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ABSTRACT

This report presents a detailed description of the Marker-And-Cell 
(MAC) technique developed at Los Alamos for solving fluid flow problems. 
The method is appropriate for use with a high-speed digital computer.
The fluid is incompressible, viscous, and moves through large-amplitude 
contortions in several space dimensions. There may be a free surface 
upon which waves can form and break, or the flow may be entirely confined 
by walls. Development of the fluid configuration can be investigated 
through as much elapsed time as desired. The motions are calculated by 
using the complete Navier-Stokes equations, including all nonlinear terms. 
The only approximations arise from the finite-difference representation. 
Pressure and velocity are used directly as the dependent variables; 
neither stream function nor vorticity enters except as results derived 
from the velocity field.

Part 1 describes the basic method, its theoretical properties, and 
some extensions. Part 2 presents a detailed description of the logic of 
the present code. In Part J, there are numerous calculational examples 
to show the wide scope of applicability. The extension of the method to 
computations involving two fluids is described in Part k.
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PART 1 - DESCRIPTION OF THE METHOD

Introduction

The numerical solution of problems in fluid dynamics has been 

greatly facilitated in the last decade by the development of high-speed, 

large-memory electronic computers. To take advantage of these facili­

ties, this "hardware" development has been accompanied by the invention 

of numerical analysis techniques.

Anyone experienced in the field will confirm that the difficulties 

involved in formulating useable methods for complicated problems are for­

midable. It is suspected that, at the present time, our technique capa­

bilities for the existing machines are far less sophisticated than those 

that eventually will be developed. Even so, each new approach is broaden­

ing the scope of allowable investigations to such an extent that the term 

"computer revolution" is beginning to be a realistic description of the 

present situation.

Through necessity, the greatest advances in fluid dynamics comput­

ing have come in the field of compressible (high-speed) flows, in which 

shocks and rarefactions are prominent features. Particularly spectacular 

have been the results for large-distortion, time-dependent processes in 

several space dimensions. Many investigators have contributed to the de­

velopment of techniques and to their successful applications.

The subject of incompressible (low-speed) flows has only recently 

received the same intensive effort towards the development of techniques
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for transient-flow solutions. The method developed by Fromm has been 

particularly broad in its applicability to confined, incompressible 

flows.

Recently, we proposed a different approach, by which it is pos­

sible to solve for incompressible flows with a free surface, as well as
2 3for flows that are confined. ’ The original description of this

method was somewhat sketchy in its presentation of details, and a sub-
4

sequent paper emphasized only the applications. Therefore, this re­

port is intended to present a detailed description of our method for 

computing time-dependent, viscous, incompressible fluid flows in several 

space dimensions, a method we have termed the "Marker-And-Cell" (MAC) 

technique.

This part of the report discusses the theoretical background, to­

gether with a description of the basic technique, its properties, and 

some of its allowable modifications. The method of solution and the de­

tails of computer logic are given in Part 2. In Part 3 we have gathered 

a potpourri of results from actual, calculations in order to illustrate 

the applicability of the method. Part 4 shows the technique extended to 

calculations of two different fluids in contact with each other.

The Differential Equations 
The Basic Forms

Before discussing details of the MAC technique, it is useful to re­

cord the form of the differential equations from which the difference 

equations are derived, and to discuss some properties of the equations 

that are pertinent to the numerical manipulations employed in the 

computer.

For the basic field variables we use the symbols

vl = fluid velocity (Cartesian components u, v, w) 

cp = ratio of pressure to (constant) density
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In addition, t is the elapsed time, and r is the Eulerian (laboratory- 

frame) coordinate. The latter has Cartesian components x, y, z.

The properties of the material are represented by a single number, 

v, the kinematic viscosity coefficient, which is taken to be constant at 

this stage of the discussion. Finally, it is convenient to define a 

"discrepancy term"

D s V*u (1.1)

With these definitions, the equations governing the flow are usually 
written

D = 0 (1.2)

- (u*V) ^ - Vcp + v V2?+ ^ (1.3)

Equation (1.2) expresses the conservation of mass for an incompres­

sible fluid. If D fails to vanish anywhere, there is a discrepancy in 

this conservation requirement — hence the name for this term.

Equation (1.3) describes the local production of momentum in terms 
of the following sources: First, -(u*V)u* describes the convection of 

momentum by fluid motion; second, -Vcp is the momentum change arising 
from normal pressure forces; third, u* represents the diffusion of 

momentum by viscous processes; fourth, "g describes momentum production 

by body forces (gravity).

For the present, we neglect the effects of density layering, such 

as would occur in the atmosphere of the earth. Also neglected are the ef­

fects of temperature variations that can produce buoyancy (free-convection 

problems) as well as variations in the kinematic viscosity. Eddy viscos­

ity effects, whose importance can be great, are likewise neglected; v is 

considered to represent molecular viscosity only, and the flows are imag­

ined to be non-turbulent.

Numerous methods have been used for the analytical solution of 

these equations. In many cases, the approach has been tailored to take 

advantage of any helpful features of the particular initial or boundary
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conditions. For example, it has often been useful to linearize the equa­

tions ("slow-motion" and "low-amplitude" approximations), or to neglect 

the effects of viscosity, or to impose restrictions of periodicity in 

space and/or time. Our solution technique uses none of these assumptions. 

It is based upon the full Navier-Stokes equations. The only approxima­

tions are related to:

1 ) The finite-difference resolution, with resulting errors 
which for laminar flow can, in principle, be made as small 
as desired.

2) A difficulty in accurately representing the free-surface, 
normal-stress boundary condition when the viscosity is 
large.

3) Questions concerning the representation of Reynolds stresses 
in terms of properties of the mean flow.

All three of these matters axe considered in detail in this report.

One of the most common solution techniques, both analytical and 

numerical, involves the introduction of a stream function, through 

which Eq. (1.2) becomes identically satisfied. In addition, it is often 

useful to introduce vorticity, thereby eliminating pressure as a variable. 

These techniques are particularly useful for confined flows in two space 

dimensions. For flows with a free surface, boundary condition difficul­

ties arise with these substitute variables; likewise, if extension to 

cylindrical coordinates is desirable, stream function and vorticity be­

come somewhat awkward to handle. The MAC technique, therefore, uses 

pressure and velocity directly as the primary variables; and no difficul­

ties arise with respect to satisfying Eq. (1.2).

Modified Forms

Equation (1.3) can be written in two modified forms, both useful 

for the numerical method, and both derived with the help of Eq. (1.2):

= - V*(uu) - Vcp + W2 u* + g* (l .4)
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= - V*(u u*) - Vcp - v Vx(Vxu) + g* (1.5)

The reason for the change in the transport term is that the finite- 

difference form of this equation retains rigorous momentum conservation, 

while the finite-difference form of the transport term in Eq. (l .3) does 

not. This conservative property can be exhibited directly in the differ­

ential equation. Thus, integrating Eq. (1.4) over a fixed volume V, 

whose surface is S, we get

d_
dt

I
u dV

+ v J"(n*V)uks + J"gdV

(1.6)

✓N
where n is a unit outward normal to the surface. This equation shows that 

the only contributions to the momentum within the volume come from the 

body force in the interior and/or from fluxes through the surface. Equa­

tion (1.2) would not have allowed the transformation of the transport 

term to a surface integral. The situation in finite difference form is 

directly analogous.

The form of Eq. (1.4) is perfectly appropriate for problems in 

Cartesian coordinates; it has, in fact, the advantage over Eq. (1.5) of 

relating shear stresses directly to the velocity differences producing 

them. The derivations of technique and the applications described in 

this report for Cartesian coordinates are all based on Eq. (1.4).

For other coordinate systems, the proper starting point is Eq. (1.5). 

We shall show in the discussion on cylindrical coordinate applications 

that there actually is an unexpected advantage in using Eq. (1.5) that 

would be realized even in Cartesian-coordinate applications. This has 

been discovered only recently, so that all the tests reported in this 

discussion were based upon Eq. (1.4). Further discussion of this advan­

tage is also included in the section on cylindrical coordinates.
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It should be mentioned, incidentally, that conservation of energy 

can be demonstrated from the differential equations. In the absence of 

viscous or body forces, kinetic energy is separately conserved. (The 

body force contributes a coupling to the potential energy, while the vis­

cous force couples to the internal, or heat, energy.) We have not been 

able to extend these energy conservation properties rigorously to the 

finite-difference approximation; but, fortunately, the discrepancies can 

easily be made negligible.

To show the differential behavior of the kinetic energy, it is 

necessary only to multiply the momentum equation by u and incorporate 

Eq. (1.2). With E = — u*u being the kinetic energy per unit mass, one 

may derive

= - V* (ufe) - V*(cpu) + u*if - vu*';7x( Vxu) (1 • 7)

Integration over a fixed volume then gives

dt EdV
= -/S-<E

cp)udS u*gdV u*Vx (Vxu)dV 0.8)

The first term on the right is a combination of convective and work 

terms. The second term exhibits the coupling with the potential energy 

of the fluid, through work done by or against the body force. The third 

term gives the dissipation from kinetic to heat energy; it can be shown 

that the internal contribution from this term is negative definite. To 

see this, it is necessary to evoke the identity

u,Vx(Vxu) = (Vxu)«(Vxu) - V* fux(Vxu) ]

Then
-v J' u* Vx( Vxu)dV

~ ^ J (Vxu)*(Vxu)dV + J n*ux(Vxu)dS

The internal contribution is, thus, obviously negative definite; the 

other term contributes to viscous work through the surface of the volume.
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Boundary Conditions

For any specific problem, it is necessary to supply an appropriate 

set of initial and boundary conditions. We shall be concerned particu­

larly with a prescribed set of rigid walls that may be no-slip or free- 

slip, and with inflow and outflow boundaries. The rigid walls may par­

tially confine the fluid, or they may define an obstacle about which the 

fluid flows. Inflow boundaries have prescribed conditions of fluid in­

flux through them, while outflow boundaries are arranged in such a way 

that fluid outflux through them will occur with minimal disturbance to 

the fluid remaining in the calculation region.

In addition to the prescribed boundary specifications, there will 

be boundary conditions to apply at the free surface, whose position var­

ies with time in a manner not a priori known. One of the major features 

of the MAC technique is the method by which the free-surface boundary 

conditions are applied.

The rigid-wall boundary conditions are the simplest to derive; they 

follow directly from the momentum equations. For a free-slip wall, the 

normal velocity component must vanish; for a no-slip wall, the tangential 

components must, in addition, vanish. Corresponding boundary conditions 

on pressure, obtained through Eq. (l.j?), relate the normal derivative of 

cp to the body and viscous forces in a straightforward manner. These dif­

ferential boundary conditions need not be written in detail here, as, 

for the numerical calculations, it is necessary to derive the finite- 

difference analogies to the boundary conditions directly from the 

finite-difference momentum equations.

Conditions along an inflow boundary are similarly derived; the 

only difference is that the velocity components are prescribed in some 

arbitrary manner, rather than forced to vanish. Pressure boundary con­

ditions then follow from Eq. (1.3) in such a way as to again insure con­

sistency with the momentum balance.
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An outflow boundary condition, in contrast, is very difficult to

derive because there are no unique criteria to aid in its formulation. 

There is some consolation in the fact that if the outflow velocity ex­

ceeds the wave speed, then it should not matter how the boundary is 

treated, (if, however, there is a viscous boundary layer along the 

approach to the outflow line, then even this consolation may disappear.) 

Any technique that one applies at the outflow boundary must be amenable 

to a physical interpretation. Thus, for example, if the tangential ve­

locity components are forced to vanish, and the normal derivative of the 

normal velocity component is likewise set to zero, then the model pre­

sumably represents an outflow into numerous frictionless pipes normal 

to the boundary. If the normal component is, instead, prescribed as a 

function of position and time, then there is a representation of an out­

flow pump at each of the tubes whose flow rate is controlled.

Boundary conditions at the free surface remain the most interesting 

of them all. For the numerical method, they are the most difficult con­

ditions to apply accurately. It is not difficult to state the principles 

that form the basis for the free-surface boundary conditions:

1) Stress tangential to the surface must vanish.

B) Stress normal to the surface must exactly balance 
any externally applied normal stress.

The second principle implies a slight generalization from a strictly free 

boundary. It allows for pressure-driven surface motions to be produced 

by an atmosphere whose inertial contribution to the dynamics is negli­

gible. The first principle implies, however, that such an atmosphere be 

incapable of exerting a shear stress. If the latter is actually of im­

portance, or if Bernoulli pressure variations in the atmosphere are a 

significant effect of its dynamics, then the one-fluid, free-surface 

treatment breaks down; and a two-fluid calculation is required.

To exhibit the complications arising from the free-surface boundary

conditions, it is useful to record them for the special case of plane

motions in two space dimensions. Let n and n be the components of ax y
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unit outward vector, normal to the surface 

tion for the surface height.

nx

n
y

dz

Then, if z(x,t) is the equa-

Also, let m and m be corresponding components of a unit tangential vec- x y
tor, so that

m = n and m = - n x y y x

In addition, let cp (x,t) be the externally applied pressure. Then, within&
the fluid at its surface, the tangential stress condition becomes

du / \ /du chA 0 „
“ “ “ “ + si/+ 2 j2nm ^■+(nm + nm)x x x y y x'

Sv n
.1 IQ — 0y y oy 0.9)

while that for normal stress can be written

cp = <pa + 2v 2 du / Su 2 dv
nx ^ + W W + + ny ¥, (i.io)

Thus, it is clear that accurate application of these conditions re­

quires accurate knowledge of the free-surface orientation. The difficul­

ties of this requirement will become apparent when the numerical method 

is presented.

It should be mentioned, incidentally, that inclusion of surface 

tension into the free-surface boundary conditions could be useful for 

some types of problems. If T is the surface tension (stress per unit 

length) and R., ^ 8X6 the PrinciPal radii of curvature, then Eq. (1.10) 

must be modified by a term
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At present, we have not found an effective way to incorporate this 

effect into the numerical calculations.

The Solution Technique

To illustrate the MAC method for solving free-surface problems, we 

confine our attention in this section to two-dimensional motions in a 

plane. Extensions to cylindrical and other coordinates are discussed in 

a subsequent section.

Representation of the Fluid

In the development of any computing method for fluid dynamics prob­

lems, there are two interacting considerations that must be taken into 

account:

1 ) How are the fluid and its environment to be represented?

2) How are changes through time to be calculated?

Many representations can be visualized for calculating the flow of 

an incompressible fluid with a free surface. Several approaches were in­

vestigated before the specific MAC arrangement was discovered. In most 

cases, ideas were discarded because of difficulties encountered in the 

incorporation of boundary conditions. One particularly promising ap­

proach proved unworkable because of the impossibility of achieving rig­

orous mass and momentum conservation. Thus, the representation we have 

chosen is not as arbitrary as might at first be supposed; it is the re­

sult of considerable trial-and-error experimentation to assure the in­

clusion of many properties that seemed necessary for successful computing.

There are, in effect, two coordinate systems used in MAC-method cal­

culations: The primary one covers the entire domain of interest with a 

rectangular grid of cells, each of dimensions 5x by 6y. The cells are 

numbered by indices i and j, with i counting the columns in the x direc­

tion and j counting the rows in the y direction. The field-variable 

values describing the flow field are directly associated with these cells. 

Their points of definition, relative to a cell, are shown in Fig. 1.1.
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Actually, the true fluid would, 

in general, have a different set of 

field-variable values for every in­

finitesimal point in the fluid. The 

representation used for computing, ______

however, must be restricted to a1 u. 1 .
finite number of values, each ap­

proximating an average through the ----------

immediately adjacent region. It 

follows that the accuracy of the re­

presentation depends strongly upon 

the fineness of the mesh compared Fig. 

to the macroscopic structure of the 

flow.

.1 . Field-variable layout.

The placement of the field-variable quantities relative to the mesh 

is of considerable importance to the matter of conservation. No arrange­

ment other than the one shown in the figure appears to be workable.

