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ABSTRACT

The purpose of the Saxton Plutonium Project is to develop information
concerning the utilization of plutonium enriched fuel in pressurized water
reactor systems, through design, fabrication and operation of a partial

core of Pu02—UO2 fuel in the Saxton Reactor.

Saxton Core I contained enriched UO2 fuel in all 21 of its assemblies.
This report describes the Mechanical Design and the Thermal and Hydraulics
Design for Saxton Core II, which contains nine centrally located Pqu-UO2

fuel assemblies and twelve peripheral UO2 assemblies. The work on the

Pqu-UO2 portion of Core II was carried out for the Joint US-Euratom R&D
Board under contract number AT(30-1)-3385 administered by the USAEC New

York Operation Office.

Design guidelines for the Pu02—UO2 portion of Saxton Core II included:

(a) 20,000 MWD/tonne peak rod averége burnup, (b) 16 kw/ft maximum heat rate
in the rods, (c) at end of design life, internal gas pressure to be less

than external reactor operating pressure, and (d) fuel rod outside diameter,
length and lattice spacing to be the same as for the UO2 rods in Cores I

and II. Related work in the fields of Nuclear Design, Materials Design and

" Fuel Fabrication and in Criﬁical Experiments for the Saxton Partial Plutonium

Core is described in EURAEC's 1490, 1492 and 1493 respectively.

vi



INTRODUCTION

The primary purpose of the Saxton Reactor has been to make available a small
version of modern commercial, closed cycle, chemical shim control reactors for
use with a post construction research and development ﬁrogram directed towards
further improvements in nuclear power economic¢s. Consequently, the first core
was designed, not as a physics experimental project by itself but'instead as a
reliable source of nuclear power using the latest design téchniques available ét
the time as developéd in conjunction with the Yankee reactor, the multi—region

reactor program, the large reactor development program and the SELNI reactor.

One of the most important parts of the Saxton R&D prograﬁ includes investigations
in the fields of fuel development and chemical shim reactivity control to increase
the power generation per unit volume of core. Consequently, the size of the core
was selected to permit "pushed" operation. This consideration led to the use of
an active core containing 21 assemblies even though the reacfor vessel contained
space for a total of 32 assemblies. Five of the 21 assemblies were made "annular"
so that they could accommodate removable 3 x 3 subassemblies which can be made
specially enriched and instrumented. These subassemblies may be inserted or
removed through ports in the reactor vessel head. Hence expefiments carried on

in these five regions can be changed or examined without removing the vessel head.

In Saxton Core I, the basic fuel element was made with .391 inch 0.D. type 304
stainless steel tubes with a wall thickness of .015" containing uranium dioxide

fuel as cylindrical ceramic pellets. The pellets were .357" diameter and .732"



long with dished ends and fifty such pellets were placed in each tube with no

discs or spacers between pellets.

Fuel follower assemblies were used to occupy the water slots created when

control rods were withdrawn.

Because each fuel assembly was slotted to accommodate one half of an offset
cruciform control rod, the outer nine assemblies, which do not receive control
rods, were filled with "L" shaped sets of fuel rods as inserts. These insert
tubes were made of type 348 stainless steel with a wall thickness of .028" giving
an 0.D. of .U17 in. Type 348 stainless steel was used because the insert assembly
was brazed together rather than assembled within spring clip grids as were the

main assemblies.

The active height of the fuel was 36.6" and the equivalent diameter of the core

was 28.1".

Figure 220-1 shows the Saxton Reactor Core Cross Section and shows which assemblies
in Core 1 were replaced by Pu02—U02 fuel assemblies in Core II. The control rods,

followers and "L" shaped fuel assemblies used in Core I were retained and are

being used again in Core II but in different locations within the core.



2.00 1.D. VESSEL
HEAD PORT

"L SHAPED
FUEL ASSEMBLES
(® ToTvAaL)

3.00 \.0. VESSEW

/’ HEAD PORT

3.001,0.-L]"

IN CORE SUPERHEAT
THIMBLE LOCATION
SEE NOTED

— CONTROL ROD AISEMBLIES

/ (@ TOTAL)

4

i

NOTES:

aTO e = QUTLET INSTRUMENTATION PORTS.

[ TO IV ~ REMOVABLE FUEL SUB-ASSEMBLIES

V = SUPERCRITICAL FUEL ASSEMBLY OR INTERCHANGEABLE
DUMMY ASSEMBLY.

A. PLUTONIUM PELLETIZED FUEL ASSEMBLIES.

B. PLUTONIUM VIBRATORY COMPACTED FUEL ASSEMBLIES,
C. CORE [ TYPE UO2 FUEL ASSEMBLIES.

0. DUMMY FUEL ASSEMBLIES

E. CORE II TYPE UOj FUEL ASSEMBLIES,

F. SPECIAL 49 ROD CORE UO

TOTAL NO. OF AUXILIARY "L" FUEL ASSEMBLIES
TOTAL NO. OF FUELED FOLLOWERS
SECONDARY SOURCE RODS -

NO. OF ASSEMBLIES

ASSEMBLY.

