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Abstract

Applications for high current (> 1 kA) ion beams are increasing. They include hardening
of material surfaces, transmutation of radioactive waste, cancer treatment, and possibly
driving fusion reactions to create energy. The space-charge of ions limits the current that
can be accelerated in a conventional ion linear accelerator (linac). Furthermore, the
accelerating electric field must be kept low enough to avoid the generation and
acceleration of counter-streaming electrons. These limitations have resulted in ion
accelerator designs that employ long beam lines and would be expensive to build. Space-
charge neutralization and magnetic insulation of the acceleration gaps could substantially
reduce these two limitations, but at the expense of increasing the complexity of the beam
physics. We present theory and experiments to determine the degree of charge-
neutralization that can be achieved in various environments found in ion accelerators. Our
results suggest that, for high current applications, space-charge neutralization could be
used to improve on the conventional ion accelerator technology. There are two basic
magnetic field geometries that can be used to insulate the accelerating gaps, a radial field
or a cusp field. We will present studies related to both of these geometries. We shall also
present numerical simulations of “multicusp” accelerator that would deliver potassium
ions at 400 MeV with a total beam power of approximately 40 TW. Such an accelerator
could be used to drive fusion.
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I. Introduction

A conventional induction linac involves the use of many acceleration gaps as depicted

inFig. 1
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Fig. 1 A schematic of an acceleration gap for a conventional induction linac

The voltage across each acceleration gap is separated from the neighboring gaps by induc-
tive isolation, which is enhanced by the use of ferromagnetic core materials. The integral
of the voltage over time that can be applied to each gap is determined by the saturation
field of the core material and the cross sectional area. The core material is a significant
fraction of the cost of a conventional accelerator and thus its use should be minimized if
possible. This can be accomplished by decreasing the ion pulse length and the final accel-
erating voltage, while increasing the ion current to maintain the beam power. However,
large beam currents result in strong space-charge induced electric fields that tend to spread

the ion beam outward radially. The magnitude of the electric field is given by the formula

Iy Jpr
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where Iy is the ion beam current, 1 is the radius, and vy is the ion velocity, and Jp is the ion
beam current density, MKS units will be used throughout this report. Increasing the beam
radius decreases the outward electric field, but it also increases the mass (cost) of the core
material. The ion beam is held together by the use of quadrupole magnets, with an alter-
nating gradient direction. The amount of current that can be transported is then determined
by the strength of the quadrupole focussing magnets. This limit could be increased if the
space-charge of the ion beam is partially cancelled by the presence of electrons, which
have the opposite charge. We refer to this as space-charge-neutralization. These electrons
could be introduced into the beam from the drift tube walls or possibly by the injection of
some plasma into the beam path. However, electrons within the vicinity of the acceleration
gaps will be accelerated in the direction opposite of the ions. Since electrons are much
lighter than ions they will obtain higher velocities than the ions and will constitute an
undesirable loss of power. This loss can be avoided by applying a strong magnetic field
across the accelerating gap. Single particle equations of motion indicate that the electrons

will not be able to cross the gap when the following condition is satisfied

I, mc V2
Ya—VYc> Ae 4/(1+ri_<:2) -1, )

where W =1rAy is the magnetic stream-function with the subscripts (a,c) for points on the
anode and cathode, m/e is the mass-to-charge ratio of an electron, V is the voltage across
the gap, and c is the speed of light. An electron leaving the cathode is turned back toward
the cathode before reaching the anode as long as this relationship is satisfied. Equality of

both sides of relation (2) defines maximum magnetic insulation voltage, V..

It has been demonstrated that accelerating field strengths considerably in excess of the
breakdown threshold can be used efficiently when the accelerating gap is magnetically
insulated!, which is an added advantage of using magnetic insulation. The possibility of

significantly reducing the length of an ion induction linac by using magnetic insulation



and space-charge neutralization has been recognized for quite some time?. Experiments
were conducted with several acceleration stages insulated by a radial magnetic field3, see
Fig. 2 ’
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Fig. 2 Schematic of an accelerator gap using a radial magnetic field for insulation.

Efficient insulation and post acceleration was demonstrated, but several problems were
also found. The charge neutralization in the return flux region was not sufficient for effi-
cient transport between stages. Successful operation necessitated a gas background, which
is incompatible with acceleration in a constant ion charge state. Furthermore, the inner
field coils needed to generate a radial magnetic field, required support structures (not
shown in the figure) that blocked a portion of the annular beam. Repetitive operation of
such an accelerator would cause severe erosion of thesé supports and would produce out-
gassing that could result in beam stripping. Finally, the azimuthal symmetry of the beam
was removed by the support structures. This caused inefficiencies in the accelerating: gaps
and could result in beam emittance growth. We shall address some of these issues in this

report. We shall show that a sufficiently high degree of charge-neutralization can be
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obtained by using a preformed plasma and that the ions will not be stripped for a reason-
ably short accelerator. However, achieving the required beam intensity with only a few
acceleration stages implies large diamagnetic forces on the applied magnetic field, which
will result in focussing of the beam at each acceleration stage. We will present an analytic

calculation to determine the magnitude of this effect.

Using only field coils outside of the be'am results in a cusp field*” to insulate the accel-
erating gaps. This multicusp geometry does not require a central conductor, which greatly
simplifies the construction, see Fig. 3. The bulk of our work was directed toward studying

the feasibility of this field geometry,
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Fig. 3 A schematic of an acceleration stage of a multicusp accelerator.

The ion beam entering from the left is accelerated by a voltage V at the gap, which is insu-
lated by a cusp magnetic field. Notice how the cusp geometry allows electrons to enter and
follow the beam to the next acceleration stage. As the beam ions enter the drift region,
they are forced to rotate azimuthally as they cross the cusp field. This rotation leads to a
focussing force (solenoidal focussing) in the drift region that is proportional to the square

of the magnetic field strength. The maximum current density, which can be transported in



the drift region can be found by balancing the net space-charge force against the solenoi-

dal focussing force. The result is

oy = eZeyBcB2 ’ ‘)
2M(1-f)
where eZ/M is the charge to mass ratio of the ion, Bc is velocity of the ion, B is the
strength of the magnetic field, and f is the degree of space-charge neutralization. The criti-
cal parameter is the degree of space-charge neutralization. Notice that the current density
scales as e/M, so this type of accelerator scheme will be more effective for lower mass
ions and thus would be very effective at accelerating protons. Such an accelerator coﬁld‘be
used to generate neutrons, which can be used for a variety of applications. Medium mass

ions such as potassium would be more appropriate for a fusion driver, so that high beam

intensities can be reached with the proper range of the ion in the ICF capsule.