For example, if the field variables are placed at the cell centers, 

the following complication is introduced: To attain rigorous finite- 

difference mass conservation, the finite-difference equation for pressure 

would require the involvement of the next layer of cells beyond that 

which immediately surrounds any central cell. Such an involvement adds 
enormously to the complexity of the solution technique. Even more im­

portant is the expectation from previous experience that the use of 

"far-distant" quantities would introduce inaccuracies, at best, or even 

instabilities that could reduce the results to nonsense.
In addition to the primary-coordinate system of finite-difference 

cells, there is a coordinate system of particles whose motions describe 

the trajectories of fluid elements. These particles serve two pur­

poses: First, they show which cells are surface cells, into which the 

surface boundary conditions should be applied. Second, they show the 

motion of the fluid and all its distortions as it passes through the
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computing region. For the first purpose, it would be necessary to have 

particles only near the fluid surface. The second purpose, however, is 

also of considerable value, particularly if facilities are available for 

easily plotting particle positions at various times through the progress 

of the calculation. We have found that complete configuration plots 

carry in concise form much of the information required for the analysis 

of results.

It should be emphasized that these particles serve only as mass­

less markers of the centers of mass of the elements of fluid. They con­

tribute nothing to the dynamics, and enter into the calculations only 

insofar as they designate which are the surface cells.

Outline of the Computing Method

The cell-and-particle system enables an instantaneous representation 

of the fluid for any particular time during the evolution of the dynam­

ics. In addition, it is necessary to have a means of actually calculat­

ing the changes with time of the fluid representation. What is needed 

is a computing technique whereby the prescribed initial conditions can 
develop, within the limitations imposed by the boundary conditions, into 

that subsequent set of configurations that most nearly represent the be­

havior of a true fluid.

As in most other fluid dynamics computing methods for transient 

problems, the MAC technique works with a time cycle, or "movie frame," 

point of view. This means that the calculation proceeds through a se­

quence of cycles, each advancing the entire fluid configuration through 

a small, but finite, increment of time, 6t. The results of each cycle 

act as initial conditions for the next one, and the calculation con­

tinues for as many cycles as the investigator wishes. Each cycle is 

itself subdivided into phases:

1) The pressure for each cell is obtained by solving a finite-
difference Poisson's equation, whose source term is a function 
of the velocities. This equation was derived subject to the
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requirement that the resulting momentum equations should 
produce a new velocity field that satisfies the incompres­
sibility condition.

2) The full finite-difference Navier-Stokes equations axe 
used to find the new velocities throughout the mesh.

3) The marker particles are moved to their new positions, using 
for their velocities simple interpolated values from the 
nearby cells.

4) Bookkeeping processes are accomplished related to the crea­
tion or destruction of surface cells, the input or output
of particles, the advancement of a time counter, printing or 
plotting results, and numerous similar matters.

By the end of the cycle, the results have been arranged in the com­

puter memory in such a way that the next cycle can immediately begin.

The Difference Equations 

The finite difference analogy to D is

D
ij

= (u 1 - u 1.) + r- (v
5x i+2-j i-pj oy 1iT 5y

ij+i Vij"P (1.11)

Thus, the incompressibility condition becomes

D.j = 0 (1.12)

which we require for every cell at every time step.

Using Eq. (1.4) as the basic form for this two-dimensional Cartesian 

example of the method, we obtain the difference equations

_L
5t

/ rn+1u1+ij 5x
.W/ - (ui+ij)2

&y
(OT)i43-i ’ (uv)i^j4.

- Sx+ s; Kj ■

+ V
1 (u

1
5x i+|j + u. 1, - 2u. 1,)

rJ i+aj'

+ 5y2 ^Ui+^j+1 + Ui+^j-1 " ^i+ij^

(1.13)
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1 / n+1
rr ,.1 - v

+ + 5y ^ij " ^ij+1 ^ (1.14)

The superscript n or n+1 refers to a value at time n&t or (n+l)&t, so that 

n counts the number of time cycles. Where the superscript is omitted, n 

is implied, i.e., the value of the quantity at the beginning of the cycle.

A number of undefined quantities appear in Eqs. (1.13) and (1.14). 

These are velocity components at localities for which values have not been 

stored in the machine memory. In each case, a simple average is to be 

used. For example.

(1.15)

Where a product of such quantities appears, it is to be understood that 

each is to be averaged first, and then the product is to be formed.

It may be noticed that as soon as the pressures sire known for all 

the cells, then Eqs. (1.1:5) and (1.14) are immediately appropriate for the 

csilculation of new velocities, a process accomplished by simple algebraic 

substitution. To find an equation for the pressures, it is only necessary 

to manipulate Eqs. (1.13) and (1.14) into an expression for the rate of 

change of D . First, define:
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(1.16)

QUi1 2 J 5x
L(ui+1j)2 + (ui-1j)2 ' 2(uij)2

5y
(v. -,)2 + (v, , J2 - 2(v )2

.2 Lv ij+1 ij-1 ij ‘

_ _ (uv). 1.1+ (uv). i.i- (uv). i.i- (uv). i, i5x6y Lv 'i+lj+l i+2J“2 i-iJ+2

Then it follows from Eqs. (1.13) and (1.14) that

_1_
8t

Dn+1 - D. 
1J i

7T + 'flj-l •
&y ij (1.17)

+ v uBx- i+u + El-u • + ^2 (Dij+1 + Dij-1 •

an equation which is of fundamental importance to the derivation. The equa­

tion obtained by setting = 0 in Eq. (i.i7) is used for finding the
pressures:
^2 K+ij + Vu - atPij) + fa Kj+i + ’’ij-i - ' - Eij C •l8)

where
D .

R. . = Q. . - ij ij 5t (1.19)

- v l6-V’WW2V+;V<eo \"j j . ■*" Rj • i “ 2D. .) .2 ij+1 ij-1 ij

Note that the resulting values of <p lack superscripts; that is, they are 

time-centered at the beginning of the cycle, appropriate for their use 

in Eqs. (1.13) and (1.14).
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The solution of Eq.. (i.i 8) requires much of the computing time, be­

cause some type of iterative process is usually necessary. The process 

we use is described in Part 2 of this report; the details have no bear­

ing on the basic MAC methodology, except insofar as the matter of effi­

ciency is concerned. The solution of Eq. (l.l8) will increase the re­

quired computer time quite rapidly as the accuracy criterion is 

tightened. It follows that any process that decreases the accuracy 

requirement will speed the computing time. It also must be noticed that 

errors in the pressure solution, resulting from iterating to a coarse

convergence criterion, will result in non-vanishing values of D... Thus,
-*• J

the reason for keeping the D terms in Eq. (1.19) becomes clear. We have, 

in fact, compared the results of calculations run in the following three 

ways:

1 ) Replace R. . in Eq. (l .18) by Q. . and solve the cp 
i j i J

equation to a high degree of accuracy.

2) Use R. . in Eq. (1.18) and solve the cp equation
J

only roughly.

3) Replace R . in Eq. (l.l8) by Q . and solve the cp
1 J J-J

equation only roughly.

The conclusion is that the roughness in alternative (2) can be sur­

prisingly great before the results of the comparisons show appreciable 

differences from those of alternative (l), but that number (3) differs 

strongly from the other two even if the roughness of the solution is 

not nearly as great as in number (2). This means that alternative (2) 

introduces considerable efficiency in the computer usage and is recom­

mended for all MAC-method calculations.

Thus, Eqs. (l.13)> and 0*l8) are the three equations re­

quired for calculating the new quantities in each cycle. Once the 

pressures have been obtained from Eq. (1.18), the velocities can be 

found directly from Eqs. (1.13) and (1.14) without further iteration.
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The Particle Movement

The marker particles enter into the solutions of the cell quantity- 

equations only insofar as they serve to show where the moving, free sur­

face is located, and accordingly which cells should have free-surface 

boundary conditions imposed in them. In order to keep this information 

on free-surface position current, it is necessary to move the marker 

particles each cycle in such a way that they accurately represent the 

fluid motion.

The technique we have been using is to find a velocity for the 

movement of each particle by using a simple area-weighted interpolation 

method among the nearby cell velocities. Details are given in Part 2 

of this report. The principal accuracy criterion for the method of mov­

ing particles is based upon the requirement for conserving the volume of 

the region they fill. This is discussed in detail in the section on 

accuracy.

Boundary Conditions

At rigid walls, the basic boundary conditions are simply that the 

normal velocity component vanishes and, in addition, that the tangential 

component vanishes if no slippage is to be allowed. With regard to the 

latter, the determination as to whether or not slippage is to be allowed 

depends upon the thickness of the boundary layer that would be expected 

to develop in the true fluid. If this is much less than the dimensions 

of a finite-difference cell, then a free-slip condition is appropriate; 

if it is larger than a cell, then a no-slip condition is required. For 

intermediate cases, the proper condition to use depends upon the exact 

circumstances, and in some cases it is appropriate to try both ways and 

compare the results.

In present applications of the MAC method, we restrict rigid 

walls, as well as influx and outflux walls, to follow cell boundaries.
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This means that all side or obstacle walls must be formed of horizontal 

or vertical segments only, (it is difficult to relax this restriction 

in Eulerian fluid dynamics calculations. We have found in other codes 

that diagonal walls or even circular ones can be built into a rectangu­

lar mesh, but the complexities are appreciable. The use of a curvilin­

ear coordinate system might be helpful, but applicability would be re­

stricted in each case to a relatively small class of well-fitting 

examples.)

The natural arrangement is to have vertical walls passing through 

horizontal velocity (u) points, and horizontal walls passing through 

vertical velocity (v) points. This allows for direct incorporation of 

the boundary condition that normal velocity vanishes.

If the wall is to allow for free slip, then whenever an equation 

calls for use of an exterior tangential velocity, the calculation simply 

uses the value of the tangential velocity at the image point back in 

the computation region. Likewise, if an exterior normal velocity is re­

quired, the negative of the image value is used. (Thus, the average of 

the exterior and interior normal components is zero, consistent with the 

vanishing of the normal, component at the wall.)

If the wall is to have a no-slip condition, then the exterior tan­

gential velocity component must be the negative of the interior image 

value. This, then, leads us to the following strange procedure for ex­

terior normal velocity components: In order that D vanish for the ex­

terior cell, we require that exterior normal velocity components have the 

same value as they have at their image interior points. The values at 

the wall still vanish, however, even if the interpolated values do not.

The reason that D must vanish for exterior cells adjacent to the 

boundary can be seen in reference to Eq. (1.17), which shows that D 

will otherwise diffuse into interior cells. It should be noted that a 

set of difference equations based on Eq. (1-5) instead of on Eq. (1.4) 

would lack the viscous diffusion terms of Eq. (1.17), and the requirement 

of a vanishing exterior D would no longer be necessary. We have not yet
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tried this approach, but will do so in the expectation that it will have 

several useful properties. (For cylindrical coordinates, the alternative 

of starting from Eq. (1.5) appears to be the only acceptable one.)

In addition, we require boundary conditions for the solution of 

the cp equation. At rigid walls, the momentum equations supply precisely 

the needed guide for finding these conditions. They show how the normal 

difference of the pressure is balanced by the normal component of the 

body force and by the viscous diffusion of normal momentum. These bal­

ance expressions give exactly the information from which any equation 

"needing" an exterior cp value can find such a value in terms of avail­

able data. Examples of this and related boundary condition matters are 

given in detail in Part 2, which, in particular, shows how to handle the 

special problems arising at corners.

Boundary conditions along a line of prescribed constant-inflow rate 

differ only slightly from those at a rigid wall; the modification is 

straightforward. At an outflow wall, there is no unique prescription to 

apply. We have had good results in several examples by requiring the 

normal derivatives of the field variables to vanish. Further discussion 

of the details is given in Part 2.

It is the handling of free surfaces which particularly distinguishes 

the MAC method from all others for fluid dynamics computing. The general 

differential conditions have been stated in Eqs. (1.9) and (1.10); they 

express the vanishing of tangential stress and the balance of normal 

stress with that which is externally applied.

If the viscous effects are negligible, then the normal stress con­

dition is all that is required; and we simply put the appropriate local 

value of the applied pressure into each surface cell. Often, this value 

would simply be a fixed constant that we choose to be zero, representing 

the truly free surface adjacent to an atmosphere with negligible inertial 

or dynamic influence.

If viscous effects are important, then it is, in principle, neces­

sary to construct finite-difference analogies to the stress balance
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conditions stated in Eqs. (1.9) and (1.10). It is easy to see, however,

that the construction of these analogies is troublesome because of the

difficulty of sensing accurately the local orientation of the surface.

As a result, we proceed somewhat differently. It is, of course, of

primary importance that D. . = 0 for every surface cell, this in spite
* J

of the apparent contradiction that each surface cell is in the process 

of changing its total amount of mass. The vanishing of D refers to the 

interior of the fluid near the surface, with the resulting velocity 

components extrapolated to the exterior edges of the cell. Such a con­

dition, however, is unique only if one side of a surface cell faces the 

exterior. If two sides face the exterior, then the vanishing of tan­

gential stress ought to be invoked in order to determine the two bound­

ary velocity values. Because of the difficulties described above, how­

ever, we require instead simply that

du ^ j dv ^= 0 and = 0

separately. Surprisingly, we find that even for very viscous fluid cal­

culations, there is good evidence that this procedure results in negli­

gible free-surface tangential stress. We have found no way, however, to 

derive rigorously a measure of the error to be expected from this 

treatment.

The balance of normal stress in a strongly viscous fluid is like­

wise approximated in our present MAC calculations. It can be seen that 
the viscous correction in Eq. (1.10) is proportional to the normal deriva­

tive of the normal component of velocity. Experience has shown that in 

many circumstances this gives a very small stress correction, in compari­

son with the other stresses present near the surface. As a result, we 

simply neglect that term and use the externally applied stress only.

Again, we have only experimental, but not analytical, justification for 

the approximation. For both of these stress-balance boundary conditions, 

we hope to experiment with more accurate representations of the true
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conditions. Meanwhile, we have been pleased to note that in many examples 

of interest our approximation model has been adequate.

Confined Flows

If the flow is completely confined by rigid walls, including inflow 

and outflow walls, so that there is no free surface, then the MAC method 

is still applicable. The procedure is actually simplified in several 

respects:

1 ) No free-surface boundary condition difficulties exist.

2) No marker particles are required. (They still are useful, 
however, to show the changes in configuration.)

In the absence of the free-surface boundary conditions, there is 

no reference pressure in the system to guide the convergence of the cp 
equation iterations. Convergence does not seem to be affected adversely 

by this lack of reference. In order to compare pressure results from 

cycle to cycle, it is useful to normaJLize the pressures after convergence. 

This can be accomplished by adding any desired constant to all of the cp 
values.

For confined flows, the MAC technique still appears to exhibit ad­

vantages over the stream-function-and-vorticity methods. Boundary con­

ditions at rigid walls do not involve derived variables and, thus, can 

be applied easily and accurately without any special techniques or half- 

cell ambiguities in the definition of wall position. Examples of some 

confined flows are presented in Part 3.

Stability and Accuracy 

Stability Considerations

The solution of initial-value problems by finite-difference approxi­

mations is almost always plagued by potential difficulties with numerical 

instability. The MAC method, however, is fortunate in that the stability
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restrictions are not very stringent for most applications. In addition, 

we have found that viscosity is not required as a stabilizer, an unex­

pected contrast to many of the Eulerian computing techniques in which 

stagnant regions become "hashy" in the absence of real or artificial 

viscosity.

It appears that there are two principal stability requirements, 

but we have not been able to demonstrate the sufficiency of either. One 

is directly analogous to the Courant condition that occurs in compres­

sible flow calculations. In place of the sound speed, however, the 

wave speed appears:

C s ^ tanh kh 
k

1
2

where k is the wave number and h is the depth of the fluid. Then it can 

be shown that a stability requirement is

C&t < 2bx5y 
&x + by (1.20)

The other stability condition relates to an effect of the viscosity and 

can be written

2V&t <
2 2 &x 6y

* 2 * 2ox + by
(1.21)

In both cases, the result is effectively a restriction on the size of bt, 

the time increment per cycle. Because both conditions should be satis­

fied, it is necessary for any calculation to pay attention to whichever 

is the more restrictive.

