature, small superconducting regions appear
in it caused by fluctuations. These grow and decay in the
course of time. The material cannot sustain bulk super-
conductivity'but there is the possibility that small-volumes
in it can. be supercondﬁcting for a while. Pairs will form
for a short time, and while they exist they can be accelerated
freely’by an electric field.- The conductivity of the material
is increased as the fluctuations short out the normal material
around them. |

| The size of the fluctuations is given by the Ginsburg-
Landau"*® coherence length. This is the length over which the

electron wavefunctions remain coherent, .

1
2

‘ T
E(T) = ¢ | <
0 T-T,

where Eo is the-BCS coherenceélength Wﬁich is independent of
temperature.and equal to 980 A in lead. There are fluctations
in samples of all dimensionality, including the bulk. Their
importance incieases as the number of dimensions large compared
to the: coherence length is reduced. This is because the
fluctating regions can save energy by touching the surfaces

of the sample. The relative energies required are proportional
to the volume of the fluctuations: §3:£2D££A in SD; 2D, lD.”

As the temperature approaches the transition temperature

from above the size of the fluctﬁations will increase and so
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will their lifetime. It takes longer for a larger volume to
decay. It will be shown shortly that the effective lifetime
1s . _1_ T A ‘TC
F 16kBT lT-TCI

At the transition temperature the lifetime becomes infinite

and bulk superconductivity sets in. The dc conductivity is
infinite. However below TC and at finite frequency the conduc-
tivity is finite and fluctuations in samples of restricted
geometry will increase the conductivity. Just below the
transition temperature the number of superconducting'pairs is
small and fluctuations in the normal electrons cause increases
in the conddctivity above the. BCS value for finite frequency. As
the sample is cooled away from the transition temperature the
conductivity due to the fluctuations decreases, because the
superconductivity becomes more stable.

Thus- there is an effect of fluctuations both above and
below the superconducting transition. The fluctuation components
of the conductivity have similar (although not exactly the same)
forms in both regions. The feal ﬁart is a maximum at zero
frequency, rolling off at the characteristic relaxation rate Wg
to zero. The imaginary part is zero dt zero frequency, rises to a
peak near Wg and then drops_toAzcgo aggin. It should Be pointed
wout that the régdlar conductivity (that not involving | |
fluctuations) 1is quite'différent in the two regimes. It is
constant and real above the transition and has the BCS form and

is complex below.
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4. Ginsburg-Landau Theory.

.Here I will present a calculation of the extra conductivity,
that due to superconducting fluctuations, using the time dependent
form of the Ginsburg-Landau*’ theory of second order phase
transitions. This theory begins with an expansion of the
. free energy in terms of the order parameter, y(x,t), of the
— |v¥[?)

2m*

system

Fg-Fy = fdV(a|y|? + 48[u]" +

where a~(T-Tc) so that it is positive above the transition
temperature, Tc’ zero at it, and negative below it. B8 is
roughly independent of temperature. For a spatially uniform

order parameter, minimjzing F with respect to ¢ leads to

~

J 0 T>T.
, ¢

1
(%% T<T_
B

for the equilibrium value of y. .So <yP> is zéro above the
transition but not below it, which is just what we would like
it to be. However, abéve TC there will be fluctuations

in the order parameter and the mean square fluctuation, <|y]|?2?>,
can be calcuiated very easily. Thermal averages of a quantity
are done by weighfing it with the free energy and integrating.
The Fourier transformzof free energy expréssion is, keeping

terms only to second order in the order parameter, which is small
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{ | Fo-Fy = fd3X I 9% (¢) ), = v2) i(k-k)-x
SN T P Y ) (0 S G - et

Doing the volume integral leads to a Kroeniker delta, GK : N
. t
b

times the volume V. The k' sum can be immediately done.

2 1
Fe-Fy = V— 1% w () ¥ (t)(—= + k?)
where & is the Ginsburg-Landau coherence length. If 2>>£0

1
2

2y T I% 1.480 V| T
E(T) = (B—)%= (o) |—| = . Te B c
2m(a) T-T T-T, T-T
C C
o i T 5
= 980A <
T-T
C’

The third and fourth forms are from the microscopic theory (2A is

1
%

the energy gap) and the last is for lead. If L<<E £(o) = (&%)

where 2 is the mean free path. The Fourier transform of the

order parameter, which appears in the free energy is defined by

v(x,t) = %wi(t)e‘ii'x

Now thermal averages of time independent quantities are calculated

by weighting the fluctuations with the free energy associated

with them. : Fi -h2(1+€2k2)'¢‘|2
- . Ed
Ao 12 o KgT 10 12 sdly |2 e Mgkl Tk 2
A \ i Allpkl e 'B X k lwkl
<|‘1’.k(0)| 3 = ‘ . = — hZ(1+ gzk?)lw | 2
k “Zm* 2 kT
BT Jallre et -

fdll[)klz e
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and .
m*kBT

| L .
<loc (0] . V h? 1 + £2k2

above the transition temperature.

Below TC there are also fluctuations in the~order-pérameter-
producing deviations from the equilibrium value. It is the
preéence of this non-zero equilibriuﬁ value that intfoduces
complications in the superconducting regime. . The order parameter
can be decomposed into the equilibrium part, Y., and two non-
equilibrium parts, the real (longitudinélj part, ¢, and the

imaginary (transverse) part, ¢.
Rl TR
Putting this into the free energy formula, multiplying out and

then only keeping terms of second order in the fluctuations,

yields the following formula for the free energy

Fg-Fy = JAVE % o v2-2alv]? + 5o ()7 + (7932))

The Fourier transform of the free energy is

- = L v 2 h?
Fg - Fy 0 Vv, "+ Vorw

i{(g—j— +k2) 9y (812 + k2w, (0) )

2 . ' .
where below Tc’ £ = _h” -The mean square fluctuations are-
2m(-a) '
m*k T 2
<Iwk(0)l2> = B E
: K2V 2+k2E2
m*k,T
B 1
<[4 (0) 2> = = =
k K2V k2




-31-

The Ginsburg-Landau theory also provides a formula connect-.

ing the current to the order parameter.

Fo,t) = R prx, ) velx,t) - TeE(x,t) p(x,t))

© o 2m*1

The mean square fluctuations calculated above are not sufficient

to give even the dc cOnductivity; It is necessary to average

over all time differences between the current densities. For

this, an equation describing the time evolution of the fluctuations
is required. This is the time dependent Ginsburg-Landéu

equation. This equation has been discussed by Abrahams and
Tsuento,*! Caroli a_r_ld"l\(laki,"2 and Schmid.*® The form that will

be used here is

. - ) 2
2 00,0 = g (9 1+ E ek 2,

One should note that this resembles the Schroedinger equation.

The .arguments and results of the calculation are different

transition temperature. It will be done first for above the
transition temperature and then the deviations for below the

in details depending on whether the system is above or below its -
|
transition will be discussed. 1

S. Fluctuations Above the Transition.

Above TC the time dependent equation becomes, ignoring

the fourth order term

5 8kBT' T-T; | o pn
3—1—: Y_(X,t) = - ™ ( TC )(l'g v )_‘P_(x)t)

If we substitute for w(i,t).its Fcurier transform
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b = g bo(ey o KX
N 8kyT T-T
o) = - 2= (=5 @+ £%3) yy(t)
c
| 8kgT T-T,
- ~—— () (1+£7k*) t
and wi(t) = w;(O) e e

This gives the time dependence. It is convenient to define a

- characteristic frequency or effective relaxation rate of the

16kBT T-TC

= ( )
-
F m T,

fluctuations as

we. = L
F T

It is this frequency that the far infrared measurements are

designed to check. The%
. . U)F 2
-——(1+£%k?)
vy () = wﬁ(o) e

‘The next step is to substitute into the éurrent.equation the
Fourier transfdrms.' For the current use

J(g,t) = fd’x J(x,t) e §‘§
Shortly the 10ng~Wave1ength limit (9%0) will be taken. The

equation for the current becomes

L > . -3i(k-
> o %
J(g,t) o s dxe igex gy v R(E) g () e (ik'+ik)
O,k | |
Next,Aexchanging the integral and summation and doing the volume

integral yields a Kroeniker delta, 6+ i' times the volume V.

Doing the sum of k' then" gives, lettlng 2K+q+f or k-k- %

oW
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- Sy AR EYORTRYG

Wit ' > >
_;_A(z + 52(f+%)2-+ gz(f-%)Z) wif% (0) ¢E+§(O)

9%2 \ % ke
where the soiution of the time dependent equation has been
substituted. | .

At this point an expression relating the current to the
conductivity is required. It is necessary to average ovér all
time differences between the current densities, i.e. to use
the current-current correlation_funétion. A form of time
dependent perturbation theory called time dependent linear
response theory can be used to connéct the current-current
correlation function to the conductivity. This is worked out

in Appendix C, or see the article by Martin**, and the result

is K |

" 9l =,}% (1-e K% \l,g‘” dt cos wt fJu(i,t) J,(-9,0)>
Ko | |

S 2 =,ﬁ—£ (1-e XFy %6“ dt sin wt <Ju(§,t) J,(-4,0)>

where o7 is the real part of the conductivity and g, is the

imaginary part. The.indices’u and v refer to the spatial

coordinate directions of the conductivity tensor. ' The
subscript on the correlation function means that the function
l is calculated using the wave functions of the unperturbed
~system. This is the central result of the linear response

} theory: the response of the system to an external perturbation
.depends only on the properties of the unperturbed systen.
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Now
/ -wpt(1+82 (k2+99)

<J,(g,t) J,(-q,0)>, ( ) Vzﬁzji'k“k"’e x

X <pR(0) (0) WA(0) w(0)> -

.9 ' .
k-3 k+% k'+% k' %

The expectation value may be written in the mean field

approximation

(0) v, 2(0) v 2(0) v, (01> = <y

* *

<P, > >
- 9 1.9 -
S L A i k-4

(0) ¥, 2(0)>, x

q
i"f :

®
3O 4 30

The mean field approximation is valid if the fluctuations do

not interact with each other. Then those responding to -% are
independent of those respdnding to % and the decomposition may

be made as indicated. Now the wave vector of the electromagnetic
radiation, ﬁ, is much smaller than that of the electrons, .

It has served its purpose and may be conveniently set to

zero at this point. Then

. . ' - 2472 'wFT(lfgzkz)
<Ju(0,t) Jv(0’0)>o ( ) \' Tzz’:i’kuk\') e ”

Wz (0) g, (03> <vp(0) wpy (03>,

but <¢+¢% > 8 <|y '23 so the k' sum can be done immediately
, L _

LE %

@l
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‘and s . ot (1+E2k?)
<3,(0,8) J (0,0)> = (&%) v ; kkpe © IOIEN
From above .

<'Wﬁ(0)|2>o = . kBT £’

V,hz 1+g2k2.

~ The conversion of ¢ to a scalar requires an angular average

uv |
which depends on the number of dimensions, n. The result is

o] = l g d
n

uv v

The real part of the conductivity is now, with e* = 2e

Aw
2 - .
_ 2e2 (gD R A L _wgt (142K2)
0'1((1)) = ('%) Ro (l e ) v % mg dt cos wt e '
:g&_
_ me? c B B', n k?¢ :
010 =g (o) ppm (e ) g B — 1 ‘
c (1+£2k2) ((1+82Kk?) 2 + 2=
w 2
F
The imaginary part of the conductivity is
_ Aw S
w = 2 Y80 BT, etk ey "opt (1+6°%%)
0,(w) = : N T - n _— t sin wt e
2 -% w € V% (1+£2k2)2 0
‘ ‘ Aw . '
_Te ¢ Te ) kgT (1- kgT ®w k2g?
T OT-T. Hw © g V . , 2
((1+£2k?) 2 ((1+£2Kk?) 2+=2)
0 Ao ' F
k,T kK, T

B ) this is the same

With the exception of the term :%U(l-é
result for oy that Schmidt obtains. At low frequencies,

'ﬁm<<kBT, this term reduces to unity. Notice that the complex
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conductivity can be written

T. . kgT KT 4

0 = 0y- 0y fﬁ‘(T T =T) 7%‘_(1'6

This is similar to the Drude form.

k2g'+

o

9
1+1wT

V¥ ek ((1+E2k2)+i=2)
F

)

The above equations must now be evaluated for various

dimensionalities of interest. In the case of this work this is

for two dimensions and zero dimensions. .

the other dimensions are given by Schmidt.

In two dimensions (thin film)

2 . - -}

VT k, A (2m)? md -k,
27 47 67

Now, kz = 0,—34—3,—3... If d<<& then only the kz

i) x=k
! xak X7kE

EZ

The comnductivities for

Z fwxdx

(o}

0 wave

vector of the fluctuations will be excited since the maximum

Fourier component of the fluctuations has k~

%3, . Thus the

only term in the k sum which contributes and the only one

Wthh gives a singular result has kz

0.

x3dx

2
(1+x2) ((1+x2)? +5—)
- F

k T T
0, (w) = c—T—) T(l e 0 7
o]
. T kT K_T W
e’ < B (1-e ) —E (m-2tan’

® Terd (TT.) o

w
5

. E zn(1+—))

éf
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_ o
o) St (S B (16 By w ST x3dx
2 -(ﬁla T‘TC "ﬁm wF fo) . \
(1+x2)2((1+x2)2 +2)
w 2
F
B B -1
- 1gﬁd (T-§ ) =) (1-e 7 ) —g (-2+n—§ -2 —% tan —£+2n(1+9_2))

c Wg

At low frequencies, W<<wp, these become

. 2 2
oy (w) wgd ( T.(-:T ) (1'% _wZ)
C (L)F

_ e? c w
0,(w) = TeRa (T-T‘C) oy

while at high frequencies, fw>>kT, they both are zero. The dc
conductivity of the film calculated by this method is the same
as the formula discovered by Aslamazov and Larkin from
microscopic considerations,
2 T A
g =& (—m)
DC 16Td T-_TC

As T approaches Tc-ffom abovesit and the low frequency

conductivity increase proportional to (T_% ) while the

. T-T
roll-off frequency, Wg s decreases as (eTZE). ‘The integrated

area under the conductivity curve, then, remains roughly
constant as the temperature is varied. The imaginary part

of the conductivity is zero at zero frequency, has a peak

.t
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‘near wp and then-decays to zero at high frequencies. Fig. 6
is a picture of these conductivities versus frequency for one
of the films.

In zero dimensions one obtains the result that in first

order there is no conductivity. For, if one takes kz = kx =‘ky =
o, = 0 ' '
g, = 0.
™

In second order take k = ) where D is the diameter of the
particle, n = 3 since all three dimensions are the same, and

V = ZD® to find

6 .
_ o .
op - et Tc KT (i_eEBT) m2g* 1
2AD ‘T-T “hw 4
C D 272 2,2 2
(1+I1°8%) ((1+785 4 &
2 2 ) 2
F
. 3
but §>>1
‘ _hw
5. = Je? ( Te ) kgT (l_eEBT) D2 1
1 gy TT" T g2
1 . w2D|0
‘ ﬂumngu
Similarly, <
o, = 22 e ) kpT (l_eEBT) w  m2g 1
2 fﬁ T-T THw 4 .
c F D m2E?2 m2E2. 2 2
(1+ —=)2((1+ )+ )
na2 - D wFZ
, _ o
R LIPS | (1_eEBT) wD* 1
2n%*AD L 1c" THw 7 Wg g w2D*
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. T L
Now, & = Eo(_f%_) and this just cancels the other factors
c

o\

T

T-T l‘l6kBT.TrT
C

. c ) _
( T ) everywhere since wg = —= (-T¢ ). Then

‘Hw

o v
1 e g 2

2
16wk T) £ u
0

Dl}

.EOL,

‘Hw 2
1+(16kaT)

At low frequencies, Tw<<kgT,

_ 9e% - D2 (1;( 1w D?

