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Abstract

Heavy Ion Beam Propagation in a Gas-Filled Chamber
for Inertial Confinement Fusion*
by
Nigel Oswald Barboza
Doctor of Philosophy in Nuclear Engineering
‘ University of California, Berkeley
Professor T. K. Fowler, Chair

The work presented here evaluates the dynamics of a beam of heavy ions prop-
agating through a chamber filled with gas. The motivation for this research stems
from the possibility of using heavy ion beams as a driver in inertial confinement fu-
sion reactors for the purpose of generating electricity. Such a study is important in
determining the constraints on the beam which limit its focus to the small radius
necessary for the ignition of thermonuclear microexplosions which are the source of

fusion energy.

Nuclear fusion is the process of combining light nuclei to form heavier ones. One
possible fusion reaction combines two isotopes of hydrogen, deuterium and tritium, to
form an alpha particle and a neutron, with an accompanying release of ~17.6 MeV
of energy. Generating electricity from fusion requires that we create such reactions in
an efficient and controlled fashion, and harness the resulting energy. In the inertial
confinement fusion (ICF) approach to energy production, a small spherical target, a
few millimeters in radius, of deuterium and tritium fuel is comi)ressed so that the

density and temperature of the fuel are high enough, ~200 g/cm® and ~20 keV, that

* This work was supported by the Director, Office of Energy Research, Office of Fusion Energy,
U.S. Department of Energy, under Contract No. DE-AC03-76SF00098




2
a substantial number of fusion reactions occur; the pellet microexplosion typically

releases ~ 350 M J of energy in optimized power plant scenarios.

In order to compress and heat the pellet, some current ICF power plant designs
call for using high energy, ~ 10 GeV, heavy ion, ~ 200 amu, beams to ablate, either
directly or indirectly, by generating x-rays, the outside layer of the fuel pellet, thus
causing it to compress via a rocket-like action. The heavy ion beams are focused
into a fusion chamber, a few meters in radius, at the target located in its center. In
the “liquid-wall” type of chamber, exposed liquid flows, consisting of liquid lithium
or lithium compounds, surround the central region within the chamber where the
subsequent microexplosion of the pellet occurs. The resultant energy from this ex-
plosion heats and partially vaporizes the liquid which is then used to generate stea;m
for driving conventional electric generators. This process is repeated approximately

ten times a second for a ~1000 MW, power plant.

The heavy ion beams must be focused to a small spot-size radius on target;
~ 2mm for some target designs. The final beam focusing’ elements can only be
placed outside the chamber, ~5m away from the target, or they will be damaged by
neutrons from the microexplosion. Immediately after the explosion, the background
gas density in the chaxﬁber can reach as high as ~10® molecules per cm3. Because
the time between subsequent shots is on the order of a tenth of a second, it may
not be possible, without employing various mechanisms such as cold liquid sprays, to

—3, essentially vacuum, needed for beam propagation

lower the density to ~ 1013 em
under-conservative assumptiqns. The ability to focus the beam in higher density gas,
therefore, has considerable advantages, in that it eases this stringent requirement on
the chamber recovery to substantially reduce the background gas density, leading

to simplified reactor designs. It also allows for operation at higher temperatures,

improving the thermodynamic-efficiencies of the plant. In this thesis we examine the
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propagation of a beam through vapor densities of ~10'* to 105 molecules per cm®
of both lithium and Flibe, a molten salt mixture of LiF and BeF,. The focal spot
radius of the beam is expected to be strongly influenced by collisions of the beam ions
with the background gas. The predominant collision processes are beam stripping,
where the charge state of the beam ions increases due to the loss of electrons, and
ionization of the background gas. These processes can significantly alter and amplify
the electrodynamic interaction of the beam ions with the collective electromagnetic

field of the combined beam-plasma system.

The collisions of the beam ions with the background gas result in a highly ran-
dom distribution of beam charge states and complicated plasma phenomena, making
analytic methods inadequate for qualitatively describing the dynamics of the beam.
We have therefore developed a new computer code, BTRAC, consisting of a fully elec-
tromagnetic 2%D particle-in-cell (PIC) simulation coupled to a Monte Carlo collision
(MCC) model. The PIC code simulates the complete dynamics of the interaction
of the various charged particle species: beam ions, electrons and background gas
ions, with the self-generated fields; while the MCC code follows the collisions be-
tween the beam ions and the background gas atoms. The cross sections for stripping
the beam ions and for ionizing the background gas were calculated using systematic
semi-empirical corrections to the classical Bohr formula based on the Bethe quantum

mechanical results for fast atomic collisions.

The BTRAC simulation of a 4.3 kA beam of 10 GeV, Hg™ ions focused by a typical
final focus system achieves the requisite spot radius of ~ 2.1mm on target in a
vacuum. For propagation through Flibe background gas with densities in the range
of ~10 to 10'® molecules per cm?, the same beam achieves spot radii of a few cm:
from ~ 3.1cm in 2x 101 cm™2 density gas, to ~ 5.5¢m in 1x10% cm™3 gas. The

heavy fluorine atoms in the vapor cause the beam to strip substantially, to average
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charge-states of ~11.4 to ~26. These highly stripped beam ions greatly ionize the
background gas leading to gas ion charge densities in the vicinity of the beam that are
comparable to that of the beam. In undertaking this study, it was initially hoped that
the electrons generated from both these processes, stripping and ionization, would be
confined within the beam and adequately neutralize the net charge, thereby reducing
the repulsive electric forces that tend to defocus the beam. However, it was discovered
that a substantial fraction of the electrons gain transverse kinetic energies that are
comparable to or larger than the potential “well” of the beam. These electrons are
not adequately confined by the beam and therefore cannot contribute effectively to its
neutralization. However, there exists a central “core” of the beam within which the
electrons are better confined, leading to a higher degree of neutralization and better
focusing that the rest of the beam. Indeed the rms radius of the beam continues to
decrease well past the point at which the edge radius reaches a “waist”, and achieves
a minimum of ~1.7 cm when the edge radius has expanded to ~6.9 cm. Propagation
through low-density, 1x10'® molecules per cm?, Flibe background gas leads to average
charge-states of ~ 1.7, and does allow the beam to focus to a spot radius of ~8mm,
with a minimum rms radius of ~2.2mm. The beam also focuses to mm size spot-
radii in high-density, ~ 10'* to 101° atoms per cm?, lithium background gas: from
~3.8mm in 2x10' cm™3 density gas, to ~6.9mm in ~1x10'% cm=3 gas. Because
lithium has a lower atomic number than fluorine, the stripping cross sections are
generally an order of magnitude lower, leading to average charge-states of ~ 1.9 to

~4,

We therefore conclude that although conventional focusing and propagation of
heavy ion beams through low-density, ~ 10! molecules per cm?, Flibe background
gas can achieve the mm size spot radii on target that are needed for heavy ion driven

inertial confinement fusion, propagation through high-density Flibe, ~ 104 to 1015
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molecules per ¢cm?, where the beam ions become highly stripped, cannot. Perhaps
some mechanism of injecting “cold” electrons into the beam to replenish the high-
energy electrons lost during propagation could provide the necessary neutralization
allowing the beam to focus in this high-density regime. Another possibility for high-
density propagation is to use working fluids that contain atoms with low atomic
numbers, such as liquid lithium. Ultimately, however, these various approaches to
propagating a beam of heavy ions through background gas in a liquid-wall chamber
of an inertialt confinement fusion power plant must all be weighed with respect to
the cost and safety of the power plant. For example allowing for higher density
background gas in the chamber may lead to simpler chamber designs, but this must
be weighed against the disadvantages of larger focal-spot radii, such as lower target
gain, etc; and although using liquid-lithium instead of Flibe allows the beam to focus
to smaller radii in higher background gas densities, lithium has several disadvantages

when compared with Flibe, such as its fire hazard and large tritium inventory.
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1 Introduction

Nucledr fusion of hydrogen isotopes has long been viewed as a potential source of
safe, relatively clean energy to meet the increasing demands projected for the future.
Inertial confinement fusion (ICF) is one concept currently being pursued as a means
of harnessing this energy for the production of electricity. In this approach, smz;xll,
spherical capsules containing deuterium and tritium, two isotopes of hydrogen, are
compressed and heated until fusion occurs. The use of heavy ion beams to initiate
these fusion microexplosions looks extremely promising in principle; however, it re-
quires that such beams be focused to a small spot in a fusion chamber that may be
filled with a low density gas. The research presented here is concerned with the fun-
da,ménta.ls of ion beam dynamics in the fusion chamber. Collisions between the -bea.m
ions and the residual background gas in the chamber will strip the ions to higher
charge states and generate a background plasma. These processes will affect the
feasibility of propagating the beam to a small spot-size needed for heavy ion driven

ICF.

1.1 Heavy Ion Driven

Inertial Confinement Fusion

Nuclear fusion is the process of combining light nuclei to form heavier ones. One
possible fusion reaction combines two isotopes of hydrogen, deuterium (D) and tritium
(T), to form helium and a neutron. This reaction releases 17.6 MeV of energy, with

the neutron carrying away 14.1 MeV and the alpha particle 3.5 MeV:
2H 4 3H — *He+n (17.6 MeV) . (1)

Figure (1)* shows the Maxwellian averaged reaction rate parameters {(ov) for various
gu g p

* Taken from Keefe (1982).
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Figure 1: Values of (ov) averaged over a Maxwellian distribution

for a variety of fusion reactions.

fusion reactions as a function of temperature. As can be seen, {ov) for the T'(D, n)a
reaction peaks when the reactant temperature is in the range 20 to 100 keV, and is
~4x10716 cm3 /s at 20 keV. Using this reaction for the purposes of generating energy
requires not only that we raise the temperature of the fuel, a mixture of deuterium
and tritium, to ~20keV, but also that the density be high enough for a significant
number of reactions to occur before cooling or disassembly. If the fuel consists of a

90-50 mixture of D and T (DT'), then the number of fusion reactions that occur per

unit volume, f, can be given by:

df n?
5 = 1o ()

where 7 is the total number density of D and T at time ¢. If we now let ng be the total

initial number density, then assuming there is no transport of particles, n=ng—2 f;

and if we define the burn-up fraction as ¢ =2f/ng, then we can solve (2) for ¢ at



some time 7:
¢ _ {ov)
T - ®3)
The burn-up fraction increases with the nor product. For nor 22x 105 s/em3, we

get a burn-up fraction of 230%.

The basic physics challenges facing any approach to fusion energy production are
to attain a certain ngr product, referred to as the Lawson criterion, and to heat the
fuel to the desired temperature. In the inertial confinement fusion concept, a laser
or ion beam driver is used to deliver energy to a target containing a small spherical
capsule of cold DT fuel causing it to compress substantially, thereby greatly increasing
both its temperature and density. The subsequent fusion reactions will “burn-up” a

significant fraction of the fuel, releasing energy in a microexplosion.

driver chamber converter

Mg "M G n, P

P fP
P

Figure 2: Power flow diagram for a typical inertial fusion plant.

A typical inertial confinement fusion facility would contain, in addition to other
components, a driver for delivering the necessary energy to the target, a chamber to
contain the subsequent capsule microexplosion, and provide a mechanism for carrying
away the generated energy, and generators for converting this thermal energy to
electric power. Figure (2) shows a block diagram of the power flow for such a plant.

From this diagram we can write

mEs(McG+1)v=(f+1) P, (4)




4

where G, the target gain, is defined as the ratio between the energy released by the
capsule microexplosion and the energy delivered to the capsule by the driver, E;, P
is the output electric power of the plant to the grid, f, is the recirculating power
fraction of P that is used to power the driver and run other plant equipment, 7; is
the thermal coﬁversion efficiency, v is the plant repetition rate, and M, is the energy
multiplication factor that results from neutron induced nuclear reactions that take

place in the chamber. We can also write

vEg = (pr — Pauz) 14 » | | (5)

where 7y is the wall-plug to output driver efﬁ;:iency, and FP,y; is the amount of
recirculating power that is used to drive plant equipment other than the driver. The
idea behind any feasible power plant is to reduce the cost of the plant for a given
output power, P. Zukerman, et al., (1988) do a detailed study of the cost of a heavy-
ion fusion power plant versus various physical parameters. The cost increases as the
driver energy, Ej, and the recirculating fraction, fp, are increased; therefore, for fixed
efficiencies and energy multiplication factor, we generally want tp‘ lower E4 and fp.

We can solve for fp, by dividing equations (4).and (5):

1+ qane (MeG +1) Brys

o= nane (MG +1)—1 ° ()

where Poyz = Poys [/P. As can be seen f, decreases as the gain, G, is increased.
However for a typical value of P,y ~0.05, fp does not decrease much for 7477:(M.G +
1)R10. We can also solve for E; in equations (5) and (4):

z (1+Pauz)P77d 1 7
= v - [fidﬂt(MeG+1)—1] . @

The target gain, G, as we will see later, is not independent of the driver energy, Fg, but
nevertheless, we can see from equation (7) that increasing the plant repetition rate, v,

will decrease the driver energy and hence the cost of the plant. However, making the
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repetition rate too high will not allow enough time to “clear” the chamber between

subsequent microexplosions; this point will be discussed in more detail later. We can
solve for this repetition rate in (7):

(1 + Pauz) Py 1
Eq4 [ﬂdﬂt (MG +1) — 1]

(8)

V=

For a ~ 1000 M We power plant, with Payz =0, M, =1 and 7n; ~35%, and a heavy
ion accelerator as the driver with energy E; ~5MJ and an efficiency of ng =~ 25%,
and a target gain of G~ 70, equation (8) yields a repetition rate of ~9.6 Hz, which

is reasonable.

ion source acceleration :f‘ acceleration
and with = with' chamber target
injector electrostatic q——’_’ magnetic —
focusing [—= focusing
= < final
focus
(4-32) beams

Figure 3: A block diagram of an induction linac for heavy ion driven ICF.

Up to now we have alluded to a driver, and mentioned in passing that this could
be a heavy i'on accelerator. One possible high current accelerator technology that
could be used as a driver is the heavy ion induction linac. In such a system beams of
heavy ions, like Cs™ or Hg%, are accelerated through induction cores, and focused
using electrostatic and magnetic quadrupoles. Figure (3) shows a block diagram of an
induction accelerator. Many beams are accelerated in parallel, combined, and further
accelerate:d until they reach the energy and power necessary to compress and heat

the fusion capsule. They are then focused onto the target in a chamber.




ablator

~ solid
'D.T fuel

Figure 4: Schematic of a typica,l inertial confinement fusion capsule.

In one type of capsule design, this compression is accomplished by delivering
energy to an outer shell, causing it to ablate off thereby imparting inward momentum
to the fuel in much the same way as a rocket. Figure (4) shows a schematic of such
a capsule, that consists of the shell, or ablator, a solid DT fuel layer and DT gas fill.

The capsule radius is typically only a few mm.

.

heavy ion
beams

end-plugs

Figure 5: Schematic of an indirect drive target for heavy ion driven ICF.

In order to achieve uniform compression, the capsule must be symmetrically illu-
minated. It may be possible to achieve this uniformity by having several heavy ion
beams impinge on the ablator in some symmetrical configuration. In this method,
called “direct-drive”, the capsule is the target, and the ablator absorbs the energy of
the heavy ions directly. Another method of obtaining symmetrical illumination, called

“indirect drive”, is to enclose the capsule within a cylindrical case, or “hohlraum”. Fig
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(5) shows a schematic of a hohlraum for heavy ion driven ICF. Here the hohlraum is
the target and the heavy ions are stopped in the end plugs of the hohlraum. This ma-
terial, heated by the ions, then radiates x-rays that, with the appropriate hohlraum
design, can be made to symmetrically illuminate the outside shell of the capsule.

Lindl (1995) provides a good overview of various target concepts.

1.1.1 Focal Spot-Size

105 I 1o
- Range in Al at
- 200eV and
- - 0.2 g/cm3
«~N
g 1 -
e = 3
3 f :
S i Xe 7
o of -
g
P I B . -
§ 10 3 Pb E
1072 Ly R N NEET)
1073 1072 10-1 1 10 102
lon energy (GeV)

Figure 6: The range-energy relation

for several ion species in hot matter (200 V).

In both the direct and indirect methods of capsule illumination, the stopping
range of the ions in either the ablator or radiator and the spot-size, or radius, to
which the beams can be focused are important in determining the energy gain of the
target. Figure (6)* shows the range of various ions in aluminum as a function of ion

energy. Bangerter (1988) discusses the results of gain analysis for indirectly driven

* Taken from Keefe (1982).

Y
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targets that are illuminated from two sides as shown in figure (5). Figure (7) * shows
curves for gain versus driver energy, for various spot-sizes and ion ranges, and figure

(8)* shows the peak driver power, Py, as a function of driver energy corresponding fo

the curves in figure (7).

200 1 i 1 T I T T T T T T T : T l T T T T

R =0.025 g/cm? R =0.05 g/cm?

100 —

10

Gain

200

100 —

10

0 5 10 0
Driver energy (MJ)
Figure 7: Curves for radiatively driven targets giving gain

as a function of driver energy, focal spot radius and ion range.

* Taken from Bangerter (1988).
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Figure 8: Peak driver power requirements

corresponding to the gain curves in figure (7).

We can use the results in these graphs to discuss the relationship between the
target gain and the focal spot-size of the beams. The general idea behind heavy-
ion fusion is to produce the required high driver power with a relatively low beam
current that can be accelerated and focused by conventional rriegns, as we'll see later.
This translates to ions with high kinetic energy and, to match the required short
ion range, high mass. Consider ions that have a range of ~0.1g/cm?. As can be

seen from figure (6), this corresponds to heavy ions, ~200 amu, with kinetic energy
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around Ep ~10GeV. Some plausible ion species are mercury, which has a mass of
200.59 amu, or cesium, with a mass of 132.91 amu, among others. For a ~ 5 MJ
driver, with a spot-radius of ~ 2mm, figure (7) predicts a gain of ~ 70. As before,
equation (8) gives a plant repetition rate of ¥~10 Hz for a ~ 1000 MW, power plant.
And finally figure (8) gives a peak driver power of ~500 TW. Smaller spot sizes are
more difficult to achieve due to intrinsic limitations of a focal system; therefore let
us examine what happens if we incre;se the spot-size to ~3mm, but keep the driver
energy and ion range the same. We expect that this will decrease the gain since a
greater mass of radiator material must be heated. From figure (7) we see that the gain
drops to ~40, leading to a repetition rate of ~20 Hz, which, in turn, would stress the
fusion chamber dynamics. In order to lower the repetition rate, we need ;f,o increase
the gain. We can accomplish this in one of two ways, by either increasing the driver
energy or decreasing the range. From figure (7), we see that to regain G~70, for the
same ion range, we would have to increase the driver energy to ~7MJ, and from
figure (8) the peak power would become ~ 600TW. Following the second approach
and decreasing the range to ~0.05 g/cm? for the same driver energy of ~5 MJ would
also increase the gain to ~65 but leave the peak power at ~5007W. However, now
from figure (6) we see that the kinetic energy of a ~ 200 amu ion would need to be
lowered to ~4.5 GeV. Table (1) summarizes these results. As we’ll see later, the price
for either raising the peak power or lowering the ion kinetic energy to compensate
for a larger spot size is paid for by increasing the driver current, which makes final
focus more difficult. Therefore it is necessary to make the focal spot size of the beam
as small as possible. However, from a cost point of view, although increasing the
peak driver power increases the accelerator ;:ost, lowering the ion kinetic energy may
substantially reduce the accelerator cost. For a general discussion of these economic

tradeoffs see Hovingh, et al., (1988).
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spot-size range G Ey Py Ey
(mm)  (g/em?) (MJ) (TW)  (GeV)

2 0.1 70 5 500 . 10

3 0.1 70 7 600 10

3 0.05 - 65 5 500 4.5

Table 1: Beam, driver and target parameters as a function of focal spot size

for a 1000 MW, power plant.

1.1.2 Beam Current

The total current that needs to be delivered by the driver.to the target is given
by

I =22 (k4). | ©)

where P; is the driver power in TW, ¢ is the ion charge state, and Ej is the kinetic
energy of the ions in GeV. As can be seen, this current increases if we either raise
the peak power or lower the ion kinetic energy. Typically, the driver current is on the
order of tens of kiloamps and cannot be delivered by a single beam. Indeed for double-
sided, indirect drive targets, and more so for direct drive targets where symmetry of
irradiation is important, we need to have considerably more than one beam, perhaps
Np~4-32. However, the complexity and expense of the hardware that will be needed
to bend and focus several beams, in conventional final focus designs, limits us to few

tens of beams.

The maximum amount of current that can be focused in a single beam without
neutralization is determined by solving for the “free-flight” of the beam in the reaction
chamber. The radius of the beam, a, as a function of the axial position, z, in a vacuum

chamber is governed by the “envelope” equation. For an axisymmetric beam with
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mono-energetic ions, where there are no external forces present, this is:

da Q ¢
@=Lt (10)

We shall discuss this equation in more detail later when we analyze the beam transport
in the chamber. The terms on the right-hand-side of equation (10) represent the
defocusing space-charge and transverse thermal forces of the beam. The first term
represents the defocusing effect due to the space-charge of the beam. For a long,
narrow, cylindrical beam, with llmiform transverse distribution, the dimensionless

perveance, @, is given by
_ gelp
~ 2megmym,(Bryc)®

(11)
where g as before is the charge state of the beam ion, I; is the beam current, m; is
the beam ion mass in amu, and B is the relativistic factor. It is related to the ion
kinetic energy by:

B =B (B+2) , | (12)
where £y~ 1.07E; /my and Ej isin GeV. The factor of 43 instead of v~ in equation
(11) reflects the partial cancellation of the beam’s electric repulsion by magnetic
attraction. The second term in (10) is a measure of the defocusing effect due to the

thermal forces of the beam. The emittance is defined as:

&= (gi) 6% (62 + @) — ror] (13

where v, and vy are the transverse radial and azimuthal velocities of the beam idns
respectively, and () denotes moments of the beam taken at a given position z and time,
t. This emittance is usually determined by the ion source, and beam manipulations
in the accelerator; for example combining several beams to form a single beam may

lead to a large growth in the emittance.

We can now integrate equation (10) with the initial conditions, a(0) = q;, the

- - = D e e P T A rasea ] . . o m———, -
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radius of the beam at the last focusing lens, and da/dz(0) = O, the focusing half-
angle of the beam emerging from the lens:

0% =2QIn (ﬂ> +é (-35——17) , (14)

as

where a;s is the minimum beam radius, or “waist” of the beam, where da/dz = 0.
Consider a beam with initial radius a; =~ 10 cm, emittance € 2~ 2.0 x 10~° m —rad,
and & convergence angle of © ~0.02rad. Then we get a spot-size, or minimum beam
radius, of as ~ 2mm with a beam perveance of Q =~ 3.8 x 10~°. For a ~ 200amu,
~10GeV, *1 ion, equation (11) yields a beam current of J; ~4.3kA. Finally for a
~500TW peak power machine (9) gives a driver current of I3 ~50kA, \resulting in
Np~12 beams. We now look at the case where we increased the spot size to ~3mm.
Then equation (14) yields Q ~5.1 x 10~°. If we wish to keep the peak driver power
at ~500 TW, table (1) predicts a beam kinetic energy of ~4.5 GeV. Using equation
(9) gives I;~111kA, and equation (11) yields I;~~1.7 kA, leading to N; =266 beams.
Therefore smaller spot-sizes result in fewer beams on target due to the lower peak
power requirement. However, one must remember that this analysis was done for
the transport of a beam in a vacuum chamber. As mentioned above, the background
gas in the chamber will partially strip the beam ions and introduce other atomic and
plasma processes which will affect the spot size of the beam and consequently the

maximum transportable current.
1.1.3 Chamber Characteristics

Although the basic function of the chamber is to provide a means for transport-
ing the energy produced in the explosion, via some working fluid, to an electricity
generating facility, it also has to meet some other requirements in order to be viable

for a commercial power plant. As an example, we consider, one of the most recent
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Figure 9: HYLIFE-II inertial confinement fusion reaction chamber.

One view is rotated 90 deg. from the other.

and detailed liquid-wall chamber designs, HYLIFE-II by Moir, et al. (1994). Figure

(9) * shows two views of this chamber, one rotated 90 degrees from the other.

The working fluid that is used to carry away the heat in the HYLIFE-II chamber is
Flibe, a molten-salt mixture of 66.7 mol % LiF and 33.3 mol % BeF,. As mentioned
above, the fuel for fusion power plants consists of deuterium and tritium. Deuterium
is very abundant in nature, constituting about 0.015% of natural hydrogen, however,
the amount of tritium is negligible. Both isotopes of lithium in LiF can be used to
breed tritium via the reactions:

Li+ n — *He + T (4.8 MeV) ,

Li+n— *He+T+n (—2.5 MeV)

* Taken from Moir, et al., (1994).
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Therefore, lithium plays a vital role as a breeder of the necessary tritium as well as

being a working fluid component.

In the HYLIFE-II design, the fusion target is injected into a “pocket” of Flibe
created in the center of the chamber by oscillating nozzles. This pocket, which has a
Flibe thickness of about ~1m, and various other configurations of Flibe jets within
the chamber serve to protect the chamber walls from neutrons. After the microex-
plosion the pocket disintegrates. A 1000 MW, reactor design with a driver energy of
5 MJ and a gain of 70, resultsin a ‘capsule output energy of ~350 M J. This explosion
can vaporize several kg of liquid, resulting in background gas densities on the order

3 immediately after a microexplosion. The background gas

of 10'® molecules per cm™
density in the chamber at the time of the next shot is an important parameter in
determining the spot-size to which the ion beams can be focused. And as we have
seen above, it is important that we try to focus the beam to a spot small enough to

allow the high gains needed for an economically attractive fusion plant.

The HYLIFE-II design assumes a driver efficiency of 74 ~ 35%, and a thermal
conversion efficiency of 9: ~43%. With an energy multiplication factor, M.=1.18 and
50 MW of auxiliary power, equation (8) predicts a repetition rate of ~6.3 Hz. This
means that a target must be injected into the chamber, a fresh pocket of liquid formed,
and any conditions that are necessary for the propagation of the beam through the
chamber, in particular the original density of the background gas, must be restored

every sixth of a second.

For Eyj~5MJ and G~ 70, we can use figures (7) and (8) to determine a set of
spot-sizes, ion ranges, and driver powers, P;. Then, with these ion ranges, figure (6)

can be used to give a set of beam kinetic energies, Fy, and driver currents, Iy, for
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spot-size  range P, Ey I I Ny
(mm) (gfem®) (TW) (GeV) (kA)  (kA)
2 0.1 500 10 50 4.3 12
2.75 0.05 525 4.5 117 1.6 73
3.25 0.025 550 2.5 220 0.7 314

Table 2: Beam and driver parameters as a function of various focal spot sizes

for a 5 MJ driver.

~200 amu, *1 jons. Then we can use equations (10) and (11) to calculate the beam
currents, Iy, and number of beams. Table (2) lists the results of such calculations; as
an example, for a 12 beam design, like HYLIFE-II, the focal spot radiué for ~4.3kA,
~10GeV beams is ~2mm. It must be stressed that these calculations are predicated
on the target gain calculations shown in figures (7) and (8) by Bangerter (1988).
More recent results by Bangerter and Ho (1990) show that target gains of ~60 can
be achieved with ~ 5MJ drivers and spot radii of ~ 3mm. Linal (1995) gives an
overview of ongoing experimental and theoretical work in target physics and design

that may allow for even larger spot-sizes.
1.2 Purpose of this Thesis

As we have seen above, the spot radius of the beam on the target is é. key param-
eter in determing the target gain and peak driver power. Since the kinetic energy of
the ions and the total beam current, and ultimately the cost of the power plant, are
influenced adversely by increasing spot-size, the beams must be focused to a small
spot radius. This spot radius is affected by the density of background vapor present

in the chamber at the time of the beam propagation.

As mentioned above, the background gas density immediately following a mi-
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croexplosion can reach as high as ~ 10'® molecules per em™3. In the HYLIFE-II
design study by Moir, et al., (1994), 205 spray heads of cold Flibe, 843 K, are em-
ployed to condense the bé.ckground gas and reduce the density in the chamber to
~10®3 molecules per ¢m® within the ~0.17 s between shots. The ability to focus the
beam in higher density vapor, ~ 101% cm™3, has considerable advantages, in that it
eases these stringent requirements on the chamber, reducing or perhaps even elimi-
nating the need for sprays and other mechanisms to condense the vapor, leading to
simplified reactor designs. Methods for propagating the beam through lower density,
<103 cm™3, gas have been explored by Callahan (1995). Beam propagation as a
magnetic pinch through higher density, 2 10'° cm™3, gas are being studied by Hahn
and Lee (1995) and Tauschwitz, et al., (1995), and are very advantageous if physi-
cally feasible. However, some neutralized transport schemes lead to more complicated
designs requiring, for example, the formation of stable plasma channels within the

chamber, etc.

The purpose of this thesis is to determine if a beam of heavy ions can be focused
to the necessary mm size spot radii on target through background gas densities in the
range of ~ 10 to 101° molecules per cm®. We will explore chambers that use Flibe
or liquid-lithium, which was proposed in the original HYLIFE design by Blink, et
al., (1985), and also meets the basic requirements of breeding tritium and protecting
the first structural wall from neutrons, as the working fluid. Collisions of the beam
ions with the background gas will result in a highly random distribution of beam
charge states due to stripping, and complicated plasma phenomena due to ionization
of the background gas. Analytic formulations, such as the simple envelope equation,
(10), used earlier are inadequate for describing the dynamics of the beam under these
conditions. We therefore turn to numerical methods based on particle-in-cell and

Monte Carlo techniques to solve the basic equations of motion for the beam ions.
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2 Beam Propagation Theory

In this thesis we wish to determine the spot radius to which a heavy ion beam
can be conventionally focused through a chamber filled with background gas. In
particular we wish to determine the positions and velocities of the beam ions as they
move through the chamber as this will determine the position and radius of the focal
spot. In order to do this we first need to understand the physical processes that
affect the motion of the beam ions, and then write a set of equations that describe

this motion.