For calculations with v = 0, it is noticed that the particle ar­

rangements usually become slightly irregular, in comparison to the neat 

line-up arrangement that persists when v is not zero. Apparently the 

non-viscous calculations experience slight cell-to-cell velocity fluctua­

tions whose principal manifestation is in the slight particle disarrange­

ments. This effect has not been serious in any of our calculations.
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It does not behave like a disastrous instability inasmuch as its effects 

are bounded to a very small magnitude.

Accuracy Considerations

Obvious requirements for accuracy include the necessity for cells 

fine enough to resolve the features of interest and for time steps small 

enough to prevent instability. A precise statement concerning cellvise 

resolution appears impossible to give. We generally say that the cells 
must be so small that no field variable changes by "much" across any 

cell. We find, however, that the usual interpretation of this is too 

stringent; very useful results have been obtained when the resolution 

was much coarser than might have been thought desirable.

One aspect of cell resolution concerns the boundary layer that can 

be expected along a rigid wall. It is not at all necessary to resolve 

the details of such a layer if the effect on the external flow would 

really be negligible. In such cases it is, in fact, appropriate to 

ignore an unresolvable boundary layer by incorporating a free-slip con­

dition at the wall.

If the time step per cycle is just small enough to prevent insta­

bility, then the calculation may be quite accurate, in the sense that 

any smaller value of &t produces a negligible change in the results.

This is not always the case, but is more likely to be so if the viscous 

stability condition is the more restrictive of the two.

The number of particles per cell used to define the fluid config­

uration has little effect on accuracy. However, for this statement to 

be true, it is necessary that cells interior to the fluid be considered 

as full, even if particle-position fluctuations should momentarily re­

move all particles from such a cell. (This, incidentally, can easily 

happen, especially in circumstances where compression in one direction 

and the corresponding expansion in the other result in the spreading 

of lines of particles.) For example, in defining the surface position, 

an average of four particles per cell is not much worse than sixteen.
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Experience with many different types of computing techniques has 

shown that one of the most important contributors to accuracy is the de­

gree of rigorous conservation of the finite-difference equations. For 

incompressible-flow calculations of the type discussed in this report, 

the primary quantities to conserve are mass (or volume) and momentum.

Mass or volume conservation is assured if, at every cycle, D = 0 

for every cell, and if the motions of the marker particles well repre­

sent the velocities that contribute to the vanishing of D. It has 

been shown that a test of this mass conservation can be accomplished by 

keeping account of the total number of cells that have any particles in 
them.^ If, for example, the computing region is bounded by rigid walls, 

so that the total number of particles is constant, then statistically 

one should expect the number of cells with any particles to be

0.22

in which A is the true area that the fluid should occupy, P is the perim­

eter of the area, and A is the ratio of mean interparticle spacing to 

cell size.

In a typical example of the use of Eq. (1.22), we suppose fluid to 

be laid out initially to fill an area ten cells by ten cells. Then 

A = 100 6x&y; and initially, with a neat layout, one sees that N = 100.

As the fluid moves, however, and the particles become less regularly 

placed, N increases. By assuming the glob of fluid to be removed from 

any wall, the initial perimeter of the glob is P = 20 (5x + 6y); and its 

subsequent perimeter will continue to be approximately the same. With 

four particles per cell, A = 0.5; and we see that ultimately

N = 100 +
10 (5x + Sy)^ 

Jt &x6y

If the cells were square, then N = 112.7* Examples of this sort have 

often been checked against the results of actual computer calculations, 

with excellent agreement.
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Momentum conservation is also strongly required for accuracy of 

calculations. It was for this reason that terms in the transport part 

of the momentum equations of the form

du . du

were transformed (using the incompressibility condition) to 

ctu^ chiv
sr + *57

The difference form of such an expression can then be written as pure 

differences, so that the flux of momentum out of one side of a cell 

exactly equals the flux into that same side of the adjacent cell.

To see the importance of these conservation requirements, consider 

the example of the hydraulic jump. It is well known that the basic pro­

perties of the jump are completely determined by the overall conserva­

tion conditions from one side to the other, regardless of the detailed 

nature of the jump itself. In similar fashion, the overall properties 

of a flow can be given correctly as the result of rigorous conservation 

of the crucial physical quantities, even if the detailed structure is 

not accurately resolved.

In the absence of viscous dissipation or body forces, the differ­

ential equations of the MAC technique also conserve kinetic energy.

This is not the case, however, with the difference equations; it does 

not appear to be possible to conserve mass (or volume), momentum, and 

kinetic energy in the finite-difference approximation. As in the 

analogy to the true hydraulic jump, which does not conserve kinetic 

energy, the energy seems to "take care of itself." The basic source of 

non-conservation in the finite difference form comes from smoothing 

the velocity fluctuations caused by the finite cell size. The process 

resembles the production of entropy in compressible fluid calculations. 

We speculate, but have not proved, that the kinetic energy non­

conservation rate is negative definite. If a heat energy equation is
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carried along in the calculations (for such purposes as determining heat 

flow rates or temperatures for buoyancy terms) then it should be possible 

to assure rigorous conservation of total energy.

There is one more aspect of accuracy that is worth mentioning. If 

the boundary conditions are incorporated into all phases of the calcula­

tion with precise consistency, and if the computer executes all instruc­

tions accurately, then the size of D for every cell will be bounded by a 

number that decreases as the convergence criterion for the cp equation is 

made more stringent. Therefore, the value of D should, at no time or 

place, exceed a specified upper bound. To check this, it is useful to 

build a comparison routine into the calculation that will print diagnos­

tic information in case of a violation.

Other Coordinate Systems 

Cylindrical Coordinates

With u and v the velocity components in the r and z directions, 

respectively, we may write the appropriate differential equations for 

cylindrical coordinates in the form

1 dru dv
+ 0 (1.23)

du 1 Oru^ ouv ck s / du dv^
(1.24)3t+ F"1F- + ^F= -S-+ v ss Vss ' Sr/

2
dv 1 druv c>v ck> v a Vdu dvd

(1.25)St+ F-3r + sr-= g - Sz ~ r [Ass • Sr/.

The above expressions have used Eq. (1.5) as a starting point for the 

derivations, rather than Eq. (1.4), because V u does not have an appro­

priate direct interpretation in any but Cartesian coordinates.

Letting i and j count cells in the r and z directions, respectively, 

we may then define
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(1.26)D., = —r— ij r16r (ru)i4j - (ru’i-ij
6z LViJ+i "

and obtain the equations 

D =0
ij

(1.27)

n+1 nn. i. - u. x . ,_ItaJ__ = -J____
St r,,. xSr

(ru2)u - (ru2)1+u

+ ' ui4j+i + '’’ij ' ‘I’i+1 j
6z Sr

+ v —o (n^ i. , + u. n. , - 2u. x.)Lc_2 i+2J+l i+^j-1 1+2J■Sz

(1.28)

L K 1 - v 1 + v, , x)
SrSz i+1j+t i+1j-# ij+2 ij-? .

and

n+1 n
lo+i = j_(ruv)l4.4 - (ruv).+i

i+?j+t

2 2Vj j - y* *cp . - cp.
x. ij ij+1 . Mij TiJ+1 , „

+ Si + ST + gz

ri6r Lri4
i+?j+l ~ Ui+?j _ Vi+1j+? “ Vij+?

Sz Sr

- r
x ri4j+i ~ ui4j . vij4 ' Vi-1 j-4\

• -? \ Sz Sr /

(1.29)

From these may be derived, rigorously, the equation
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^n+1 n 
-Di.i
6t r-; . 12 L i+1 'ij

'"’ij - Vlj* - rl-i(t|>i-1 J
^(Sr)'

, ~ - "ij-l , 1

(&zr
^(Sr) L

2(ru2)
ij

• (ru ’i-U
6z

2 2 22v - v - v
2 L ij ij+1 ij-1

cp. .)

(m2>i+u

(1.30)

i\5r5z (ruT)i-ij.i + (ruv)i+|j-i

- (ruv)ii - (ruv) i L 
1+2 j+2 1—2 j'“2 J

This, then, completes the essential part of the derivation. The cp equa­

tion follows from Eq. (l .30) with = 0. Note the absence of viscous

diffusion of D in Eq. (l .30), in contrast to the analogous Eq. (1.1?) 

for the Cartesian-coordinate description. The reason is not related to 

the difference in coordinate systems, but rather to the form of the dif­

ferential equation from which the finite-difference momentum equations 

were derived. If the Cartesian-coordinate derivation were based upon 

EQ.* (l»5)> th6 same type of modification to Eq. (i.i?) would have re­

sulted. We have not yet actually tried this in calculations, but anti­

cipate doing so in the hopes of simplifying the boundary conditions and 

improving the accuracy of the results.

Boundary conditions for the cylindrical-coordinate calculations 

would be very similar to those in Cartesian coordinates. Care must be 

taken, as before, in applying the conditions in precisely the same way 

throughout the calculation steps. Factors of r will be liberally sprin­

kled throughout the boundary conditions in order to accurately account 

for momentum balances.
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Accelerating Systems

In situations involving large motions of a fluid, it would be advan­

tageous to have the coordinate mesh follow the mean fluid motion. If 

there is a constant translation rate, then the only procedural change in­

volves the boundary conditions at rigid walls. Translation parallel to a 

no-slip wall means that the wall velocity relative to the mesh must be 

considered. Translation normal to a wall can be computed only if the 

translation speed equals the wall speed.

If the translation is to a non-inertial (accelerating) coordinate 

system, then the acceleration enters the momentum equations as an addi­

tion to the body acceleration term (gravity). For translation parallel 

to a wall, the same considerations arise as if the translation rate were 

constant. For translation normal to a rigid wall, in which the transla­

tion speed must always equal the wall speed, care must be taken in the 

pressure boundary conditions to include a balance against the accelera­

tive term.

General Curvilinear Coordinates

The only admonition to be offered in this report is that the inves­

tigator must be careful to assure rigorous mass (or volume) and momentum 

conservation in the difference equations. He must balance with care the 

appropriate momentum fluxes to derive boundary conditions that are physi­

cally meaningful; and he must take care to use the boundary conditions 

consistently in the same way through all steps of the calculation, in 

order to assure the vanishing of D. The apparent accelerations related 

to the constraints of curved mesh lines (non-inertial paths) must re­

ceive particular attention.

Three Dimensions

Problems in three-dimensional Cartesian coordinates appear to re­

quire only simple and obvious modifications to the present technique for
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two space dimensions. An iterative solution is required for but a single 

variable, the pressure, in contrast to stream-function techniques where 

it appears that three iterative solutions per cycle would be required.

The principal difficulties in three-dimensional calculations re­

late to computer limitations and to effective display of the results.

At present, too much computing time is required if enough cells are 

used to give reasonable resolution in all three dimensions. The display 

problems are somewhat more mundane, related to human inefficiency for 

three-dimensional visualization — a problem beyond the scope of this 

report.

Variations in the Technique 

Heat Transport

In many examples of interest, the full energy equation is not re­

quired; the dynamics of the incompressible flow are essentially unaffected 

by the distribution of heat, so that the latter simply accommodates itself 

to the changes in fluid configuration. This simple uncoupling is by no 

means a universal property of "incompressible" flows, however. The most 

common exception arises from variations of viscosity with temperature. 

Buoyancy effects may also be an important manifestation of temperature

variations. Even without coupling back onto the dynamics, the study of
5

heat flow can be of considerable practical interest in itself.

The incorporation of heat transport into the MAC calculations is 

quite a straightforward process. It is necessary only to add a step to 

the sequence of processes that advance all field variables each cycle.

Even if the heat flow effects couple back to the dynamics, the required 

modifications are relatively simple to include.

The basic equation for heat transport can be specialized directly 

from the general energy equation of fluid dynamics

P M = 1 “ ^ + + Pv<1> (l *31)
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Here I is the internal (heat) energy per unit mass, often expressed as a 

product of specific heat and temperature; T is the temperature; k is the 

heat conduction coefficient; and is proportional to the rate of heat 

production caused by viscous dissipation. The other symbols retain their 

previous meanings.

The first term on the right side of Eq. (1.31) represents the con­

vection of heat produced by fluid motion. (Thus, even in problems for 

which the heat flow does not couple back into the dynamics, we see that 

the dynamics always couples strongly into the heat flow.) The second 

term is the heat production rate from compressive effects, which we 

ignore for incompressible flows. The third term is of considerable im­

portance: it gives the heat flow from conduction processes. Finally, 

the last term in Eq. (l.31) is negligible for most flows that can be 

called incompressible. To see that this is so, it is necessary to re­

call that the definition of incompressible flow is more accurately re­

lated to a comparison of fluid speed with sound speed than it is to the
simple statement, "p s constant." If the Mach number, M = u/c , in

s
which c is local sound speed, is everywhere much less than unity, then s
the flow is "incompressible." We can estimate the magnitude of <I> by 

using only the fact that it is formed by a sum of the squares of velocity 

derivatives. Thus, if s is the distance over which any flow quantities 

vary appreciably, and if u is a measure of a typical fluid speed, then

-2u

This is to be compared with either the convection term or the conduction

term. The former can be estimated as follows:
- 2

—=r PU C, pul _ s pu*VI ~ ------- -—

Thus, the dissipative term is small provided

su
v »>

u2
2c s
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that is, provided that the Reynolds number is very large in comparison 

to the square of the Mach number. This, of course, is almost invariably 

the case for the types of flow that the MAC technique can handle.

Comparison of the dissipative term with the heat conduction term 
shows the former to be negligible, provided that M^ Pr «< 1 (in which 

Pr is the Prandtl number, for most substances of order unity). Again, 

this criterion is certainly required anyway if the MAC technique is to 

be applicable.

Thus, for most purposes, it is sufficient to write for heat trans­

port

^ + £ V2T (1.32)

in which advantage has been taken of the condition V*u* = 0, in order to 

put the whole equation into conservative form.

Many techniques have been proposed for the solution of this equation 

by finite differences. In the MAC technique, the equation can be 

adapted readily to the mesh, as already defined. Temperatures are asso­

ciated with cell centers; and the finite difference equation can be 

written, for example, as

Ta+1-T.. .
______u = J_

St (uT) ! . - (uT), , !6x L i-id i+2i
(vT). . i - (vT). . i

&y L' ij ij+2 -

^ (T,^ < + T. 
■&x

-i(1 *33)
- 2T, ,) + -^ (T,

5y
ft* U„2 Vii+1j T ‘‘'i-l j “ij7 T c,2 ^ij+1 + Tij-1 ■ ^ij^

The stability requirement for this expression is only slightly more 

stringent than that for the dynamics if Pr < 1; otherwise, it is less 

stringent.

Appropriate boundary conditions for the heat equation can be de­

rived directly from the physical requirements of insulation or constant 

temperature at a wall or free surface; there even could be a radiation 

condition at the free surface.
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Incorporation of the effects into the dynamics are relatively simple. 

Variations of the viscosity coefficient with temperature involve calcula­

tion of the coefficient wherever required, using an appropriate function 

of the local temperature value. Buoyancy is incorporated, generally with 

the Boussinesq approximation, by allowing density variations in the body- 

force term, but not in the inertial terms. Thus, instead of pQg, one has 

( Pq + &p)g in the momentum equation. The density variation, 5p, is calcu­

lated using a simple bulk expansion coefficient,

6p = e(T - TQ)

in which Tq is the temperature at which p = Pq.

Heat Sources and Transport of Solutes

The groundwork for including chemical or nuclear energy production 

in the form of internal heat sources has already been laid in the above 

discussion. The right side of Eq. (l.jjl) is simply modified by adding an 

appropriate source term, whose strength may be a function of temperature 

or of mixture concentration. The diffusion and convection of materials 

dissolved in the fluid can be followed by equations much like that for 

heat transport. Slight density variations produced by dissolved sub­

stances can affect the dynamics through buoyancy terms exactly analogous 

to those produced by heat. The importance of such computations for 

oceanographic or chemical engineering purposes would seem to be great.

Turbulence

The MAC technique was devised to handle the calculation of multi­

dimensional problems in the time-dependent dynamics of viscous, incom­

pressible fluids. It is, therefore, ideally suited for the study of the 

development of laminar instabilities for as far into the nonlinear phases 

of motion as may be desired. Free surfaces can be included, so that sur­

face waves may form, break, recede, and form again, as many times as desired.
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Through all of this, the results are as accurate as the equations and 

their finite-difference approximations. This means that for a wide vari­

ety of phenomena whose important features can be resolved by the mesh, 

the MAC calculations are pertinent, useful, and representative of true 

physical processes.