(o}
1 2 2
27*hD 50 16ﬁkBT£0

)?)

9e? D* | -Hw

72" RNy

327 3RD go“

y
0

D'+

_ 9(162)e2(kBT ' Eoz.

: ()0 2o
1 op2gp , O 7 p2
5. = 9 (16) 2e2 kgT
2 = 327RD =

of

The result is that fluctuation conductivities (in this model)

of small particles are small and almost independent of

temperature.
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6. Fluctuatlons Below the Transition.

. The above results are, as mentioned, only valid for
temperatures above the transition temperature. They must
be modified to calculate the extra conductivity below TC |
In’this'region there are fluctuations which cause an increase
in'the conductivitytat finite frequencies above that dﬁe to
the quasiparticles (e.g. above the BCS value). This extra
conductivity dies out as the sYstem is cooled away from the
tran51t10n and the superconductivity becomes more stable.

At the tran51t10n it should join smoothly with the results
calculated above TC

. Recall
8kBT(T-TC)

3 > _ . B 2
= V(x,t)= - {1+ 2|y
ot v T, a

with y = Qo + P + i¢ .
Upon substituting for y this can be separated into two

relaxation equations

+ . 1 :
T V(x, 1) = () (28202 hy (R, 1)
c : ,
3 8kgT T_-T
3‘%’ ¢(X,t) = T ( T )E v ¢(X t)
. : c
' X 2 . . _ . :
where &° = mi-a) ° Now, inserting the Fourier transforms of
Y and ¢ and solv1ng |
wF
x(k,0) = y(k,00e 7 (246%2)
‘ wFt _

V&(i,t) = o (%, 0) e 2 g2x?
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where, below.Tc,

16kBT T.-T
wp = (——)
F mh T
- c
is the negative of wg above Tc' (Both, fhen, are positive.)

The next step is to insert this into the current equation, which
operation produces

@0 = £y, w@ ) + 1@t -y -q,1) + ie*( -4,1))

>

1) =i ¢*ci-%,t))cw(i+§) + i ¢ci+§))

INTE 2%

+» &Y g K (k-

If the current-current correlation function is calculated:

and Fourier transformed as before, the conductivities are found

to be
_ T
dre? ' 2 T kBT EBT 2
op(W) = Ty $(W) + T (=) o (e ) X
Xz 1+k?g?
(2+k2E2) ((1+k2E2)2+2)
W 2
F
: _ huw ‘
_ 4e? 1 me? , To | kT 15BT ng2
o,(w) = =¥, 5t =R (TC-T) s (17 ) ‘v“a?i;x
XTI 1
k

(2 ER) ((HRPEDE + )

The first term in each of these is just the London form for the
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conductivity of a sqpercdnducto;: the real part is infinite at
w = 0 (an infinite dc conductiVity) and zero everywhere else

- and the imaginary part goes as 1/w. The second terms are the
conductivities due to superconducting fluctuations and are the
ones bf_intefést here. The London terms will be replaced by
the correct - bulk conductivities’from the BCS theory of super-

conductivity when they are needed.

Then the extra conductivity due to superconducting fluctuations

is given in the second term of the equation above. In the usual
way the sums are. evaluated by replacing them with integrals in
those directiqns in_which~the sample dimensipns are much larger
than the coherence 1ength and the k = 0 term is taken in the
other directions.

- The formulae are, for thin films

_ “Tw _u__)_ ‘
= e? Tc kBT IEBT We -1 Yg We , w2,
% = tend T pll-e ) 2(vr-Z tan” — - — nk(1+-22))
c w N
. ' 1+ 2 -
W
-iﬁ@
kpT T , on .
= = < B -e B 1 -1 FLw o, o W
02 T 16 (TC-T) =5(1-e 7 ) (r-2 tan .73+E_£n5(1+w 2))
| 1 4 92 F
YF

These have similar'form_as abbve'TC. Fig. 7 is a picture of the
conductivities beIOW'TC. |

For small particles



1+ 9
2
Wg
_ Ao _w
9¢2£2(0) , Tc .,XBT kpT WF
92 © T (1-e =) ——=
4 D3 c Ao 1+ w?
o

This is quite different than above Tc' Here the éonductivities
increase as (TC—T)'2 as the transition is approached.
7. Discussion of the Calculations.

Figures 6 and\7 shdw the behavior of the conductivities
above and below TC respectively for one of the films. AboveATC,
- the real part is-equal‘to the dc conducfivity at zero frequency
and falls off to the normal state conductivity at high frequencies.
The imaéinary part is zero at zero frequency, rises to a peak and
then falls off. Notice that the peak frequency is around.twice
W - The characteristic frequency W isAindicated by a cross mark
_ oﬁ each of the curves.

Below TC the real part.looks like the real part above TC very
near the transition and then goes over to the Mattis-Bardeen form
as the temperature is decreased. There is litfle'temperature
dependence at low .frequency. . The imaginary part has the 1/w form
with little temperature dependehce near Tc’ beginning to grow as
the temperature fallé. | | |

The results obtained here, both for temperathre above and

~below the transition are the same as those obtained by Schmidt




Frequency (GHz)

O 200 400 600 O 200 400 600
1 1 ] | { 1 _l { { I ) I | ' l-. . I
| Pb3 < ‘ Pb3 .
1.8} R2=16000 O8[ RC=16008 y
T = N N |
ATTT020 L ot DT
W07 |
2
Q 1.6 bz 06
L) N,
- 5
; . :
1.4 s 04 IS
re] Q.
© >
‘ £
o
|.2 _E_ 0.2

0 20 0 0 20
- Frequency (cm™h) |

Fig. 6. Real and imaginary parts of the conductivity of a film above the transition temperature.
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if the frequencies are restricted to low enough values that

_Hw
kT kgT
5 (e 0 )= 1

ThlS factor forces the extra conduct1v1t1es to fall off to zero
faster at high frequenc1es (by a factor of 1/w) than do Schmidt s
results. |

There are some problems w1th this theory - It does not in
general obey the Ferrell Glover 5 .sum rule on the'real part of
the conductivity (although the two'dimensional case comes close
to obeying it). In addition, in the very clean limit (long
relaxation time) it does not give the correct results. If the.
relaxation time for collisions were longer than the decay time
of ‘the fluctuations then the ourrent from the flnctuating regions:
should continue on in the normal metal for a time oomparable to
the relaxation time. Considerations of momentum coneervation in
the clean 1limit by Eilenberger“® led to his calculating that the
complex conductivity in the normal state should be multiplied by
-a.factor 1+ imfr)"2 where T is the relaxation time due to

collisions of the normal electrons.

This theory also becomes invalid very close to the transition

.temperature where it gives an arbitrary large value for the
. N T
conductivities at finite temperatures. The»factor'(T_% ) ‘goes to
: . c

infinity at Tc‘ Patton"‘7 has developed a microscopic theory of

fluctuations which can be used right through the transition. In
T

: hls theory To TC is replaced. everywhere that 1t appears by n, where

n is the solution of a nonlinear equation which varies according

(73
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to the dimensionality of the sample. These are in two dimensions

T

2
A N nc(ln %ﬁ 1) n, = 7/8 p(3) .

c 4m3N_£2(0)dk,T

o 7B
and in zero dimensions -
)
n
e n WZNOQ kpT
where ;
g02= mh ,p(3) = 1.202 (Riemann Zeta . Function)
16Noe2kBT

For n>n_, these equations all become

T T-T.
n = n TZ -+ Tc fo? T—TC.<<TC

At T = TC the function n(T) is non-zero so the conductivities
do not diverge at the transition. The width of the critical

region is defined by Ne- In two dimensions it reduces to

4.16e2 1 .043e? o -5,-100
n. = = Ry = 1.0 x 10 '@ R

slightly smaller than T, in the Aslamazov-Larkin formula

8. General Properties of the Films.

For the purpose of this experiment measurements were made on

seven lead films and one blank substrate. The films were produced

two by two in the evaporator insert and helium-three cooled
detector system described in Chapter II. The films have been

numbered Pb 1 through Pb 7. For the first six films, Pb 1




-48-

through Pb 6, the basket in the evaporator was chargea with an
alloy of lead (Cominco 99.999%) with 4 At. % bismuth (Cominco
99.9999%). The purpose of the bismuth was to decrease the normal
state conductivity. This waé felt to be unnecessary so Pb 7 was
made frbmlthe'pure lead alone.

Various parameters-useful in discussing the films are displayed
in Table I. The temperature at which the films were deposited is
shown in the first line. This is also the highest temperature to
which the films were submitted ﬁntil the end of the measurements
and so indicates the state of annealing of the films. As the
experiments progressed and the experimenter became more adept at
the use of the apparatus this temperature wandered around; It
was always less than 50° K. The major anneal in an amorphous
film should occur near the Debye temperature which in lead is 96° K.
In fact there is a big change in resistance in these films between
80° X and 100° K. Most of the films became discontinuous at these
témperatures ahd all increased their resistance.. Strongin et al*®
have measured the resistance of several lead films on different
substrates and find that some annealing begins even at 7° K, the
transitidn temperature and continues as the temperature is
increased. By evaporating the films at a higher temperature than
ever reached during repeated passe§ through the transition region .
any problems due to changiﬁg residual resistance during the
experiment were avoided. At the end of the infrared experiments
the resistance was generally measured as the films were warmed
up to nitrogen temperaturés.‘ The resistance would increase

slightly, indicating that there was no major annealing going on.

N



Film number

Deposition
temperature

Evaporation
time

Evaporation
pressure

DC Square
resistance

FIR sheet
resistance

FIR Trans-
mission |

Thickness

Transition
temperature

Aslamazov
Larkin
parameter

Patton
parameter

Critical
width

min

Table 1

Various Film Parameters

1 2 3 4 5
15 20 . 40 50 | 26
1% 5 3 3 2
1x10-© 1x10-© 9x10~7 2x10-° 7x10-7
442 100 5470 22,100 3010
300 80 1600 -- 8zd
5 1 88 1.0 76
22 44 .10 -- 14
6.92 -- 6.423 6.64 6.914
-- -- .98x107 -- .96x10"S
-- -- .62x107° -~ .60x10°°
- -- . 100 -

.054

7x10° 7

910

440

6 7
30 25
3 3
3x10-°€
1430
-~
1100  ©
.61 .81
.20 12,7
6.844 = 6.660
.89x10-5 ,89x10°°
.54x10° % .54x10°©
. 026 .064



-50-
The next two rows give the tiﬁe'that the evaporation took
and the pressure at the beginning of the evaporation.  This
pressure was measured4by.the ionization gauge at fhe top of'
the evaporafor.
The square or sheet resistance-in the normal state is the
major parameter of the films. . It is given in the next two rows

of the table. . The dc square resistance is just

o_ 1 _ W
Ry = o Ry T

where 9 is the zero frequency electrical conductivity of the

film RN the measured residual resistance and d, L, and w are

its thickness, length, and width respectively. The conductivity
~and thickness are not easy to measure in independent ways.for a
thin sample but the square resistance'can be gotten by.multiplying

the measured residual resistance by the ratio of width to length.

Another and perhaps more reliable measure of the square resistance

can come from comparing the infrared transmission of the films
to that of a blank substrate. - The fdrmulaS'for calculating this
are given in Appendix B, section 5. The transmission versusuRg
is shown in Fig. B6. The infrared measure of RS is equal to the
dc value when wt<<l, This is surely the case for these very thin
films. The far infrared transmission ratios from which the square
resistances were calculated are shown in the next row.
Inspection‘of Table 1 shows that the far infrared values for

Ra are ‘in some cases almost a factor of four smaller than the dc

N .
values, the deviations being the largest in the thinner films. I

would like now to argue‘that the far infrared value is by far
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the more accurate. In the first place the geometry of the film,’

as shown in Figure 8 at right,

. erent
was far from ideal. It was F°+9Wh°‘ contact
o oon{'ad—
‘wider than it was.long and ) oceo of

] in$rarced
it had curved sides whose rachction
contribution to the conduc- & ovrea of

e o £
tivity is hard to estimdte. N e
. S~ " curren
: contace

Any decrease in the effective

width of the film would lower

its square resistance. Secondly, Figure 8. Film Geometry:

the far infrared radiation tends to average over point imperfections
in the film. The infrared radiation measures the average conduct-

ivity in an area approximately the wavelength squared.. Because of

Similarly, it is insensitive to a few scratches in the substrate

which, if across the film, would seriously affect the dc resistance.

The thickness can be estimated in two ways.'® For a very

S0

this it is insensitive to small holes or cracks in the film.

‘thin film one would expect the mean free path to be
\
|
|

8

2=-§d

assuming diffuse scattering at the surface. Then the conductivity

is ,
: 8ne<“d
0:_____
V3mVF

and ‘the square resistance is

3mVF

8ne?d? _
mVF
" values for — have been published by Cody and Miller>®' (for lead
ne

.U_.
RN =,
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11

— = 1.5x10" Q cm?) so the thickness can be calculated from

o
RN.

A check on this can be obtained for those films that exhibit
temperature dependence in the resistance between the lowest

temperatures and liquid nitrogen temperature. Then

RImM - rP= oM 3

where p(T) is the bulk resistivity at fhe temperature T. In the
case of Pb 7, the second value given for the thickness came from
this calculation. For the others only the first estimate was
available.

The last four items in the table, transition temperature,
Aslamazov-Larkin parameter critical width, and Patton parameter
were obtained from analysis of the dc resistive transition as-
.discussed in the next section. _

Four of the films, Pb 3, Pb 5, Pb 6, and Pb 7, produced
successful simultaneous measureﬁents of far infrared transmission
in the fluctuation region, dc resistance, and temperature. Thé
experiments on three of the films were unsuccessful for various
reasons: The detector system was unacceptably noisy during the
run on Pb 1 and Pb 2. In addition, Pb 2 was quite thick so that
its transmission was too low. Pb 4, on the other hand, was too
thin; it was almost perfectly transparent. Qualitative fluétuation
-effects were observed in both Pb 1 and Pb.45 but a detailed
coﬁparison with theory was not made. The films-which did‘not

produce successful fluctuation measurements are included in this
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section for the sake of completeness; they will not be mentioned

again.

