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NEW DEVELOPMENTS IN THE THEORY OF HTSC

A. The Layered S-N Model, B. Extended Saddle Point Singularities and
Long Range Interaction (E-L Model) , C. Reconciliation on the Nature of
the Order Parameter

A.A.ABRIKOSOV,
Materials Science Division, Argonne National Laboratory, bldg 223,
9700 South Cass Avenue, Argonne, IL 60439

ABSTRACT

A.The superconductor is supposed to consist of alternating layers of
two kinds: (1) layers with an attractive electron interaction and an effective:
‘mass of usual magnitude, (2) layers without interaction and with a large
effective mass. The overlap between the layers is assumed to be small, its

energy, t, being much less than A. It is shown, that such a model explains
the most peculiar property found in experiments on electronic Raman light -
scattering in BSCCO 2212: different threshold values for the Raman satellite -
measured at two different polarizations of the incident and scattered light.
The tunneling conductance G(V) = dJ/dV is analyzed for the same
model. In order to fit the qualitative features of experimental data, it is -
assumed that the tunneling probability to the normal layers is much less,
than to the superconducting layers. The conductance is calculated for the .

case t « A. A brief analysis is given for the case t ~ A, which proves that
such an assumption definitely contradicts the experimental data for BSCCO.
The possible nature of the electronic states in the normal layers is discussed.

B. In connection with the experimental discovery (angle resolved

photoemission spectroscopy, ARPES) of the extended saddle point

~ singularities in the electron spectrum of a variety of HTSC consequences are -

derived for Tc and A in a simple model. A large enhancement of
superconductivity is possible if the singularity has a sufficient cxtcns:on and
is located close to the Fermi energy.

In order to explain the anisotropy of the energy gap, observed in ARPES
experiments, on the basis of the "extended saddle point singularities” an
assumption is done that the Coulomb interactions are weakly screened, i.e.
the Debye screening radius is much larger than the lattice period; this makes
the electron interaction long ranged (E-L model). The consequence of this
model is the change of the isotope effect with composition and also the
change of T . The idea is that if the energy difference between the Fermi
level and the saddle point is less than the Debye energy, this distance
defines the effective energy scale, and hence there is a small isotope effect,
whereas in the opposite case the Debye energy defines the cut-off, and the
usual isotope effect is restored. Simultaneously T¢ decreases.
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It also follows that at low temperatures the normal state resistivity is
mostly defined by electron-electron scattering, and its temperature

dependence is p o<

_ C. Several data on the phase determination by single and multiple
Josephson junctions, and on the temperature dependence of the penetration
depth are in favor of an order parameter; changing its sign as function of
momentum, and, consequently, the energy gap having nodes. These data
can be incorporated in the model described above if, apart from long-ranged

phonon mediated attraction, a short range repulsion of another origin is-
assumed (E-L-U model).

1. ELECTRONIC RAMAN SCATTERING (1]

The problem of Raman light scattering from electrons in HTSC became

very important, since these results are critical in defining what kind of o
pairing takes place: ordinary BCS-type pamng, or something more . -
complicated. One of the most important points is whether or not the energy >~

gap vanishes at certain points or contours along the Fermi surface. In the

Tatter case BCS-type pairing is possible (although not necessarily achieved -~
by phonons). Vanishing of the gap somewhere along the Fermi surfacc R

would require non-BCS-type pairing.
Raman scattering is a contactless cxpenmcnt. The lascr spot may be

. very small so that a good single-domain piece of the surface is selected. It ..
- is possible, that the properties of the surface are different from those of the' N

bulk, but the penetration depth of light is of the order of 103 AS so is’ one_ .

-expects that bulk properties are being measured
-According to the theory for an anisotropic metal [2,3] thc Raman

satellite forms a wide band starting from @ — @ ‘= 24yip with a sharp

increase from zero to some maximal value in the region @ — @ *-24,,; ~A

and then decreases with  (as (@-@') -2 for a short coherence length .
In various experiments (see references in [3]) with different substances the
sattelite starts at @ — & * = 0 with a linear dependence do ~ @ — @’ and then
follows essentially the theoretical predictions. This could mean that the
energy gap tumed to zero along lines, which could be possible due to the
cylindrical shape of the Fermi surface in a quasi-2-d metal. However in the
- experiments by Boekholt, Hoffmann and Guentherodt [4], a definite energy

gap was observed. They studied very perfect single crystals of

B§, S5, CaCyy 08+8 with a surface thoroughly characterized by a high-

resolution electron microscope, and the temperature of the laser spot was
well controlled by comparison of intensities of the Stokes and anti-Stokes

satellites. An anisotropic gap was observed with 2A/ / ITe =57, 24 1

/T =3.4, where 4, / means an experiment in the Z(XX)Z geometry and
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A 1 a Y(ZZ)Y geometry (here Z(XX)Z means that the direction of ‘

incidence is along Z - the main axis, the scattered beam is observed in the
backward direction and both polarizations are along X in the plane). Since
this definitely contradicted our previous theoretical predictions [2,3] it
created doubts in the applicability of the model of an anisotropic metal
which we have used.

Recently, models taking directly into account the layered structure of the
HTSC have become popular. These models can explain some properties of
the vortex structure in the mixed state, pinning and the current-voltage
characteristic. Tachiki et al.(TTSA) [5]} have shown, that such a model
explains qualitative features of the tunneling conductance; and the present
study was carried out to learn whether a model of this type could explain, at
least qualitatively, the the Raman scattering results. It was shown , that this

is really the case. Even the fact that A// is almost twice the observed 4

becomes understandable. In the calculations we supposed T=0

In the TTSA model it was assumed, that the superconductor consists of
5 penodlcally repeated layers of which ‘layers 1 and 5 have an electron
* attraction leading to Cooper pairing, whereas layers2,3.and 4 have no such

L

attraction and are normal. There is hoppmg between adjacent layets Hcre'_‘ .»

our task is to study qualitative features of the electronic Raman scattering

and to find an explanation of the main observed properties; viz. dependence -

on polarization and appearance of two different gaps. We did not find it
very.useful to seek exact numerical agreement with experiment taking a'
" many-layered Hamiltonian with many adjustable parameters, and considered
- amodel with only two altematmg kinds of layers: (1) superconducting with. -
an attractive electron interaction and (2) normal thh no interaction (Fi ig.1).

