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ABSTRACT

This report presents a detailed description of the Marker-And-Cell
(MAC) technique developed at Los Alamos for solving fluid flow problems.
The method is appropriate for use with a high-speed digital computer.

The fluid is incompressible, viscous, and moves through large-amplitude
contortions in several space dimensions. There may be a free surface
upon which waves can form and break, or the flow may be entirely confined
by walls. Development of the fluid configuration can be investigated
through as much elapsed time as desired. The motions are calculated by
using the complete Navier-Stokes equations, including all nonlinear terms.
The only approximations arise from the finite-difference representation.
Pressure and velocity are used directly as the dependent variables;
neither stream function nor vorticity enters except as results derived
from the velocity field.

Part | describes the basic method, its theoretical properties, and
some extensions. Part 2 presents a detailed description of the logic of
the present code. In Part J, there are numerous calculational examples
to show the wide scope of applicability. The extension of the method to
computations involving two fluids is described in Part k.
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PART | - DESCRIPTION OF THE METHOD

Introduction

The numerical solution of problems in fluid dynamics has been
greatly facilitated in the last decade by the development of high-speed,
large-memory electronic computers. To take advantage of these facili-
ties, this "hardware" development has been accompanied by the invention
of numerical analysis techniques.

Anyone experienced in the field will confirm that the difficulties
involved in formulating useable methods for complicated problems are for-
midable. It is suspected that, at the present time, our technique capa-
bilities for the existing machines are far less sophisticated than those
that eventually will be developed. Even so, each new approach is broaden-
ing the scope of allowable investigations to such an extent that the term
"computer revolution" is beginning to be a realistic description of the
present situation.

Through necessity, the greatest advances in fluid dynamics comput-
ing have come in the field of compressible (high-speed) flows, in which
shocks and rarefactions are prominent features. Particularly spectacular
have been the results for large-distortion, time-dependent processes in
several space dimensions. Many investigators have contributed to the de-
velopment of techniques and to their successful applications.

The subject of incompressible (low-speed) flows has only recently

received the same intensive effort towards the development of techniques



for transient-flow solutions. The method developed by Fromm has been
particularly broad in its applicability to confined, incompressible
flows.

Recently, we proposed a different approach, by which it is pos-
sible to solve for incompressible flows with a free surface, as well as
for flows that are confined.z’3 The original description of this
method was somewhat sketchy in its presentation of details, and a sub-
sequent paper emphasized only the applications.4 Therefore, this re-
port is intended to present a detailed description of our method for
computing time-dependent, viscous, incompressible fluid flows in several
space dimensions, a method we have termed the "Marker-And-Cell" (MAC)
technique.

This part of the report discusses the theoretical background, to-
gether with a description of the basic technique, its properties, and
some of its allowable modifications. The method of solution and the de-
tails of computer logic are given in Part 2. In Part 3 we have gathered
a potpourri of results from actual, calculations in order to illustrate
the applicability of the method. Part 4 shows the technique extended to

calculations of two different fluids in contact with each other.

The Differential Equations

The Basic Forms

Before discussing details of the MAC technique, it is useful to re-
cord the form of the differential equations from which the difference
equations are derived, and to discuss some properties of the equations
that are pertinent to the numerical manipulations employed in the
computer.

For the basic field variables we use the symbols

1 = fluid velocity (Cartesian components u, v, w)

¢p = ratio of pressure to (constant) density



In addition, t is the elapsed time, and r is the FEulerian (laboratory-
frame) coordinate. The latter has Cartesian components X, y, Z.

The properties of the material are represented by a single number,
v, the kinematic viscosity coefficient, which is taken to be constant at
this stage of the discussion. Finally, it is convenient to define a

"discrepancy term"
D s V*u (1.1)

With these definitions, the equations governing the flow are usually

written
D=0 (1.2)

- (V) - Vep+ v V22+ N (1.3)

Equation (1.2) expresses the conservation of mass for an incompres-
sible fluid. If D fails to vanish anywhere, there is a discrepancy in
this conservation requirement — hence the name for this term.

Equation (1.3) describes the local production of momentum in terms
of the following sources: First, -(u*V)u* describes the convection of
momentum by fluid motion; second, -Vcp is the momentum change arising
from normal pressure forces; third, u* represents the diffusion of
momentum by viscous processes; fourth, "g describes momentum production
by body forces (gravity).

For the present, we neglect the effects of density layering, such
as would occur in the atmosphere of the earth. Also neglected are the ef-
fects of temperature variations that can produce buoyancy (free-convection
problems) as well as variations in the kinematic viscosity. Eddy viscos-
ity effects, whose importance can be great, are likewise neglected; v is
considered to represent molecular viscosity only, and the flows are imag-
ined to be non-turbulent.

Numerous methods have been used for the analytical solution of
these equations. In many cases, the approach has been tailored to take

advantage of any helpful features of the particular initial or boundary



conditions. For example, it has often been useful to linearize the equa-
tions ("slow-motion" and "low-amplitude" approximations), or to neglect
the effects of viscosity, or to impose restrictions of periodicity in
space and/or time. Our solution technique uses none of these assumptions.
It is based upon the full Navier-Stokes equations. The only approxima-
tions are related to:

') The finite-difference resolution, with resulting errors

which for laminar flow can, in principle, be made as small
as desired.

2) A difficulty in accurately representing the free-surface,
normal-stress boundary condition when the viscosity is
large.

3) Questions concerning the representation of Reynolds stresses
in terms of properties of the mean flow.

All three of these matters axe considered in detail in this report.

One of the most common solution techniques, both analytical and
numerical, involves the introduction of a stream function, through
which Eq. (1.2) becomes identically satisfied. In addition, it is often
useful to introduce vorticity, thereby eliminating pressure as a variable.
These techniques are particularly useful for confined flows in two space
dimensions. For flows with a free surface, boundary condition difficul-
ties arise with these substitute wvariables; likewise, if extension to
cylindrical coordinates is desirable, stream function and vorticity be-
come somewhat awkward to handle. The MAC technique, therefore, uses
pressure and velocity directly as the primary variables; and no difficul-

ties arise with respect to satisfying Eq. (1.2).

Modified Forms

Equation (1.3) can be written in two modified forms, both useful

for the numerical method, and both derived with the help of Eq. (1.2):

= - V¥(uu) - Vep + W2 u* + g* a.4a

-10-



= - V¥ u*) - Vop - v Vx(Vxu) + g* (1.5

The reason for the change in the transport term is that the finite-
difference form of this equation retains rigorous momentum conservation,
while the finite-difference form of the transport term in Eq. (1 .3) does
not. This conservative property can be exhibited directly in the differ-
ential equation. Thus, integrating Eq. (1.4) over a fixed volume V,

whose surface is S, we get

d 2

dt u dv

(1.6)

+ VJ”(n*V)uks +J'ng
where rl\i is a unit outward normal to the surface. This equation shows that
the only contributions to the momentum within the volume come from the
body force in the interior and/or from fluxes through the surface. Equa-
tion (1.2) would not have allowed the transformation of the transport
term to a surface integral. The situation in finite difference form is
directly analogous.