9. The DC Conductivity.

In Fig. 9 is plotted the resistivitf ratio; ﬁ% , of the films
versus temperature. As can be seen,.the resistive transition is
broad; the films exhibit considerable extra conductivity; and there
is something of a tail in the resistance below the transition. It
is the presence of this tail (whether a real or bogus phenomenon)
that makes determination of the transition temperature difficult.
Not immediately evident from the figure, but true nonetheless, is -

that the- transition is narrower by about 40% in all of these films

than would be predicted by the Aslamazov-Larkin formula

R... T : '
N'_ o _ To C . _ e _ -5 o= 1 _
R a“‘” =1+ q_’c'f]I ‘(T_—TZ) » To T T6R 1.5x10 Q ,E;_EI” - RN

It is thus necessary to determine an eﬁpirical value for the
constant Tb'applicable toithese films. This requires the “
extraction of two parametefs (Té and ro) from one set of data.
Here is how it is done. By eye the dc resistance is extrapolated
to zero according to R~(T—TC). This eliminates the tail and
gives a first estimate for Tc‘ Using this TC the constant Tt

is calculated for each of the resistance points. This gives

‘several values for t.. Those for temperatures rather far from

o
TC are the least sensitive to variations in it and their average

is used to calculate a new value for T.. Continuing the
process, requiring both reasonableness and consistency in the

results quickly leads to good estimates in both TC and Ty These
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Fig. 9. 'Resistive Transition of the films.
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are given in the ninth énd tenth rows of the table. The final
value for TC was between 1 and 30 millidegrees K below the first
graphical estimate, not a majorAchange; All of the films had
values for Toiwithin 5% of the average .93 x 10‘5;

In Fig. 10, then, is plotted the conductivify ratio, %— R

versus distance from the transition, T-Tc'. The solid line shows

the calculated conductivity from the Aslamazov-Larkin formula

(using the smaller value of TO). The dotted line shows the result
T-T
of replacing TC in this equation by Patton's n. The value for
C

n. that was necessary to fit the data was in all cases .06T0.

This is shown in the eleventh row of the table. This-is an

order of magnitude less than calculated above but using the 1argef
value produced far too small a value for the conductivity fatio
(less than one at TC) in all of the films. It should be emphasized
that n is never zero at finite temperatures. Hence the conductivity
in the films due to fluctuations is never infinite.

There is an unfortunafe'amounf of scatter in the conductivity
points but it appears'that Patton's expression gives a better fit
to the data. Most of the errors in the data are due to uncertain-
ties in measuring the temperaﬁure. Temperature errors are always
.01° K. In the case of Pb 6fthey are larger than .this Because
the substrate was'pborly anchored to the copper bldck on which
was mounted_the heater and thermometers. This weak thermal
connection allowed the film temperature to drift somewhat as the
~infrared radiation heated it and the exchange gas coupling to

the 4.20 helium bath cooled it. This thermal contact was a

S
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The total conductivity of the films versus temperature.
The temperature is measured from ‘the transition temperature

the
dashed line is from Patton’s theory '
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somewhat smaller problem in the case of Pb 3 and Pb 6 and was
no problem at all in the case of Pb 7. At the bottom of the

table is the critical width. This is AT = TOR£7

Tc

All of the dc resistance measurements were made using the
standard four probe techniques. The current was provided by
dry cells and measured as a voltage across an external precision.
resistor having a resistance near that of the film. The voltages

were all measured on a Rubicon portable potentiometer. The

current used was typically 4 microamperes.

10. Far Infrared Transmission Data.

In the next several figures are presented the results of the
far infrared measurements. The data are presented in two ways:
as transmission ratio versus ffequency at a given temperature or
as transmission ratio versus témperature at a given frequency. In
the first case the various temperatures are the experimental
temperatures; in the second the frequencies are chosen at even
intervals. The measurements were, of course, all made as a
function of frequency at constant temperature using the far infrared
techniques déscribed'in'Chapter II. The interferograms ‘were all
of low resolution and as many as twelve of them were averaged to
“produce one spectrum.' | |

The foliowing system was used to take the data. After the
evaporation (see Chapter II) the films were cooled to 4.2° x by
adding exchange gas to‘the'evéporator section. After a couple of

interferograms had been recorded at this temperature, the samples
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were warmed up through the transition to around 9.5° K, where three
or four normal state runs were made. Then the temperature was
reduced until the film resistance began to drop and the first
fluctuation rééime data were taken. The temperature was gradually
reduced through the transition, with three interferograms |
taken at each temperature. Between five and  ten temperafure points
were taken for each film. The temﬁerature was controlled by an .
Artronix temperature controller which has the capability of
maintaining the temperéture within 20 millidegrees during the

time it took to do the interferogran. The film resistance was
monitored constantly throughout the run and fine adjustments to

the temperature controller were made manually to maintain the
resistance at the desired value. The film resistance is a very
sensitive thermometer in the transition region. In this way

the d;ift while an interferrogram was faken could be held to

+.005° k. After the lowest desired temperature had been done

the temperature was raised to the normal state value again and
three. or four interferograms were recorded. From there the
temperature was lowered to the lowest value and the transition
region gone through in the increasing temperature direction with
the film resistance used to regain the-desired temperature. Next
came the normal state measurements again and ﬁhen, if time permifted,'
came anqther pass through the transition. The last interferograms
" were always faken at the normal state temperature. After the
_measurements were made on one film, the other film was fotated

into the beam and the outer liquid helium container (the 4.2° bath)
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was refilled. The entire sequence was répeated on the second film.
In all of the figures the vertical axis is the transmission

Bl

ratio, Efg and the horizontal axis is either thleréquency

(in cm‘llalong the bottom and hertz along the top) or temperature
difference, T-TC, (in OK). The experimental data are shown as
points and the theoretical curves as solid lines. Now, the
transmission curves have all been shifted vertiéally so és to
separate them; the places where the experimental curves all cross
one are indicated by the figures 1 on the left-hand side of the
plots and also by the dashed horizontal line on each side of the
data. On the left hand.side is-a scale or sort of ruler which

" shows the magnitude of the changes in the transmission.- Each

division corresponds to a one percent change in the transmission.

In all of the plots of ;%E versus frequency the theoretical
> T N

~curves have been slid upwards by a small amount in order to make
thém fall aiong the experimental points. By fall along I ﬁean
fit with the experimental points in the six to eight wave number
range. The theoretical curves never cross one for T>TC while the
experimental curves all do. The amount of ‘the required upward
shift varies with temperature, beihg .6% at the high temperatures
and 1.4% at the low temperatures.

There are error bars on representative points in all of the
_figures; These are calculated from the standard deviation of.the
spectrum and the value of the spectrum at the given frequency.

Because of the low pass filter used to give a‘high‘frequency
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.cutoff, the last few points:of the spectrum are always nearly
zero and their standard deviation can be computed to give a
measure of the noise.

The conductivities used to calculate the theoretical cuses
are found by adding~the two dimensional fluctuation conductivities
calculated above and: the approprlate regular conductivity: the

normal conduct1v1ty o4 above the transition and the BCS

N?
conductivity, o1 * 0y, below it.  As discussed in Appendix B
the normal state conductivity has a real part équal to the dc .
conductivity and an iﬁaginary»part'equai to zero. The super-
conducting state conductivity can be calculated from'the tables
published by Miller.52 These give the conductivities, ;% and ;ﬁ,
‘as a function of frequency. For the four highest temperatures,
these conductivities are shown plotted in Figures Bl and BZ.V From
these, plots of conductivities versus temperature for integer
wave number were prepared and the numbers for.calculating the
total conductivities were taken from these  curves.

The formulae used to calculate these curves aré listed below.

The total conductivities for T>TC are

Hw

o T, kT kT oy Wy wp
1 B B F -1 F F
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The transmission and reflection of the film (the first surface

coefficients) are

S 4n
1
(n+1+Z o7d)? + (Zoold)2

R, - ol 20 D)7+ (Zo%pd)”
(n+1 + 20014)2+.(ZO 0,d) 2

The transmission and reflection coefficients of the rear surface

are _ 4n
3=
2 (n+1)?2
- (n-152
Gk2 = &7
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The transmission of the entire substrate assembly is

A T1 %92

G\o

where n is the index of refraction of the quartz (n= 2.11), z,

is the impedance of free space'(z0 = 377Q) and

16kBT T-TC

- ™ TC c
wp={. ~
‘16kBT T -T
T™h T T<Tb

The theoretical curves were generated frdm these equations usihg
a simple BASIC language program 6n a PDP 11 computer..

. . Figure 11 presents the results for Pb 3 as a function of
frequency. Pb 3 was the-thinnest film (R§'=‘16009) and had the
most different temperatures. With the exception of the upward
shift, there has been no fitting of the data. The values of
%o and TC used are those from the dc resistance meésurements.
The fit between the experimentai ﬁointé and the theoreticai
calculations 1is close to within the noise.

The‘four.curves that extend to higher frequencies are the
resuit of overlapping measurements with three different high
frequency limits or cutoffs, taking the average in the overlap

1 .
The numerical

region. The cutoffs were 50, 21, and 14 cm”
values of the transmission ratios differed by no more than .2%
in the overlap region. The 21 cm” ! cutoff runs were used as a

standard and the others were fitted to them. The curves that
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stop at the lower frequencies were measured only with the 21
cm~! cutoff.

' Figu}e 12 shows the transmission data for the same film
plotted against T-T.. The redder should first direct his
attention to the lowest curve. This shows the transmission at
12 cm~'. The experimental points are taken unchanged from the
transmission'déta'in Figure 11. As can be seen there is some
scatter, but the priméry feature is a gradual decline in
transmission aé the temperature is incréased. To eliminate this

shift in baseline, all of the high frequency ends of the data were
set to the theoretical value at 12 cm~' for the appropriate
tempérafure. Then the points‘at the other frequencies are

1

calculated using this value of the 12 cm™ ° transmission ratio.

That is, the pointé at the other frequencies are found by
'subtracting from their value in Figure 11 their value at 12 cm !

and then adding -the theoretical value at 12 cm !

T @D g TP,D gy Paz ey o7 012 cn”!,T)
Int _ TN TN TN

This is equivaleﬁﬁfto a reno?mgliza;ion of the normal state

transmission data. It appears,from all this that either the

detector sensifiﬁity-or the transmissioh'df the sample assembly

is affected by near 1%/9K,’by changing the sample temperature.
After this‘cbrrection, the agreement between the experimental

poin%s-aqqxthe theoretical line is adequate (*1.2%) above Tc

if not as.satisfying as in the plotsAof transmisSion(ratio versus

frequency. The reason for this is that in the former the data
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points are from a single intensity ratio, whereas in the latter
they are each from a different one. In general, the larger‘
deviations appear at the same temperature difference, and are
probably systeﬁatic on the normalization. The spike at TC is
'a breakdown of the theory and should be ignored. |

The next three figures, Figures 13, 14 and 15, show the
transmission data for the other films, Pb 5, Pb 6, and Pb 7
respectively. In Pb 5 all of the runs were made at .temperatures
above the transition temperatﬁre and with an 18 cm ! high
freqdency cutoff. Pb 6 was the thickest film on which data were
taken. All of the temperatures were above TC again although
" the error in the lowest temperatﬁfe Tun (T-TC = .001° K) is
.005° K at least. It could be either above or below Tc' Both
18 cm~ ! and 66 cm ' cutoff runs were made. . Pb 7 was the only
all lead film. There was no bismuth in the evaporant. One of
the interferogréms was recorded for temperaﬁﬁres>below T. aﬁd

both 16 and 40 cm = cutoffs were used.

11. Discussion of the Data.

There are some seven questions about these experiments
which might be raised at this point. I will discuss them one
at a time. |

- Why are the eﬁperimental points invariably higher than
the_theoretical‘curves and is this serious?

There are three possibilities why this mighf occur. The
Ferrell-Glover*® sum rule,; which requires that the integral
over all frequency of the real part of the conductivity be

independent of the phase transition, is not satisfied by the
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conductivities used here. The area uﬁdef'the conductivity curve -
grdws as the transition is approached and then drops again below
it. -(See Figures 6-and 7) The easiest way to fix this up would
'be to have the conductivity ratio drop to slightly below one .

and then rise slowly back to one. If this happened the transmission
ratios would be greater than one. Anothér possibility is that

the normal state transmission as measured at 9.5° K is not the
same as that at the transition temperature (determined, say, by
applying a magnetic field). If‘the conductivity were to increase
slightly upon reducing the temperature the normal state trans-
mission would be lowéred. The other possibility is thét when

fhe sample is wérmed up the detector is also warmed up. _This
would rgduce its sensitivity and thereby reduce the measured
normal state transmission value. The first of these three
possibilitiés is.serious, but the others are not, merely requiring
a renormalization of the normal state transmission data.

How are the results affected by changes in the magnitude
of wF,?

The principal object of these experiments has been a measure-
ment of the freqﬁency depéndence of the fluctuations, to see if the
description given by the time dependent Ginsburg-Landau equation
'is applicable. This equation is not on as good a footing as the
rest of the Ginsburg-Landau theory. Most of the frequency dependence

in the conductivities depends on WEs the relaxation rate in

this equation.
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- 16kgT - [T-T ]
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C

An attempt was made to fit the measured transmission data for Pb 3,

above Tc’ with w, replaced by 1.5 Wg and by .6wp. In neither case

F
did the resultant transmissiqn curves agree with the data as well
as those calculated using Wg . The discrepancy was largest at the
temperatures closest to Tc' For the larger value of Wg the
transmission curve was too steep and too small at low frequencies,
and the frequency where it had its greatest curvature was at too
high a frequency. The lower value produced deviations in the other
direction. From these considerations wg must be within 20% of

the nominal value.

What is the effect of o, above Tc?

2
Schmidt does nof calculate g, for the case of T>TC and the
data of Lehoczky and Briscoe do not require any such term. On
the éther hand the Kramers Kronig transforms do. The effect of
including it in the calculation of the transmission ratios is to
depress the curve somewhat at frequencies near the peak in Ty
around Wg s and at higher frequencies. This increases the curvature
in the vicinity of Wg and fléttens the curves above it. In order
to fit the far infrared measurements, oz'must be included in fhe.
transmission ratio calculation.
_ A
k,T kT

Is the term e Fl-e ) necessary?

This factor in the conductivities 1s a result of the time
dependent perturbation theory used to calculate the conductivities.

For Hw>>kT it falls off as 1/w.. If T = 6.5°K, the turnover

: . 1 ' ‘
frequency is 4.5 cm . Measurements made below this frequency
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would not show any need for this term. Above this frequehcy it
is quité important. It forces the conductivities to zero faster
than theyAwould otherwise:-go. The'tranémissionbratios then rise
to one and flatten out faster than they otherwise would. This is
required by the data.

What is the behavior in the critical region?

The critiéal region is defined as-

AT = TRy TC
In this temperature distance from the transition temperature at'
least half of the conductivity.is due to fluctuations so that the
volume of the.fluctuations is 1argeAand they should be intéracting
with each other. THe simple theory is expected to break down.
However film Pb 3 has three of the spectra above Tctand two below
in this critical region (,1°.K wide).. The calculations agree with
the measurements as well within the critical region as without;.4
The teason-may well be that within the critical regionlwF is very
-small. (wF = .35 cm ' at the verge of it in the caselof Pb 3).
The measurements are all on the high frequency tails of the
conductivities and these must be unaffected by interactions between
the fluctuations. Further, the deviations in the dc fesistance
from the Aslamazov-Larkin result are often small.

Why is the difference»bétween the‘exberimental data and the
theoretical cufves larger below the.transition?