2 TOTAL AS SEMBLIES

No«o%l—-=umw

REMOVABLE FUEL RODS - 20 (11Uo, &9 PUUOZ)

' TOTAL NO. OF FUEL RODS (EXCLUDING REMOVABLE TEST ASSEMBLIES )

CORE - 884 U0

630 Pul0,

FOLLOWERS - 108

1622

WEIGHT OF FUEL (EXCLUDING TEST ASSEMBLIES)
CORE - {182 LB.-(UOy)

760 LB~ iPUUOj)

FOLLOWERS - 137 LB. (ORIGINAL CORE I WT. UNCORRECTED FOR BURNUP.)

TOTAL

2079 LB.

Figure 220-1 Saxton Reactor Core Cross-Section



SAXTON CORE II MECHANICAL DESIGN

CORE LOADING

The Saxton plutonium program utilizes a total of 638 plutonium fuel rods which
have been loaded into nine main fuel assemblies of the standard Saxton Core II
designs and one removable fuel subassembly. These fuel assemblies have been

positioned centrally in the core as shown in Figure 220-1. A breakdown of the
638 rods showing the types and numbers in each fuel assembly is given in Table

220-1, arranged by groups defined in Figure 220-2.

MAIN FUEL ASSEMBLIES

The main fuel assemblies containing plutonium fuel rods are shown in Figure
220-2. In addition to the fuel rods, the basic componeﬁts of each fuel assembly
consist of four grids, two enclosure halves, and one each top and bottom nozzles.
The grid assemblies are of brazed '"egg crate" construction and are spaced axially
at ten inch spans to provide lateral support for the fuel rods. The enclosure
halves are welded to the peripheral straps of the grid assemblies to support the
grids and to tie the fuel assemblies together. The nozzles, which provide a
means of handling the fuel assemblies and of positioning the assemblies in-the
reactor core, are welded to the top and bottom gnds of the enclosure halves. A

photograph of a typical finished fuel assembly is given in Figure 220—3

The fuel rods are arranged in a square lattice in a typical main fuel assembly

with nine rods in each direction on a .580 inch pitch. Of the possible 81



Table 220-1

Types and Number of Plutonium Fuel Rods in Each Fuel Assembly

Number of Fuel Rods Per Assembly

Number of Vibratory Ccmpacted

Assenbly Type Assemblies Zr Clad SST Clad
Main Fuel Assemblies
Group 1 1 62 8
Group 2 >
Group 3 1
Group L 1 2
Group 5 1 TG
Removable Fuel Assembly 1 4

(2 Removable)

Removable Fuel Rods 2
(For Main Assesmblies)

Pelletized
Zr Clad SST Clad Total No. of Rods

70
70 350
52 18 70
57 2 61

70
N 8

(2 Removable)

7 9

638
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lattice locations in this pattern, 9 locations at one outer corner are
eliminated from each fuel assembly to provide room for cruciform shaped control
rods which are positioned between the assemblies. In addition, two lattice
locations in each fuel assembly are left vacant during fabrication to allow for
insertion of flux wire thimbles, source rods, or removable fuel rods in the

assembly when the assembly is installed in the rcactor.

It will be noted from Figure 220-2 that the group 4 plutonium fuel assembly has
a8 square axial hole in place of the nine center fuel rods. This provision is

made to allow for insertion of the removable plutonium fuel subassembly.

REMOVABLE FUEL SUBASSEMBLY

The removable plutonium fuel subassembly is shown in Figure 220-4. The sub-
assembly contains eight fuel rods arranged in a square lattice with three rods
per side. The ninth lattice location in the center does not contain fuel but
is occupied by a flux wire thimble when the subassembly is installed in the

reactor.

As with the main fuel assembly, the removable subassembly is constructed of
four grids, two enclosure halves, and top and bottom end plates. In order to
provide assembly clearance for insertion of the removable subassembly into the
space normally occupied by the nine central fuel rods in the main assembly and
to compensate for the added thickness of the enclosure and outer grid straps
in the removable subassembly, the pitch between fuel rods in the subassembly

has been reduced to .538 inches.
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The removable subassembly was provided in the plutoniqm program to allow for
periodic removal and visual inspection of typical plutonium fuel rods without
the necessity of removing the reactor vessel head. The subassembly is inserted
into and rembved from the reactor through a port in the reactor top head. A
femovable support tube and latch assembly is used to handle the removable sub-
assembly and to support it axially in the reactor. The support tube latches to
the fingers on the top plate of the removable subassembly and hangs from a
conoseal joint in the reactor head port to axially position and suppoft the
removable subassembly within the main fuel assembly. The complete removable

fuel assembly with the support tube attached is shown in‘Figure 220-5.

In order %o allow for periodic visual inspection of the plutonium fuel rods,
four of the eight rods in the removable subassembly are of the removable type.
The top end plug of the removable rods protrudes through the top plate on the
subassembly, so that when the support tube is unlatched from the subés;embly,
the top end of the removable rods are accessible. Tooling is available at
Saxton to grasp the top end plug of each removable rod,to remove the rods from
the subassembly, and to position them before an underwater periscope for visual

inspection.