The form of Eq. (1.4) is perfectly appropriate for problems in
Cartesian coordinates; it has, in fact, the advantage over Eq. (1.5) of
relating shear stresses directly to the velocity differences producing
them. The derivations of technique and the applications described in
this report for Cartesian coordinates are all based on Eq. (1.4).

For other coordinate systems, the proper starting point is Eq. (1.5).
We shall show in the discussion on cylindrical coordinate applications
that there actually is an unexpected advantage in using Eq. (1.5) that
would be realized even in Cartesian-coordinate applications. This has
been discovered only recently, so that all the tests reported in this
discussion were based upon Eq. (1.4). Further discussion of this advan-

tage is also included in the section on cylindrical coordinates.

-11-



It should be mentioned, incidentally, that conservation of energy

can be demonstrated from the differential equations. In the absence of
viscous or body forces, kinetic energy is separately conserved. (The
body force contributes a coupling to the potential energy, while the wvis-
cous force couples to the internal, or heat, energy.) We have not been
able to extend these energy conservation properties rigorously to the
finite-difference approximation; but, fortunately, the discrepancies can
casily be made negligible.

To show the differential behavior of the kinetic energy, it is
necessary only to multiply the momentum equation by u and incorporate
Eq. (1.2). With E = — u*u being the kinetic energy per unit mass, one

may derive

= - V¥ (ufe) - V*(cpu) + u*if - vu*'7x( Vxu) (L7

Integration over a fixed volume then gives

— __S-<E
dt EdV cp)udS u*gdV uw*Vx (Vxu)dvV  O.8)

The first term on the right is a combination of convective and work

terms. The second term exhibits the coupling with the potential energy
of the fluid, through work done by or against the body force. The third
term gives the dissipation from kinetic to heat energy; it can be shown
that the internal contribution from this term is negative definite. To

see this, it is necessary to evoke the identity
u, Vx(Vxu) = (Vxu)«(Vxu) - V* fux(Vxu) ]

Then
-v J"u*Vx(Vxu)dV

NS J
(Vxu)*(Vxu)dV +d n*ux(Vxu)dS

The internal contribution is, thus, obviously negative definite; the

other term contributes to viscous work through the surface of the volume.

-12-



Boundary Conditions

For any specific problem, it is necessary to supply an appropriate
set of initial and boundary conditions. We shall be concerned particu-
larly with a prescribed set of rigid walls that may be no-slip or free-
slip, and with inflow and outflow boundaries. The rigid walls may par-
tially confine the fluid, or they may define an obstacle about which the
fluid flows. Inflow boundaries have prescribed conditions of fluid in-
flux through them, while outflow boundaries are arranged in such a way
that fluid outflux through them will occur with minimal disturbance to
the fluid remaining in the calculation region.

In addition to the prescribed boundary specifications, there will
be boundary conditions to apply at the free surface, whose position var-
ies with time in a manner not a priori known. One of the major features
of the MAC technique is the method by which the free-surface boundary
conditions are applied.

The rigid-wall boundary conditions are the simplest to derive; they
follow directly from the momentum equations. For a free-slip wall, the
normal velocity component must vanish; for a no-slip wall, the tangential
components must, in addition, vanish. Corresponding boundary conditions
on pressure, obtained through Eq. (1.j?), relate the normal derivative of
¢ to the body and viscous forces in a straightforward manner. These dif-
ferential boundary conditions need not be written in detail here, as,
for the numerical calculations, it is necessary to derive the finite-
difference analogies to the boundary conditions directly from the
finite-difference momentum equations.

Conditions along an inflow boundary are similarly derived; the
only difference is that the velocity components are prescribed in some
arbitrary manner, rather than forced to vanish. Pressure boundary con-
ditions then follow from Eq. (1.3) in such a way as to again insure con-

sistency with the momentum balance.

-13-



An outflow boundary condition, in contrast, is very difficult to

derive because there are no unique criteria to aid in its formulation.
There is some consolation in the fact that if the outflow velocity ex-
ceeds the wave speed, then it should not matter how the boundary is
treated, (if, however, there is a viscous boundary layer along the
approach to the outflow line, then even this consolation may disappear.)
Any technique that one applies at the outflow boundary must be amenable
to a physical interpretation. Thus, for example, if the tangential ve-
locity components are forced to vanish, and the normal derivative of the
normal velocity component is likewise set to zero, then the model pre-
sumably represents an outflow into numerous frictionless pipes normal
to the boundary. If the normal component is, instead, prescribed as a
function of position and time, then there is a representation of an out-
flow pump at each of the tubes whose flow rate is controlled.

Boundary conditions at the free surface remain the most interesting
of them all. For the numerical method, they are the most difficult con-
ditions to apply accurately. It is not difficult to state the principles

that form the basis for the free-surface boundary conditions:
1) Stress tangential to the surface must vanish.

B) Stress normal to the surface must exactly balance
any externally applied normal stress.

The second principle implies a slight generalization from a strictly free
boundary. It allows for pressure-driven surface motions to be produced
by an atmosphere whose inertial contribution to the dynamics is negli-
gible. The first principle implies, however, that such an atmosphere be
incapable of exerting a shear stress. If the latter is actually of im-
portance, or if Bernoulli pressure variations in the atmosphere are a
significant effect of its dynamics, then the one-fluid, free-surface
treatment breaks down; and a two-fluid calculation is required.

To exhibit the complications arising from the free-surface boundary
conditions, 1t is useful to record them for the special case of plane

motions in two space dimensions. Let n_ and ny be the components of a

-14-



unit outward vector, normal to the surface Then, if z(x,t) is the equa-

tion for the surface height.

dz

n
y

Also, let m and my be corresponding components of a unit tangential vec-

tor, so that

m = n and m = - n
X y y X

In addition, let cp&(x,t) be the externally applied pressure. Then, within

the fluid at its surface, the tangential stress condition becomes

hA 0
2nm Yardm nrn)\ /du b9 i SY B 0.9)
X X Xy y X & y oy
while that for normal stress can be written
2 du W 2 dv ..
= ga +
p pa + 2v nx o~ 4 + ©ony ¥, (i.io0)

Thus, it is clear that accurate application of these conditions re-
quires accurate knowledge of the free-surface orientation. The difficul-
ties of this requirement will become apparent when the numerical method
is presented.

It should be mentioned, incidentally, that inclusion of surface
tension into the free-surface boundary conditions could be useful for
some types of problems. If T is the surface tension (stress per unit
length) and R, - 8X6 the PrinciPal radii of curvature, then Eq. (1.10)

must be modified by a term

-15-



At present, we have not found an effective way to incorporate this

effect into the numerical calculations.

The Solution Technique

To illustrate the MAC method for solving free-surface problems, we
confine our attention in this section to two-dimensional motions in a
plane. Extensions to cylindrical and other coordinates are discussed in
a subsequent section.

Representation of the Fluid

In the development of any computing method for fluid dynamics prob-
lems, there are two interacting considerations that must be taken into

account:

') How are the fluid and its environment to be represented?