Again in reference to Pb 3 (Figure 11), these differences
segm to be due to the Mattis Bardeen conductivities rather than
the fluctuation éonductivities. ~The data taken closest to the

transition (T-TC = -.007) where the flucfuations are the largest
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and the'contribution from the quasi-particles the smallest give
the best agreemeﬁt between experiment and theory. The situation
deteriorates as the temperature is reduced away from Tc' To fit
the data, the energy gap needs to increasé faster than the BCS

expression

T -T ,
A(T) = 1.67A(0) (——)7
C

as the temperature is decreased.

In any event, the fluctuation conductivities are required to
fit the data. Figure 16 shows plotted the data and the calculated
transmission ratios -using the'Mattis—Bardeen-éonductivities alone
(dashed 1line) and the'flﬁctuatioh conductivities plus the Mattis-
Bardeen conductivities (solid line). Two of the spectra for Pb 3
are used. Iﬁ\this'figure there has been no fitting of data. in ‘any
way; the points and theoretical curves are all numerically equal
to the values on the figure. At low frequency the fluctuations give
good agreement; at high frequgncies.néither do well. "If it is
allowed to shift the points up and down, they can be made to fit
féiriy well with the fluctuations, but never with Mattis-Bardeen
alone. | |

What is the magnitude of_the fluctuation effects compared to
the transmission ratio of the superconducting state (at 4.2° K) to
the normal state? |

| The fluctuation effects are quite small. For instance, in
the case of Pb 6 the maximum distance the transmission ratio in the
fluctuation temperature fange above TC ever gets from one is .96, a

4% variation. The transmission ratio for superconducting normal
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(4.2°/9%) of this same film is .75 at 2 cm- .It rises to 1.27 at
22 cm” ! (the energy gap) and then falls off towards one. It
varies 25% on either side of one. On this scale the transmission

ratios near TC would appear virtually flat.

12. Summary and Conclusions-.

In this chapter I have presented calculations and measurements
of the frequency dependence of the fluctuation induced conductivity
of thin lead films in the vicinity of the superconducting transition
temperature. The real and imaginary parts of the conductivities
were calculated in the tiﬁe dependent Ginsburg-Landau theory both
above and below the transition temperature. |

Measurements of the transmission of far infrared radiation
through four thin 1eéd films, aé a function of temperature were
made. The dc resistance of the films was also measured. Both
types of measurements showed an increase in the conductivity near
Tc'

The experimental data is well described by the conductivities

calculated from the Ginsburg-Landau thoery. The relaxation rate

in the time dependent equation

16k, T T-T
B (5
7h Te

is that which best fits the results of the measurements.

W



CHAPTER IV
SMALL PARTICLES

1. General. |

This chapter describes experimentsion'the far infrared
transmission of arrays of small metallic partic1es. The
particles afe on the order of 100 X in diameter and their
infrared response is drastically affected by the size
limitation of the electron energies. The mean energy level
spacing at the Fermi surface is, for non-degenerate levels,
jusf the inverse pf'the density‘of states of the free electron

gas for one spin direction?®?

_12762 _ 4 F

A -4 F
3. % 3
D°m kF

N

_where D is thé diaheter of the particle, kF:and €p the Fermi
mdﬁentum and'energy, and N the number of electrons.

Kubo5? wés the first to point out‘that the energy level .
spacing changes the macroscopic behaﬁiof of the particles;
he calculated the specific heat and the maghetic susceptibility
of the particles. Further calculations were reported by
Gor'kov and é&iashbergs“ and by Denton et al.>% Measurements
of the spin lattice relaxation time and of the static magnetic

susceptibility have been.carried out by Kobayashi et al®® and by

Buhrman.%® The situation with respect to these static properties

is somewhat fluid atvpresent.

The main theoretical difficulty in the problem comes in

-76-
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deciding what kind of ensemble average to use in calculating
the partition function. It is necessary to put into the
calculétion a probabiiity function; the probability that,
given a level at energy e, there is anéther level § away.

The simplest form would have an exponential form:

S
K . The problem of averaging over ensembles of randomly

1
S e
separated energy levels has been extensively studied for the
case of level statistics in large nucleii. Dyson®? discussed

it for various symmetries; he found three distinct ensembles.
Gor'kov and gliashbefgs“ applied these to the case of small
metallic particles to calculate, among other things, the
electromagnetic response. The applicability of the ensembles
depends ‘on the strength of the spin orbit couplin_g.~ In the

case of "small" spin orbit coupling the orfhogonal ensemble
applies, for "large" spin orbit éoupling the symplectic ensemble
'is used, and for a large magnetic field and '"large" spin'orbit
coupling the unitary ensemble is used. The exact meaning of the
 terms "large" and "small" is not completely clear. When the
spin orbit coupling is '"'large' there are big interactions

among the levels; they are expected to repell each other and

fall into a more uniform arrangement; in this case a more

periodic behavior is- expected than in the orthogonal ensemble.

2. Electromagnetic Response.
7z
The result of the calculation by Gor'kov and Eliashberg is
that the dielectric polarizability is (for small electric fields

and the diameter, D, less than the bulk mean free path)
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_ 16 e?D? 139 e2?p?
Xe =75 77~ * g00r hV; Aw)

where the first term is the static polarizability, and is
frequency in&ependent.VF is the Fermi-velocity. The
.function A(w) is determined by the ensemble average used.
Fbr light metals ("small" spin érbit touplingj the
orthogonal ensemble applies. Expressed in terms of the

integral sin-(Si(x)) and cosine (Ci(x))

A(w) = 2 - %E sin Zzﬁw - 'ﬂ'hw C (Tﬁw) (SJ_nTr,ﬁw - ’"}Ai_w cos Tr’il_ﬂ))
+i (thw A A Zwﬁw FK— Si (Eﬁﬂ)(sinﬂ%ﬂ - 3%9 cos E%9))

+ co
o W S

" The limiting forms of this are; for -low freqdencies‘hw<<A

2 y2 2 o3 #22
Alw) = Zg 2w -on nzﬁw) , im A2 v o= 1.781-.
A2 | 7 a2 |

- and for high frequecies Hw>>A

hﬁw+jimﬁw 26, (A»)gx

A(g) =2 - 2(;%5) _-z(%Aa-)3 sin

))

x(3+ cos

2mHw
A

For heavy metals ("large'" spin orbit coupling) the sympleétic

ensemble is used.

_A(w) = 2 - Y%KE sin ngwl_ Wiw (% + 51(3%2))(c05"§w + wa sin v?w)
+i{£%2 ' ﬁ%ﬁ sin? E%— "ﬁm(g + Si (wgw))( A~ COS E§9 - sin 3%9)}
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The limiting forms of this are, Huw<<A

2 L i mh
Aw) = §(FY s (GD°
and fiw>>4 ,
A(w) = 2 - %, sin E§9 + 1 (E%ﬂ + % cos E%9 )

In the case of the symplectic ensemble there are large periodic
variations in the polarizability with frequency while the
orthogonal ensemble yields a smooth function.

The dielectric constant is

_ R |
e = g * 1g, = 1 + 4wv Xe

where N/V is the number of particles/unit volume and the

absorption coefficient can be calculated from

- _ 2w 61 2 2 €1 L
o = ==(— Vl*re; 78y )*

3

In the case that €,<<gq then elfl'since ImxeﬁRexe
_ 22
o C
_ 139 N we?D?
® 225 VAev, 1M AL)

This should be compared with the result for classical
absorption by small particles (Mie theory)®® as discussed in

Appendix 2.
R B
v C

o = 2T 9 D2 )
3

+
16ﬂ2012 4D c?
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Figure 17 shows the dielettric ‘constant das a function of frequency
calculated in this theory for the orthagonal and symplectic

o)
ensembles. These curves are calculated for a diameter of 100 A,

a filling factor for the particles,f,

<=z

- N wh?3
t=yv &

~of .03, and a Fermi velocity of 1.5 x 10® cm/sec. The mean energy

level spacing using these numbers is

A =10.8 cm™ ' = 1.35 meV = 15.60 K

.and.N/V' 5.7 x 10t¢® particles/cma. ‘Notice that since N/V~1/D3
and the frequency dependent part of the polarizability, Xe~D3
these dielectric constants as a function of the ratio w/A are
independent of frequency. To find the value of the dielectric
constant for a different particle size, merély multiply the
ffequeﬁcy axis by el%%%§m;lto get the appropriatg frequency
scale for the other size. '

In Figure 17 theborthogonal eﬁsemble is shown as a solid
iine'aﬁdithe syﬁplectic ensemble as a dashed line. The real
‘lparts of the diglectric constant,.el, are not very interesting
Having a value of 1.13 at high frequencies, and falling to 1 at
zero frequency. The orth6g0n31 case is smooth between while the
stplectic one oscillates ‘a small amount. The imaginary parts
rise with iﬁcreaéing frequency,‘becoming quite large at high
frequencies, with medium'éize oscillations in the orthogbnal

ensemble and rather large ones in the symplectic case. The
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magnitude of the imaginary part of the dielectric constant in the

éase of fhe orthogonal ensemble is about twice that of the
symplectic ensemble. |

Figures 18 shows the absorption coefficients, d, versus
frequency for both cases (solid line for-thé orthogonal ensemble
and dashed for the symplectic one). These absorption coefficients
are calculated for two different diametefs, 100 X and 200 K. The
curves are similar in shape for the two sizés; the frequency
scales are just different. The'orthogonai ensemble shows smaller
wiggles than the symplectic and is twice as large. If the
wiggles are smoothed out, the high frequency absorption coefficient
is linear in frequency and extrapolates to zero at w =A. In the
cases whgn this theory.applies, this'givés a way to measure the
mean energy level spacing in the small particles. A log-log plot
of the absorption coefficients shows that the lbw frequency taii
in the absorption coefficient goes to zero as w3.7Ain'the
orthagonal case and something like w!® in the symplectic case,
although thg little bump in the létter case makes determination
of this a bit difficult.

Figure 19 ié a plot of the absorption céefficient of particles

which obey the Mie theory (see Appendix B). Here the absorption

‘coefficient, which increases as w?, is three orders of magnitude

. 7
below that in the Gor'kov-Eliashberg case. This was calculated
0 . ' ‘ .
for D = 100 A, o, = 5x10'® and N/V = 5.7x10'¢/cm?
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3. Superconductivity.

The size of the small particles might be expected to affect
superconducting behavior for two reasons. If the diameter is on
o
the order of 100 A then the mean energy level spacing is on the

~order of ch’ Further, if the diameter of the particle is less

than the coherence length of the electrons, the conditions for
long range order do not exist. Anderson®! and Strongin et al®?
have considered this and have concluded that if A>2 ch’ there
is no superconductivity. (The effective transition temperature
of the particles is zero). The particles exhibit the bulk
transition temperature when A = kTC

Schmid®3® has discussed the existdnce or lack thereof of
the energy gap in a superconductor without long range order. His
conclusion is that there is no energy gap; the density of electrbn
states at T = 0 rises linearly from zero at zero frequency to a
peak near the BCS energy gap after which it falls off to the
normal state value. This discussion ignores any influence of
finite energy level spacing (compared to the BCS gap).

Hurault®* et al considered the effect of fluctuations above
the transition temperature on small particles. A simple calculation
from Schmidt's®® theory (see Cﬁapter III) yields only small
fluctuation conductivities above the transition temperature. Hurault

et al included other diagrams than the Aslamazov-Larkin one in

- their calculations and found an extra conductivity proportional

to 1/1n(T/TC). They have left out any effects of size quantization;
this limits consideration of their calculations to particles of

o)
above 1000 A diameter.
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Buhrman?3?®

has observed both fluctuations above TC and super-
conducting behavior below.TC in the dc magnitization of the very
small particlés upon which these far infrared experiments were 
performed. The magnitﬁde of these contributions to the suscepti-
bility 1is quite'small compared to the susceptability of bulk
superconductors. One might expect it to be reduced by the ratio
"of the volume of the particle to the "volume" of a Cooper pair,
e.g. by D3/£03 or 10 %, Other superconducting effects would be
reduced by the same amount. The point is that the surface acts
as a verf strong pair breaker; an electron must be scattered when
it strikes the surface of an isolated particle.

| The appearance of anveneréy gap in an array of small particles
would change the transmission of radiation with frequencies near
the gap in similar fashion to a thin film. Relative to the

transmission in the normal state, there would be a peak in the

transmission at the gap frequency and a decrease below it.

4. Noninfrared Properties of the Samples.

During the course of these éxperiments far infrared measure-
ments were made on samples of carbon, copﬁer, aluminum, tin, and
lead. Table II collécts pertinant data on‘these samples. The
carbon was commercial lampblaék, obtained from the Carbolac Corp.®"®
All of the numbefed metallic samples were made by the smoke method;
the other two were sludge. The sample designation is in the first
column of the table. In the second is the helium gas preésure, in
Torr, that was in the bell jar during the smoke evaporation. In
all of the smoke except Cu 1 oxygen was bled into the bell jar
during the evaporation. To make Al 3 the helium was replaced by

argon.



TABLE II

PROPERTIES OF SMALL PARTICLES

7-40 .8-5

Sample He Press. Diam. Var. Energy Level Filling Number
) D D Spacing Factor f Density
Torr A A . Cm_l meV 1017 Cm3
! 90 -= ..043
-Cu 65 15 39 4.9 .025
' 21-86 2.6-11
Cu 70 10 31 3.9 .028 .2
_ 21-50- 2.6-6.2 : _
Cu 270 30 .55 .068 .027 .055
’ .40-.97 .049-.121
Cu 100 30 11 1.3 .12
5-30 .6-4 4
Al 150 12 4.2 .51 .04 .38
3.3-5.3 .41-.66 .
Al 400 40 .22 .027 .04 .023
.16-.30 .020-.037
Al 275 25 .27 - .033 .04 .022
.22-.32 ,027-.041
Sn 140 15 8.9 1.1 .018 .25
- 6.5-12 .81-1.5
Sn 150 25 7.2 .90 .018 .34
' ©4.5-12 .56-1.5
Pb 1007 307 15 1.8 12

..L8..
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The diameter is thaf-determined'by electron microscopy of the
samples. For éachrSmoké evaporation there were two electron
microscope‘gridé in the bell jar. These were eiémined by |
Buhrman®®under appfopriate magnification and pictures were taken.
From these the diameter aﬁd‘its variation could be found. The
variation in size given in the table is a pius or minus amount
on the diameter which contains about 75% of the particles. The
electron microscope siide for theacopper sludge was prepared by
placing a drép of the colloid on the grid and letting it dry.
There were no pictures taken of the lead; its size 'is estimated
from experience®® to be about that of the copper.

The next two columns give the energy level spacing'in cm ! énd-
meV. The upper numgef_is that calculated from the average size;
the lower two come from édding énd.fhen subtracting the variation
from this size. The last two columns in the table show the packing

density or filling factor of the parficles, and the number per

unit volume. These-are calculated from

_ W
£=ov
N _ _6f
v wD3

v where.p is the density.of the bulk ﬁetal, W the weight of the
sample, V.its volume and D the diameter of the particles.