Fig. 1. Layered S-N models of a High-T¢ Superconductor
Our Hamiltonian has the form
H= Hj+H+T+ . ()

Here H; -2 are the bare Hamiltonians of the S- and N-planes, T is the

hopping part, and I - the BCS interaction in the S-planes. The y-operators
entering H are of the tight binding type

v (r)- 112,172 5 ot 1)*P ik 2md




ikp ik, (2m+1)d

+ ?Z)kayfz)[z-(Zm+I)d]e (2)

Here k= (k, kz), S is the normalization area in the plane, N - the number of

periods along z, Y1) and Y2 are the localized wave functions of the
superconducting and normal layers, and the a(l. Yo the corresponding

annihilation opcraiors. We assume that H; has only diagonal matrix
elements between ‘I{ 1) etkP with the same m, and they correspond to the
kinetic energy in the S-planes, and similarly for H, for the N-planes. The
hopping part, T, has off-diagonal matrix elements between Y1) and
Yz with adjacent m's and the same o's which are equal to #2 (it can be

said, that the operator T transforms %1 )(z-Zmd ) into Y2 )[z-(2m+1 )d] and

vice versa). The interaction part I has matrix elements equal to -g only in the
same superconducting layer.

Substituting (2) into H-Nu we get

' +

+tcoskd (“(1 ko d2ko™ 42 )koa(l ko'l

£ + + .
" 3N ,q,,,cz,%_,q _o ‘W k-4Die+ Wz W=+ O

indices o=+,- refer to the spin projections, &5 = vy (k - k).

In the self-consistent field approximation we substitute the interaction term
by

‘ + +
AT ALk "4% a1k k+ ~ @)

where
A=INT < qDpedipk> ©)

We shall make the following assumptions: ¢ « A\]E, B = mimy «1. Then
the eigenvalues are

2 2 2 112 2
gz 18+ &5 25000 6= 18+ s

g=-8, §=-§ ; Hk) =1 cos kd ©6)




. 2. . .
(the reason for leaving the term 21 in €9 and €4 is its dependance on
k ;). At the first glance there are two finite gaps. However since (k)
=t cos(k,d) the second gap vanishes at the boundaries of the Brillouin zone:

k ,— n/l2d ork,— -n/2d.

In the (ZZ) geometry the scattering is defined by the A, component of

the vector potential. In the tight-binding model it enters the wave functions
through the factors

exp(-is jA ,dz)

therefore if y and ‘I’+ appear with the same argument, the factors are

cancéled out, and the only terms in the Hamiltonian contammg A are the
hoppmg terms. They contain factors of the type

(2m+1)d
ie
expl + & Aydz | ,
2md ‘

and assuming that A, doesn't vary noticeably at atomic distances these.
factors can be replaced by

ied
exp[ + — A (2md)] . - M
The result is that in the hopping terms k,are replaced by k,- (e/c)A ,. |

Omitting the detailes of calculauons and formulas, thc ﬁnal answer can
be illustrated by Fig.2. _

Fig. 2. Electronic Raman scattering cross-section for the geometry X(ZZ)X
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The scattering is accompanied by hopping of the electron between N and S -

planes. The threshold is therefore 4, as in
tunneling between a normal and superconducting metal. After a logarithmic

. 2 s .
singularity at @ - @'= 4 + 2t /4, which is the maximum of the sum of the

gaps in both bands (in the sence of the dependence on k;; the bands are
assumed to be isotropic in the plain), the cross section decreases as [A/(w—
2
@°)] . The average scale for reasonable values of parameters is
-12dw
do ~ 10 —Z-d.Q

In the case of parallel polarisation Z(XX)-Z the interaction of electrons

with light appears in the kinetic energy terms of the Hamiltonian and is
given by :

. 2 2
' € 2 ' e 2 .
‘Va( Vix A 74 TVax A A% ) VAV 8
2myc 2myc

As was shown in [2], the terms linear in A, conwibute only minor - .

corrections to do, and so we consider only the quadratic terms. They
contain the band mass in the denominator. In order to obtain a finite .

_threshold value of @ - @" we have to assume that my » my. Then the main

‘contribution is due to the supcrconductmg laycrs The result can be
illustrated by Flg 3.

fig. 3. Electronic Raman scattering cross-section for the geometry Z(XX)Z

The threshold is at 2A. A discontinuous jump (it can be smoothed out, if the
anisotropy in the plane is taken into account) is followed by a logarithmic

2
singularity at the maximum of the double gap 2(A+¢/A) and then falls off

’ 2 - - "12 dm'
as [A/(w—w')] . The scale is again of the order do ~ 10 —Z— dQ. At

smaller w—-®’'< 24 there can be a small contribution from the normal band
but other sources of additional scattering cannot be excluded.




According to this theory the threshold value for doy should be exactly
twice the one for a’o_’L. The experimental result is not exactly the same :

ZA/ / I'T, =57, ZAJ_ /T, = 3.4. There is, however, a.simplc way to

correct this difference. We have assumed that there is no interaction of
electrons in the "normal” planes. But this is quite impossible. So let us

assume that there is a very small interaction, g5. Then it is natural to
beleive that a condensate is formed, and hence a nonvanishing

<a(2)k+42)-k-> exists. If we assume Ay >0 the threshold will become
AJ_ =A + 4 , and this could explain why A_L is not equal to A// /2.
* From the experimental-values quoted above we obtain AT, =2.85,

Ly "/'Tc =(.55, i.e. A is more than five times larger than 4.

