
ABSTRACT 

. . 
The c r i t i c a l  micelle concentratians if sodium decyl and l au ry l  su l fa tes  . , 

0 
at  25 C have been determined from precise conductance data  i n  water and i n  

heavy water. The c r i t i c a l  , . +--. =. concentrations i n  heavy water s l i g h t l y  lower 
I .  . . _  I 

(by about. 2.5$). ~ ~ ~ - ~ ~ l u b i l i t y  of sosium lau ry l  su l fa t e  at  9 ' ~  is a l so  on11 

about 5$ lower i n  heavy water, !the conductance of both s m a l l  ions and 

micelles approximately .follow Walden ' s ru le  r The interpretat ion of the 

b i l i t y  and the c r i t i c a l  concentration data lead t o  smewhat confl ict ing e s t i -  ' 

mates regarding the re la t ive  strength of hydrophobic bonding i n  the two media: 

the difference i n  e i the r  case appears t o  be small. It is  suggested tha t  this'  " 

result; may bc m;Lolead.Lng because of compensating ef fec ts  of dimerization o f .  

t he  long-chain ions. 
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' INTRODUCTION . . 

Liquid deuterium oxide (D 2 0)  has been frequent ly  used i n  the pas t  t o  ' . 

study the solvent  isotope e f f ec t s  on various solutes ,  pa r t i cu l a r ly  inorganic 

e l ec t ro ly t e s  and those capable of hydrogen bonding o r  acid-base equ i l i b r i a .  

Recently, there  has been some i n t e r e s t  i n  the structurtr!aspects of D20 3-6. 

(3) C. G. Swain. and R. F. W. Bader , Tetrahedron 10, 182, *,00 (1960). . 

(4) C. G,:Swain and E. R .  Thornton, J. Am. Fnem. Soc. - 84, 822 (1962). . 

(5) P. M. Laughton and R. E. Robertson, Canadian J. Chem. 43, 154 (1965). . 

( 6 )  G. Nemethy and H. A. i~cheraga ,  J. Chem. Phys . - 41, 680 (1964). 

4,7 and i n t h e  s o l u b i l i t y  of non-polar solutes. This prompts us t o  repor t  some ; 

, . (7) A. Ben-Naim, J. Chem. P h p .  2, 1512 (1965). .. . 
J 

I 

! ' r e s u l t s  obtained sevdral  years' ago, which dea l  with the nature of hydrophobic ' 

" bonding of long-chain compounds i n  D 2 0, and brings out some of 'the d i f f i c u l t i e s  , 

and complications involved. Since D 2 0 i s  of ten used as  a medium f o r  studying 
, . 

8-10 10-1.2 
b io logica l  macromolecules or  even l i v ing  c e l l s .  , and since hydrophobic 

. 

(8)  J. Hermans ana' H.. A. Scheraga, Biochim. Biophys. Acta 36, 534 (1959). 

(9) D. S. Berns, ~ i o c h e m i s h ~  g, 1377 (1963). . . 

. (10) A. Hat tor i  j H. L. Crespi 'and J. J. Katz, Biochemistry i, 1213 (1965). 

(11) J. J. Katz ,  Amer. s c i e n t i s t  48, 544 (1960). 1 - . . 

(J.2) H. F. DaBoil, 8. L .  crespi and 'J. J. Katz, Biotechnol. Bioeng. 4, 281 
I . . 

(1g& ) ' 

. . 

bonding is  important i n  most of these systems, the perturbation of hydrophobic 
' n  . . 

bonding i n  changing the medium from ordinary water t o  D20 as  revelaed by I 4' - 

ss me 
s o l u b i l i t y  and micel l isa t ion Qf fec t s  may be of m s s e  general  interes.1;. 



This work was or iginal ly  done i n  the hope t h a t  D 2 0 might prove t o  be a 

disariminating.probe f o r  the solvent-structure aspects of h;ydrophobic bonding. 