The flux wire thimble which occupies the center position in the removable
subassembly is actually a part of the support tube and latch assembly, and is
supported axially from the conoseal adaptor at the top of the support tube.

Thus, when the support tube is disconnected from the fuel subassembly to gain

10
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access to the removable fuel rods, the thimble will be withdrawn from the
subassembly. A specilal tool has been designed and built to aid in guiding

the thimble back into the subassembly when the support tube is reconnected.

FUEL RODS

General Description

The fuel rods utilized in the Saxton plutonium program are shown in Figures
220-6, 220-7, and 220-8. The basic features of construction for the various
types of rods are simiiar; i.e., they all consist of fuel encased in tubular
cladding with welded end plugs and a hold down spring at the top of the fuel
column to restrict axial motion of the fuel within the cladding. The fuel in

all cases is composed of a mixture of natural uranium and plutonium dioxide
powders in either the pelletized or vibratory compacted (VIPAC) form. Zircaloy-L
tubing is used primarily for the fuel rod cladding although a few 304 stainless
steel clad fuel rods (30 total) have been included in the program for test

comparison purposes.

Although Figures 220-6, 220-7, and 220-8 show ten different groups of fuel rods,
the differences between groups, except for fuel and cladding, are confined to
the configuration of the various eﬁd plugs external to the cladding. Thus, four
basic types of fuel rods, as determined by the fuel and cladding, are utilized
in the plutoniumlprogram.' The design data for these four types of fuel rods are

given in Table 220-2.
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Figure 220-6 Non-Removable Rods tfor Main Fuel Assembly
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14




41.032

SEE NOTES ' 48

40,968

—.329 DIA.MAX,

INSCRIBE WITH VIBRATING PENCIL
OR ELECTRO-ETCH IDENTIFICATION
NO. ON TOP END PLUG WITH

CONSECUTIVE NOs. EE NOITE. 2.

AFTER WELDING
4O ece nate.s TYP SEE NOTES T4 8
(229 (sec mnoTE W)
T R B a
ani . ol T
LD — \ [ b
/
1”2 ! /
(10) -~ g see NoTE © (e @
, GROUP 1| | 0%
e = £
i
39.083 o
35,619
36.6 RIF. i
}
[ / | T
////////‘////\ JJ )// /7///// s ﬂ
== 1 g “zzrezan
B L . -
D) (= (= (n \(f-f')
GROUP_2 e { -
OTHERWISE SAME AS GROUP | f
!
1
3
1 39.083 ;?
39.01 . ‘
!
1007 ses w
——IEJAT .
—=2%% (eeE woTE W) |
/] L

ﬂ

W

-] 2 SEE NOoTE o v e
- - t
GROUP 3 !
OTHERWIDE SAME AS GROUPI ,
41,022 1
30.968 g
,
1.608 26.60 REF. |
1295

1.295 SEE NOTE
LIS

r~

]

AN

el
I

GROUP 4
OTHERWISE SAME AS GROWVP |

J!

B

BILL OF MATERIAL ) . MO, REQ. .
AF vm ommna a | e = HHHEP
ok Gr.on . @555 K]
i|ent PLuG 74.C887 IT.4| i [-1-]-
2|EnD PG b74C88617.3| -1{-l2]-
3]|Tues koo 8772 ITgl TT=1 1=
salTvee 674 C86HIT. | X -]t
SlEND PLuG k74 C886 IT. | -J2[-]-
S [SPRING 500 B 086 IT.ij == |
7[PLLER 428 8981 T2 = -l
Y|8[PELLETY STACK 500 BOTI &R 1 [-[v]-
Ao |FUEL COLUMN - . - R -
QIEND PLUG iaceay i § 4 =1-T-
H{FILLER 5008158 1.2, -pel- B
12[sPrRiNG 500 8157 1.2 V=1v[-
I3 END PLUG [crac087 171 I S
14[enD PLUG . T |e74<Be7 ITE 1-1-N

K- FUEL TO CONSIET OF URANILM DIOXIDE AND PLUTOMIUM
DIOKIDE POWDER, PREFPARED FOR COMBACTION BY
DYNAPAK OR EXQUIV. PROCEBS AND VIBRATORY COMPACTED
PER WAPD APP ROVED PROCEDLAL TO A DENSITY OF
V7.0 T 17, OF THEORETICAL. ENRICHMENT OF UO,
OXIDE COMPOBITION , PLO; CONTENT, PARTIGLE DENBTY
4 SIZE FOR POWDER TO @€ SPECIFIED ON 0.