There is:one other important sample property that is not
included in the ‘table because it is the same in all samples. This
is the electrical resistance of the samples which is in all cases

greater than 100 Meg Q at 300° K. This is the 1limit of the
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of the measuring apparafus and corresponds fo a resisti?ity

in the powder of 10°Qcm. Our samples are well isolated‘and

should be distinguished from those called granular films where
there is considerable tunneling between inaividual particles
yielding resistivities on the order of 10 *® t0 10 *Qcm. This

is an.important distinction; particles which are closely connected
by tunneling will show quite different superconducting properties
as the Cooper pairs can easily pass from particle -to particle.
Size quantization will be affected also.

The typical weight of the samples was .01 to .03 grams, this
was spread over an area of 1.5 cm? so that the samples were .1 to
.2 cm thick. Perhaps the most surprising result'of these experi- -
ments is that metals of this thickness show large infrared

transmissions.

5. Far Infrared Results.

The absorption coefficient, a; in the far infrared is shown
in the next several figures for some of the samples. It is
defined as

o= - +oen L

L I0

where I is the intensity transmitted through the sample, Io is
‘the incident intensity, measured by replacing the sample with an
empty sample holder, and & is the length of the sample. For

small particles & is defined as

o= g
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where W is the weight of the sample, A its cross sectional area,
p is the density of the bulk metal, and f is the filling factor of
the powder. | |

The plots are of o in cm” ' versus frequency in cm” ! along the
bottom and GHz along the top. There has been one readjustment to
the data. This ariseslbecause the particlés are such strong
absorbers at high frequencies that replacihg the particles with
a blank hole causes the detector sensitivity to decrease slightly.
-The signal is lower than it should be and the result is that the
- particles appear to be more transparent than they realiy are or
could possibly be. The absorption coefficients before adjusting
ére negafivé. Either the above explanation is correct, in which
case the addition of a constant value to the data is justifiéd,
or the particles emit radiation at low frequencies. The readjust-
ment typically comes to 20% of the value of the absorbtion

~coefficient at 50 em” b,

Figure 20 shows the results for carbon particles, 90 X in
“diameter.. This is intended to show the behavior of non-metallic
particles. It shows a smooth almost linear increase (~w3/2) in
absorpfion coefficient‘with frequency indicating nearly a constant
non-zero value for the imaginary part of fhé dielectric constant.
Since the carbon was handled in the same fashion as the metallic
particles any effects from adsorbed gasses on the surfaces should
show uﬁ here; if there afé any they add no. structure to the.

dielectric constaﬁt. The data were taken at 2° K, but there is

no difference between this and 1.2° K and 4.2° K.
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o
Figure 21 gives the absorption coefficient for 65 A copper

smoke, Cu 1, at 4.2° X. This sample shows a high absorption
coefficient (higher than any other smoke sample). It shows
more structure than the carbon,looking quite like the absorption
coefficient of the orthagonal ensemble but with a lower value by
a factor of two. The nearly linear section has a slight wiggle
and extrapolates to zero ét 6.0 +.5 cm .,

The absorption coefficients ét 4.2°K of both Cu 2 and Cu 3
are shown in Figure 22. Cﬁ 2 has an average diameter of 70 R and
Cu 3 of 270 X. The absorption coefficients are much lower in these’
than in Cu 1. Cu 2 has a horizontal (zero) value at low frequencies
and tﬁen rises nearly linearly at high frequencies., The bend is
not as sharp as in Cu 1. The linear section extrapolates to
zero at 19 + 1 cm !'. Cu 2 is already rising linearly at the
lowest frequencies. This section extrapolates to zero near zero

! and then it goes

frequency. There is a big bend at 30 to 35 cm_
off linearly but more steeply than before. As expected the larger
particles absorb more at a given fyequency than the smaller ones
but the differenée is only a factor of two instead of the factor
of four to eight expected.

Figure 23 gives the absorption coefficient at 4.2° K of the
100 X copper made by thé'sludge method. This has a large absorption
coefficient (due in part to the denser array this manufacturing
method yields) which is linear at high frquencies and has the
leveling off at low frequencies. The high frequency data extra-
polates to zero at 11 + 1 en” !

.0
In Figure 24 is shown the data for 150 A aluminum, Al 1, at

-
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4.2° K. This is a high resolution run (r.= .4 cm !) and
there is a large amount of structure. This consists of short
straight sections separating three cycles of large oscillations.

1

The oscillations are at 2.3 +*.1 cm ! intervals. The

1 intervals. There are error

pattern repeats at 8.1 +.2 cm
bars in a few places showing the noise on the data, which is

much smaller than the oscillations are. If the upper section is

extrapolated to zero, ignoring the oscillations, it intersects

at 13 1 cm !. The spectrum shown was taken at 4.2° K but there

is no noticible difference between this and one at 2°K.

Figure 25 displays the results for the other two aluminum
samples, Al 2" (400 X) and A1 3 (370 R), at 2° this‘time. Both
have absorption coefficients considerabley larger than Al 1.
ANeither absorption coefficient levels out at low frequencies.
Both extrapolate to zero below the lowest frequency measured.

Figure 26 gives the results for 140 K tin particles, Sn 1,
at two temperatures, 4.2° X and 1.2° K. It shows the usual
behavior, with the straight upper section extrapolating to zero
at 13 +1 cm '. There are some very small oscillations here, with
period 8 to 9 cm !. The low frequency end is almost flat. The
inset at the upper left shows the absorption in the same region
at 1.2° K. The superconducting transition temperature of tin is

3, 4°

K and the energy gap is at 9.2 cm ! in bulk or thin film
tin samples. Any effect of the superconductivity should show up
here. The two curves at the two temperatures are almost identical

point by point; no effect due to the superconductivity can be

seen. The data for Sn 2 was pretty much the same.
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In figure'27:similér results are shown for lead sludge
samples,‘loo X diameter at 4.2° K. The ‘transition temperature
in lead is at 7.2° X and the bulk énergy gap is at 22.5 em”!
This curve is practically indistinguishable from one taken at
9° or at 20° or at 1.2° K. These. samples simply exhibit no
.temperature dependence nor effect; of superconductivity.
| The straight uppef section extrapolates to zero at 12.5 #*1 cmir

and there is .the usual tail at low frequencies.

6. Discussion of the Data.

Table III gathérs together the important points from the
- measurements. The first column gives the sample designation,
the’secdnd its average diameter, the third the calculated value
of A (all of fhese from Table II),Vthe fourth the intercept of
the more or less straight section with the x-akis which is an
‘experimental value for A, the fifth the measured absorption

coefficierit at 40 cm !

, and the last this absorption coefficient
aivided by f£. Sihce the absorption coefficient more 6r less
‘scales with f this might help to eliﬁinate any effects of different
packing densities on the data. |

Considering the strong dependence of A on the diameter, the
rough agreement of most of the sampleé between the calculated
“and expefimental value is quite satisfactory. In the copper
smoke-the calculated value‘comeé out quite a bit high; in the
aluminum and tin.somewhat ldw. The two sludge samples; surprisingly,

were very close.

Although the absorptioncoefficients at 40 cm” ! do not follow
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‘ TABLE III
EXPERIMENTAL DATA ON SMALL PARTICLES .

Experimental

Sample ' Diameter Theoyetical A Expeg%menfal A Absorption at 40 Cm-i1
. A cm meV cm meV a(40 cm °) oa(40 cm )/f

C 90 -- -- - -- . 3.4, 79

" Cu l 65 , 39 4.9 6.0£.5 74 - (50) (2000)
Cu2 . 70 31 3.9 C10:1 2.4 | 2.7 97
Cu 3 270 .55 '.068 <3 <.3 5.3 190
Cu sludge 100 11 1.3 11:1 - 1.4 46 370
Al 1 150 4.2 .51 ‘»4 13£1 1.6 5.0 125
Al 2 400 .22 .027 <3 .3 13.6 1340
Al 3 375 . .27 .033 <3 .3 10.4 260
Sn 1 140 8.9 1.1 1341 1.6 2.4 ‘ 130

Pb sludge 100 15 1.8 - 12.5¢1 1.5 43 340

-00T-
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any pattern, dividing them by the filling factor, f, does bring
them into order with a couple of exceptions. This number, o/f,
is proportional to the absorption per particle rather than the
absorption per centimeter of the collection and is shown in
Figure 28. ‘This is a log-log plot of the ratio of absorption
coefficient fo filling factor versus diameter for the particles.
These data are shown as érossés in the figure and a dashed line
is drawn through them. The line has a slope of 2/3 meaning

2/3. Also in Figure 28 are

that the absorption increases as D
the same data wifh the number for carbon subtracted off. These
are shown as circles and fall into a somewhat straighter solid
line with slope 3/2 (a~D3/2). Subtracting off the value for
carbon is done in an attempt to eliminate the absorption from
‘non-metallic causes énd is of some value if the absorption due

to carbon is independent of diameter. This is a somewhat shaky
assumption. At any rate, the theory of Gor'kov and Eliashberg
predicts that the absorption should increase in the metallic
particles as D?. The classical Mie theory predicts an absorption
proportional to D?. The result hefe of slope 2/3 or 3/2 is
smaller than either. The numerical values of the absorption
coefficients of the-particles fall almost on the geometric mean
between the Gor'kov-Eliashberg theory and the Mie theory.  For
100 X particles, a filling factor of .03 and at 40 cm !, the
former gives an absorption coefficient of 200-350 cm !, the latter
gives .1 and the experimental number, from Figure 28, is 3.

There are three samples that do not fit this variation of

absorption versus diameter at all. - The two sludge samples are
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both a factor of three too large. These samples are not as clean
as the others and this may be the result of a residue of acetone

1

in them. Acetone is a strong absorber above 30 cm ! but opens

up and becomes transparent below 20 cm !. A much more serious
difficulty arises in the case of Cu 1. This sample has an
absorption coefficient some 20 times larger than Cu 2 which is
about the-same size. This was the only smoke sample measured
which was.made without oxygen in the bell jar. The electron
microscope pictures seemed to show that the particles had clumped
together. If these particles were not insulating they would act
as larger particles and, with the absorption increasing with
diameter these would make an impression on the measurement
out of all proportion to their siée. If this were true, however,-
the absorption coefficient should not level out at low frequencie;
but continue downwards as in Cu 3. The large value in Cu 1 remains
a mystery.

The other major anamoly in the data is the structure in Al 1.
This consists of very regular well resolved oscillations at 2.3
cm” intervals modulated by ones at 8.1 cm_lintervals,‘producing
a beating effect. In Fourier transform spectroscopy one must
always be on guard against such behavior because it can be caused
by two bad pointsAin'the interferogram or by two interference
patterns in the sample. Bothwould be Fourier transformed into
such a pattern. Neither of these is the case in Al 1. The
pattern was visible in all of the spectra taken on Al 1 during
two different runs separated by a period of a month and on none

of the other samples run simultaneously. Because nine inter-

ferograms were recorded for Al 1 and because the pattern was
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visible in all of them it Qas not due to two bad points in-the
interferogram. If it were due to an interference pattern, the
pattern could only be in the Al 1 sample itself. Al 1 was one
of five samples on a brass rotator disc which were placed in the
far infrared bcah successively. As the pattern was not observed
in ény of the other samples it must be localized in Al 1. Now,
fhe way the samples were mounted was a ‘piece of 1 mil thick |
polyethléne was placed over the hole in the brass sample rotator,
a short section (perhaps one mm thick) of brass or nalgene tubiﬂg
was put on it‘and the powder poured in, anpthef sheet of polyethelene
was used to cover the powder and the whole assembly held down
with a piecé of brass shim stock by screwing it to the rotator.
It seems inconceivable that the two polyethelene sheets would
be sufficiently flat and parallel to‘gause standing waves between
them. It seems that the structure seen in Figure 25 is a propefty
of the powder itself. The period of the oscillations is just about
“half of the calculated mean energy level spacing in Table II. Al 1l
had the smallest percentage variation in size of any of the samples.
It is the sample in which structure is most likely to be found.

~ As might be guessed, Al 2 was an attempt to duplicate the
fesults of A1 1 with another'samplé. It turned out to be too
large and too uneven in size. Al 1 must stand alone and is not
completely understood. |

A careful persual of Table II will show what is by now clear:

that sample preparatioh is étilllsomgwhat of a hit or miss affair.
For example, Al 2 while made in the same He pressure as Al 1 is

larger than Al 3. .Sn 2 was made in quite a bit larger pressures



-105-

than Sn 1 but is almost thé same size. However, since all of the
samples were examined under the electron mibroscope the diameters
are well known and most of the features of the samples are a
function of the diameter.

There is also some question about the oxygeﬂ on the surface
of the particles. Electron microscope diffraction pictures show
a double ring pattern typical of fcc copper and outside it a.
single ring identified as sc CuZO.58 The density of this.line
is less than the copper line, implying that perhaps 10% of the
particle is composed of the oxide. This oxide should be completely
tranéparent at the far infrared frequencies of interest. It
will reduce the diameter of the metallic small particle though.
Two layers of.oxide on the surface will reduce the diameter
of the metal by 15 X or so. This is not an insubstantial amount
in the smaller particles. But, it is likely that the electrons
can easily penetrafe two layers of oxide (this being a typical
layer in tunnel junctions) to reach the surface so that the
volume of the small particle-will be the same whether oxidised
or not. The density of the electrons will be reduced proportionally
to the number of electrons bound to oxygen atoms. The effect of
the oxide will be to increase -the energy level spacing.

One unexpected result of these experiments was the total lack
of temperature deﬁendence in the samples, at the temperatures.
studied. The copper and lead sludge samples were studied at 1.20,
4.2°, 9°, and 20° X; the Cu 1 sample at 4.2°, 9°, and 25° K; Al 1
at 2° and 4.2° X; and Sn 1 and"Sn 2 at 1.2° and 4.2° XK. None
of these showed any effects of temperature although a previously

unknown temperature dependent absorption in quartz was found
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‘during the course 6f these investigations. Thé supercoﬁduéting
samp1e§ did not cﬁange when cooled below their transition tempera-
turef | '

As the frequency is increased the absorption continues to
increase. ‘Most of the samples studied were optimised in thickness
for the 10 to 40 cm”? region and did not transmit sufficient
faf infrared at higher frequenciés to permit measurement of o
there. One very thin copper sludge sample was measured in the
near infrared at room temperature; it showed a continuing
increase in the absorption with increasing feequency between
1000 and 4000 cm ' (10 to 2.5 micron wavelength). In the
visible at room temperature almost all of the small particle
samples are black. Some of the iarger ones show a slight blue-

grayish tinge.

7. Summary and Conclusions.
Measurements of the absorption of small particles of copper,
aluminum, tin, and lead in the frequency range of the mean energy

level spacing of the electrons show qualitative agreement with the

calculations of. Gor'kov and é&iashberg. The absorption coefficient

is near zero at low frequencies, bends up at the mean energy
level spacing, and then increases with slight upward curvature
as the frequency increases. One sample of aluminum showed
structure atvabbut the right interval to be due to the energy
levels. |

The magnitude of the absorption coefficient is much smaller
than that ca1cu1ated by Gor'kov and ﬁiiashberg but larger than

given by the classical Mie theory. The magnitude of o on a per
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particle basis increases steadily with increasing diameter but
does so more slowly than predicted by eithér theory.