2. TUNNELING CONDUCTANCE [6}

Another method of direct measurement of the energy spectrum and
particularly of the energy gap is the tunneling conductance G = dJ/dV.
as a function of the voltage V. It is well known that G is proportional to the

electronic density of states. Here we meet a paradox. According to the last - =
measurements of Hasegawa [7] the main contribution comes from the ...

superconducting layers, and a clear gap of the order of the one obtained

from Raman experiments on BQSrZCaC%O 845 is seen. On the other hand

- the tunnehng conductance reflects the electronic density of states which is
- proportional to the effective mass in any dimensionality. Since we had to |
assume for interpretation of the Raman experiments that the effective mass.
~ of the normal layers is much larger than the mass of the superconducting
layers, the contribution of the normal layers to the density of states would
dominate in contradiction with the experiment. There is a way to resolve this
paradox assuming the tunneling probabilities to the S- and N-layers to be
very different. We leave the detailed discussion of the possible origin to the
end of this part.
We consider a contact between some normal metal and the S-N
superconductor. According e.g. to ref.{8], § 22.3, we have

1227‘3(2‘1)-1 Xﬂlpq‘l) Z S(Eo - Em){((A;ibq+)om(Aplb;+)no
i=12;pq m

+ 4+ + +
* (‘t}az” (Api’b - /)no'(Apibq+)om(Apibq+;no
(Aribe ), (Apl ©)




The factor (Zd)_I was introduced to define the current density. We assume
that the phases of tunneling amplitudes of the superconducting (i=/ ) and
normal (i=2 ) layers are uncorrelated. The operators bq 0_corrcspond to the
normal metal. The operators for the superconductor are the same, as used
previously, but rewritten in the Nambu representation: namely the 4
mean annihilation of quasiparticles in layers i=1 (S) and i=2 (N) with
momentum p and spin 1/2; the Api' mean creation of quasiparticles with

momentum -p and spin -1/2. The temperature is taken to be zero, the index
zero means the ground state, summation is taken over the final states m.

After that we pass over to the band representation with the energy levels

EI= g, FQ'= 5, E3=-- &, ’E4= - §. We will assume the tunneling
probability to the N-layers to be much smaller than to the S-layers

2),2 )2 ‘
T g g myimy et (10)
and first consider the case of small hopping 7 « A\/E.
The result for this case is
-1Pn My
J=4me(2d) 5 fd&
(I-q )

Xy |T<1>|2_(ﬂ T,

‘T(l)l (n

&)-eV PeyreV)

g-evV” eI+eV)} ? . ‘ ¢ .1)
where n are the Fermi functions of corresponding arguments, §="1{/k/ -

k,). q=cos I%d. The contribution from the band (2) is small coming either

from small tunneling to the N-layers or from the small hybridization with
the S-layers. Nevertheless it is of some importance since in the conductance

G=dJ/dV it is the only one at eV < A. The shape of the curve G(V) is
presented at Fig.4. We have a jump at the threshold eV = 4 followed by a

logarithmic singularity at the maximal gap of the £ band and a subsequent
decrease to the normal state value. There 1s a small contribution of the §

band at eV < A but in experimental conditions it may be obscured by surface
defects or other phenomena.




Fig. 4. Tunneling conductance for small hopping, 7 « A\jE

For generality we considered also the case ¢~ 4, since in the S-N model the

assumpuon t» Aleads to suppmssxon of supcrconducuvxty [9]. The result
is plotted at Fig.5.

v

Fig. 5. Tunneling conductancc for large hopping, 1~ A

‘As the voltagc is mcrcased from zero, the conductancc G starts with the .
value I/R, corrcspondmg to a normal metal, at voltages much less than Ale. -

After a smooth maximum it drops dlsconunuously at 15 to a very small . .

value; then at V it jumps up again to a finite value on the order of I/R.

After that, it has a logarithmic singularity at V}, and at still larger voltages it

tends to I/R. In experiment, a dip is always found around V=0 , and
although a small maximum is sometimes seen at very low voliages, it never

reaches values comparable to the main maximum, which occurs at eV,

aT, with a~3. This all makes it very unlikely that the S-N layered model
with £ ~ A is good for BSCCO. On the other hand, the assumption

, 2),2 1,2 '
t« A\]—[;together with IO ¢ B Iy leads to results resembling the
experimental data (see e.g. ref. [6]).

Now we retrurn to our basic assumption The only way to achieve
agreement of the model with the tunneling data is to assume
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IT®) «B T , and this means that the states of electurons in the N-layers
have to be different from those in the S-layers. If one thinks more
thoroughly about the S-N model, one encounters another assumption,
which looks rather strange. In the original Hamiltonian (3) it is implicitly
supposed that the Fermi-circles in the normal and superconducting layers
are exactly the same. Otherwise the energy and momentum conservation
laws would be violated. But this means equal number of electrons (or holes)
in both types of layers, which is unlikely. If there were a pronounced
anisotropy in one of the layers (as in YBCO) that would not be necessary,
since the Fermi surfaces could just cross at some points. But in BSCCO
there is no substantial anisotropy.

There is a possible way to resolve these contradictions, namely to
assume that the electrons in the N-layers form a continuous band of
localized states (as occurs in Anderson localization). Then there is no
momentum conservation. Such an assumption is compatible with small
tunneling matrix elements, since for effective tunneling a rapid change of
occupancy of the surface states is necessary, and if the states are essentially
localjzed, this happens very slowly.

In this connection it should be mentioned that the situation in the 1-2-3
substances is entirely different. A model of two types of superconducting
layers, one of them being isotropic and the other-quasi-1-dimensional, looks
more appropriate. _

3. EXTENDED SADDLE POINT SINGULARITIES [10].

Usually the angle resolved photoemission spectroscopy (ARPES) is
applied for determination of the Fermi surface in cases where the usual
methods, e.g. de Haas - van Alfen, or Gantmakher oscillatory effects in thin
single crystalhnc films, fail for some reason. Such a situation happens in the
high T cuprates, because the normal state corresponds to such high

temperatures that all the oscillations vanish, and  destruction of - :

superconductivity by magnetic. ficld at lower temperatures requires
tremendously large magnetic fields. J.C.Campuzano and K.Gofron from
Argonne managed to increase the resolution of their experiments to such an
extent that they were able to find not only the Fermi surface but also the -
electron energy spectrum in the vicinity of the Fermi energy..Since the
cuprates are quasi-2D substances, the energy depends very weakly on one
of the components of the quasimomentum, say &z, and can be considered
mostly as function of k - the quasimomentum in the a-b plane. They
discovered that this dependence has not simple saddle points but what they
called "extended saddle points” - rather long regions in the k plane, where

the energy depends only on one component of the momentum. These
regions are confined to the boundaries of the Brillouin zone. Their location

and the curves illustrating the function &(ky.ky) are given at Fig.6, 7.
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Fig. 6. Location of the extended saddle point singuléritics in the (l&,ls,)
plane for YBa2Cu307-§ '