Beam ion Hgt

Ion kinetic energy (Ej) 10GeV
Particle velocity (3) 0.32

Beam current () 4kA

Pulse length (L) 1m

Beam emittance (¢) 20 mm = mrad
Beam radius at final lens (a;) 10cm

Beam convergence half-angle (0)  20mrad

Table 3: Some typical beam parameters.

Before proceeding, we summarize, in table (3), a set of beam parameters based
on the discussion in the previous chapter and adapted from Lee (1991). We shall use
these parameters to determine the order of magnitude of various dynamical quantities

throughout this thesis.
2.1 Physical Processes

We separate the interactions of the particles in the chamber into two types. Dis-

crete, or particle-particle, interactions where the charged and neutral particles in the

— — L. e m—— e - .- I et B e SR
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chamber undergo collisions; and collective, or particle-field, interactions, where the
charged particles are affected by the self-generated electromagnetic fields. As men-
tioned above, inertial confinement fusion may require that multiple beams, ~4 to 32,
be focused onto the target; in this thesis however, we study the transport of a single
beam and neglect the forces of rthe other beams. Interactions between these multiple

beams has been studied by Callahan (1995).
2.1.1 Particle-Particle Interactions

As mentioned above, the background gas neutrals, beam ions, background gas
ions, and electrons can interact with each other via collisions. These collisions can be
elastic scattering collisions or inelastic charge-changing and excitation collisions. The
charge-changing collisions are responsible for the creation of electrons and gas ions,
and for the alteration of the beam ion charge state. It is.hoped that the electrons
generated by ionizing collisions with the background gas will be entrained by the
beam, while the background gas ions, being heavier than the electrons, will remain
essentially at the location of their creation. These electrons may be sufficient to
compensate for the increase in charge state of the beam ions due to stripping and any
gas ions in the vicinity of the beam, allowing the beam to be focused to spot radii

comparable to those in a pure vacuum chamber.

The densities of the charged species, electrons, beam ions and gas ions, are gener-
ally orders’of magnitude lower than that of the background gas neutral density; even
the electrons, which are the most prolific of the charged species, reach densities of
~103 cm~3 only when the background gas density is at the high end, ~ 10 em=3,

and the beam is at the target. Therefore we can ignore collisions between the charged

species. Within the scope of this thesis, we also ignore collisions between the sec-
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ondary charged species, electrons and gas ions, and background gas neutrals; although
such collisions will result in the generation of electrons and background gas ions, they

will not change the charge state of the beam ions.

We are therefore left with collisions between the beam ions and background gas
neutrals. As mentioned above, these collisions can be elastic scattering or inelastic.
Elastic scattering collisions result in an angular deflection of the beam ions. Jack-
son (1975) has shown that after several collisions, the distribution in angle will be

approximately Gaussian with a mean square angle:

2
(%) ~ 47xnyL (M) In (ﬁ) , (15)

Tmmo @) "\ 71
where Z, is the ‘ba.ckground gas atomic number, ny is the background gas density, ¢
and my are the charge-state and mass of the beam ion in amu respectively, § is its
velocity in units of ¢, and + is the relativistic factor. L is the distance that the beam
ion travels, and is approximately given by ~a;/©, where q; is the radius of the beam
at the lens and © is the convergence angle from the lens. For example consider the
typical beam parameters given in table (3) with an average charge state of éz +3
propagating through fluorine gas with density ng = 10'° cm™3; as we will see later,
fluorine is the dominant background gas component for reactors that use Flibe. The
root mean square deflection angle is then ~2.3 yrad. From emittance considerations, "
the minimum mean square angle can be given by: (6%) ~ €?/2a?, where ¢ is the
emittance of the beam. Again using the parameters given in table (3) we get a mean

square angle of ~0.14mrad. This is more than sixty times larger than the deflection

angle from scattering, therefore-we can ignore elastic scattering collisions.

We are left then with inelastic collisions between the beam ions and background
gas neutrals. These collisions can be divided into excitation collisions, where the

beam ion or the background gas neutral is left in an excited state after the collision,
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and charge-changing collisions, where the charge states of the beam ions and back-
ground gas atoms are altered by the collision. Viewed from a classical perspective,
the excitation process is one where an electron in a lower-lying level in the atom is
excited to a higher level via the absorption of energy; this leaves a “hole” in the lower
level where the electron used to be. The time to fill this hole, and return the atom to
its ground state can be given by %/I', where I is the natural line width of the level.
From compilatio'ns by Keski-Rahkonen and Krause (1974) we see that the outer-most
atomic levels generally have the smallest line-widths. For example for the N7 shell in
mercury, ['~0.2¢eV, whi;h yields a de-excitation time of 3.3 fs. Similarly the lifetime
for a hole in the L2 shell of fluorine is ~ 1.3ps. As will be seen later, these times
are generally much smaller than the mean time between charge-changing collisions,

therefore we can neglect excitation.

We are now left with charge-changing collisions between the beam ions and back-
ground gas neutrals. These collisions are of two types, electron loss, where the charge
state of the beam ion or the background gas neutral increases, and electron capture,
where the charge state of the beam ion decreases due to the capture of an electron
from the background gas ;1eutra1. These collisions can be described by a “cross sec-
tion”, such that the probability for a beam ion to undergo a particular type of collision

in a small distance, §s, is givén by
P =ongbs , (16)

where ng is the neutral density of the background gas. The cross section, o, for this

collision has the dimensions of area.

Schlachter, et al., (1983) have shown that the capture cross section, o g, the cross

section for a beam ion of charge state ¢ to capture an electron from the background




22

gas, follows the approximate empirical scaling law:

2 39742
10-2 a0q~ Zg
EpS

where g and Z,, as before, are the charge-state of the beam ion and atomic number of

Oc,q = 8.6 X (17)

the background gas respectively, and Ey~1.07E, [my, where Ey is the kinetic energy of
the beam ion in GeV and m; is its mass in amu. ag is the Bohr radius. For example
with the values in table (3) with an average cﬁarge state of ¢ ~ *3 and fluorine
background gas, we calculate a capture cross section g.q~2.2x 10725 cm?. As will
be shown this is much less than the cross sections for electron loss and therefore can

be ignored.

We are then left only with the electron loss collisions between the beam ions and
the background gas neutrals. There are two types of electron loss collisions, those
that result in the loss of electrons from the beam ions, stripping, and those that
result in the loss of electrons from the background gas, ionization; these generally
occur simultaneously. We quote here the results of a semi-empirical method for
calculating the single-electron loss cross sections for fast collisions, i.e. collisions
where only a single electron is lost from either the background gas or the beam ion;
this method is described in detail in a later section. For example, the ionization of an
almost fully stripped mercury ion, Hg™*, due to a collision with a neutral fluorine
atom has the smallest cross section, ~ 2.5 x 10722 em?. Although we would never
expect a mercury beam ion to reach this high a charge state, this cross section is still
more than three orders of magnitude larger than the capture cross section, so we are
justified in ignoring electron capture. The largest cross section is for the ionization
of a neutral fluorine atom by a fully stripped mercury ion, ~ 2.7 x 10714 ¢m?2; and
with a background gas density of ngy ~10° cm™3, the mean time between collisions,
~ 1fongPec, is ~ 3.9ps. Although this is only three times larger than the largest

de-excitation time, as mentioned above, we do not expect the mercury beam ions
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to become fully stripped. For the more realistic 720 charge state ions, the collision
time increases to ~ 32.5 ps which is more than twenty-five times larger than the de-
excitation time; therefore the beam ions and the background gas neutrals are assumed

to be in their ground states when they undergo electron loss collisions.

Finally, a few words must be said about multiple electron loss cross sections. As
will be shown later, for fast collisions the electron loss cross sections are independent
of a detailed knowledge of the structure of the projectile, and depend only on its
charge state. Therefore at high velocities, the electron loss cross sections will be
approximately the same whether the projectile is an electro;l, proton, or Hg™ ion.
Schram, et al., (1966) have reported single and multiple electron loss cross sections
for electron impact on noble gases. Their data go as high as 15 keV electrons, which
correspond to a velocity of 0.24c, slightly lower than the 0.32¢ velocity for 10 GeV
mercury. For the ionization of helium, the ratio of the cross section for the loss of two
electrons to that for one electron is ~0.27%. For neon this ratio is ~2.4% and gets
much lower for the loss of more than two electrons. For the heavier gases, krypton and
xenon, the ratios are ~8.8% and ~ 18% respectively. Clearly, for heavier atoms that
have many loosely bound outer electrons, the multiple electron loss cross sections are
a significant fraction of the single electron loss cross sections, but for lighter atoms
they are oniy a few percent of the single electron loss cross sections. Therefore in
the case of the ionization of the background gas we can éafely neglect the multiple
loss cross sections. For mercury stripping, however, it seems that we may not be able
to neglect multiple electron loss since it forms about ~ 20% of the single electron
loss cross section. But, single electron stripping is never a major component of the
total collision cross section; for 10 mercury ions colliding with fluorine, it’s about
~T7%. Consequently the multiple electron stripping cross section will be even smaller,

~1.5% of the total cross section, and therefore can be ignored.
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2.1.2 Particle-Field Interactions

L=

[
AV \J *

Figure 10: The beam coordinate system.

Besides collisional interactions, the charged species in the chamber can also in-
teract with the collective, self-generated electromagnet;ic fields. In order to discuss
these fields and their effect on the velocities and positions of the particles, it becomes
necessary to specify a coordinate system. The most natural system is cylindrical,

with the axis running through the center line of the beam as shown in figure (10).

The computations to be presented here are axisymmetric, therefore, by assump-
tion, the space charge of the beam will generate only radial and axial electric fields.
Also the beams of concern here have no net angular momentum around the z axis,
therefore the only bulk currents that exist are radial and axial; consequently, by sym-
metry, only azimuthal magnetic fields exist. Therefore, we retain only the transverse
magnetic field set: the radial and axial electric fields, £, and E, respectively, and the

azimuthal magnetic field, By.

The motions of all the charged particles in the chamber: beam ions, background
gas ions and electrons are coupled to these fields via the Lorentz force. Since the
system is taken to be axisymmetric, we are only concerned with the radial and axial
positions of the particles, r and 2, respectively. Although the beam itself has no

net angular momentum, each individual beam ion does have an azimuthal velocity,

e Y oae L . . . - - .- Th e PN -
RN SO e =7 ..
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therefore we keep all three velocity components, radial, axial and azimuthal, v, v,

and vy, respectively.

For some types of particles, one or more of these velocity components may re-
main invariant under the influence of the fields discussed above. We first look at
the beam ions. For the values in table (3) both v, and vy are much less than
v;; therefore B ~ v,/c, and the change in the axial velocity can be written as
Av,~(geAt[y3mym,)(E; + vrBy), where my is the mass in amu and ¢ is the charge
state of the ion. Again for the values in table (3) we get maximum fields of around,
By~0.01T and E,~4.2 MV/m for an ellipsoidal beam, and At=53 ns for the beam
to traverse a distance of ~ 5m. Then Av,/v,; ~0.1%. Therefore v, and 7, which
is only a function of v, are taken to be invariant. For the beam ions then we only
need equations for v, and vy. We now look at the gas ions; as mentioned before,
these are created via ionizing collisions between the beam ions and background gas
atoms, and essentially have zero initial velocity. The radial and axial velocities are
given by Av =~ (ggeAt/mgm,)E, where g, and mg are the charge state and mass of
the background gas ion in amu respectively. For a *1 fluorine ion, and the values in
table (3) we get maximum fields of around £ ~8.6 M V/m and Av~0.007c. There-
fore the gas ions never reach relativistic velocities. Also with the transverse magnetic
field set, there are no forces in the azimuthal direction; therefore angular momentum
is conserved and the azimuthal velocity remains zero. For the background gas ions
then we keep only v, and v,. The electrons however, are created with some initial
velocity; this velocity is dependent on whether the electron is created via ionizing
a background gas atom or stripping a beam ion, and will be discussed in more de-
tail later. Therefore all three electron velocity components, v, v, and vg, must be

maintained.
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2.2 Governing Equations

An analysis of the particle-field interactiqns will allow us to write a set of time-
evolution equations for the dynamic quantities discussed above: the radial and axial
positions of all the particles, the radial, axial and azimuthal velocity components of
the electrons, the radial and axial velocities of the gas ions, and the radial and az-
imuthal velocities of the beam ions. We also need to write equations for the transverse
magnetic field set: the radial and axial electric fields, and the azimuthal magnetic

field. The formalism presented here benefits from lectures by Kaufman (1995).

The particle-particle interactions, as discussed above, will result in the creation
of electrons and gas ions, and an increase in the charge states of the beam ions.
Because we only allow for single electron loss collisions between background gas neu-
trals and beam ionsA, all the gas ions created have charge state *1; but the beam
ions can undergo several successive stripping collisions with background gas neutrals,
and therefore can have any charge state from an initial value to fully stripped. We
can then write evolution equations for the number of electrons, gas ions, and beam
lons of a particular charge state. The resulting equations wﬂl form a complete set
that can, in theory, be solved with the appropriate initial an& bbundary conditions

to determine the dynamics of the beam.
2.2.1 Particle Position Equations

The positions of the particles are given by:

drs,i

dt =Vsi, (18)

where r; ; is the position of a particle and v,; is its velocity. The subscript s= (g,¢,9)

is a species label refering to beam ions of charge state g, electrons, and gas ions
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respectively, and the subscript 7 denotes a particular particle. As mentioned above,
we keep only the radial and axial positions of the particles. Then for the radial

position (18) becomes:
drs,i

dt = UT,S,i ° (19)

rs,i refers to the radial position of a particle. And for the axial position, z ;:

(20)

2.2.2 Particle Velocity Equations

The fully relativistic time evolution equations for the velocities is the Newton-

Lorentz equation:
dps,i
dt

= gs€ (E(rs,i) + Vs,i X B(rs,i)) P (21)

where pg,; is the particle momentum defined as msmo7s iV, i, where mg is the particle
mass in amu, 7s,; is the relativistic factor, ¢s is the charge state of the particle, E(rs ;)

and B(rs,;) are the electric and magnetic fields at the position of the particles.

Now for the radial velocity of the electrons we can write:

dYe.iVre.d 7e,;v§ ; e
73,:{t7"eg’ — re’i’eﬁ — memo (Er(re’i) - vz’e’iBg(re’i)) 3 (22)

where the subscript s is written as e, and m, is the mass of the electron in units of

amu. Similarly for the axial velocity:

d 1V : e
')’e,dtz,e,z = —memo (Ez(re,i) + 'Ur,e,iBg(re’,')) s (23)

and for the azimuthal velocity:

Ve iV e i iV8,¢,iVr,e,i
Ve, iV8,e,i — e iV8,e,iUre,i , (24)
©dt Te.i

?
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As mentioned in the previous section, for the beam ions, we only need equations
for the radial and azimuthal velocities. Using equation (21) we can write the radial

velocity of a beam ion of charge state ¢ as:

2

dv" gt Vg q,i ge
Lk £ L bx £] ET i) — .B i , 25
dt Tg,i + “q,iTp Mo (Br(rg,i) — v2,0,iBo(ry,i)) (25)

where now the subscirpt s is written as ¢, the charge state of a particular beam ion,
and my is its mass in amu. Notice that the relativistic factor Yq,i 1s taken to be

invariant. The azimuthal velocity is given by:

dvaqi Vg,q,iVr,q,t .
b & LA by §1 br £ . 26
dt Tqi (26)

And finally for the non-relativistic, v,; ~ 1, background gas ions, we write the
radial and axial velocities as:

d'Ur,g ) ¢

dt = mgmo (Er(rg’i) - 'Uz,g,z'Bg(rg,—i)) ? (27)
Bvz,g,i € o
dtg = —— (Bz(rg,:) + vrg,iBp(rg,i)) (28)

where the charge-state of all gas ions, as discussed above, is *1, and where myg is the

mass of the gas atom in units of amu.
2.2.3 Field Equations

As can be seen, in order to solve the time evolution of the velocities, we need
to know the electric and magnetic fields at the positions of the particles. The time
evolution of the magnetic field is given by the Faraday-Maxwell equation:

oB
%7 =—VxE. (29)

For the azimuthal magnetic field then:

0By _ OE, OE,

5 or 0z (30)

v o e - R e g
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And the time evolution of the electric field is be given by the Ampeére-Maxwell

equation:

dE 1 1
= maV*B-T, (31)

where J is the current density. For the radial and ax1al electric fields, equation (31)

yields:

OE, =1 0By 1
ot fo€o Oz B € Irs (32)
0t  mer Or " € Iz - (33)

The divergence of B equation, V-B =0, is trivially satisfied with the azimuthally
symmetric transverse magnetic field set used here, and we substitute the continuity

equation for Gauss’ law, V - E=p/ep.
2.2.4 Current Density Equations

Equations (32) and (33) contain the source terms J; and J, the radial and axial
current densities respectively. Later we will show how we can get these by evaluating

the continuity equation:
9p

5 (34)

V- Id=—-—

where p is the charge density defined as:

Zp Ny
p= qu253(r rei) + Z —e83(r—re;) + Z e8(r—ry;) , (35)

g=1 i=1 1=1 =1
where Z is the atomic number of the beam ion, and Ny, Ne, and N, are the number

of beam ions of charge state ¢, the number of electrons, and the number of gas ions
respectively. &° is a three-dimensional delta function, such that the integral of p
over all space would result in e(N; — N, + Z =1 gNg). For the geometry of concern,

equation (34) becomes:
19(rJy) [ 8J; _ Op

r Or 8z ~ ot (36)
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2.2.5 Particle Number Equations

Finally we need a method for calcula,tiné’the total number of particles of a given
species. The derivation presented here benefits from lectures by Vujic (1992). As
mentioned above, these numbers are determined by the collisions. The only collisions
of concern are those between beam ions and background gas neutrals. If we write §s
for the beam ions in equation (16) as v,6%, since, as discus'se'd above, vy, vg <K v, then
the probability that a beam ion of charge state ¢ will undergo a particular type of

collision, z, in the time interval §¢ is given by:
6F5,qi = 0,qTgUz,,i61 (37)

where 03,4 is the cross section for this type of collision, ny is the background gas
density, and v, 4 is. the velocity of the beam ion. Therefore the probability that no

collision will occur in this time is:
8B 0i =1 — 04,gngvz,4,i6t , (38)

where 03, is now the total cross section and is given by 3, 0, 4. Then the probability
that no collision has occurred after a time ¢ =nét has elapsed is given by P, ;= (6P,:)",

or in the limit of n — oco?

¥

~

Pyi = exp (-0 t,41gVz,g,it) - (39)

Then the probability that a collision of type = will take place between some time ¢
and £4-6t is simply given by Pq,;csz,q,,'. Finally the probability distribution function,

or the probability density for a collision of type = to occur at time ¢ is given by:
Tz,q,i = Oz,gTlgVz,q,i €XP (—0t,gNgVz,g,it) - (40)

This probability density is normalized over the interval 0 <t < co. We now define

a cumulative distribution, Pz g;(t), or the probability that a collision of type z will

[P . U
a
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take place over the interval 0 <#'<t:
t
Frgi= / 7z,q,i(t)dt’ . (41)
0 .
Substituting from (40) into (41) yields:

a.
PZ:Q:i = ;i:’—q [1 - €xp (—O.'t’qngvz,q,it)] ’ (42)
»q

where Py 4i(0)=0 and P gi(c0)=1.

Since we have concluded that the only two types of collisions that can occur are

stripping and ionization, we can write:
0t = Oin,0 + 0st,0 + Oin,st - (43)

where we have suppressed the subscript ¢ for convenience. oy ¢ is the cross section for
ionizing the background gas but not stripping the beam ion; likewise, ot is the cross
section for stripping the beam ion without ionizing the background gas atom; and
Oin,st is the cross section for both these processes to occur simultaneously. In the case
of collisions between fast, heavy particles, like the beam ions, and light projectiles,
such as the background gas atoms, almost all collisions will result in some ionization

of the background gas atom; therefore 051920, and we can write (43) as:

Ot =0in0 + Tin,st , (44)

I we now define the ionization cross section as, oin = Oino + Oin,st, then the

probability equation (42) becomes:

Oz,9

Ppgi= [1 — exp (—0in,gngVz,4,it)] , (45)

Oin,g
where for ionizing collisions we replace o, by i, and for stripping collisions, by

Ost = Ost,0 + Oin,st = Oin,st- As discussed above, every ionizing collision between a
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beam ion ¢,% and a background gas neutral leads to the creation of a background
gas ion of charge state *1 and an electron; and every stripping collision will result in
the conversion of the beam ion charge state from ¢ to ¢ + 1 and the creation of an
electron. The probability function (45) can then be solved to calculate the number of
background gas ions, Ny, electrons, N, and beam ions of charge state ¢, Ny at time

t.

We now have a complete set of equations for the following unknows. Particle
radial positions, rg, 2gi, Te,i: equation (19); axial positions, zei, Tg,i, 2g,: équa,tion
(20); electron velocities, vr,e i, Vz,ei, Vge,i: equations (22), (23) and (24); beam ion
velocities, vr,gi, Vg 44 €quations (25) and (26); background gas ion velocities, vr,g,i,
Va4, equations (27) and (28); azimuthal magnetic field, By: equation (30); radial
and axial electric fields, E,, E,: equations (32) and (33); radial and axial current
dénsities, Jr, J2: equation (36); and particle numbers, Ny, N, N,: equation (45).
Given a set of boundary and initial conditions, we can solve thes;e equations for the
dynamics of the beam, in particular for the positions of the beam ions. The constant
parameters that appear in these equations are the axial velocities for the beam ions,
Vz,4,i, the beam ion and gas atom masses, m; and mg, the atomic number of the
beam ions, Z3, the background gas deﬁsity, ng, and the stripping and ionization cross

sections, 0st,q and Oing.

——— —— LT e e e - . B R R e e SR P
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3 Numerical Equations

The equations in the previous section can be grouped into four categories. The
particle equations for the positions and velocities; the field equations for the electric
and magnetic fields; the particle-field interaction equations for the current densities
and the field interpolé.tion to the particle positions; and the particle-particle interac-
tion equation for the particle numbers. Solving these equations is impossible analyti-
cally without making many simplifying assuxriptions. We therefore turn to numerical

methods. The resulting numerical equations can be “solved” using a computer.

For the particle position and veloc.ity equations we impose a temporal grid and
employ a central differencing scheme to reduce the temporal derivatives to algebraic
quantities. In addition to this we impose a spatial mesh and finite differencing tech-
niques to reduce the spatial derivatives in the field equations. Particle-in-cell (PIC)
techniques are used to interpolate the fields to the particle positions and calculate
the current densities. Finally Monte Carlo collision (MCC) techniques are employed
to calculate the particle numbers. A study of the boundary and initial conditions

needed to solve these equations is deferred until later.

We first describe the geometry used to model the target chamber. In a liquid-wall
chamber such as HYLIFE-II by Moir, et al., (1994), shown in figure (9), a pocket of
liquid Flibe surrounds the target. Figure (11) * shows a top and side view of this
pocket, the location of the target and the beams in the chamber. As mentioned
before, in this thesis we study the transport of a single beam through the chamber,
neglecting the other beams. We then replace the complex geometry shown in figure

(11) by a large open-ended cylinder with a conducting wall, as shown in figure (12).

* Taken from Moir, et al., (1994).
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Figure 11: The oscillating and stationary jets of liquid Flibe
in the HYLIFE-II chamber. Top and side views.
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Figure 12: The simplified chamber geometry

used to solve the system of equations.

The final focus system 1is included in the model as a thin lens located a distance
Ly=a;/0O from the target; where g; is the radius of the beam at the lens, and © is
the beam convergence angle. The radius of the cylinder, R. is tens of centimeters;
in the HYLIFE-II chamber, for example, the closest “structure” to the beam, once
it enters the chamber, is the Flibe pocket which has ~ 50 ¢ inner radius around
the target. The length of the cylinder, L., is several meters; it includes the distance

from the lens to the target plus a few beam lengths, L;, to the right of the lens and
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the left of the target as shown in figure (12). The beam starts behind the lens; as
the simulation progresses, it travels down the axis of the cylinder, through the lens,

towards the target. The background gas only exists in front of the lens.
3.1 Superparticle Equations

Evaluating the governing equations for every pa.;'ticle in the system, s, 1, is com-
putationally impractical; for the parameters given in table (3), the number of beam
jons of charge state *1 initially is N 222.6 x 10'%. Therefore we need to first discretize
the number of particles. The discussion presented here follows that of Hockney and
Eastwood (1988). The equations that need to be discretized are the particle position
and velocity equations, (18) and (21). For each species, s, we group a number of

particles together, and define:

_ 1
PP=HZI’{, (46)

where r, is now the position of a group of AN partiéles at positions r; indexed by p.
The species subscript has been suppressed for convenience. Given any function of r,

f(r), we approximate its value at the group position r, by:

flrp) = A—IN- > f(E)- ' (47)

The validity of this approximation will be discussed in detail later, when we analyze

the numerical methods.

We can use equation (47) for the velocities of the particles to write:

1 .
Vp = AN zz: Vi, (48)
where v, is the velocity of a hypothetical particle at location r,, and v; are, as before,

the velocities of the particles located at r;. If we now take the time derivative of (46),
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we get:
dr,

7 = Ve (49)

so that (18) retains its original form if we interpret v, as the velocity of group p.

Taking the derivative of (48) results in:

dvp 1 vidy;  qe 1 1 N '
& TAN Z v dt  mm, AN Z o (E(r:) +vi x B(r3)) , (50)

3

where we have substituted from (21). The relativistic factor, -, is simply a function
of velocity, therefore using (47) and interpolating the fields to the group position, rp,

we can write:

TpdVyp dvp _ge
g +Vp dt  mma (B(rp) +vp x B‘(rp)) . (51)

If we define mpy=ANm, and ep,=ANe, then equation (51) can be written as:

o — gep (Bey) + v x B(rp) , (52)

and we see that (21) retains its form with p,=mmpy,vp.

We see that if we can approximate the value of a function at the position of
a group of particles, rp, by (47), then the equations that describe the motion of
the particles, (18) and (45) also describe the motion of these groups of particles,
or “superparticles”. Therefore all the subsequent equations derived from these also
remain the same, provided we replace the particle index 7 by the superparticle index
p, the mass m, by the “super-mass” m,, and the charge e by the “super-charge” e,.
From this point on, particles are to be thought of as superparticles with positions and
velocities, rsp and v ,, where s is the species label, s=(q, ¢, g); and the summation

over the particle numbers, Ns, is now done over superparticle numbers, K;=N;/AN.
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3.2 Particle and Field Equations

We now describe the the method for differencing the three sets of time-evolution
equations. The equations for the radial and axial positions of the superparticles: (19)
and (20); the superparticle velocity equations: (22), (23), (24), (25), (26), (27) and
(28); and the electric and magnetic field equations: (30), (32) and (33). Many of the
techniques used here are described quite thoroughly in the definitive text by Birdsall
and Langdon (1985) and the review article by Dawson (1983).

3.2.1 Particle Position Equations

Tz .
1
H t
1 1
: '

0 n | n+1/2 n+l 1n43/2
] ]
1 1
l/—\'
] ]
o H
At = '
! 1

Figure 13: The temporal grid showing the particle positions and velocities.

To difference the particle position equations, (19) and (20), we temporally “stag-
ger” the particle velocities from the positions as shown on the grid in figure (13). At
is the temporal division over which the quantities are advanced, and n is an index
used to refer to a particular location in time. This allows us to employ a “central
differencing” scheme for the derivatives, which will be discussed in more detail later,
when we analyze the numerical methods. The method is called “leap-frog” because

the particle velocities at n + 1/2 are used to advance the positions from » to n + 1,
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and then the positions at n + 1 are used to advance the velocities from n 4+ 1/2 to

n+3/2.

Differencing the axial position equation (20) yields:

n+1/2
e By s LT (53)

where the superscripts refer to the time-index. Thus if the axial position is know at
time n and the axial velocity is known at time n+1/2 then we can find the position at
time n + 1, thereby advancing it by one time-division, At. For the beam ions v::;,/ 2

is replaced by the invariant quantity v, g ,. Thus:

z;';,'l = z;p + Vg0 pAL . o (54)
}’n'i‘l rn +1 ;‘n :
S
H
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Figure 14: The Cartesian transverse plane for the radial position advance.

Differencing the radial position equation (19) presents some problems in cylin-
drical coordinates. Consider a particle that is close to the origin and has some finite

radial and azimuthal velocity; by conservation of angular momentum, such a particle
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would be prevented from passing through the origin. If, however, we were to simply
difference equation (19) in a fashion similar to equation (53), then, because the result-
ing equation would have no accommodation for the azimuthal velocity of the particle,
the radial velocity could cause the particle to go through the origin in time At, clearly
violating the conservation of angular momentum. Boris (1970) describes a method for
overcoming this problem by performing the radial position advance in the Cartesian
transverse plane. Figure (14) shows this transverse plane and the particle’s position

and velocii;y at the various times. Notice that the transverse velocity at n + 1/2,

n+1/2

Lsp s 18 resolved with respect to the position at n. The Cartesian coordinates of

()

the particle are then given by:

atl =12 it AL, (55)
and
il = oy At | (56)

Then the advanced radial position is calculated from:

raft = T+ 0E &)

Since the background gas ions do not have any azimuthal velocity, this Cartesian
" advance is superfluous; equation (56) vanishes and equation (57) simply becomes the

differenced version of equation (19), with the caveat that r always be positive. Thus

ot = (g, +olpi A2 (58)

g:P rgz

Equations (55) and (56) imply that the particle lies on the z axis at time n.
While the orientation of this axis is arbitrary initially, it cannot remain so, and if we
wish the particle at time n + 1 to also be located on the z axis in preparation for the

advance to time n + 2, then clearly we must rotate the Cartesian system by the angle
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8 shown in figure (14). In particular this rotation will affect the orientation of the
velocities at time n +1/2, therefore we defer this calculation till we study the particle

velocity equations.