IL. Focussing constraints on ion induction linacs for inertial
fusion

The DOE-sponsored program to develop high-intensity accelerators as inertial fusion
drivers has been active for about two decades. As envisioned, an induction linac generates
multiple beams of 10 GeV uranium ions with a 10 ns pulse length. The beams propagate
ballistically to a small target in a reactor chamber. The accelerator and its attendant beam
transport lines are complex and occupy a considerable amount of space. Over the span of
the Heavy Ion Fusion program, technical problems that involve conventional accelerator
theory (such as the design of achromatic final focussing lens with ideal space-charge
forces) have been pursued with vigor. In contrast, severai daunting problems reflecting the
unprecedented beam intensity levels have not been emphasized. Advanced concepts (such
as beam neutralization and self-pinched propagation) have been consistently portrayed as
potential solutions but not seriously addressed. In principal, the space-charge neutraliza-

tion methods developed at Sandia National Laboratories for the Light Ion Fusion program
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could impact the design of a fusion accelerator. Neutralization would allow higher current
transport. Therefore, the required total energy could be generated by beams with reduced

kinetic energy and ion mass.

The goal of this report is to quantify whether neutralization can significantly impact
accelerator driven fusion. The long duration of the Heavy Ion Fusion program testifies that
the determination of feasibility is not a straightforward issue. We shall derive simple con-
straints on the allowable focussing errors for two test cases: a heavy-ion fusion accelerator
generating unneutralized beams of uranium at 10 GeV (B=.3), and an intermediate-mass
accelerator that utilizes beam neutralization to accelerate potassium ions (A=39) to 400
MeV (B=.15). The target proposed for heavy ions is optimized for the rather long range of
heavy ion accelerators and requires a focal spot of 1-3 mm. The significantly shorter range
of light ions has the allowed the development of a spherically irradiated target that
requires a focal spot of approximately 1 cm. Our medium mass ion would have a range
comparable to light ions (~20 mg/cmz) and could drive a light ion target. The acceptable
angular divergence at the final focussing lens of the accelerator depends on the focal spot

and the focal length through the simple formula

Ig
A® = E’ @)

where L is the focal length, and ¢ is the focal spot size. Heavy ion studies assuming ballis-
tic transport from the final focussing lens to the target require L to be as large as 10 m.
Light ion studies with neutralized ballistic transport have assume L~2 m. If self-pinch
propagation works the focal length could be made much smaller, less than a meter for light

ions. The maximal transverse energy spread (temperature) at the final lens is given by

OT = (A®)2T,. )

where Ty is the final ion kinetic energy. For the ballistically focussing heavy ion case, the

allowed transverse temperature is 100-900 eV (depending on the focal size). For the



medium mass ion the maximal transverse temperature is approximately 10-40 KeV
(depending on the range of L=1-2m). Clearly fransverse temperature can be much larger

for the medium mass case, because of the larger focal size and shorter focal length.

Next, consider possible sources of transverse beam energy. A low value of 8T implies
that there is a close balance on average between applied focusing forces and the force of
beam generated electric field. The standard heavy ion approach is based on the transport of

bare beams. The space charge potential of the beam is given by the expression

I
47‘;80VB )

©)

The pulse length on the target must be less than 10 ns, but the pulse length could be as
long as 100 ns at the final focussing lens if beam bunching is used. Assuming 20 beams
the current in each beam must be 250 A to put 500 TW on target. Thus the beam potential
is approximately 25 KeV, which is much larger than the maximum transverse temperature.
The maintenance of the low beam transverse temperature requires linear focusing focus-
sing forces and an almost perfectly uniform beam. Consider the contrasting approach of
neutralized beam transport. Since collective neutralization is not an easily controllable
process, there is little hope of obtaining a partially neutralized beam where the residual
field is linear. Therefore the goal is to keep the residual fields low as possible. Assuming
20 beams and a bunching factor of 3 due to the shorter focal length, the medium mass
driver must have approximately 20 kA/beam. The beam potential is thus about 4 MV. This
potential must be reduced by a combination of charge-neutralization and focussing forces.
Assuming the charge-neutralization reduces the beam space-charge potential by the factor,
o, the focussing force must produce a negative potential greater than oc®y to contain the
beam. Let’s assume that this containment factor is 1+ 3, then af®; must be less than
maximum allowed transverse temperature or o3 <0.01. In the next section we shall

present simulations of the charge-neutralization process, which indicate that o= 0.04 .




This implies that § < 0.25 will be required. Designing a focussing system with this degree
of accuracy does not seem impossible, but may prove to be difficult due to the nonlinearity
of the net space-charge forces. In the next section we shall show that a preformed plasma
could produce very high degrees of neutralization so that & < 0.01 . Another possibility is
that the accelerator is short enough so that ions do not have sufficient time to obtain a
transverse temperature equal to the beam potential. Consider the distance ions travel as

they perform one transverse oscillation

2nMv, g,
Az > 27tVBI‘b —EBT' ) )]
B

which is about 125 m for our medium mass example. The degree of nonlinearity deter-
mines how many of these oscillations are necessary before the ion transverse energy is
randomized. This will depend on the specific accelerator scheme, but in general it should
be easier to obtain a high quality beam if the accelerator is not very long. Thus light to

medium mass accelerators are probably the most promising.

III. Theory of space-charge neutralization

A. Vacuum

i. No magnetic field

The space-charge neutralization process in a vacuum is conceptually qﬁite simple, but is
very difficult to treat analytically. As the head of an ion beam passes a region of drift tube
wall, an electric field is generated by the space-charge of the beam. If this field is large
enough the drift tube wall undergoes electrical breakdown and becomes a source of elec-
trons. As an example, eq. (3) gives a maximum current density J=11 Afcm? for a potas-
sium beam at f§ = 0.13, assuming a solenoidal field strength of 5 Tesla and f=0.1.
Without neutralization the electric field at the edge of a 20 cm beam according to eq. (1)

would be 350 KV/cm, which is more than sufficient to cause electrical breakdown at the



drift tube wall. Note that it may be advantageous to provide a source of electrons such as a
thermionic emitter to avoid any time delay introduced by the breakdown process. Elec-
trons are then pulled into the beam from the wall. A simple analytic estimate of the neu-
tralization provided by these electrons was made by Stuhlinger®. He assumed that a
constant density beam arrived instantaneously and then electrons were allowed to fall into
the potential well caused by the ion space-charge. His result indicated a neutralization fac-
tor of approximately 0.5. The low neutralization factor calculated analytically is because
all of the electrons are forced to have zero total energy. Thus the electrons have a maxi-
mum velocity at the center of the beam and zero velocity at the drift tube walls. Hence the
electron density profile does not match the ion density profile. In fact, the electrons will
not all have the same energy, due to the finite risetime of the beam current density. This
spread in the electron energies results in much better neutralization than the simple ana-
Iytic model predicts. Numerical techniques provide the most straightforward way to find
solutions for the self consistent motion of the electrons emitted from the drift tube walls in
response to the electric field generated by the unneutralized portion of the ion space-

charge.