~ GAS 4 VAPOR CONTENT OF FUEL TO BE LIMITED TO FOLLOWING °
GROUPS |43 — H;O - 30 PPM

Nz — 7S PPm

(ST IS POM

TOTAL GAS — .OS5%/gum (EXCLUSIVE oF We0)
GROL P 244 —— H,0 — 100 PPM

Na — 100 PPM

Hz — 20 PPM(37-H{C-H BOND)

TOTAY, GAS -.0F/gm(EXCLUSIVE OF W)

L WELD PROCEDURE AND INSPECTION TO BE APPROVED BY WAPD,

Z. RECORD 10ENT NO, FUEL WT, ¢ MEVAL wT.

3. MOISTURE CONTENT OF FUELS PRIOR TO WELDING YO BE A®. |
SPECIFIED IN NOTE'Y*., TURE MUST BE DRY

4 USE ONE FILLER AT BOTTOM OF FUEL TUBE -AND ADD FILLERS “TO
TOP END AS NECESSARY (MIN OF ONE ADDITIONAL FILLER AT
TOP END) TO OBTAIN THIS DIMENSION.

5. ROD ASSEMBLY MUST BT STRAIGHT WITHIN .OK PER FT.
BETWEEN END PLUG WELDS WHEN LYING ON A FLAT SURFASE
AND END PLUGS MUST BE CONCENTRIC WITHIN .OOB WITH
RESFPECT TO END OF TUBC. .

6. PRIOR TO ASS'Y. ,WIPE INSIDE ¢ OUTSIDE SURFACEKS OF .
TUBE, SPACER,, END PLUGS, ¢ SPRING(USE ALCOMOL oNLY
aS A Eo\_vev.rr) WITH SWARS TO REMOVE ALL FOREIGN M TER
WIPE WITH DRY SWAB AFTER CLEANING .

7. ALL SURFACES \N WELD AREA T HAVE SMO O
TRANSITION. CAUTION | NO GRINMDING OF TUBE WALL A
ROLLING OF WELDS PERMITTED PROVIDED THE OPERATION
DOES NOT EXTEND OVERTHE UNGBUPPORTED CL A AREA J
THE ROLLING PROCEDURE 18 TO BE APPROVED BY NAFD ENGINEERING]

8. FUEL ROD ASS'YS TO BE CORMOBION TESTRD AFTER,
WELDING N ACCORDAMCE WITH W APO APPROVED
PROCEDURE . MAX. TUBE AWELD DiA. AgTER PICKLING TO BE 337,

Q. PRICK PUNCH END PLUGE OF GROUPS §3, AT 3
EQUALLY SPACED LOCATIONS TO OBTAIN .001 /.008° .
INTERFERSMNCE FIT WITH TUBE. CAauTION | REMOVE AuL
SHARP COGE®D IN RAISED METAL CAUGED AY PRIGCK,
puucumc. 30 A® NOY TO SCORE 1.0 OF TUBE (T BeTh Tade) |

0. THiS "DIMENSION To BE ESTABLISHED BY SPRING

INSERTION TOOL £ 15 NOT AN \NSPECTIOW
REQUIREMENT,

Figure 220-8 Fuel Rods for Removable Fuel Assembly
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Table 220-2
Plutonium Fuel Rod Data

Fuel Configuration Pelletized ' Vipac

Clad Type - 304 SST Zircaloy-L 304 SST Zircaloy-k
Clad Inside Dia., In. 0.361 0.3L4ks5 0.361 0.3L445
Clad Wall Thickness, In. 0.015 0.0233 0.015 0.0233
Clad Outside Dia., In. - 0.391 0.391 0.391 0.391
Pellet Diameter, In. 0.3558 0.3Lk5 - -
Pellet Length, In. 0.366 0.366 ~ -
Diametral Gap, In. 0.0052 0.0071 » - -
Fuel Column Height, In. . 36.6 36.6 36.6 36.6
End Gap, In. 0.797 0.797 0.855 0.855
Fuel Density, Percent
of Theoretical oL oL 87 87
Fuel Enrichment, Weight
Percent Pu0, 6.6 6.6 6.6 6.6
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The external configurations of the end plugs are dictated by the lacation of

the fuel rods in the fuel assemblies. The fuel rods shown in Figure 220-§ are
the non-removable rods for the main fuel assemblies. These rods were loaded into
the various main fuel assembly groups at the lattice locations specified in

Figure 220-2.

The fuel rods shown in Figure 220-7T are the removable rods used in the main fuel
assemblies. These rods were inserted into the lattice locations in the main
fuei assemblies which were left yacant for this purpose. Although-two such
locations are provided in each of the nine main assemblies, only nine'removable
rods were manufactured. The remaining vacant lattice locations were utilized

in the reactor for two startup neutron source ro@s and for seven flux wire

thimbles.

The fuel rods shown in Figure 220-8 were designed for use in the removable

3 x 3 fuel assembly.

Design Criteria

The Saxton PuOQ-UO fuel rods are designed to permit a peak rod average burnup

2
of 20,000 MWD/tonne with no change in the basic configuration of the Saxton fuel
assembly design. The Saxton Core II design fuel assembly enclosures and grids

which were used with the UO, fuel rods were, therefore, used also as carriers

2
for the Pu02-U02 fuel'rods; For consistency with the design of the Saxton
Core II UO2 fuel rods, and to meet the above design objectives, the following

criteria were used in the mechanical design of the stainless steel clad Pu02—UO2

fuel rods.
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1. The fuel.rod outside diameter and overall length will conform to

those used in the design of the Core II UO2 fuel rods.