3.2.2 Field Equations

n+3/2

t
!
:
2
0 n | n+1/2 n+l
]
. J_J
1
H
1

|
|

.-.—D..—-a
-t

Figu.re 15: The temporal grid showing the electric and magnetic fields.

The field equations (30), (32) and (33) have both spatial and temporal derivatives.
Therefore, in addition to imposing a temporal mesh, similar to the one employed for
the particle positions as shown in figure (13), we also need to impose a spatial grid.
The temporal mesh is shown in figure (15). We now “leap-frog” between the radial
and axial electric fields, which are known at integral time-steps, and the azimuthal

magnetic field and current densities, which are known at half-integral time-steps.

Since the spatial derivatives of the fields are needed in equations (30) to (33),
we impose a rectangular (r, z) mesh, figure (16), on the cylindrical system shown in
figure (12). This mesh is similar to the Cartesian grid used by Yee (1966), and allows
us to use a “three-point finite difference” scheme for the spatial derivatives, described

by Birdsall and Langdon (1985), and discussed in more detail later, when we analyze
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Figure 16: The spatial grid showing the locationé of the electric and magnetic fields

and the current densities.

the numerical methods. The radial mesh division is Ar and the axial division is Az.
The radial index, j, runs from 1/2 on axis, =0, to NV, at the conducting wall, r= R,.
The axial grid index, k, runs from 1 at the open end on the left of the target to N,
at the open end on the right of the lens. The radial electric field, E,, and current
density, Jy, are computed on integral axial nodes and half-integral radial nodes; the
axial electric field, F,, and current density, J,, are computed on half-integral axial
nodes and integral radial nodes; and the azimuthal magnetic field, By, is known at

half-integral axial and radial nodes.

The Ampére-Maxwell equations (32) and (33) can be differenced as:

n+1/2 n+1/2
At (Bo,j+1/2,k+1/2 - Bo,j+1/2,k—1/2) At g
/Z()E()AZ €0 T,j+1/2,k ?

E&la/z,k =Bl i1k — (59)
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+1/2 n+1/2
n-t1 n 208 ("f+1/ 2By ak1sa ~ "i—l/zBe,j-l/z,k+1/z)
B iknfe = Ezjpsyat - - _
Hoce (Tj+1/2 - Tj-l/z) (60)
At n-+1/2 ‘

e | BikH1[27
where the additional subscripts on the fields and current densities refer to the spatial

location on the mesh shown in figure (16), the superscripts_, as b;afore, refer to the
temporal location in figure (15), and r;4, /o, for instance, is the radius of the grid
location j 4+ 1/2. Equations (59) and (60) advance the radial and axial electric fields
from n to n+1 given the current densities and magnetic fields at n+1/2. The method

for calculating these current densities is discussed later.

To advance the magnetic field we difference the Faraday-Maxwell equation (30):

g2 _prtl/2 _ A _ grH +
6,3+1/2,k+1/2 T T0,541/2,k+1/2 T A, \Tri+1/2,k41 r,j+1/2,k

At (i +1
Ar (Ez,j+1,k+1/2 - E:,j,k+1/2) ’
Therefore we advance the azimuthal magnetic field from n 4 1/2 to n + 3/2 given the

(61)

radial and axial electric fields at » + 1.
3.2.3 Particle Velocity Equations

Finally, we turn to the velocity evolution equations (22), (23) and (24) for the
electrons, (25) and (26) for the ions, and (27) and (28) for the background gas ions.
The temporal locations of the velocities are shown in figure (13). We first look
at the beam ions. The azimuthal velocity equation (26) is nothing more than the

conservation of angular momentum:

d(rq,pvﬁ,q,p) _
— = 0. (62)

With the help of figure (17), the same as figure (14) with more detail, we can finite
difference equation (62):

+3/2 3/2 . +1/2 1/2 .
Tgp / v_';_:,z{ sin (x' —¢') = rgp / v_’;_:,z{ sin(x —¥) , (63)
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Figure 17: The Cartesian transverse plane for the velocity advance.

1—:1;2 is the transverse velocity of the beam ion, X, as shown, is the angle
L.gp

where v

and v ; similarly the

between 77 and ¥ is the angle between 77, and Tap

0,p
primed quantities are these values at n+3/2. The problem with this equation is that

n+1/2 and rn+3/

Tg.p are “pseudo” positions, in that we do not actually have the particle

n+1/2

positions at these half-integral temporal locations. As mentioned before v Lgp 18

resolved with respect to the position at n, therefore the right-hand-side of equation

(63) becomes:

n+1/2
n+1/2 n+1/2 . n4+1/2 | nt+1/2 q,p
Tap  Ulgp SR(X—9)=wvs, " |rgp '“cospp— ——sing

and from figure (17) we see that the term in the square brackets is nothing more than
n+3/2 o+l

Tgp- Similarly the 1eft~hand-51de of equation (63) becomes v, ap Tap and we can
write (63) as
n
n+3/2 _ Tqp  n+1/2
Y990 = g-}l;l Y6,9,p (64)

We now have an equation for the advance of the azimuthal velocity from n + 1/2 to

n + 3/2 given the particle positions at n and n + 1. We can write this in a more
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insightful form if we realize the following:

ntl vg‘*‘l/ ZA¢

. Yo.p 4P
s 09:1’ = .n+l T n+1 ’
Tg,p Tg,p (65)
$n+1 ,rn + ,v:}'q*';/zAt
CcOoSs 9 = q,D — q,p 340,
P n-+1 n41
Tqp Tq,p

where 0y is the angle between ry,, and r;‘"};l shown in figure (17). Then equation

(64) becomes:

n+3/2 n+1/2

=2 nt+1/2
6,0,p ~ T0,4.p

v cosOgp— vrp ' sinfyy . (66)

In this form equation (66) can be recognized as the the azimuthal component of the

n+1/2

Lgp DY the angle 6, and accounts for the

veloéity that results from a rotation of v
rotation of described by Boris (1970) and mentioned in the section on the position

advance.

We now look at the radial velocity equation (25) for the beam ions. We can

rewrite this as:

1' d(rq,Pv",q,P) — v-zL:Q:p + - qep (E (r ) -9 | Bg(r )) (67)
= T y 249, ) ‘
Tq,p di Tgp  TgpTMp qp . v

Performing the same manipulations as we did with the azimuthal velocity equation,

n1/2

and remembering that v

difference (67) as

is resolved with respect to the position at n, we finite

+1/2\2
ma ot (] ) qepAAt

n
n+3/2 _ Tgp¥Unap L.0:p ( n+1 ntl
vr q,p = E’. i vz q pB ' P (68)
. s e Yopmpmp N\ 0P HEFTO0

where E:-q*:;lv is the radial electric field at » + 1 at the position of the particle r’q‘;,'l,

and similarly for the azimuthal magnetic field; we’ll discuss these fields in more detail

later. Again, we can gain some insight if we define the rotated radial velocity as:

x _,n+l/2 n+1/2 .
Vrgp = Urgp €08fgp+v, " sinlyy , (69)
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where 6, p is the rotation angle shown in figure (17) and defined in equations (65).

Then (68) becomes:

n+3/2 _  x gepAt ;z+1 n+1
Vrgp = VrgpT ——’)’q pmbmp' Ergp — V2408 6,.9.0) ° (70)

Equation (70) completes the rotation described by Boris (1970) and advances the
radial velocity from n + 1/2 to n + 3/2.

We now turn our attention to the gas ions. The time-evolution of the radial and
axial velocities of these non-relativistic particles is given by equations (27) and (28).

If we central difference these equations we get:

nt+3/2 | n+l/2
oPE32 _ ntlf2 epAl { pnt1 _ Vzgp tVzgp” pai (71)
,9:P »9,P mgmp \~ 9P 2 b.9:p | °
n+3/2 | n+l/2
vn+3/2 —_— vn+1/2 + _epﬁ. En+1 + vrig!p + v”:g,}’ Bn+1 (72)
2,9 = Vz.9.p mgm 2,9,p 9 6,90 |

The problem with these equations, unlike that of the beam ions, is that they are
coupled in the velocities through the force terms. In the case of the beam ions, the
force term contains only the axial velocity which is assumed to be invariant. Boris
(1970) provides an elegant solution to this problem by decoupling the electric and

magnetic forces. We first define a velocity advance based on half the electric force:

o= = vn+1/2 + epAt i1
1,9, p — YT:9,P 2mgmp T,9,p ?

v =vn+1/2+ epAt En+1
Z,9,p — Y2:9,P 2mgmp 2,9,p °

(73)

Then, anticipating that we will have to end the velocity advance by conducting a

similar operation for the remaining half of the magnetic field we write:

n43/2 _ 4 &AL nia (74)
7,.9,p - 7,9,D 2m m 7.9,p ?
gy
n43/2 _ 4 AL nt1
z,9p = Vzgp Eiop- (75)

2mgmy
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These equations, (74) and (75), are sufficient to advance the radial and axial velocities

of the particles provided we know the quantities v;',' 4,p and v;’:g’p. Clearly we need to

solve for these quantities in terms of the known values v;, , and v;, , defined by
equations (73). If we substitute (74), (75) and (73) into (71) and (72) we get what

look like a set of rotation formulae:
+ _ -_— — -
’v,.’g,p - vr:gsp cos ¢g’p - vz,g,p Sm ¢g’p ? (76)

+ _ — . -—
vzyg:p - vr’g:p sin ¢g’p + vz,g,p cos ¢g,p ?

where sin ¢g , and cos ¢4, are defined as:

1
ep Bg+ At
mgmp

1+ (_"PB?,Z;N)z ’

 singgy =
ngmp

| ((@Bitpat 2
- ngmp

1 + (epB;"H At)z )

2mgmp

(77)

COS g p =

We expect (76) to be a rotation because the azimuthal magnetic field will indeed
rotate the radial and axial velocities; the significance of this will be discussed in more
detail later. These equations then provide the desired relations between v,‘.*,' 4,p and

Uy g.p> a0d v}, , and v], ,, where vy, , and v, , are given by (73). Then equations

2,9 2,997 7,9, 2,9,p
(74) and (75) can be used to advance the radial and axial velocities of the gas ions

fromn+1/2 ton +3/2.

Finally, we look at the velocity advance of the fully relativistic electrons, given
by equations (22), (23) and (24). As in Birdsall and Langdon (1985) we proceed by
defining a “generalized velocity”, ue,p = Ye,pVe,p, Where ve p is any velocity component,
and 7 p, as before, is the relativistic factor. We now deal with this quantity instead
of the velocities and convert after the advance is complete. The azimuthal velocity
equation (24) can then be written as:

d("e,puﬂ,e,p) _
— = 0. (78)
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This is similar to the azimuthal velocity equation for the beam ions; therefore using

the method of Boris (1970) we write the following difference equation:

at3/2  ntlf2 atl/2 .
ug e’p/ =1u, e’p/ coslep —Urp ' sinbep , (79)

where the angle of rotation 6., is defined, as in the case of the ions, by:

2
sind, , = —2ep 7"
&P n+1/2 i1’
Yep  Tep (80)
n+1/2 At
coslep = n-fl + —-——-——n:’_l’}pz el
Te ¢.p 7 €,p rgsp

and the relativistic factor can be written as:

(un+1/2)2 + (un+1/2)2 + (un+1/2)2

7,€,p

(542) = e (81)

Equation (79) advances the azimuthal velocity from n + 1/2 to n + 3/2.

The coupled radial and axial velocity equations (22) and (23) become:

u2

Te.p di TepYep TeMp e.p
duze D €p Ure,p
3%, —_ E 3%, B .
dt memp z(rerp) + 7e’p o(rerp) (83)

Using the same manipulations as we did for the radial velocity of the beam ions, we

can difference these two equations as:

n+3/2 |, n+1/2
G x epAt grtl _Yzep TUzep pntl (84)
rep — Urep Memy T,€,p 27n+1 fep | ? |
n+3/2 n+4-1/2
un+3/2 . uﬂ+1/2 _ ePAt En+1 Ur,e,p +u Ur,e,p Bn+1 (85)
Z,€ = Uz, —_— I 1
,6,D Z,€,D memp Z,€,p 272;-1 0,e,p ?
where, as in the case of the beam ions,
1/2 1/2
Upe p = u?j,p/ cos be p + vg+ 2 sin bep - (86)
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and sinf.p and cosf., are given by equations (80). Then employing the concept
described by Boris (1970) of using half the electric force, followed by a magnetic
rotation, and then the remaining half of the electric force to advance the velocities as

we did for the gas ions, we can write equations (84) and (85) as

A =, - 25 et @)
T,€,P r,e,p 2memp T,€,p ?
Y2 ot A pan (58)
Z€p T Yze,p 2memp z,e,p ?
where .
Uy o p= Ur e pCOS Pe,p — Uz ¢ 50 Pe 5 )
+ - . -
uz’e1p - urye,P sin ¢6,p + uz,e,p €os ¢e,}7 )
where :
epBg n+1 At
. _ ‘7c,p Mmemp
Sin Pe p = 5 "
epBgtl At
14+ TP__
27e,p memp %0
esB +1Ai ( )
1— _P_GL
27cp MeMp
COS Pe.p =
ean'H' At
1 + 2 741
Ye,p MeMp
and ;
. =uX — epAt 1
Ty, = T T,ep 2memp r,6,p ?
(91)

- n+1/2 epAl ny1

Uzep = Uze,p z,e.p °

2memy

We now need to determine 7"'*'1 in equations (90). However, the velocities are defined
at half-integral temporal nodes and are not known at n + 1; but since the magnetic
force serves only to rotate the velocities, we can determine the “pseudo” velocities at

integral nodes by the half electric advance. Then:

- - 3/2\9
(Ure)” + (¥5ep) + (Ugey )
Top =1+ 2 =F (92)
Finally the actual velocities are defined as vn+3/ ? un;?’/ 2 Ye, ;3/ ? where 7n+3/

given by an equation similar to (81), except that the velocities at n + 1/2 are now

replaced by those at n + 3/2.
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Figure 18: Flow-chart of the algorithm for advancing particle and field quantities.

This concludes the differencing of the time evolution equations for the superpar-
ticle positions, (19) and (20), superparticle velocities, (22), (23), (24), (25), (26),

(27) and (28), and the fields, (30), (32) and (33). Given a set of superparticle posi-

. . ope n+1/2 n+l1f2 . oy n+1/2
tions, 7 ,, 25 p, beam ion velocities, v,-,;,*;p/ » Vg ;' p/ , Vz,q,p, 8as ion velocities, v,-,g:p/ )

8,p?
n+1/2 ops n+1/2  nt+1/2  nt1/2 n n
Vz,gp , electron velocities, vrep ", Vg, 5 Vzep » ‘a.nd fields, E7; 2.6 Brjria/2

n+1/2
8,j+1/2,k+1/2)

dex, At in time away, proceeds as follows. We first use equations (53) and (54) to

the algorithm for advancing these quantities to the next temporal in-

advance the axial positions, and equations (57) and (58) to advance the radial po-
sitions of the particles from n to n + 1. This is done for every single superparticle
indexed by s,p. We then use equations (59) and (60) to advance the radial and axial
electric fields from n to n + 1, and equation (61) to advance the azimuthal magnetic

field from n+1/2 to n+3/2. This is done for every grid point indexed by j, k. Finally




50

we use equations (66) and (70) to advance the azimuthal and radial velocities of the
beam ions, equations (74) and (75) to advance the radial and axial velocities of the
gas ions, and equations (79), (87) and (88) to advance the azimuthal, radial and axial
velocities of the electrons from n+1/2 to n+3/2. Again we do this for every particle,
s, p. Figure (18) shows the flow-chart for this procedure. At the end of this series of
operations we have all the particle positions, particle velocities, and fields at a time

At later. We repeat this for every time-step, n, “leap-frogging” forward in time.

3.3 Particle-Field and
Particle-Particle Interactions
The particles affect the fields through the current densities, JZ;_:{?z’k, J:Ii{fl /2
which are used to advance the electric fields. And the fields affect the particles
through the Lorentz force which requires a knowledge of the fields at the superparticle
locations, E,’.:j:},, E;‘;”;, Bg"s*";, in order to advance the velocities. Particle-in-cell

(PIC) techniques, where the particles occupy certain locations within the spatial

mesh “cells”, are used to evaluate both these quantities.

In order to calculate the current densities, we need to know the number of su-
perparticles, K. The number of particles of any given species will change due to the
collisions between particles. These collisions are described by the collision probabil-
ity equation (45). We shall use Monte Carlo collision (MCC) techniques to solve the

probability equations and determine the particle numbers.
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3.3.1 Field Interpolation

We now discuss a method for interpolating the fields to the particle positions. In

general these fields are defined as:
F(rsp) = / F(r)6*(r — rsp)dV . (93)

Since we do not know the fields at all positions in space, r, but only at certain grid

locations, rj, we follow Hockney and Eastwood (1988) and approximaté (93) by:

F(rsp) = Z F(rjx)W(rsp —rjr)dV , (94)
Ik

where W is some “weighting” function which, like the delta function, determines to
what extent regions of space, now defined by the grid points r;z, contribute to the
particle position, rs,. The validity of this approximation will be discussed in more

detail later, when we analyze the numerical methods.

1
j+1f\ : Fany
\/ 1 \/
, e
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!
k k+1

Figure 19: Spatial mesh for the interpolation of the fields to the particle positions.

In order to determine the weighting functions, W, we impose some constraints
on their form and function. The first of these is that only the fields from the four

nearest grid points will be used in the interpolation, then equation (94) becomes:
n - - . -
Fop = FipW(rsp 25,9375 28) + Fiaa kW (rs g 2 pi mits 26) +
(95)
g W (Tl ps 25 pi i1, 2e41) + Fla g W(rs 5 2803 i 2k41)
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where Fy, is the interpolated field to the particle lo;:ation, (r5ps%5p) at time n,
and F}, are the fields at the spatial grid points, (rj,2;), and temporal location n.
With the above constraint then, the grid point j, % in equation (95) is such that
Tj <Tgp < Tj+1, 2k < 25, < Zp41 as shown in figure (19). We now stipulate that
these weighting functions be bilinear in r%,2. This is also referred to as “volume
weighting” because the weight associated with any grid point will then be related to
the volume of space between the particle and the grid point; where, for example, the
volume of space between the particle shown in figure (19) and the grid point j, k is
m((r3,)? — (rj)z)(z;’,p — 2*). Using this volume to interpolate the forces from the grid

points to the particles yields:

(rjs1)? - (r:,,,)2> (zk+1 - ) |

W(rt. 2" —
s 22373 ) ( (ri+1)? = (r)? ) \ 241 — 2

(22 = () \ (e — 22
W(r;p,z;p;r,.+1,zk)=< T 2)
J

(rj41)? Zk+1 — 2k
(rap)® = (ri)? \ [ Z5p— 2
W?"n zn STii1, 2k - sP P
( s,p>“s,pr 1 3+1, -I-l) (7'j+1)2 _ (Tj)2 Zky1 — 2k I
(31 = 03"\ (Zp= 2
Wity iry ) - (Pl ) (Bt
J

(rj+1)? Zp41 — Zk

(96)

More generally, for all nodes in the system, equation (96) can be written as:

,
(41 =020\ (241-Fp) ... _ .m .
((fm) Gy ) Coramme) | 73 <735 <ria and

zE < 255 < 241 ,

—zk- Y J. n .
( e, 1 ifrj <rg,<rjy1and

(Z‘g+1)2 —(r%5)

Ti41)%—(r5)
2p-1 < z?,p <z,

W(r::P’ zzp; T3 Zk) = 4 ((Ts p) (rJ—-l)z) z_, P Zk— 1 if ri-i <t <7’] and (97)
- $,p
0

(ri)°—(rj-1)* =%k 1
ZE1 < z;‘,p <z,

(5, p) —("J-l)
(r5)2—(rj-1)?

zlc+1 -2z p
Zk+1—2k

ifrj_1 <15, <rjand

zE < z}},p < Zpy1,
otherwise ,

\

e —— e g e — e
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It must be mentioned that this is only one type of weighting; there are other schemes
that involve more or less grid points, other than the nearest four. Hockney and
Eastwood (1988) present a good discussion of the various weighting schemes. For
instance the “nearest-grid-point”, or NGP, method interpolates the field from only
the nearest single grid point to the particle. We’ll discuss these weighting functions

in more detail later.

We can now interpolate the fields at grid points, T to the particle position,

(Ts,p, 2s,p), using equation (94):
Fp = FRaW(rlp 255 ) (98)
Jk

where W(rg,, 25375, 2k) are given by equations (97). F?p can be either the radial
or axial electric fields or azimuthal magnetic fields. The electric fields are known at
the same temporal index, n, as the particle positions and so can be used directly
in equation (98). However the magnetic fields are known at half-integral temporal
indices, n — 1/2, and n + 1/2, and therefore must be time-averaged before they can

be used in equation (98):
1/ n-1/2 n4+1/2
Bg,j+1/2,k+1/2 ) (Ba,j+1/z,k+1/2 + Bo,j+1/2,k+1/2) . (99)
This is done for every superparticle, s, p, in the system.

3.3.2 Current Density Equations

We now turn to the current density calculations. Verboncoeur, et al. (1995),
present a charge conserving method for calculating the current densities. We start by

solving the continuity equation (34). If we finite difference this equation around the
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Figure 20: Spatial mesh showing the locations of the current densities and charge.

location (7, k) as shown in figure (20) we get:
+1 n+1/2 - nt1/2
- (Q?,k - ?k) _2 (Tj+1/2‘7r,j+1/2,k —Ti-1/2 r,j-—l/z,k) +

72
T (1‘?_*_1/2 - 7‘?_1/2) AzAt Tj+1[2 7‘]_1/2 (100)

n+1/2 n41/2
Jz,j,k+1/2 - Jz,j,k—-l/Z

Az ’
where @); x is the charge at location j, % and is defined as:

Q)= [ o)V | (101

where the integration is performed over a small volume surrounding the grid location,
rjk. If we substitute for the charge density, p, from (35), and use the same argument
as we did for interpolatiné the fields in the previous section, where we replaced the
integration over the delta function by some weighting function, W, described by

Hockney and Eastwood (1988), we get:
Qr = qepW(r", 2" j, 21) , (102)

where, for simplicity, we have assumed that we have a particle of charge state ¢

located at (r™, 2™); we have suppressed the subscripts, s, p, denoting a single particle.’
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We can define:
AQjk = Qi — Qb= gep (W2 - W1 (103)

where W, is used as a shorthand notation for W(r®,2";7;,2;). To solve for the
current densities we write a set of equations (100) for each node in the spatial mesh,
substituting from (103) for the éharge, and then solve this set with appropriate bound-

ary conditions.

| SR

......——w._-.._

L

-

[

Figure 21: Spatial mesh showing the trajectory of a hypothetical particle.

Consider a hypothetical particle that starts at position (r,2") at time index
n and ends at (r®*1,2z7%1) at time index n + 1 aft‘er having crossed several “cell”
boundaries, where a cell is defined by the solid lines marked by integral grid indices
in figure (21). The location at which the particle crosses the cell boundary is given
by (r™™,2z™™), m =0,1,2,3,---,M + 1, where m = 1 is the location of the first
cell boundary crossing, m = M is the location of the last crossing, and (r™9, 2™0) =

(r®,2") and (r™M+1 Ml = (prtl prtly A segment of such a particle’s trajectory
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is shown in figure (21). Then we can rewrite equation (103) as:

M1 ‘
AQir=1gep ), (W,?Lm - W}’,’Lm—l) : (104)

m=1
where W;;cm are the weighting functions with (™, 2*) replaced by the boundary cross-
ings (r™™,z™™). We now attempt to solve for the current densities by writing a set of
equations similar to (100) for each node on the mesh for a given particle. From (104)
we see that we can replace AQ; 1 in these equations by a summation over cell traver-
sals, m. Therefore we can break a particle’s trajectory from (r®,z%) to (r**?, z7+1)
into a series of cell traversals and treat each of these independently, summing the
current densities at the end. If we now choose W to be the same functions as were
used to interpolate the fields, (97), then I/V;:;:m and W}:;cm"l are nonzero only for the
four integral nodes surrounding the cell. For the hypothetical particle shown in figure
(21), these nodes are (j,k), ( + 1,%), (j + 1,k + 1), and (j,k + 1). Therefore for
every cell traversal we can write the following equations for each node in the system

by substituting for AQ; x from (104) into (100):

gcp n,m—1 nmY _ ) n41/2,m ) n+1/2,m
TAf Wik — W ) =24z (r1+1/2']r,j+1/2,k _TJ—1/2Jr,j-1/2,k> +

2 .2 n+1/2,m n+1/2,m
(Tj+1/z ’”j—1/2) (Jz,j,k+1/2 - Jz,j,k-l/Z ’

9¢p n,m—1 nm \ _ n+1/2,m n+1/2,m
TAE ( HLE T j-;-l,k) =2Az ("j+3/2<7r,j+3/2,k —rir1fedr i)
2 .2 Jn+1/2,m _ Jn+1/2,m
Ti+3/2 ~ Ti+1/2 2,j+LE+1/2 T Yz,541,k-1/2)
g€y n,m—1 n,m _ n+1/2,m n+1/2,m
iy (Wj+1,k+1 - j+1,k+1) =20z (7’1'+3/2Jr,j+3/2,k+1 — iz iga k) T
2 2 Jn+1/2,m _ Jn+1/2,m
Ti+3/2 7 Ti41/2 ) \Yog+1,k4312 Yo ik41/2) 0

g¢p n,m—1" nom \ _ n+1/2,m Cynt1/2,m )
T At (Wj,k+1 —Wiki) =242 7'J+1/2Jr,j+1/2,k+1“7'1'-1/2Jr,j—1/2,k+1 +

2 n+1/2,m n+1/2,m
(rj+1/2 - r_?—l/Z) (Jz,j,k+3/2 - Jz,j,k+1/2) o
(105)

where grid point 7, ¥ is such that rj <r®™ 1 <71, 2p <2®»™ 1 < 2;.4. For the rest

- — - g ——_— B e A —— e e = e ¢ Uiy r—— -
- ) . - TEE AT T
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of the nodes on the spatial mesh we have homogeneous equations of the form:
_ n+1/2,m n+1/2,m
0=2Az (7'1'—1/2 ,i=1/2.k ~ 7'J'—3/2Jr,j—3./2,lc) +
2 2 n+1/2,m n+1/2,m
(”j—l/z - ’"j—s/z) (Jz,j—l,k+1/2 - Jz,j—l,k—l/z) ’

where J7*+1/2™ are the current densities calculated from this particular traversal, so .

(106)

that the total current density on mesh points for each particle is given by a sum
over all cell crossings. We can solve this set of equations with appropriate boundary
conditions. The simplest boundary condition is to set all current densities on mesh
points not immediately surrounding the cell to zero. We can then reduce this set of

equations, one for each node, to four equations for the four nodes surrounding the

cell:

:_ZEZ (W;,l;cm—l - J{,l;cm = 2Azrj+1/2J:;_i{?’27; + (7'?+1/2 - 7';2'—1/2) J :;:llcflr/'; )
%(Wﬁﬁ? - ﬁzk) = —24zrj41/2), :ﬁﬁzn;c + (’"12'+3/.2 - 7‘12'+1/2) J':ﬁfé:uz ’
% ( J!il’-T,;il - ;ﬂt,k-&l) ==28z7541/2J :,;'*i{ig,l;c+l_ (";2'+3/2“7}2'+1 /2) J : -11-41_{2;:1 /2

:_Zpi ( J{:ﬁ;l - }3:711) = 2Az7'j+1/2‘]:;-:3§7;c+1 - (7'12'+1/2 - 7'?—1/2) J:,ﬁ{i-zl'% .
(107)

Solving these equations for the four current densities surrounding this cell yields:

n+1/2,m __ q¢cp (rn,m)Z — (Tn,m-l)Z _ . nm__ _am-—l
Trivljak = 4 AtAr(Az)? ( Tiy1/2(2rj + Ar) (22841 ~ 2 z )
n-{-l/2,m — 9¢p 2(rj)2 — (rn,m)Z — (Tn,m—l)Z (zn,m—l _ zn,m)
23 HLEH2 T or At(Ar)2Az \ (2riy /2 + Ar)(2r; + Ar) ?

ntlfom 9¢p- (Tn’m_l)z - (rn,m)Z _ . nm _  nm-1
Jr,j+1/2,k+1 T Ax At Ar( Az)2 ( Tix1 /2(27.], + Ar) (2Zk z z. ) ’
ntl/2m _ d¢p ’2(7'J'+1)2 - (rn’m)z — (Tn’m—l)z (zn,m — zn,m—l)
25k+1/2 7 o At(Ar)2Az (2rj_1/2 + Ar)(2r; + Ar) ’

(108)
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where we have substituted for the weights from (97). We remind the reader that
m=0,1,2,---, M + 1 where (r™™, z»™) are the coordinates of each cell boundary

crossing for 1 <m < M, and (r™°, 2%0) = (r* z*) and (rPM+1 z7M+1) = (potl ontl)

Therefore with equations (108) we can solve for the current densities associated
with a segment of a given particle’s trajectory. As mentioned before, to get the current
density for a superparticle we need to sum over all segments, Jg;ll 2=Zm s’f;l/ 2
where we have added the subscripts s,p denoting a particular superparticle, p, of

species s = ¢, e, g, and suppressed the subscripts denoting the component and grid

location. Then the total current density is given by summing over all particles:

Z K?'*'I/Z KOHL2 g2

[ g
PELYY S PP S PR S B o
g=1 p=1 r=1 =1
where Z; is the atomic number of the beam ions, Kj +1/ 2, b +1/ 2, and K F1/2 e

respectively the number of “super-beam ions” of charge state ¢, “super-electrons”,
and “super-gas ions” at time n + 1/2. J can be either component, radial or axial, at

a particular grid location.
3.3.3 Particle Number Equations

As can be seen, equation (109) involves a summation over the superparticles.
Therefore we need to determine the numbér of superparticles of a given species,
s +1/ 2, that exist in the system at time n + 1/2. Birdsall (1991) and Vahedi and
Surendra (1995) describe an MCC method for evaluating the collision probability

equation (45).