We have studied this process numerically using the 3-D particle-in-cell (PIC) code
QUICKSILVER", QUICKSILVER performs a fully dynamic solution to Maxwell’s
equations with relativistic three-dimensional particle kinematics and the full Lorentz
force. To solve Maxwell’s equations, the volume of interest is divided into discrete cells,
and electric and magnetic fields are associated with each cell. Discrete particles, each rep-
resenting 10°-1012 electrons or ions, are used to simulate the electron and ion flow and
provide a self-consistent source for the field solutions. The relativistic equations of motion
are solved for each particle in the electromagnetic field. Electrons and ions are introciuced
into the system by emission from the electrode surfaces. The charge of each particle is
determined by assuming space-charge-limited emission and enforcing Gauss’ ‘Law for

cells imrhediately adjacent to the electrodes. Similarly, parficles encountering metal




boundaries are removed from the system. Voltage boundary conditions can be specified
that introduce electromagnetic energy into the simulation. It should be kept in mind, that
due to computer storage limitations, the number of simulation particles is less than 108and
consequently the numerical solutions will probably underestimate the degree of charge

neutralization.

Consider an unneutralized ion beam propagating between two parallel plates separated
by a distance 2H. The space-charge limited current density is found by equating the space-

charge potential at the midplane to the energy of the ions. The result is

, 3/2

where W is the energy of the ions.

To study beam neutralization, we set up the simple simulation geometry shown in Fig. 4

- 20 cm >

Fig. 4 Simulation geometry to study the basic vacuum neutralization process. The
boundary conditions are periodic at y=0 and y=L,. Mirror symmetry is assumed at x=0.
All other surfaces are conducting. Ions are injected through the surface at z=0. Electrons
are only emitted from the shaded surface.

The edges of the simulation at y=0 and y=L, are connected by periodic boundary con-

ditions, i.e. a particle exiting through one of these surface comes back into the simulation

10



from the other surface. The distance L, was varied from 1 cm to 5 cm with negligible
changes in the degree of neutralization. Mirror symmetry is assumed about the plane x=0.
All surfaces are conducting and electrons are only emitted from the shaded surface. A pro-
ton beam (1 MeV) is injected through the z=0 surface and exits through the opposite sur-
face. We set J=5A/cm?, which is Jg/2 and ran simulations with and without electrons for
comparison. The beam potential at x=0 and z=10 cm is defined by Jfde , where H=5 cm

is the half height of the box. This potential is shown for both of these simulations in Fig. 5.

-
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Fig. 5 The electric potential at the simulation midplane is plotted for three different ~
simulations, a) without neutralizing electrons, b) with electrons and a 1 Tesla magnetic
field in the x-direction, and c) electrons but no magnetic field.

The result without electrons is slightly less than 500 KeV due to the spreading of the
beam and loss to the drift tube walls. Allowing electron emission reduces the potential by
more than a factor of 10 when no magnetic field is present. Late in time, the degree of neu-

tralization is approximately 0.96.
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ii. The effect of magnetic fields.

The magnetic field in the return flux region of a radially insulated acceleration gap is
primarily transverse to the direction of ion propagation. Electrons will be free to enter the
" beam from the dnft tube walls, but will not be able to follow the beam, thus charge-neu-
tralization will be possible, but not current neutralization. The results of a simulation with
a 1 Tesla field in the x-direction are shown in Fig. 5. The neutralization is roughly 80%,
which is considerably worse than for the B=0 case. This behavior explains the poor trans-

port than was observed on the Pulselac experiments.>

We ran several simulations of ion beams injected across an acceleration gap insulated
by a cusp magnetic field. Since a cylindrical coordinate system cannot be used in QUICK-
SILVER for a simulation that includes r=0, we used Cartesian geometry as in the previous
simulations. The cusp magnetic field was calculated using the magnetic field solving code
ATHETA?. We found that electrons remained tied to the magnetic field lines, even though
electromagnetic fluctuations developed in the simulation, see Fig. 6. A proton beam is
injected at a velocity of ¢/10 and current density, J=Jgx~26 Afcm? as determined by Eq.
(3) assuming a neutralization factor of 0.9. The periodic length, Ly, was 10 cm, which was
sufficient to allow electromagnetic fluctuations to develop through instabilities such as the
diocotron!®. The magnetic field lines are also plotted and it is apparent that the electrons
do not migrate across the magnetic field. This is in distinct contrast, to the behavior of
simulations of light ion diodes, which exhibit significant electron migration across the
magnetic field lines'®. The difference in the behaviors of these two systems can be
explained by the following argument. In the absence of electromagnetic fluctuations the
electrons move in electromagnetic fields that are independent of time and the y-coordi-
nate. Thus from Hamilton’s equations, the energy and y-component of the canonical
momentum are conserved. The electron motion consists of cyclotron orbits superimposed

on an average drift in the E x B direction. Instabilities generate fluctuations that have vari-

12




ations in both time and the y-coordinate and thus the energy and canonical momentum of

the electrons is not strictly conserved. -

ACCELERATION G

0 5 10 15 20
Z cm

Fig. 6 Grey scale contours of the electron and ion densities from simulations of a proton
beam injected into a cusp field are plotted. The magnetic field lines are shown in the top
figure. Ions are injected from the z=0 surface, while electrons are emitted from the upper
surfaces at x=3 cm.

However, from Chaos theory we know that a sufficiently small perturbation of an integra-
ble system will not produce diffusion over the dynamical phase-space. The magnitude of
the fluctuations is approximately two orders of magnitude larger in the light ion diode sim-
ulations than for our present simulations. Apparently the fluctuation amplitude for the
present simulations is too small to generate chaotic electron motion. Note that electrons
are not emitted from within the accelerating gap, since they would be able to cross the gap
upstream and form a counter-streaming electron beam that would significantly reduce the
efficiency of the accelerator. Thus the central (near the midplane in our cartesian simula-

tion) of the beam is not space-charge neutralized. The ion beam charge density is also

13




shown in Fig. 6 (bottom). We have made a detailed comparison of the ion and electron
density for r > 1; (rj is the inner radius of the electron cloud), which indicates approxi-
mately 90% space-charge neutralization. The space-charge induced electric field forr <7,
exerts a force larger than the inward solenoidal force; thus, this portion of the beam
expands. This can be seen in Fig. 7, which is a phase space plot of ions exiting the simula-

tion.
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Fig. 7 Plot of the ion exit angle as a function of x.

A laminar equilibrium could be set up by injecting two different beam densities deter-
mined by eq. (3) with f=0 for r < r; and £~0.9 for r > 1;. However, any finite transverse
beam temperature will cause these two beam regions to mix with a resulting increase in
transverse temperature or emittance. A model of this process will be presented in section

VI
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B. Preformed plasma for space-charge neutralization

We will show that a background plasma can provide sufficient space-charge neutral-
ization of an ion beam to allow propagation for several tens of meters without significant
stripping of the ions. The plasma density needs to be larger than the beam density, but as
we will show it does not have to be very much larger. The net charge of the plasma is zero
and thus when the beam enters the plasma the plasma-beam ensemble will still have’a net
charge. However, the electrons in the plasma will be displaced inward to c-ancel the extra
positive space-charge of the beam. The much less mobile plasma ions will remain approx-
imately in their original position and a positive sheath will develop at the edge of the
plasma. The electric field outside of the plasma sheath will be as large as it would have
been without the plasma, but the beam will be effectively screened from its own electric

field as we shall show with the following analytic models and numerical simulations.

i. Spatially homogenous finite amplitude model of plasma neutralization

In this model we assume a cylindrically symmetric beam of infinite radius and axial
extent. The beam density is given as a function of only time. We ignore the motion of the
plasma ions and only follow the radial motion of the electrons. Since the problem is spa-
tially homogeneous the radial position of each electron is given by the product its initial
radial position and a function of time, thus r = ryh(t). Poisson’s equation and Newton’s
law then lead to a second order differential equation for h(t) given by

2
dn
dt?