H20 and D20 are  extremely closely matched i n  all properties except those most 
. I 

sensi t ive t o  s t ructure.  ' Thus the surface tension and the dielectr ic '  constantu 

, o f  D 0 a re  lower than those of ordinary water a t  2 5 ' ~  by 0.056 and 0.5% only, . 
2 

and it was f e l t  t ha t  any in t e r fac ia l  energy ef fec ts  and ' the e l e c t r i c a l  i n t e r -  ' 

actions involved i n  monomer-micelle equi l ibr ia  should be extremely similar i n  

- '. . the two media. On the other hand, the higher viscosi ty  of deuterium oxide (23$ 

higher than water a t  25'~), the higher heat capacity (126 higher) and the 

, h i g h e r  temperature of maximum density (11.2°~ compared t o  4 ' ~  f o r  water), 
6 

' 
suggest t ha t  deuterium oxide i s  subs tant ia l ly  more s t ructured than ordinary '. 

. . 
water a t  room temperatures. Indeed, deuterium oxide has been compared;to 

11 . 
ordinary water a t  a lower temperature. It was expected, therefore,  t h a t  the 

, .  processes l i ke  micelle formation i n  which water s t ructure i s  widely held t o  

play a p r e d d n a n t  role13 w i l l  be mater ial ly  affected. However, it seems 

t h a t  "A number of competitive processes a re  involved, involving water-water, , 

,: interact ions as well  as water-solute . . o r  water-interface interactions.. Since . 

. J'. a l l  of these change when one goes f r an  %0 t o  D20, a s t ra ight f  onrard predic- '.. \ 
14 

t ion  does not seem easy." 

. . 

(13) E. D. ~oddard ,  C .  A .  J. Hoeve and G. C. Benson, J. Phys. +em. 6l ,  593 

(1957); P. ~uke,=jee and A. .Ray, ibid.  g, 1 9 0  (1963) ., 
. , 

(14) .H. S. Frank, Personal communication, 195&. . . '  
.. . . . 

. . 

!I!he sample of sodium laury l  su l f a t e  ( N ~ I S )  was t h a t  of reference (15). . 



(15) K O  J. Wsels ,  and Li He Princen, J. h y s .   hem. - 63, 1696 (1959). 
. . 

1 For sodium decy sulfate ,  the semples used f o r  H 0 and D '0 were d i f f e ren t  bu t '  . ' 2 2 

they'were prepared from the same batch of decyl alcohol i n  the same manner 16 

(16) K. J. Wsela and P. Kapauan, J. Golloid ~ci;, 16, 481. (1961). - 
i 

I 
. . I  

&d t h e i r  conductivities b e l ~  the c r i t i c a l  micelle concentration (c .m .c . ) 
' . i n  H 0 were i n  good agreemenki6 Simil,a.rly good agreement (within about owl$). 

. 2 , .  , 
was found f o r  D 0 also. 

2 

i The .D20 used had an isotopic  composition of 99.5+$ of deuterium. 
i r ' :  

, . . 
i '  Conductance Measurements 

1 
. . 

The apparatus i s  described i n  reference (15). .A di lu t ion  c e l l  with a 
I 
i . . doughnut-shaped conductance path, described previously (17) was , used. . . 

, (17) 5.K. J. Wsels ,  . J. .Phys'. . Chem., 5, 1081 (1961). 

(18) H. G. Mbyers, M.. S. Thesis, un ivers i ty  o f  Southern California, 1959. . . ,  , . 

After long equi l ibrat ion with the sol id ,  the supernatant solution w a s  . * 

.r 
f i l t e r e d  and i t s  concentration determined by a spec~ophotometric analysis ' 

19 using me thylene blue. 



. .  
. . The c .m.c. 's were determined from 'the spec i f ic  conductance data. It ' 

i s  customiry t o  p l o t  these data  against  the concentration and t o  determine. . . 

the' c.m.c. from the intersect ion of the two s t r a igh t  l i nes  describing the 

da ta  below and above the c .m.c ., neglecting the region of curvature close 

t o  the corno.c.20 Our conductance da ta  of high r e l a t ive  precision (4 O.CQ$) 
, . . .  . 

(20) E. D. Goddard and C. C.. 'Elenson, Canad. JOW. Chem., 3, 986 (1957). 