The matter of resolution can, however, be a seriously limiting 

feature in at least one important type of phenomenon: turbulence. In 

almost every conceivable circumstance, the scale of turbulence is very 

small in comparison to the size of the flow-field structures in which 

the turbulence is created. Thus, to examine both the detailed structure 

of the turbulence itself, together with the corresponding effects on 

the macroscopic flow, it would be necessary to have a very fine resolu­

tion in the finite-difference mesh of cells. Add to this the fact that 

true physical turbulence is necessarily a three-dimensional phenomenon, 

and one must conclude that the actual representation of true, fully- 

developed turbulence cannot now, with present computer limitations, be 

included as a part of macroscopic fluid flow problems.

These considerations do not require that the important problems of 

turbulence be completely ignored. There are at least two ways in which 

meaningful studies can be carried on, even at the present time.

One of these is the study of the onset of turbulence. The earliest 

stages of turbulent growth from a laminar shear layer must be closely re­

lated to the problems of laminar instability. The question of infini­

tesimal versus finite perturbation is a significant one; and the effects 

of nonlinearity are crucial. The calculations are not easy and will re­

quire much careful thought both in formulation and interpretation.

The calculations will require much computer time, because the in­

stability of interest is typically associated with large Reynolds numbers, 
I4.

of the order of 10 . To see this, suppose that the conditions are 

achieved by means of unit velocity, unit flow region size and, thus, a 

kinematic viscosity of 10 . (This can be accomplished by the use of ap­

propriate scaling.) In this set of units, laminar instabilities grow
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roughly as exp (10 ^t). (This estimate is taken from the theory for 

plane Poiseuille flow.) This means that t ^ 100 is required for sig­

nificant amplification, during which time the fluid will have moved 

about 100 distance units. For resolution, each distance unit must have 

about 10 cells or more, meaning that the fluid will have traveled past 

at least 1000 cells through the development of the instability. Because 

the time step per cycle must be distinctly less than the time required 

for a cell-width of motion, it is seen that many computer steps will be 

required.

There axe, of course, several ways to relax this pessimistic esti­

mate. Commencing the flow with a large initial perturbation is the most 

obvious one. Other approaches will undoubtedly come to mind and be 

attempted; and, in the end, considerable information on the early stages 

of transition to turbulence may be forthcoming. It must always be re­

membered, however, that if the calculation is conducted in two- 

dimensional space, the results must not be given physical significance 

beyond the time when the line vortices would actually experience signif­

icant three-dimensional instability.

A second way in which turbulence problems can be studied with mean­

ing is probably more applicable to practical problems. It involves the 

simulation of turbulence effects on the mean flow-field, through the use 

of transport coefficients: eddy viscosity and eddy conductivity.

Prandtl mixing-length theory has formed the basis for a number of semi- 

empirical techniques for incorporating momentum and heat transport re­

sulting from turbulent fluctuations. For many simple, steady-state 

situations, it is possible to derive expressions for an eddy viscosity 

coefficient which, when incorporated into the Navier-Stokes equations 

for the mean flow quantities, gives results in excellent agreement with 

experiments. Such eddy viscosity coefficients, however, are no longer 

simple fluid properties (like molecular viscosity); instead they are 

functionals of the mean velocity field itself (i.e., formed from various 

spatial, derivatives of the velocity components).
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For non-steady problems, the simulation of turbulent transport 

effects becomes slightly more complicated. The approrpiate way to pro­

ceed seems to involve two steps:

1) Determining the local instantaneous properties of the turbulence.

2) Relating these properties to the transport effects that they 
can be expected to produce.

In steady-state flows, the first step can be accomplished through 

semi-empirical relationships between the turbulent flow properties and 

those of the local mean flow. In non-steady flows, however, the trans­

port of the turbulent properties themselves will have to be calculated. 

Just as in the case of heat transport, an equation can probably be 

written for the transport of if, a measure of the turbulent properties,

|£ +v.?U) = s(*)

in which F(i|r) is the flux of \|f produced both by convection in the mean 

flow and by diffusion of the fluctuating flow; and S(\|r) is the source 

of \|r. Both F and S would appear to be amenable to simulation for a 
wide variety of problems.

The second step probably would not differ appreciably from the analo­

gous step in the steady-state interpretation of turbulent transport.
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PART 2 - THE COMPUTER PROGRAM

The Computational Mesh

The computational region is composed of a rectangular Eulerian mesh

of cells in two-dimensional Cartesian coordinates, and a set of marker

particles that define the fluid configuration. The cells are numbered

by the indices i and j which refer to the cell center, where 1 < i < I,

and 1 < j < J* Cell boundaries are designated by i+g-, i-g-, j+g-, and

For example, u. i . would be defined at the center of the right-

hand boundary of cell ij, whereas u. . would be defined at the center of
—J

cell ij (see Fig. 2.1).

Fig. 2.1 The relationship of the index values to the cells. 
Solid lines represent cell boundaries.
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The complete mesh of cells consists of IJ cells. In addition to 

cells falling inside the boundaries that define the system, there are 

cells falling outside the boundaries. This arrangement permits easier 

handling of boundary conditions. Because a free surface may be present, 

there is a necessity for different cell types within the system. Each 

cell is, therefore, flagged,as the different cells must be handled dif­

ferently (see Fig. 2.2). Cells are"flagged" as follows (where "flag­

ging" means any selected method of identifying different cell types):

1 ) END cells falling outside the system boundaries and 
adjacent to a boundary.

a) IN = boundary cells defining an input wall
(1) INCOR = IN boundary cell diagonally 

adjacent to a NOSLP boundary cell.
b) OUT = boundary cells defining an output wall.

c) FRSLP = boundary cells defining a free-slip wall.

d) NOSLP = boundary cells defining a no-slip wall.

2) EMPBND = cells failing outside the system and never used,
but necessary because of the indexing system.

3) EMP = cells within the system but containing no fluid
("fluid" defined by marker particles).

4) FULL = cells full of fluid and not directly adjacent to
an EMP cell.

5) SUR = cells containing fluid and directly adjacent to an
EMP cellj these cells define the free surface of 
the fluid.

6) OB = interior cells directly adjacent to a boundaryj
can be either an EMP, FULL, or SUR cell.

7) COR = a BND cell defining the corner of an obstacle.

8) URON = any cell whose upper right-hand corner falls
directly on a boundary.

A given cell may have several flags. For example, a cell could be FULL, 

OB, and URON. Another cell might be BND, FRSLP, COR, and URON.



I4=-U1I

BOUNDARY CELL 

CORNER CELL
o OBSTACLE CELL

]X] EMPTY BOUNDARY CELL

Sy

Fig. 2.2 Positions of different types of cells for a typical problem.



Because the fluid is not stationary, it is obvious that a cell may change 

from BMP to SDR and then to FULL. It is, therefore, necessary to check 

at the end of each time cycle to see if cells need to be re-flagged.

Marker particles are numbered by the index k, where 1 < k < K.

These particles are used to define the position of the surface and to 

give a visual representation of the fluid. Each marker particle is 

moved at the end of each time cycle, with a weighted average of the four 

nearest cell velocities. It is important to understand that these 

particles do not enter directly into the calcuJ-ation but are used merely 

to define the position of the fluid and, in particular, the position of 

the free surface. Whether a cell is flagged as EMP, SUB, or FULL depends 

on whether or not the cell contains any marker particles.

In order to have fluid input and output, we must have some way to 

create and destroy marker particles. Therefore, the particles are flagged 

in the following manner:

1 ) REG = a regular particle defining the fluid within the system.

2) INPUT = a particle falling within an IN boundary cell. As soon
as an INPUT particle enters the system it is re-flagged 
as a REG particle, and a new INPUT particle is created 
behind it.

3) AVAIL = a nonexistent particle. When a particle leaves the sys­
tem, it is flagged as AVAIL. Then, when it is necessary 
to create a new particle, this particle storage is avail­
able for use; and the new particle will be given the in­
dex number, k, of this particle.

Position of Variables

The cell variables for the problem are positioned within the cells, 

as shown in Fig. 2.3. D^, R.^, and cp^ are positioned at the cell center.

Velocities in the x direction are positioned at the left- and right-hand 

boundaries of the cell, and velocities in the y direction are at the top 

and bottom boundaries. In the formulas there are velocities needed that 

do not fall at these points; in this case an average is used.



For example: CELL (i j)

u. 1 . + U, i
U . = -1+2J 
ij 2

i4j4 = _^+2J _ i+^j+l

(UV), !
-‘- 2-J 2

/Uj 1 . + U. i .
— | _-1- J~2 J j~1

2

v,- + V-: , , 1■1J-? ^ i-lj-.

)-%

"i • Vj i

+ '/!

Fig. 2.3 Points of definition 
of variables with respect to cell.

The Difference Equations

U. i.-U. i. V..X-V..1D = I+?J 1'2J . U+2 Ijhk

ij 6x + Sy (2.1)

R. . = ij

(u. . +(u. - 2(u . (v. )^ + (v. )^ - 2(v .)
i+l,]/ i-1 jy ^ ij'' | v ij+1 ^ ij-1 ' ij■11

&y

+ + (uv),- 1, 1 - (uv) 1 I - (uv) i i]
SxSy I+2J+2 1_2J"2 i+20“2 1-2J+2 (2.2)

Dij i+1 j + Di-1j ^ij Dij+1 Dij-1 2r)ijN'
&t " ^ Sx2

rp _ 1 (^i+lj + ^i-lj ^ij+l + ^ij-l r

W'2 V S?- S3 + Bi- (2.3)

where
z=2^ + ^-
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n+1 n1 . = U. ! . + 6t 
i+2t)

. - u'r (UV) . I . ! - (UV) . ! . 1

5x 5y

+ gx +
CPi, -cp

5x
• 1 • A1- 3 4 + u- i ^ i •1+1 J + v ( 1+2 J 1-pj i+?J

^ 6x^

n+1
V. . !

1J+5
nv. . I + 5t 
iJ+5

ij
5y

U. ! . , - 2u. ! 1
1+2J-1 1+2J )

* 2 / sy

. , (uv) . 1. •
1J+1 . 1-2J+2

- (uv). 1. 1 
1+2J+?

5x

(2.4)

+ g + !lj___ + V4j+ ~Vij+
y &y V 6y2

, ViM + V1-1M - 2viM

6x

(2.5)

Time Cycle

The fluid flow is advanced through a series of time cycles, each of 
finite length 5t. One time cycle consists of the following series of 

steps:

1) Prints and plots are taken for the previous cycle if it is 

time for them. Switches are checked to see if there are any 

special instructions from the operator, and then the time is 
advanced (tn+1 = tn + 6t, where the superscript n+1 always 

refers to the advanced time).

^) Cells are checked to see if any of the previously EMP cells 

now contain fluid, or if any of the previously SUR cells are 

now EMP or FULL. Cells are flagged appropriately, and var­

iables for the cells are changed accordingly.
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3) Knowing the values of the velocities from the previous

cycle or from the input conditions, we now calculate

values of for all FULL and SUR cells using Eq. (2.1).

Values of D.. are checked, and if any of them are too 
■** J

large, an on-line print is made.

4) Using velocity values from the previous cycle and the 

new values 

Eq. (2.2).

new values of D. we calculate R.J for FULL cells, using 
ij ij

5) cpij is calculated for all FULL cells by using Eq. (2.3) 

and iterating until the complete field of con­

verges. cp^ for all SUR cells remains unchanged. (For 

most runs cp. . = 0 for SUR cells; and, in general, it may 

be specified, e.g., A + B cos cut, etc.)

6)

7)

un+1 and v?+1 are calculated from the old velocities and 
ij iJ

the new values of cp. ., using Eqs. (2.4) and (2.5)*
J

Marker particles are moved with a weighted average of 

the four nearest cell velocities.

This completes one time cycle. The process can be repeated for as 

long as the problem is of interest, usually for several hundred cycles.

Boundary Conditions

The type of boundary conditions applied depends on the type of 

boundary under consideration. The boundary conditions to be used for a 

boundary at the left wall will be discussed for each boundary type. The 

conditions at other walls are analogous. The indices ij will refer to 

the cell inside the system, and i-lj will refer to the BND cell outside 

the system (see Fig. 2.4).
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WALL

a) IN :

FLUID OUTSIDE FLUID INSIDE

*(uv)

Fig. 2.4 Variable positions at a wall.

An input wall allows fluid to move into the system at a constant 

velocity; this velocity never changes throughout the run.

i-lj+5 ij+2 ij-?
These are set in the velocity calculation and need not 

be of concern thereafter.

2) u'
ij-1

= u
ij

This is applied in the calculation of .

5) (uv) 1,1 = 0 (uv) 1.^=0
1“2J+2 1”'2 J—2

These are applied in both the and the velocity 

calculations.

4)

5)

6)

’i-lj = ’ij - gx8x - S (ui+iJ - “i-lj) Thls is appliea 

in the calculation of m ..
Ti0

n+1 nu. 1 . = u. 1.i-|j 1-2J

D. , . = D. . This is applied in the R.. calculation.
i-1 J ij ij
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1)) INC OR: Same as IN cell except

c) OUT:

d) FRSLP:

Vij " "ij - e*8* - i (ui4j * "i-io'

5x
+ 6y2v vi-ij+i + ui4j-i

An output wall allows for fluid to leave the system. 

Velocities are calculated for each time cycle

1 ) v. , , i = v. . , 
i-lj+5 ij+g

2) "ij-, u
ij

Vi-1j-i = Vij-i 

calculation)

6x3) "i-ij = "ij ' i* (uvi-iJ-i ' UTi-iJ+i)

This is used in calculation of cp. ..
•**d

i, n n+1 n+1 Sx f n+1 n+1 This is applied4) ui-*j * ui-+j+ i* - W

in the velocity calculation and is calculated to 

make = 0.

Di 1 j ^ Dij This is applied in the calculation of Rij

Free-slip boundaries represent a line of symmetry or a non 

adhering ("greased") surface.

Vi-1 j4 = V. . x
ij+5 Vi-1 j“5 Vij-5

2 2u. . . 
ij-1 = "ij

3) (uv>i-|J+i “ 0 

(uv)i+j-i = 0

4) "i-lj - "ij - 8x8*
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e) NOSLP: No-slip boundaries represent a viscous boundary

1) v
i-1 j+5

2)

3)

4)

5)

6)

(uv)i4j

2<J 21-2J-

^i-lj = Vij

0

0

& 2v /- g 5x - — (u.,i . x 6x x+g-j

Ui-4d = o

D. . . = D.. 
i-1 J iJ

vij

Ui4j )

Free Surface
The free surface is defined by a set of SUR cells. The treatment of 

the free surface is relatively simple and is as follows (ij = SUR cell):

1 > ’’u'0 
2) DlJ - 0

The only exception is in the case where we have an applied pressure at

the surface. In this case cp. . = cp > a prescribed function of positioni J a
and time.

Velocities at the free surface can be handled in a variety of ways, 

the main consideration being the requirement that D.. = 0 for each SUR1J
cell. For a SUR cell that is open on one side only, we calculate the

other three velocities in the usual manner, and calculate the fourth by

using Eq. (2.1 ) and setting D. . = 0. For a cell that has two open
J



sides, we merely set the velocity for each of the open sides equaJL to 

the velocity opposite. For a cell with three open sides, the open side 

opposite the fluid side has the velocity of the fluid side; and the 

other two remain unchanged, except for the effect of body forces 

(gravity). A SUR cell with four open sides merely follows a free-fall 

trajectory.

When Eqs. (2.4) and (2.5) are used to calculate velocities in SUR 

cells, velocities from EMP cells are sometimes referred to. Because 

these velocities are not defined, it is necessary to apply appropriate 

boundary conditions. This is done by using the velocities for the SUR 

cell each time an EMP cell is referred to.

R Calculation

For FULL cells only,R. . is calculated with Eq. (2.2). The only
J

problems that might arise occur in cells next to a boundary (QB cells).