+(1+g@M)] = 5 ®

where T=0,t, @ is plasma frequency at the initial density, A is the maximum beam density
normalized to the plasma density and g(t) is the time dependence of the beam density. The
ratio of beam potential with and without the plasma is then given by

(h2-1)

= — 1
g+ 715 (10)
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Fig. 10 The normalized.potential is plotted as a function of L
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Fig. 11 The normalized electron velocity is plotted as a function of Q
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A convenient choice of g(t) is sin(Qt), where Q = E)—'t— and t is the ion pulse length.

PP
We have integrated eq. (9) for different values of A and . The displacement of the elec-

T—T,

trons from their initial position, & = —?—Q is shown in Fig. 8. As expected, the plasma
0

electrons move less and the neutralization is better as the plasma density is increased. Fig.

9 shows the time dependent potential ratio given by eq (10). The maximum ratio of g is
0
plotted as a function of Q in Fig. 10. The normalized electron velocity is plotted as a func-

tion of Q in Fig. 11.

Analytic results can be obtained for small values 8 and A. Eq. (9) then becomes

2

= > an

which for our choice of f(t) has the solution

0= 2—(1—_%2—)(Qsin'c— Sil'lQ’C). (12)

Substitution of eq (12) into eq (10) yields % = QsinT. Thus the potential fluctuates at
the plasma frequency with an amplitude given by Q = EZTP . This result agrees well with
the A=0.05 curve of Fig. 10 and surprisingly well with the A=0.5 curve. Clearly the plasma
has to be only a factor of two denser than the beam to effectively space-charge neutralize

the beam.

ii. Spatially inhomogeneous infinitesimal amplitude

In this model we allow the beam to have a spatial variation in the direction of propaga-

tion given by the expression

Py, = Ap,sin(QA)O(A), 13)

0,z
where A = 71—

and the theta function is zero for A<0 and unity for A>0. Linearizing

1
the continuity and momentum equations and substituting into Poisson’s equation we

obtain the differential equation
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2
dp oA
A2 +p = AsinQABO(A), (14)

where p is the variation in the electron density. This can be solved by the method of

Laplace transforms noting that p(A =0) = p(A =0) = 0. The result is

pA) = - A _(6nQr-Qsint) as)

oY)
At the peak density of each ion pulse this yields g—: = (—1?3 = Q for small values of . This
is the same result that we obtained from the previous model.

The plasma density needs to be only several times the beam density. The ion current
density in a light ion fusion accelerator is approximately 1 kA/cm? with a beam veloc'ity of
(2-4)x107 m/s and a pulse length of 10-20 ns. Thus the ion density is~ (1.5-3)x10'2 cm™
and Q is less than 0.004. The results of these two models of plasma neutralization implies
a degree of neutralization better than 99.6%. The beam density is less in a heavy ion accel-
erator. Thus a lower density plasma could be used. This has the advantage that the beam
could propagate further before stripping would be a problem, but the degree of neutraliza-

tion would not be as high.

iii. Warm electron Boltzmann distribution

The previous two models dealt with the electrons as a cold fluid solving only for the
collective oscillatory motion. However, we expect the electrons to be heated by instabili-
ties. In particular ions are streaming through the plasma, which will drive the two-stream
instability. We expect the instability to saturate when the 2electron thermal velocity is.com-
parable to the ion streaming velocity, vy, i.e. kT = nl;—lh . We have consie:%lcted a simple
planar model of the electron density profile by assuming that p, = poeXT and the ions
remain essentially immobile. Assuming cartesian geometry to simplify the calculations,

Poisson’s equation can be put into the dimensionless form
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ez _ v _
2gzz = Poc¥ =P a6
where densities are normalized to the initial plasma density, ¥ = %,% , € = ;—i, and Ais an
effective Debye length defined by,
v
A= 2 a7
®p

Equation (16) can be integrated once analytically. We performed the second integral

numerically.

We find that at the edge of the plasma the electric field is the same as if the plasma
were not there, but the field decays exponentially within the plasma. The scale length is
the Debye length as one would expect. There is also an electric field at the edge of the
beam when the Debye length is comparable to the beam half thickness (radius in cylindri-
cal geometry, see Fig. 12.

pbeam/ ‘)plasma'——_O ) 1

1.0T

0.8} _
- 0.6F :
L ) :
“o.af _:
0.2f _

0.0 A TS .'"*""-:-.:..‘_.:..—.’
0 2 4 5

Fig. 12 The electric field calculated from equation (16) for three different beam radii
normalized to the Debye length, r,/A=1,2, and 3, 1,/A=6. Note the inflection occurs at the
beam radius.
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Fig. 13 The normalized electric field as a function of the normalized beam radius for two
different values of the beam to plasma density.

The model predicts good space-charge neutralization as long as the Debye length is small
compared to the beam radius as seen in Fig. 13. In practice this is not a problem for heavy

or light ion applications.

iv. Particle-in-cell simulations

We performed simulations using the two-dimensional particle-in-cell (PIC) code,
MAGIC?. The numerical technique used in this code is essentially the same as our previ-
ous description of QUICKSILVER. As an example, particles representing the protons and
electrons of a hydrogen plasma, with a density of 6.25x1012 cm™3, were initially 16aded
into the simulation region, which had conducting boundaries at r=2mm and z=0 and z=2
cm. A Bismuth beam of radius 1 mm was injected at a velocity of 9.4e7 m/s and a current
density of 3.25 kA/cm?. According to eq. (17) the Debye length should be approximately
0.7 mm. However, the electrons did not heat up to a thermal temperature comparable to

the ion velocity and consequently the neutralization is better than would be indicated by
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the results of the last section. The resulting radial electric field is shown in Fig. 14. The
unneutralized electric field would be approximately 20 MV/m

10 o I r. 5 T . TI T L |

0.00 0.05 0.10 0.15 0.20
rcm

Fig. 14 The electric field as a function of radius for a simulation of a Bismuth beam
injected into a hydrogen plasma

v. Ion stripping

Typical light ion beam current densities are approximately 1 kA/cm?, which at a beam
velocity of 3.7 m/s, corresponds to a particle density of 2x10%2 cm™. Therefore a plasma
density of 1x10' cm™ should be more than sufficient. We have estimated the electron
impact ionization of the beam ions using the formulas of Lotz!!. The results indicate the
beam should travel more than 100 m before ionization. We have calculated the ionization
cross section of hydrogen and carbon ions using the plane wave Born approximation!2.
We chose lithium to represent light ion fusion applications. The results are shown in Fig.
15. We chose gold as an example of a heavy ion, see Fig. 16. The cross section decreases

with ionization state, due to the loss of electrons.
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Fig. 15 The ionization cross section for Li* on various ions (beam energy~30 MV).
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Fig. 16 The ionization cross section for Au™ on various ions (beam energy~5GeV).
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Examination of Fig. 15 indicates that the ionization cross section should be less than
1x10-17 cm? for a carbon plasma and less than 1x10-18cm? for a hydrogen plasma.
Therefore, a lithium jon should be able to travel approximately 100 m in a carbon plasma
and up to a kilometer in a hydrogen plasma. The cross sections are about the same for a 1
GeV gold ion and typically the beam particle density is lower, so these beams could travel

even further without significant ionization.