The far infrared behavior of the small particles is
found to be independent of temperature ih the ‘region 1.2° to

25°

K. In particular the samples made of superconducting
material do not change when cooled below their bulk transition

temperature.
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APPENDIX A

FAR INFRARED MEASUREMENT OF THE ENERGY GAP OF VSSi

1. Introduction

Vssi.is one of a family of binary intermetallic compounds

which have some of the highest superconducting transition tempera-

tures yet known. These oompounds have the form M3Y where M is a
transition metal and Y is usually a semimetal or semiconductor.
Certain of them, including VSSi, undergo a cubic to tetragonal
lattice phase transition! at temperatures above the super-
conducting transition. The two temperatures in the case of VSSi
are Tm = 21 %k (for the lattice or martensic transition) and _
T. = 17.1.% (for the superconducting transition).

Previous measurements of the energy gap of Vssi and its

sister compound NbSSn have given varying results. Levinstein

and Kunzler? measured both oompounds by tunnelling from a sharp

point contact into the sample. The Nbssn was polycrystalline
and gave the result 24 = 3.6kTC. The VSSi was a single crystal
with the tunnelling in the 110 direction and usually gave

24 = 1.8kTC.but the value 2A = 3.8kTC was also found. Hauser
et.alf-measured the energy. gap of a sputtered polycrystalline
Vssi film via the proximity effect on an Al-Pb tunnel junction
and found 2A = 3.8kTC. Hoffstein and Cohen" measured the gap
in Nbssn by tunnelling using the point contact method. The
sample was a single crystal and the results varied depending

on the direction of the tunnelling. .The gap was a maximum in

the 100 difection with 2A = 2.8 kTC. There was a minimum in-
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the 111 direction, with 2A = l.OkTC. In the 110 direction an
intermediate result was found, 2A = 2.2kTC. Bosomworth and
Cullen® measured the far infrared reflectivity of a poly-
crystalline ijSn:film} They found that.the measured gap
was strongly dependent on the state of preparation of the
surface. It was initially at 2A = 3;8kTC, was reduced by half
by sanding, and then restored by chemical etching. |

The crystal structure of VSSi is called -the B- tungsten or
Al5 form. It is basically cubic with Si atoms at each of the
cube corners and one at_the center. There are two V atoms on
each of the ;ube tfaces, with

X V
O S.

two pairs (those on opposite
faces) parallel to each of

the cube edges. The result

is that, when the cubes are
stacked up to make a
crystal, there are three Figure Al.  Crystal structure of VzSi
mutually orthagonal groups of linear chains of vanadium atoms.

These chains are pretty well separated from each other.

It was this feature that led Labbé and Friedel® to propose
their linear chain mod@l for these compounds. In the case of
VSSi, the Fermi energy lies just above the bottom of a nearly
empty d-band. There ié'a narrow peék in the density of states
at the bottom of this band. The distance between the bottom

.-E is about 22 °K. Thié

of the band and the Fermi energy, Ep

M)

-is much less than the Debye energy. Labbé and ‘Friedel propose

that it is this narrowness of the electronic spectrum
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that provides the energy range limitations iﬂ these compounds,

rathef than the narrowness of the phonon spectrum. If so,

the enefgy gap depends fairly closely on this difference. This
simple model has been réasonably successful in explaining many

of the properties of these compounds.

2. Ekperimental Teghniques.

The experiments were done in the cryostat shown in Fig. A2.
The saﬁples were single crystal slabs of VSSi which were grown
in the MSC Materials Preparation facility at Cornell. The
boule was generally cylindrical and it was sliced lengthwise
several times with a spark cutter. The resulting thin élabs
3
These pieces were then glued to the Walls of the non-resonant

were chemically etched with a 50-50 mixture of HF and HNO

cavity.

The incoming far infrared radiation from a lamellar grating
interferometer enters the cavity through a condensing cone.
This demagnifies the radiation and increases its half angle,
as calculated by Williamson's’ equation, from 18° to 90°.

Once inside the radiation bounces around a few hundred times
off of the sample and finds its.way to the exit cone which
converts it back to an 18° half angle.._Ffom there it goes

down a standard liéht pipe, through a quartz vacuum window to °
a helium three temperature bolometer-detector. A heater and
carbon resistor are attached to the cavity, to allow the
temperature to be adjusted and measured. Temperatufe isolatién

of the cavity from the detector was good enough that the
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/ ~——Black polyethelene

—S E____l vacuum window
.

Light cones=—""]
'9 S - - -Nonresonant Cavity .

“T—Liquid *He at 4.2°%K

Alkali Halide |
low pass filter —4—

Crystal Quartz
vacuum window

—

Light cone

Gé bolometer

detector
~—

Liquid “He at 0.4°K

Fig. A2. Cryostat containing 3He'cooled bolometer and non-resonant
cavity.
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cavity cou1d be heated above 30° K withouﬁ adversely affecting
the detector.

The cavity is_shown in cross section in Figure A2. It is
a'rightbcircular cylinder, 1.5 cm in diameter and 4 cm long.
The cones enter on the cylinder wall. The VSSi slabs covered
roughly % of the surface areé.

The non-resonant cavity can be analysed in terms of its
quality factor, Q, as discussed by Lamb® or Townes and Schallow.®

This is defined as

Q = 2w (Energy Stored in Cavity)
(Energy lost per cycle.

wE

_dE
dt

r

If there are several loss mechanisms in the cavity they are just
added réciprocally to find the reciprocal of the total Q. There
are three such in this experiment: 1losses out the two holes,

losses in the exposed brass walls of the cavity, and losses in

the VSSi samples mounted on the walls. For the holes
Q _ 8uV
holes  AA

where V is the volume of the cavity and A the total area of the

holes} For the walls
37VR

Q = 758

walls: 22 SR

where S is the surface ‘area and R the surface impedance of the
vwalls'(whether brass or VSSi) and Ro.is the impedance of free

space (R0 = i% = 3779). Then
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1 1 R §

1
— = - + +
Q Qholes Qbrass walls QVSSi walls

The transmitted intensity going to the detector is

I I

- "Qotes ©
In this experiment the transmission of the cavity was measured
at two temperatures, one ﬁith the VSSi superconducting and one
with it normal, and the ratio'of these taken to eliminate any
frequency deﬁendence not due tb the sample. So,

Qg 3AR_ + 16SpRy + 16SR

S _ S . B N
I Q
N N 3AR0 + IGSBRB + 16SRS
.16SBRB _ 165Ry
In the event that AR <<1 —FAR <<1
o (o)
.14 188 g g
IN 3ARo n s

and the impedance difference, Rn-Rs, is proportional to the
intensity ratio minus one.
‘What these inequalities mean. is that the transmission of the
cavity must not change a great amount if the simple formula is
to hold. This is indeed the case in these experiménts.
3. 'Experimental Results. |

The difference in surface impedance between the normal and
the superconducting states in ohms as a function of frequency
in cm"1 is shown in Figure A3. The experimental poiﬁts are shown
as points; a few have error‘bars on them. Resolution is 1.5 f.:m-1
The superconducting data were taken at 4.2° K and the normal
stéte data at 20° K. The rise at the lowest frequencies is -

due to absorption in the normal metal, which increases with
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Fig. A3. Difference between normal and superconducting states surface impedance versus
frequency for Vssi. ' '
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frequency. The peak at 12 cm'1(=1.0 ch) indicates the frequency'
at which the superconductor begins to.absorb; the surface impedance
of the normal metal continues to:-rise, but that of the super-
conductor rises more steeply still, so that the difference falls
as the frequency increases. This fall attains its steepest slope

1

at 46 cm (=3.8kTC). At 53 cm ' the superconductor absorbs

as strongly as the normal metal, and the difference continues
near zero to our upper frequency limit.

Now, in any superconductor the surface impedance does ﬁot
jump immediately to the normal state value at the gap frequency,
but rather rises with finite slope, these being typically, by

experiment!®

w_ dR

(& —3

RN dw w=wg .
This slope decreases at higher frequencies. Acording to the

/

BCS form of the conductivities the surface impedance should

=4

reach the normal state value at twice the gap frequency; it
generally does so much sooner. The-maiimum slope of fhe surface
impedance occurs at the gap frequency. It is probably justified
to take the maximum value of the energy gap in VSSi at the
frequency where the surface impedence difference‘has the maximum
slope.

The next figure (Figure A4) shows the surface impedance
difference at various.temperetures. As the temperature is
increased the height of the.peak is reduced and shifts to
lower frequencies. The zero impedance difference and -the point
of maximum slope also shift to lower frequencies, although the
latter is difficult to see on this figure; In the littie box
,af the bottom of the figure shows the results when the metal is

normal at both temperatures. The surface impedance at 27° K
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Fig. A4. Surface impedance difference versus frequency for VSSi at several temperatures.
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differs from that at 18° X by at most a small amount. It was

once suggested that the lattice phase transition was driven

by a soft optic mode. This should be visible as an extra
absorbtion if this were the case. Within the limits of

.the far infrared-sensitivity there.is no evidence for this;
no‘consistent structure is seen in such normal-normal differences.
This is pretty much of a dead horse though as there has been

shown to be a soft acoustic mode instead.

In Figure A5 is shown the temperature dependence of the
three important frequencies. The upper curve is for the zero
impedance difference intercept, vs,the middle curve for the
maximum slope of the surface impedance,vz,and the 1owef curve
for the peak, V1, Wwhere the superconductor begins to absorb.
The sclid lines show the BCS expression for the temperature
dependence of the energy gap, scaled to go through TC and the

points at 4.2° X.

4. Summary and Conclusioné.

Measurements of the surface impedance as a function of
far infrared frequency at various temperaturés on single crystal
VSSi show a very anisotropic energy gap. The gap at 4;2o K
extends from 2A = 1.0kT¢ to 24 = 3.8kTC. This takes in the
whole range of reported gap values from tunnelling measurements
in VSSi. Both the upper and the lower value for the energy gap
seem to follow the BCS form as a function of temperature and both

have the same transition temperature..

A disadvantage of these experiments is that it is not
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- possible to assign a particular'gap vélue to a given crystal
direction 55 was done in tunnelling experiments.® A counter-
Balancing advantage is that the state of the surfaces is less
important. In thése extreme type II superconductors the |
coherence length is much less than the penetration depth. 1In

(0]

o _
V.Si £o~40 A while X~2000A. Tunnelling measurements probe the

3
material to the depth of the coheren¢e~1ength while far

infrared radiation goes into the penetration depth. It would-
be expected then that the far infrared measurements would be

much less affected by damage to the surfaée.'




APPENDIX B

INFRARED PROPERTIES OF METALS

1. Maxwell's Equations

The purpose of this appendix is to discuss how the conduc-
tivity of a metal is connected to the measured properties thereof.
The conducti?ity is generally the result of a theoretical
calculation whereas it is not usually directly measured in the
far infrared frequency region. What is measured is variously
the reflection, transmission, impedance, phase shift, or optical
constants of the metal,depending of the geometry. The connection
may be made between the experimental and theoretical quantities
by solving Maxwell's equations in the metal and applyingAthe
appropriate boundary conditions.

The first step is to stick the complex conductivity into
Maxwell's equations. As soon as one begins to talk about the
conductivity it means that the discussion is limited to the
local limit, when there is a point relation between the currents
and the fields; the metal is in the normal skin effect region.
Fortunately, all of the systems discussed in this thesis are
in this 1limit. There will be no discussion here of the anamolous
skin effect here.

Maxwell's equations are a sét.of four differential and three
constituative equatibns relating the four field vectors, ﬁ, ﬁ, §,
and ﬁ, to each other aﬁd to the charge density, p, and current,

7. In Gaussian units they are

-123-




-124-

veD = 4mp
veB = 0
_ 138
VE = ¢3¢
> 4 3 . 1 9D
vl = =3 v 75

D= Jmof Bl

where,e1 is the (real) diélectricA¢onstant, oy is the (real)

conductivity, and ﬁ is the permeability (ﬁ‘= 1 from now on) of

the medium. Using an e 19 time dependencé, the curl equations
. become A
VXE =’3% H
_ 4r s uw
vxH = T 01E 1¢ ;lﬁ

‘At this point various authorities diverge. Tinkham?!!? defines the

imaginary parts of the condﬁctivity,and‘dielectric constant by

= 3 ___Eﬂ_ '>.=-
c =0y *+ i, = 7= (el + 152) = €

g = -ﬁ
2 im
so that _
4 ) _
VxH = —f(cl + 102)§

Sokolov!? does the same fhing with the complex polarizability,

xe,_defined by e =1+ 4nxe

o= 0y *io, = -dw(x, + ixe ) = -iwxg
1 2 _
: m(el-l)
92 % "WXe, T TTTam

1



-125-

and

> 4w . 1w 2
VxH = _C(Ol+102)g__f i]

The first term-is the current arising from free (mobile) charges,
the second from bound charges (polarization current) and the
third has to do with pure displacement current (not involving

charges).

3

Donovan'?® merely puts

g = 01 + 102

directly into the equation in place of o which seems pretty

1)
simple. But then he has to argue that €4 is the dielectric

constant of the bare lattice. It is then around one and
= _ 4w . r dw
VxH = ~E(ol + 1QZ)E <

We should now compare 4ﬂ02 with w

4 4 272

Mo, L AmO,T Wy TTT , _ 4rne?

= - = ; w = o
1+w272 1+p272 p

m = 4wcp/r

The pure displacement term in Maxwell's fourth equation only
becomes important in the vicinity of the plasma frequency, e.g.
up in the visible or near ultraviolet. It may be safely ignored.

Finally,

1w
vxE == ﬁ

| 4 _
vxH = —%(01+102)E

There are two commonly used models for the conductivity are
the Drude model for a normal metal and the BCS model of a super-

conductor.
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2., Drude Model
| In tﬁe drude model the electrons are treated as a gas of
noniﬁteractiﬁg‘particleg'which are damped by collisions with
defects or phonons in the lattice. The collisions result in a

relaxation time t. The conductivities may easily be calculated

by writing an equation for the drift velocity, $d of an electron.

m(%f + %) Vd(t)-= ¥ = eﬁeiwtl

If V(1) = Trd(O)ei“’t

m(-iw+ %) Vd = -eE

The current is

ne?t 1
1-1wT

-5
j-O’ﬁ— -nevd—

where n is the number of freee electrons per unit volume. Then

o =0 s
o I-iuTt
ne’r. .. i
vhere 0y = 5 in the dc conductivity. Taking the real and

imaginary parts yields
.. 0o . ‘= O, T
1 -T2

1+w?1?2 1 + w?t?

The same result can be obtained with a little more difficulty

from the Bolzman equation.!?®

3. Superconductors

A superconductor has no dc electrical resistance while the
reflectivity in the near infrared or visible regions is not
affected as the metal passes.from the normal to the super-

1

conducting states.! There is an energy gap in the excitation
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spectrum of a superconductor and a photon can only be absorbed
if it has energy greatef-than the energy gap. The energy gap

o)

of most superconductors lie, at T = 0~ K, in the far infrared

or microwaves. For example, ‘that of lead is at.ZZ.S em .