2. The fuel rod cladding will be free standing under reactor design

. Ppressure and temperature conditions.

3. Diametral contact between the fuel pellets and cladding will occur

only under the worst expected tolerance, power, and'burnup combinations.

4. Internal gas pressure in the fuel rods at the end of life will be less

than the reactor operating pressure.

5. The fuel rod design must be such that axial movement of the fuel will

be restricted during normal handling andvshipping loads.

6. The maximum heat rate in the rods will be limited to the present maximum

of 16 kw/ft for Saxton.

The design of the Zircaloy clad fuel rods was established using criteria similar

to those for the stainless rods with the exception that diametral contact between
the pellets and cladding is not limited entirely to the worst tolerance, power, and
burnup combinations. Because of the creep prqpefties of Zircaloy-4 at high
temperatures, it is expected that some reduction in clad diameter may occur in

the hot zone of the fuel rods. However, since this creep will be limited to the

~ high temperature region of the rod and'will cease upon contact between the fuel

and the clad, it ﬁill not affect the integrity of the clad nor will it limit the

reactor operation.
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Design Details

In the initial design of the Saxton plutonium fuel rods, some consideration was
given to reactor operation at 28 MWt. At this power level, the peak heat rate in
the hot rod, based on preliminary hot channél factors, was 18.6 kw/ft. . Thermal
and mechanical analysis of the hot rod at this heat rate showed the Zircaloy
cladding and fuel center temperatures to be quite high and the end gaps required
for fission gas volume, based on fuel properties data at that time, to be excessive.l
In view of possible variations. in hot channel factors and fuel temperatures, and
the lack of data at that time on the high temperature stress corrosion behavior
of the Zircaloy cladding, the maximum allowable heat rate for the plutonium fuel
rods was maintained at the 16 kw/ft limit established for Saxton Core I. The
cladding wall thicknesses andvfuel to clad radial gaps were set, therefore, based

on this heat rate.

Fuel Cladding

’

In establishing the cladding dimensions for the plutonium rods, the outside
diameter was dictated by the existing Saxton clad size. The design and analytical
effort therefore centered on sizing the clad wall thickness and determining the

clad stresses.

The governing conditions for sizing the clad thicknesses were the pressure stresses
at the beginning of life and the thermal stresses in the clad at the hot spot.
These combine to form the séverest case at the beginning of life. Since it was

a design requirement that contact between the pellets and cladding occur only
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under the worst conditions, the pellet to cladding diametral gaps were
established to just allow contact with no net interference. Thus no clad stresses

resulted from differential expansion between the fuel and cladding.

In specifying the clad dimensions, some allowances.for ovality in the clad inside
diameter and tolerances on the clad wall thickness are necessary. When calculating
the pressure stresses in the cladding, it was assumed that the clad was oval

within the allowances specified and that the net external pressure then induced
bending stresses as well as direct stresses at the clad major and minor axes.

Thus, at the beginning of life when the intermal pressure in the tuel rod is
essentially zero, the net external pressure on the cladding is the full reactor
pressure and the induced pressure stresses are maximum. These stresses are
compressive and when combined with the thermal stresses at the inner clad wall

are the maximum stresses.

During operation at power, internal pressure increases in the fuel rod as a
result of fission gaé generation and release of water vapor and gases leflt in

the fuel during manufacture. At the énd of 1life, the net pressure difference
across the clad thickness is low and the pressure stresses are quite small. As
the pressure stresses are reduced, the thermal stresses, which remain essentially
constant, will become overriding at the outer clad surface. At the end of life,
the stresses on the clad outer surface will be tensile. These stresses are
thermal streéses, however, and in no case will the cladding be subject to tensile
pressure stresses. The maximum calculated pressure and thermal stresses for the

beginning of life conditions are listed in Table 220-3.
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Table 220-3

Maximum Clad Stresses at the Beginning of Core Life

2% Yield- Circumferential Clad Stress Psi
Cladding Avg.Clad Strength Types of Minor Axis Major axis
Material Condition Temp, °F At Temp,°F Stress Inside Cutside Inside Outside
Steinless Avg. Rod 600 €5,000 Pressure -L950 -51,670 | -52,80¢C -3820
Steel Thermal 2800 2,800 ~ 2,800 _2800
Total -T750 -48,870 -55,600 -1020
Hot Spot 072 62,000 Pressure -28,L20 -26,200 -31,480 -25,1L0
Thermwal - 5,560 §,560 - 9,560 9,560
Total -37,980 -18,640 -41,0L0 -15,580
Zircaloy Avg. Rod 605 55,000 Pressure -2¢,870 -17,260 -21,830 -16,300
Thermal - 2,890 2,680 - 2,890 2,680
Total -23,760 -14,580 -2k, 720 -13,620
Hot Spot 692 51,000 Pressure -12,330 -25,800 -27,870  -10,260
Thermal - - 830 ’ _ 170 - 830 770

Total -13,160 -25,030 -28,700 - 9,490



Fuel Restraining Spring

=

In order to minimize the podssibility of hot spots océurring in fuel rods as a
result of axial gaps in the fuel columns, the current design practice at
. Westinghouse is to utilize a fuel restraining spring in the fuel rods. The
spring and its methods of support are designed to prevent gross movement of the
fuel within the cladding duringAhandling and shipping but. to allqw differential

axial expansion between the fuel and cladding during reactor operation.