2) How are changes through time to be calculated?

Many representations can be visualized for calculating the flow of
an incompressible fluid with a free surface. Several approaches were in-
vestigated before the specific MAC arrangement was discovered. In most
cases, ideas were discarded because of difficulties encountered in the
incorporation of boundary conditions. One particularly promising ap-
proach proved unworkable because of the impossibility of achieving rig-
orous mass and momentum conservation. Thus, the representation we have
chosen is not as arbitrary as might at first be supposed; it is the re-
sult of considerable trial-and-error experimentation to assure the in-
clusion of many properties that seemed necessary for successful computing.

There are, in effect, two coordinate systems used in MAC-method cal-
culations: The primary one covers the entire domain of interest with a
rectangular grid of cells, each of dimensions 5x by 6y. The cells are
numbered by indices 1 and j, with 1 counting the columns in the x direc-
tion and j counting the rows in the y direction. The field-variable
values describing the flow field are directly associated with these cells.

Their points of definition, relative to a cell, are shown in Fig. 1.1.

-16-



Actually, the true fluid would,
in general, have a different set of
field-variable values for every in-
finitesimal point in the fluid. The
representation used for computing,
however; must be restricted to a
finite number of values, each ap-
proximating an average through the -------—---
immediately adjacent region. It
follows that the accuracy of the re-
presentation depends strongly upon
the fineness of the mesh compared Fig. 1. Field-variable layout.
to the macroscopic structure of the
flow.

The placement of the field-variable quantities relative to the mesh
is of comsiderable importance to the matter of conservation. No arrange-
ment other than the one shown in the figure appears to be workable.

For example, if the field wvariables are placed at the cell centers,
the following complication is introduced: To attain rigorous finite-
difference mass conservation, the finite-difference equation for pressure
would require the involvement of the next layer of cells beyond that

which immediately surrounds any central cell. Such an involvement adds

enormously to the complexity of the solution technique. Even more im-
portant is the expectation from previous experience that the use of
"far-distant" quantities would introduce inaccuracies, at best, or even
instabilities that could reduce the results to nonsense.

In addition to the primary-coordinate system of finite-difference
cells, there is a coordinate system of particles whose motions describe
the trajectories of fluid elements. These particles serve two pur-
poses: First, they show which cells are surface cells, into which the
surface boundary conditions should be applied. Second, they show the

motion of the fluid and all its distortions as it passes through the

-17-



computing region. For the first purpose, it would be necessary to have
particles only near the fluid surface. The second purpose, however, is
also of considerable wvalue, particularly if facilities are available for
easily plotting particle positions at various times through the progress
of the calculation. We have found that complete configuration plots
carry in concise form much of the information required for the analysis
of results.

It should be emphasized that these particles serve only as mass-
less markers of the centers of mass of the elements of fluid. They con-
tribute nothing to the dynamics, and enter into the calculations only

insofar as they designate which are the surface cells.

Outline of the Computing Method

The cell-and-particle system enables an instantaneous representation
of the fluid for any particular time during the evolution of the dynam-
ics. In addition, it is necessary to have a means of actually calculat-
ing the changes with time of the fluid representation. What is needed
is a computing technique whereby the prescribed initial conditions can
develop, within the limitations imposed by the boundary conditions, into
that subsequent set of configurations that most nearly represent the be-
havior of a true fluid.

As in most other fluid dynamics computing methods for transient
problems, the MAC technique works with a time cycle, or "movie frame,"
point of view. This means that the calculation proceeds through a se-
quence of cycles, each advancing the entire fluid configuration through
a small, but finite, increment of time, 6t. The results of each cycle
act as initial conditions for the next one, and the calculation con-
tinues for as many cycles as the investigator wishes. Each cycle is
itself subdivided into phases:

1) The pressure for each cell is obtained by solving a finite-

difference Poisson's equation, whose source term is a function
of the velocities. This equation was derived subject to the
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requirement that the resulting momentum equations should
produce a new velocity field that satisfies the incompres-

sibility condition.

2) The full finite-difference Navier-Stokes equations axe
used to find the new velocities throughout the mesh.

3) The marker particles are moved to their new positions, using

for their velocities simple interpolated values from the

nearby cells.

4) Bookkeeping processes are accomplished related to the crea-
tion or destruction of surface cells, the input or output

of particles, the advancement of a time counter, printing or

plotting results, and numerous similar matters.

By the end of the cycle, the results have been arranged in the com-

puter memory in such a way that the next cycle can immediately begin.

The Difference Equations

The finite difference analogy to D is

i " Vi T P

Vij"P

which we require for every cell at every time step.

(1.11)

(1.12)

Using Eq. (1.4) as the basic form for this two-dimensional Cartesian

example of the method, we obtain the difference equations

L/ nt W/ - (uit+ij)2

3t 1+ij 5x

(OT)i43-i > (LV)I 4.

- Sx+ s; Kj 1

+ V (u. -
5x 1+
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1 / ntl

A B (1.14)

The superscript n or ntl refers to a value at time n&t or (n+l)&t, so that
n counts the number of time cycles. Where the superscript is omitted, n
is implied, i.e., the value of the quantity at the beginning of the cycle.
A number of undefined quantities appear in Egs. (1.13) and (1.14).
These are wvelocity components at localities for which values have not been
stored in the machine memory. In each case, a simple average is to be

used. For example.

(1.15)

Where a product of such quantities appears, it is to be understood that
each is to be averaged first, and then the product is to be formed.

It may be noticed that as soon as the pressures sire known for all
the cells, then Eqgs. (1.1:5) and (1.14) are immediately appropriate for the
csilculation of new velocities, a process accomplished by simple algebraic
substitution. To find an equation for the pressures, it is only necessary
to manipulate Eqs. (1.13) and (1.14) into an expression for the rate of

change of D . First, define:
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) L(ui+1j)2 + (ui-1j)2 ' 2(uij)2
5x

9131

V. =,)2+ (v,, J2 -2(v )

.. 1.16
5y.2 Lv 1j+1 ij-1 13 ( )

Sxey LV AR @V i @ Frds ;g

Then 1t follows from Eqs. (1.13) and (1.14) that

1 Dn+1 - D.
8t 1J i
7T + 'flj-1 - i3 (1.17)
&y
+ y uBx- i+u + El-u - + N2 (Dij+l + Dij-1 -

an equation which is of fundamental importance to the derivation. The equa-

tion obtained by setting = 0 in Eq. (1.17) is used for finding the
pressures:
N2 K+1j) + Vu - atPy)) + fa Kj+i1 + 71j-1 - ' - Eij C -18)
where
D
R.. = Q.. -
ij 1) 5t (1.19)
) . {] N T (3
V-V NWWIN B YRG0

Note that the resulting values of ¢ lack superscripts; that is, they are
time-centered at the beginning of the cycle, appropriate for their use

in Eqgs. (1.13) and (1.14).
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The solution of Eq. (i.18) requires much of the computing time, be-
cause some type of iterative process is usually necessary. The process
we use 1s described in Part 2 of this report; the details have no bear-
ing on the basic MAC methodology, except insofar as the matter of effi-
ciency is concerned. The solution of Eq. (1.18) will increase the re-
quired computer time quite rapidly as the accuracy criterion is
tightened. It follows that any process that decreases the accuracy
requirement will speed the computing time. It also must be noticed that
errors in the pressure solution, resulting from iterating to a coarse
convergence criterion, will result in non-vanishing values of ]Z)*.J Thus,
the reason for keeping the D terms in Eq. (1.19) becomes clear. We have,
in fact, compared the results of calculations run in the following three

ways:

I') Replace R, . in Eq. (1.18) by Q_.J. and solve the ¢
1] 1

equation to a high degree of accuracy.