Fig. 7. The function gk, ky ) near the smgulanty

Such singularities were. found in YBazCu306 9, YBapCu4q0g and

Bi2Sr2CaCu208+5 This discovery was oonfirmed later by the Srtanford
group (Shen, Dessau et al.) [11] and by numencal determinations of the
band structure in the same substances as wcll as' in HgBazCuO4+8 and .
HgBa2CaCu206+5[12] . '

Even a simple saddle point leads to the i increase of the density of states,
and to enhancement of superconductivity [13]. The extended saddle point

means actually that the substance is not only quam-ZD but quasi-1D with
the density of states in a rather wide energy range given by the formula

112
P n(2m)
e =—2TE a2
(2n)y d (€ -80)

where P, Y0 is the extension of the singularity (we assume here that it goes
along ky ) m, is the effective mass for ky, d is the period along the c-

axis, € the energy of the singularity. Substitution into the self-consistency
equation of the BCS theory gives in the limiting cases:
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5 21224 e )
&My y0

if U-¢g »'Ié,or

ngIZP 2
x "y0 a2
ﬂ'%«{ i ) ~Elo, (14)

where E ~ 1 eV, lo is the usually normalized dimensionless interaction

constant. In the opposite case, f- ¢ «T

il2p Y2
T.= 0.0093 (“%‘XQ] ~E1L. (15)

>

In this extreme case 7, ~ 100K corresponds to- 4, ~ 0.1, i.e. smaller than in
the usual low-temperature superconductors. However even in this case

" the ratio 24/T, is 3.795 (n case u - g »T it has the usual value 3.52).

Since the experimental value is closer to 6, a weak coupling theory is - -

- probably insufficient for numerical predictions and-can serve only for a
qualitative analysis.

4. GAP ANISOTROPY. THE E-L MODEL [14}

The same authors as well as the Stanford group has observed another
property of the photoermssxon spectra: the anisotropy of the energy gap A.

- This was done in BSCCO - the only substance, where the ARPES .

technique permitted to observe a gap. Since the value at the minima fell
below the resolution threshold, this was interpreted as a firm proof of the so
called d-wave pairing, where the order parameter changes sign and has
nodes. Actually none of these statements can be proven, since in these
experiments only the magnitude of the.order parameter is measured, and the
resolution is finite. In case when the interaction between electrons is
mediated by phonons (as this can be concluded from the isotope effect,
which we will discuss later) there are no arguments in favor of d-wave
pairing (such a simmetry of the order parameter appears, if the interaction is
mediated by spin fluctuations or is a result of Coulomb repulsion).
Therefore it can be asked whether such an anisotropy is possible within the
phonon scheme.

In usual superconductors, even with an anisotropic basic energy
spectrum the gap is rather isotropic (anisotropy less than 10%). This is due
to the isotropy of the interaction between electrons mediated by phonons.
Even in case of a high state density in some regions of the quasi-momentum
space the equation of the type
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Ap) = [ K(p.p') flAP] pii22) (16)

will connect A at any p with the singular region, and hence will not permit

A(p) to be anisotropic, except for the case, if K(p,p’) is anisotropic. In
principle this could be achieved by spin-fluctuation exchange, if their
relevant momenta were concentrated within narrow intervals around some
particular values.

However we consider, as much more natural, the idea of a small
momentum transfer. Although the high T¢ materials are certainly metals,
they are in some sense close to ionic crystals This can be traced from the
experimental observation that in the infrared as well as in Raman
measurements the phonon peaks are very high (see e.g. ref. [15], [4]). It
has also to be considered that structural models consisting of differently
charged ions are of much help, not less than band structure calculations
based on the LDA method. The cross-over from metals to ionic crystals can
be understood if one imagines that the Coulomb forces, which are the basis
of all real interactions, are poorly screened, i.e. the Debye screening radius
is not of atomic size, as in good metals, but much larger. The expression for

the square of the reciprocal Debye radius is =4 1r(e21 €. )V(]), where €

is the part of the dielectric constant due to wmc cores, and V() - thc state
density. Substituting eq. (12) we obtain: ‘

2 12 .
2V2Nge
210 = Tx ”" : an
® €, d(p- eo}

where N is the number of singular pomts per Bnlloum zone and we have
taken i mto account 2 spin projections.

From this formula it can be seen that wz(O ) is small only in case of

largc . The experimental measurements of the dielectric constant as

function of frequency [16] give very different values, sometimes larger than
1000, but in case of a complicatéd energy spectrum it is not easy to decide

how &_ has to be extracted, and so we will simply make the assumption

that £ _ » /. There appear several momentum scales in the problem. For

simplicity we consider the extreme case

Pry = [2@(;1-50)]”2 «@ <Py« ek, (18)

where py; is the 1D Fermi momentum, d is the period along ¢, and K is the

reciprocal lattice period in the plane; in reality other cases are also possible.

There is no unique way to chose the model interaction. We will assume
that the square of the electron-phonon interaction matrix element entering the
phonon mediated electron interaction, as well as the electron-phonon
scattering probability, is multiplied by
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(744

% , (19)
kZ + aez

where k - the transferred momentum, n>1. In the BCS equation this factor
will lead to the replacement, compared to the previous section:

g g e
10_,

enfd  8in-1)

Let us first consider the vicinity of the singularity. Substituting the modified
phonon mediated interaction into the BCS equation we obtain

11 (% zh[(tjsz,)l 2y .
I O Y v o

. -1t

112

where 1y = p1- g « 1, A is the large gap in the vicinity of the singularity,
and

2 12
gw(me)/

= 2 - @n
eyl iy

At T=0 we obtain from eq. (20) in the limit 1§ » 4,

Lo o =syelh @2)
A A :

(/]

The order parameter not in the vicinity of the singularity is small for the
following qualitative reasons. In the BCS equation (16) the integration can
‘be split in two regions. If we integrate over the vicinity of the singularity,
the density of states (per unit angle) is lugh but the interaction is weakened
by the large momentum difference p’-p. If, however we integrate over p*
close to p the density of states is small. Assuming isotropy outside of the
smgular points we get the equation ‘

4 2a,) 201> p,
=1 - Apn—= |z ———7 (23)
n

where 4, is the order parameter far from the singularity, p - the distance
from the singularity in the plane (g, Py )s

gme
y=—— (24)
(2n)(n-1) p,
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is the normalized interaction far from the singularity, R, and m characterize

the spectrum in this region. From eq. (23) it follows that 4 decreases
rapidly with p and reaches eventually a value corresponding to the spectrum

without the singularity.-On the other hand it is always finite, until 4, is
finite.
What concerns the singular region, it is not connected with external

regions, and 4 as well as 7, are defined from the equation (20). As we

mentioned before, it gives the 24 /T, ratio not very far from the BCS

value. It follows that the E-L. model, considered as a weak interaction
theory, cannot describe quantitatively all the properties of the HTSC.
Nevertheless it can be useful for understanding the origin of various
unusual phenomena in these substances.