In this case, the boundary conditions discussed earlier apply wherever 

needed. It is important to assure that the boundary conditions used in 

the R_ calculations are rigorously consistent with those used in the 

velocity calculation. This is particularly true at corners of obstacles.

cp Calculation

The pressure field is represented by a Poisson's equation, solved 

by an iterative procedure. Each iteration consists of solving Eq. (2.3) 

for every FULL cell in the system, starting at the lower left-hand cor­

ner and working across and upward, respectively. The boundary condition 

at the free surface is merely cp^ = 0, or cp^ = cpa for each SUR cell.

The boundary conditions for pressure at a wall are applied for each 

iteration. Iteration continues until the following conditions are met:

o (- old

Kia I + I<P.new1
+ v‘7. + u2, + Ighl + lgL 

ij iJ y x
max
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2) I '’■l.Hl + ^.1-1 - ^i.l

5x
- 1 .0

R. • 1 ij

< e

Velocity Calculation

Velocities are calculated for all FULL and SUR cells in the system, 

using Eqs. (2.L) and (2.5)• When calculating for a SUR cell, care must 

be taken to assure that for each EMP cell velocity, some other appropriate 

velocity is substituted, in order to avoid having the EMP cells exert a 

false drag on the fluid. The treatment of COR cells, which must be 

taken into consideration, will be discussed under the heading Corners. 

Having found the new velocities for all FULL and SUR cells, we now calcu­

late the velocities for BND cells, using appropriate boundary conditions 

and assuring that for all SUR cells D^ = 0 (as discussed eaxlier under 
Free Surface)•

Velocities needed for calculating u. i_. and v. . x are shown in
1+2J iJ+i?

Fig. 2.5.

X = u VELOCITIES 

• ■ v VELOCITIES

Fig. 2.5 Velocities needed to calculate un+1 and vn+1
ij+y*

Particle Movement

Marker particles are moved with a velocity that is a weighted aver­

age of the nearest cell velocities. Velocity u is calculated as an 

interpolated value of the four nearest horizontal cell velocities, and 

v^ is calculated as an interpolated value of the four nearest vertical-cell 

velocities (see Fig. 2.6).
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CALCULATION of uk CALCULATION of v,,

u,

j _

■'2
•k

3 m4

SX;

u: !
8y-,

....i

U>

V, A,

k*

a2

A3 A4

V2
# -■L

8Xj->4

PARTICLE NEAR CORNER

Fig. 2.6 Diagrams showing the quantities used for 
calculating particle velocities.
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uk =
AjU^ + + A7u, + A,.u2 2 3 3 •4 1+

5x6y

The location of particle k with respect to the cells can be found 

as follows:

i = the integer part of (+ 2) 

j = the integer part of (y^/Sy^. + 2)

This locates particle k as being in cell ij. When calculating u^ it is 

also necessary to know if the particle is in the upper half of the cell 

or in the lower half of the cell, inasmuch as the four nearest cell 

values for u are different in the two cases. If we consider

f = the fractional part of {y^Jby +2)

then, if f < r-, we are in the lower half of the cell; and, if f >y 2 ’ y 2’
we are in the upper half of the cell. Likewise, when calculating v it 

is necessary to know if we are in the left or right half of the cell.

One other thing needs to be taken into consideration: the movement 

of a particle near a COR cell. Again, reference is made only to the 

velocity in the x direction (u^)* We have found from experience that a 

particle below LINE A (Fig. 2.6, lower drawing) must be moved with an 

x-direction velocity which assumes that the wall extends upward (i.e., 

u^ = 0), if we are to avoid having a particle move into the COR cell.

As soon as the particle is above LINE A, the particle should be moved 

in the x direction, as if the obstacle did not exist (i.e., u^ = Ug)*

In the case of a NOSLP wall, = “ ug as soon as the particle has 

moved into the cell above the COR cell. These same arguments can be 

applied to all COR cell orientations, and to the v^ calculation.

After u^ and v^ have been found, the particles are moved as 

follows:
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n+1 n 
\ = xk + \5t

n+1 n
= + vv&t

Corners

Corners of obstacles present numerous problems that must be con­
sidered throughout the program. The most obvious difficulty is that the
cell pressure (cp..) is not uniquely defined for a COR cell, but depends J
upon which adjacent cell is being considered. When applying boundary con
ditions for cell i-lj the value of cp. .

•*- J
of cell ij+1 (see Fig. 2.7). This 

presents no real problem, but must 

be kept in mind when calculating pres­

sures.

Another problem arises with re­

gard to velocity calculations. In 

calculating v.y+1 (see Fig. 2.8) for 

a cell next to a corner, the stored

value of v. , . i (zero) should not i+1j+i '
be used in the equation. The appro­

priate values to be used are:

is different from that in the case

i j +1

i-lj
COR

i J

Fig. 2.7 COR cell.

v. . . i = v. . i for free-slip condition, i+1 j+^ ij+^

v, , . i = - v. , for no-slip condition. 
i+1j+5 ij+l?

Analogous conditions apply for both u and v, and for the four different 
orientations of the corners.

Problems arising during particle movement near a COR cell were dis­
cussed in the preceding section.

The most elusive problem arising near a corner is making the R_^
calculation consistent with the u. i. and v. i calculation.

i+Jj
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v

Vij + 3/2

ij + 1
► • < 1 ui + '/z j + 1

Vi - 1 j ♦ '/2

(

vij + y2

* 'i

vi +1 j +

COR

’ ui + '/2j

A
Vi j - '/2

Fig. 2.8 Variables needed for calculating v.. i, and 
relationship to a COR cell.

If this is not carefully handled, the for the three cells bordering

a COR cell will not be nearly as small as they should be; and the system 

will not conserve mass properly. Let us consider the velocity calculation 

for cell ij in Fig. 2.8. Conditions for the calculation of v i have al- 

ready been discussed. As part of the boundary condition, 
u?+l. is set to zero. Then, the important question arises: In setting 

n+1u. i. equal to zero, what have we assumed? We have assumed that if we 
1+2J

were to actually calculate u x we would, indeed, get zero. Therefore,
n+1we must look at the equation for u. x . and see what set of conditions
1+2 J

would give us zero if we performed the calculations. A careful analysis 

of the equation shows that the only part of the equation that does not
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vanish naturally is a term involving . We have, therefore, been

assuming that:

ui+^j+1 = 0

when we set u?+i . equal to zero.

Therefore, we must go to the R. , calculation and make this same

assumption. The only place in the R. . calculation where u. i . , occurs
ij 1+2j+i

is in the D.. , term. Thus, we must subtract u. i . ,/&x from the value 
ij+1 * i+50+1

of before we use it. Analogous arguments pertain to any cell

lying above, below, or to the right of a COR cell.

Cells that are diagonal to a corner also require careful treatment.

Referring to cell ij+1 in Fig. 2.8, what must we assume when calculating

R. . In the velocity calculation for u. i. , , we have assumed that ij+1 J

Ui+^j Ui+|j+1 °r Ui+|j = " Ui+|j+1

We must, therefore, make the same assumption in the calculation of Rij+r
in

calculation, depending on whether it is a free-slip or a no-slip 

ectively.

Another approach is to assume that the (cp.

this time by adding or subtracting u x /5x from D before using it in
i+^J iJ

the R.. 
ij+1

wall, respectively.

"ij ' ^i+1j‘,)/&x term must 
n+1balance the term incorporating u^+i.j+.] > when calculating u^+JLj* This 

leads to an additional term that must be added to the boundary conditions

in the pressure calculation. When calculating the condition for

cp. , . must have the additional term ^i+1 J
5xv u

r. 2
Sy

This method is easier to apply than the other, but increases the required 

computer time, as additional tests are necessary within the pressure- 

iteration loops.
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Setup Regions

The setup for the problem comprises three main regions. The re­

gions are gone through once at the beginning of a run, and are not in­

cluded in the time cycle.

The first part of the setup is termed a GENERAL SETUP. This re­

gion reads input cards containing general information, such as the 

number of cells, viscosity, time step, and other parameters pertaining 

to the problem. Then, index words and constant parameters needed for 

the problem are set up and stored for later use. The x and y coordinates 

for the cells are calculated and stored, and finally, information needed 

by the output routines is calculated and stored.

The second part pertains to the setup of the CELLS. Cards are read 

that contain information concerning the system boundaries, including the 

shape of the system of cells and the types of boundaries represented.

This information is then used to flag all cells in the system, as dis­

cussed earlier. Because at this time there are no particles in the sys­

tem, all interior cells are flagged as EMP cells. The coordinates for 

the boundary points are stored in such a way that the plot routines can 

use them to draw the boundaries of the system whenever necessary.

Once all the cells are flagged, we can proceed to the third por­

tion of the setup, which has to do with MARKER PARTICLES. Data concern­
ing the marker particles are read into the machine; then the array of

particles that will represent the fluid is created, and the coordinates 

of the particles are stored for future reference. The velocity field of 

the fluid is calculated and stored into the appropriate cells in the 

system, and the cells that contain particles are flagged as FULL or SUR 

cells. The setup is then essentially finished. Only two things remain 

to be done: A print is made of the initial conditions, and a plot is 

drawn to show how the cells are flagged. We are now ready to go into 

the first time cycle.
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Program Output

The program output is in the form of on-line and off-line list­
ings, and Stromberg Carlson SC-^020 plots of particle configurations, ve­

locity vectors, and pressure contours. A one-line, on-line print is 

taken for every cycle, showing the time, time step, number of itera­

tions, number of cells containing particles, and other information per­

taining to the iterative procedure.

There are two types of off-line prints, one presenting information 

pertaining to each marker particle, and the other containing cell data, 

such as velocities and pressures. The prints are made only occasionally, 

according to a predetermined print interval incorporated in the program 

or upon demand by the operator through the use of sense switches.

Plots

The best output from the program is in the form of the SC-4020 

plots. Three types of plots are taken at given time intervals, which 

are input to the program.

In the programs employing marker particles, perhaps the most de­

scriptive pictures and the easiest to obtain are those of particle con­

figurations. Each marker particle has an x and y coordinate stored in 

the computer memory. By plotting these coordinates and drawing the 

boundaries that define the system, we get a picture showing the shape of 

the fluid and its relationship to the confining walls of the system.

Figure 3*2,in the next part of the report, shows a set of particle 

plots representing the flow of water from a broken dam. The first frame 

in the picture shows the fluid configuration an instant after the dam 

has broken. (The dam pieces have been removed.) Subsequent frames show 

the water as it flows downstream and collides with an immovable object. 

The mesh of cells is not shown in these plots.

Another type of picture produced by using particles is a plot of 

smoke (or streak) lines. In Fig. 3.14 there is a continuous input of
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fluid from the left, and a continuous output of fluid on the right. As 

the fluid comes in from the left, it flows past an obstruction. The smoke 

lines shown in the top picture are formed by feeding in particles from 

the left, and allowing these particles to move downstream with the motion 

of the fluid. The effect is the same as that of injecting lines of smoke 

into a wind tunnel, or jets of dye into water flowing down a channel. As 

the fluid flows past the obstruction and into the channel, eddies are 

formed. The smoke particles visually demonstrate this quite well.
Particle plots, then, have the advantages of giving a nice visual 

effect, and of being relatively easy to obtain. They do not, however, 

convey complete information with respect to details of the flow. A 

single particle plot, for example, does not show the direction of flow, 

or any information about pressures or velocities.

For showing the direction of flow and the velocity field of the 

fluid, we use velocity vector plots (see Fig. 3*1^)• For each cell in 

the system, we draw one velocity vector starting at the cell center, 

with a length proportional to the cell velocity and in the direction of 

the local flow. For each cell there is an x component of velocity (u), 

and a y component of velocity (v). We create a velocity vector by 

plotting two points, and connecting them with a straight line in the 

following manner:

x, = x ,,1 cell

= ycell

x = x, + ku _ 2 1 cell

y2 = yi + kvcell

where k is chosen in such a way as to give the vectors a reasonable 

length for display.

A useful method for showing the pressure field is to make contour 

plots (again, see Fig. 3.1i0« This is done by plotting lines of constant cp.

-62-



That is, each contour line represents a given value of cp; and a given 

contour plot will show lines for several, values of cp, separated by a 

prescribed contour interval. The effect is the same as that of geo­

graphical contour maps, where each contour represents a certain 
altitude.

As long as the data are relatively smooth, the contour plots pro­

vide very useful and informative pictures. However, a knowledge of the 

problem under consideration is necessary in order to decide whether the 

lines show increasing values or decreasing values of cp, as the values of 

the individual lines are not printed on the plots. We do, however, know 

the value of the lowest and highest contours, and the contour interval. 

From these values it is possible to determine the values of the other 

lines.

Contour plots are not easy to produce. It is necessary to first 

find the maximum and minimum values for the pressure. From these 

values the contour interval., 6cp, is calculated in such a way as to give 

a desired number of lines. It is also desirable that 6cp be a rounded 

number, so that the contour plots can be more easily read and inter­

preted. One solution is to allow the number of contour lines for a 

given plot to fall somewhere between N and 2N, where N is an integer to 

be chosen. If we calculate

c ®min c,max 
fxp - --------if--------

and then change 6cp to the next lower power of 2, we have accomplished 

two things. First, 5cp has been rounded off, and second, the number of 

lines will fall somewhere between N and 2N. Because &cp was originally 

calculated to give exactly N lines, use of the next lowest power of 2 

will never give more than 2N lines. An appropriate value of N depends 

largely on the type of problem under consideration.

Having found the contour interval, we next find the locations of 

the contour lines within our system of cells. Inasmuch as cp is de­

fined at the cell center for each cell in the system, the positions of
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these values form a rectangular array of points. The points can he 

thought of as forming a series of triangles. It can he shown that if a 

contour line passes between the two points that form one side of a 

triangle, it must also pass between the two points forming one of the 

other sides of the triangle (but never both of the other sides). The 

point where the contour line enters and the point where the line exists 

can be found by a simple linear interpolation; the two points can then 

be connected by a straight line. Therefore, if we consider each triangle 

individually and draw the short segment for each contour line that passes 

through the triangle, we will have a completed contour plot.

Motion Pictures

In a given computer run, there are usually several hundred time- 

cycles. If plots are made for every time-cycle, we have a motion pic­

ture that runs for several seconds. The motion pictures are useful 

demonstration techniques and also give additional information concerning 

the nature of the flow.

The most graphic movies are those made from marker particle plots. 

Marker particle movies have been made for the flow of water from a broken 

dam (see Fig. the flow of water under a sluice gate (Fig. 3*5)> and

the von Karman Vortex Street (Fig.

The movies have been compiled into a short film, with appropriate 

titles, available on request from the IASL Report Library.

Flow Diagrams

Flow diagrams of the SPIASH code are on the following pages of 

this section.
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LIST OF SYMBOLS

u. . = horizontal cell velocity ij
v . = vertical cell velocity ij
R.. = source term for pressure calculation ij
D^j = divergence

cp. . = cell pressure divided by (constant) density 
t- J

= horizontal position of cell center

y^ = vertical position of cell center

= horizontal position of points defining closed boundary

y = vertical position " " " " "m
Type = type of boundary between points m and m + 1 m
u^ = horizontal particle velocity

v = vertical " "k

x^ = horizontal particle position 

y^ = vertical " "

I = total number of cells in x direction

J = y

M = total number of boundary points

K = total number of possible particles

v = kinematic viscosity

gx = gravity in x direction

gy = gravity in y direction

bx^ = cell width

6y. = cell height 
J

6t = time step

Stp = time between plots

5t = time between particle prints 
PP

6t = time between cell printscp

btdump

bs

NID

ID

6xk

n+1

cp

PP

= time between tape dumps 

scaling constant for velocity vectors

number of different particle configurations to be loaded 

type of setup to be used

initial x coordinate of first particle to be created

" y ’I II II II II l|

initial particle spacing in x direction 

initial particle spacing in y direction 

initial particle velocity in x direction 

initial particle velocity in y direction 

fluid height (maximum expected) 

fluid length ( " " )

current time [6t (n+l) where n = number of cycles completed]

next time to plot

next time to take a cell print

" particle print 

tape dump

C = maximum number of pressure contours 

Z = a temporary summation of terms
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START,

Region #10, page 1
General Setup

plot routines.

Set up index words to be 
needed later.

Set up constant parameters 
needed

Print contents of first 
three input cards.