2) Use R.J. in Eq. (1.18) and solve the ¢ equation
only roughly.

3) Replace RIJ in Eq. (1.18) by QJ 5 and solve the ¢

equation only roughly.

The conclusion is that the roughness in alternative (2) can be sur-
prisingly great before the results of the comparisons show appreciable
differences from those of alternative (1), but that number (3) differs
strongly from the other two even if the roughness of the solution is
not nearly as great as in number (2). This means that alternative (2)
introduces considerable efficiency in the computer usage and is recom-
mended for all MAC-method calculations.

Thus, Eqgs. (1.13)> and O*18) are the three equations re-
quired for calculating the new quantities in each cycle. Once the
pressures have been obtained from Eq. (1.18), the velocities can be

found directly from Eqgs. (1.13) and (1.14) without further iteration.
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The Particle Movement

The marker particles enter into the solutions of the cell quantity-
equations only insofar as they serve to show where the moving, free sur-
face is located, and accordingly which cells should have free-surface
boundary conditions imposed in them. In order to keep this information
on free-surface position current, it is necessary to move the marker
particles each cycle in such a way that they accurately represent the
fluid motion.

The technique we have been using is to find a velocity for the
movement of each particle by using a simple area-weighted interpolation
method among the nearby cell velocities. Details are given in Part 2
of this report. The principal accuracy criterion for the method of mov-
ing particles is based upon the requirement for conserving the volume of
the region they fill. This is discussed in detail in the section on

accuracy.
Boundary Conditions

At rigid walls, the basic boundary conditions are simply that the
normal velocity component vanishes and, in addition, that the tangential
component vanishes if no slippage is to be allowed. With regard to the
latter, the determination as to whether or not slippage is to be allowed
depends upon the thickness of the boundary layer that would be expected
to develop in the true fluid. If this is much less than the dimensions
of a finite-difference cell, then a free-slip condition is appropriate;
if it is larger than a cell, then a no-slip condition is required. For
intermediate cases, the proper condition to use depends upon the exact
circumstances, and in some cases it is appropriate to try both ways and
compare the results.

In present applications of the MAC method, we restrict rigid

walls, as well as influx and outflux walls, to follow cell boundaries.
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This means that all side or obstacle walls must be formed of horizontal
or vertical segments only, (it is difficult to relax this restriction
in Eulerian fluid dynamics calculations. We have found in other codes
that diagonal walls or even circular ones can be built into a rectangu-
lar mesh, but the complexities are appreciable. The use of a curvilin-
ear coordinate system might be helpful, but applicability would be re-
stricted in each case to a relatively small class of well-fitting
examples.)

The natural arrangement is to have vertical walls passing through
horizontal velocity (u) points, and horizontal walls passing through
vertical velocity (v) points. This allows for direct incorporation of
the boundary condition that normal velocity vanishes.

If the wall is to allow for free slip, then whenever an equation
calls for use of an exterior tangential velocity, the calculation simply
uses the value of the tangential velocity at the image point back in
the computation region. Likewise, if an exterior normal velocity is re-
quired, the negative of the image value is used. (Thus, the average of
the exterior and interior normal components is zero, consistent with the
vanishing of the normal, component at the wall.)

If the wall is to have a no-slip condition, then the exterior tan-
gential velocity component must be the negative of the interior image
value. This, then, leads us to the following strange procedure for ex-
terior normal velocity components: In order that D vanish for the ex-
terior cell, we require that exterior normal velocity components have the
same value as they have at their image interior points. The values at
the wall still vanish, however, even if the interpolated values do not.

The reason that D must vanish for exterior cells adjacent to the
boundary can be seen in reference to Eq. (1.17), which shows that D
will otherwise diffuse into interior cells. It should be noted that a
set of difference equations based on Eq. (1-5) instead of on Eq. (1.4)
would lack the viscous diffusion terms of Eq. (1.17), and the requirement

of a vanishing exterior D would no longer be necessary. We have not yet
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tried this approach, but will do so in the expectation that it will have
several useful properties. (For cylindrical coordinates, the alternative
of starting from Eq. (1.5) appears to be the only acceptable one.)

In addition, we require boundary conditions for the solution of
the ¢ equation. At rigid walls, the momentum equations supply precisely
the needed guide for finding these conditions. They show how the normal
difference of the pressure is balanced by the normal component of the
body force and by the viscous diffusion of normal momentum. These bal-
ance expressions give exactly the information from which any equation
"needing" an exterior ¢ value can find such a value in terms of avail-
able data. Examples of this and related boundary condition matters are
given in detail in Part 2, which, in particular, shows how to handle the
special problems arising at corners.

Boundary conditions along a line of prescribed constant-inflow rate
differ only slightly from those at a rigid wall; the modification is
straightforward. At an outflow wall, there is no unique prescription to
apply. We have had good results in several examples by requiring the
normal derivatives of the field variables to vanish. Further discussion
of the details is given in Part 2.

It is the handling of free surfaces which particularly distinguishes
the MAC method from all others for fluid dynamics computing. The general
differential conditions have been stated in Eqgs. (1.9) and (1.10); they
express the vanishing of tangential stress and the balance of normal
stress with that which is externally applied.

If the viscous effects are negligible, then the normal stress con-
dition is all that is required; and we simply put the appropriate local
value of the applied pressure into each surface cell. Often, this value
would simply be a fixed constant that we choose to be zero, representing
the truly free surface adjacent to an atmosphere with negligible inertial
or dynamic influence.

If viscous effects are important, then it is, in principle, neces-

sary to construct finite-difference analogies to the stress balance

25



conditions stated in Eqs. (1.9) and (1.10). It is easy to see, however,
that the construction of these analogies is troublesome because of the
difficulty of sensing accurately the local orientation of the surface.
As a result, we proceed somewhat differently. It is, of course, of
primary importance that D;, = 0 for every surface cell, this in spite
of the apparent contradictiJon that each surface cell is in the process
of changing its total amount of mass. The vanishing of D refers to the
interior of the fluid near the surface, with the resulting velocity
components extrapolated to the exterior edges of the cell. Such a con-
dition, however, is unique only if one side of a surface cell faces the
exterior. If two sides face the exterior, then the vanishing of tan-
gential stress ought to be invoked in order to determine the two bound-

ary velocity values. Because of the difficulties described above, how-

ever, we require instead simply that
AN A
du _ 0 and dv _ 0

separately. Surprisingly, we find that even for very viscous fluid cal-
culations, there is good evidence that this procedure results in negli-
gible free-surface tangential stress. We have found no way, however, to
derive rigorously a measure of the error to be expected from this
treatment.