The results of the most recent cxpenmcntal determination [17] of this
funcuon is presented at Fig. 8. S

Fig. 8. The latest ARPES data on the angular dependence of the . .-

superconducting energy gap in B Sr,CaCu, 08 +5

Apart from the smallest gap region (in 'sec.’7 we will show how this

disagreement can be cured), it fits qualitatively to the predictions of the

~'theory descnbed here and dcfimtely dxsagrees with the "d-wave” and -
"isotropic s-wave" concepts. .

S. ISOTOPE EFFECT [18]

The isotope effect is usually described by the power o in the presumed
dependence

T, o< M (25)
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where M is the average ion mass (in the high-T¢ copper oxides O ts ‘

usually partially substituted by Q) ¢). Hence the power o can be defined by
the relation

dinT,
=TI M (26)

The dependence of type (25) is definitely true in the simplest electron-

phonon interaction model, where ¢ = 1/2, but in most of the real cases the
connection is far more complicated. Since, however, the relative variation of
the ion mass is very small, formula (26) can be taken as a rather complete
characteristic of the isotope effect even in cases, when the original formula
(25) is not correct, and the true dependence is far from a power law. _
There exists an observation that in cases, when the composition of a
layered cuprate superconductor can be altered in a regular way, and the

critical temperature varies with concentration, the isotope effect depends on -

composition, and the lower the critical t¢émperature, the larger is o.. The*:-
known examples are (Y]1.xPrx)Ba2Cu307.§ with varying x [19}],[20}, = -
YBa2(Cu1-xZnx)307-§ {21], Y(Ba2-xLax)Cu307 [22] and (La2-
xer)Cu04 as well as (La2-xBax)CuOg4 [23] whcrc in fact a
nonmonotonous dependence a(x) was observed.

The small value of & of the order of 0.019£.005 for YBazCu307 [24] |
has lead (and still does) to conclusions about the non-phonon mechanism of -
- eléctron interaction, although it was mentioned rather early by J.Labbe and .

J.Bok [13] that a simple saddle point in the electron spectrum enhancing '

superconductivity due to an increased density of states in some region close |
to the Fermi level, can replace the Debye frequency as a cut-off of the’

interaction, by some electronic energy limit independent on the ion mass.

Such an idea applies even better to the extended saddle pomt since the
singularity in the density of states is much stronger. :

In the framework of the E-L model the momentum reglon of the -
singularity in case of small angle scattering is singled out in the sense of
definition of the order parameter: all the necessary information belongs only
to this region. On the contrary, the order parameter in other regions is
defined by its value in the singular region: it is finite until it does not vanish
in the singular region. This means that the critical temperature is also
defined only by the singular region, and hence we can consider only this
region and not bother about the rest. In the case of an extended saddle point

singularity the integral in the BCS self-consistency equation is convergent,
~ and the corresponding energy scale is equal to

Km=up-g, @27
i.e. the Fermi energy calculated from the saddle point. This energy does not

depend on the 1on mass. It can happen, however, that 1 exceeds some @,

which is the true interaction cut-off. In this case @, becomes the integration

- limit despite the convergence of the integral, and hence the order parameter
and the critical temperature will start to depend on the ion mass. This all
happens gradually and for practical purposes it can be represented as




17

variation of & as defined by eq. (26), since, as we mentioned, the actual .

variations of M are small. We will consider here the case Y »TC, and at the
end we will briefly discuss the case .U]f T . which corresponds to

substances with the lowest a and highest 7.

As before, we assume that the true interaction has the form
2 n 2
@ (k)
Vi) =g| —5—7 72
k+ e (&-&) - o (k)

where @ is the phonon energy and &, £ - the electron energies before and
after scattering. According to the previous considerations the order
parameter in the region of the singularity does not depend on momenta.

(28)

Since the electron energy depends only on p., we can integrate the

" interaction (5) with respect to B, and p,, and after this §vc obtain

2 2
dk,d 8 o, :
5% vy - 5 o (29)
(27) 87 (n-1) (§-€) - 0,

where @), ~ ce is some characteristic phonon energy at k~ e . Usually the.

factor with @), in the interaction (29) is replaced for simplicity by

2 : .
@, ‘ -1/8-8< @, , 30)
2 2z . o |
(§&-8) - o, 0 /8-> o,
- Unfortunately, due to the singular density of states, which is

proportional to (&-g,) 12 = (E+1y )'1,2 the interaction (29) as well as its

simplified form (30) lead to unphysical singularities at g= @,. The origin
lies in the replacement of the integration over phonon frequencies by some

fixed frequency @), On the other hand such a replacement is very helpful

for simplification of the theory. Therefore, instead of (30), we will use
another simplified form, which has also the property of being confined to a
certain energy interval around the Fermi energy and at the same time permits
to avoid nonphysical singularities in the final expressions. We will
substitute the frequency dependent factor in (29) by

2

@

7 G
(&’é‘) + (00
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Here we are interested in A at the Fermi surface, and hence we put §=0. *

The interaction (31) enters the BCS self-consistency relation, and hence we
have

12 z 112
. 2 12 2 17
A (E+4) m07+? (&)
-#l

where A has the same meaning as before (eq. (21)).
At T=T. A=0. Performing the integrations we will assume that T¢ « 1t 7
@,,. The result will be

L i
. A xT,
x=aly,y= eC= 1.781. The asymptotic values of f(x) are

-fo . 33)

zn;’;-%(ﬂ‘; ¥ x el R
= g | %)

PYE; J— x » 1 7‘
From formula 33) we define o accordmg to eq. (26) Assummg that'

‘ co 1sproporuonaltoM wc obtain: d(In x) = -1/2 d(lnM). Accordingto .. - ;

- eq. (_9) The asymptotic values at small and large values of x are

%-%(5~3lui}x2 x «1

X

T . (35)
x »1

8\]

Experimental results are always given in the form of the dependence
o(T,)- Although we have obtained equations describing T and «, they

include an unknown interaction. More important, the characteristic phonon
frequency can be renormalized, and hence depend on the electron density of

states, i.e. on fy. At least, our attempts to compare the theory with the

ofx) =

experiment on the basis of the assumption of a constant @ have failed.