. 

shared evidence of s l i g h t  curvature i n  regions well  separated from the 

c.m.c. Since we were primarily interested i n  the small change i n  the c.m.c. 

between H 0 and D 0, i t  seemed appropriate t o  b e  data.over the same con- 
2 ' 2  . . 

centration range fo r  both media, f i t  the best  s t r a igh t  l i nes  by l e a s t  
. . . , squares m&bhods, and obtain the c.m.c. from the calculated intersect ion 

. . 
point. The precision of the r e l a t ive  values of the c .m.c. was estimated ' . 

.to be about 0.5$.  ever, the  slopes, parti 'cularly above the c .m.c., 
. . 

were of greater  uncertainty, because of the small concentration range 

' covered. 

' Table I records the slopes and intercepts  of the equ@tionx=o(+ PC 
where )(, i s  the specif ic  conductance, c the molar concentration and o( and P . 

. ' are cons tk t s '  determined by l e a s t  square f i t s  over concentration ranges . 

( i n  moles/li t e r  ) of 1.8 - 2.8 (x10-?) and 3.8 -4.5 (x lo'*) f o r  NaDS A d  

3.1 - 6.8 ix 1 . 0 ~ ~ )  and 10.2 - 11.6 (X f o r  NG. The c . m . A - v a ~ u ~ s  

obtained are a l so  indicated. The c.m.c. decreases by 2.7% and 2.4% f o r  

, NaIS and NaDS respectively, on passing from H20 t o  D20. 

The difference i n  the c,m.c.'s, though small, i s  qui te  rea l .  This i s  

i l l u s t r a t e d  i n  Figure I and I1 where deviation p lo ts  f.or spec i f ic  conductance 

data  are  shown near the c.m.c. region. The deviation functions were so 

chosen . . as. t o  bring the  data below the c.m.c. on the same l i n e  and the- ' l a rer  
.. . . - _ *  



. 'port ion of t h i s  l i n e  is' no t  shown. Above the c.m.c., the  conductance data, 
. . f  

. . 
show a consis t e n t  difference'  between the two solvents f o r  both sys terns. 

' The . c .m,c 's a re  marked by arrows. 

The c.m.c. i s  not one s ing le  concentration but a range of concentra- 

tions. hs'may be seen from the graphs, however, the difference between the 
, , 

. . 
# 

concentrations corresponding t o  the same c h a g e s  are  e s sen t i a l l y  constant . '  . 
. . 

' throughout the range. . A more objective and quant i ta t ive  c r i t e r i o n  i s  

given by the concentration of micelies a t  the point  se lected as the c.m.c. 

which can' be generally obtained from ' precrse da t a  i n  the . t r ans i t i on  region. 2 1  

(21) R. J. Williams, J. N. Ph i l l i p s  and K. J. Mysels, Trans. .Faraday Soc., 
51, 728 '(1955). 

. . 

Thus, i n  our case Figure I and 2 show t h a t  the  .deviation of n, i . e .  AN, a$. , 

the c .m.c ., from the nll~oxpected i n  the absence .of micellis 'ation, i s  very 
. . 

near ly  the same f o r  H 0 and D 0. . B e  dN/dc above the' c .m .c . i s  a measure 
2 2 

of conductance of micelles. The f r ac t ion  t h a t  i s  micell ized a t  the c.m.ci 

calculated on t h i s  bas i s  i s  2-48 and 2-38 f o r  I$0 and D20 'for NaDG and 3.4% 

and 3.38 f o r  H 0 and D 0 fo r '  NaLS. This close agreement suppor Lt; 1;he 
2 2 

. .  I r e l a t i v e  values of the c.m.c.. 

0 
. . 

The s o l u b i l i t i e s  of NaLS were determined"at' 9.0 .C. !I!he values were 
. . 

7.31~ 0.05 (x.10-3) i n  3 0  a d  6.97 * 0.07 (x lom3) i n  D 0, a r a t i o  of.  
2 . . 

DISCUSSION 

Conduc tsnce Values 

The. eq,uivalent conductance .(A) of Pnorganic i ons  l i k e  Na+ o r  C1- i n  
- .  