The balance of normal stress in a strongly viscous fluid is like-
wise approximated in our present MAC calculations. It can be seen that
the viscous correction in Eq. (1.10) is proportional to the normal deriva-
tive of the normal component of velocity. Experience has shown that in
many circumstances this gives a very small stress correction, in compari-
son with the other stresses present near the surface. As a result, we
simply neglect that term and use the externally applied stress only.
Again, we have only experimental, but not analytical, justification for
the approximation. For both of these stress-balance boundary conditions,

we hope to experiment with more accurate representations of the true
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conditions. Meanwhile, we have been pleased to note that in many examples

of interest our approximation model has been adequate.

Confined Flows

If the flow is completely confined by rigid walls, including inflow
and outflow walls, so that there is no free surface, then the MAC method
is still applicable. The procedure is actually simplified in several

respects:

') No free-surface boundary condition difficulties exist.

2) No marker particles are required. (They still are useful,

however, to show the changes in configuration.)

In the absence of the free-surface boundary conditions, there is
no reference pressure in the system to guide the convergence of the ¢
equation iterations. Convergence does not seem to be affected adversely
by this lack of reference. In order to compare pressure results from
cycle to cycle, it is useful to normallLize the pressures after convergence.
This can be accomplished by adding any desired constant to all of the ¢
values.

For confined flows, the MAC technique still appears to exhibit ad-
vantages over the stream-function-and-vorticity methods. Boundary con-
ditions at rigid walls do not involve derived variables and, thus, can
be applied easily and accurately without any special techniques or half-
cell ambiguities in the definition of wall position. Examples of some

confined flows are presented in Part 3.

Stability and Accuracy
Stability Considerations

The solution of initial-value problems by finite-difference approxi-
mations is almost always plagued by potential difficulties with numerical

instability. The MAC method, however, is fortunate in that the stability
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restrictions are not very stringent for most applications. In addition,
we have found that viscosity is not required as a stabilizer, an unex-
pected contrast to many of the Eulerian computing techniques in which
stagnant regions become "hashy" in the absence of real or artificial
Vviscosity.

It appears that there are two principal stability requirements,
but we have not been able to demonstrate the sufficiency of either. One
is directly analogous to the Courant condition that occurs in compres-
sible flow calculations. In place of the sound speed, however, the

wave speed appears:
1

C s I(\tanhkh2

where k is the wave number and h is the depth of the fluid. Then it can
be shown that a stability requirement is

2bxSy

C&t < &x + by

(1.20)
The other stability condition relates to an effect of the viscosity and

can be written

2 2
V&t < *&X by 1.21)

ox2 + ﬁyz

In both cases, the result is effectively a restriction on the size of bt,
the time increment per cycle. Because both conditions should be satis-
fied, it is necessary for any calculation to pay attention to whichever
is the more restrictive.

For calculations with v = 0, it is noticed that the particle ar-
rangements usually become slightly irregular, in comparison to the neat
line-up arrangement that persists when v is not zero. Apparently the
non-viscous calculations experience slight cell-to-cell velocity fluctua-
tions whose principal manifestation is in the slight particle disarrange-

ments. This effect has not been serious in any of our calculations.
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It does not behave like a disastrous instability inasmuch as its effects

are bounded to a very small magnitude.

Accuracy Considerations

Obvious requirements for accuracy include the necessity for cells
fine enough to resolve the features of interest and for time steps small
enough to prevent instability. A precise statement concerning cellvise
resolution appears impossible to give. We generally say that the cells
must be so small that no field variable changes by "much" across any
cell. We find, however, that the usual interpretation of this is too
stringent; very useful results have been obtained when the resolution
was much coarser than might have been thought desirable.

One aspect of cell resolution concerns the boundary layer that can
be expected along a rigid wall. It is not at all necessary to resolve
the details of such a layer if the effect on the external flow would
really be negligible. In such cases it is, in fact, appropriate to
ignore an unresolvable boundary layer by incorporating a free-slip con-
dition at the wall.

If the time step per cycle is just small enough to prevent insta-
bility, then the calculation may be quite accurate, in the sense that
any smaller value of &t produces a negligible change in the results.
This is not always the case, but is more likely to be so if the viscous
stability condition is the more restrictive of the two.

The number of particles per cell used to define the fluid config-
uration has little effect on accuracy. However, for this statement to
be true, it is necessary that cells interior to the fluid be considered
as full, even if particle-position fluctuations should momentarily re-
move all particles from such a cell. (This, incidentally, can easily
happen, especially in circumstances where compression in one direction
and the corresponding expansion in the other result in the spreading
of lines of particles.) For example, in defining the surface position,

an average of four particles per cell is not much worse than sixteen.
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Experience with many different types of computing techniques has
shown that one of the most important contributors to accuracy is the de-
gree of rigorous comnservation of the finite-difference equations. For
incompressible-flow calculations of the type discussed in this report,
the primary quantities to conserve are mass (or volume) and momentum.

Mass or volume conservation is assured if, at every cycle, D = 0
for every cell, and if the motions of the marker particles well repre-
sent the velocities that contribute to the vanishing of D. It has
been shown that a test of this mass conservation can be accomplished by
keeping account of the total number of cells that have any particles in
them.” If, for example, the computing region is bounded by rigid walls,
so that the total number of particles is constant, then statistically

one should expect the number of cells with any particles to be

0.22

in which A is the true area that the fluid should occupy, P is the perim-
eter of the area, and A is the ratio of mean interparticle spacing to
cell size.

In a typical example of the use of Eq. (1.22), we suppose fluid to
be laid out initially to fill an area ten cells by ten cells. Then
A = 100 6x&y; and initially, with a neat layout, one sees that N = 100.
As the fluid moves, however, and the particles become less regularly
placed, N increases. By assuming the glob of fluid to be removed from
any wall, the initial perimeter of the glob is P = 20 (5x + 6y); and its
subsequent perimeter will continue to be approximately the same. With
four particles per cell, A = 0.5; and we see that ultimately

10 (5x + Sy)~

N =100+ ey

If the cells were square, then N = 112.7* Examples of this sort have
often been checked against the results of actual computer calculations,

with excellent agreement.
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Momentum conservation is also strongly required for accuracy of
calculations. It was for this reason that terms in the transport part

of the momentum equations of the form

du . du

were transformed (using the incompressibility condition) to

ctu chiv
st + *57

The difference form of such an expression can then be written as pure
differences, so that the flux of momentum out of one side of a cell
exactly equals the flux into that same side of the adjacent cell.

To see the importance of these conservation requirements, consider
the example of the hydraulic jump. It is well known that the basic pro-
perties of the jump are completely determined by the overall conserva-
tion conditions from one side to the other, regardless of the detailed
nature of the jump itself. In similar fashion, the overall properties
of a flow can be given correctly as the result of rigorous conservation
of the crucial physical quantities, even if the detailed structure is
not accurately resolved.