This equation determines the probability, Py 4 ,(t), for a collision of type z to

take place between a beam ion, ¢,p and a Background gas neutral over the interval

S [ S [ - e —— = <,
s - e . n . " I - - e
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0<t< o0 so that P 45(0)=0 and P;4,(c0)=1. Therefore if we choose a number ¢
between 0 and 1, and then set £ =P; 4 5(t), we can invert (45) to find the time within

which collision z will occur:

tzgp = S In (1 - Mf) . (110)

Oin,qTgVUz,q,p Oz,
In the MCC method, the number ¢ is chosen randomly from a list of numbers that
are uniformly distributed over the interval 0 to 1. We’ll discuss thlsm more detail

later, when we analyze the numerical methods.

As mentioned above, every collision between a beam ion and a background gas
atom will result in ionization of the background gas atom. Therefore to calculate the
time it takes for a beam ion to ionize a background gas atom, we assign particle ¢, p
a number &in g p. Then sett_ing €={ingp In equation (110) yields:

-1
ting,p = mln (1 = inygp) - (111)

where we have replaced o;,4 With 0in,g. Clearly if ¢ qp < At then the ion will

undergo an ionizing collision in the time interval A¢. Therefore we can define a

discrete probability function:

- . < _ .
Di"”q:p = { (]j :)ftgzen].:&}izszf exp( a’n:qngvzsq,PAt) 3 (112)

so that Djy, 4 p is the probability that particle ¢,p will undergo an ioﬁzing collision
within time A¢. We also need to determine if the beam ion strips. Therefore we

assign a second number £51,4, to the beam ion and calculate the time to strip as:

-1 oi
bstgp = ——————In (1 - Jm’qfst,q,p) . (113)

Oin,gMgVz,q,p st,q

where we have replaced 05,4 With 01,4 in equation (110). If we set £51,g.p <tin gp < At,

and substitute for #;5, ¢, from (111), then we can write:

i Ting . .
D‘gt)q’P = { L i Ost,q f.st,q,pﬁfm,q,pﬁ 1—-exp (—a"n:qngvz:q’pAt) ’ (114)
0 otherwise .
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where Dy g is the discrete probability that this particle will undergo a stripping
collision.

We can now use these probabilities to advance the superparticle numbers, K nt/ 2
to the next temporal index, n + 3/2, as follows. At time n we assign two numbers,
&in,q,p and &5t g p, and then evaluate Din g p and Dgy g, using equations (112) and (114)
respectively, for ever;lr super-beam ion g, p. The numbers of superparticles at n + 3/2

are then given by:

g2 n+1/2

g-1
KPP =K 4 S Dugag= 3 Duas
p=1 p=1
z K"+1/2 Kn+1/2
K32 _ gt/ +Z Z Dingp +Z Z Dstgp » (115)
g=1 p=1 ¢=1 p=1
Zy K;+1/2
K;""3/ 2 _ Ky +Z Z Z Din,g,p -
g=1 p=1

With the evaluation of the particle-field interactions, using PIC techniques, and
the particle-particle interactions, using MCC methods, we have provided a complete
set of numerical equations that correspond to the analytical governing equations pre-
sented in the previous chapter. After advancing the particle positions we use equation
(109) to calculate the current densities. These current densities are then used to ad-
vance the fields. Given a set of superparticle numbers, K, nt1/ 2 e +/ 2, and Kg +1/ 2,
we use equations (115) to advance them. And finally equation (98) is used to inter-
polate the fields to the particle positions, before advancing the velocities. Figure (22)
shows the expanded version of the flow-chart, figure (18), that includes these calcula-
tions. The constant parameters that appear in the complete set 6f equations are now

the beam ion and gas atom masses in units of amu, m; and m,; the atomic number of

the beam ions, Zp; the background gas density, ng; and the stripping and ionization
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Figure 22: Flow-chart of the algorithm for adva.ncfng particle and field quantities,

showing the current density calculations and field interpolations.

cross sections, 0szg and oing. In addition, the numerical equations also contain a
set of “non-physical” discrete parameters: the time-step, At; the grid sizes, Ar and
Az; and the particle-to-superparticle ratio, AN. We also remind the reader that we
need a set of initial and boundary conditions for the fields and particle positions and

velocities to solve these equations.
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4 Numerical Analysis,
Initial and Boundary Conditions

The numerical equations derived in the previous section form a complete set of
equations for the superparticle positions and velocities, the electromagnetic fields,
and the particle-particle and particle-field interactions. As mentioned in the previous
section, in order to solve these equations we need to supply a set of initial and

boundary conditions.

We also need to supply a set of discrete parameters: the time-step, At; the
spatial mesh sized, Ar and Az; and the superparticle ratio, AN. Clearly, from
a computational point of view, we would like to make these quantities as large as
possible because the number of superparticles, mesh-points, and time-steps are all
inversely proportional to them. However, if we require that the solutions to the
numerical equations be both stable and accurate, in that they do not undergo “non-
physical” growth or damping, and that they be as close to the analytic solutions as
possible, then these parameters tend to zero. An analysis of the stability and accuracy

will allow us to put realistic upper bounds on the difference quantities.

4.1 Numerical Analysis and

Discrete Parameters

We first discuss the methods used in the previous section to derive the numerical
equations for the particle positions and velocities, the electromagnetic fields, and
the particle-field and particle-particle interactions. We then analyze the solutions to
these equations for their éccuracy and stability. This will provide us with a set of

conditions for the choice of the temporal and spatial grid sizes and the superparticle
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ratio. Many of the methods presented here and their analysis can be found in Birdsall
and Langdon (1985), and Isaacson and Keller (1966); lectures by Vujic (1992) were

also very helpful.
4.1.1 Superparticle Equations

We discuss now the approximations used to derive the superparticle equations,
in particular (47). Consider a function f(r), then we can expand this function in a
Taylor series about a particle position r; (in this section “particles” refer specifically

to real particles; and “superparticles” to a group of real particles):

flep) = f(e) + VF-(ri—1p) + -, (116)

where r, is the superparticle position defined by (46), and the derivatives of f are
evaluated at r;. If we now expand f(r) for all particles in a superparticle group and

then sum over these particles, we can write:
Flep) = o 20 £ + e SO VF (i — ) oo )
PP AN : AN : P ’

where AN is the number of particles in the superparticle group. If we assume that
the first derivative of the function, Vf, is constant and that the higher derivatives
vanish for all particle positions r; in the superparticle group, in equation (117), then
we arrive at the superparticle equation (47). If the function varies with wavelength
A, then clearly the summation should be done over particles in a region defined

approximately by this wavelength.

We now attempt to determine the minimum number of particles that must be
included in the superparticle group given the above approximation. The analysis

used here is similar to that presented by Lewis and Miller (1984) and Nakamura
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(1977). Let Np be the number of particles in the small region. We can now define an

average:

No
(f) ENLOZfi ) (118)
=1

where, f; = f(r:), is the function at the particle location r;, and the summation is

done over all particle positions in the region. We can also define the variance:

. N
= —N—OXij(f,-— (N (119)

which is a measure of the spread of the function at individual particle locations f;
about the average value (f). For large Ny and linear fields in the region, V f~(f)/A,

we can evaluate this as o2 = (f)%/12.

We now do the same for the superparticles. We define an average quantity over
the superparticles in this region as:

1 &
(f)i= Epr,; , - (120)

=1
where fp; is the field at the particle location r; belonging to superparticle group p,

and Kj is the total number of superparticles in the region, Ko = Ng/AN. We can
also define a variance of this average quantity with respect to the “frue” average as:

1 AN
o5 = v 2 (D= () - (121)

=1

Clearly if the superparticles in the region are to be an accurate representation of the
actual particles, then this variance should vanish. If we evaluate 0'12, in equation (121),
we get 0'12, =02/ Ky; or as Ko becomes large, the superparticle representation becomes
more accurate. However, as mentioned above, making the number of superparticles

large is computationally expensive.

We now evaluate the error between (f); and (f). The central limit theorem

states that the probability of having (f); fall between (f)—é and (f)-+6 approaches
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the normal distribution:

+6/0p
C=——— d 122
\/57? /6/0',; P ( > £ ( )

where z = ((f)i — (f))/op. C is also called the confidence level. Carrying out the

integration, and substituting for o, and o yields:

C =erf <\/§I?o ( f)> (123)

where erf is the error function. If we now define the error as e = ((f)i — {())/{/),

SN\ 2
_ N N {[ef™}0)
ko (=l)’ 20

where N is the total number of particles in the system. Making ¢ smaller, or de-

then we can write

creasing the allowable error, increases the number of superparticles, K, needed to
establish a given confidence level C. The number of beam ions in a small region
defined by A can be approximated bsf Ny ~ IyA/qev, where I is the beam current;
q is the charge state of the beam ions, and v is the beam velocity, while the total
number of beam ions is given by N=I,L;/gev, where L; is the length of the beam;
then (124) becomes:

6 €

This equation gives us a condition for the number of superparticles, K, in relation to

— 2 .
Kl (395—1@) : . (125)

the spatial variation of the fields, A. (In the sections that follow, “particles” will once

again be synonymots with “superparticlgs”).
4.1.2 Particle Position and Velocity Equations

We now look at the particle position and velocity equations (49) and (52). These
equations are both first-order ordinary diﬁ'érential equations in time, of the form:

df

== (126)
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If we expand any function f around the temporal point n+1/2, we can evaluate f**!

df (At\ 1d&% (At\? 18 [AL\°
n+l __ en+1/2 Ealaiiall Shad — = cen
=t +dt( )+2!dt2(2> +3!dt3(2) T (127)

where all derivatives are evaluated at n + 1/2; and At is, as before, the difference in

as:

time between n and n 4+ 1. We can also evaluate f™:

df (At\ | 1d°f 218 fAr\®
nt+1/2 _ =) 22 (2 .-
=1 dt( )+2'dt2( ) 3!dt3(2> tee (128)
Subtracting (128) from (127) and discarding terms of order (At)? or higher yields:

ol _gn — gnH/2As (129)

where we have substituted from (126) remembering that the derivatives are evaluated
at n+1/2. This result is known as “central differencing”, and is second-order accurate,
in that the largest term dlscarded is third-order. Clearly, the smaller At, the more
accurate the result; indeed in the limit that At — 0, (129) reduces to (126). If we
substitute the differential equations (19) and (20) for tile radial and axial positions
into (129) we get the numerical equations for the particle position advance (57) and
(63). Similarly substituting the differential eéuations (22), (23) and (24) for the
electron velocities, (25) and (26) for the beam ion velocities, and (27) and (28) for the
gas ion velocities into (129) yields the numerical equations for the velocity advance:
(87), (88) and (79) for the electrons, (70) and (66) for the beam ions, and (74) and

(75) for the gas ions respectively.

To see the affect this approximation, and hence the affect that the introduction
of the finite time-step, A¢, has on the motion of the particles, we evaluate these
difference equations under some special circumstances. First we look at the force-free
motion of a particle in the transverse plane, that has azimuthal velocity vg, but no

radial velocity. The equation of motion is then:

do
zl-z =Wwr, (130)
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where 0 is the angle of rotation around the z axis. The solution to this equation is

6 =wrt, where the frequency w, =vg/r. The numerical solution with no radial velocity

is given by equation (57):
(r"*t1)? = (r")2 (1 +wlAt?) (131)

where we have substituted w, = UZ-H/ 2 [m*. Using cos @ =r"/r**! where 8 is given

by equations (65), equation (131) becomes:
6 = tan™ (w,At) . (132)

If we assume that the numerical solution also describes a rotating particle, 6 = wt,

but with some frequency w different from w;, then we can solve (132):

— 1 -1
W= tan™" (wrAL) . (133)

Therefore we have an equation that relates the numerical frequency w to the actual
frequency w,. This equation is unconditionally stable, in that as long as wy is real, no
choice of At will make w ‘imaginary. For the numerical result to be accurate, however,
we require that these two frequencies be close. Expanding the right-hand-side of (133)

in a Taylor series yields:

_ 1 1 3
W= [ert 3 (wrA)® + ] , (134)
and the error is then:
_w—w l 2
e=—— g (wrAT)” . (135)

This equation gives us a condition on the time-step, At, relative to the particle
rotation frequency w,. For a given error, the time-step is inversely proportional to
the frequency, as expected; that is, the resolution of higher frequencies requires smaller

time-steps.

Next we consider a non-relativistic electron moving, with no azimuthal velocity in

the radial electric field of a long beam, E,=kr, where k is some constant determined
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by the parameters of the beam. If we ignore the azimuthal magnetic field, then the

equation of motion is:
ﬁ _ epk
dt? MemMmyp

(136)

The solution to this equation is of the form r ~ cos(wpt), where the frequency of

oscillation is w? =kep/mem,. We now write the numerical solution for this problem.

With no azimuthal velocity, the radial position is given by equation (57):
P = g Pt A (137)

and with no azimuthal magnetic magnetic field, the non-relativistic velocity equation,
(87), becomes:

vy +3/2 _ vy +/2_ wﬁr”"'lAt , (138)
where we have substituted w, for the electric field. If we now eliminate the velocity

in equation (137) we get:
PP =t ™2 g e (W2AR 1) (139)

Again we assume that the numerical solutions are also oscillatory, r ~ cos(wt), but
with some frequency w different from wy; then, as in Birdsall and Langdon (1985),

we can solve for the frequency, w, in equation (139):

2 . g [wpAl
w = ——sin ( 5 >), (140)

This result is numerically unstable, i.e. w becomes imaginary for real w,, when
At >2/w,. However, the accuracy condition is more stringent; Expanding the right-

hand-side of (140) in a Taylor series, we get:
2 jwpAt 1 fuwpAt 3
w——A—t[ 5 +§< 5 ) +} . (141)

e= o — (wpAL)? . : (142)

and the error is:

[ . - ——————— |~ S e [ o ——
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This equation gives us a condition on the time-step, At, relative to the plasma fre-

quency, wp.

Finally, we look at a non-relativistic electron in an azimuthal magnetic field, By.

The equations of motion are:

dv, epBé
& m mpvz ’
€
dv:  eBy v (143)
&t~ memy

The solutions to this equation are of the form vy ~cos(wct) and v, ~ sin(w.t), where
the frequency of rotation in the r,z plane is, we = —e,Bp/memp. The numerical

solutions are given by (88) for no electric field:

) 2
sl [1 n (“’CTAt.) ] = o" 2 At 4 P2 l:l - (w_czA_j_) ] . (144)

where we have substituted w, for the magnetic field. As in Birdsall and Landgon
(1985), we assume that the numerical solutions also describe a rotating electron,

vy ~cos(wt) and v, ~sin(wt), but with frequency w different from w,. Then equation

(144) becomes:
w= 2 tan™? (%—At) . (145)

This equation is also unconditionally stable. Expanding the right-hand-side in a

Taylor series yields:

2 |w, At 1 (weAt)®
“’ﬁz[ 35 ] (146)
and the error becomes: ‘
w—w 1
6= — € o~ 5 (weAt)? | (147)

This equation gives us a condition on the time-step, At, relative to the cyclotron

frequency, we.

— — T N T T T m PR N 0
Ty TR PR A N S 2 2 - S PR St PR PN MR Sane 0
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4.1.3 Field Equations

; IRk
—md-m- gy -
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Figure 23: The spatial grid used to difference the field equations.

We now turn to the field equations (29) and (31). These are both first-order

partial differential equations of the form:

g

If we use the central difference technique described above for the temporal derivative,

we can write this as:
gn-}-l _ gn

At
We now look at the right-hand-side of this equation. In the cylindrical coordinate sys-

=(V xf)*+1/2 (149)

tem of concern here, the “curl” operation results in the following derivatives: df/0z,
0f[0r and (1/r)0(rf)/Or. We can evaluate these using a “three-point” spatial finite
difference scheme on the mesh shown in figure (23); this is similar to the centrf'a.l dif-
ferencing scheme used above for the temporal derivatives in the position and velocity

equations. Then

(ﬁ) _ firs1se — Fip-1/2
ik

0z); Az ?
Of\  _ Fiviek— fimipnk
37’ ],k o AT ’ , (150)

(} 3(rf)) _ 2(risjefimayak — rimijefi-ijan)
7k

r o (7'12’+1/2 - 7'3?—1/2)
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where the subscripts, as before, represent the radial and axial positions on the spatial
mesh respectively, and r; is the radius at the mesh point j. As in the case of the central
difference equations, these finite difference results are also second-order accurate, in
that the largest terms discarded are of order (Ar)® and (Az)3. Clearly, if we let Ar
and Az approach zero, equations (150) will reduce to the corresponding differential
equations; but since the number of mesh points is inversely proportional to the grid
sizes, for computational reasons we want to make these quantities as large as possible.
If we substitute (32) and (33) for the electric fields and (30) for the magnetic field
into (150) and (149) we arrive at the difference equations for the field advance: (59)
and (60) for the electric fields and (61) for the magnetic field.

As before, we now look at the stability and accuracy of these numerical solutions.
The analysis presented here benefited from lectures by Mei (1994). The azimuthal
magnetic field of a free-space transverse magnetic: wave can be found from, By =

(0A/0r), where the potential function A satisfies the Helmholtz equation:
(151)

In an axisymmetric cylinder, such as that used for the simulation environment, fig-
ure (12), the solution is of the form By ~ Ji(por) exp(+ikoz) exp(—iwot), where the
frequency of the wave, wy, the axial wave number, kg, and pg are related by the disper-
sion relation, wg =c%(k3 + p?), such that pgR.=(y are zeroes of the Jy Bessel function
where R, is the radius of the cylinder. We now consider the numerical solution for
the azimuthal magnetic field. With no source terms, equations (59), (60) and (61)

become:

En-l-l _ B""'l/2 _ Bn+1/2
ri+1/2,k rni+l/2.k 2 6,7+1/2,k+1/2 0,5+1/2,k—1/2 (152)

At Az ’
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?

n+1 n ' ) n+1/2 . n+1/2
Ez,j,k+1/2 - Ez,j,k+1/2 — 92 (TJ+1lzBo,j+1/2,k+1/2 TJ—1/2B0,j—1/2,k+1/2

At e T i
(153)
and
+3/2 n+1/2 +1 +1
Bojsipprsys = Bojsipprnys _ (Fofvpins —Bifiapn) |
At N Az
(154)

+1 +1
E:,j+1,k+1/2 - E:,j,k+1/2
Az ’
Substituting (152) and (153) into (154) yields:
n+3/2 n+1/2 n—1/2
1 (Bo,j+1/2,k+1/z ~ 2By iphrp t Bo,j+1/z,k+1/2) =
2

A2

nt+1/2 n+4+1/2 n+1/2
(Ba,j+1/2,k+3/2 - 2Bo,j+1/2,k+1/2 + Bo,j+1/2,k—1/2) +

Az?
2 gtz Tj-+3/2 _ (155)
Ar? [TOITRIRZ 5+ iy
T, r; . :
g2 iz i+1/2 +
SItUYBRFLZ \ 1i3p0 +Tin1y2  Tivaje +Ti-1/2

Bn-i.-l/Z Tj—1/2
8,7—1/2,k+1/2 ris1jz + i1 .

Taking the numerical solution to have the same form as the analytic solution, By ~
Ji(pr) exp(+ikz) exp(—iwt), but with a different frequency, w, and wave numbers &
and p, yields from (155):
2 \* . a(wht) _ (2 ;(kAz N
cAt) 2 )T \az) ™ 2

e ( 2 )2 [(Am2 —222) (J 4+ J7) 4 zAz (7 — JF) + 4220
Az

2(422 — Az?)Jy
where J; = Ji(z), Ji = Ji(z + Az) and J; = Ji(z — Az), and £=(r;,1/2/Rc and
1 1 i+1/

} (156)

Az=(Ar/R., where we recall that (=pR, are the zeroes of the Jy Bessel function.

We now focus on the spatial parts of this equation. If we take the temporal

derivatives to be exact, or At— 0, then the frequency of the numerical solution will
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be equivalent to that of the exact solution, w=wyp, and (156) will become:

2\2 . /kA
k§+p§=(z—z) sz( 22) +

o 2 \? | (Az?~22%) (JF 4 J7) + 2z (J7 — J}t) + 422,
P\ Az 2(422 — Az?)J; ’
’ (157)

where we have substituted for ¢ from the dispersion relation. If we now take the
radial derivatives to be exact, or Ar— 0, then p=py, and in the limit that Az —0

equation (157) reduces to:

k= -2 sin~l <k°Az) . (158)

With A, =27 /ko, we can expand the right-hand-side of (158) in a Taylor series to

give:

E—ky 1 [27Az\2
e = ko ﬁ'2—4'( Az ) . (159)

This equation sets a limit on the axial grid division, Az, relative to the axial variations

of the fields, A,.

Similarly if instead of taking the radial derivatives to be exact in (157), we take

the axial derivatives to be exact, or Az—0, then k=kq, and we get:

cilo ( 1 ) Az?(4z2 — Az?)Jq (160)
V2 \ (A2 - 222) (JF + J7) + zAz (J7 — Jf) + 4220, °

where the error is given by, ¢ = (p/po) — 1. For any radial wavelength, ), we can

find {, the zero of the Jy Bessel function that will support this wave in a cylinder of

radius R.; we can then use equation (160) to find the Az, for 0 < z < (, that will

result in a given error ¢; and finally we can find Ar~AzR./(.

We now look at the stability of (156) without assuming exact spatial or temporal

derivatives. For this equation to be stable, we require that w be real, or that the sin?
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term on the left-hand-side be less than or equal to unity:

L 2> L 2sin2 kA2 +
cAt Az 2

(i> 2 [ (Az® —22%) (I + J7) +ade (Jy — J5F) +42%

(161)

Ar 2(42? — Az?)J; ’

We now find the maximum values of the expressions on the right-hand-side. For the
axial term the maximum value is simply 1/Az2. For large zeroes, we can write { ~
2w R/ Ar; then for A; /R, varying from ~0.02 to 1 the radial term in [] approximately

evaluates to unity. So that (161) becomes:

11 1
<
(Az2 + Arz) S AL (162)

Equation (162) is a condition for stability that relates the temporal and spatial divi-

sions; it is commonly referred to as the Courant-Friedrichs-Lewy stability criterion.
4.1.4 Particle-Field Interactions

The PIC methods used to calculate the current densities and to interpolate the
fields to the particle positions are defined by the weighting functions (97). We now ex-
amine the accuracy of these weighting functions. The analysis presented here follows

that of Hockney and Eastwood (1988). From conservation, we require that:
Z W(rp, zp;rjyzi) =1, (163)
4 ik .
where, as before, (rp, 2;) is the location of the particle and (r;, z¢) is the location of
the grid point j,k. If we now also require that the first volume, 72z, moment be

satisfied, then:

Z rjz-zk'W(rp, Zp; T, 2k) = rgzp , (164)
3k
Invoking separability in the radial and axial coordinates yields from (163):

Zw(rP;rj) =1 ]
J

Zw(zp; zp) = 1 , (165)
k

e —————— s o e = = 2o = = © e p—————— e
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and from (164):
“ Zr?w(rp;rj) = r§ ,

’ (166)
szw(zp;zk) =2p.
k

where W(ry, zp; 75, z1) = w(rp; 75 )w(2p; 2¢). We now have a total of four equations. To
solve we must have only four unknowns; hence we limit the summation over grid points
to the four grid points that surround the particle, r; <rp <7j41 and 2z <2p < zp41.

Then equations (165) and (166) become:

w(rp;5) + wlrp;riv1) =1,
(167)
w(zps 22) + w(zgi 2641) = 1
and

r?w(rp; i) + 7'_?+1w(7°p3 Titl) = 7‘;2: )
(168)

zrw(zp; 2) + 2410 (2p; 2k41) = 2p -

Solving these four equations yields the weighting functions given by (97). In this
analysis, we stopped after the first order moment; the maximum error in not satisfying
the second order moment is first order in the grid divisions, Ar and Az. The accuracy
of the scheme increases with the number of moments we choose to satisfy; however,
the number of grid points that must be used in the weighting scheme also increases
leading to greater computational expense. If, for instance, we choose to satisfy only
the zeroth order moment, then we are left with equations (167), and we must therefore
limit ourselves to a single grid point; as mentioned before, this is referred to as the
NGP weighting scheme. The accuracy of this scheme is zeroth order, which means

that the error is infinite for any finite grid division.

Another advantage, besides accuracy, of satisfying higher moments and thereby
including more grid points is that the charge assignment and field interpolation both
become “smoother”. Consider a particle of charge state ¢ located at 7, = r; and

Zk—1 < 2p < 2py1. Then the charge assigned to the grid points is given by substituting
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the weighting functions (97) into (102):

Qiroq = qep (-———Ez’z':) ifzp1 <2zp <2z,
1,k—=1 = -
if z; < 2p < Zky1

gep (E%:—l) iz < 2p < 2,

Qjk= sz (169)
? gep —"'%z—p) fa<z<z+l,

0 if zp1 <zp<zp,
Qi1 = {qep (593_-;—"-) if 21 < 2p < Zpy1 -
As the particle moves axially and crosses the grid location j, k, say from z; < zp <
Zry1 to 2p3 < zp < 2, the charge weighted to any grid point, given by (169), is
continuous, although its derivative is not. Similarly, if we take the grid fields to be
such that Fj is the only non-zero field, and ignore the effect of the particle, then the
interpolated field is given by substituting the weighting functions (97) into (98):
Fjx (Lb%;ﬂ) if 2 < 2p < Zp41

F, = - (170)
? Fi (z” Az:"l) fzp1<zp<zp.

And again as the particle moves axially and crosses the grid loca.,tion 7, k, the inter-
polated field to the particle fosition, given by (170), is continﬁous. Howéver, with
the NGP weighting scheme where only a single grid point is used, both the charge
and field quantities are discontinuous as the particle moves across the grid. Therefore
using more grid points allows us to “smooth” both the charge assignment and the

field interpolation.

Hockney and Eastwood (1988) show that using the same weighting scheme to
weight the particle to the grid and to interpolate the fields to the particle positions, as
is done here, eliminates any self-force that the particle would otherwise feel. Consider
a single particle of charge state ¢ located at (rp, 2p), then the weighted charge at the

grid points is given by (102):

Qjk = qepW (rp, 23 75, 2k) - : (171)
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We can calculate the grid fields from these charge assignments through some discrete

Green function:

Fj,k = Zd(rjaszTj’, Zkl)QJ'I’kl s (172) .
ik

where d(r;, 2z;7j,2p/) is the Green function that relate the charge at grid location
7', k' to the field at grid location j, k. Clearly this function must be properly symmet-
ric, so that when the charge and field locations are interchanged, d(r;, zx; jr, zr) =
—d(rjt, 211375, 21). The force at the particle position is given by f,=ge,Fp, or substi-
tuting from (98): |

fo=qep ZF}',kW(Tp’zp; TiyZk) - (173)
5k

In order to calculate the self-force, or the force that the particle experiences due to its
own charge weighted to the grid, we substitute (171) into (172) and then into (173),
to get: A
fo= qze’? Z Z d(rj, 2570, 2 )W (Tp, 2p; 750, 280 )W (p, 23 T4, 28) - (174)
3k 3K
Interchanging j, k and j', k' and using the symmetry condition of the Green function

gives the desired result: f,=0.
4.1.5 Particle-Particle Interactions

Finally, we turn to the particle-particle interactions. The discrete collision proba-
bility equations (112) and (114) depend on the numbers €in g p and &4 4 » Tespectively.
We now discuss a method, similar to that described by Hammersley and Handscomb
(1964) and Lewis and Miller (1984), for choosing these numbers. Given a probability
density, 7z q(t) as a function of time, for a collision of type = to occur between a
beam jon ¢, p and a background gas neutral within time # and #+dt, we can transform

to some other variable ¢, where £ = f(t), some function of time, so that ¢t = f~1(¢),
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where f~! is the inverse of f:

reanl F1(E))
Q) (175)

where f'=df(t)/dt. I qp(£) is the probability density that £ = f(¢) will correspond

Hz,q,p(f ) =

to the time, ¢, at which a collision occurs. If we now take the special case of f(t)=
* Py 4.0(t), the probability that collision = will occur within 0 and some time ¢; then

using the differential form of equation (42):

Lrarl® _ .0, (176)

equation (175) becomes:

Izgp(é) =1, (177)

where { = Pr,g,(t). We recall that since = 4, is normalized over 0 <¢ < 00, Py gy
ranges from 0 to 1. Therefore equation (177) mea,lis that ¢ is uniformly distributed
over the interval 0 to 1. In deriving equations (112) and (114) we set &in g p = Pin,g.p(%),
a.n.d €st,,p = Pet,q.p(t), therefore fingp and &st,q,p are also uniformly distributed over

the interval 0 to 1, and.we can randomly choose them from a set of such numbers.