In the initiai stages of the program, a helical coil spring was used as the fuel
restraining spring for all plutonium fuel rods. Later in the program, however,
the coil spring was deleted from the pelletized rods in order to obtain a&ditional
void volume for fission gases without reducing the fuel loading. A Belleville
type spring which occupied negligible volume was used in place of the coil spring

in these rods and also in the UQO, pelletized rods made for Core II.

2
In the vipac rods, the internal voids in the fuel resulting from its lower density
: ﬁere found sufficient to compensate for the volume of the fission gases. Since

the volume occupied by the coil spring was not needed, in this case, to accommodate

fission gases, the coil springs were retaiped in the vipac rods.

The Belleville type fuel retaining "spring" was originally developed for use in

the Saxton Core II UO, fuel rods where the same problem with the end gap volume

2
had occurred. The "springs" fit into the fuel tube with a slight diametral

4

interference and are inserted to within .026 inch of the top of the fuel as shown

in Figures 220-6, 220-7, and 220-8.
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For normal handling and shipping, the springs will prevent groés movement of
the fuel under loads of up to 6 g's (8.3 1b). With the differential expansion
between the fuel and cladding during reactor operation, the springs will push

through and allow expansion of the fuel.

Although'the Belleville type restraining spring was used successfully to produce
the 481 Saxton Core II stainless éteeliclad UO2 rods, two problems occurred with
the use of the springs in the plutonium rods. The first problem was traced to
the method used for supporting the fuel rods during the final closure weld. The
combination chill block and collet which héld the fuel rods for welding radially
compressed the rods and springs sufficiently to yield the springs and loosen them.

This problem was corrected by reworking the chill block to eliminate grasping the

rods in the area of the springs.

The second problem, resulted from the thermal properties of the Zircaloy cladding
and the small end gap in the fuel rods. Because of the greater heat required to
weld the Zircaloy cladding and the lower specific heat of the material, a tempera-
ture increase from welding was propagated at a greater distance from the weld in
Zircaloy cladding than in stainless steel. With the relatively short end gap in
the plutonium rods, the temperature increase in the Zircaloy cladding in the
vicinity of the Belleville springs expanded the cladding sufficiently to loosen

the springs. Since the welds on the plutonium rods were made with the rods
standing vertical, the springs in some cases slipped down the cladding and bottomed

on the fuel. Then, as a result of the combined axial and radial contraction of
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the cladding during cooldown, the springs buckled or were pushed through. This
problem can be eliminated.in future fuel rods with this typelspring by utilizing
\ .

either forced convection or liquid coolant and an external heat sink to provide

additional cooling capacity for the chill block.

Weld Design

To avoid contact of fine PuO2 powder with the weld area and contamination of

the weld through alloying of weld metal with the plutonium, it was necessary to
make the final closﬁre weid on the Pqu—UO2 fuel ron with the rods in the

vertical pnsitimm. Recause the butt weld design, which was used in the preliminary
plutonium fuel rod design, is not suitable for welding in the vertical position,

an alternate weld design suggested by the vipac fuel rod vendor (Hanford) was

utilized for the fuel rod closure welds.

The alternate weld, which produces a convex fillet joint between tﬂe end plug and
tubing, had been developed and used by Hanford on EBWR and ?RTR fuel rods. Based
on the low weld rejection rate gxperienced by Hanford for this type weld and the
convenience and ease of making the weld, it was decided to use the weld for both

the vipac and pelletized plutonium fuel rod closures.

In order fo maintain maximum strength in the welds, minimum penetrations of 100%
of cladding wall thickness and 90% of wall thickness were specified respectively
for the stainless steel and Zircaloy closure welds. With these weld penetrations,
fuel rod burst tests have shown that failure of the cladding as a result of
excessive internal pressure would not occur in the weld zone but instead, in the

parent tube materiul remote from the weld zone.
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The above penetration requirements are consistent with standard Westinghouse
weld requirements as given in WAPD specifications PS 292712 and CAP 29271T7-1.
Other requirements for the plutonium fuel rod weld and weld inspection were
given in the Saxton Plutonium Project Specifications SAX-P-003 and SAX-P-00L.
The materials design and fabrication of fuel rods are described further in.

EURAEC-1492 (WCAP-3385-53).