For I < j < J, calculate

For I < j < J, calculate

index word.

Read three cards 
containing general 
information.
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Region #15, page 2
Cell Setup

more

Flag any IN cell which 
is adjacent to a NOSLP

Set up index to sweep 
mesh one time storting 
at lower left-hand corner
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Regions #16 and #17
Particle Setup

#16

I —

____  i _____
Set up index for number 
of different particle 
configurations

Read cards for one 
particle configuration

yes/More particle 
^configurations ?J

jno

Flag all remaining particle 
storage as AVAIL

t
Calculate velocities for all 
BND cells according to 
the type boundary 
condition needed

Print input data

Store

the maximum

the maximum

#17

-70-



Region EQOOO, page 1
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Region #18, page 1
Setup Plot

Q j = FRSLP.^

Plot (•) at x

Set up index for one 
sweep through mesh

Advance film one 
frame, label grid

no
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Reod swiches

I
(lime to plot.^V^-

noL

(sw # o
~1EEnoi

Time for \yes^ 
particle print

no,

(SW # 2?)
no^

yes

Time for \ Y®5 
cell print ?

noU*

(sw # i ?y yes

no.

(SW # 3 7> 
noi

yes

(Time to quit?)yes
noj

(Time to dump.?} 
noi

yes

(sw #\o py
^Jno

yes

(SW # 4 ^)^e-S 
no^

(SW # 5 yes

no

Region #20, page 1 
Control Region

t + StPP 'PP -(SW # 9 .?)- 
______ y yes

no

^<DUMB

-35- Halve St -

Double St

(SW # 12.?) Memory print

Read
correction cards
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Region #Dump, page 1 
Dump memory on tape 
Region ^ Dump 
Read tape and restart

Restart



Region #21, page 1 
Plot Region

{k = AVAIL/)

(More particles .?)-

Return

Plot a point

Advance film 
table grid 
Draw boundaries

Set up index for 
sweep through 
particles (I < k < K)
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Region #22, page 1 
Cell Print

(i j = FULL or SUR?)

(Skip to next page/

Return,

Print heading

Print heading

Set up index for a
one-page print

Set up index for a 
one-page print

Set up index for one 
sweep through mesh

Print for
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#23

Region #23, page 1 
Particle Print

(k = AVAIL?)

(Skip to next page

^More particles

Retur

Print heading

Print heading

one-page print
Set up index for a

Set up index for a
one-page print

Print for particle k

Set up index for one sweep 
through particles.__________
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Velocity Vector Plot

Return

Advance film 
Label grid 
Plot boundaries

Set up index for one 
sweep through cell 
mesh

Plot straight line 
connecting (x( ,y()
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Region #25, page 1 
Reflag Cells

= EMP?)
Does i j contain 

~^vany particles ?

any particles ?

EMP or OUT ?

EMP or OUT?

EMP or SUR?

EMP or SUR?

Flag cell

Flag cell

Set up index to sweep 
through cell mesh

Determine which particles

particles in

for all
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Reflag Cells

no/Does i j contain
any particles ?

FULL .7)

max
( i j - I = FULL?}

PHIA

Flag cell

Set up index to sweep 
through cell mesh

Set up index to sweep 
through cell mesh

Flag cell 
i j = FULL
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Region #26, page 1
Pressure Contours<#26>

grid , draw boundaries

-(More contour values?')

Set up index for one 
sweep through cell mesh

Set up index to store 
all contour values

in system (

appropriate bits in 8<£, 
calculate the next 
lower power of two and

An approximate value 
for the contour interval 
is calculated as

no
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Region #26, page 2
Pressure Contours

i + l j + l

(More contour values .?)

—(More contour values ?)

Set up index for one sweep through cells

Set up index for one sweep through contour values

Set up index for one sweep through contour values
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Region #26, page 3
Pressure Contours

-(More contour values .?)

i + 1 j +1

(More contour values

Return

i+l j+l

i + l j + l

i+l j+l

Print on film
8<£ , time, prob #

Set up index for one sweep through contour values

Set up index for one sweep through contour values
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Region jfo.6, page 4
Pressure Contours

y = y,

Plot line connecting

Return
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Region #27, page 1
Destroy and
Create Particles

\k = AVAIL 7)

(lop boundary ?y

(Bottom boundary ?

(Left boundary

(Right boundary ?

{^More particles

Flag particle 
m = INPUT

Flag particle 
k = REG

Set up index to sweep 
through particle mesh

Find AVAIL particle 
storage to creat new 
INPUT particle (m)

Destroy particle k

i = integer value

j = integer value
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Region #28
j Calculation

-(More ce

Print online 
D TOO LARGE

Set up index to sweep 
through cell mesh
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R. . Calculation 
i J

Region #50, page 1

Set up index to sweep 
through cell mesh____

i't-l/2 j + l

i + '/z j-'

+ u ■ -'/a j+l

i- '/a j-l

i+l j + '/a

i - I j + '/s

l+l j- i + I j - Va
I. + V;i -I j - '/j

______I "U___  ygg _____________
(i + l j-l = C0R.y^{i + l j-l = FRSLP?y

£ - u

' - '/a j i i-‘/2

(i+l j + I = COR />)^{T+1 j tl = FRSLP?)

= COR?)^Hj-l j +l4FRSLP^2r
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R. . Calculation 
i J

Region page 2

Q +1 j = BND?)- 
yes U:

no

0 -1 j = BND?) 
yes

no

2, j) .

V* (Uj. | j)z-(u| jf-’-Z,

(i jtl = BND?’)
yesj^ -------

(i i - I = BND?) r”:i * 
yes |

Z2+(Di j + 1-Di ^

i j+l
24 ii,)2- (Vi -,)i j '2 ^4

^2 ^Di-I j Di j ^ ^~^2
j.,)2-^ j)2—S4

(i j = URON .7)- 
yes

Q-l j-I^URON^^^Mu,.^ + j.^X.

yes j-
(i i-l = URON^y^^-tu,,^ ; + uu,A i.,/.->vi<||.,J^I,

yesyes ^ -..... -c i
(i-l j = URON .?)^^-^.^ 1 + jt,/2)~5:.

ves<lr<------- 1

Ri j= El + I2-H5/2SxSy-Dj ^St

SIR, jl + 1 Rj j 1 —XlRi jl

©-------------^ 1 ^.
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Region jjbO, page 1
Pressure Calculations

Iteration count

Set up index for 10 iterations. o-»-CONmax

Set up index for one sweep through cell mesh

j = FULL f)

no/-------- ^ yes no s-
^-(i J4-I = BND ?)—>-(i j ■» I = NOSLP or IN j STOP

<f>. . , = <A. . + g Sy^11+ ' l I J

/-----------1--------- T\ves ,(i jt-l = INCOR i-l j + '/ji ifj Sx:

i j - I = NOSLP or IN ?)f^-(i j - I = FRSLP?)^-{rj-1 ^ OUT STOP

(i j-l = INCOR~T i + l j-'/j I + '/2 j - '/z)

i + l j = NOSLP or STOP

'^T §7

j = NOSLP or STOP

(i-l j = INCOR i-i
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Region #40, page 2
Pressure Calculation

(Tpl Iterations since last convergence test ?}

CON. • > CON

-(JVIore cells f)

Print # of iterations

CON. ;

CON: ; =
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Region #50, page 1 
Velocity Calculation

(i j = FULL or

i j -1 = NOSLP COR?)

FRSLP COR?)

URON ?"}

Use -u

i + ‘/a j+l

for u

Set up index for one sweep through cells
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Region #50, page 2
Velocity Calculation

(i j + I = EMP?') 

(i j + l = BND?)

I

yes n 4 I n c\ ▲vi i + -/2= vi j+'/2+ gyst

yes n +1 nv. . = v .I J + '/2 I J + '/2

i + l j + '/2
yes Use -vn.

= 0?)—»#^i+ I j + l or i+l j = NOSLP COR^lH ' ,+'/2
f0r Vin+I j + '/2 !

no no 1no
-(^i+l j + l or i + I j = FRSLP COR

(^i + I j and i + I j + I = EMP

no

' -s—

yes Use n
Vi i + '/2

; >
for Vin+I j +V2

V. - • j + Vo

yes yes= 0 /> V^^(i - I j or j - | j + I = NOSLP COR P)------ s-

no no
j no

Hj - I j or i -1 j +1 = FRSLP COR P) 
^ yes

Use -vn.
i ) + '/2

for vn .
i-l j + y2

Q - I j and i-l j + l = EMP /) yes Use vn. .
' ) + '/2

f0r Vin-I i + '/2

j = URON 7)
yesi

1 T /g J T /g *-
------------------------- ......... *

yes

URON ,?> n0-^ 2? + (uv). . —*- S22 i-y2 i+y2 2
^ T

vn + l vn. + Stfz, + —2 + ^-------^-L!^
i j + v2 t j + v2 \ 1 gx By

r
(y)-^—^More cells
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Region #50, page 3
Velocity Calculation

-(JVIore cells P)

\More cells p')------ H^W)

i j + '/z i j + '/2

Set up index for one sweep through cells

Set up Index for one sweep through cells
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Region #50, page 4
Velocity Calculation

(w)

For a

Calculate and store velocities for

all BND cells according to the type 

boundary under consideration.

For each SUR cel I, calculate the 

velocity for the side next to an EMP

cell according to the equation 1

Return



Region #60, page 1
Particle Movement

(k = AVAIL

(i j = FULL or SUR ------Hj j = INPUTS)

STOP

Set up index for one sweep through particles

j = the integer value of (yk/Syj + 2)
i = the integer value of (xk/Sx. + 2)
f = the fractional part of (yk /S y. + 2)
f = the fractional part of (xk/sxj +2)
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Region #60, page 2
Particle Movement

0 -n j = cor

i 11 i + '/2

m +1 _
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Region #60, page J
Particle Movement

(More particles P)

= ('/z+ Sx)(l/2 - Sy)v, + (Vz ~ Sx)('/2- Sy)
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A few results of MAC-method calculations have been published, but
2 3 4-these fail to show anything like the full scope of applicability. ’ ’ 

This part of the report presents an album of calculational results, de­

signed to illustrate some additional types of problems for which the 

technique is suited. None of the examples is analyzed in detail. Pre­

vious publications have shown, by comparison, that the MAC-method re­

sults are accurate; and only a few additional comments in this regard 

are given here.

All of the calculations were performed on the IBM 7030 (Stretch) 

Computer. The plots were processed directly from computer output 

through the Stromberg Carlson SC-4020 Microfilm Recorder, and are not 

retouched or otherwise altered.

PART 3 - SOME CALCULATIONAL EXAMPLES
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t = 7.0

Fig. 5*1• Wave on a Sloping Beach

The figures are tilted to give downward direction to gravity; in the ac­
tual calculation, the bottom of the tank was level, and there was a nega­
tive horizontal component of the body acceleration. The wave was genera­
ted by dropping the blob of fluid shown to the left at t = 0. By the 
time t = 6.0, the resulting wave reached the tip of water; subsequently, 
it ran up on the shore with decreasing amplitude. The bottom allows free 
slip, and the viscosity is negligible.

g = - 1.0
Height of mesh = 2.1

v = 0.01
No. cells in vertical direction = 23
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Figo J.2. Water from a Reservoir

The dam holding the reservoir is removed at t = 0. Subsequently, the water falls away toward 
the obstacle in its path. The collision and splash over the top of the obstacle are shown in 
the last two frames. The calculated pressure history on the obstacle can then be used to pre­
dict damage. The bottom allows free slip, and the viscosity is negligible. Comparison of 
similar calculations (but lacking an obstacle) have been made with the results of experiments, 
and the agreement is well within experimental error.5

g = - 1.0 v = 0.01
Length of mesh = 4.8 Height of mesh = 4.0

No. cells across bottom = 50



.._.... _f - liBi

t = 4.0 t = 6.5

t = 5.0 t = 7.0

t = 6.0 + = 7.5

Fig. 3»3. Wave on a Breakwater

The wave is generated, as it was in Fig. 3*1> ty dropping a blob of fluid 
at the left, outside the computing region shown. The relatively empty 
region just under the wave crest is treated, calculationally, as being 
full of water. As in Figs. 3»1 and 3.2, all rigid boundaries allow free 
slip; and the viscosity is small enough to have a negligible effect on 
all results, except for a slight smoothing of the particle arrangements.

g = - 1 .0
Length of mesh = 9.0
Height of mesh = 2.1

v = 0.01
No. cells = 92 X 23 (2116)
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t = 2.0 t = 6.0

t = 5.5 t = 7.5

Fig. 3.4. Wave on a Reef

The calculation is similar to that 
been widened into a shelf or reef, 
times.

g =
Length of mesh = 
Height of mesh = 

v =
No. cells =

in Fig. 3.3* hut the breakwater has 
Note that the wave breaks at late

- 1 .0
9.0
2.1
0.01
92 X 23 (2116)
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Fig. 3.5« Water Under a Sluice Gate

Water in a reservoir behind a sluice gate is forced out under pressure 
into a shallow, quiescent reservoir. The resulting wave breaks back­
ward, toward the gate. The walls allow free slip, and the viscosity 
is negligible.

g = -1.0
Length of mesh = 4.8

Applied cp in deep reservoir = 2.5

v = 0.01
Height of mesh = 5.0 
No. cells = 50 X 32 (1600)
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t = 2.0

t = 2.5

*yS ■(■i '-•? -VV-f: f

Fig. 3.6. Water Under a Sluice Gate

The calculation resembles that of Fig. 3*5 
mits the wave to break forward, at first.

g = - 1 .0
Length of mesh = 4.8

Applied cp in deep reservoir = 2.5

Note that the shallower downstream reservoir per

v = 0.01
Height of mesh = 3*0 
No. cells = 50 x 32 (1600)
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t = 1.0 t = 4.0

Fig. 5.7. Jet of Water

From an opening at the upper left, water pours down onto the bottom and splashes off to the 
right. The resulting wave becomes highly irregular. The left wall allows free slip; but the 
bottom has a no-slip condition, and viscous drag is important.

g = - 1.0
Length of mesh = 7*5
Input velocity =-1.0

v = 0.01
Height of mesh = 2.5 
No. cells = 77 X 27 (2079)
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L“

t = 0.0

Fig. 5.8. Jet of Water

This is the same calculation as shown in Fig. 3.7* The line segments are computer-plotted 
velocity vectors. Note the effect of the no-slip bottom boundary condition.



Fig. 3.9. Jet of Water

The run shown in Figs. 3»7 and 3*8 was continued to very late times, giv­
ing these marker-particle and velocity vector configurations.
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t = 0.0

t = 2.0

t = 4.0

t = 6.0

Fig. 3.10. Formation of Hydraulic Jump

The box of water has rigid ends, and the water is initially moving to 
the right. It piles up on the end, and a jump progresses to the left, 
at first into water of uniform depth, then into shallowing water. The 
walls and bottom allow free-slip, and the viscosity was chosen to be 
just great enough to prevent breaking of the wave. (For the effects 
of varying viscosity, see Fig. 3.12.) In calculations of this type, the 
height and speed of the jump agree very well with analytical predictions. 
Tests of this type were made for a variety of situations, as a useful 
way to demonstrate the validity of the calculations.

g = - 1 .0 v = 0.10
Length of mesh = 9.6 Height of mesh =2.2

Initial water velocity = 1 .0 No. cells = 98 x 25 (2450)
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t = 2.0

t = 4.0

t = 6.0

t = 8.0

t = 2.0

t = 4.0

t = 6.0

t = 8.0

VELOCITY PRESSURE
Fig. 3.11. Formation of a Hydraulic Jump

These are velocity vectors (one for each computational cell) and isobars for the same calcula­
tion illustrated in Fig. 3.10. The interval betveen lines of equal cp is 6cp = 0.10 with the top 
line at cp = 0.05.



Fig. 3*12. The Hydraulic Jump

Effects of viscosity are shown in these comparative frames, all of 

which are at a time t = 4.0 after the jump was input. In each calcula­

tion, quiescent water was present at t = 0; and the jump, vith a vertical 

face, was fed in thereafter from the left. The input conditions were 

chosen to match the analytical jump predictions. The comparison between 

no-slip and free-slip bottom boundary is designed to show that viscosity 

can affect the appearance of the jump in two different ways: both inter­

nally in the fluid and as a result of drag. Many aspects of these re­

sults have been compared qualitatively with experimental data, and no dis­

agreements were observed. Unfortunately, the available experimental data 

are too restricted for such comparisons to be really crucial tests of com­

puting accuracy.