We now discuss the accuracy of the MCC method used here to calculate the
particle-particle interactions. The first approximation stems from the fact that we
allow each beam ion to undergo only one ionizing collision in every time-step. As
discussed by Vahedi and Surendra (1995), this approximation puts a limit on the size
of the time-step; clearly the smaller the time-step, the more accurate the result. The
probability that a single beam ion, ¢, p, will undergo at least one ionizing collision in

time-step At, Pin g0, is given by (45):
Pingp =1 — exp (—0in,gngvz,gpA1) - (178)

Therefore the probability that a particle will undergo m > 2 collisions in this time-

step is simply (Pin,g,p)™, and the total probability that this particle will undergo more
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than one ionizing collision, or the error in ignoring these collisions, is:

€= i (Pm )m = ___(Pin,q,p)2 . (179)
e P 1= Pingp

If we wish to keep this error, ¢, to less than 2%, then we get Pingp < 0.13, and

At $0.14/Vin g0, Where Vin g p = 0in gTgVz,q.p-

The second approximation is a result of using a small number of particles to
represent the the collision probability. The analysis presented here is similar to that
discussed by Lewis and Miller (1984) and Nakamura (1977). If there are a large
number of total particles of charge state g, K; — oo, then the average number of

particles that undergo an ionizing collision is simply given by the probability:
(E)oo = Ping,p » (180)

where Piyqp is, as before, the probability for a single particle ¢,p to undergo an
ionizing collision in time At, and is given by (178); the co subscrii)t denotes the fact
that this is an average for large K. For a finite number of particle, K, the probability
of having k particles collide in time Af is given by the binomial distribution:

K,!

2 = i, — i tinar(l = Pingp) (181)

And the average number of particles that collide is simply:

(k=7 (182)

where now the K subscript reminds us that this is the average for a finite K. Clearly

we wish this average to be as close to the probability Py g, as possible. We now find

the variance of (k)x with respect to (k)oo:

K,
ok = e ((F)k — (k)eo)” - (183)
k=0
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Substituting from (180), (181) and (182) and carrying out the summation yields
0% = (Pin,gp(1 — Pingp))/Ky; therefore we see that as K, becomes large this vari-
ance vanishes, as expected. As before, we use the central limit theorem to find the

probability, or confidence level, that (k) g will fall between (k)oo—6 and (k)eo+6:

C=— / Holox ("22) d (184)
= — exp | — ) dz,
V27T J—bfok P 2

where z=((k) k — (k)oo)/0k. Carrying out the integration, and substituting from og

and Pin,g,p from (178), yields:

2
— hd _1
K, = 2 exp( Vm,q,pAt) (erf O> , (185)

where erf ! is the inverse error function, and e=6/(k)cs is the error. As the collision
frequency v becomes smaller, more particles are needed to compensate for the low

statistics, if we wish to keep the same error and confidence level.

In summary, we collect some of the more stringent accuracy and stability relations
derived here. These essentially set upper-bounds to the difference quantities: the
time-step, At; the spatial mesh sizes, Ar and Az; and the superparticle ratio, AN.
To ensure accuracy of the superparticle approximation, we have equation (125). If
we set A~ fefwy, Wher;a B is, as before, the velocity of the beam and wp is the beam
frequency, wf =nye?/egmym, where ny is the beam ion density and my is the beam
ion mass; then for an error of less than 1% and a confidence level C 2 98%, equation
(125) becomes:

AN $1.4 x10% (3%-) , (186)
b

where, as before, I; is the beam current, and ¢ is the charge-state of the beam ions.
For the parameters given in table (3), the beam frequency at the target, when the
radius of the beam is ~2mm, is wy ~ 4.4 x 108 s~1; this gives AN $1.4x 1010 and

K;~19,000, a manageable number number from a computational point of view. To
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resolve the plasma frequency accurately, we have a limit on the time-step, equation

(142); for an error of less than 0.2%, this equation yields:

T (187)

Wpe
where wpe is the electron plasma frequency, wge = neez/eomemo where n, is the
electron density and m, is the electron mass. Again, for the parameters given in (3),
if we assume that the electron density is the same as the beam ion density, then at
the lens, when the radius of the beam is a;~ 10 cm, we get wpe ~25.13 X 10°s71, so
that At <39 ps; this leads to about 1,400 time-steps for the beam to reach the target.
Accuracy of the electric and magnetic fields sets limits on the spatial mesh sizes. For
Az, if we again take A, ~ fc/wp, then for an error of less than 0.2%, equation (159)

becomes:

Az 50035 (188)
wp

With the parameters given in table (3), the beam frequency at the end of the simula-
tion is wp24.4x108 571, and Az $0.7cm. For a simulation length, L, ~8m, shown
in figure (12), this gives the total number of axial mesh points, N, ~1,140. For the

radial mesh size, if we specify € $0.2%, equation (160) becomes:

Az?(4z? — Az?)J;
(Az2 —222) (JF + J7) + 2z (J] = JT) + 42201 ©

< 2.01, (189)

where we recall that = = {r/R., Az = (Ar/R., J1 = Ji(z), J{ = Ji(z + Az), and
Ji = Ji(z — Az). Equation (189) is satisfied for all 0 < z < 100 if Az $0.22 or
ArS0.22R. /(. If we now take A ~ fcO [wy, where © is the convergence angle, then
for the parameters in table (3), the beam frequency at the lens, when the radius of
the beam is a; ~10cm, is wy ~ 8.5x108 571 and ), =~ 22.6cm. In order to support
such a wave in a R, ~ 30cm cylinder, { would have to be the third zero of the Jy
Bessel function, ¢ = 8.65. Therefore we get Ar < 0.8cm, and the number of radial

mesh points Ny o 38. The Courant-Friedrichs-Lewy (CFL) stability criterion (162)
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relates the time-step and spatial mesh sizes:

11 1
<
(Az2 + Ar2) S AR (190)

For the mesh sizes given above, At <17 ps. Although this condition is more stringent

than the plasma frequency limit of ~ 39 ps, if the electron density becomes several
times the beam ion density, then the plasma frequency could become the limiting
condition. Indeed towards the end, when the beam is at the target, and the number
of electrons is large, perhaps as much as ~10 times the number of beam ions, and
the radius of the beam is small, ~2mm, the electron plasma frequency could get as
high as ~8x10M s~! and A¢<0.2ps. Finally the collision frequency can also limit
the time-step (179):

At S —, (191)

where v is the collision frequency, v = onyfc where ¢ is a particular collision cross
section and ng is the background gas density. For the parameters given in table (3),
and ngy ~ 101° cm™2 and the cross section for a Hg™ ion to ionize a fluorine atom,
Oin~4.1x10717 em?, we get v ~3.8x108 57!, and At<0.4ns. This is certainly less
stringent than either the plasma frequency of CFL condition; however if the beam
ions reach charge states in excess of a few, as a result of stripping in high density
gas, then the ionization cross section can get l;arge en011:gh to make this a limiting

condition. For example for an Hg'5* ion gy, ~1.5x 10715 cm?2, then At$9.7 ps.
4.2 Initial and Boundary Conditions

As mentioned above, in addition to values for the discrete parameters, in order
to solve the numerical equations, we also need to supply a set of initial and boundary

conditions. Since the particle equations have only temporal derivatives, they only

need initial conditions. The fields however need both initial and boundary conditions.
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4.2.1 Particle Initial Conditions

The only particles that need to be initialized are the beam ions. For the system
being studied in this thesis, there are no initial electrons or background gas ions,
Ne=0 and N,=0; these are created via ionizing and stripping collisions between the
beam ions and background gas neutrals. The number of beam particles that need to
be initialized is simply given by K= N;/AN, where N, is the total number of real

beam ions of charge-state g in the system.

Birdsall and Langdon (1985) describe a method for initializing these particles by
inverting a given initial distribution, f,(r,v), where the total number of beam ions

of charge-state ¢ is now given by:

N, = /dx/dy/dz/dvz/dvy/dvzfq(r,v,t) , (192)

We first find the density of a single variable by integrating over the other variables;

folz) = -Klr;/dy/dz/dvz/dvy/dvzfq(r,v,t) , (193)

where ]’q(z) is the normalized particle density in the spatial variable z. We now

for instance:

construct the cumulative distribution, similar to the method used to invert the prob-

ability density for the MCC calculations:

z
Fy(z) = fo(z")d=' o (194)
Y Zmin '
where, because fy(z) is normalized, Fy(Zmin) = 0 and Fy(maz)=1. Then as was
done in the MCC method above, we assign a random number §; g, from a uniform

distribution over the interval 0 to 1, and then invert Fq to find the position of particle

q,p:
Lgp = F, q l(fx,q,p) . (195)

—— e e -
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Figure 24: The transverse plane of the beam

showing the position and velocity vectors.
This is then repeated for all K; beam particles, for each variable, y, z, etc.
For the solutions presented in this thesis, we assume that the beam initially

consists of particles of a single charge-state ¢, that are singular in axial velocity,

vz, and have K-V, Kapchinskij and Vladimirskij (1959), distribution in transverse

phase-space: )
N, (1 o’ .
fo(r:0,2,v1,9,v;) = m‘s (;15 +'?;g‘ ~1}6(v; —Bc) fy(2) , (196)

where 6 is the Dirac delta function. The beam radius, a;, and emittance, €, can vary
along the length of the beam; and }'q(z) 1s the normalized axial distribution of the
beam. If we now assume that we can divide the beam into several axial slizes, each

of thickness 6z, across which the radius and emittance of the beam can be taken to

be approximately constant, then for each slice 4 we can write:

__ Nou r?  aivi
fq,ﬂ(ra 0,2, vy, ¢7vz) - W‘S (EZ + eivg -1} x (197)

8(v: — Be)H(z— 2z, — (g — 1)82) H (21, + pbz — 2) ,
where H is the Heaviside step function, p=1,2,---,L;/8z, a, and €, are the radius

and emittance of each slice, and Ny, is the number of beam ions in slice u:

zptpdz
Nop = Nq/ fo(2)dz , (198)
zpt+(p—-1)z -



85
where z}, is the axial position of the “head” of the beam, and L; is the pulse length.
The geometry in the transverse plane of the beam is shown in figure (24). As men-
tioned before, the only coordinates that need to be initialized are, 745, 24p, Vr.gp,
Vg,q,p) a0d Vz,g,p; Where vrgp =04 g sin(yp) and vggp =104 4,c05(3Pgp). Therefore
we find densities, and cumulative distributions for each beam slice using (193) and

(194):
~ 9 2
fau(r) = gH (1 - ‘2‘2‘) ’

) 2 “ (199)
Fyu(r) = 2
73

where 0 <7 < a,, so that 7, ,(0) =0 and F, ,(a,)=1. Then we choose a random
number &; 4 , for particle ¢, p from a uniform distribution over the interval 0 to 1, and

invert (199) to get, r¢p=au+/&r,qp- For the axial position:

}q,ﬂ(z) = Elz‘H (z—zn—(p—1)62) H (2, + pbz — 2) ,

. 1 (200)
Fou(z) = 52 (z—2zn—(p—1)6z) ,

where zj+(p—1)62 < z < zp+pbz, so that Fy (zp+(p—1)62)=0 and Fy ,(zp+ubz)=1.
Again we choose another random number &, 4, and invert (200) to get, z,p = 2+

(#+€z,4p—1)0z. For the transverse velocity:

- 2a2 a2v?
_ [ _wvl
Jou(v1) = eﬁﬁchH (1 6‘2”3262) ’
2,2

~ a v-L
FQ:#(v-L) = 622202 >
It

(201)

where 0 <v) <e,fc/ay, so that Fy ,(0)=0 and F, ,(e.fc/a,)=1. Choosing a ran-
dom number {yp,q,5, and inverting (201) yields, vy 4= (€xBc/ap)\/Eop,q,p- From the
distribution function, (197), we see that £y4,9, and &y, are correlated. Substituting

(199) and (201) into (197), and focusing on the delta function gives, f, ,(r,v1) ~
&(&rq,p+€op,g,p—1); therefore £p g p=1—r,gp. Then vy gp=(euBe/ ap)y/1—=&r,gp- For
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the angle ¢ we get:
~ 1
fq:ﬂ(¢) - E‘_‘ b

Fol®)= 2,

where 0 < ¢ < 2, so that Fy,(0) =0 and F, ,(27) =1. Therefore inverting (202)

(202)

yields, ¥g p =27y g », Where &y 4 » is a uniformly distributed random number between
0 and 1. Then vy g,p=v] g,5i0(27&y ¢ ,) and vg g, =0y 4,c08(27Ey 4 ). Finally we

look at the axial velocity:
}q,u('UZ) = 6(v; — Bc) ,
Fq,ﬂ(”z) = H(v; — Be) ,

(203)

where —co <9, < 00, 5o that Fy ,(~c0)=0and F, ,(co)=1. Then choosing a random
number and inverting (203) yields v, 4, = fc. We carry out these operations for
each super-beam ion Ky =N, ,/AN in each slice u. Therefore given a set of initial
parameters for the beam: its velocity, §; pulse length, Lp; and the number of ions of
charge state g, Ny, initial radius, a,, and emittance, €,, of each beam slice p; we
can use a set of random numbers uniformly distributed over the interval 0 to 1 to find

‘the initial positions and velocities of the beam particles.
4.2.2 Field Initial Conditions

We initialize the fields by first solving the electrostatic problem in the frame of
the beam, and then performing a Lorentz transformation of the results to the frame
of the cylinder. The electrostatic problem is defined by the Poisson equation for the
potential: .

vy =-£ | (204)

€0
where the prime superscripts denote that we are solving this potential in the frame

of the beam, and p is the charge density of the beam. Using a Green function

D e e ———— - R S
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formulation, we can write:

V(c5) = [ ple)Gsh, ) + P (205)

where rj is the point at which we wish to find the potential in the beam frame
and r is the variable of integration over the beam. F(rg) is a function that satisfies
the Laplace equation, VzF = 0, inside the volume, and is therefore defined by the
boundary condition, and G(xj,r) is the so-called Green’s function that satisfies the
condition,

_S(rp—1)

V2G(r), 1) = — (206)

where the derivative is taken with respect to r. If we substitute (206) into (205)
we recover (204). Using Dirichlet boundary conditions, where the potential on the

conducting wall surface of the cylinder shown in figure (12) is zero, reduces (205) to:
V() = [ oe)GGah vy (207)
And the Green function equation, (206), for the geometry of concern here becomes:
2 / 1 ! ! ]
V*G(ry,r) = —-7:,?5(7'0 —1)8(0y — 0)6(zg — 2) (208)
€0

where (r}, 25, 6}) is the coordinate at which we wish to find the potential. Jackson

(1975) solves this equation for a cylinder of radius Re:

o0

G(rp,r) = 27"—]560 Z exp (im(6; — 9)) /000 dk cos [k(zy — z)] x

{ D (bR Kinlbrs) = K (bR ()]
(200)

where I, and K, are the modified Bessel functions of order m, and:

re=dT) %fr<r6,
rg, ifr>rg,

I- : !
g, Hr<ry,
r>—{r, ifr>ry. (210)
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Substituting (209) into (207) yields:

27 R
V'(r4,05,20) = =——— o 26 / d@/ dz/ drrp(r,0,z) x

Z exp (im(6; — 6)) / dk cos [k(zg — 2)] x

m=—0o0

(211)

In the axisynimetric geometry of concern here m=0. For a K-V distribution (196),

we can write:

2

00,3 = ge [ PoFite) = 2 (1-5) . (212)
l

1

where the beam consists of ions with a single charge-state ¢. Substituting (212) into

(211) and carrying out the radial and azimuthal integrations yields:
Noge [ 7 o(2)
V'(rf,,zf)) = 7{_2_60‘/—00(12’ ( alz X
g 2 r' 2
1 1

(213)

where for 7> a; we get:

V;(T{)szz)az) = ‘/(;oo Z]: cos [k(zo = )] [120((:7;0)) . II{;((:;;:C)):I kaIO(kr:))Il(kal) )

(214)

and for ry < a; we get:

70 Ko(kr,

1ol ®© dk , .[flfll(:rlo) + Ioo((:ro)] B IO(kro)I1(kr0)
Ve(ry, zg,2) = ok [k(zp — 2)] I(((l:z)) e .
0 [le(kazl) + I:(kR:)] kriIo(krg)I1(kar)

(215)

The electric fields are evaluated by substituting (213) into E' = —VV. For the
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electric fields in the beam frame, we can write:

N,

sieo0 =35 Lo (47) -
—co
/ 7.(2) ! 7‘%
[Er,>(7‘0,2'0, Z)H ('a—lz - 1) + E,.,<(T0,20,Z)H (1 — ‘a_2>] 3

Nyqe faz

E;(TQ,ZO) =—7;§—€0-‘/_ d ( i(l))
2

T : ‘ 2
[E;’>(ro,zo,z)H (a—% - 1) +E;’<(r0,zo,z)H( - ;%)] ,
(216)
where we have transformed the location at which we compute the electric fields to

the frame of the cylinder from that of the beam, rj=rg and z{=-zg, where 7 is, as

before, the relativistic factor. Then for 79> a; we get:

E;’>(ro, 20,2) = /0 ” dk cos [k(yzp — 2)] []}{0((:}?‘3) Ii{krg) — I{l(krg)] ale(kaz)

Bl (rom,2) = [ rsinliCzo — )] | T — KR o)k

(217)

and for rg < a; we get:

E; (r0,20,2) = /00 dk cos [k(yzp — 2)] [IZ)O((:I‘%)) Ii(ka)) — K (kaz)] arli(krg) ,
z, <(ro, 20,2) = / ——sin [k(yz0 — 2)] x

{ y_ Dolkro) [Ko(ka,) _ Ko(kR:)
To(kar) © | To(ka) ~ To(kR.)

] kayIo(kro) I 1(]“11)} )
(218)

We now convert the integrals in equations (216), (217) and (218) to Reimann
sums. First the infinite integral over the axial dimension in (216) is non-vanishing
only along the length of the beam, L;, because }q(z), the normalized axial density of
the beam, is non-vanishing only along the beam. As before, we divide the beam into

several axial slices, each of thickness éz, across which the radius of the beam, a;, can
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be taken to be approximately constant, then (216) becomes:

N,
E! (To, zo) = g° LE
z w2¢p ‘; a‘%
2 2
I T
[E; u<H (1 - —2> +E,,H ( z - 1)] ,
. Lb/5zN (219)
Bi(ro,20) = 5 > 5 x
0 =1 ay,

where a, and Ny, are the radius and number of beam ions for each beam slice
denoted by index pp=1,2,---,L3/6z, and E, , -, for instance, is the shorthand notation
for E; . (0,20, 2p + pz), Wﬁére :z:h, as before, is the axial location for the head of
the beam. The integral along the the axial wave number, k, is made finite by the
imposition of the spatial grid. Since we are ultimately interested in the fields at grid
locations, the smallest axial wavelength that can be resolved is Apmin =27Az, where
Az, as before, is the axial grid division, in the frame of the cylinder, and the factor
of v converts this to the frame of the beam. Then the maximum wave number is

krmoz =27 [ Amin =7 [7Az, and equation (217) becomes:

r @ Lef2Az .
! _ u
B+ u,>(r0, 20) —m; + ’; +Le cos [kay(20 — 2, — p62)] x
Ko(knRc)
Lc/2AZ . R R
E;,u,>(r0az0) = Z n sin [kny(20 - zp — péz)] x

n=1

[Ifo(knro) _ Ko(knRe)
Iﬂ(knrﬂ) IO(kch)

] knayIo(knro)Ii(knay) ,
(220)

e e ey e B
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and equation (218) becomes:

- Lc/zAZ 27(‘
E;,u,<(7'0, z0) =2’)’Lc ro + nz::l L cos [kny(20 — zp — pdz)] x
KO kch .
\ e R IO PR ACRNY
. Lef2Az
E; y,<(ro, z0) = Z L sin [kny(20 — zp — péz)] x
n=1

Iﬂ(knay) Io(kna;‘) 10 kch)
knaylo(knro)l1(knay)

{1 _ Ig(knro) [Ko(kna,,) _ Ko(knRe ] %

(221)
where L., as before, is the length of the cylinder and &, =2nn/yL. is the discretized
wave number in the beam frame, where n = 1,2,--+,L./2Az. This conversion of
an infinite integral over k to a finite sum over k, makes the system periodic, and
therefore introduces “ghost” beams to the front and back of the actual beam. We can
reduce the effects of these beams on the fields in the cylinder by making the cylinder
shown in figure (12) sufficiently long; perhaps by a few beam-lengths longer than the

minimum simulation length.

Equations (219) give the electric fields in the beam frame; however, in order to
solve the numerical equations, we require the initial fields in the frame of the cylinder.

Therefore we perform a Lorentz transformation of these beam frame fields:

E' -fcixB . (B2-E)p

PRI gy -
p_ BB/ xE (B%-B") B2 (222)

ieF I pi /iR

where B is the axial velocity of the beam in units of ¢. The “primed” quantities are

the fields in the beam frame and the “unprimed” quantities are those in the frame of
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the cylinder. For the geometry of concern here (222) reduces to:

E,(ro, z0) = E.(ro,20) ,
Ef(n)’ zﬂ) = ’)’E,,.(To, 20) ’ ) (223)

. By(ro,20) = ECIE,’-(TO,ZO) ,

where ~, as before, is the relativistic factor, v =1/ \/l_-_—_,B_2 To find the fields on
the spatial grid shown in figure (16) we set (rg,20) to the grid location of interest.
For instance if we wish to find the radial electric field at the grid location 7 4+ 1/2, k,
E. j11/2.k = Er(Tj41/2 2k), we first set 7o =7;11/9, and 29 = z; where (rj11/2,2;) is
the position of the grid point j + 1/2,k. We then use equations (219) to solve for
the field in the frame of the beam, E;(rj /2, 2); and then use equations (223) to
transform to the frame of the cylinder, Er(rji1/2,2:) = YE(rj41/2, 2k)- Therefore
given a set of initial parameters for the beam: its velocity, f; pulse length,' Ly; the
number of ions of charge state q, Ny ., initial radius, a,, and emittance, ¢, of each
beam slice, y; we can use this method to initialize the radial and axial electric fields
and the azimuthal magnetic field at all grid points in the cylinder shown in figure
(12). '

4.2.3 Field Boundary Conditions

Finally we discuss the boundary conditions for the fields. For the spatial grid
shown in figure (16), these are the radial electric field and azimuthal magnetic field
on the axis of the cylinder shown in figure (12), E; 12,1 and By 173 k1172, the axial
electric field on the surface of the cylinder, E, y, k;l-l /2> and the radial electric fields
at the two open-ends, E; ;11701 and E, ;.1/5 y,. From symmetry arguments we set
the radial electric field and azimuthal magnetic field on the axis of the cylinder to

zero; and because the cylinder has conducting walls, the axial electric field on the

surface also vanishes. This leaves the radial electric field at the two open ends.
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Mur (1981), discusses a boundary condition that absorbs the outgoing waves at
the two open ends of the cylinder. The analytic free-space solution for the radial
electric field of a transverse magnetic wave in a long cylinder is of the form E, ~
J1(por) exp(Likoz) exp(—iwgt), where, as before, the frequency of the wave, wy, the
axial wave number, kg, and pg are related by the dispersion relation, wg = c?(k2 + p?),
such that pgR. = (o are zeroes of the Jy Bessel function where R, is the radius of
the cylinder. For any transverse boundary in the cylinder, these solutions satisfy the

condition:

aEr . ko 6Er

where a wave traveling in the direction of increasing z, or a right-going wave specified
by the + sign in the axial exponent, satisfies the negative equation, while the left-
going wave satisﬁe§ the positive equation. The propagation vector of the wave is given
by k’= koz+po?; and the angle of incidence with respect to the axis of the cylinder

is, cos ¥ =ko/|k|. Substituting from the dispersion relation, we can write (224) as:

oF, cos?d\ OE;
0z + ( c ) at - (225)
If we now take 9 ~0, or the waves to be normal-incident on the open-ends, then
aEr ]. \ aEr

The validity of this approximation is discussed later.

We now turn to the finite difference equations. If we assume that all stability and
accuracy criterion are met rigorously, then the frequencies and wave numbers of the
numerical solutions will be close to those of the analytic solutions. Using “central

differencing” in time and “three-point” spatial differencing discussed earlier gives:

+1 +1
0B, _ 1 (EZ ek T Erfipra  Eriapet E;f,-+1,2,k_1>
?

9t At 2 2

+1 +1
0B, _ 1 (ErinpatElinps  Erinpaat Elipen
8z Az 2 2 )

(227)
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Substituting (227) into (226) yields:

1 1 —
E:j'_*_l J2.k (cAt F Az2) —E:;’_*_l o1 (At £ Az) = (228)

E:'tj+1/2,k-—1 (CAt + AZ) - E:j+1/2,k (CAt + AZ) .

where, as before, the left-going wave uses the upper signs and the right-going wave
the lower signs. Separating this equation into a left-going wave for the left open end

and a right-going wave for the right open end yields:

1 _ cAt — Az +1
B = Ersnpat oA, (E:J'+1/2,2 By 2’1) ’ (229)
En+1 — + cAt — Az En+1 _ En
ra+l/2,N: = Cnil/2N—1 T AT AL \ P/, N1 T PN ).

Thus knowing the radial electric fields at one grid location inside the boundaries at

both the current and previous time-steps, Efj'_*l_l /22 and E,’_‘, +1/2,2) and E;‘j'_:l /2 No—1

n
and Er,j+1/2,Nz

and E? 12N, allows us to find the fields at the boundary for the current time-step,

T

n

_y;> and the field at the boundary at the previous time-step, E; +1/2,1

E:':;:il-l /21 and E,’_:;"_il 2N, This'simple boundary condition absorbs all waves that are
incident normal to the open-ends, ¥ ~ 0; waves that are incident at angles that are
much different from this will be artificially reflected back into the cylinder. Since the
waves are generated in the vicinity of the beam, if the distance between the beam
and the open-ends of the cylinder shown in figure (12) is approximately the length
of the beam, then the angle of incidence for a wave to reach the open-ends without
reflecting off the walls of the cylinder is 9 ~tan~!(R./L;). For the parameters given
in table (3) we get ¥~0.29 rad, or cos ¥ ~20.96, Which is close to unity, satisfying the

approximation made in equation (226).

This concludes the discussion of the initial and boundary conditions required to
solve the numerical equations. Indeed with these and the conditions on the discrete
parameters déscribed, above, we are in a position to use the equations to analyze

the transport of a beam of ions through background gas. The algorithm proceeds

mr s e = . e e ey
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particle field
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particle position
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current density
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Figure 25: Flow-chart of the BTRAC code used to solve the numerical equations.

as follows. We start with a set of initial beam pa.ra.méters, such as those outlined in
table (3). We assume that the beam has a K-V transverse distribution; and convert

the normalized axial distribution, f,(z), into a series of slices specified by equation
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(198). We also specify the background gas density, ng; the stripping and ionization
cross sections for beam ions of various charge states, ¢, colliding with background gas
neutrals, ot ¢ and ojnq; and the 'size of the simulation environment shown in figure
(12), L. and R.. We first use equation (186) to determine the superparticle ratio,
AN. From this we can determine the number of super-beam ions for each charge
state, Ky. Then using equation (195) and the beam parameters we can determine the
initial positions, rq,» and z,p, and velocities, vr,q,p, Vg4 and v 4y, of each particle,
g, p- Using equations (200) and (199) we can determine the spatial mesh sizes, Az and
Ar. From these and the size of the simulation environment, we can find the number
of radial and axial grid points, N, and N.. And using the distribution functions and
equations (223) we can initialize the fields, E, ;i1/2.%, £z, jk+1/2 and By jy1/2,k+1/21
for each mesh point 7,k on the grid shown in figure (16). After having initialized the

fields and particles, we can now “push” the beam ions forward in time.

First using the most stringent of equations (187), (190) and (191) we can deter-
mine the size of the time-step, At. Then for every time-step we do the following.

We use equations (53) and (57), and the present positions, 3, and 2}, and veloci-

n+1/2 n+1/2 n+1/2  n+1/2 n41/2  n+1/2 and vn+1/2

tles’ vraq’p ? vg,q,p ? vZ,Q:P? vr,e,p ? ve,e,p ? vzae’p ? vr)g:p 2,9,p to a'dva'nce the

positions of the particles to the next time-step, 7'?,'}*,'1 and zg'z’,'l. We then use equa-
tion (109), these present and advanced particle positions, the weighting functions,
(97), and the present number of particles K +1/ 2, to calculate the current densities

for each mesh point, J:f_:{?z  and J:-;ifl /2 With these current densities and the

Bn+1 /2

present electric fields, ET 1/2,k and E7 i E+1/2) and magnetic fields, B, F+1/2,k4+1/2)

we can use equations (59) and (60) to advance the electric fields for each mesh point

in the interior of the simulation environment to the next time-step, E"

+1
F1/2,k and

EZ;*’% +1/2° These along with the boundary conditions specified by equations (229)

are used to advance the radial electric fields on the two open-ends of the simulation
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environment shown in figure (12) to the next time-step, E:'?'_*l_l /2,1 and E,’_‘j'_*l_l 2N,

Then with these electric fields and equation (61) we can advance the magnetic field

to the next time-step, BZ;-?-{Z}Z,I: +1/2° Using equations (115), the present number

of particles, and the cross sections and background gas density we can determine

the number of particles for each species for the next time-step, ?+3/ % With the

- advanced fields on the mesh points, the particle positions, and the same weighting
functions as were used for the current density calculations, (97), we can use equation
(98) to interpolate the fields to the particles, Ex{7, EZ1Y and Bg’:‘;. Finally we can
use equations (66), (70), (74), (75), (79), (87) and (88), these interpolated fields, and

the present particle velocities to advance the velocities to the next time-step, vr., 'q"’g/ 2,

o2 32 nt3[2  at3[2  widf2 g nd3[2

b.gp 2 Uned 1 Vger 2 Vzep > Urgp z,g9p - 10 this way we advance all quan-

tities from one time-step to the next; we repeat this for each time-step. Figure (25)
shows the flow-chart for this algorithm. A computer code, BTRAC, described in detail
in the appendix, was developed to “solve” the numerical equations by carrying out

these operations.
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5 Stripping and Ionization
Cross Sections

As mentioned above, in order to use the method outlined in the previous chapters
to solve for the propagation of a beam of heavy ions through background gas we need
to provide, in addition to the beam parameters and system geometry, a set of stripping
and ionization cross sections, 0st,q and oin g, for the fast, §~0.3, collisions of interest
in this thesis. Since most experimental data is for slow collisions, Lo and Fite (1970)
and Dehmel, et al., (1973), we develop here a semi-empirical approach for calculating
these cross sections. Betz (1972) presents a good survey of the various theories appli-
cable to such calculations. We focus here on two theories that allow us to calculate
the cross sections for electron loss collisions between the beam ions and background
gas atoms: the Bohr classical theory and the Bethe quantum theory. The Bethe
theory, based on the Born approximation, gives the “correct” velocity dependence,
(1/8%)1n(B8?), when compared with experimental data; however the parameters con-
tained in this formulation are not easily calculated for atoms more complicated than
helium. By contrast the Bohr theory, based on the “free electron” approximation, has
parameters that depend only on the ionization energies of atomic orbitals, which are
readily available; however, the velocity dependence it predicts is simply (1/8%). We
therefore develop a semi-empirical method for obtaining the necessary parameters in

the Bethe theory using the Bohr theory as a guide.
5.1 Cross Section Theories

Single-electron loss reactions can be described by:
A™ 4 BEt A L BRE e (229)

In the following discussion we shall refer to the atom that looses the electron as the

——— z S — - < g m—p——— - - e ——————— e e v
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target, in this case A™*t, and the atom that causes this loss as the projectile, in this
case B¥*. We can relate this to the ionization and stripping cross sections discussed
earlier, if we let A™* represent the beam ion of charge state n, so that g=n, and B¥*
represent the neutral background gas atom, so that k=0, then the cross section for
the loss of an electron from A is the stripping cross section, o »; alternatively, if we
let A™* represent the background gas atom, so that now n=0, and B** be the beam
ion of charge state k, so that =k, then the cross section for the loss of an electron

from A is the ionization cross section, o, k-

5.1.1 Bohr Classical Theory

" Figure 26:, The geometry for atomic collisions.