IV. Experimental determination of the degree of space-charge
neutralization

A. Experimental facility and diagnostics

The space-charge neutralization experiments were performed using the Advanced
Light Jon Accelerator System (ALIAS). The system consists of a 10 ohm, 1 MV water
blumlein, which drives two transmission lines feeding power to a magnetically insulated

ion diode. The configuration of the diode is shown in Fig. 17

Fig. 17 Alias diode configuration
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A flashover ion source, felt polishing pad, was used with a flux excluding anode.
Flashover ion sources yield roughly 50% protons. The rest of the ions are dominated by
various ionization states of carbon. The peak voltage at the diode was approximately 500
kV yielding proton current densities of roughly 50 Afem?. The anode emitting region was
from r=5.2-7.8 cm for an area of about 100 cm?. The mylar gas c_e]l foil was nominally 2
pm thick. We used an unconventional type of Faraday cup, which we call solid state F-
cups, which were constructed from coaxial cable. Mylar foil was placed between the end
of the coaxial cable and an end-cap with a hole, see Fig. 18. The film provided electrical
insulation so these cups did not require a vacuum as conventional cups do. The foil is thin
enough so that protons can penetrate and be collected on the central conductor of the coax-
ial cable. However, this foil plus the gas cell foil would stop carbon ions or other impurity

ions.

Fig. 18 Schematic of the solid state F-cup

The heating from the ions will vaporized the film and consequently increase the electrical
conductivity. We estimate that the shunt resistance provided by the vaporized mylar
should be about 900 Q based on formulas for the conductivity of mylar induced by‘elec-

tron beams!3. We tested this by comparing biased and unbiased cups. The results were
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consistent with our estimate and indicated that we might be underestimating the ion cur-
rent by about 15%, which is smaller than the shot to shot variation in the ion current den-
sity. The F-cup measurements were made at a variety of radial and azimuthal locations, to

determine the transport of the ion beam

B. Results and discussion

We conducted three basic experiments. In the first set of shots we measured to ion cur-
rent density at a position 25 cm down stream from the anode. These measurements were
made with gas (500 mTorr) in the gas cell to provide charge-neutralization and without

gas.

We compared the ratio of the current densities obtained to determine the degree of
space-charge neutralization that was achieved without the gas, by assuming that the ion
trajectories were essentially ballistic when the gas is present. This is not an unreasonable
assumption since there is a large body of data indicating nearly perfect space-charge neu-
tralization in gas. The experimental geometry is cylindrical but the radial thickness of the
beam is small compared to the mean radius of the beam so we shall use cartesian geometry
(x corresponds to radius and y corresponds to azimuth) to analyze the blow up of the beam
due to space-charge. The envelope equation for a beam expanding due to its own space-
charge can be calculated by making the usual paraxial approximation and assuming the

beam current density is uniform at any axial location. The result is

2
dx
ax _T, 18
12 (18)
aelpxg . . . :
where I = —ﬁ—? , & = 1—1f is the unneutralized fraction of the beam charge, J is the
EoMvyg

beam current density, x is the beam thickness, ¢/M is the charge to mass ratio of the ion,
vp is the ion velocity, and the subscript O refers to quantities at the anode. Equation (18)

can be integrated twice to yield
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x _Tz?2  (dx
}-(—o = T + Z(zi—z')o +1 19)

In the first series of experiments we did not have a measurement of the initial divergence
of the beam near the anode (%)o , so we assumed it was zero. Thus the ion current density
measured with gas was assumed to be roughly the same as at the anode. This was in rea-
sonable agreement with Faraday cup measurement taken near the anode. The decrease in
the current density due to space-charge beam blow up could then be used to infer the
degree of space-charge neutralization that was achieved in vacuum. We then calculate the

degree of space-charge neutralization from the equation

2g,Mv3 (J gas )

- = (20)
€T gas2* \J

vac
where z=25 cm was the transport distance to the F-cups. Our results were consistent with
an average neutralization of 98% in vacuum, somewhat better than indicated by the
numerical simulations of section III. Moving the drift tube walls away from the beam

resulted in a noticeable reduction in the degree of neutralization

In the second series of experiments we attempted to measure the space-charge neutral-
ization in the region of the applied magnetic field. This is the region that has been of the
most concerm to accelerators such as Pulselac. The approach was to aperture the beam at
two distances from the anode and detect the expanding beam at three different locations
for each of the apertures. The basic geometry is shown in Fig. 19. The apertures were
located at two different azimuthal quadrants at 3 and 6 cm from the anode. The aperture
was centered radially in the beam with a width of 1 cm. Radiachromic film was placed at 1
cm intervals from each of the apertures. Each piece of film was displaced azimuthally
from the next to avoid shadowing. The radiachromic film turns blue when exposed to ion-
izing radiation such as a proton beam. We scanned and digitized the film to determine the

beam width at each film location.
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Fig. 19 Schematic of the experimental configuration to measure the space-charge
neutralization in the applied field region

We took a series of seven diode shots with 500 mTorr of air pressure in the gas cell and
with no air (vacuum). The results are shown in Fig. 20. Clearly the beam transport is better
with the 500 mTorr of air. It should be noted that the beam was blowing up pretty badly
before it entered the first aperture. This was probably due to the felt anode, which is con-
venient to field, but does not produce a high quality beam. We used the envelope equation
(19) to determine the charge-neutralization by performing a least square fit to this experi-
mental data. The best fit indicated a charge-neutralization of 93% for the gas fill and 83%
for the vacuum shots. The value of 83% for vacuum transport in the presence of an applied
field is very close to what we would expect from the simulations presented in section III.
We were somewhat surprised that the gas transport was not better. The low neutralization
may be due to the low ion current density (50 A/cm?) as compared to most light ion exper-
iments where the current density exceed 1 kA/cm?. Thus although the gas density is

1.5x1016 cm™>, the plasma density could be much lower.
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Fig. 20 The measured thickness of the beam as a function of radiachromic film location.
One cm apertures are located at 3 and 6 cm. The squares are for vacuum transport, the
circles are for 500 mTorr of air. The error bars are one standard deviation calculated from
the shot to shot variation.