Another set of tests of these particular runs compared the number of 

cells containing any fluid with the Santalo prediction given in Eq. (1.21). 

In every case, the comparison was accurate to well within the fluctua- 

tional uncertainty of the statistical equation.

g =
Length of mesh - 

Height of mesh = 

No. cells = 

Initial depth = 

Input depth = 

Input velocity =

1.0

9.8

2.3
100 X 25 (2500)

0.5

1 .5
1 .0
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t/ = 0.04 1/ = 0.04

I

I

1/ = 0.10 1/ = 0.10

FREE-SLIP BOTTOM NO-SLIP BOTTOM



t = 4.0

FREE-SLIP BOTTOM

• ------- - 'J

t = 4.0

t = 7.0

NO-SLIP BOTTOM

Fig. 3.13. Flow of Viscous Fluid

A very viscous fluid is input from the left onto a flat plate. A com­
parison between no-slip and free-slip bottom boundary conditions shows 
a very large difference in results.

g =
Length of mesh = 
Height of mesh = 

v =
No. cells = 

Input depth = 
Input velocity =

1.0 
9.8 
2.2
0.10
100 X 24 (2400) 
1.5 
1 .0
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Fig. 3.1^* Fovintain of Water

Water pumped in from the central region rises against gravity and falls 
sideways in both directions. The particle plot is shown above; velocity 
vectors, below.

g = _ 1.0 v = 0.01
Input velocity = 1.0 Length of mesh = 3*0

No. cells across bottom = 30
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Fig. 3.15» von Karman Vortex Street

The applicability of the MAC technique to confined flows is illus­

trated by this calculation of the von Karman vortex street formed behind

a rectangular cylinder. The results have been compared with those ob-
5

tained previously and the agreement is excellent. The example shown 

here is for a downstream Reynolds number of 100. Both the obstacle and 

the confining walls had free-slip boundary conditions, so that vorticity 

had to be created at the obstacle corners. Production of the proper 

amount confirms the validity of the present treatment at corners (see 

discussion in Part 2). The figures show different ways of plotting the 

fluid state, all for the same time after the street was well developed.

The top frame illustrates the streakline configuration created by 

lines of particles fed in from the left. The middle frame is a plot of 

velocity vectors; the streamlines can be visualized easily from this 

plot. The bottom frame gives lines of constant pressure, with equal in­

tervals between lines. Lift and wall stresses can be obtained accurately 
by integrating such pressure details.

g = 0.0

Distance between walls = 3»0 

Height of obstacle =1.0

v = 0.01 

Input velocity = 1.5 

Output velocity = 1.0 

Interval between isobars = 0.03125
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Fig. 3.16. von Karman Street
Below a Free Surface

The calculation resembles 
that of Fig. 3*1but there is 
a free surface above the ob­
stacle. The pictures show late­
time configurations of particles 
(above), velocities (middle), 
and isobars (below).

g
Length of mesh 
Height of mesh 

v
No. cells 

Input velocity 
Obstacle height

• 1 .0
5.625
4.0 
0.01

45 X 32 
1 .5
2.0



cr

Fig. J.17* A Waterfall of Viscous Fluid

A thick, viscous fluid is pumped in from the upper right. It falls onto 
a rigid plane surface, some splashing backward and some forward, where it 
is lost from the computing region. A late-time particle configuration is 
shown above. Corresponding velocity vector and isobar plots are also 
given (middle and below, respectively).

g = - 1 .0 V = 0.10 •
Length of mesh = 4.5 Height of mesh =3.8

No. cells = 1710 Input velocity =1.0
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Fig. J.18. Rise of a Two-Dimensional Bubble

A bubble, initially circular in shape (bottom), deforms as it rises through 
a confined fluid. The particle configurations are shown for t = 0, 1.6, 
3.5> and 4.5 (from bottom to top, respectively).

g
Height of mesh 

v
No. cells 

Initial bubble radius 
Bubble pressure

1 .0
4.7
0.1
4? x 12 
0.4
0.0 (constant in time)
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Velocities at t = 1.6, 3.2 and 4.5 (bottom to top)

Fig. 3-19* Rise of a Two-Dimensional Bubble

Velocity vectors (at t = 1.6, 3.2 and 4.5) and the pressure at t = 4.5 
are shown for the calculation described in Fig. 3.18.
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PART 4 - TWO-MATERIAL CALCULATIONS

Introduction

The MAC method has had its greatest application in the investiga­

tion of the effects of inhomogeneity on the dynamics of an incompressible 

fluid. The inhomogeneity discussed previously was of the extreme form 

represented by a free surface. In this part of the report we describe 

an extension of the MAC technique which studies the effects of more mod­

erate density discontinuities. The change is one more of emphasis than 

of degree and, therefore, requires a somewhat different procedure for ob­

taining a numerical solution. For this reason, the calculation of the 

flow of mildly inhomogeneous fluids is being considered as a separate 
part of this report.

The crucial difference in the two techniques concerns their treat­

ment of the fluid interface. As implied by its name, a free-surface cal­

culation considers the interface to be a boundary line between a fluid 

region and an empty region. Its position is determined through the use 

of marker particles, which have no other function in the calculation. 

Computations are made only for the occupied parts of the mesh, and the 

fluid in these cells is considered to be uniform.

In the two-material technique, however, provision must be made for 

gradations in density in the cells that mark the interface. Further­

more, this treatment must be such that the position of the interface re­

mains well defined throughout the course of the calculation. This dual 

requirement has been satisfied by enlarging the role which the particles 

play in the calculation. They are now used not only to mark the density
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discontinuity, but also to determine the values of cellular densities 

and viscous coefficients in all cells in the mesh.

The Differential Equations

The list of field variables for calculating the dynamics of a het­

erogeneous fluid must be somevhat expanded over that of Part 1 to 
include:

u = fluid velocity 

p = pressure 

p = density

p = coefficient of viscosity

The independent variables are the time and the Eulerian coordinates.

The density and viscosity coefficient are considered to be constant 

in homogeneous regions of the fluid. At the interface these constant 

values change abruptly; but we assume that there is always a functional 

relationship between p and p, so that the above list of dependent var­

iables can be reduced by one. In general, however, this relationship is 

not a direct proportionality, so that we cannot assume a constant kine­

matic viscosity, v = n/p, throughout the system.

The equations describing the flow of a heterogeneous, incompressible, 

viscid fluid are most often written in the forms

+ ulVp = 0 (4.1)

V*u = 0 (4.2)

+ (u**V) u* = - - Vp + — [2(V*|iV)u + Vx(pVxu) + g* 
at p p

Equation (4.1) relates local density changes to fluid transport. Equa­

tions (4.2) and (4.3), expressing volume and momentum conservation, re­

spectively, are identical to their one-material counterparts, Eqs. (1.2)
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and (1.3), except that the two-material momentum equation contains a 
more complicated viscous diffusion term. This complication is necessary 
to account for spacial variations in the coefficient of viscosity. In 
the case where p is constant throughout the fluid, it can he shown — 
with the aid of Eq. (4.2) — that Eq. (4.3) reduces to Eq. (l.3)»

The similarity between these two equations extends to their conser­
vation properties. Just as Eq. (1.3) when written in finite difference 
form, fails to rigorously conserve momentum, so also does Eq. (4.3). 

Furthermore, the latter equation is inappropriate to a two-material cal­
culation because it does not take into account the changes in momentum 
that result from density variations. Both of these difficulties can be 
remedied by combining Eqs. (4.1) and (4.3) and using Eq. (4.2) to obtain

^ (puu*) = -Vp + 2(V.pV)u> + Vx(pVxu) + pgf (4.4)

It is this form of the momentum equation that is used throughout Part 4.

The conservative nature of Eq. (4.4) can be demonstrated in the 
same way as was that of Eq. (l.4). Integrating over a fixed volume and 
applying the divergence theorem to the appropriate volume integrals, 
can show that, neglecting gravitational accelerations, momentum changes 
result entirely from external forces.

The Solution Technique 

The Fluid Model

Although Eulerian finite difference techniques have previously been 
applied to multifluid flow calculations, they have been limited in appli­
cation by their tendency to smear density discontinuities. This charac­
teristic difficulty results from the fact that the method makes no pro­
vision for resolving interfaces. An Eulerian cell containing two fluids 
is usually assumed to have the mixture distributed uniformly throughout. 
Therefore, when mass fluxes are calculated, it is this mixture that is
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transported to the neighboring cells. This results in a calculational 

mass diffusion that quickly eradicates sharp density discontinuities.

Therefore, a technique was needed which would maintain sharp fluid 

interfaces without becoming so complicated and time-consuming in opera­

tion as to preclude the calculation of meaningful physical problems.

It was discovered that this could be accomplished by extending the marker- 

particle -and-cell concept of the MAC method.

The approach is similar to that used in Part 1 in that the calcula­

tions are performed relative to the Eulerian mesh of cells, while the 

fluid is represented within these cells by marker particles. But, whereas 

in a typical one-fluid problem the particles differentiate fluid cells 

from empty cells, in a two-fluid problem they must distinguish one fluid 

from the other. This is accomplished by using different types of par­

ticles to represent each fluid. We differentiate between them by flagging 

the data associated with each type of particle in a characteristic way.

In addition to the fact that the particles are no longer uniform, 

there is another important manner in which they differ from those used in 

a single-fluid calculation. While the latter particles merely mark the 

position of the fluid but do not directly affect the calculations, the 

particles with which we deal in Part 4 are used to determine the values 

of p and p needed for the cellwise calculations. Specifically, if a 

given Eulerian cell contains n^ particles of x fluid and n^ particles of 

y fluid, then p and u in that cell are given by

P =
n p + n pxx y y

n + nx y
and

P =
n |i + n pxx y y

n + n (^•5)
x y

At the fluid-fluid interface one could expect to find cells with various 

values of p and p intermediate between those of the homogeneous cells.

In many respects, this type of interface treatment is far easier to 

incorporate into a numerical technique than is the free-surface treatment
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of Part 1 . For example, there is no ambiguity concerning the volume of 

fluid contained in an interface cell; it is entirely filled with fluid 

just like any other cell in the mesh. Therefore, the criterion for 

volume conservation holds without modification, even though the mass of 

the cell may be changing.

Theoretically, the normal and tangential stress conditions are 

also automatically satisfied at the interface (at least to the extent 

that the finite-difference resolution and our knowledge of the viscosity 

of inhomogeneous fluids will permit). Experience has shown, however, 

that there may be difficulty in achieving continuity of pressure at an 

interface when the fluids have markedly different densities, and that 

drag will occur along strong slip lines even if the fluids are inviscid. 

The latter problem results from the particle movement procedure described 

below. Each of these difficulties is calculational in nature, and 

neither is considered insurmountable. They do, however, require further 

study.

The Finite Difference Equations

The points of definition of the velocity components relative to the 

cellular mesh are the same as those indicated by Fig. 1.1. The other 

field variables — pressure, density, and viscous coefficient — are 

cell centered.

With these definitions, we can write the finite-difference analogies 

of the two components of Eq. (4.E):

(’CL (pu),i. + 6t 
1+2J

(pu2)ij ~ (pu2Wi ^ (puv)n4.i^ - (ouv)i+i.i

6x Sy
i+zitz

+ 2 Vi.i(ui+li w

Sx

(Equation Cont'd)
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~ui^j

5y 6x '.^kd
i4-|j~Ui4j-1

____________

V 1 -V
ij-

6x
By

+ Pi4J g„ + ij i+1 j
5x

(^•6)

( pv)n+11 = (pv). . ! + 6t 
1J+2 1J+-|

[W).^. 1 - (puv) 1 1 (pv^) - (pv )
__ 1+?J+? , _____ IJ_________1J+I

8x + 5y

+ 2 ^ij+1 (vij+t~ Vij+?^ ~ ^ij^ij^ ~

By2

01. -u.^ , i Ii+jj+.1 .“i+^j + I.i+J, jk"Vi) .u , ("i-gj+1 "i-^j , 'ij+j^i-Tj^
i-Hgj-4 V S£Sx J V 5y Sx

5x

, 1 4 . 1 _U, 1 4 V4 4 . 1 "V4

+ Pij+5
e ^ Pij ~ Pij+1
gy ' &y (^.7)

As in Part 1, the absence of a superscript indicates that the quantity 

should be evaluated at time n5t.
When values of the velocity components, the density, or the vis­

cosity coefficient are required at localities other than their point of 

definition, a simple average is generally used. The only exception to 

this rule involves the terms that express momentum transport normal to 

the calculated direction. In such cases, the momentum flux is taken in 

the direction indicated by the flow field. We illustrate the procedure

with the term (puv). i . i from Eq. (4.6). This term expresses the flux
1+2 j-'a

of x-direction momentum in the y-direction. It could assume either of 

two possible forms:
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A similar prescription applies to the other momentum flux terms.

The incompressibility condition, Eq. (1.12), is the third and final differ­

ence equation that is required. It is used, in the manner described below, 

to determine the pressure and density fields necessary for the solution of 

Eqs. (4-.6) and (4.7)*

The Computing Method

Before explaining how these difference equations are applied, let us 

briefly review the computing procedure in Part 1. The incompressibility 

condition is applied in each cell in such a way as to be effective at time 

(n+1)bt. This process yields a finite difference Poisson equation for the 

pressure with a known source term in each cell. The Poisson equation is 

solved by means of an iterative technique. Finally, the resulting pressure 

field is used in the momentum equations to evaluate the advanced values of 

the velocity components. This velocity field is automatically conservative.

The same technique is used here, except that we now must solve for the 

pressure field and the (advanced time) density field simultaneously. This 

is accomplished by means of a double relaxation method: By guessing at an 

advanced time density field, the associated pressure field is determined 

by an iterative procedure. These pressures and densities are then used to 

find the velocities. Particle trajectories are calculated from the veloci­

ties in order to determine the new density field. This dual iteration pro­

cess is repeated until, eventually, the densities remain static and the 

pressure field is sufficiently relaxed. Essential to this technique is the 

marker particle method of determining densities, for it insures that cell 

densities will change only by discrete increments.
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Let us now go through the procedure in detail. For convenience we 

abbreviate Eqs. (4.6) and (4.?) as

/ ,,n+1(ou)i4J = I.
5t /&x ^Pij " Pi+1^

(pv)n+1i = r 5t , ,
j+? + Sy Pij " Pij+1

where £. i .
1+5J

sity field.
and i can be determined by inspection. For a given den- 1J+2
the incompressibility condition, Eq. (1.12), can be written

^i-M
n+1

pi~M

i i
i+?j
n+1 n

Di4o

-LJ^>
n+1

pi1_l

4j±i
n+1

Pij+|

(4.8)

The density field at time n6t is used as the starting guess for the 

advanced densities* With these density values, Eq. (4.8) is solved (to a 

rather crude degree of accuracy) for the pressures. This provides us with 

sufficient data to compute the advanced velocity values from Eqs. (4.6) and 
(4.7) and. to determine particle trajectories. The particles are not 

actually moved at this time. We merely note any trajectories that would 

cause a particle to cross a cell boundary and contribute to a density 

change. The appropriate changes are made by means of Eq. (4.5), and the 

resulting density field is used as the second guess in solving for the 

pressures in Eq. (4.8). The process is repeated until there are no 

changes in density. Then, the pressures are relaxed very accurately; 

the new velocities are calculated; and the particles are moved. The final 

values of the densities and the viscous coefficients are calculated from 

Eq. (4.5). A flow diagram showing the order of these steps is presented 

in Fig. 4.1.
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DATA PRINTOUT

MOVE PARTICLES

PROBLEM SETUP

CALCULATE VELOCITIES

FINE PRESSURE 
ITERATION

CRUDE PRESSURE 
ITERATION

CALCULATE DENSITY 
CHANGES

CALCULATE PARTICLE 
TRAJECTORIES

CALCULATE DENSITIES, 
VISCOUS COEFFICIENTS

OLD DENSITY FIELD 
—►NEW DENSITY FIELD

CALCULATE QUANTITIES 
NEEDED FOR THE 
PRESSURE ITERATIONS

Fig. . Flow Diagram of the Multifluid Calculation Scheme
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In general, the final density values will be identical to those 
used in the last pressure iteration; a discrepancy would be an indica­
tion that the crude pressure iteration was not sufficiently accurate. 
Occasionally, however, a cell density will fluctuate from one value to 
another on each succeeding iteration as a result of the fact that a 
particle has landed almost exactly on the cell boundary. In such a 
situation the density field would, of course, never converge. There­
fore, it is necessary to sense this condition when it occurs and ter­
minate the iterations. In this case a density change after the final 
iteration is permitted.