-Since we do not want to introduce doubtful concepts about the phonon
renormalization, we will perform the comparison in a different way.

From experiments we have the connection between T and «.
According to our concept there should be little difference between com-
pounds with different substitution of the constituents, provided that the
CuQ2 planes are left intact. This is in fact confirmed by the data for
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(Y 1-xPrx)Ba2Cu307-§ and Y(Ba2_xLayx)Cu3O7 (Table Il in ref. [25]), °
and we will approximate them by a linear dependence (see Fig.9):

o =0.623 - 0.00637 T¢ (K) , 383K <T¢ £923K (36)

Fig. 9. Experimental data on the dependence of o on T¢ for
Y(Ba2-xLax)Cu307 [22] (triangles) and (Y1-xProBa2Cu307[191,{20]
(circles). The points were taken from table III of the review article
by J.P.Franck [25]. The dashed straight line is the least square fit

~ (eq. (36)).
This we can use to define the dependence of x on T with the help of the
- equation for ¢(x) . Substituting x in eq. (33) we can obtain the connection

between gy and Te. This will be the prediction for future experiments, since

the photoemission experiments permit to measure & for compounds with

‘reduced T, pmwded that smglc crystalline samples will be available.
- For convenience we rewrite eq. (33) in the form '

Sny

InT, +fix) = In -bu, N 1)

where

1 .
b=—7F7 (38)
llll .

is the unknown constant (independent on by ). The program was to define

- Ky(Tc ) for different values of the coristant b and to leave the choice to

-experiment. It happened, however, that the right hand side as function of K
and the left hand side as function of T, are nonmonotonous and have

maxima. The only possibility to obtain a continuos dependence ;5( Tc)isto

chose the constant b in such a way that the two maxima have equal values
(otherwise we get either a discontinuity or no solution at all). This value is -
b=0.137, (39

and the corresponding dependence ,uI(T ¢) is plotted at Fig.10.
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Fig. 10. Predicted dependencé of the location of the Fermi energy with

respect to the saddle point, 4y, on T¢ (both quantities are measured
in K) {18].

This definiteness is no surprise, since the basis of these calculations is the -
experimental dependence o(T¢) for definite compounds.

In the previous derivation it was assumed that both, Ky and @, are '
much larger than T¢ . This happens not to be the case for the largest 7o
(u 1’=Tc is presented by the dashed line at Fig:10). Of course this can be

corrected (actually already for T¢ = 90K the correction is small), however )
this region is suspicious in the sense that the small value of the isotope shift -
is likely not entirely defined by the cut-off of the integrals, and the phonon-

frequency can enter the interaction, reducing the value of a. Otherwise
small values of & require large values of x (see eq.(35)), and hence -

unphysically large values of @),;; see Fig.11 representing the dependence

coo(T ¢ ) obtained from x(T¢ ), ;ﬁ(T c)and x = Q.

Fig. 11. The variation of the effective phonon frequency ¢ with T¢ (both
in K) [18].

The fact that the isotope shift for Cu63-Cub5 is negative and increases in
magnitude with increasing T¢ (see ref. [26]), can also be considered as
evidence for inapplicability of the theory, based on the assumption of the

purely cut-off nature of the isotope shift, to substances with extreme 7. On
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the other hand for the lower 7(': substances the values of @), are reasonable,

and their variation can be ascribed to renormalization.
The predictions of the present theory are rather definite, but in order to

check them direct determinations of the function ofx) have to be performed.

This is possible, in principle, by measuring o and g (by ARPES), using
the same samples.

6. RESISTIVITY IN THE NORMAL STATE [14]

The linear temperature dependence of the normal state resistivity of -

high-T, cuprates was always a puzzle for theorists, and one of the checks
for the theory to be correct was this dependence. Unfortunately, people
always managed to get the linear dependence in their theories based on
completely different assumptions, e.g. RVB (Anderson and Zou) [27],

<

-nested Fermi surfaces (erosztck and Ruvalds) [28], spin fluctuations

(Morita et al.) [29], oxigen chains (Abrikosov and Falkovsky) [30]
Therefore such a result can neither prove nor disprove a theory. The easiest

way to obtain a linear temperature dependence is an assumption that the

- electrons interact mainly with some optical mode having a low frequency, S

and the T comes from the Bose distribution [exp(a)lT) 1] -1 atT » @

This sort of cxplanauons is likely to be wrong because the hxgh frequency ST
resistivity of. co) at @ »T varies linearly with @ (see e.g. ref. [32]), ie.o

replaces T; this can happen only if T, « @, - the limiting cnergy of qua31- e

particles mediating the interaction.

We are not going to make an exception and will also obtain the linear |

resistivity in the framework of the theory presented above. We will show

that scattering of electrons from electrons at low temperatures is much larger.

than scattering from phonons; therefore we will consider it first (the same
was true for the model of nested Fermi surfaces [28]). In the previous
section we have assumed that the interaction between electrons due to
exchange of phonons is stronger than the Coulomb repulsion (actually they
are of the same order of magnitude). Here however the situation can be
different. The matrix element of the Coulomb interaction is

4 nezl £,
5% » (40)
k2+ az2
whereas the interaction via phonons is
wZ a(k )2

g . “4n
e @ | (88 - o(k)?