In the absence of viscous dissipation or body forces, the differ-
ential equations of the MAC technique also conserve kinetic energy.
This is not the case, however, with the difference equations; it does
not appear to be possible to conserve mass (or volume), momentum, and
kinetic energy in the finite-difference approximation. As in the
analogy to the true hydraulic jump, which does not conserve kinetic
energy, the energy seems to '"take care of itself." The basic source of
non-conservation in the finite difference form comes from smoothing
the velocity fluctuations caused by the finite cell size. The process
resembles the production of entropy in compressible fluid calculations.
We speculate, but have not proved, that the kinetic energy non-

conservation rate is negative definite. If a heat energy equation is
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carried along in the calculations (for such purposes as determining heat
flow rates or temperatures for buoyancy terms) then it should be possible
to assure rigorous conservation of total energy.

There is one more aspect of accuracy that is worth mentioning. If
the boundary conditions are incorporated into all phases of the calcula-
tion with precise consistency, and if the computer executes all instruc-
tions accurately, then the size of D for every cell will be bounded by a
number that decreases as the convergence criterion for the ¢ equation is
made more stringent. Therefore, the value of D should, at no time or
place, exceed a specified upper bound. To check this, it is useful to
build a comparison routine into the calculation that will print diagnos-

tic information in case of a violation.

Other Coordinate Systems
Cylindrical Coordinates

With u and v the velocity components in the r and z directions,
respectively, we may write the appropriate differential equations for

cylindrical coordinates in the form

1 dru dv

+ 0 (1.23)
du I Oru® ouv ck s /du dv”
3t+ F"1F- + "F= —-S—+ v S8 Vss ' Sr/ a.24)
2
dv 1 druv ov d> v a [\ZA?SI; , dvd (1.25)

St+ F-3r + sr—=g - Sz ~ r Sr/.

The above expressions have used Eq. (1.5) as a starting point for the
derivations, rather than Eq. (1.4), because V u does not have an appro-
priate direct interpretation in any but Cartesian coordinates.

Letting 1 and j count cells in the r and z directions, respectively,

we may then define
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From these may be derived, rigorously, the equation
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This, then, completes the essential part of the derivation. The ¢ equa-
tion follows from Eq. (1.30) with = 0. Note the absence of viscous
diffusion of D in Eq. (1.30), in contrast to the analogous Eq. (1.1?)
for the Cartesian-coordinate description. The reason is not related to
the difference in coordinate systems, but rather to the form of the dif-
ferential equation from which the finite-difference momentum equations
were derived. If the Cartesian-coordinate derivation were based upon
EQ* (I»5)> thé same type of modification to Eq. (i.1?) would have re-
sulted. We have not yet actually tried this in calculations, but anti-
cipate doing so in the hopes of simplifying the boundary conditions and
improving the accuracy of the results.

Boundary conditions for the cylindrical-coordinate calculations
would be very similar to those in Cartesian coordinates. Care must be
taken, as before, in applying the conditions in precisely the same way
throughout the calculation steps. Factors of r will be liberally sprin-
kled throughout the boundary conditions in order to accurately account

for momentum balances.
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Accelerating Systems

In situations involving large motions of a fluid, it would be advan-
tageous to have the coordinate mesh follow the mean fluid motion. If
there is a constant translation rate, then the only procedural change in-
volves the boundary conditions at rigid walls. Translation parallel to a
no-slip wall means that the wall velocity relative to the mesh must be
considered. Translation normal to a wall can be computed only if the
translation speed equals the wall speed.

If the translation is to a non-inertial (accelerating) coordinate
system, then the acceleration enters the momentum equations as an addi-
tion to the body acceleration term (gravity). For translation parallel
to a wall, the same considerations arise as 1if the translation rate were
constant. For translation normal to a rigid wall, in which the transla-
tion speed must always equal the wall speed, care must be taken in the
pressure boundary conditions to include a balance against the accelera-

tive term.

General Curvilinear Coordinates

The only admonition to be offered in this report is that the inves-
tigator must be careful to assure rigorous mass (or volume) and momentum
conservation in the difference equations. He must balance with care the
appropriate momentum fluxes to derive boundary conditions that are physi-
cally meaningful; and he must take care to use the boundary conditions
consistently in the same way through all steps of the calculation, in
order to assure the vanishing of D. The apparent accelerations related
to the constraints of curved mesh lines (non-inertial paths) must re-

ceive particular attention.

Three Dimensions

Problems in three-dimensional Cartesian coordinates appear to re-

quire only simple and obvious modifications to the present technique for
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two space dimensions. An iterative solution is required for but a single

variable, the pressure, in contrast to stream-function techniques where

it appears that three iterative solutions per cycle would be required.
The principal difficulties in three-dimensional calculations re-

late to computer limitations and to effective display of the results.

At present, too much computing time is required if enough cells are

used to give reasonable resolution in all three dimensions. The display

problems are somewhat more mundane, related to human inefficiency for

three-dimensional visualization — a problem beyond the scope of this

report.

Variations in the Technique
Heat Transport

In many examples of interest, the full energy equation is not re-
quired; the dynamics of the incompressible flow are essentially unaffected
by the distribution of heat, so that the latter simply accommodates itself
to the changes in fluid configuration. This simple uncoupling is by no
means a universal property of "incompressible" flows, however. The most
common exception arises from variations of viscosity with temperature.
Buoyancy effects may also be an important manifestation of temperature
variations. Even without coupling back onto the dynamics, the study of
heat flow can be of considerable practical interest in itself.

The incorporation of heat transport into the MAC calculations is
quite a straightforward process. It is necessary only to add a step to
the sequence of processes that advance all field variables each cycle.
Even if the heat flow effects couple back to the dynamics, the required
modifications are relatively simple to include.

The basic equation for heat transport can be specialized directly

from the general energy equation of fluid dynamics

P M = 1 - ~ + Prb (1 *31)
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Here I is the internal (heat) energy per unit mass, often expressed as a
product of specific heat and temperature; T is the temperature; k is the
heat conduction coefficient; and 1is proportional to the rate of heat
production caused by viscous dissipation. The other symbols retain their
previous meanings.

The first term on the right side of Eq. (1.31) represents the con-
vection of heat produced by fluid motion. (Thus, even in problems for
which the heat flow does not couple back into the dynamics, we see that
the dynamics always couples strongly into the heat flow.) The second
term 1is the heat production rate from compressive effects, which we
ignore for incompressible flows. The third term is of considerable im-
portance: it gives the heat flow from conduction processes. Finally,
the last term in Eq. (1.31) is negligible for most flows that can be
called incompressible. To see that this is so, it is necessary to re-
call that the definition of incompressible flow is more accurately re-
lated to a comparison of fluid speed with sound speed than it is to the
simple statement, "p s constant." If the Mach number, M = u/cs, in
which cq is local sound speed, is everywhere much less than unity, then
the flow is "incompressible." We can estimate the magnitude of ¢ by
using only the fact that it is formed by a sum of the squares of velocity
derivatives. Thus, 1f s is the distance over which any flow quantities
vary appreciably, and if u is a measure of a typical fluid speed, then

-2
u

This is to be compared with either the convection term or the conduction

term. The former can be estimated as follows:
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that is, provided that the Reynolds number is very large in comparison
to the square of the Mach number. This, of course, is almost invariably
the case for the types of flow that the MAC technique can handle.