The conductivity of a superconductor was first calculated
in the BCS model by Mattis and Bardeen,!* and by Abrikosov,
Gbr'kov, and Khalatnikov.!5 Mattis and Bardeen calculated the
)

real and imagninary parts of the conductivity at T = 0~ K in

- terms of complete elliptic integrals. Numerical calculations at

finite temperature have been performed by Miller.'®

These are
shown in Figures Bl and B2 in the case of a superconductor with
TC = 7.2° K and an energy gap of 22.5 cm_l(lead):

At zero temperature there is a delta function in the real
part of conductivity at w = 0. It is then zero until the gap
frequency where it begins to rise up towards the normal state
value. The imaginary part goes as 1/w and is one at the gap
frequency. As the temperature 1s %aised the delta function 1in
04 broadens and the gap is reduced towards zero. The overall
magnitude of the imaginary part is reduced but the shape remains
pretty much the same.

A sum rule for the real part of the superconducting
conductivity has been discussed by Ferféll and Glover'’ énd
Tinkham and Ferrell.'® It follows from the Kramers Kronig
transforms and from requiring that the imaginary part of the
conductivity be independent of the superconductivity if the

frequencies are taken to infinity (an experimentally observed

_effect) that the integral over frequency of the real part of
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the conductivity is independent of the superconducting
transition.
o dw o 7w mne?
REROIINANOEIES L
4. Bulk Material.
This is the first of several sections dealing with the
classical electromagnetic behavior of samples of various

geometries and dimensionalities. In it will be discussed

the reflectivity, skin'depth, surface impedance and fields

in the interior of a bulk metal. Later will come discussions
of thin films and X
small particles. ?
Consider the
: el
arrangement shown 'Xg//(. .
NSV lator metal

in Figure B3 at _
' index n G-=GV+\ 0%
right. This is the : ' ,

geometry that will be E. ' E.
used in the rest of

—%
this appendix. All Hu ke He ke

waves will be n ke,

propagating in the He
plus or minus 2z Figure B3. Metal-insulator Boundary
direction, the normal to the interface (the x-y plane). The

_‘radiation is plane polarized with the electric field along the

x direction and the magnetié field along'the y direction. The

propagation direction, the electric field and the magnetic field
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form a right handed set. Inside the insulator, of index n,

there is an incoming wave e

B oip geiez B, - nEge ©
i T Bg %€ ¢ j = nEgye
and a reflected wave
NS L . MRS L
Er =-rE xe © H =nrEye ¢

where we have had té decide the phase of the reflected electric
vector. There is a 180° phase reversal on reflection from a
more dense medium. One way to see this is to say that for a
perfect conductor, which is a perfect reflector, the tangential
component of the electric field at the surface must be zero.
This requires the electric field in reflected wave at the surface
to be in the opposite direction to that in the intoming wave,
i.e. a 180° phase reversal.

Inside the metal there is a damped traﬁsmitted wave

_~ iNZ 2 ~ iNZ 2

Et = Ex‘e . ﬁt = Hy e

where.E'and H are coﬁstants to be determined by the boundary

conditions at the surface. N is a complex propagation constant.

Then,
‘ _ 2~ . Nw _iw 2
VXEt =y 1= E = 7 H
= NE
_ _2: Nw _ 4 . o
Vxﬁt = -xi — E = f5(01+102)xb



k = —ngz (/b 24 02 + 0,

The boundary conditions on E and H are that the tangential

components of both be continuous across the boundary (z = 0).

E (1-4) = E
nE_(1+r) = NE = N E_(1-1)
- N-n
T = N+n

This is the amplitude reflection component. To find the
intensity or power reflection coefficient the Poynting vector
for the incoming and reflected waves must be calculated. At
present it doesn't matter, because both incoming and reflected .
waves are in the same medium, but it will matter 1ater so I will

do it correctly now. The Poynting vector 1is
g2 - S E x Ax
4

The intensity reflection coefficient is the ratio of magnitudes
~of reflected and incoming Poynting vector. If n is a unit

normal vector

. §T.T i (rEO)(nr*Eo) I
§i°n (E))(n E)
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(n - n)? + k2

(n + n)? + k2

. as expected. This is the usual result. Notice that if wt<<1
(low frequency or bad cqnductor) and if n = 1 then g, = 0,
01 = 0,>>w and

v e2m Nk
k= (o,)"

3
[

(1-(2n20))2+ 1

() + 1
(1 + Znoo
The absorptivity is

a=1-k-= 2(2ﬂ$ )
_ )

This is the result found -by Hagen and Reubens!® in the first
far infrared experiments on metals. '
The propagation constant N is, reasonably enough, called
" the complex index of refraction. There are two other concepts
that come out of it very easily. The skin depth is a measure
of the distance that radiation penetrates into the metal. If

one substitutes N into the equation for Et

LW LW w
. i= Nz i=nz -= kz
A . 7 1 ~ n
g =X < E e C = X Zn E e C e C

t N+n o) N+n 0

The skin depth § is defined as the damping length of the field

in the metal

Py

. C
§ = oK
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. 2mo
In the low frequency limit, when k= ( n 9

1
2

2 1
S~ = C 3
0 (ZNOOw)

is the classical skin depth.
The surface impedance is defined in terms of the ratio of
the electric to magnetic fields at the surface of the metal.

R + iy = i%

93]
~

0) _ 4r
C

N,
I
Z

e

41 n- ik

C n2+k2

4m- Zb is called the impedance of free space and

The quantity =

is equal to 377 @ in practical units.

In the low frequency limit, when n=%= )

27w | .
Z = (*;——) (1-1)
c 9,

1 .
——(1-1)

T8

5. Simple Theory of the Transmission of a Film.

Before going into the detailed and involved calculation of

the transmission of a thin film, I would first like to present

~a simple calculation based on the boundary conditions of the

field vectors as this is easier to follow. The film will be
treated as a surface sheet of current. .This calculation is valid
if the filmAthickness is much less than the skin depth, the
wavelength, and any other characteristic lengths in the system.

; The geometry is shown in Figure B4. The incoming wave has
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amplitudes E_ and H , H =E ,
0 ) o o

the reflected wave has amplitudes

E and'H. H_ = E_ and the , £l ¢
T T T T Z , .
. - . U
transmitted wave has amplltpdes Et free space bstrote n
and H_, H,=nE_. Then the
t’ 't Ut | . R, T 1 TEt
vectors Eo and Er are anti- Ev

parallel again and i

B, = -1k, Figure B4. Thin film geometry

Et = tEO defining r, t

The boundary condition on the electric field is that the tangential
components are continuous across the boundary (the film)
(Eo-Er) -E_ = 0
1 -1 -1t=0
The boundary condition on the magnetic field is that the tangential
component be discontinuous by the surface current at the inter-
face (in the film)
4
- = 2T
(H, + Hr) Hy c

where K is the surface current. It is the current per unit area

and is equal to the current per unit volume times the film

thickness
4 4 .
T K="Tjd=(1+r -t)E,

Now j = o E where E is the field in the film. This is either
tEo or'(l—r)Eo which are the fields on either side and which

are (by the boundary conditions) equal.
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n-1 +

n+l + od

0'4:- Ol.p.
3 =l

These are the amplitude transmission and reflection coefficients.
To calculate the intensity coefficients it is again necessary
to use the Poynting vector. The transmission is

~

ok A
- 3 ° *
S.-n i EoxHoen  (t E ) (nt*E )

t
GJ_': - 3 =~ =
o *.
5.n Bt .
0
= n|t]?

| ‘ - 4n

[n + 1 + i% cd|?
- ‘4n :

4 2 4 2

| _ (n+l + = gld) + (E_ ozd)

The reflection 1is

R ——I"—T =A|r|2

(n-1 + 2T o d)2 + feu oy )2

4 4
(n+ 1 + ==~ o d)? + (== 0,d)?




-136-

Ahd the absorbtion is

1 -®R -7

&:
16w
. . 2
1+ Tod)? e (o,

proportional to 9y

as might be expected.

The above are the results for an infinitely thick substrate.

If the substrate has a rear surface (as it usually does) the-

effects of the reflections at
ﬁultiple internal reflections
This is done here for a thick
either thick or has the front
compared to the wavelength of
eg d>>% or Ad>% . If this is

internal reflections need not

the rear surface, including

must be taken into account.
substrate. This is one which is
and rear surfaces out of parallel
the radiation in the substrate,

the case, then the phase of multiple

be considered, the amplitudes add

incoherently, and one merely adds intensities.

With regard to the figure

Fron

at right, - the front surface has — Rear 4
coefficients 9, and ® and the Io o~

1 —_— \J.Ib o~

’ 1 @.Io > &/—'? qﬂ- \\\—Lo
rear surface has J, and GLZ, then 3 RIT,

. : e W —— o~ "
by adding up the reflections d\.p‘l“q'\'}a.%m > RRTTo
4 -
back and forth inside the "JIQ R I @1&\‘\? hie
transmission and reflection l
of the entire assembly can be found.

Figure B5. Multiple internal

reflections
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1]

bl
1

A= °312 Ry (TH®y R, + & 7R + 111)

R, *

1

= CQ'l + —_——
1—@(1@\2‘

For an insulator of index n, no film
A 4n

A (n-1)2
= PN = .
°J (n+1) 2 (n+1)?

For a thin film on a substrate

ot T

16]’12 e e e

(D)2 (el + o )2 + (Fo,)2) + (-1)2((n-1 + Lo d)? + (Ho,a)?
C C C c

The expressions for the reflection and absorption are even
more complicated and ére not reproauced here. All three coefficients
are shown in Figure B6 plotted versus film impedance for a film
in which 0, = 0, 01 = 04 (eg a normal metal film at far infrared
frequencies). The substrate has index n = Z in this calculation.

The impedance Ra = l/cod is the resistance that the film would

have if it were square . Comparing the far infrared transmission
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'.0' i I T R} r T 1 ! L} l T B T T
RA
& J
08 ] —-> _—> -y
=2

500 | 1000 © 1500
Rn : (Ohms)

Fig. B6. Transmission, refléction, and absorption coefficients .
: of a thin film on a substrate versus the square
resistance of the film. ' '
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of the substrate assembly before and after film deposition
allows the determination of the square resistance of the normal

metal film.

6. Transmission of a film.

The general problem of the transmission and reflection of
a film has been worked out by various authors interested in
reflection and transmission interference filters. The earliest
and clearest modern work that I know of is the paper by Hadley
and Dennison.?? | |

The problem now is to calculate the fields in three regions

for normal incidence. A sketch

of the arrangement is shown in l 2 : E :
Feee Metal Suﬁshmwg
Figure B7 at right. The three space Bl idex n
N :x)i"iuK

regions, free space, metal s

film, and substrate have

~ s . 4 s —
altogether five travelling waves CEo, B, Ma tEo
in them. The whole problem 8o g, nt B,
' EL'L } ‘—\ 20

involves matching boundary

conditions at the two boundaries

z = 0 and z = d.
Figure B7. Thin Metal Film
on Substrate

In region 1 there is an incoming wave and a reflected wave

LW LW
ﬁ ~ 1‘EZ - lE Z
1= on(e -T € )
i2z -i%z
— N ~ C
ﬁl = Eoy(e +T e )
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Similarly in region 2

ﬁ ) ~ 1Ngz ~ -1N§ z
2 T Epx e T v Epxe
~ iN% 2 ~ =-iN% 2

Hp = Hypy e & *Hyye

From the solution of Maxwell's equations inside the metal

Hyy = NE,y Hy, = -NE,,

where the minus sign is required to keep the right handed plane

wave. In region three there is only a single wave

~ in% z
E3 =t on e
~ in% z
H, = nt E x e
3 o

E., = E

1 H, = H at z = 0

1 2
EZ = E3 A H2 = H3 at z = d

Applying these at z = 0

Eo(l-1) = Ejy + Eypy
E0(1+r) =_NE21 + NE22
At z = d . ‘
iN= d -iNZ d inz d
E21 € S # E22'e- t Eoe
iNZ d -iN 4q in% d
NBZle - NEZZe = tn Eoe
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These four equations may be solved for the four unknown EZl’

EZZ’ r, t
-iN® a
o 2Nem) e
21
SiNY g iN® g
(N+n) (N+1) e ¢ -(N-1)(N-n) e €
iN® g
£ = 2(N-n) e ©
22 SiN@ g iN® d
(N+n) (N+1) ¢ ¢ -(N-1)(N-n) e €
-iNZ 4 . iN% d
, (N-1) (N+n) e © (N+1) (N-n) e €~
' -iN® 4 iN® g
(N+1)(N+n) ¢ ¢ - (N-1)(N-n) e ©
-iNg 4 N
t=e -iN% 4 iN% d

(N+1)(N+n) ¢ ¢ - (N-1)(N-n) e €

The calculation of the power transmission .and reflection
coefficients is then a tedious but straight forward algebraic
task. They are

7 = ntt* R = rr*

as before. The easiest way to attack the problem is to carry out
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the‘compiex conjugation;and multiplicafion first before
substituting N = n+ik.' Then substitute and collect terms,

and you will find, forging ahead, that the expression is indeed
real and that all of the exponentials have become sines and
cosines of either the circular or hyperbolic variety. The

result is:

o =

-((n?+k2-n?) (n2+k2-1)-4nk?) cos ng + 2k(n+1) (n2+k2+n)sin za%

The expression for the reflectivity has the same denominator and

an equally large numerator, is not needed here, and is left as

an exercise for the reader. |
.If, now, one puts.in the long wavelength approximation

n o=k = (Z"9% ang 2% = 2d/8<<1

one recovers the transmission equation from the simple boundary

value problem.

This is the transmission of the film into the substrate

as before. To calculate the transmission of the entire film and
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substrate assembly, use, as before, the equation of the trans-

mission of a thick substrate.

7. Non-normal Incidence.

The effect of rays not normal to the film surface has little
effect of the angles are not too big. It is then necessary
to consider two cases dépending on whether the electric field
vector is parallel or perpendicular to the plane of incidence
(the plane defined by the normal to the film and by the
direction of electromagnetic propagation). The final result

is from Hadley and Dennison:?°

| L in%6.%
4n(1-sin20)% (1-3L10708y%
Ty T —
- 2 ]/
| n(1 - S84 4 (1 - sine?)* + 4T 44
n? c
1 ing?.%
4n (1l-sind?) (1 sind )¢
& = n?
dn )
1 in%e. L
[n(1 - sin?8)™ + (1 - iiﬂzg)z + %? od

For a spectrometer with £/1.4 optics the maximum half
angle of the radiatioﬁ with the axis of the system is 18°. .
Now sin (180) is .09 so the correction (1-53'.n2180)1/2 is
The main effect, then of off axis rays is to reduce the
apparant index of refraction of the substrate by 5%, or,

equivalently, increase the apparent structures of the film

by the ‘same amount.
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8. Zero Dimensional Samples.

The problem of the optical properties of small metaliic
particles (samples where all the dimensions are smaller than the
wavelength of the light)was first considered by Mie?! and
Debye.?? It is worked out in great detail by Born and Wolf.23
For the case in which I am interested the problem is given in
a simpler form by Landéu and Lifshitz.2?* This is when the
particles are spherical and the wavelehgth of the radiation
inside the sample is longer than the sample dimensions. The

interior wavelength is the skin depth

- A c 5
§ =0~ (zg )
)
where
210,
_ 0y %
n = (——)
Typically for millimeter wave radiation(i = .1 cm), 0, = 1018

sec’? and w = 10'2 sec ! so that n = 10%-10%. The ultra
long wavelength case obtains for particles with diameter
1000 X or less.