SAXTON CORE II THERMAL AND HYDRAULIC DESIGN

GENERAL DESCRIPTION

The peak spot thermal output for Saxton Core II was set at 16.0 kw/ft, which

was the same level as set for the spiked fuel in Core I. Since the peak for

the whole core occurs within the center nine fuel assemblies in the core, which
contain Pu02-U02 fuel in Core II, 16.0 kw/ft also was the design limit placed on
operation of the plutonium fuel rods. Based on this number and the beginning of
life hot channel factors, the total initial Core II steady-state power was set at
22.1 MWt. Nuclear calculations predicted a decrease in the hot channel factor
with respect to time at power. (The Nuclear Design is covered in EURAEC-1490
[WCAP-3385-51].) Thus, the steady-state core power can be increased to 23.5 MWt
after three months full power operation. These two factors, 16.0 kw/ft peak
thermal heat rate and the variation in core power with lifetime, comprised the

design framework on which the Saxton Plutonium Core II thermal and hydraulic

design was hased.
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HYDRAULIC

6 1b/hr, which

The total primary coolant flow rate in the vessel is 2.94 x 10
is the value measured with Core I instrumentation. An analysis was made of
the coolant flow within the core to find the amount available for heat transfer

6 1b/hr was

in the active portions of the core. Eighty-five percent, or 2.5 x lb
found to be useful for heat transfer. A calculation made for Core I had
determinedwa core pressure drop of 4.l psi. However, because a new grid design
was used iﬂ the new Core II assemblies, it became necessary to calculate a new
pressure drop in the assemblies and compare it to that of the o0ld Core I design
(three Core I spares were used in Core II). The pressure drops were found to be
approximately the same, thus there will not be any flow skewness caused by the

different assembly designs. The Core II pressure drop was calculated to be L.1

psi and the vessel pressure drop 11.3 psi.

HOT CHANNEL FACTORS

The engineering hot channel factors were the same as for Core I design since the
(1) (1)

vessel flow, geometry, etc. were the same. Thus design FAH was 1.22 and Fq

was 1.045, with the following subfactor breakdown. It should be noted that Core I
assembly flow inlet measurements substantiated the 1.07 design subfactor in the

engineerin FE
g g AH‘

'(IjﬁUCLEONICS, Vol. 20, No. 9, September 1962, "Engineering Hot Channel Factors

for Open-Lattice Cores," H. Chelemer, L. S. Tong.
E

FAH = Engineering factor based on enthalpy rise of coolant.
Fz = Engineering factor based on fuel rod heat output.
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Subfactor AH _a_
1. Pellet diameter, density

enrichment, and eccentricity 1.037 1.0k
2. Rod diameter, pitch and bowing 1.10 1.00k
3. Inlet flow maldistribution 1.07
L. Flow redistribution » 1.05
5. Flo& mixing | : . 0.95

TOTAL Engineering Factor . 1.22 1.0L45

DNB

Hot channel DNB calculations were made for the steady-state case and the over-
power transient case assuming the hot channel to have the geometry of a typical
unit cell. Because the nuclear ﬁot channel factor and the core thermal power
will change during Core~II lifetime (See Nuclear Design, EURAEC-1490), the
calculations were made for the worst combination of the two, i.e., that time
in core life where the hot channel heat output was maximum. The CAT(Q) code was
used to éupply the hot channel flow redistribution, which in turn was used in
the DNB calculations. The W-2(3) correlations were used and the following
minimum DNB ratioe reported:

Local q" - DNBR at 100% Power, Nominal Conditions = 2.62

Local q" - DNBR at 120% Power, 1800 Psia, Maximum Tin = 1.87

2 , .
( )WCAP—2059,."CAT II - An IBM 7090 Code for Predicting Thermal and Hydraulic

Transients in an Open-Lattice Core,”" R. O. Sandberg.

(3)WCAP—1997, "New DNB Correlation," L. S. Tong, H. B. Currin, A. G. Thorp II.
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The AH-DNB ratios at the above conditions were found not applicable, since

there was no bulk boiling in the hot channel in either case.

FUEL RODS

The fuel rods in the plutonium assemblies were designed for compatibility with

the desired burnup, power and enrichment. Four different types of rods are used
in the assemblies and are described in detail in thevMechanical Design section

of this report. For the rods containing pélletized fuel, calculations were made
to ascertain the pellet dish dimension, the maximum end-of-life fission gas
release, the minimum end—&f—life ho£ fission gas space, and the hot spot average .
fuel temperature and average clad temperature. The latter determined the maximum
radial thermal expansion of fuel relative to the clad and was used to set the cold’
diametral gap between the pellet and the clad. The fission gas release was

calculated by FIGHT(u)

code which is based on diffusion theory. The amount of
fission gas released was combined with the intrinsic amounts of nitrogen and
water vapor, the total of which constituted the hot internal fuel rod gases. The
fuel pellet specifications permit certain impurities of which nitrogen and water
vapor are included. The total amount of hot gases, together with the minimum hot
void space and a maximum limit on internal pressure wereused to determine the

axial end gap in the fuel rod. The design limits ascribed to pellet-clad hot

spot contact and-to the maximum internal pressure again are defined in the

(h)WCAP-ESlB, "FIGHT - An IBM 7094 Code for Predicting Fission Gas Release,"