In the forthcoming the integral over & will require k ~ @, and since 8¢ will
be of the order of T, the second matrix element will be much less than the
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first one in the case T » @, = o(e) . If on the contrary T « @, , the second

factor in eq. (16) bccomes -1, the same as in the gap equation of the
previous section. Then the interaction 3cqu1res the same form as a pure

2
Coulomb (40) with the replacement 47e /€_, — -gee . The sign is of no

importance, since only the square of the interaction enters the scattering
probability, and the order of magnitude of both interactions is likely to be
the same. Therefore we will write the interaction in the form (40) with the

2 2
possible replacement 47e /€_—» -g& in case T « @,. We obtain

1 471232
— =2 —
T oo €,

nz(l nl)(I n2)6(£1+t.§-81 ez)(l cos 6) d3p Idjpz

42)
[ry-ppfs &1 2n°

where 0 is the anglc between the velocities before and after scattering, and

n; arethe Fermi functions. Intcgraung we obtain the ﬁnal exprcssxon

e4P B 21/2'._ _
R e i 7T @
T g - ada: u-s, 4\I_N s(u%) :

(here we have substituted the formula (17) for & )
The reason why we get in this case a linear T dependence instead of the

usual quadratic one is that in a 3D or 2D dimensional case the 8-function' - = =

fixes the angle between the momenta whereas in the 1D situation there is no
angle to fix, and the 3-function reduces two momentum integrations to one.

The coefficient in the linear dependence (43) would be largé (eZI Vg~ 1 for

an ordinary metal, and here vz is much smaller) if not for g » 1.

Therefore this requirement is actually the condition for the Landau Fermi-
liquid theory to be applicable to the layered cuprates under consideration.

Now we calculate the scattering probability from phonons; it is given by
the expression

; 22" w(k) S[e(p) - e(p-k)] (1 - cosB) dkI(2x)
— = Zﬂ'g - (44)

T (e &)™ fexp[w(k)T] - 1}
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For T » o,
] garznm . ckzd k gcezrn X
= 2 2n ~ r. @5
T ep Il'/px/ (k+ &) [exp(ckiT) - 1] /px/
For T « @, the result is
2
, am Hdk  23)gmT “
= {exp(ckiT)- 1] ~ 2 :
The ratio of the probabilities for T ”-“‘6 has the order of magnitude
- 2
T gx €, : ‘
. L. —==s1 . N CY))
Top e :

However for T « @, the electron-electron scattering is dominant. The

dommance of the clcctron-electron scattering over the electron-phonon. .
scattering can be concluded also from the experimental fact that with

* decreasing temperature below T, the lifetime of quasiparticles thamcd ,
from infrared measurements starts to increase rapidly [32]. If such a

dominance takes place below T, it must definitely continue in _some

temperature range above I.:

If the singular points are at all the boundancs of the Bnlloum zone, the
resistivity in the ab-plane is

2
3 m ‘
P='§"““—£——- S @
PyO(u-%) €,

The crucial idea for all results obtained in the foregoing is the

assumption £_» 1. Apart from that we have presumed a modification of the

electron-phonon interaction (square of the matrix element) which is
described by formula (19). We realize that this treatment is not complete.
The Coulomb repulsion has not been seriously considered. In the model of
strongly compressed matter [33], it compensates almost entirely the phonon
attraction due to longitudinal phonons (in this case n =1); we hope that this
analogy cannot be extended to such extremely anisotropic substances, as
layered cuprates.

The quasi 1D spectrum appearing as a result of the "extended saddle
point singularities” puts also questions about the applicability of the Fermi
liquid approach, since the purely 1D interacting Fermi system is more likely
to be a "Luttinger liquid”. We hope that the non-1D features will be
sufficient to suppress the logs leading eventually to the breakdown of the
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Fermi-liquid; this all, however, has to be checked. On the other hand the
quasi 1D situation may be more favorable for the "preformed pairs” idea
(see e.g. ref. {34]).

7. ON THE NATURE OF THE ORDER PARAMETER [35]

One of the hottest topics in the theory of high-T¢ cuprates is the
symmetry of the order parameter. One point of view is that the pairing is of
“s-type", possibly anisotropic. According to this hypothesis the order
parameter does not change its sign along the Fermi surface, and the energy
gap has no nodes. This is confirmed by several experiments which
definitely demonstrate a finite energy gap, e.g. the Knight shift [36],
tunneling conductance in BiSCCO [37] and HgBCCO ([38]. The most
convincing argument in favor of this point of view is the strong isotope shift
of the critical temperature in YBCO with a partial substitution of constituents

(Y —-Pr, or Ba—La), which we discussed before. This is a clear evidence of .

a phonon mechanism of superconductivity which leads to an order
parameter with no nodes. One of the examples is the model described in the:
previous sections.

On the other hand there exists also strong evidence in favor of the so
called "d-wave" pairing. These are the linear temperature dependence of the
penetration depth at low temperatures [39] the Josephson experiments-on .
single crystals [40] and rings, consisting of several grains [41]. One must
have in mind, however, that these experiments demonstrate actually only the
fact that the order parameter, as function of momentum changes sign and

has nodes but do not exclude dependencies differing from the form A(k) =

cos l& cos 15, which is usually advocated by the proponents of the d- B |

wave hypothesis. Recent direct measurements of the angular dependence of

the energy gap by photoemission (J.-C. Campuzano et al., see Fig. 8) did
not confirm this form. The only result, which favors it, is the absence of the
Josephson effect in a BiSCCO-Pb tunnel junction (surface ! c¢) [42] but this

result, which could mean that the integral of A(k) over the whole Fermi -
surface vanishes, is in contradiction with the observation of the Josephson
effect in the same geometry with YBCO instead of B18CCO and w1th thc
gap measurements already mentioned.