D20 and H 0 do n o t .  follow Walden 's r u l e  exactly. A. values (at i n f  in i ' t e  
2. 

i n  %0 and q O  are i n  the r a t i o  of 1.20 ;or K? and ~a' and 1.216 . ..'I . .  ' 



f o r  C1- a t  2 5 0 ~ ~ ~ ~  c k p h e d  t o  the f l u i d i t y  r a t i o  of 1.23.23 The difference' 

(22) L. G. ~ o n ~ s v o i t h  a n d  D. A .  ' ~ a c  Innes, J. .Am. Ch&. soc . , 2, 1666 (1937) 

' 

(23) R. C. Harday and R. L..Cottington, J. Res. Nat. Bur. .Stands., &, 573 ' 

(ag4g). . . 

. . 

,. . i s  not large, however. The r a t i o  of the equivalent conductances f o r  NaLS i - . ,  + 
I 
I , ' and f o r  NaDS a t  comparable concentrations below the c .m.c . are  1.22- o .01. 

I . ,  !he same r a t i o  i s  sham by the B (= dn/dc) values (below the c.m.c.) quoted 
' , I 

i n  Table I, which give an average measure of A i n  the concentration range ' 

, . ' .  

.covered. 

i . . 

The $ values above the c .m.c . can. be taken to' a good approximation as , 1 .  : . ' +  
I 
1 

a measure of the conductance of micelles. These are i n  the r a t i o  1.29.- 0.04 
I and 1115*0'04 .. . 
i f o r  NaLS and N a  DS i n  H 0 and D 0, and are not f a r  from the f l u i d i t y  r a t io s .  
? . . . .. 2 . 2  
1 . The comparatively l d g e  uncertainties '  appear t o  be 'due t o  the presence of 
1 
1 .  some curvature i n  the H - c  data  above the c.m.c. and. the r e l a t ive ly  narrow 
1 

. range of concentrations &ailable f o r  d i r ec t  comparison. The data  f o r  N U  ! .  . . 
! 

i n  D 0 were somewhat .more extensive. t ha t  those i n  H 0 f o r  the same s,mple. . 
2 2 

I f  the much.more extensive data f o r  other highly s imilar  samples of NaLS . 
2 0 ~ 2 4  

. . .  inH20 I:,:.. are used ' for  comparison, the r a t i o  of micellarconductances 
. . 

I 

. * 

(24) K.. 3.  Mysels and C. I w i n ,  J. Colloid. .hi ., 10, 461 (1955). 

come clnser t o  the f l u i d i t y  r a t io .  Thus, t o  the extent the s t r u c t u r a l  . 

aspects and e l e c t r i c a l  interact ions of micelles are  ref lected i n  t h e i r  

conductance, the difference between H 2 0 and D 0 i s  s m a l l .  
2 ' 1  

, 
Chepge 1EXfects & Free . . . h e r g i e s  of Transfer 

: The solubilities of inorganic e lec t ro ly tes  in D20 have been extensively,  . . . 
. . .  ..-. 

studied.25 i t  i s  found tha t  anhydrous 1i1 electrolytes  a r e  l e s s  solublk i n  '..' 



Constants f o r  the  EQuation K = Ct + PC 
a,nd %he C!$M.q; Data 

below c.m.c ' above C.C.C. 

a70-B x 10 a x  10 B x l o  

NaLS in '  H 0 0.0800 . 
2 

o .658g 



0 
D 0 by 2 t o  20$ a t  25 C. Most 'of the  s a l t s  a re  highly  s.olub.le; so  t h a t  . . 

2 

i t  i s  d i f f i c u l t  t o  disentangle the  e f f e c t s  due t o  d i f fe rences  i n  a c t i h t y  

.. coe f f i c i en t s  and purely  ' ion-solvent in teract ions:  which' appear a t  i n f i n i t e  , 

. , d i lu t i on .  However, Greyson has r ecen t ly  s tud ied  t he  t r ans f e r  f r e e  energies, ,  , 

(25) R,. D Eddy and A~.w:.c~. Menzies, J. Phys Chem., 44, .207.. (1940)~  see  a l s o  
A. H. Kimball "Bibliography of Research on Heavy Hydrogen compounds I t ,  

McGraw   ill, New York (1949). . 