The Relaxation Technique

At first reading, the finite difference scheme described above may 
appear so complicated and time-consuming as to preclude its application 
to meaningful physical problems. In fact, however, such is not the case. 
Calculation times appear to be roughly equivalent to the time required 
for single-fluid MAC problems. The reason is that there are ways to 
optimize the efficiency of the two-part relaxation technique, which con­
sumes the largest percentage of the calculation time. The iteration 
scheme and its important timesaving features are described in the follow­
ing paragraphs.

Prior to the start of the iterations, the !• and £ terms are computed; 

thereafter, these terms remain fixed throughout the entire calculation 

cycle. Also during this preliminary period, we combine the source terms 

and the coefficients of the pressures in Eq. (4.8) in order to write 

that equation in the simplified form.

12 5 4P. . = B. .p. , . + B. ,p. , . + B. .p. . , + B. .p. , . + A. .ij ij i+lj ij i-lj ij ij+1 ij ij-1 ij (4.9)

These coefficients and the source term, A^,will also remain fixed for 
the entire cycle, unless the cell or one of its neighbors undergoes a 
density change in the course of the iteration. Notice that Eq. (4.9) is
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a Poisson equation only in those (homogeneous) regions of the fluid 

where the B's are all equal to unity.

To obtain the solution of Eq. (4.9), we employ the relaxation tech­

nique described in Part 2 of this report. Successive sweeps of the 

mesh (from left to right and from bottom to top) are made, computing 

the pressure in each cell by solving Eq. (4.9) in terms of the most re­

cent pressures from the neighboring cells. Convergence is tested per­

iodically to determine whether additional iterations are required.

Two types of pressure iterations have been discussed in Part 4:

1) Crude iterations that determine a pressure field of suffi­
cient accuracy to permit the calculation of particle tra­
jectories and density changes.

2) Fine iterations that use the final density field and pro­
duce a (final) pressure field of a higher degree of accuracy.

The crude iterations are simply a timesaving device, because absolute 

accuracy is not required at that stage of the calculation. They do, 

however, provide a headstart toward the solution and thereby shorten 

the fine iterations. Both types make use of the method described 
above, but they differ in respect to their convergence criteria and 

the frequency with which these criteria are checked. The convergence 

of the crude iteration is tested after four sweeps of the mesh against 

the criterion

where g is the magnitude of the body acceleration and h is the depth of 

the fluid. The fine iteration is checked after every 13 sweeps of the 

mesh against the number 0.0002.

The process of calculating density changes is greatly facilitated 

by a constraint placed on the time increment, 5t. We require, for the 

accuracy of the numerical method, that the time step be sufficiently
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small so that no particle could traverse more than a single cell in one 

time cycle. As a result, we may be sure that the interface will not 

move more than a cell width in a cycle. This permits us to restrict 

our attention to a relatively few cells in the vicinity of the interface 

for the purpose of calculating density changes. All other cells will 

remain homogeneous during this time cycle.

In order to take advantage of this restriction, we define two par­

ticular types of cells:

1 ) Interface cells, including all cells capable of experiencing 
a density change during the time cycle. Any two adjacent 
cells (i.e., with either a corner or a side in common) con­
taining different fluids are interface cells.

2) Contributing cells, including all cells that might contri­
bute particles to an interface cell. All interface cells 
and cells adjacent to interface cells are contributing cells.

Before any iterations begin, a search is made through the cells to 

determine the interface and contributing cells for that time cycle.

These cells are then suitably marked by flagging the data associated 

with them.

In calculating particle trajectories after the crude pressure iter­

ations, we may limit our attention to the contributing cells, inasmuch 

as these are the only particle movements that could cause density 

changes. The velocities used to calculate these trajectories use the 

latest pressure and density data by applying the following simple for­

mulas:
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We take note only of those trajectories that cross cell boundaries, and 
register their effect by tallying the gains and losses for each type of 
particle for the cells involved.

When all the required particle movements have been accounted for,
it is time to determine the resulting density changes, if any. For this
purpose we consider only the interface cells. The number and type of
particles gained or lost by each interface cell are combined with the
number of particles of each type that were contained in the cell at the
beginning of the cycle, in order to determine the cell density by means
of Eq. (4-.5)* If the new cell density is different from its previous

value, then new values of the B's and of A. . must be calculated for that
ij

cell and its four neighbors for use in Eq. (4.9). If the density is un­

changed, we proceed to the next interface cell.

If none of the interface cells ejqperience a density change, then we 
consider the density iterations to be complete and proceed with the final 
pressure iterations. If, however, there were density changes, then the 
crude pressure iteration and density change calculation must be repeated. 
After three such repetitions, we review all interface cells to determine 
which have undergone density changes. The interface cell flags are 
turned off for those cells that have experienced no changes during the 
three iteration cycles. The contributing cells are similarly re­
evaluated in order to progressively reduce the number of cells for which 
these calculations are required.

Particle Movement

The particle movement technique is exactly the same as that used for 
the single-fluid calculations. The components of the particle velocity 
are computed as a weighted average of the four nearest cellular velocity 
components. The purpose of the weighting is to give the greatest emphasis 
to the cell velocities nearest the particle.

Figure 2.6 illustrates the manner in which the weights are determined 

for each velocity component. Consider the x-component. A cell-size
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rectangle is imagined to be centered about the coordinates of the four 

nearest u-velocity components, and a similar rectangle is placed about 

the particle in question. The proportion of area overlap of this 

latter box on the other four determines the weighting to be applied to 

each of the four velocities.

For the purposes of numerical calculation, the whole process may 

be reduced to a single algebraic expression (see the flow diagrams for 

Region 60 in Part 2 for a detailed description of this numerical treat­

ment; a similar procedure for the y-component of the particle velocity 
is also described there).

Boundary Conditions

The calculations described here use rather simple boundaries. In 

all cases, the calculational regions are rectangles, bounded by rigid 

walls (coincident with mesh lines) with no interior obstacles. At the 

rigid walls, the normal component of velocity vanishes. The tangential 

component may also vanish; or it may be unaffected by the wall, depend­

ing on whether no-slip or free-slip boundary conditions are used. As 

mentioned in Part 1, the choice of the boundary condition depends upon 

the width of the boundary layer anticipated in the actual problem. If 

the boundary layer were on the order of a cell width or greater, a no­

slip boundary condition would probably be required. If it were smaller, 

a free-slip boundary could be used.

The finite-difference implications of the no-slip and free-slip 

boundary conditions have been described in some detail in Parts 1 and 2; 

and in this part of the report, we merely summarize the points of addi­

tion to it.

The Eulerian calculation method requires the consideration of an 

extra row (or column) of boundary cells outside the region of calcula­

tion (see Fig. A.2). The following summary discusses the treatment of 

the flow variables in those cells for no-slip and free-slip boundary 

conditions.
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Density and viscosity coefficient; In order to make the boundary 

treatment of velocities and pressures consistent with that used in the 

single-fluid calculations, it is necessary to choose the density and 

the viscosity coefficient in the external boundary cell equal to the 

values of those quantities in the image cell inside the boundary. This 

is done at both no-slip and free-slip walls.

Velocity components: Rigid walls are always chosen to correspond 

to mesh lines, along which normal velocity components are defined. The 

vanishing of the normal component of velocity at rigid walls is there­

fore easily specified. The tangential components and the normal com­

ponent outside the wall are chosen in such a way as to simultaneously 

satisfy the boundary condition and the incompressibility condition in 

the exterior cell.

In the following examples, consider a rectangular mesh with hori­

zontal cell indices varying from i = 1 to I and vertical cell indices 

from j = 1 to J. The external boundary cells have a horizontal index 

of 0 on the left or I + 1 on the right and a vertical index of 0 on the 

bottom or J + 1 on the top (see Fig. 4.2).

No-slip walls: Tangential velocities reverse, while the ex­

ternal normal velocity is equal to that at its image point.

At the left-hand wall.

uj. = 0,
2<J U In“2J

-V 1
2

At the right-hand wall,

Vi0 “ bI+|J UI-sj’ VI+1J±i "ijii= -v.

At the bottom wall.

v,i =0, v. ! = v 3, Ui±|0 "Ui±^1

At the top wall:

v.T , = v.T !, u. , . = -u,
ij+f 1J+2 iJ-"r i±2J+l i±-g-.
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Free-slip vails: The tangential velocity is equal to that at 

its image point vhile the external normal velocity reverses.

At the left wall,

ui. = 0, u i = -u3 , v j. = v 
2 J 1"20 I J±2

At the right wall,

UT,= 0, u 3 = -u 1 , v .. 1 = v 1 
1+20 I+gJ 1"2J 1+1 J-2 IJ-'2

At the bottom wall.

v.i = 0, 
12

At the top wall.

vi_i = -v* 1 2 ■l2 Ui±^0 Ui±^1

vu+is °’ ViJ+l ~ViJ-4’ Ui±?J+1 = Ui±ij

Pressures; With densities, viscosity coefficients, and velocities 

determined as above, the pressures are defined in such a way as to 

satisfy Eqs. (4.6) or (4.7) identically (depending upon whether the bound­

ary is vertical or horizontal).

No-slip walls;

At the left wall,

?0j = P1 j " P1 j Sx
p., P.. p. g 8x. ĥ k.

5x 5y

At the right wall,
V u 1 v ,(u + u ) - v i(u + q )

P . = p.+p.g5x +  P D------- —  il—2 L3---------------LlzJ
1+1 j Ij Ij X

At the bottom wall.

5x 6y

p =p .p , ... 4^i M ui4i(b, ^ “1,11 > - ui-»i(bi + *i-n >
pi0 Pi1 Pi1 y7 5y 5x
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At the top wall,

p„., - + 8 sy + . ui^(^+ w - * “i-u>

iJ+1 iJ ij y &y 5x

Free-slip walls:

At the left wall,

P0j ' P1j - PU eKSX

At the right wall,

Vi j" pi j+ pu g*Sx 

At the bottom wall,

Pi0 ' Pi1 - Pi1 V*

At the top wall,

pij+i = pij + pij ^

Stability and Accuracy

The stability requirements for one-fluid calculations, Eqs. (1.20) 

and (l .21 ), apply equally well in homogeneous regions of multifluid 

problems. At the interface, however, the analytic determination of sta­

bility criteria is complicated by variations in density and viscosity 

coefficient. Here one must rely on experience, which to date indicates 

that no difficulties are encountered at the interface when the homogen­

eous fluid requirements are satisfied.

These stability criteria are, in effect, limitations on the size 

of the time increment, 6t. Another limitation, required for accuracy, 

restricts fluid motion through the cellular mesh by means of the 

requirement
U 5t
-^-<0.5 (4.10)
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where U is the maximum velocity component in the mesh and SX is the max
smaller of Sx and Sy.

The numerical examples described below make use of the maximum 

value of St, consistent with these stability and accuracy requirements, 

in order to reduce calculation times. The time step is tested at each 

cycle of calculation to determine whether an increase or a decrease is 

in order. In the event that one or more of the above conditions is vio­

lated, St is halved; and then the tests are repeated as many times as 

necessary to avoid violations. The time increment is doubled if the left- 

hand expression in the inequality (4.10) is less than 0.125 and if the 

stability requirements are satisfied using the new value of St. Only a 

single doubling is permitted in each time cycle.

As mentioned in Part 1, an important measure of accuracy is the 

degree of rigorous mass and momentum conservation of the finite- 

difference equations. The discussion of momentum conservation given 

there is equally true here and will not be repeated. The subject of mass 

conservation in a multifluid closed system is, however, sufficiently dif­

ferent from that in single-fluid, free-surface calculation to warrant 

additional comment.

Volume conservation for the system as a whole follows from the fact 

that it is closed, plus the requirement that all cells in the system be 

full of fluid at all times. The latter requirement holds even in those 

cells temporarily void of particles. In such a case, the cell retains 

the density and viscosity coefficient associated with it at the time it 

became empty of particles. Such instances are not uncommon, especially 

where the fluid as a whole is undergoing large distortions, but they are 

generally shortlived.

Volume conservation on a cell basis results from the stipulation 

that Dj, j vanish in every cell at each time cycle, so that the net flow 

into a cell is exactly balanced by the outward flow. However, the mass 

in a particular cell may vary as a result of a change in the propor­

tionate number of particles of each type that the cell contains.
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Overall mass conservation, therefore, depends upon maintaining the ini­

tial areal distribution of the marker particles of each fluid. Conse­

quently, mass is not rigorously conserved at every time cycle; but we 

do expect only minor fluctuations, because the motion of the marker par­

ticles is governed by a conservative velocity field. As a test of con­

servation, we sum the mass in all cells at every time cycle and compare 

it with the initial mass. Typically, the percentage absolute mean de­

viation from the initial mass is about 0.1 $>. The maximum deviations for 

particular examples are given in the following section.
A reduction in the size of the mass deviation could no doubt be 

achieved by increasing the number of marker particles. However, the 

small discrepancies noted in the calculations performed to date do not 

seem to warrant the added calculation time that would result from such 

an increase. All of these calculations used an average of four par­

ticles per cell.

Examples

Examples of calculations performed with the multifluid extension of 

the MAC technique are presented in the form of particle plots printed 

directly from the computer data, with the aid of a Stromberg-Carlson SC 

4020 microfilm recorder. The particles of the two fluids are differen­

tiated by being printed with different degrees of darkness. For clarity 

the interface between the fluids has been sketched in by hand; but other 

wise the photos are not retouched.
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Fig. 4.3. The Fractured Diaphragm

Two fluids rest side by side in a box, separated by a thin dia­

phragm. The lighter fluid, marked by the heavy black dots, is on the 

left; and the heavier fluid is on the right. At t = 0 the diaphragm 

is removed, the heavy fluid falls under the force of gravity, which is 

directed vertically downward. The two fluids revolve until the inter­

face is nearly a horizontal line in the final figure of the sequence. 

Further running of the problem indicates that the interface overshoots 

this equilibrium line, reaching to the top of the box.

The walls of the box are rigid boundaries at which free-slip 

boundary conditions apply. Both fluids are inviscid. The apparent 

drag along the interface is the result of using area-weighted veloci­

ties for particle movement0

Number of calculation cells = 30 X 20 (600)

Number of marker particles = 2400 

Density radius = 2

Kinematic viscosity (both fluids) = 0 

Maximum deviation from initial mass = 0.5/6
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Fig. 4.4. Taylor Instability, Inviscid Fluids

A heavy fluid is superposed over a lighter fluid in a gravitational 

field. Initially, the fluid is perturbed by a low-amplitude, conserva­

tive-velocity field whose vertical component varies in the form of a 

cosine wave along the interface. This small perturbation grows exponen­

tially for a time. When nonlinear effects become important, the inter­

face develops a spike and bubble shape characteristic of Taylor insta­

bility. At late times, the effects of Helmholtz instability are visible 

along the edge of the spike.

Number of calculation cells = 20 x 60 (1200)

Number of marker particles = 4800 

Density ratio = 2

Kinematic viscosity (both fluids) = 0 

Maximum deviation from initial mass = 0.1%
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Fig. 4.5. Taylor Instability, Viscous Fluids

This problem is the same as that illustrated in Fig. 4.4, except for 

the added complication of viscosity. The primary effect of viscosity is 

to retard the growth of both Taylor and Helmholtz instabilities:

Number of calculation cells = 20 X 60 (1200)

Number of marker particles = 4800 

Density ratio = 2

Kinematic viscosity (both fluids) = 10 ^

Maximum deviation from initial mass = 0.2$
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