There are‘two mechanisms that must be considered which
will reduce the intensity of radiation transmitted through an
array of small particles, scattering and absorption. Of course,
scattering does not reduce the energy of the light; it merely
removes it from the beam. For a detector with large diameter
optics such as any far infrared one the maximum energy that
can be removed by scatferihg alone is the ratio of the

Square of the acceptance angle to 4w. If there are f/1.4
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optics then a large amount of scattering reduces the transmitted
.intensity to .06 the incident value. Because scattering increases
the effective path length through the medium it enhances any
absorption mechanism.

Because of the large wavelength the field around the particle
is quasi static. It causes the particle to be polarized. This
gives rise to fields at large distances; these are the. scattered

radiation. The fields at great distance R are

> 2 ~

Er =% (3 + M x n)
c?R

H' = n x iR

and where P and M are evaluated at retarded time -t - R/c.
The energy fldw per unit time unit area in the direction of

n is the time average poynting vector

g = S Bl
4w ~
The intensity scattered into a solid angle d@ is
~ 4
: w
dl + (S'en) R2dq = A RS L DS oS

¢}

where IO = f% EO2 is the incoming flux density, and xe and xm

are the electric and magnetic polarizabilities. These can be
calculated in this case from the static boundary value problem
because of the extreme long wavelength. They are

e-1 i -4ﬂ02-w+i4ﬂ01

=73 3
Xe " In e¥Z  dm

-4ﬂ02+2w+14ﬂ01

‘ 2 : ‘
X, - g% {1 - 61(%) + 3(1+1i) % cot((1+i)7%)}



) ,
where § = (7F§$)2 In this case. §<<D and
- _ _m_ D4?w? | . D¥ouw
Xm = 7 720 . 1 "
S 4D c

It can be neglected with respect to the electric ternm.

The differential scattering cross section is

y )
ds = W y2 2, 2y in2g6dQ
= VUl x| D) sinTe
9 w" .
= = X V2. sin?gdQ ol>>cz,w
16n2 ct

The total cross section for scattering is -

R AR

3
l W
‘ =.%_.£_V2

The absorbtion cross section is given by the tatio of
energy dissipated per unit time (Q) to the incident energy per

unit area unit time (S).

_ 0F _ . oH
Q = -D- t ~ M3t

5 V(x. *X . )|E|?
€ " My

where Xe and Xp 2are the imaginary parts of the electric and

2 2 o
magnefic polarizibilities respectively. Then

2 .
S=?‘" +Xm)

wV{x
e, 5



22 - 2
S = “'Tr: Dawzdl( 2 + D )

16.772012 40c?

This calculation has fcund the cross section for one
particle while the experiment gives the absorbtion ccefficient
for an array of 10'® particles. The absorbtion coefficient,

o, 1s

where N/V is the number density of the particles.
The transmitted intensity -through the array is
: N _ N
-al O—V-Z eOK

I =1 e . =1 e = I
0 o] o]

where IO is the incident intensity, is the length of the
sampie, and N/A is the number of particles per unit area

normal to the bean.



APPENDIX C

LINEAR RESPONSE THEORY

1. Generai.
Linear response fheory‘is a version of time dependent
: perturbgtion theory applied to statistical systems. It has
been discussed in detail in connection with correlation functions

> 1In this appendix I will attempt to show how to

by Martin.?
use it to find the connection between the current correlation
function and the conductivity used in Chapter III. This will

draw heavily on a set of lecture notes and a problem from Wilkins?®

2. The Density Operator

It is required to calculate the change in the expectation
value of an operator J from its equilibrium value due to the
application of a weak time dependent external perturbation
Hl(t). Given |o> a complete set of states and Pa the probability
~that the system is in the ath state, the denéity operator is

defined as

p = IPafa><al
a

The expectation value of an operator J is
<J> = T_pJ = £<g|pJ|B> I Pa<pla><a|J|B>
B a
where the |{B>are any complete set of states. Now the Schroedinger

equation 1is

d

5T | a>= H[a?

ik

which implies

N
ik 3t P (H,p)

-148-
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Now, to do perturbation theory write H = HO + Hl,p =p +

o 1

Ho is the (solvable) unperturbed Hamiltonian and R is the

density operator appropriate to it. o is ihdependent.df H, and

1
Py is proportional to it. One likes to work in the interaction
representation; it is convenient to put the time dependence of

H into p. So define

0
1 —iIot
HHOt ‘H}
e pe

I =P p 1
P o T 1
i i
ot -gHot
A A .
_ o 1
and, neglecting terms of order le
. ) I _ I

3. Change of an Observable.
To find the change in the operator J when the time dependent
perturbation is turned on, suppose that this is done slowly from

time t = -».. The change in the expectation value of J is then

<6JI(t)>

i

SO <JI(t)>H = T 0T - <IN ()3,
- e}

1l

I
T oy (1) J(T)

To find the value of plI at any time, integrate the equation

for the time derivative of it in terms of the commutator of H I,

1
and Po- to find

ey (0) = g ST () o de = g sB(e-e T (e 0 ) d
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and I
<§J (t)>

A‘%_iwdt'e(t—t') Tf{(Hi(t'),po)JI(t)}

i e : I I
-Kﬁi dt'e(t-t") Tr{po(J (), Hl(t'))}
using commutation properties of the trace.

4. The Perturbation Hamiltonian.
Let
nlce) = P (DU
Where J+(t) is the Hermitian conjugate of the observable J and
U(t) is an external potential. At this point also drop the

superscript I.

5. Fourier Transforming

With the above changes, the Fourier transform of the change

in the expectation value of J is

e-iw'(t-t')

w' + ie

<6J(w)> = 7%5 e Pde s

- 00 - 00

U <E(e), 37 ()] 56 0"

since the 8 (t-t') is

- . -iw(t-t")
o(t-t*)= if %% °

w!' + 1i¢

Make the following change of variables

[o 0] oo
w'rw-¢ , S dw'> [ do'

- 00 ) - 00

totet', [Tdt> [ dt
-
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iwt' o dwh o iw't. 57 : +
/ S dt e <[3(t+t'),J (t11]>0

- 1 X3 '

o]

Notice that the expectation value of the commutator is taken
in the unperturbed system. (The density operator which was used
was po) Because of thié its value can only depend pn the difference
of the arguments, t+t'-t, only. In that expectatipn value the
arguments can be set to t and 0 respectively. The the first

integral is just the Fourier transform of the potential, U(w).

1 dw' 2 at eiw't<ZJ(t), J+(O)J>O

<6J(w)> = U(w) T fwm—w'+ie

=U(w) x(w)

with x(w) defined appropriately.
The complex function x(w) can be shown to satisfy the Kramers-

Kronig relations by doing the following integral in the w'f® UHP

Fde'r X' _

w''-w .
c
X(U.)")dw"
= l’lT)(((D) +1_)°.£°° o' - . P
or
1 - Rex(w")dcu" )
Imy(w) = = Ps \
—o w'' - .
w
g Tt Tt ’
Rex (w) = % ?i Lnx(w” ) dw

w''-w

Figure Cl1. Contour for Kramers-
Kronig
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Electromagnetic Béhavior‘

6.
The frequency dependent conductivity is calculated by

considering the change in the expectation value of the current

operator J(x,t) due to an external vector potential A(x,t).
' The pertubation Hamiltonian is
Hy = % rddx 3X,0 A&, 1)
Except for the vector notation and the integral, this looks

like (mirable dictu!) the H1 used earlier. The electrical
conductivity is defined by

Tu(q,u) =ouv(q,w) {g Av(d,u))

where '
> _ 1 3 -i(E-%-wt) >
Ju(g,w) =7 / dx dt e Ju(x,t)

The gauge used is the one where ¢ = 0 and

=2 Av(q,0) = Ev(q,w)

The gauge X = 0 could also be used.
Since there are no currents without the external perturbation

<Ju(q,w)> = <6Ju(q,w)>

iao; 3 |K' ' ©, dw' iw'
K JAx'A(x",w) S W-w'+16 fmdtelw t

= .1 3,0
= “7mchy Jdxe e
<[u, v, F&,0]>,

The translational symmetry of the system requires that

<Jﬁ(x,t)Jv(x‘,0)5 depend only on |§—§'| . Using the
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convolution theorem,

- F(X) = fdt'g(x-X"J(x") = F(Q) = g(QH@),

the expectation value of the current immediately becomes

e 3y A . |
[«9] o t .
@) = ML) ool ettt Gy @ ey, 30-8,00]5, \

|

and

- > _ i oo dw' 0 . -> _-—> - .
ouv(q,w) = ROV i RETRAESES i dt<[§u(q,t), Jv( q,Oi]>o(c05mt+1 sinwt)

Ghvl + 1cuv2

where 0Hv11§ the real and OUVZ the imaginary part of the

conductivity. Comparing this equation with the Kramers-Kronig

relations makes it immediately obvious that

Vouvz(g,w) ='7%%V fmdt<[§u(q,t), Jv(—g,01]>o sinwt
The only remaining task is to evaluate the expectation value of

the commutator.

Recall

. (ju\)l(qaw) = ﬁ_imdt{@ﬁ(gzt)’ J\)(-@,O)—j>o coswt
<f3(e), 300))>,

T,0,{3(£)J(0) - J(0)J(t)}

il

LP <al|J(t)J(0) o> - ZPa<alJ(O)J(t)|a>
o o

z Pa<u|J(t)|B><BIJ(O)|a> x B<B|J(O)Ia><alJ(t)]B:
aB af

0 where|a> and |8> have been exchanged in the second sum

P
=I P _<a|J(t)[8><B[I(0)[a> (1-52
aB : o



2154~

" For most situations the ensemble characterising the Sysfem is

canonical, e.g.

and : . | '

o.B
<[§(t),J(oi]>o KT

z Pa<a]J(t)|B><3|J(O)|d>(1-é
aB

A :
(1-e ET) <J(t)J(O)>6

so finally
Hw

= o (1-e IET-) det<Ju(a,t) Jy(-q,0)>_ coswt

1 T ZRev

1 T, [ i
0y = zav (16 ) [dt<I (4,1) J,(-q,0)> sinut

are the expressions for the real and imaginary parts of the

conductivity.

7. Fluctuation-Dissapation Theorem
The conductivities calculated in the previous section are
the ones usedAin\Chapter IITI, on fluctuations in a super-

conductor. Another method of doing that calculation is to.’

use the fluctuation-dissapation theorem; this is the way that

Schmidt?’ attacks the problem. Returning to the middle of

section 5 and rewriting the eduation for x(w) -




1 o dw"

$(w")

X(0) = o

w-w'+ie

with K

e’y = s7de M [I(e) 5T 0)] > - (1-eXT )

Patel® a3t (0)>

-0

called the spectral response function. Now consider

b)) = SCdr e ), 70

e o]

where'{J,J+}-E J3 + J7J. The expectation value of this is

I (0,37 (01>, = Tro (F(£)T7(0).+ JT(0)I(2))
With an analysis exactly following that for the commutator

y(w') becomes
Hw'

Pl = (1+eXT ) fPat o0 ter(r) st (0)>

- 00

the only difference being the plus sign. Next, write

<]I(0)]2> = 2<3(0)TT(0) +  JT(0)I(0)>

1 .. o d -iwt
= Vi lim J -2'-$ e 1 l!)(u))
t>(0 -

]

R L )

21' 1798 g () L)

q)(w)co’ch‘ﬁg

© dw
/ KT

SHOIEE W

] =




Now by using.
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1 g _¢(w.)dmA R g (") d’
x(w) = e = P/ -
. i w-w'+ie 2mh - w-n'
one gets .
x(w) = g P /oYW )"i“’ 75 9 (w)

The first term
part, since. it

conjugate, let

<|J|?> = ﬁf

1
P

is- the real part of x and the second the imaginary

is easy to show that ¢ is real.

(Take the complex

t become -t and you will recover ¢.) Then

> Im x(w) coth F—

This is the fluctuation-dissapation theoren.

ho

where coth T~

Kramers-Kronig

2kT -

2y - . KT = dwImy(0)
<lajz> = - K o ddm(0)
= -kT 1lim R ¥ (w)
w+0
and
, ) 1 X
x(0) = -g7 <lJ]%>

Ko where ¢+0 causing Imx»0 also,

At low frequencies,

then from

fmé(w-wﬂ)¢(w')dw'




APPENDIX D

UNSUCCESSFUL EXPERIMENTS

The purpose of this appendix is to mention a few things
‘that didn't quite come off but which might be of some interest
or use.

1. Coated Lead Films

The first attempts at the fluctuation experiments were
done on lead films grown in a separate evaporator and then
mounted on a standard sample rotator. In order to protect the
surfaces of the films they were covered by an evaporated layer
of KC1 after the lead evaporation but before removal from the
high vacuum. The KC1 protected the lead surfaces from oxidation.
The way it was done was as follows. First, KC1 substrates were
cleaved, put into the evaporator and four narrow goid strips
were deposited for resistance probes. Then the evaporator was
opened énd the mask was changed to a circular one. After
evacuation the substrates were cooled to near liquid nitrogen
temperature and the lead and KC1l evaporations followed in quick
succession. They were then warmed up, removed, leads were
soldered to the gold contacts, and they were mounted to a
variable temperature sample rotator.

The problem was that it was not possible tb get continuous
films that transmitted enough to make the'ﬁery sensitive measure-
ments needed for the fluctuation experiments. Measurements of
the. transmission at 4.2° or 1.2° compared to that at 90° X

showed the peak at the energy gap first seen by Glover and
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Tinkham?® very nicely indeed. This might be a good method
for preparing samples designed for high pressure experiments on

superconductors.

2. Coaxial Light Cohes.

Following a calculation bf R.K. Elsley on the low frequency
cutoff of cylindrical waveguides compared with a coaxial arrange-‘
’menf which has no such cutoff, a Compariéon was made between
the transmission at room temperature of a standard condensing
cone (1/2 inch to 3/16 inch) to a similar cone with a 1/16 inch
brass rod down the center. It was expected that the latter
would show an improved transmission at around 2 em” .

Well, it did, sort of. Compafed to the standard cone the
coaxial one transmitted 90% at 2 cm ' and 80% at 8 cm™!. The
brass rod simply took up too much area. If a very thin wire‘
could be stretched down the centef of a light cone or light

pipe and could be kept centered and straight it would probably

be worth doing.

3. Crystal Quartz.

The first experiﬁents on small particles were done with
the particles mounted on crystal quartz blanks. One can
imagine the delight when temperature dependence on these
samples‘showed a decrease in transmission at the lowest
frequencies (beginning at 3 ém-l and becoming less at lower
. frequencies) as the temperature was reduced. There was another
absorbtion band at 25 cm '. One can equally imagiﬁe the

distress when this was found to be an artefact of the quartz
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on which the particles were sitting.

This is not really an unsuccessful experiment but rather
an uncompleted one. There is a very low frequency absorbtion
in crystal quartz at very low temperatures. The problem
will arise in deciding whether this is due to thé gquartz

itself (unlikely) or to some impurity (and if so @hen what?).
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