Comparison of the dissipative term with the heat conduction term
shows the former to be negligible, provided that M* Pr «<< | (in which
Pr is the Prandtl number, for most substances of order unity). Again,
this criterion is certainly required anyway if the MAC technique is to
be applicable.

Thus, for most purposes, it is sufficient to write for heat trans-

port

~ + £ V2T (1.32)

in which advantage has been taken of the condition V*u*= 0, in order to
put the whole equation into conservative form.

Many techniques have been proposed for the solution of this equation
by finite differences. In the MAC technique, the equation can be
adapted readily to the mesh, as already defined. Temperatures are asso-
ciated with cell centers; and the finite difference equation can be

written, for example, as

Ta+A -T..
u=17 : :
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The stability requirement for this expression is only slightly more
stringent than that for the dynamics if Pr < 1; otherwise, it is less
stringent.

Appropriate boundary conditions for the heat equation can be de-
rived directly from the physical requirements of insulation or constant
temperature at a wall or free surface; there even could be a radiation

condition at the free surface.
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Incorporation of the effects into the dynamics are relatively simple.
Variations of the viscosity coefficient with temperature involve calcula-
tion of the coefficient wherever required, using an appropriate function
of the local temperature value. Buoyancy is incorporated, generally with
the Boussinesq approximation, by allowing density variations in the body-
force term, but not in the inertial terms. Thus, instead of pQg, one has
(PQ + &p)g in the momentum equation. The density variation, 5p, is calcu-

lated using a simple bulk expansion coefficient,
6p = e(T - TQ)

in which TQ is the temperature at which p = PQ.

Heat Sources and Transport of Solutes

The groundwork for including chemical or nuclear energy production
in the form of internal heat sources has already been laid in the above
discussion. The right side of Eq. (1.jj1) is simply modified by adding an
appropriate source term, whose strength may be a function of temperature
or of mixture concentration. The diffusion and convection of materials
dissolved in the fluid can be followed by equations much like that for
heat transport. Slight density variations produced by dissolved sub-
stances can affect the dynamics through buoyancy terms exactly analogous
to those produced by heat. The importance of such computations for

oceanographic or chemical engineering purposes would seem to be great.

Turbulence

The MAC technique was devised to handle the calculation of multi-
dimensional problems in the time-dependent dynamics of viscous, incom-
pressible fluids. It is, therefore, ideally suited for the study of the
development of laminar instabilities for as far into the nonlinear phases
of motion as may be desired. Free surfaces can be included, so that sur-

face waves may form, break, recede, and form again, as many times as desired.
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Through all of this, the results are as accurate as the equations and
their finite-difference approximations. This means that for a wide wvari-
ety of phenomena whose important features can be resolved by the mesh,
the MAC calculations are pertinent, useful, and representative of true
physical processes.

The matter of resolution can, however, be a seriously limiting
feature in at least one important type of phenomenon: turbulence. In
almost every conceivable circumstance, the scale of turbulence is very
small in comparison to the size of the flow-field structures in which
the turbulence is created. Thus, to examine both the detailed structure
of the turbulence itself, together with the corresponding effects on
the macroscopic flow, i1t would be necessary to have a very fine resolu-
tion in the finite-difference mesh of cells. Add to this the fact that
true physical turbulence is necessarily a three-dimensional phenomenon,
and one must conclude that the actual representation of true, fully-
developed turbulence cannot now, with present computer limitations, be
included as a part of macroscopic fluid flow problems.

These considerations do not require that the important problems of
turbulence be completely ignored. There are at least two ways in which
meaningful studies can be carried on, even at the present time.

One of these is the study of the onset of turbulence. The earliest
stages of turbulent growth from a laminar shear layer must be closely re-
lated to the problems of laminar instability. The question of infini-
tesimal versus finite perturbation is a significant one; and the effects
of nonlinearity are crucial. The calculations are not easy and will re-
quire much careful thought both in formulation and interpretation.

The calculations will require much computer time, because the in-
stability of interest is typically associated with large Reynolds numbers,
of the order of 101'. To see this, suppose that the conditions are
achieved by means of unit velocity, unit flow region size and, thus, a
kinematic wviscosity of 10 . (This can be accomplished by the use of ap-

propriate scaling.) In this set of units, laminar instabilities grow
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roughly as exp (10 ~t). (This estimate is taken from the theory for

plane Poiseuille flow.) This means that t ~ 100 is required for sig-
nificant amplification, during which time the fluid will have moved
about 100 distance units. For resolution, each distance unit must have
about 10 cells or more, meaning that the fluid will have traveled past
at least 1000 cells through the development of the instability. Because
the time step per cycle must be distinctly less than the time required
for a cell-width of motion, it is seen that many computer steps will be
required.

There axe, of course, several ways to relax this pessimistic esti-
mate. Commencing the flow with a large initial perturbation is the most
obvious one. Other approaches will undoubtedly come to mind and be
attempted; and, in the end, considerable information on the early stages
of transition to turbulence may be forthcoming. It must always be re-
membered, however, that if the calculation is conducted in two-
dimensional space, the results must not be given physical significance
beyond the time when the line vortices would actually experience signif-
icant three-dimensional instability.

A second way in which turbulence problems can be studied with mean-
ing is probably more applicable to practical problems. It involves the
simulation of turbulence effects on the mean flow-field, through the use
of transport coefficients: eddy viscosity and eddy conductivity.
Prandtl mixing-length theory has formed the basis for a number of semi-
empirical techniques for incorporating momentum and heat transport re-
sulting from turbulent fluctuations. For many simple, steady-state
situations, it is possible to derive expressions for an eddy viscosity
coefficient which, when incorporated into the Navier-Stokes equations
for the mean flow quantities, gives results in excellent agreement with
experiments. Such eddy viscosity coefficients, however, are no longer
simple fluid properties (like molecular viscosity); instead they are
functionals of the mean velocity field itself (i.e., formed from various

spatial, derivatives of the velocity components).
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For non-steady problems, the simulation of turbulent transport
effects becomes slightly more complicated. The approrpiate way to pro-

ceed seems to involve two steps:

1) Determining the local instantaneous properties of the turbulence.
2) Relating these properties to the transport effects that they
can be expected to produce.

In steady-state flows, the first step can be accomplished through
semi-empirical relationships between the turbulent flow properties and
those of the local mean flow. In non-steady flows, however, the trans-
port of the turbulent properties themselves will have to be calculated.
Just as in the case of heat transport, an equation can probably be

written for the transport of if, a measure of the turbulent properties,

£ +v.2U) = s(¥*)

in which F(ifr) is the flux of \f produced both by convection in the mean
flow and by diffusion of the fluctuating flow; and S(|r) is the source
of \r. Both F and S would appear to be amenable to simulation for a
wide variety of problems.
The second step probably would not differ appreciably from the analo-

gous step in the steady-state interpretation of turbulent transport.