We fabricated carbon spark gaps to pre-fill the drift region of the diode with plasma.
The spark gaps were nominally 1 mm and were coated with a carbon based aerosol. Six
gaps were driven in series at a spacing of 1 cm along a strip line oriented in the axial direc-
tion. Twenty four of these strip lines were arranged azimuthally around the diode on the
inner beam drift tube wall as depicted in Fig. 21. We tested the output of one of the spark
gaps by using probes with two grids. The first grid was biased negative to stop electrons.
The voltage on the second grid was varied over positive potentials to stop a portion of the
ions. From this data we were able to determine that roughly 60% of the ions were c*,
20% were protons and the rest dominated by various ionization states of carbon. We also
were able to measure the plasma flux and estimate that a plasma density greater than

1x1013 cm™ should be produced at 1-2 cm from the gaps.
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The gaps were spaced at 1 cm so that the plasma from each spark should overlap with the
adjacent spark at the position of the apertured beam. In fact, it was clear from the images
on the radiachromic film that the overlap was barely adequate and most of the time the
plasma was pretty nonuniform over the transport region of the beam. Despite the crude-
ness of our set up, the data indicates that the transport was improved by plasma injection.
Fig. 22 shows the results of 10 shots without plasma and 11 shots with plasma. The beam

expansion is less with the plasma injection.

V. Radial magnetic field linac

A. Introduction

In the last two sections we presented theory and experiments on the degree of space-
charge neutralization that can be obtained in vacuum and in plasmas. We found that 96%
neutralization was obtainable in vacuum as long as no magnetic field is present. However,
a magnetic field of only 1 Tesla significantly reduced the degree of neutralization even
when the magnetic field was normal to the surface emitting the electrons. The neutraliza-
tion is negligible if the magnetic field is tangent to the emitting surface. This result
explains the poor transport that was observed in the return flux region of the radially insu-
lated pulselac experiments. Our results on plasma neutralization indicate that this problem
could be solved by injecting plasma into this region. We will now address another poten-

tial problem.

The acceleration of ions in a magnetically insulated gap must be balanced by an equal
and opposite force on the electrodes. Since the electric field can be nearly zero at both the
anode and the cathode, due to space-charge-limited emission at these surfaces, most of
this force is delivered to the electrodes through the magnetic field. In a single-stage ion
diode the force is primarily delivered to the anode by a local increase in the magnetic field

on the anode side of the virtual-cathode. This increase in the anode magnetic field is
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caused by the displacement of the virtual-cathode flux surface toward the anode by the
JxB force of electrons within the sheath. The virtual-cathode flux surface is squashed up
against the anode and assumes the approximate shape of the anode. This behavior allows
one the control the focussing of the diode by shaping the anode surface. However, in a
multi-stage diode there may be no surface to squash the virtual-cathode flux surface
against. Consequently, the magnetic flux surfaces can become significantly bowed and this
could cause excessive beam focussing. One could place a grid or a foil on the up-stream or
down-stream side of each acceleration gap to control the shape of the virtual-cathode, but
clearly this adds significant complexity to a multi-stage accelerator. Furthermore, both a
grid and a foil would add divergence to the beam and a foil would strip the ions. We
present analytic calculations of the distortion of the virtual-cathode flux surface. The
results indicate that magnitude of the distortion may be acceptable for a two-stage diode
with beam parameters suitable for driving fusion. Increasing the number of stages will fur-

ther decrease the bending of the virtual-cathode.

B. Calculations

We assume a Cartesian geometry to as shown in Fig. 23 to simplify the calculations.
This is a reasonable approximation since Ar <<r. An initial magnetic field, By, is applied
in the z-direction. The ion beam is incident from the left and is accelerated across the gap
. by a voltage V,. A virtual-cathode is formed along the flux surface attached to the down
stream electrode. The deformation of this flux surface is shown schematically. The electric
potential is constant along the virtual-cathode and so the ions are focussed. We shall
assume that the electron sheath is very thin (the super-insulated model). The problem can
then be divided into two regions. Upstream from the virtual-cathode (region 1) and down-
stream from the virtual-cathode (region 2). We shall ignore the electric current of the ion
beam in this calculation and thus Amperes law then reduces to Laplace’s equation in both

regions.
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Fig. 23 Schematic of an acceleration gap with a virtual cathode

Thus we have the separable equation

2 2

V2A, = g—x‘;" +§£—y =0, _ @y
where Ay is the vector potential in the y-direction. The vector potential can be divided into
two components, A;=Box+A where the first term is due to the applied magnetic field and
the second term is due to electron sheath current in the virtual-cathode. We assume that on
the beam acceleration time scale the drift walls are essentially perfect conductors and thus
A=0 at these surfaces. We have shown foils (or grids) at x=0 and x=x in Fig. 23 to repre-
sent the possible location of a foil or a grid. Thus we set A=0 for Izl =z, x=0, and x=x;.
Note, that there is no wall at lzl=z,, within the acceleration gap. We have ignored this,
which should be a good approximation as long as the gap is small compared to 2z;. Thus

we obtain
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A, = Y A, sinh(a, x)cos(a,z) 22)
n
A, = ZAZne'“nx sinh[or, (x —x;)]cos (o z) 23)
n
where o = (n + %)g— - Let the position of the virtual cathode be xy-6x, where
0 .
8x = Y X coso,z. 24)
n
Keeping first order quantities we obtain
Ayysinh(axg) = Ay e **sinh (0, (xg—X,)) and @5)
X, = 2060h (a,x,) 26
n = -B—O— S anXO (26)

Since we have assumed that the electron sheath is thin, the magnetic force exerted on the

virtual-cathode is due to the jump in magnetic pressure across the sheath, that is

A(Zuo Jm(,ﬁl +V,- VD). @7

where V| is the effective voltage of the ion entering the acceleration gap.

P
If we assume B,; = B0+A2B and B, BO—A—B, we obtain AB, = o

2 Bo
B, = Z—i‘ . Using this jump condition we can find the coefficients Ap, Ay, and X,. The

, Where

result is

sinhot, (xg—x%4)

All'l = —BozoRPDn Sinh(x Xl s (28)
n
e sinha, x,
A2n = —BOZORpDnm,and (29)
n

sinha, xqsinho, (xg—x%4)
sinhor, x; )

X, = 2R D, (30)
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2p0Py, _ (=Dm . )
and D. = ———=2_ The deflection of the virtual-cathode at the

B [

midplane of the beam (z=0) is maximized by letting x( and x;-Xq go to infinity. The result is

where Rp =

O, 1
—x -izn'an = 0.185. | . @D

Rpzo

‘We have mun a series of TWOQUICK simulations to test this analytic theory. The results
are shown in Fig. 24
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Fig. 24 TWOQUICK simulation points (squares) are compared to theory (line)

‘We can define the normalized shape function

X(i X0 )_‘_1,) _ 8 _ 42Dnsinhocnxosinhocn(x0—x1)

2 2 .
2y Zo 2Zg)  OXpax - sinhot, x4

CosOl,Z. 32)

1t is instructive to consider the situation where only one foil or grid is present at a distance
x¢ from the virtual-cathode. Assuming an upstream foil we set xg=Xq and let x; go to infin-
ity, for a down-stream foil, we set xg=x;-xq and let Xy go to infinity. The shape of the vir-

-

tual-cathode is the same in either case and is plotted in Fig. 25.
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Fig. 25 The virtual-cathode shape curves are labelled with the value of X¢/z.