I 
i 

. (AG) of some a l k a l i  metal  dhlorides from YO t o  D 0 i n  r e l a t i v e l y  d i l u t e  
. . 2 

so lu t ions  ( 0 . 1 ~ )  u s i n g  ioq-exchange membrane p o t e n t i a l  measurements. 26'  he 

. , 

(26) J. ~ r e y s o n ,  "J. Phys. Chem., 66, 2218 (1962.). , 

estimated AG values a t  9OC. from h i s  enthalpy and entropy da t a  a re  130, 

+ ' - I -  -I- 
160, 200 and 200 calories/mole f o r  Li , N a  , K , anti csf chlor ides .  I n  

O u r  case, AG, c lacula ted by assuming t h a t  NaLS behaves as a 1:l e l e c t r o l y t e  . 

. with  similar a c t i v i t y  coef f ic ien t s  i n  H20 and D 0, i s  60 ?: 20 calories/mole. ' 
2 

' Clearly, d i f ferences  i n  ion-solvent i n t e r ac t i ons  alone a r e  mor,? than suf- . ' . . :  
' f i c i e n t  t o  explain the s o l u b i l i t y  di f ference and the chain con~kr5bution t o  . 

a+ eui.2 

AG'  of. N U ,  i f  any, A, t o  be negative, the  chain being s t a b i l i z e d  i n  " 

. , . For the  i n t e rp re t a t i on  of monomer-micelle equ i l i b r i a ,  the  ion-s olvent  . ., 

i n t e r ac t i ons  a r e  irrelevan.t ,  since. all charges pres~unab.7.y remain i n .  con t ac t .  

wi th  water. This does not  preclude some inf luence of sho r t  range . fo rces  

involving the  s o l v p t  molecules a t  the  highly  charged miceUe surface  where 

i n t e r i o n i c  in te ' ract ions  itre very 's t rong.  The di f ference i n  the  f r e e  energy' 
. . 

of micelle folmation per monomer (AG' ), between H 0 and D20, ca lcu la ted  f o r  
2 

t he  mass ac t i on  model, neglecting dimerization and assuming a 70$ binding. 



10 

! 
of the counterions, is about 25 calories/mole f o r  b o t h w L S  and N ~ D S ,  AG be- 

' ingemore negative i n  D o . ~ ~ .  The more elaborate: theory of Overbeeh and ~ t i g t e r ,  
28 . 

2 . .  

(27) P. Mukerjee, Jt Phys . Chem'. , 66, 2218 . ( 1 9 e ) .  

(28) J. Th. Overbeek. and D. S t ig t e r ,  R ~ C  . Trav. Chim., 7 5 , 1 2 6 3  (1956). 

I 

assuming the same s i ze  f o r  the micelle, gives about 30 calories/mole f o r  NaIS. 

. I f  a l l  non-electrostatic interact ions involved i n  the micelles i n  H 2 0 and 
1 

4 0  a r e  assumed' t o  be the same, the AG calculations . indicate t h a t  the chain 

i s  destabi l ized i n  q O ,  i.8. it has a greaterhydrophobic character i n  D20, ' . 

but the difference i s  s m a l l .  

Hydrophobic Interactions _ . ?  

The in terpre ta t ion  of the so lub i l i t y  and the c .m.c. values are' . . . 

confl ic t ing , although the over-all  solvent isotope e f fec t s  on the long 

chains seems t o  be small. I n  the absence of any r e l i ab le  theore t ica l  

framework, it i s  in teres t ing  t o  compare these e f f ec t s  with the r e l a t ive ly  . , . . 