Our goal is to demonstrate that most of the observations can be
explained by a very simple idea which is a development of the E-L model.
Compared to it we introduce the following change. We will assume that in
addition to the phonon attraction considered in sec. 4 there exists a small
and short ranged repulsive interaction U = const. which can represent either :
some part of the Hubbard repulsion at the copper sites, or the interaction
mediated by spin fluctuations (taken alone, such an interaction would lead to
d-wave pairing). As in sec. 4, we will presume the following inequalities:

Ppj« e« POy« lld « K,

As shown in sec. 4, under these conditions A is constant in the singular
region. Substituting V(k) + U into the BCS self-consistency equation,
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assuming the density of states and A in the singular region to be much larger

than beyond it and integrating over k, and k, we obtain

y
! dé& ;17 2 :h[(gzmi)l 201 “)
2 (Evpy 2 (¢2+ 420)“2 ’

-#I
where 4 is the value of 4 in the singular region, and

(2m )12 [ng 2UP0},)

A=——T %7 —d (50)

(2m) py
We will assume the second term in the brackets to be much less than the
first one, and neglect it. The solution of eq. (49) at T=0 in the limit A« pt;
is

4,=8y eIt 6y

Now let us consider some point at the Fermi-surface, distant from the -

- singularity. For simplicity we consider a ¢ircular Fermi surface (thereis no

dependence on k, ), and @ will be the angular distance from one of the

singular "points" (the extension of the singularity, POy’ and the z-size of .
the Brillouin zone, 27/d, are assumed to be small compared to the radius of
the cylindrical Fermi surface, p ), which is of the order of X ). The integral

in the BCS equation consists of two parts: along the singularity and beyond . |
it. Since the density of states in the singular region as well as the value of

A=A are large, we will assume that this part of the integral dominates

(estimate of the other part's contribution see below), and hence Alp)

beyond the singularity will be defined by its value in the singular region. -

The integral over £ will be the same, as in eq. (49), and we can replace it
using this equation. Eventually we obtain the equation

. 2n
Alg) _ 2( n-I)PQy x_ [ ] -2n(<p)+ ) -2n(¢’%)] U (52)
- ’ sin sin - - ’
4, a:zd 2p Y g

)

where p, is the Fermi momentum, and 9, - the location of the next
singularity (in general a sum over locations of all singularities has to be
taken). This formula describes the behavior of A(¢@) far from the

singularities, i.e. at not too small values of ¢. For description at any angle a
simple interpolation
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Sinz(pIZ - sinz(pIZ + const,
with the const chosen so that A(Q) = 4 » can be used. The minimal value of
the first term in thie curly brackets of eq. (7) isat ¢= ¢ /2, and its value is

2[efl( Zposin( (po/4 ) )]2 " If this is smaller than Ulg, then A(¢) has a negative
value somewhere between the maxima, and hence the gap has two nodes in

this region. In case if ¢ = /2, as it happens in BiSCCO, the nodes have to

be located symmetrically around /4, and this corresponds to the
observations of J.-C. Campuzano et al., which are presented at Fig. 8. If

9=, which is most likely to be the case in YBCO, the negative values of

A are located around 772, i.e. if the positive maxima comrespond to the a-
-direction, the negative values are around the b-direction, which is exactly
what is seen in experiments measuring the phase of the order parameter. -
Thtq [x}céessary conditions for all that to be true is a sufficiently small
value of U: ' - o

U«gcezd/POy. ' R < < B

¥f this condition s fulfilled, 4, in the singular region will be defined self-

consistently by eq. (49), and hence the critical temperature will be also

defined by this equation. As shown in sec. 5, in case, when Athc"n

characteristic phonon frequency @, < g ; (@, is an optical - frequency, or... -

acoustical frequency at k=), the integration in eq.(49) has to be cutoff at
®,, and a regular isotope effect appears. Since this is observed in
experiment, we believe that the condition (53) is reasonable. Another -

concern could be the part of the integral in the equation for A{¢@) outside the
singular region. With respect to the terms, which we have kept, it is either

of the order of pp Ip,, ot [ UPO), I(ga:zd x(pg IIPOY)‘ Both quantities are
small. :

Since there is no reason for the integral fA( @)de to vanish, there should
be a Josephson current in the HTSC-Pb junction if the boundary is normal
to the c-axis, although it may be smaller than what could be expected from

an estimate based on % . The failure to observe itin a BiSCCO—Pb contact

could be due to the weak hopping between the CuO2 layers. The Fermi .
surface in this case is an almost straight cylinder, and the c-component of
the electron velocity is very small. If the electron crosses the barmer keeping
the direction of its velocity, it has to go a very long path. This decreases
drastically the tunneling probability and can desroy the Josephson current.
This does not happen if the boundary is parallel to the c-axis, because then
the velocity normal to the boundary is large, and also in YBCO, where due
to the chains the hopping between the CuO7 layers is stronger, and hence
the c-component of the velocity is much larger. In these cases the Josephson
effect was really observed {42], [43].
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The idea presented above solves also an important problem about the
suppression of superconductivity by nonmagnetic impurities. In case of d-

wave pairing one would expect the necessary condition to be 74 < 1,
whereas in case of s-wave pairing it could happen only at 7g; < 1. This

criterion is rather difficult to apply, because in the HTSC the ratio Aleg is

not so small as in low-temperature superconductors, and it is also not very
clear which impurities behave as nonmagnetic. Nevertheless the general
opinion is more inclined to interpret experimental data in terms of the

condition e T < I (A.Leggett, concluding remarks at the Argonne

Workshop, June 1994). In our scheme it would be rather natural, since the
impurities
are most likely ionized, the interaction of electrons with them is weakly
screened and long ranged, and it would not mix the singular and remote
regions of momentum space. This, however, has to be checked.

There is also a question about the tunneling conductance. Expcnments -
- on BISCCO [37], and HgBCCO [38] show a small conductance at eV less

than some large gap with 2A(0)/T¢ ~ 6 - 8 (see Fig. 12). This seems in
contradiction with the present results, as well as with the d-wave and
anisotropic s-wave concepts. Our scheme can explain the tunneling results
as follows. The tunneling conductance is proportional to the density of |
states. In the nonsingular regions not only the gap, but also the density of
states (per unit solid angle), is much lower than in the singular region.

Therefore it contributes only a small background; only, when eV = 4 is

Fig. 12. Tunneling conductance of HgBa2Cu04+§ (niobium tip) [38]

reached, the conductance becomes large (the background is usually

attributed to normal inclusions). ‘
The model, presented here, cannot explain all the data. Even with an

energy dependent one-dimensional density of states the maximal value of

2A(0)/T¢, which can be obtained from eq. (49), is less than 4 (see sec. 3),
whereas the experimental values are around 6 to 8. This contradiction can be
due to the fact that we apply the simple BCS-type theory, whereas the

increased density of states makes the effective interaction strong. This has to
be resolved in future studies.
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