The flattening of the virtual-cathode for small x; is clearly evident. This is due to the
magnetic field pressure against the foil. It is also clear from the figure that when X¢/zg>1.6

there is no change in the shape of the virtual-cathode. This is because the force imparted on
the ion beam is distributed onto the wall (z=zg). The magnitude of this force decays roughly

exponentially with distance from the virtual-cathode. The scale length is approximately 2y
and thus placing a surface at a distance greater than z; from the virtual-cathode will have
little effect.

C. Summary

The results can be summarized by the formula

2.7z, v,

Ref=—RT 1+\72, (33)
where R¢is the effective focal length of the beam after acceleration through the gap with
a curved virtual-cathode, 2z is the thickness of the beam in the direction of the applied
magnetic field, V is the kinetic energy of the ion coming into the acceleration stage, V, is
the voltage across the gap, and R, is the ratio of the beam induced pressure to the magnetic
field pressure given by the formula
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2ueJ

where J is the ion beam current density, By is the applied magnetic field, M/Q is the charge-
to-mass ratio of the ion.

VI. Multicusp accelerator -

A. Emittance growth

The solenoidal focussing force acts as an effective transverse potential well given by

the expression

B2

(35)

The potential due to the space-charge of the ions can be found from Poisson’s equation

V20 = g%(l—f) , (36)

where we shall assume that =0 for r <; and is f; for r > 1;, where 1; is the minimum radius
of the magnetic flux surface that intersects the cathode at the acceleration gap. Since the
electrons are tied to the magnetic ﬁ?ld lines, this is also the minimum radius that electrons
can space-charge neutralize the beam. In section II we estimated the distance thations will
travel before they obtain a random transverse energy spread. Once this has occurred the

beam density can be found from the Boltzmann relation

_2
p =pee XT, @7

where pg is the beam density at the center of the beam and @ = &, + Dgp.

We solved these equations numerically and found that solutions only exist above a mini-
mum beam temperature, T,;,. The results can be expressed in terms of two dimensionless

variables T = Po and
v
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netic force. The parameter © is plotted as a function of I in Fig. 26. The ion divergence

where p, =

is the beam density that would be balanced against the inward mag-

can be obtained from Eqg. (38), the magnetic insulation condition-eq. (2), and the relation

2 _ kTmin . . :
(AB)* = vz where vp is the beam final velocity. The result is
Vg
eZ OB Vcrb
A8 = vgM 2c ’ @9

were V, is the critical insulating voltage of the accelerating gap and ry, is the outer radius

of the ion beam. The beam emittance is obtained by multiplying eq (39) by ry,.
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Fig. 26 The dimensionless parameter © is plotted as a function of the dimensionless
parameter I.

Low divergence can be obtained by keeping the beam density in the unneutralized region

as close to p, as possible, i.e. I' = 1. In practice, I" will always be somewhat larger than 1,
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because of aperture focussing at the acceleration gaps. Thus we can expect © to be of

order unity.

B. Feasibility as a fusion driver

The beam requiréments to drive inertial confinement fusion (JCF) capsules are
extremely challenging. Numerical design calculations* of ICF cafsule performance indi-
cate optimal beam coupling is obtained for ions with a range of approximately 20mg/cm2
in gold. This corresponds to a velocity of roughly 0.15c. A total beam power, P=700 TW
is needed on a capsule with a radius, ry, of 1 cm. The final focus, L, of the beam must be

at least 2 m from the capsule to ensure survival of the hardware. Therefore, the beam
It
L
relaxed if self-pinch transport works, allowing the focal length to be reduced to less than a

divergence given by A® = —, must be less than 5 mrad. This requirement could be
meter. The beam brightness represents an overall figure of merit, which we can use to
determine the feasibility of the multicusp accelerator approach. The field coils and support
hardware for the final focussing magnets will reduce the total area that can be occupied by
the beam. We estimate that the total beam area at the focussing element is given by
Ny nr? = nLZ, where Ny is the number of beams. Therefore, the beam brightness

required for ICF is
P
Bpp = —5 = 2.2x1018 Wm?. (40)
nrk -

The maximum beam brightness that can be achieved with the multicusp accelerator

approach can be determined from the relation

FplVi

where Fy is the beam bunching factor, and Vi is the final voltage of the ions. Using egs (3)

and (39) we obtain
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where Ng is the number of acceleration stages. Setting By > By, we obtain the condition

o 3OK103(1~D)LeO
>
) B3AFgB, Ny

The physics behind this result is that increasing the number of acceleration stages

3)

decreases the voltage on each acceleration stage, thus V. is smaller and so is 1;, reducing
the transverse potential at the center of the annular beam. The number of stages N;=100
for the set of parameters, e.g. A=39, £=0.9, Lg=2m, ©=1.0, Fz=2, B=5, Ny=20, and
p=0.15. Assuming that the final beam energy is 400 MeV, each stage will have 4 MV
applied to it. The over all length of the accelerator would be determined by the inductive
core material and should be about 200 m, which is considerably shorter than a conven-
tional heavy ion accelerator. However, in section I we showed that a high degree of neu-
tralization (better than 95%) would be required if the accelerator is longer than about 125
m. Therefore, the lack of space-charge neutralization at the center of the beam does not
strictly rule out the potential advantages of this accelerator concept as a driver of ICF, but
high degrees of charge neutralization will be required. The only approach that seems feasi-

ble is to use plasma injection.

There are other important issues, which must be studied to determine the feasibility of
the multicusp approach. One issue is the aperture focussing at each acceleration stage.
This focussing can be significantly stronger in the multicusp accelerator than in a conven-
tional linac, because of the formation of a virtual cathode on the down-stream side of the
acceleration gap. Another issue is the accuracy that the focussing forces can be balanced
against the outward space-charge forces, since the net imbalance will create beam emit-
tance. This has been studied by numerical simulation. An example simulation is described

in the next section.



VII. Multicusp accelerator simulations

We used the code TWOQUICK to study the multicusp accelerator concept. The injec-
tion stage is critical to the success of any multistage accelerator. A geometry and a1;p1ied

magnetic field (B=10 Tesla) of a cusp insulated injector is shown in Fig. 27.