: scanty r e su l t s  available f o r  non-ionic solutes.  Some so lub i l i t y  r a t i o s  

between H20 and D20, recent lydetemined are,  0.9 f o r  argon, a t  25O~7, 
. . t 

1.00 f o r  He above ~ O O C . , ~ ~  and 0.98,' 1.04, 1.07, and 1.10 f o r  CH 3 F, CH ~ 1 ,  
5 3 

(29) E. F. Stephan, W .  E. Berry and R. W .  Fink, U .  S. A t .  Energy Conrmission, 
m-1587, 1962, Chem. Abs ., 57, 14485 (1962). . . 

. . 

4 
CH3Br, CH I a t  29.4'~. There i s  a s l i g h t  overal l  trend towards higher ' 

a 
J 

r a t io s  with increasing moleculq s ize.  ~ u s e v a  and Parnov have recent ly,  . ; 
determined the s o l u b i l i t i e s  of s.ome hydrocarbons; ! n-heptane, toluene, and 

cyclohexane, a t  r e l a t ive ly  high temperatures .30 The r a t ibs  between 5 0  

, and 4 0  ark about 1.10 - 1.12 between . , 
. . 

. . . . 



8 0 - 1 0 0 ~ ~ .  , decreasing s l i g h t l y  with r i s i n g  temperature. Reasonable , extrap- 

o l a t i o n s  of these  values t o  room temperatures would give r a t i o s  of about . 

. . ?  

1.11-1.20. For  l a rge  c h a i n s , i n  our case, even l a r g e r  f ac to r s  may be reason- 

ab ly  expected. 
. . . . 

A possible  explanation of the  discrepancy between our r e s u l t s  and 
-ft;& 3. 

these very rough expectations i s  a& t he  c.m.c. o r  the sa tu ra ted  so lu t i on  
' 

may not t r u l y  r e f l e c t '  the  monomer-micelle equil ibrium o r  the monomer-solid . . 
, , 

equilibrium because of pre-c .m .c . associa t ion,  i n  pa r t i cu l a r ,  dimerisation.  31,32 
. 

( 3 0 )  A. N. Guseva and E. I. Parnov,  Radiokhimiya 5, 507 (1964), Fnem. Abs .. . 
60 1174 (1964). ~e s o l u b i l i t y  r a t i o s  ~ u o t G d  i n  t h i s  paper f o r  -6 85  C. from the  l i t e r a t u r e  appear t o  be due t o  a mis in te rpre ta t ion  
and a r e  i n  f a c t  r a t i o s  of s o l u b i l i t i e s  of 5 0  and D 0 i n  hydrocarbon 
solvents .  2 

F.  ranks and H. T. Smith, J. Phys . Chem., 68, 3581 (1964). - 
(32) P. Mukerjee, 3.  Phys . Chem., i n  Press.  

Since dimerisa t ion depends prim'arily on the  hydrophobic i n t e r ac t i ons  be- 
I 

tween the  chains, i f  the  hydrophobic character  of the  chains i s  s t ronger  - 

3 r  

i n  D 0, ' dimerisation ' should increase,  r e su l t i ng  i n  an apparent increase  
2 

i n  the s o l u b i l i t y  o r  the  c.m.c. and thus compensating, i n  par t ,  the  expected 

.%' decz-ease. 
#iera +*.re 

We conclude, m, t h a t  the  a i f fe rences in  hydrophobic i n t e r ac t i ons  
. . . , 

between %0 and %0 a r e  unl ikely  t o  b e  very g rea t ,  . . but  they may be substan- 

t i a l l y  g r ea t e r  t h a t  the  small d i f ferences  est imated from s o l u b i l i t y  o r  

c.m.c. d a t a  neglecting dimerization. .Simpler equ l ib r ia ,  such as  the  

d i s t r i b u t i o n  of monomers between phases o r  monomer-dimer' equ i l i b r i a ,  must 
. . 

be s tudied before. more de f in i t i ve  statements can be made. 
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Figure 1. -- Plo t  of devia t ion function of spec i f i c  conductance f o r  

NaIS st .2'j0c. 
0 

Q - i n '  D 0, .& = X(exp.) - 0.05399a 
2 , , 

Figure 2'. -- P l o t  of d e g a t i o n  funct ion.of  spec i f i c  conductance f o r  
NaDS a t  .25 C. . . 
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