Following Bohr (1948) we calculate the cross section by viewing the system in the
reference frame of the target atom, A. The derivation presented here also benefits
from lectures by Prussin (1992). Figure (26) shows the geometry of the collision,
where B is the projectile, and e is an electron to be lost in the target atom. Because
the projectile is fast we can invoke the impulse approximation, then the electron
remains instantaneously at rest in this reference frame. The change in momentum of

the projectile can be written as:

App = ZB,ke/Edt , (230)
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where E is the electric field of the electron in this frame, and Zp is the effective
charge state of the projectile, which depends on both the atomic number, Zg, and
the charge state, k. The electric field of the electron is simply:

—€

b= (.‘1:2 + 22)3/2

[z% + 22] (231)

where Vz2+22 is the distance between the projectile and the electron. If we now
make the assumption that, the projectile maintains a straight-line trajectory with
constant velocity, then substituting (231) into (230) and carrying out the integration
yields:

—27Zp 12 .
App = -bei—x ) (232)

where b is the so-called impact parameter as shown in figure (26), and B is the
velocity of the projectile. From momentum conservation, the momentum transferred
to the electron must be exactly equal to, but opposite in sign to the change in the
momentum of the projectile, Ap. = —App. The kinetic energy transferred to the

electron is given non-relativistically by:

AT = [ApZ +2Ap. - pi] - (233)

2me
where p; is the initial momentum of the electron in the target atom, and m, is the
electron mass. Because the direction of the initial momentum of the electrons in any
given orbital is entirely random, if we take an ensemble average of the dot product

in (233) we get zero; then substituting from (232) yields:
2a§Z123’ka4mecz
3252 ’

(AT) =  (234)

where ( ) denotes an ensemble average, ¢ is the fine structure constant, and ao is the
Bohr radius. The ionization cross section, or probability for the removal of any single

electron, g, in the target atom, is simply given by:

2

. 27a2Z% . otmec
a’u=27r/bdb= 0 B’é]; ‘

©  d(AT)
/B - BT (235)



101
where we have substituted for from (234), and where By 5, is the electron’s binding
energy in the target 'atom, A. If we carry out the integration in (235) and sum over
all the electrons in the target atom to get the total probability, then the Bohr cross

section formula becomes:

Za—n draZ% o
O Bohr = Z Op = <_%k—') EA,n. ’ (236)
=1
where: ;
AT
R
Tan = . 237)
i Z_.; B ( .

where R is the Rydberg energy, 13.6 eV, and Z4 is the atomic number of the target
atom. X4, contains all the atomic information of the target; and the coefficient,
in pa,rticulai' Zp k, contains the information about the projectile. The fact that the
formula is a product of these two parts is a general characteristic of fast collisions

where the projectile and the target do not intimately interact with each other.
5.1.2 Bethe Quantum Theory

Bethe (1930) gives the following cross section for the removal of a single electron,

I, based on the Born approximation for fast collisions:

47ra§Z% kaz R ﬂ-? R
Ul, = ——ﬂz (bA’n’ﬂ—BA,n,#) 111 (4;5 CA,n’”,) N (238)

where by, , are some jonization factors and CAn,p are roughly equivalent to the
binding energies, Bn,; R, as before, is the Rydberg energy. Carrying out the

summation over all orbitals in (238) yields the Bethe cross section formula:

Zan dma2Z% o’ 2
0438,
OBethe = Z Oy = <_7TIC—) [Mz%,n In (4;) + CA,n] s (239)
£=1
where Zan .
Min= Z (BAnIL) P (240)
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ZA—-n
R R
Can= Y bany < 5 ) In (c“ﬂ) . (241)

g A,
Again we see that the formula (239) is the product of two parts: one that contains
the quantities Mi’n and C4, which are both functions of the target only, and a
coefficient that contains the information of the projectile. It is interesting to note that

the projectile parts of the Bohr and Bethe formulae, (236) and (239), are identical.
5.2 Semi-Empirical Analysis

The parameter, 24,5, in the Bohr formula (236), is fairly easy to calculate since
it depends on nothing more than the binding energies of the electrons in the target
atom, B4 n . On the other hand the parameters, Min and C4p, in the Bethe
formula (239), are difficult to obtain since they require a detailed knowledge of the

eigenfunctions of atom A™* for the calculations of b4 5, and ca 4 4
5.2.1 Experimental Comparison

In order to determine which of the two formulae, (236) or (239), has the “correct”

velocity dependence, we write them as:

. ﬂz
— =3 242
(47ra3Z%,ka2 TBokr = &Am (242)
and
B 2. 4p° .
(W O Bethe =— MA,n ln CA,n + In 7 ’ (243)

If we now plot experimental data for the left hand side of these equations versus
In(48?/a®) we would either expect to see a constant, if the Bohr formula is “correct”,
or a straight line, if the Bethe formula is “correct”; such a plot is referred to as a

Fano plot, after Fano and Cooper (1968). 'As mentioned above, there is not much

e s e+ s i
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Figure 27: (ng—a—z) o vs. In (%’;) for single electron ionization of argon.
0

experimental data available for fast atomic collisions; however fast collisions between
electrons and atoms, and protons and atoms are more readily available. In this
case Z%,k = 1. Figure (27) shows the Fe;,no plot for electron impact ionization of
argon; the experimental data is taken from Schram (1966). As can be seen the data
is not approximated by a constant corresponding to o ~ (1/82), suggesting that
the Bohr formula (242) is “incorrect”. Indeed we can fit a diagonal straight line
through the data, as shown, which means that the Bethe formula (243) contains an
essential additional physics. Following Fano and Cooper (1968), we can use such
plots to determine Mi’n and C4,, which should be the slope and intercept of the line
respectively as seen from (243). Table (4) shows the results of such an analysis for
the electron impact ionization of various noble gas targets; the data is again taken

from Schram, et al., (1966).
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Target atom Mfl’n ~Can
Helium 0.49 0.54
Neon 1.84 4.50
Argon 4.16 7.23
Krypton - 5.95 9.58

Xenon 8.25 11.8

Table 4: Min and C4 5 for noble gases.

5.2.2 Cross Section Formula

16 ]
12
5
<Cl 8
<
4
) o T TS R S B
0 2 4 6 8 10 12 14

Sigma_A,n

Figure 28: —Cy 5 vs. X4, for the noble gases.

Using the data in table (4) and guided by equations (240) and (241) we look for
relationships between the parameters in (239), Min and Cg », and the quantity 34 ..
Inokuti (1971) suggests the possibility of polynomial expansions in the inverse binding
energy, 1/Ba n . Since L4, is a function of these binding energies, we assume that
the expansion can be given in terms of X4 . Figure (28) shows the plot of —Cjy ,

vs. X4, for each of the noble gases shown in table (4). The binding energies for the
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Figure 29: Min vs. ¥4, for the noble gases.

calculation of ¥ 4 , were taken from Sevier (1979). If we assume a lowest order linear
expansion, we can fit a straight line to the data, c3X 4,5, where c; is some constant,
in this case, ¢y ~1.1. Similarly we can also plot Mi,n vs. X4 5, as shown in figure
(29). Again using the data in table (4), and conducting a linear fit yields, ¢;1Z 4 n,

where for the noble gases ¢; ~0.7.

If we now substitute these constants into (239) we get the following semi-empirical

formula for the electron loss cross section, o:

dra2Z% . o? 2\
o % [61 In (%32—) - 02:' Yan (244)

where X 4 ,, is given by (237). Therefore given the constants c1 and ¢, we can calculate

the cross sections for single electron ionization.

o
3
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5.3 Cross Section Calculations

Before we can use equation (244) we need to discuss methods for calculating the
summation over the binding energies of the target atom, X 4 ,, and the effective charge

state of the projectile, Zp 1.

As can be seen from equation (237), 4, depends on the binding energies for
the electrons in the target atom. The binding energies for neutral atoms are well
tabulated, and can be found in Sevier (1979) for example; for non-neutral atoms,
these are not so readily available. However, Carlson, et al., (1970) give the following

simple formula for calculating these binding energies from those for the neutral atom:

Basny = (Ian— Baow) + Baoy » (245)

where 45 is the ionization energy of the ion A™*, Byg . is the binding energy in
the neutral atom of the orbital, ¢', that corresponds to the outer-most 6rbital of the
ion, and B A,ol, p is the binding energy in the neutral atom that corresponds to the
orbital in question, g. Thus knowing the binding energies of the neutral atom and

the ionization energy of the ion we can compute the binding energies of the ion.

The effective charge of a bare ion is simply the atomic number of the atom,
ZB,zp = Zp; however for non-bare ions the electrons would provide some screening.

Therefore we write:

Zpr=2Zp—e€pg , (246)

where Zp is the atomic number of the projectile and ¢p ; is some screening constant
that depends on the charge-state k. Slater (1930) provides a semi-empirical method
of calculating these screening constants. Although the calculations were made to

determine the asymptotic form of the single-electron wave function by making the
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assumption that the electron is in a hydrogen-like atom of nuclear charge (Z—¢), they
can be used to provide an estimate of the effective charge of the projectile. In this
approach, the screening constant is a function of the number of occupied orbitals in
the projectile atom, and is calculated by the following sum rules: we first group the
shells so that the s and p orbitals of a given quantum number form the same group
while the d and f orbitals form separate groups. Then we add screening numbers as
follows: an amount 0.35 for each electron in the outermost group (except if this is a
1s group, then 0.30 is used); if this outermost group is an s,p group then 0.85 for
each electron in the next group in and 1.00 for each of the rest of the electrons in the
atom; if this outermost group is not an s,p group then we simply add 1.00 for each

of the rest of the electrons in the atom. This sum is then the screening constant ep .

VT T 7T T T T T T T T T T 771

0.1

0.001

stripping cross section (107-16 cmA2)

DU T N N T T T N A A S A I
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Hg charge state, q

Figure 30: The stripping cross section, 0st,q

for Hg?* colliding with neutral fluorine at $=0.315.

We can now use equation (244) to calculate the stripping and ionization cross

sections for various beam ions colliding with background gas. For this thesis we are
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Figure 31: The ionization cross section, Oin g

for Hg?t colliding with neutral fluorine at f#=0.315.

concerned with heavy ions, like Hg?*, colliding with neutral background gas atoms
like fluorine. In the case of the stripping cross sections, ost,4, as mentioned above, A
represents the beam ion and B the background neutral; therefore we need to calculate
Y Hg,q and Zpg. Similarly for the ionization éross sections, 0in g, Wwe need to calculate
Yro and Zggq:
47ra%Z%- 0a2 442
Ost,q = ——ﬂz—’—— [cl In (—a—z) — cz] YHq

dra3Z% o 432 ‘
Ting = _____ﬁ_gl_g_,q_ [cl In (%) — cz] ZFo ,

. where we use equation (245) for Xz, , and X g, and (246) for Zp 44 and Zp. Figures

(247)

(30) and (31) show the results of equations (247) for B=~0.315 as a function of the
beam ion charge-state g, where we have assumed that the constants ¢; and c; are the

same as those calculated for the noble gases, ¢; ~0.7 and cp~1.1.
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6 Results and Conclusions

In the previous sections we have shown that the focal spot radius of the heavy ion
beam at the target is a crucial parameter in establishing the power plant feasibility
and operating conditions. Target gain, driver energy and peak power, all depend on
focal spot size. Generally the smaller this spot size for a given beam current the more
favorable is the operating regime. The purpose of this thesis is to determine the spot
radius to which a beam of heavy ions can be focused by a conventional lens system,

followed by propagation through a chamber of background gas.

Beam ion Hg*

Beam ion mass (m;) 200.6 amu

Ion kinetic energy (Ep) 10.02GeV
Particle velocity (8) 0.315

Beam current (I3) 43kA

Beam line-charge density ();) 45.6 uC/m
Pulse length (L3) 0.94m

Beam emittance (¢) 19.3mm—mrad
Beam radius at final lens () 10cm

Beam convergence half-angle (0)  20mrad

Table 5: Beam parameters used for calculations.

We now analyze the transport of a beam of ions using the BTRAC code to solve the
numerical equations described in the previous sections. We take the beam to be K-V
in the transverse plane with uniform radius, q;, and emittance, ¢, along its length,

Ly, singular axial velocity, 8, and uniform axial dirstribution:
Ab
r2qee?v2L?
The beam parameters, adapted from Lee (1991), are shown in table (5). We will

7‘2 a2v2
f(ryz,01,v;) = ) (— + 1L —.1) 6(v: — BS)H(Ly — 2)H(—2) . (248)

Y

first look at the case of transport through a vacuum chamber, and then at the more

interesting case of transport through background gas.
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6.1 Vacuum Propagation

The first case we consider is propagation of a beam through vacuum, ng = 0.
In this case we can derive an approximate analytic solution for the beam envelope

radius; and then compare this to the results of the numerical solution.

6.1.1 Analytic Solution

with Standard Beam Pé.rameters

The analytic solution to the problem of a beam of ions propagating through a
vacuum can be described by the “envelope” equation (10). Lee and Cooper (1976)
derive a very general envelope equation for axisymmetric beams; we present a specific
derivation for the case of concern here. We start by ﬁsing the analytic governing
equations for the motion of 'the beam ions derived éarlier. If we substitute equation
(25) into (19) we get |

&2r 02 e
_9+q

S0 — T - r ZB b
a2  r  ymym, (Br — v:By) (249)

where we have dropped the subscripts for convenience, and remind the reader that +
is the relativistic factor, and my is the mass of the beam ion in amu. With the same
assumptions as were made before, that the velocity of the beam ion is primarily axial,
;; 1 <L v~ fc, and that this axial velocity doesn’t change much over the course of the
beam propagation, we can convert the temporal deriva.t?ve in (249) to one over the
axial position, z: | »

d*r og Ir

dz2 rB2c2 + 7mbmoﬂ2g:2 ’ (250)

where we define the radial force:

fr =qe(E; — BeBy) . (251)
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We now take moments defined over the transverse phase-space distribution. For a

moving “disk” of beam particles with z — fct equal to a constant:

(r) _—'E/rdr/d&/v_!_dvl/dz/;rf(r,0,v_,_,¢;z) , (252)

where f is the particle distribution in the transverse plane shown in figure (24),

evaluated at axial location, z. Using (250) we can find the following moment:

(7‘7‘”) — ("’3) 4 (rfr) (253)

T BT mmopi

where the primes signify derivates with respect to z. Substituting
(r2Y" = 2(r"%) + 2(rr") , (254)

and defining a® =2(r?) in (253) we get the envelope equation:

da & Q
@E=Ft (255)

where ¢, called the emittance, is defined as:

4
2
€ = ﬂzcz

[(7?) ((07) + (25)) = (ror)?] (256)
and @), the dimensionless perveance is defined as:

o= 2rf) (257)

ymymof 2¢2”

The envelope equation, (255), is identical to (10). The emittance equation, (256), is
also identical to that given by (13). The variable a is interpreted as the radius of the

beam, or its “envelope”.

Using the moment equation (252), we can write the perveance, (257), as:

Q=2 [rrf 050, (258)

- 7mbmoﬂ2C2
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where f(r; z), the normalized number density, is given by

fsa = £ / vido, / b folry v, 3 2) (259)

and fq(r,v1,%; 2), as before, is the transverse axisymmetric distribution for particles
of charge-state ¢ in the beam. If we assume that all the particles in the beam are of

charge-state ¢, then we can define a beam line-cha.;’ge density at some radius, r, as:
Ar;2) = 27rqe/v_1_dv_;_/d¢/ rdr fo(r',vy,;2) , (260)
0
so that )Ap is the total beam line-charge density:
w -
A = 27rqe/v_|_dv_1_/d¢/ rdrfg(r,v1,v¥;2) , (261)
0

Substituting (260) and (259) into (258) yields:

Q= 2ge
T ymymoBicy

/ rdr%(E, — BeBy) (262)

where we have substituted for the radial force from (251). The fields are given by:

A
"~ 2meor - 263
5 _ o) (263)
9 = )
2nr

where A is defined by (260). Substituting (263) into (262) and performing the inte-

gration yields:
_ gely
- 2wegmym,(Byc)d ’

(264)

where I, the beam current, is given by A3fc; this equation is identical to (11).

Lee and Cooper (1976) have shown that in the case of self-similar expansion,
the emittance of the beam is conserved. Given the initial conditions a(0) = ¢; and
a'(0)=—0, the beam convergence half-angle, we can solve equation (255) to obtain

the radius of the beam, @, as a function of axial position z. For the parameters gi.ven
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Figure 32: The envelope solution for the beam

propagating through a vacuum.

in table (5) we get, @=3.78x107°, and with e=1.93x 1075 m—rad, a;=10 cm, and
© =20mrad, figure (32) displays the solution of equation (255) obtained by applying
Stoermer’s rule* for discretizing second-order, conservative differential equations. The
beam is considered to be moving from left to right. As mentioned before, the effect
of the final focus system is modeled by an artificial thin lens, located at z=0, which
focuses the beam onto the target (a;/0)~25m away. The radius of the beam, initially
at ~ 10 cm, gets focused to a spot-size of as;~1.97mm at axial position z~ 5.68m,
slightly beyond the nominal position of the target. The actual convergence angle,
or target position, would be adjusted so that the minimum radius occurred at the
target. This spot radius agrees with the analytic integral to the envelope equation,
(14).

We can also make estimates for the radial electric and azimuthal magnetic fields

* See for example Press, et al., (1992).
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at the edge of a long cylindrical beam by substituting a, the beam radius, for = in

equations (263):

. E. = b ,
271'60(2 (265)
B — zody
= 5 >
2ra

where A, the beam line charge density, is given.by (261), and Ib; the beam current,
is given by AsBc. For the parameters given in table (5), with a ~ 1.97mm, we get
E: ~ 416X 10® V/m and By ~ 4.37 x 101 T. These high fields are expected to
strongly effect the motion.of any electrons generated by collisions with background

gas molecules.

6.1.2 Numerical Solution

with Standard Beam Parametefs

"Ar (mm) At (ps) Ny
8 15 2,294
4 10 1,727
2 5 1,604
1 3 | 706
0.5 1.5 1,900

Table 6: Number of time steps used for numerical simulation

of the beam for vacuum propagation.

Using the parameters in table (5) we set the length and radius of the simulation
enviroment shown in figure (12) to Lc~9m and R.~30cm. Equation (186) yields
AN $1.4x10%, and therefore K 219, 080 super-beam ions; the subscript “1” signifies
that all these particles have initial charge state ¢=1. Using the “envelope” solution as
a guide, we determine that at the end of the simulation, when the radius of the beam is

approximately ~ 2 mm, the beam plasma frequency will be w; ~4.4x108 é—l; and using

e ——— r o e —————— - . — - — STy g e s e
- /ERira Y r e ey - - h N
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equation (188) we set Az S6mm and N, ~1,500 grid divisions. Since the numerical
simulation code, BTRAC, does not allow for reductions in the axial grid division, we will
use this, more stringent, Az throughout the simulation. Similarly, at the beginning of
the simulation, where the radius of the beam is ~ 10 cm, w; ~8.9x108 s71; and using
(189) we get Ar $8mm and N, ~ 38 grid divisions. Since there is no background
gas, there are no collisions or electrons; therefore the only condition on the time-
step comes from the CFL equation (190), which gives At $15ps. As the simulation
progresses the radius of the beam will decrease, this will force a smaller radial grid
division and time-step; the BTRAC code does allow for reductipns in Ar and At. Table
(6) shows Ar and At and the number of time-steps,' Ny, for each set of parameters.
For instance, at the end of the first “run”, the mid-point, i.e. the axial location of
the center of the beam, will be at position z &~ —0.4842294(At8c) ~2.77Tm, where
the mid-point of the beam is initially .a,t ~ —0.48m; at the end of the next run, the
mid-point of the beam will have progressed to z~2.77—1, 727(AtfBc) ~4.4m; and so

on.

Figure (33) shows the results of a BTRAC simulation with the parameters given
above. The figure shows the beam at three different times, superimposed on the same
graph, along with the envelope solution of figure (32). The first of these “snapshots”
is at time “0”, when the head of the beam is still behind the lens, at 2=0m; its radius
is ~10cm, and the mid-point is seen to be ~ 0.48m behind the lens. The second
“snapshot” shows the beam at ~ 34.4ns, when the mid-point is at ~2.77m. And
finally the last of these “snapshots” is at ~65.1 ns, when the mid-point of the beam is
now at ~5.67m. The “waist” or point of smallest beam “envelope” radius, given by
a=+/2(r?), occurs at ~5.67m, as opposed to ~5.68 m for the numerically integrated
envelope solution, and has radius ~2.08 mm as opposed to ~1.97 mm; thisisa ~5.6%

discrepancy between the envelope and numerical results. We can also calculate the
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Figure 33: The beam ions for vacuum propagation.

emittance of the beam at the waist given by equation (256), €~2.01x10~° m—rad;
this confirms the assumption of emittance conservation that was made when solving

the envelope equation.

Figures (34) and (35) show the radial electric field and azimuthal magnetic field
at a radius of ~ 2.08mm as a function of a,xiz;ml position across the beam when its
mid-point is at ~ 5.67m. These fields are obtained by carrying out the summation
given by equation (98) that weights the fields to the particle positions:

F(r,2) = Z F;eW(r,z;15,28) , (266)

5k
where F(r,z) is either the radial electric field or the azimuthal magnetic field at
location (r,2), Fj is the field at the grid location (rj,2;) and W is the weighting
function given by eciuatio‘n (97). As can be seen, the radial electric field at the mid-
point of the beam, for location z ~ 5.67m is E, 2 4.06 x 102 V/m, which is within

~2.29% of the analytical value calculated above; and the azimuthal magnetic field

¢ e S C e - . P ar et TR I
- - 7 ; B ~TT
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Figure 35: The azimuthal magnetic field at 2.08 mm

for vacuum propagation.

is 4.63 x 10~1 T, which is within ~ 5.93% of the analytical value. Although the
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analytical theory assumes a long cylindrical beam with no axial electric field, E,, the
results obtained from the numerical solution are very close to those obtained from

the analytic calculation.
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Figure 36: Charge density‘for vacuum propagation.

Figure (36) shows the charge density as a function of radius at the mid-point of
the beam, at ~5.67m. This is done by counting the number of super-beam ions in a
small annulus with thickness Ar~0.5mm and length Az~6mm at the mid-point.
If we integrate this charge density over the radius of the beam we get a line-charge
density of Ay ~4.79 x 10_.5 C/m. Again we see that although the analytical solution
did not include the effect of the axial glectric field and therefore assumes that A is a

constant, it is very close, within ~4.99%, to the numerical solution.

e - R Corp e~ - L T ———— e -
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6.2 Propagation througfl Background Gas

We now turn our attention to propagation of the beam through background gas for
reactor chambers theat use Flibe, a molten-salt mixture of 66.7 mol % L:F and 33.3
mol % B eF,, or liquid-lithium as the working fluid. We first explore beam propagation
through vapor densities of ~ 10'* to 101® molecules per cm? of Flibe. Moir, et al.,
(1991) report that these densities correspond to Flibe equilibrium temperatures of
~ 940 to 1038 K. Under these conditions the background gas consists of ~ 99%
BeF, molecules, while the remaining ~ 1% contains other compounds, including
LiF. Therefore we can take the vapor to be entirely BeF;. There is almost no
data for the stripping and ionization of BeF; molecules, however, estimates of atomic
cross sections can be made using the semi-empirical methods described earlier in
chapter 5. In view of this we take the gas to be composed of individual atoms, rather
than molecules. The BTRAC code is currently only capable of simulating single-species
background gas. There are twice as many fluorine atoms as there are beryllium atoms
in the background gas, and the atomic number of fluorine is more than twice that of
beryllium; consequently we expect the stripping of the beam ions to be dominated
by fluorine. The stripping and ionization collision frequencies, onyfc, for Hg3* ions
at B~ 0.315 colliding with the Be atoms in ~ 5x 10 molecules cm™3 BeF, are
vs:225.9%107 s71 and v4;, ~1.1x10% 57! respectively; similarly for F these frequencies
are vg~1.1x10% 57! and v, 3.1x10°s~1. As can be seen, the stripping frequency
for beryllium is about ~ 5% that of fluorine, and the ionization frequency is about
a third; therefore we ignore the Be and take the background gas to be composed of

fluorine atoms at twice the Flibe molecular vapor density in the chamber.
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6.2.1 Numerical Solution for

Flibe Vapor at 2x10* Molecules per c.c

Ar (mm) At (ps) N
8 15 662
8 10 490
8 5 2937
8 3 1631
4 3 2263
4 2 5239
2 2 1008
2 1 182

Table 7: Number of time steps used for numerical simulation

of the beam in 4 x10% cm™3 fuorine.

We now look at the results of the numerical simulations for the beam passing
through background gas at various densities. For background gas at 2x10'4 molecules

3, we carry out the simulation with 4x10 atoms of fluorine per ¢m3,

of BeF5, per em
as described above. The stripping and ionization cross sections for Hg+ beam ions
colliding with F' at #=<0.315 are shown in figures (30) and ’(31). The initial beam
parameters are the same as those used for the vacuum case and listed in table (5). The
reductions in the radial grid division, Ar, are performed at similar intervals to the
case of vacuum transport shown in table (6). However, now the time-step is no longer
simply limited by the CFL condition, (190); because there are collisions between the
beam ions and the background gas, it can' also be limited by the collision frequency,
(191), and because of the presence of electrons, by the electron plasma frequency,
(187). Table (7) shows the time-step sequence used for this simulation; except for the

initial time division, which is set by the CFL condition, all subsequent At are set by

the more stringent plasma frequency limit. The other simulation parameters are the
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same as were used in the vacuum case, Az~6mm and AN ~1.4x1010,
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Figure (37) shows the results of the BTRAC simulation for the beam ions at three
different times superimposed on the same graph. The first of these “snapshots” is at
time “0”, the second is at time ~ 34.4ns, and the third “snapshot” is at the end of
the simulation, ~ 53.9-ns. The solid line plots the location of the particle with the
maximum radial position within a thin, Az, slice around the axial mid-point of the
beam. As can be seen this “edge” radius of the beam reaches a waist, or spot size, of
~3.05 cm, when the xlnid-point of the beam is at ~4.61m. This spot radius is much
larger than the ~ 2mm spot-size achievable in a vacuum. Also the position of the
focal spot has shifted by ~ 1.06 m from the vacuum case as would be expected for
a beam that has a larger focal spot. The distribution of charge states of the beam
ions at the end of the simulation is shown in figure (38). The average chz;,rge state
is ~11.41, so that the beam line-charge density increases from ~4.79x10~° C/m to

~5.47x10™4C/m.
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Figure 39: The electrons generated by the beam

propagating through 4 x10'* cm™2 fuorine.
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Figure 40: The background gas ions generated by the beam

propagating through 4 x10 ¢cm=2 fluorine.

Figures (39) and (40) show the electrons and background gas ions in the chamber
at the end of the simulation. The electrons, which are much lighter than the back-
ground gas ions, get “dragged” along and concentrated in the vicinity of the beam.
It had been hoped that these electrons would not only be able to compensate for the
extra charge due to the stripping of the beam ions and the presence of any gas ions in
the vicinity of the beam, but also substantially neutralize the original beam charge:
Any residual electric field, resulting from incomplete neutralization, will have a much
larger defocusing effect than in the case of vacuum transport because of the higher

charge state of the beam ions.