R. A. Dean, W. A. Jester, E. A. McCabe, Jr.
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Mechanical Design section of this report. It was necessary also to make a

study of the percentage yield of stable fission products for Pu2 The

39°

percentage yield for Pu2 was found to be approximately the same as that for

39
U

235°
Flux depression factors for the PuO2 fuel were used in the fuel femperature
calculations. The following hot spot fuel centerline temperatures were

calculated for the pelletized fuel at steady-state and overpower conditions:

l. Zircaloy clad, nominal power 3L00°F
2. Zircaloy clad, 120% power ﬁOOO°F
3. Stainless steel clad, nominal power 3400°F
4. Stainless steel clad, 120% power ' 4LO60°F

The vibratory compacted PuO2 rods were designed to not exceed the same end-of-
life rod internal pressure limit as set for the pelletized fueled rods. A
thermal conductivity curve for the compacted fuel was developed by the Advanced
Materials Group and was used for fuel temperature calculations. Again, FIGHT
code was used to determine the maximum fission gas release. Six percent of the
initial void volume of the 87 I 1% dense compacted fuel was credited as space
available for fission and intrinsic gases. Since this void volume is sufficient
to contain‘the gases without exceeding the internal pressure limits, the axial end .
gap in this case is not determined by internal gas volume requirements. Core
.loading plans were such that a vibratory compacted rod would not be the highest

power density rod. However, peak conditions were assumed to determine maximum
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centerline fuel temperatures. A maximum steady-state temperature of LO60°F

was found and a maximum overpower transient temperature of L4L600°F. Again, a

flux depression compatible with theoretical density and enrichment was included.

THERMAL AND HYDRAULIC DATA

The following thermal and hydraulic data sheet was prepared for Saxton Core II

for both the central Plutonium region and the outside UO2 region.

HYDRAULIC AND THERMAL DESIGN PARAMETERS

TOTAL CORE

Total Heat Output

Total Heat Output

Heat Generated in Fuel
System Pressure, Nominal

System Pressure, Minimum Steady-State

COOLANT FLOW

Total Flow Rate
Effective Flow Rate for Heat Transfer
Flow Area for Heat Transfer Flow (Unit Cells)

Average Velocity Along Fuel Rods
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22.1 MWt

6

75.4 x 10~ Btu/hr

97.4%
2000 psig

1950 psig

2.94 x 106

2.5 x 106 1b/hr

2.51 ft2

1b/hr

5.8 ft/seé



COOLANT TEMPERATURES

Nominal Inlet

Maximum Inlet, Including Instrumentation
Errors and Deadband

Average Rise in Vessel
Average Rise in Core
Average in Vessel
Average in Core

Average Film Coefficient

Average Film Temperature Difference

HEAT TRANSFER

Active Heat Transfer Surface Area of Fuel Rods

Average Heat Flux
Average Thermal Output

Maximum Clad Surface Temperature at
Nominal Pressure

PRESSURE DROP

Across Core

Across Vessel, Including Nozzles
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520°F

525°F

20.T°F
2L.8°F
530.7°F
532.5°F

2 o

2540 Btu/hr-ft“-°F

58.0°F

498 £1°
2

lh7,200 Btu/hr-ft
h.h kw/ft

6L2°F

4.1 psi

11.3 psi



CENTRAL CORE REGION (U02-Puo2 FUEL)

Fq Heat Flux Hot Channel Factor

FuH Enthalpy Rise Hot Channel Factor

Nominal Outlet Temperature‘of Hot Channel

Maximum Outlet Temperature Hot Channel

Maximum Outlet Enthalpy of Hot Channel

Saturation Enthaipy at Minimum Steady-State Pressure

Maximum Heat Flux

Maximum Thermal Output

DNB RATIOS -CENTRAL CORE REGION

Local q" - DNBR at 100% Power, Nominal Conditions
Local q" - DNBR at 120% Power, 1800 psia, Max. Tin
AH-DNBR at 100% Power, Nominal Conditions

AH-DNBR at 120% Power, 1800 or 2200 psia, Max. Tin

OUTER CORE REGION (UO2 FUEL)

Fq Heat Flux Hot Channel Factor
FAH Enthalpy Rise Hot Channel Factor
Nominal Qutlet Temperature of Hot Channel

Maximum Outlet Temperature of Hot Channel

Maximum Outlet Enthalpy of Hot Channel

32

3.61

2.81

586.7°F

591.7°F

595.8 Btu/1b

665.9 Btu/1b
531,400 Btu/hr-ft2

16.0 kw/ft

2.62
1.87

y.a. (1)
N.a. (1)

2.0h

1.59

558.9°F
563.9°F
558.9 Btu/lb



Saturation Enthalpy of Hot Channel 665.9 Btu/lb
Maximum Heat Flux 301,600 Btu/hr-ft2

Maximum Thermal Output 9.05 kw/ft

DNB RATIOS - OUTER CORE REGION

Local q" - DNBR at 100% Power, Nominal Conditions A 4.86
Local q" - DNBR at 120% Power, 1800 psia, Max. T, 3.47
AH-DNBR at 100% Power, Nominal Conditions N.A.
AH-DNBR at 120% Power, 1800 or 2200 psia, Max. ?in AN‘Aj
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