Fig. 27 An injector insulated by a cusp magnetic field

The main challenge of designing the injector is to determine the correct shape of the anode
emitting surface. The object is get the beam to enter the virtual-cathode with no radial
component to the velocity. Since the beam is not space-charge neutralized until it crosses
the virtual-cathode there will be an outward force. Thus the beam must be given a small
inward radial velocity component by slanting the anode emitting surface as shown sche-
matically in Fig. 27. TWOQUICK can only a generate rectangular mesh in the 1-z plane,
but it is capable of emission off of diagonals across this mesh. Still this is not enough free-
dom to accurately determine the shape of the anode surface so that ions entering the vir-

tual-cathode will have no radial motion. We were able to get an approximate shape and it
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appears that given a code with boundary fitted coordinates, a suitable injector could be
designed. The radial ion density profile must also be suitable. The desired current profile is
roughly a step function at1;, J=J, [eq (3)] with f=0 forr < 1; and f determine by effective-
ness of the neutralization process for r > 1;. We assumed 30 MV of acceleration per stage
in spite of the results of the last section to get the final energy up closer to that of a fusion
driver. Assuming singly charged potassium ions and =0, Jsx=1.4 A/cm?. The ion current
density will depend on the effective accelerating gap. Some insight into this dependence

can be gained by considering the Child-Langmuir equation

4  qV3/2
Jo = ’9'80&_(12 , @)

which is the one dimensional space-charge-limited current. The gap between the anode
and the virtual-cathode is a monotonically decreasing function of radius and thus injector
will generate an ion current density profile that increases with radius. The effective gap for
r < 1; should be approximately 30 cm for our case. If we assume that 100 A/cm? can be
neutralized for r > r; (98.6% neutralized) the effective gap must be about 3.5 cm. This is a
rather large variation in the accelerating gap. The low current densities required for r <T;
could be attained by recessing the central portion or by providing an ion source over only

a fraction of the available area.

Beam propagation after the injector depends of the balance of the radial forces aver-
aged over the ion trajectories. We separated the difficulties of designing the injector from
subsequent beam propagation by numerically injecting a perfectly laminar beam into the
simulations, with a spin consistent with the axial magnetic field. The injected beam cur-
rent density was set by eq. (3) with £=0 for r < r;. Various current densities were tried for
r>1;, Typically using too large a beam current density resulted in the beam expanding
into the drift tube walls. The inward forces consist of the solenoidal force already consid-
ered and electrostatic forces at the acceleration gaps (aperture focussing). Equipotential

surfaces within the gap can be found from the equation
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were w is the ion energy normalized to the gap voltage, ¥ is the potential normalized to

the diode gap, x=d/d where d; is the gap determine by the Child-Langmuir equation, and
[ 161
1= 91,
setting ¥ = 0. This sets the E=0 surface at anode and minimizes curvature of the equipo-

. Equation (41) can be used to determine the appropriate accelerating gap be

tential surfaces. Maintaining this condition requires that the acceleration gaps increase

with distance down the accelerator as seen from the following table

w i dfdg
o0 | 10 10
1 22 15
2 2.6 1.6 )
4 3.0 17
8 3.6 19
12 4.0 2.0

Slanting the electrodes that feed power into the gap in a manor analogous to Pierce elec-
trodes can be used to counter the outward space-charge of a finite beam. The appropriate
shape can be found from eq. (45) by analytic continuation off the real axis. The resulting
shapes are shown in Fig. 28. Increasing/decreasing the slant of these feeds beyond that cal-
culated results in a net inward/outward force at each gap. This is one degree of freedom

that can be used to balance the radial forces on the beam.

Previous simulations have indicated that passive neutralization of the ion beam is not
adequate, because the accelerating electric field pulls more electrons into the beam near 1;
than at larger radii. This effect can be reduced by injecting plasma in the region just down

stream of each accelerating gap.
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Fig. 28 Generalized Pierce electrode shapes

A snap shot of a simulation of five stages of acceleration using all of these consider-
ation is shown in Fig. 29. The beam in injected from the left side. The injected current
density is 100 A/cm? for 1 > 1; = 9 cm. The current density is 1.4 Afem? for r < 1;. Nearly
100% of the beam exits the simulation on the right hand side. However, a real accelerator
would have to be considerably longer than this simulation, due to the requirement that
each acceleration stage be inductively isolated from the next. A longer accelerator would
require a more accurate balance between the inward focussing force and the outward force
due to the net beam space-charge. The radial divergence of the ion beam was approxi-
mately 30 mrad at the end of the simulation. Clearly low emittance and intense focussing
will be difficult to achieve with the multicusi) accelerator configuration. The generation of
neutrons may be a promising application for this type of accelerator, since a very high
quality beam is not required. Furthermore, protons can be used to generate neutrons and

from eq (3) we see that solenoidal transport is well suited to low mass ions



B—ticid

Fig. 29 The magnetic field, electron density, and ion density of a simulation of five stages
of a multicusp accelerator

VIII. Conclusions

We have studied the possibility of using space-charge neutralization to increase the
current that can be transported in an ion induction linac. We have presented 3-D PIC sim-
ulations of ion beams neutralized by electrons emitted from the drift tube walls. The neu-
tralization factor was approximately 96% when no magnetic field was present. However,
the acceleration gaps must be magnetically insulated due to the presence of electrons. We
found that a field of only 1 Tesla normal to the surface reduced the neutralization factor to
approximately 80%. This explains the poor transport that was observed in the return flux
region of the pulselac experiments that used a radial magnetic field to insulate the acceler-
ation gaps. We have presented analytic calculations and numerical simulations of the
space-charge neutralization of an ion beam by a preformed plasma, which indicate that a
plasma injected into the return flux region could remove this problem. We tested plasma

injection experimentally using the ALIAS facility and found a significant reduction in the
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beam space-charge. However, the radial field geometry requires field coils inside of the
beam and support structure for these coils. These supports will be struck by the beam and
cause out-gassing of material that can cause stripping of the beam ions. Furthermore, the
support structures will be eroded, which posed some practical difficulties for a reactor sce-
nario. Perhaps these difficulties can be overcome by some kind of beam divertor to keep
ions from striking the support structures. Another approach is to only use field coils out-
side of the beam. This will set up a cusp magnetic field. We performed 3-D PIC simula-
tions of a beam injected across acceleration gaps insulated by such a cusp field. We found
that electrons leaving the drift tube walls effectively neutralized an annular region of the
beam, but the electrons were tied to field lines and could not neutralize the central portion
of the beam. We then developed a simple model of the beam emittance induced by the
nonneutralized portion of the beam. The model indicates that a large number of stages are
required for a multicusp accelerator to generate a beam brightmess sufficient to drive
fusion. We performed 2-D PIC simulations of a multicusp accelerator. The beam emit-
tance is determine by the degree of balance between the focussing forces and the net
space-charge forces. The divergence of the beam at the end of six stages of acceleration
(180 MeV potassium) was approximately 30 mrad, which is too large to focus on a fusion
capsule. It is not clear how small the divergence could be made with careful design. We
believe that the multicusp accelerator is better to suited to applications that do not require
. low beam divergence such as generating neutrons by accelerating protons, which are

strongly focussed by the solenoidal field.

We developed general arguments that suggest that a space-charge neutralized light to
medium mass ion accelerator using just a few stages and relatively short overall length
will probably have the best chance of producing the beam quality needed to drive fusion
targets. The radial field geometry is probably most suited to this type of acceleration

scheme if the issue of the support structures can be solved.
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