Figure (41) shows the radial electric field at a radius of 3.05cm as a function of
axial position across the beam when the mid-point of the beam is at ~ 4.61m at
the end of the simulation; this field is calculated using equation (266) in a manner

similar to that for the vacuum case. The dashed line is a result of convoluting the
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Figure 41: The radial electric field at 3.05cm for

propagation through 4x10%* ¢m™3 fluorine.

simulation data with a Gaussian kernal whose full-width at half-maximum is ~40Az,
or one-fourth the length of the beam. The average radial electric field across the beam
from ~4.14 to 5.08 m is E, ~3.68x107 V/m. If we use the line-charge density for the_
vacuum case, ~4.79x107° C/m, and then use the long-beam approximations for the
electric field, equation (265), at this radius, ~ 3.05 cm, we get B, ~2.82x107 V/m.
Even though we used an approximation that neglects the effects of the axial electric
field, we see that this field is smaller than the non-vacuum case, suggesting that the
electrons are not able to neutralize the extra charge due to the stripping of the beam

and the gas ion charge due to ionization of the background gas.

If we ignore the effect of the magnetic “pinch” force, which, in general, is B2 times
the electric force, we can calculate an effective force on an ion at the edge of the beam,
fr =(q)eE;, where (g) is the average charge-state of the beam ions, and E, is the
electric field at the edge. Although the electric field at the edge is lower than the edge
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electric field for the vacuum case, ~4.06 x 108 V/m, the charge-state has increased,
therefore the effective force, f,~6.73x1071! N, is only slightly larger than that felt
by a beam ion at the focal-spot radius for vacuum transport, fr~6.5x10~11 N, which

partially explains why the beam starts to expand at this point.
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Figure 42: The charge density for

propagation through 4 x10'* ¢cm=3 fluorine.

In order to calculate the extent of the neutralization of the beam and gas ion
charge we can look at the charge density across the beam radius. Figure (42) shows
the charge density as a function of radius averaged over the entire length of the beam
from ~4.14 to 5.08m. This is calculated in the same manner as was done before in
the case of vacuum transport, except that now Ar~2mm. The solid lines refer to
the beam ions and the dashed and dotted lines refer to the electrons and background
gas ions respectively. If we integrate the charge density for the beam ions only over
radius to ~ 3.05cm, we get Ay =~ 5.16 x 10~* C/m; this agrees well, ~ 5.59%, with

the value estimated earlier from the average charge state of the beam ions. For the
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electrons we get, Ae 2 —1.16 X102 C/m; while for the gas ions, A;~7.0x10~4C/m,
which is comparable to the beam ion charge density. The total charge density of the
beam ions, gas ions and electrons is A~25.94x 1075 C/m. As in the case of the ﬁeid,
this is larger than the vacuum case of ~4.79x10~5 C/m, which again means that the
electrons are not able to neutralize even the excess charge due to the gas ions and the
stripping of the beam ions. We calculate a charge neutralization fraction based on
the ability of the electrons to not only compensate for the excess positive charge due

to stripping and ionization, but also to neutralize the original charge of the beam by

[1— (A/A5)]=88.5%.
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Figure 43: The potential energy for

propagation through 4 x 10'* em—2 fluorine.

To gain some insight into why the electrons are not able to effectively neutralize
the beam we look at the beam potential. Figure (43) shows the potential energy of the
beam as a function of radius. This is calculated by integrating the radial force on an

electron, (E; —v;,eBy), where E, and Bj are, as before, the average radial electric and
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Figure 44: The electron transverse kinetic energy for

propagation through 4x 10 em™2 fluorine.

azimuthal magnetic fields respectively,-and v, ¢ is the average electron axial velocity.
The magnetic force is about ~ 3% of the electric force, and therefore can be ignored.
As can be seen, the potential reaches ~1.45 MV at the edge of the beam, ~3.05cm.
Figure (44) shows the distribution of the transverse kinetic energy for the electrons
in the vicinity of the beam, from z2~4.14 to 5.08m. The plot shows the fraction of
electrons with energies greater than ~ 1 MeV. Some electrons can have transverse
kinetic energies as high as ~ 3.26 MeV. Electrons with transverse kinetic energies
larger than the potential of the beam that are not entirely confined within the beam
and therefore cannot contribute effectively to its neutralization. These electrons gain
energy from the rapid increase in the beam potential. Because of the high stripping
cross sections of fluorine, the beam ions can reach charge states in excess of ~ 6
within the first meter of propagation; the potential from the bare beam, discounting
any electrons and gas ions, would then be ~2.46 MV. By the time the beam reaches

a waist, this bare-beam potential can get as high as ~4.67 MV, leading to energetic
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electrons that can “escape” the potential of the beam.

6.2.2 Numerical Solution for

Flibe Vapor at 1x10® Molecules per c.c

Ar (mm) At (ps) N;
8 15 349
8 5 753
8 3 1891
8 2 3125
8 1 13486
4 1 982

Table 8: Number of time steps used for numerical simulation

of the beam in 2x 10" em™—2 fluorine.

We now look at the results of the numerical simulations for the beam passing
through Flibe background gas at 1x10'® molecules per cm?®, which we simulate with
2x10% cm3 fluorine. The beaﬁ parameters are the same as those used in the previous
simulations given in table (5). The reductions in the radial grid division, Ar, and
‘the time division, At, are given in table (8). Again, the first time division is set by
the CFL condition, while all subsequent times are determined by the electron plasma
frequency limit; the other simulation parameters are the same as were used in the

vacuum case, Az~6mm and AN ~1.4x101°,

Figure (45) shows the results of the BTRAC simulation for the beam ions at two
different times superimposed on the same graph. The first of these is at time “0”, the
second is at the end of the simulation at time ~35.39 ns. As before, the solid line plots

the location of the particle with the maximum radial position within a thin, Az, slice
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propagation through 2x 10 em™3 fluorine.

around the mid-point of the beam. As can be seen, the radius of the beam reaches a
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spot-size of ~5.49 ¢m at a distance of ~2.86m from the lens. Again, this spot size is
much larger than the ~2mm achievable in a vacuum; and now the position of this
focal spot has moved by about ~ 2.81 m from the vacuum case. The distribution of
charge states of the beam ions at the end of the simulation is shown in figure (46).
The average charge state is now ~ 19.98, so that the bare beam line-charge density

increases from ~4.79x107° C/m to ~9.57x10™* C/m.
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Figure 47: The electrons generated by

propagation through 2x10'° em=3 fluorine.

Figures (47) and (48) show the electrons and background gas ions in the chamber
at the end of the simula,tion.l Again, it had been hoped that the electrons, concen-
trated in the vicinity of the beam, would partially neutralize both the beam charge
and the background gas ions. Figure (49) shows the radial electric field at a radius
of ~5.49 cm as a function of axial position across the beam at the end of the simula-
tion. As before, this field is computed using equations (266); and the dashed line is

a convolution with a Gaussian kernal of full-width ~40Az. The average field across
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propagation through 2x10% cm

2.47x107 V/m. If we calculate the field of the

~S

the beam from ~2.39 to 3.33m is E,
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vacuum case at this radius, ~5.49 ¢cm, with the long-beam approximation, equation
(265), we get By ~ 1.57x 107 V/m. Again the field that results from propagation
through the background gas is larger than that from vacuum propagation, suggesting
incomplete neutralization of the excess charge state of the beam ions from stripping

and the gas ions.

We can calculate the electric force on a beam ion at the focal-spot radius, ~
5.49cm, fr~7.91x1071 N, which, again, is only slightly larger than the force on a
beam ion at the focal-spot radius for vacuum transport, and is the dominant repulsive

force on the beam ions causing the beam to expand.
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Figure 50: The charge density for

propagation through 2x10' ¢m™23 fluorine.

To calculate the extent of the neutralization, we look at the charge density as
function of beam radius averaged over the length of the beam ~2.39 to 3.33 m, figure

(50). As before, we calculate this density by averaging over the particles in successive
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annuli, this time of thickness v.v4mm. The total beam line-charge density, integrated
out to radius ~5.49 e, is A; ~8.94x10™* C/m; this agrees well, ~6.59%, with the
value estimated earlier from the average charge state of the beam ions. Similarly for
the electrons, A, & —1.19x10~2 C/m; and for the gas ions, Ay 221.12x10~2 C/m, which
is now more than ten times the beam ion density. The total line-charge density is
A22.2x10™% C//m, is substantially higher than the vacuum case of ~4.79x10~5 C [/m,
meaning that the electrons are not able to neutralize the extra charge of the highly
stripped beam ions and gas ions. We calculate a charge neutralization fraction of
~ 75.4%; this is lower than the ~ 88.5% neutralization achieved for propagation

through 4 x 10 cm =3 density fluorine.
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Figure 51: The potential energy for

propagation througﬁ 2x10% ¢m~2 fuorine.

Figure (51) shows the potential energy of the beam as a function of radius, cal-
culated in the same way as before. The potential difference between the minimum

point and the edge of the beam, ~ 5.49¢cm, is ~ 0.33 MV. Figure (52) shows the

e —————
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Figure 52: The electron transverse kinetic energy for

propagation through 2x 10 em™3 fluorine.

distribution of the transverse kinetic energy for the electrons in the vicinity of the
beam. As can be seen, about ~ 5% of the electrons have energies gfea.ter than this
potential “well;’, with some as high as ~1.36 MeV. These high-energy electrons con-
tribute only partially to the beam’s neutralization. However, from figure (51), we see
that the pot‘ential has a minimum at r~3.6 cm, implying a region of better confined
electrons in the center of the beam. The charge neutralization fraction, calculated
by integrating the line charge density to radius ~ 3.6 cm, is ~ 85.2%; this is about
~10% higher than the total beam neutralization of ~75.4% calculated above. Indeed
from figure (45) we see that there exists a “core” of beam ions to a radius of around
~3.6cm at the mid-point of the beam, z~2.86 m. One measure of the behavior of
this core is the “envelope” radius a, given by \/2(72) , where 1/(r?) is the rms radius.
At the mid-point of the beam, a ~4.09 cm; and shows no sign of stagnation as the

maximum radius does, but continues to decrease.

e N arm————— s s .
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Figure 53: The beam ions for

propagation through 2 x 10 cm™3 fluorine.

Figure (53) shows two “snap-shots” of the beam at different times. The first of
these is at the start of the simulation, and the second is at ~44.65ns, which i; about
~9.26 ns later than the last “snap-shot” of the beam in figure (45); the mid-point
is now at ~3.74m. The solid line shows a = 1/2(r?) of the mid-point of the beam.
As can be seen, the edge radius of this mid-point continues to grow, until it reaches
~ 6.93 cm; however a decreases until it reaches a minimum at ~2.44cm. Although
there is still a core of confined beam ions, they are now concentrated within a radius
of ~1.5¢cm at the mid-point of the beam. The average charge state of the beam has
also increased from ~19.98 to ~22.41 which gives a beam ion line-charge density of

1.07x10~% C/m.

Figure (54) shows the potential energy as a function of radius. As can be seen,
the potential minimum has shifted inward to about ~ 1.5cm which again coincides

with the core of the beam. The potential at the edge of the beam, r ~6.93cm, is
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Figure 55: The electron transverse kinetic energy for

propagation through 2x 10 cm™3 fluorine.

now ~ 3.03 MV. Figure (55) shows the distribution of electron transverse kinetic
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Figure 56: The charge density for

propagation through 2x10* ¢cm™2 fluorine.

energy. As can be seen, the electron energies have also increased, and can get as high
as ~4.69 MeV; these high-energy electrons will not be entirely confined within the
beam and provide only partial neutralization. Figure (56) shows the charge densities
for the beam ions, electrons, and gas ions, as a function of radius. If we integrate
these out to radius ~ 6.93 cm, the edge of the beam, we get A; ~ 1.01 x 10_3‘C/m,
Aex2—1.35%10"2 C/m and Ag~1.28x10~2 C/m. The total charge neutralization has
decreased to ~69.6%; but in the core of the beam, up to a radius of about ~0.15 cm,

the charge neutralization is ~98.8%, almost ~30% higher than the rest of the beam.

6.2.3 Numerical Solutions for

low-density Flibe Vapor and high-density Lithium Vapor

The previous results have shown that a heavy ion beam with parameters given

in table (5) cannot be focused by conventional means to the mm size focal spot radii
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necessary for heavy ion driven inertial confinement fusion in high-density, ~ 10 to
10%5 molecules per ¢m3, Flibe gas. Before proceeding to the case of high-density
propagation in chambers that use liquid-lithium as the working fluid, we look at one

last Flibe case: low-density, ~ 10! molecules pe cm3 .
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Figure 57: The beam ions for

propagation through 2x10'3 ¢cm=3 fluorine.

For 1x 1018 em—3, Flibe, the background gas density, as before, is taken to be
2x1013 em—3 atoms of fluorine. The beam is the same as was used in the previous
cases. Figure (57) shows the results of a BTRAC simulation. As before the figure
shows three “snapshots” of the beam. The first of these is at time “0”, the second is
at time ~34.4ns, and the third is at time ~64.4ns. At the end of the simulation the
mid-point of the beam is at axial location ~ 5.6 m from the lens. The edge radius of
the beam reaches a waist, or focal spot radius, of ~8mm at this location. Although
this is not as good as the case of vacuum propagation where the focal-spot radius was

~2.08 mm at an axial location of ~5.67m, it is considerably better than the ~3 to
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5 cm spot sizes for high-density propagation. The beam also has a “core” of better
focused ions; the rms radius reaches a minimum of ~2.23 mm at an axial location of
~5.33 m. The average charge-state of the beam ions is much lower, ~ 1.66, than those
seen for propagation through high-density gas. This lower charge state leads to lower
beam ion line-charge densities and also lower gas ion line—d}.arge densities because the
ionization cross sections depend on the charge state of the beam ions. If we calculate
the line-charge densities integrated to r~8mm we get \y ~6.43 x10~5 C/m, which
is what we expect for an average charge state of ~ 1.66; A, ~ —5.17 x 10~° C/m;
and Ay ~4.57x10~% C/m. From these we calculate a charge neutralization fraction,
given by [1—(A/)p)], of ~73.2%. Althoﬁgh this is not much better than the fractions
achieved at higher densities, leading to comparable residual fields, E, ~3.79x107 V/m
at 7 ~8mm, the charge state of the beam ions is more than an order of magnitude
lower than the high-density cases, therefore the space-charge defocusing forces are

smaller, f,~1.01x10~11 N.

We now turn to the case of propagation through high-density, ~ 10 to 101° cm—3,
lithium background gas. In their original HYLIFE design, Blink, et al., (1985), pro-
posed using liquid lithium in the chamber as the coolant, to protect the first structural
wall and breed tritium, in much the same way as Flibe is used in the HYLIFE-II de-
sign by Moir, et al., (1994). From a beam prbpa,gation point of view, lithium has an
advantage over Flibe; it has a lower atomic number than fluorine, therefore its strip-
ping cross section, which is proportional to the square of the atomic number as seen
in equation (247), is much lower than that of fluorine. Figures (58) and (59) show the
stripping and ionization cross sections for mercury ions colliding with lithium atoms
with velocity §220.315 computed using equations (247). If we compare these cross
sections to those for fluorine shown in figures (30) and (31) we see that although the

ionization cross sections are the about the same order of magnitude for both gases,
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the stripping cross sections for lithium are almost an order of magnitude lower than
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that for fluorine. Therefore, even in high-density lithium gas, we expect the charge

states of the beam ions to be low.
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Figure 60: The beam ions for
propagation through 2x10'% cm=3 Iithium.

Figure (60), as before, shows three “snapshots” of a beam of heavy ions propa-
gating through 2x10'* cm—2 lithium. The first of these is at time “0”, the second is
at time ~ 34.4ns, and the third is at time ~ 60.3ns. At the end of the simulation
the mid-point of the beam is at ~5.22m from the lens. The edge radius of the beam
at this point is ~ 3.75mm; which is comparable to the vacuum focal spot radius of
~2.08 mm at an axial location of ~5.67m. As expected, the average charge-state of
the beam ions in this case is low, ~1.87, as com;.)a.red with ~11.41 for propagation
through Flibe gas of the same density. The line-charge densities integrated out to
a radius of ~ 3.75mm are now, A > 5.12x107° C/m, A. ~ —7.14x10~% C/m and
Ag 22264 x107° C/m. The neutralization fraction is ~ 87.7%, which is about the

same as the neutralization achieved by Flibe at the same density, ~ 88.5%.. Conse-

B 4. T - T . T
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quently, the radial electric field at r =~ 3.75mm is still as high as ~ 3.02x 107 V/m;
but since the charge-state of the beam ions is small, this field has less of a defocusing
effect than comparable fields in the case of propagation through Flibe gas. The force

on an ion at the focal-spot radius is about seven times smaller than that for Flibe,

fr29.05%10"12 V.
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Figure 61: The beam ions for

propagation through 1x 10 ¢m™3 lithium.

Finally we look at propagation through 1x10'° cm™3 lithium. As before figure
(61) shows the beam at three different times, “Ons”, ~ 34.4ns, and ~60.8ns. The
bea;m reaches a waist, or focal-spot radius of 6.88mm at a distance of ~ 5.27m
from the lens. The average charge-state is now higher than the previous case, as
expected, ~ 3.96, but still considerably lower than propagation through Flibe at the
same density. The radial electric field at r ~6.88 mm is ~5.01 x 107 V/m. The force
on a beam ion at the focal-spot radius is now about half that for a beam'ion at the

focal radius for transport through Flibe gas of the same density, f,~3.18 x10~11 V.
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6.3 Conclusions

We have seen that heavy ion beams used to drive the implosion of a pellet of DT
fuel for the effective production of electricity in an ICF power plant, must be focused
to mm size spot radii on the target in order to yield the high temperatures required
for efficient ablation driven implosion. In some power plant designs, the target is
surrounded by exposed liquid flows, consisting of lithium compounds, located in the
center of a chamber. For efficient electric power production, a pellet must be imploded
~ 5 to 20 times a second. The “liquid-wall” carries away the heat generated from the
microexplosion of the pellet, protects the first structural wall of the chamber from
damage from the neutrons and breeds tritium. The microexplosion partially vaporizes
the liquid resulting in a background gas density in the chamber that can get as high as
~ 108 molecules per cm?® immediately after a shot. Much of the design of a chamber
is devoted to lowering this gas density between subsequent shots to levels that would
not impede the ability to focus the beams to the necessary small spot radius. It is
therefore of high interest to determine the degree to which clearing between shots is

really necessary.

In this thesis we examined the ability to “conventionally” focus a single heavy
ion beam in reactor chambers that use Flibe, a molten salt mixture of L:F and
BeF,, or liquid-lithium as the working fluid, with background gas densities in the
range of ~ 10'* to 10'® cm™3. Conventional focusing schemes employ a system of
magnetic quadrupoles, the last element of which is located well outside the chamber,
perhaps ~5m away from its center, to focus the beam onto the target. For this study
the beam was initially taken to be a uniformly distributed, ~ 0.94m long, ~10cm
radius, cylinder consisting of ~ 4.3 kA of ~ 10.02GeV, Hg* ions. The BTRAC code

was developed and used to study the propagation of this beam through high-density,
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~4x10™ and ~2x10%° atoms per cm® fluorine gas, used to simulate chambers with

Flibe, and ~2x 10 and ~1x10% atoms per cm?® lithium gas.

Our results for vacuum propagation showed that such a beam can indeed be
focused to a ~ 2.08 mm spot-size at a distance of ~ 5.67m from the lens. This spot
radius is in good agreement, ~ 5.6%, with the solution to the “envelope” equation,
even though this solution ignores the effect of the axial electric field. The beam line-

| charge density was ~47.9 uC/ m, leading to a radial electric field at the edge of the
beam, r~2.08 mm, of ~0.41 GV/m, as expected. The azimuthal magnetic field was
~ 0.46 T; but because the beam is sub-relativistic, 8 ~ 0.315, the magnetic pinch
forces are typically a tenth of the electric defocusing forces felt by the beam ions. If
we ignore this magnetic force the radial electric force felt by a beam ion at the edge of
the beam is ~6.5x10™! N. Any electrons generated from collisions with background

gas neutrals will be strongly effected by these fields.

The complicated plasma phenomena that results from propagation through back-
ground gas makes analytic methods inadequate for describing the dynamics of the
beam. The primary defocusing effect on the beam ions comes from the radial elec-
tric force and is a product of two components: the charge state of the beam ions,
and the total line-charge density of the beam. The charge-state of the beam ions is
determined solely by the stripping cross sections and the density of the background
gas. The total line-charge density is the sum of the line-charge densities of the various
charged particles in the beam: the beam ions, electrons and background gas ions. The
charge-state of the beam ions can influence not only the charge density of the beam
ions, but because the ionization cross sections depend on this charge-state, they also
influence the electron and gas ion charge densities; furthermore, any radial electric

field due to the total line-charge density will strongly effect the transverse dynamics
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of the electrons and determine their ability to remain confined within the beam and

contribute to its neutralization.

In ~4x10% cm™2 fluorine gas the edge radius of the beam, given by “tracking”
- the ion with the largest radial position at the axial mid-point of the beam, reached a
“waist”, or minimum, of ~3.05 ¢ at an axial location of ~4.61 m from the lens. The
larger the focal-spot radius the shorter the distance from the lens to the waist. The
average charge-state of the beam ions was ~ 11.41; therefore the beam line-charge
density was as high as ~0.52mC/m. The ionization mean-free-path at this charge
state and background gas density is ~ 2.78 cm, therefore we expect to see a high gas jon
line—charée density, ~0.7mC/m. If we assume a uniform radial distribution we can
calculate the potential at the edge of the beam due to both these line-charge densities,
~11MV. These high potentials are capable of imparting large transverse energies
to the electrons; indeed the electrons had transverse kinetic energies as high as ~
3.26 MeV . The observed potential at the edge of the beam, calculated by integrating
the radial electric field, was ~ 1.45 MV. Electrons with transverse kinetic energies
larger than this potential are not effectively confined within the beam. The electron
line-charge density was therefore lower than expected, ~ —1.16mC/[m, leading to a
total line-charge density of ~ 59.4 uC/m and a neutralization fraction of ~ 88.5%.
The average radial electric field at the edge of the beam was ~36.8 MV/m. Although
this field is about a tenth of the strength of the field for the vacuum case, it coupled
together with the fact that the average charge-state of the beam ions has increased
by more than a factor of ten leads to a defocusing force, ~6.73x10~11 N, which is

comparable to that at the smaller waist of the beam for vacuum propagation.

The next case studied was propagation through ~2x10!% em—3 fluorine gas. In _

this case beam focused to a spot radius, determined by the outermost beam ion,
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of ~ 5.49 cm, which, as expected, was located closer to the lens at ~ 2.86m. The
average charge-state of the beam was now almost twice as high, ~ 19.98, leading
to a beam line-charge density of ~ 0.89mC/m. The ionization mean-free-path is
now much smaller, ~ 0.15cm, and the gas ion line-charge density was correspond-
ingly higher, ~ 11.2mC/m. Again the electron line-charge density was lower than
expected, ~—11.9mC/m, leading to a total line-charge density of ~0.22mC/m and
a neutralization fraction of ~75.4%. The average field at the edge was ~24.7 MV/m.
Again this field is about a factor of seventeen lower than the vacuum field, but the
average charge-state has also gone up by close to a factor of twenty, leading to defo-
cusing forces, ~7.91x107!! N, that are comparable to the forces at the waist of the

beam for vacuum propagation.

In both these cases, there exists a “core” of much better focused beam ions. This
was evidenced by the fact that the rms radius of the beam continued to decrease
even after the edge radius reached a waist. In the case of the propagation through
~ 2x 10 ¢m™3 fluorine it was ~ 2.89cm at the time the edge radius was at its
minimum, ~ 5.49cm. The potential of the beam had a “well” with a minimum at
r~3.6cm. Most of the electrons were concentrated in a central region within this
radius; indeed the neutralization fraction in this region was ~ 85.2%, which is more
almost 10% higher than the overall beam neutralization. We allowed the beam to
propagate past the waist, until the rms radius reached a minimum of ~ 1.73cm,
~ 3.74m from the lens; the edge radius of the beam e@mded to ~6.93cm. The
beam potential at the edge of the beam was now ~ 3.03 MV, with a minimum at
r~1.5cm. The electrons had maximum transverse kinetic energies of ~4.69 MeV,
again allowing them to “escape” the beam potential. The overall beam neutralization
fraction decreased to ~69.6%; but' the core, to a radius of ~ 1.5 cm, again had a much

better fraction of ~98.8%.

S — - —— e — iy e = P Y e e o e m
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We finally looked at propagation through three different gas and density regimes
that did yield spot radii that were more in keeping with the requirements for heavy
ion driven inertial confinement fusion. The first of these was for low-density Flibe,
~2x10'3 cm~3 fluorine gas. The beam focused to a spot radius of the ~8mm, with
a minimum rms radius of ~2.23 mm. The average charge-state of the beam ions was
~ 1.66, much lower than for propagation through higher density fluorine. We also
looked at transport through high-density, lithium background gas for chambers that
use liquid-lithium as the working fluid instead of Flibe. Because lithium has a lower
atomic number than fluorine, the stripping cross sections for the beam ions are about
an order of magnitude smaller. Therefore even for propagation through high-density
lithium gas we do not expect the chargé—sta,tes of the beam ions to get as high as they
do for propagation through similar density Flibe. The first of these cases studied was
for ~2x1014 gm‘a lithium. The beam focused to a spot radius of ~3.75 mm; and the
average charge-states of the beam ions was ~1.87. The last case was for propagation
through ~1x10'® cm~3 lithium. The average charge-state was ~3.96 and the spot

radius was ~6.88 mm.

Although we studied the propagation of a beam with only a single, but typical,
set of pa.ran'leters, we found essentially that moderate stripping, to average beam ion
charge-states of ~4 could be tolerated. Substantially higher charge states, ~ 11.4
to ~20, that result from propagation through high-density, ~10 to 105 molecules
per cm3, Flibe, not only lead to higher beam ion line-charge densities, but because
of the increased ionization of the background gas, also lead to large gas ion line-
charge densities. The resultant beam potentials impart considerable transverse kinetic
energies to the electrons. These high-energy electrons are not entirely confined within
the beam and cannot effectively neutralize the beam and gas ion charge. The residual

radial electric fields at the edge of the beam when it reaches a waist of ~3.1cm to




148

~ 5.5 cm, although lower than the fields present in the case of vacuum propagation,
when coupled with the higher charge-states of the beam ions results in defocusing
forces that are comparable to those at the much smaller waist, ~2.1 mm, achievable
in vacuum. Stl_'ipping cross sections depend roughly on the square of the atomic
numbers, therefore propagation through high-density gas, ~ 10 to 10'° atoms per
cm®, in chambers that use liquid-lithium as the working fluid results in considerably
lower charge states, ~1.9 to ~4, than for propagation through Flibe background gas
of comparable densities, allowing the beam to focus to smaller spot radii, ~3.8mm

to ~6.9mm.

There are several methods that can be employed in reactor designs with conven-
tional focusing systems to achieve smaller spot radii in high-density gas. For instance,
Callahan (1995) has shown that it may be possible to overcome the problem of in-
adequate neutralization by injecting “cold” electrons into the beam to continuously
replenish those that are heated and lost. Also, electrons generated by photo-ionization
of the background gas by x-rays emitted from the target when the beam impinges
on it, which are not accounted for in this study, may further neutralize the beam.
Another possibility is to use final focus systems that focus the beam with larger
éonvergence angles, or to simply increase the number of beams thereby lowering the
current in each beam. Another strategy is to employ targets that yield similar gain

for spot-radii that are larger than the nominal ~2mm.

Ultimately, the various methods for propagating a beam of heavy ions through
background gas must be weighed with respect to the cost and safety of the ICF
power plant. Allowing for higher-density background gas in the chamber may lead
to simpler designs, eliminating the need to drastically lower the density between

shots, but the resultant larger focal-spot radii lead to lower target gain and increased
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plant costs. Increasing the number of beams or focusing with larger convergence
angles may require bigger and more complicated final focus systems. And although
using liquid-lithium as the working fluid in the chamber instead of Flibe drastically
reduces stripping and therefore allows the beam to focus to smaller spot radii for
higher background gas densities, there are several safety disadvantages compared
with Flibe. These include fire hazard, large tritium inventory: .aad a greater fluid

thickness to contain the fusion neutrons.
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Appendix
BTRAC Code

The “C” code BTRAC was developed to implement the numerical solution for the
transport of a beam of heavy ions through background gas. The numerical equations
are derived and explained in the preceding sections, and figure (25) shows the flow
chart for the algorithm used in the code. We describe here the structure of this code,

its syntax, and the input and output files.

A.1 Code Structure

Figure (A.1l) shows the block diagram for BTRAC. As can be seen the code is
divided into four modules. The first of these is the main program that controls the
flow of the other modules in the code, and the input and output of information. The
second module does the initialization and is composed of two submodules: The first
of these, IFC, initializes the electric and magnetic fields in the system. The Bessel
functions needed in this submodule are based on expansions given by Abramowitz
and Stegun (1965). The second submodule, LOAD, “loads” the super-beam ions, or
initializes their positions and velocities. The random number generators needed in
this submodule are taken from Press, et al., (1992). Both IFC and LOAD assume a
K-V transverse distribution for the beam and a singular axial velocity for all beam

ions; however, the axial spatial distribution is specified by the user.

The next module does the time-step loop and is comprised of three submodules.
CPC advances the positions of the particles, and then uses these positions to calcu-
late the current densities; MCC analyzes the collisions between the beam ions and

background gas neutrals and then updates the number of beam ions of each charge
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Figure A.1: Block diagram of the BTRAC code.

state, electrons, and background gas ions; and FVC advances the electric and mag-

netic fields, interpolates the fields to the particle positions and uses these interpolated
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fields to advance the particle velocities. The random number generators in MCC are
taken from Press, et al., (1992). Finally the last module does the diagnostics and
consists of the single submodule DIAG, which, at present, computes the radius of the
beam and the electron plasma frequency at the longitudinal mid-point of the beam,
and the maximum and average charge-states of the beam ions; from these quantities
can be computed the beam current and collision frequency. The plasma and collision
frequencies are particularly useful in calculating the time-step accuracy conditions

discussed in the previous sections.
A.2 Running the Code

The command line syntax for invoking the code has various options that control
which modules in the program are invoked. The syntax for the code is:
btrac [-ni] [-nd] [-rn #] i/o-location
The command line argumeﬁt i/o-location is the directory location from which the
program will take its input files, and to which it will write its output files. At this
location there must exist two subdirectories with the titles input and output. The
input files, with extension inp, must be located in the subdirectory input and the

output files, with extension out, will be written to the sub-directory output.

Regardless of the options with which the code is run, it will always read two input
files at the start of a simulation “run” from the input subdirectory: geom.inp, which
contains a description of the simulation environment, and csec. inp, which contains
the cross section information for the stripping and ionization collisions between the
beam ions and background gas neutrals; this latter file is only read if background gas
is present, i.e. the chamber is not a vacuum. The code will also write four output

files at the end of the “run” to the output subdirectory: field.out, which contains
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the electric and magnetic fields on the’s_patial grid, and part.out, elec.out and
gas.out, which contain the positions and velocities of the beam ions, electrons, and
background gas ions respectively. The other input and output files are determined

by the options used.
A.2.1 The Initialization Option

We shall now discuss each of the command line options in turn. The first of these
is -ni; this option is used to control the initialization module of the code. Without it
the code calls both IFC and LOAD. In this case, in addition to geom. inp and csec. inp,
another input file, beam. inp, which contains a description of the beam, must also exist
in the input subdirectory. As an example consider the following command line:

btrac .
The i/o-location is the current context, and the code takes the input files from
./input and will write the output files to ./output. The code will also display the

following information on the screen:

./input/geom.inp

Reading in the chamber geometry from file:
./input/csec.inp

Reading in the cross section data from file:

Reading in the beam data from file: ./input/beam.inp
Computing the initial fields ...

Loading the particles ... ‘

The length of the chamber is . 9.000000 m.
The axial grid divisiom is ... 0.006 m.
The location of the thin lemns is ... 5.000000 m.
The radius of the chamber is ... 0.300000 m.
The radial grid division is ... 0.008 m.
The number of radial grids is ... 38

The number of axial grids is ... 1501

The axial grid location of the target is ... 331

The mass of the beam ion is ... 200.59 amu.
The average initial charge state per particle is ...1.000000 .
The beam current is ... 4304.88 A.

The

J— e e

central radius of the beam is ...

0.0989693 m.
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The electron plasma frequency is ... 0 rad/sec.
The mass of the background gas is ... 19 amu.
The background gas density is ... 4e+20 m-3.

The number of particles per super-particle is ... 1.4e+10 .
The number of super-beam ions to be simulated is ...19080 .
The number of electroms per super-electron is ... 1.4e+10 .

The number of super-electroms is ... 0.

The number of super-gas particles is ... 0.

The time division is . 1.5e-11 s.
The current simulation time is ... 0 s.

The head of the beam is at .. 5.010204 m.
The number of time-steps to hit the target is ... 3868

Please enter in the number of time-steps you wish to simulate:

The first three lines inform the user that the environment, cross section and beam
input files are being read; if the background gas density is zero, the cross section file
is not read. The second two lines tell the user that the code is calling IFC and
LOAD to initialize the fields and load the particles, using the information contained in
./input/beam.inp. The next eight lines display the environment parameters, shown
in figure (12). These are the length of the chamber, L.=9m; the axial grid division,
Az = 6 mm; the location of the lens from the target, Ly = 5m; the radius of the
chamber, R, =30 cm; the radial grid division, Ar=_8mm; the number of radial grids,
N; = R.[Ar = 38; the number of axial grids, N, = L./Az=1501; and the axial grid
location of f;he target, 331, so that the distance between the target and the left open
end of the cylinder is 131 x Az ~1.99m, and the distance between the lens and the
right open end is ~2.01m, both about twice the beam length. The next four lines
display information about the beam. The mass of the beam ion, m; = 200.59 amu;
the initial charge state of the beam ions, ¢ =1; the beam current, I ~4.3kA; and
the initial radius of the beam at its longitudinal mid-point, @ &~ 10cm. The next
three lines display nformation about the background gas and electrons. The electron
plasma frequency, wye, is computed at the longitudinal mid-point of the bea.1:n, and

is zero because no electrons have been generated yet; the mass of the background
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gas atoms, my =19 amu; and the density of the background gas, n,=4x10™ cm™3.
The next five lines display the super particle information. The superparticle ratio for
the beam ions, AN =1.4 x 101%; the number of super-beam ions, Y K, =19080; the
superparticle ratio for the electrons and background gas ions, which can be different
' from that used for the beam ions; and the number of super-electrons, Ke; and éuper-‘
gas ions, Ky, both of which are zero. The next four lines display the time information.
The size of the time-step, At=15ps; the current simulation time, which is zero; the
distance of the head of the beam from the target, ~ 5.01m, so that the beam is
located ~ 1cm behind the lens initially; and the number of time-steps it will take
for the beam to hit the target, N; = 3868. The last line asks the user to enter in
the number of time-steps to simulate. If, as an example, we wish to run for 100
time-steps, then we would enter 100 in response; at the end of the “run”, the code

will display the following information:

Please enter in the number of time-steps you wish to simulate:
100 : ’
Running the simulation ...

Appending data to diagnostics output file: ./output/diag.out
The average charge state per particle is ... 1.017453 .
The beam current is ... , ‘ 4380.012652 A.
The central radius of the beam is ... 0.0989736 m.
The electron plasma frequency is ... 0 rad/sec.
The number of electrons per super-electron is ... 1.4e+10 .

The number. of super-electrons is ... - T2T .

The number of super-gas particles is ... -394 .

The current simulation time is ... 1.5e-09 s.
The head of the beam is at ... 4.868552 m.
The number of time-steps to hit the target is ... 3768

Please enter ...
¢ : to print out data and continue simulating
e : to end simulation and print out data

The first line informs the user that the simulation is running; the second line

tells the user that the diagnostic information is being written to a file diag.out in
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the subdirectory output; we’ll discuss the diagnostics in more detail later. The next
three lines display updated beam information. The average charge-state of the beam,
(g)~1.02, indicating that some of the beam ions have been stripped to higher charge
states; the current of the beam is now I;~4.4 kA, because of the higher charge state
beam ions; and the radius of the beam at its longitudinal mid-point is slightly larger
than it was before, indicating that this location in the beam has not passed through
the lens yet, but has rather expanded due to the space-charge forces of the beam. The
next four lines display updated information about the background gas and electrons.
The electron plasma frequency at the longitudinal center of the beam is still zero;
the super particle ratio for the electrons and background gas ions is AN =1.4x10;
the number of super-electrons is now K, =727, and the number of super-gas ions is
Ky=394. The next three lines display the updated temporal information. The current
simulation time is now 100 x At =1.5ns; the distance of the head of the beam from
the target is ~4.87m, indicating that the head of the beam has now passed through
the lens, located at 5m, and is ~ 13 cm beyond it; and thé number of time-steps it
will take to hit the target is now N;=3768. Finally the code asks the user to decide
either-to continue or end the simulation. In both cases the output files field.out,
part.out, elec.out and gas.out are written to the output subdirectory; if other,
possibly old, files exist with these names they will be over-written. In the case where
“e” is entered, these files are written and the simulation is ended:

Please enter ...
¢ : to print out data and continue simulating

e : to end simulation and print out data

e

The field output file is: ./output/field.out
The particle output file is: ./output/part.out
The electron output file is: ./output/elec.out
The gas output file is: ./output/gas.out

If “c” is entered, the files are written and the code asks the user to enter the

number of time-steps to simulate, and then continues as before:
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Please enter . : -
¢ : to print out data and continue simulating

e : to end simulation and print out data

c

The field output file is: ./output/field.out
The particle output file is: ./output/part.out
The electron output file is: ./output/elec.out
The gas output file is: ./output/gas.out

Please enter in the number of time-steps you wish to simulate:

We now discuss what happens if we use the -ni command line option. In this case
the code does not invoke the initialization moduie, and there is no need for the beam
description file beam. inp; instead the field and particle information is “loaded” from
four files located in the input subdirectory. These are field.inp, for the electric
and magnetic field information, part.inp, elec.inp and gas. :"an for the super-beam
ion, super-electron and super-gas ion position and velocity information respectively;
and are identical to the output files that the code writes with the same prefixes. It is
necessary to run the code with this option if one wishes to restart a simulation that
one has previously ended. One situation where this may need to be done is if one has
to reduce the radial grid size, Ar, or thé time divisioﬁ, At, or both in order to comply
with the accuracy conditions discussed in prev:ious sections. The code allows for At
reductions by any amount, and Ar reductions by factors of two; the other pémameters
cannot be changed. The prescription for doing this is to run the simulation for the
desired number of time-steps with a certain Ar and At. Then end the simulation;
at which point the code will write the output files, field.out, part.out, elec.out
and gas.out, to the output subdirectory. These output files shoulci then be copied
verbatim to the input subdirectory, and the suffixes changed from out to inp. Then
Ar and At should be changed in the environment file, geom.inp, and finally the
simulation should be restarted with the -ni option. For example after having ended
the above simulation we can restart it with the following command line:

btrac -ni .
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The code again takes its input from the current context, ./input and will write its

output to ./output. The screen display will now read:

Reading in the chamber geometry from file: ./input/geon.inp
Reading in the cross section data from file: ./input/csec.inp
Reading in the initial fields from file: ./input/field.inp
Reading in the initial particle data from file: ./input/part.inp
Reading in the initial electron data from file: ./input/elec.inp
Reading in the initial gas data from file: ./input/gas.inp
The length of the chamber is ... 9.000000 m.

The axial grid divisiom is ... 0.006 m.

The location of the thin lems is ... 5.000000 m.

The radius of the chamber is ... 0.300000 m.

The radial grid division is ... 0.004 m.

The number of radial grids is ... 38

The number of axial grids is ... 1501

The axial grid location of the target is ... 331

The mass of the beam ion is ... 200.59 amu.

The average initial charge state per particle is ...1.017453 .

The beam current is ... 4380.01 A.

The central radius of the beam is ... 0.0989736 m.

The central edge emittance of the beam is ... 1.92532e-05 m-rad.
The electron plasma frequency is ... * 0 rad/sec.

The mass of the background gas is ... 19 amu.

The background gas density is ... 4e+20 m-3.

The number of particles per super-particle is ... 1.4e+10 .
The number of super-beam ions to be simulated is ...19080 .
The number of electrons per super-electron is ... 1.4e+10 .

The number of super-electroms is ... 727 .

The number of super-gas particles is ... 394 .

The time division is ... 1.0e-11 s.
The current simulation time is ... 1.5e-09 s.
The head of the beam is at ... 4.868552 m.

The number of time-steps to hit the target is ... 5652

Please enter in the number of time-steps you wish to simulate:

Notice that the code no longer requires the beam description file beam. inp; how-
ever, it does read in the field information file, field.inp, and the particle information
files, part.inp, elec.inp and gas.inp. It also no longer calls IFC and LOAD to ini-

tialize the fields and particle positions and velocities. The radial grid division, Ar,
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has been halved from 8 mm to 4 mm, and the time-step has been changed from 15 ps
to 10 ps; consequently the beam will now take N;=5652 time-steps to hit the target,
rather than the 3768 time-steps it needed before. The rest of the display is identical to

the case without the ~ni option shown above; and the simulation proceeds as before.

A.2.2 Other Options

We now turn to the second command line option, -nd. This works in a similar
manner as the -ni 6ption, but controls the diagnostic module instead. Without this
option, the diagnostic submodule, DIAG, is included in the time-step loop, after the
FVC subr_nodule as can be seen in figure (A.1). As mentioned above, DIAG computes,
among other quantities, the plasma frequency and collision frequency, therefore not
including the -nd option enables the code to warn the user about time-step violations
of the accuracy conditions as they occur at every time-step, rather than just at the
beginning of a “run”. In addition the code will write an output file diag.out in the
output subdirectory. Currently this file contains only the longitudinal postion of the
mid-point of the beam with respect to the target, and the radius of the beam at this
longitudinal mid-point at every time-step; however, the code can readily be modified
to output other information as well. This file is continuously appended; that is, as
long as there exists a file diag.out in the output subdirectory, the code will add
new information to-it, rather than overwrite it, as it does with the other output files.
Including the -nd option bypasses this diagnostic submodule, enabling the simulation
to run faster. But, the code will no longer have the capability to warn the user about
the time-step accuracy condition violations during “run-time”, however, it will still
report on these at the beginning of a “run”. Also the code will not write the output

file diag.out.
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Finally we discuss the -rn # command-line option. # is a negative integer used

to seed the random number generator for evaluating the collisions between the beam
ions and the background gas neutrals. For example ~rn -6785 sets the seed to -
6785. This option is useful if the simulation is stopped and then restarted with the
-ni option, because choosing a new seed number avoids repeating the same collisions

as in the previous run. If this option is omitted the default seed is set to -1.

A.3 Input and Output Files

We now discuss the format for the various input and output files required by
the code. The input files can be divided into two groups, the user generated files:
geom.inp, csec.inp and beam.inp; and those supplied by the code: field.inp,
part.inp, elec.inp and gas.inp. Also the output files can be divided into two cat-
egories, those that are always written by the code: field.out, part.out, elec.out

and gas.out; and those that are controlled by the command line options: diag.out.

A.3.1 Input Files

We first look at the user generated input files, geom. inp, csec.inp and beam. inp.
The first of these, the system file geom. inp, contains a description of the simulation

environment:

length of chamber in m., axial grid division in m.:
9.00 6.0e-3

radius of chamber in m., radial grid division in m.:
0.30 8.0e-3

distance of the lems from the target in m.:

5.0

time division in sec.:

1.5e-11 ‘

gas mass in amu., background gas density in m=3.:
19.0 4e20
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All units are in mks. The odd numbered lines are comments. The second line
specifies the length of the chamber, L;=9m, and the axial grid division, At=6 mm;
the fourth line specifies the radius of the chamber, B, =30c¢m, and the radial grid
division, Ar =8 mm; the sixth line specifies the distance between the target and the
lens, Ly =5m; the eighth line gives the time division, At =15ps; and the last line
gives the mass of the background gas atoms, mj = 19 amu, and the density of the
background gas, n,=4x10 ¢em™3. The only restriction on the quantities in this file
is that the length of the chamber, L, should be at least four beam lengths longer
than the distance between the target and the lens, Ly; this allows for enough distance
between the target and the left-open-end of the cylinder and the lens and the right-
open-end as shown in figure (12). When Ar and At have to be reduced in order to

comply with the accuracy conditions, this is the only file that needs to be modified.

The next input file is the cross section data file, csec.inp, which contains the
cross section information for the stripping and ionization collisions between the beam

ions and background gas neutrals:

beam ion atomic number, gas atomic number:

80 9

beam ion velocity in units of c.:

0.315000

ionization energy of background gas in units of eV:
18.670000 ‘

chg. state, ioniz. ene. in eV, strip. c.s., ioniz. c.s.:
0 +5.700000e+00 +7.869267e+00 +3.771160e-01
1 +1.850000e+01 +2.944619e+00 +4.622557e-01
2 +3.480000e+01 +1.796774e+00 +3.475336e+00

3 +5.290000e+01 +1.302316e+00 +3.724983e+00
4 +7.110000e+01 +1.031858e+00 +4.071314e+00
5

+8.920000e+01 +8.572782e-01 +4.341163e+00

78 ;9.225000e+04 +6.854448e-06 +3.032494e+02
79 +9.389000e+04 +2.758458e-06 +3.055453e+02
80 +1.000000e+05 +0.000000e+00 +3.078498e+02
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The first, third, fifth and seventh lines are comments. The second line specifies the
atomic number of the beam ion, Z; =80, and the atomic number of the background gas
atom, Z, =9; the fourth line gives the axial velocity of the beam ions, §=0.315; the
sixth line gives the ionization energy of the background gas neutral, I; o =18.67¢V;
and the rest of the lines, starting with the eighth, give the charge state of the beam
ion, g, the ionization energy of the beam ion in eV, I} 4, the stripping and ionization
cross sections in units of a2, osq and 0in ¢ Tespectively, for every beam ion from
charge state 0 to the maximum charge state. Notice that the ionization energy for the
fully stripped beam ion, I z,, is set to some “dummy” number that is larger than the

largest ionization energy value, and that the stripping cross section, o z,, is zero.

The last user generated input file is the beam data file, beam.inp, which contains
a description of the beam used to initialize the fields and load the super-beam ions:

length of beam in m., axial beam grid division in m.:

0.99 0.11 ' :

real charge/part., real mass/part. in amu., part./superpart.:
1 200.59 1.4e+10

axial velocity in units of c.:

0.315

radius of beam in m., num. of superpart., emit. in m-rad.:
0.1 2120 1.93e-5
0.1 2120 1.93e-5
0.1 2120 1.93e-5
0.1 2120 1.93e-5
0.1 2120 1.93e-5
0.1 2120 1.93e-5
0.1 2120 1.93e-5
0.1 2120 1.93e-5
0.1 2120 1.93e-5

All units are in mks. The first, third, fifth and seventh lines are comments. The
second line specifies the length of the beam, L; =99 cm, and the beam slice thickness,
6z' =11 cm, in the frame of the beam, so that these quantities in the frame of the
chamber are, Ly = (L;/v) ~ 94 cm and 6z = (62'/v) ~10.4 cm; the fourth line gives

the charge state of each beam ion in the beam, ¢ =1, the mass of the beam ion,

———, g T e e - o
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myp = 200.59 amu, and the beam ion superparticle ratio, AN = 1.4 x 101%; the sixth
line specifies the velocity of the beam, § = 0.315; and the remaining lines, starting
with the eighth, give the beam radius, a,, number of super-beam ions, K3 ,, and the
emittance, ¢,, for each of the p=L;/6z=09 slices in the beam starting with the tail,
or the end furthest away from the target, and ending with the head, so that the total
number of superparticles is 19080. The restrictions on the quantities in this file are
that the number of beam slices should be odd, and the number of super-beam ions

in each slice should be even.

This is the extent of the input files that need to be supplied by the user. The other
four input files, field.inp, part.inp, elec.inp and gas.inp, needed when the -
ni option is used, are identical to their output counterparts with the same prefixes;
indeed, it is imperative that these ouput files not be modified by the user if they are

going to subsequently be used as inputs, but simply copied verbatim from the output

files.

A.3.2 Output Files

We now turn to the output files; we first look at the mandatory files field.out,
part.out, elec.out and gas.out. The first of these, field.out, contains the electric
and magnetic fields on the spatial grid:

current time in sec.:

1.500000e-09

radial grid division in m.:

8.000000e-03

the axial grid location of the target:

331

fields in mks (format: j k Er Ez Bt):

1 +0.000000e+00 +0.000000e+00 +0.000000e+00
+0.000000e+00 +0.000000e+00 +0.000000e+00
+0.000000e+00 +0.000000e+00 +0.000000e+00
+0.000000e+00 +0.000000e+00 +0.000000e+00 .

DN

1
1
1
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1 5 +0.000000e+00 +0.000000e+00 +0.000000e+00
15 i240 +7.392719e+06 +9.680006e+04 -7.696454e-03
15 1241 +7.294208e+06 +1.379422e+05 -8.138589e-03
15 1242 +7.362822e+06 +1.493052e+05 -7.967273e-03
15 1243 +7.385347e+06 +1.435686e+05 -8.354462e-03
15 1244 +7.495720e+06 +2.827732e+05 -7.816303e-03
15 1245 +7.338789e+06 +3.121824e+05 -7.528567e-03
38 iSOO +1.226347e+02 +0.000000e+00 -1.558121e-07
38 1501 +1.357009e+02 +0.000000e+00 ~5.424388e-07
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All units are in mks. The first, third, fifth and seventh lines are comments. The
second line denotes the simulation time at which this file was written, 1.5ns; the
fourth line gives the radial grid division, Ar = 8mm; the sixth line gives the axial
grid location of the target from the left-open-end, so that the distance between this
open-end of the chamber and the target is 331 x Az 22 1.99m; the remajning lines,
starting with the eighth, give the grid location, 7, &, the ra.diél and axial electric fields,
E;j-1/2% and E; ;1/0, and the azimuthal magnetic field, By ;_1/2 £41/2, for each
mesh point shown on the grid in figure (16); where j=1 is the grid on the axis, so that
the radius ;_y/2(7=1)=0; j = N; is the grid on the conducting wall of the chamber,
so that r;(j =N;)=R,; and k=1 and k=N, are the left and right open-ends of the

chamber respectively.

The next output file is part.out, which contains the positions and velocities of

the super-beam ions:

current time in sec.:
1.500000e-09

real mass/part. in amu.:

200.590000

part./superpart., num. of superpart.:
1.400000e+10 19080

axial velocity in units of c.:
0.315000
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particle data in mks (format:

N WN =

+1
+1
+1
+1
+1

19079 +1
19080 +1

Again all units are in mks.

+6.945126e-02
+6.948343e-02
+4,.949950e~-02
+4.,945327e-02
+8.602024e-02

+3.754831e-02
+3.758308e~02

+4.911978e+00
+4.911978e+00
+4.947517e+00
+4.947517e+00
+4.965685e+00

+5.772310e+00
+5.772310e+00

nzprzvr vt): "

-1.344088e+06
-1.322728e+06
-9.276196e+05
-9.580874e+05
-1.626359e+06

-1.068042¢e+04
+1.250028e+04

~7.167006e+03
+7.163688e+03
+2.958040e+03
=2.960805e+03
=-6.131794e+03

+1.229267e+04
-1.228130e+04

The first, third, fifth, seventh and ninth lines are

comments. The second line denotes the simulation time at which the file was written,

1.5 ns; the fourth line gives the mass of the beam ion, my=200.59 amu; the sixth line

gives the superparticle ratio for the beam ions, AN =1.4x10'%, and the number of

super-beam ions, ), K, =19080; the eighth line gives the axial velocity of the beam

ions, v, = 0.315¢c; the remaining lines, starting with the tenth, list the superparticle

number, p, followed by the charge state, ¢, the radial and axial positions, g, and

Zg,p, and the radial and azimuthal velocities, vy g, and vg g ,, for all the super-beam

ions.

The next output file is elec.out, which contains the positions and velocities of

the super-electrons:

current time in sec.:

1.500000e-09

superparticle ratio, number of superelectronms.:

1

electron data in mks (format:

1

2

3
4

728

+8.466111e-02
-1.236253e+07
+9.353555e-02
-1.728865e+07
+9.353555e-02
-2.132151e+07
+8.638089e-02
-1.486332e+07
+8.638089e-02
-1.978246e+07

+4.982641e+00
~5.598579¢e+05
+4.993478e+00
+6.910066e+06
+4.993478e+00
-1.143232e+06
+4.939313e+00
+9.665768e+05
+4.,939313e+00
-1.184661e+05

T N

-6.443189e+03
~9.505799e+07
-8.041249e+05
=9.247005e+07

+2.268508e+06

nrzvr vt vz gamma):

+1.000853e+00
+1.056676e+00
+1.002550e+00
+1.052695e+00

+1.002213e+00
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728

+8.272075e-02
+2.425506e+07
+7.931396e~02

+5.110175e+00
~7.121247¢+05
+5.171986e+00

+1.847665e+08 +1.276602e+00
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+1.631678e+07 -1.302135e+06 +2.275511e+08 +1.541393e+00

Aéain all units are in mks. The first, third and fifth lines are comments. The
second line denotes the simulation time at which the file was written, 1.5ns; the
fourth line gives the super-electron ratio in terms of the super-beam ion ratio in the
part.out file; in the sixth line of that file the super-beam ion ratio was listed as
AN =1.4x 10, so that the super-electron ratio is also 1.4 x 101°, and the number
of super-electrons, K, = 728; the remaining lines, starting with the sixth, list the
super-electron number, p, followed by the radial and axial positions, r¢, and zp,
the radial, azimuthal and axial velocities, vy p, vg¢p and v; ¢ p, and the relativistic
factor, 4e,p, for all the super-electrons. Although these lines are shown as split lines,

they are single lines in the file.

Finally the last mandatory output file is gas.out, which contains the positions

and velocities of the super-gas ions:

current time in sec.:

1.500000e-09

mass of the gas particle in amu.:

19.000000

superparticle -ratio, number of supergasioms.:
i 406

gas data in mks (format: n r z vr vz):

1 +8.466111e-02 +4.982641e+00 +3.893040e+02 +3.826877e+00
2 +9.353555e-02 +4.993478e+00 +4.423860e+02 +3.251314e+01"
3 +8.638089e~02 +4.939313e+00 +4.192890e+02 -5.807550e+01
4 +2.705703e~02 +4.937905e+00 +2.971518e+01 -1.045548e+00
5 +7.388687e~02 +4.903455e+00 +3.005444e+02 -1.845459e+02
405 +9.181947e-02 +4.995520e+00 +3.223086e+04 -3.221249e+03

406

+8.761122e-02

+4.,998939e+00

+3.016384e+04

-1.348608e+03
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All units are in mks. The first, third, fifth and seventh lines are comments. The
second line denotes the simulation time at which the file was written, 1.5ns; the
fourth line specifies the mass of the gas atom, my =19 amu; the sixth line gives the
super-gas ion ratio in terms of the super-beam ion ratio, similar to the fourth line
in the elec.out file, so that the super-gas ion ratio is the same as the supgr—beam
ion ratio, and the number of super-gas ions, K; =406; the remaining lines, starting
with the eighth, list the super-gas ion number, p, followed by the radial and axial
positions, rgp and zgp, and the radial and axial velocities, vygp and v, qp, for all

super-gas ions.

This concludes a description of the output files that are always written by the
code. The diagnostic output file, diag.out, is only written if the code is run without

the -nd option. The format for this file is:

current time in sec.:
0.000000e+00
mid-location (m), avg. chg.,radius (cm), rms radius (cm)

+5.479623 1.000000 9.896930e+00 6.818661e+00
+5.478206 1.000000 9.896931e+00 6.818661e+00
+5.476790 1.000000 9.896931e+00 6.818661e+00
+5.475373 1.000000 9.896932e+00 6.818661e+00
+5.473957 1.000000 9.896933e+00 6.818661e+00
+5.339388 1.109958 9.897351e+00 6.818905e+00
+5.337971 1.112579 9.897359e+00  6.818910e+00

The first and third lines are comments. The second line displays the time at which
the present simulation run was started, 0, this is different from thé time displayed in
the other output files, which is the time at which the simulation run ended, or when
those output files were written; the remaining lines, starting with the fourth, give the
location of the longitudinal mid-point of the beam with respect to the target in m,

the average charge state of the beam, (g), the radius of the bearn at this point, a,
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in ¢m, and the rms radius, \/(7'_2), in em. Notice that-the head of a beam of length
Ly~94 cm starts ~ 1 em behind the lens located 5m from the target, and then moves
through the lens towards the target, i.e. the location of the mid-point decreases, and
the radius expands due to the space-charge forces of the beam; after this mid-point
passes through the lens, then the radius will start to decrease. At the end of this
run, the beam has moved a distance of ~ 14 ¢m, signifying a simulation run of 100
time-steps at At=15ps for a beam with velocity §=0.315. Currently these are the
only four quantities written to this file; however, the code can be readily modified to

print out other information if needed.
A.4 Warning and Error Messages

The code has several error and warning messages. The distinction between these
two is as follows: error messages will abruptly terminate the simulation at the point
at which the error occurs, without regard to saving the current state of the system;
warning messages on the other hand ask the user if they wish to continue the sim-
ulation or end it, if the user chooses to ‘end the simulation, all output files with the
current state of the simulation, field.out, part.out, elec.out and gas.out, are

written, and then the simulation is ended.
A.4.1 Error Messages

There are two types of error messages, those that occur before the simulation
starts, and those that take place during the simulation. The former are generally
a result of checking the validity of the quantities in the input files, for instance the
simulation times in all the input files should match, and as such are recoverable in

that one simply has to fix the error and attempt the simulation again. One error
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of this type worth mentioning is the CFL time limit; in this case the error message

display may read:

*** ERROR

**¥* The time-step in the geometry file must be less than the CFL limit
5.000000e-12 s.

*** Terminating the simulation

In this example the time-step chosen, At =5 ps, violates the CFL limit and must

be reduced in the geom. inp file before the simulation is attempted again.

The second type of error, the one that occurs during the simulation, is catastrophic
in that all information about the present run is lost and none of the output files are
written. These are generally a result of memory allocation problems. The only error
of this type that is not a memory problem occurs when the beam ions start to hit the

conducting wall of the chamber; the error message display reads:

*** ERROR
*** Jons are hitting the wall
***¥ Terminating the simulation

In this case the chamber radius, R, is too small. Since this quantity cannot be

changed in the middle of a run, the entire simulation will have to be redone with a

larger radius.
A.4.2 Warning Messages

There are only two warning messages, and both of these have to do with time-step
accuracy conditions; the first concerns the electron plasma frequency, and the second
concerns the collision frequency. If they occur before the simulation starts, the user
can choose to ignore them, and enter in the number of time-steps to simulate, or can

reduce the time-division, At, in the geon. inp file and attempt the simulation again.
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If the ~nd option is not used then the code will also report these warning messages

during the simulation:

*%k WARNING

*** The time-step must
5.000000e-12 s.

The current simulation

Please enter ...

c : to print out data

e : to end simulation

and

*** WARNING

*%*% The time-step must
5.000000e-12 s.

The current simulation

Please enter ...

c : to print out data

e : to end simulation

In this case the user is asked if the simulation should continue or end; if the user

be less than the plasma frequency limit
time is 1.500000e-09 s.

and continue simulating
and print out data

be less than the collision frequency limit
time is 1.500000e-09 s.

and continue simulating
and print out data

chooses to continue the simulation, the warning messages will not be repeated for

the rest of the run; if the user chooses to end the simulation then the appropriate

output files are written and the simulation is ended. If the -nd option is used then

these warning messages will not occur during the simulation, but only at the start

and finish of a particular run.