-42-



PART 2 - THE COMPUTER PROGRAM

The Computational Mesh

The computational region is composed of a rectangular Eulerian mesh
of cells in two-dimensional Cartesian coordinates, and a set of marker
particles that define the fluid configuration. The cells are numbered
by the indices 1 and j which refer to the cell center, where | < 1 < 1,
and 1 < j < J* Cell boundaries are designated by it+g-, i-g-, j+g-, and

For example, u. 1. would be defined at the center of the right-
hand boundary of cell 1ij, whereas u;j would be defined at the center of

cell 1ij (see Fig. 2.1).

Fig. 2.1 The relationship of the index values to the cells.
Solid lines represent cell boundaries.
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The complete mesh of cells consists of 1J cells. In addition to

cells falling inside the boundaries that define the system, there are

cells falling outside the boundaries. This arrangement permits easier

handling of boundary conditions. Because a free surface may be present,

there is a necessity for different cell types within the system. Each

cell is, therefore, flagged,as the different cells must be handled dif-

ferently (see Fig. 2.2). Cells are''flagged" as follows (where '"flag-

ging" means any

|y END

2) EMPBND =

3) EMP =

4) FULL =

5) SUR =

6) OB -

7) COR =

8) URON =

selected method of identifying different cell types):

cells falling outside the system boundaries and
adjacent to a boundary.

a) IN = boundary cells defining an input wall
(1) INCOR = IN boundary cell diagonally
adjacent to a NOSLP boundary cell.

b) OUT = boundary cells defining an output wall.
c) FRSLP = boundary cells defining a free-slip wall.
d) NOSLP = boundary cells defining a no-slip wall.

cells failing outside the system and never used,
but necessary because of the indexing system.

cells within the system but containing no fluid
("fluid" defined by marker particles).

cells full of fluid and not directly adjacent to
an EMP cell.

cells containing fluid and directly adjacent to an
EMP cellj these cells define the free surface of

the fluid.

interior cells directly adjacent to a boundaryj
can be either an EMP, FULL, or SUR cell.

a BND cell defining the corner of an obstacle.

any cell whose upper right-hand corner falls
directly on a boundary.

A given cell may have several flags. For example, a cell could be FULL,

OB, and URON. Another cell might be BND, FRSLP, COR, and URON.



BOUNDARY CELL O OBSTACLE CELL

CORNER CELL

]1X] EMPTY BOUNDARY CELL

Fig. 2.2 Positions of different types of cells for a typical problem.



Because the fluid is not stationary, 1t is obvious that a cell may change
from BMP to SDR and then to FULL. It is, therefore, necessary to check
at the end of each time cycle to see if cells need to be re-flagged.

Marker particles are numbered by the index k, where | < k < K.
These particles are used to define the position of the surface and to
give a visual representation of the fluid. Each marker particle is
moved at the end of each time cycle, with a weighted average of the four
nearest cell velocities. It is important to understand that these
particles do not enter directly into the calculJ-ation but are used merely
to define the position of the fluid and, in particular, the position of
the free surface. Whether a cell is flagged as EMP, SUB, or FULL depends
on whether or not the cell contains any marker particles.

In order to have fluid input and output, we must have some way to
create and destroy marker particles. Therefore, the particles are flagged

in the following manner:

') REG = a regular particle defining the fluid within the system.

2) INPUT

a particle falling within an IN boundary cell. As soon
as an INPUT particle enters the system it is re-flagged
as a REG particle, and a new INPUT particle is created
behind it.

3) AVAIL

a nonexistent particle. When a particle leaves the sys-
tem, it is flagged as AVAIL. Then, when it is necessary
to create a new particle, this particle storage is avail-
able for use; and the new particle will be given the in-
dex number, k, of this particle.

Position of Variables

The cell variables for the problem are positioned within the cells,
as shown in Fig. 2.3. D”, R.”, and cp” are positioned at the cell center.
Velocities in the x direction are positioned at the left- and right-hand
boundaries of the cell, and velocities in the y direction are at the top
and bottom boundaries. In the formulas there are velocities needed that

do not fall at these points; in this case an average is used.



For example: CELL G

wu. 1. + U, i
U . = -1+2J
ij 2
1434 = 2] 1+7y+1 e
/U015 1. + U. i,
wuv), | =[] 3~
L2002 2

)-%

Fig. 2.3 Points of definition
of variables with respect to cell.

The Difference Equations

p = YU d;—U- d;, NG:3X-V, AL
ij 6x + Sy .1)
(u. . +(u. - 2(ua . (v. W+ (v. W - 2(v )
R = i+1,]/ 14y ~agt |y 1+l A ag-l i
i7 &y
+ + (uv)- 1, 1 - (uv 1 7 - (uav i i
SxSy I+2J+2 (@) 1_23 "2 ) i+202 ) 1—2J+2] 2.2)
Dij i+t1j + Di-1j N1 Dij+l Dij-1 2r)ijN'
&t " A Sx2
P 1 (i o+ Ni-l NijHL + 2Nj-l
2.3)

W'V S?— S3 1 Bi-

where
— "~ 4+ _
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Time Cycle

i+?lJ'

2.4

(2.5)

The fluid flow is advanced through a series of time cycles, each of

finite length 5t. One time cycle consists of the following series of

steps:

1) Prints and plots are taken for the previous cycle if it is
time for them. Switches are checked to see if there are any

special instructions from the operator, and then the time is
advanced (tn+tl = tn + 6t, where the superscript ntl always

refers to the advanced time).

~) Cells are checked to see if any of the previously EMP cells

now contain fluid, or if any of the previously SUR cells are

now EMP or FULL. Cells are flagged appropriately,

iables for the cells are changed accordingly.
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3) Knowing the values of the velocities from the previous
cycle or from the input conditions, we now calculate
values of for all FULL and SUR cells using Eq. (2.1).
Values of I?{j are checked, and if any of them are too

large, an on-line print is made.

4) Using velocity values from the previous cycle and the
new values of D._ we calculate R.] for FULL cells, using

1j ij
Eq. (2.2).

5) ¢pi1j is calculated for all FULL cells by using Eq. (2.3)
and iterating until the complete field of con-
verges. cp” for all SUR cells remains unchanged. (For
most runs c¢p. . = 0 for SUR cells; and, in general, it may
be specified, e.g., A + B cos cut, etc.)

6 untl and v?+l are calculated from the old velocities and

ij iJ
the new wvalues of cp. P using Egs. (2.4) and (2.5)*
7) Marker particles are moved with a weighted average of

the four nearest cell velocities.

This completes one time cycle. The process can be repeated for as

long as the problem is of interest, usually for several hundred cycles.

Boundary Conditions

The type of boundary conditions applied depends on the type of
boundary under consideration. The boundary conditions to be used for a
boundary at the left wall will be discussed for each boundary type. The
conditions at other walls are analogous. The indices 1j will refer to
the cell inside the system, and i-1j will refer to the BND cell outside

the system (see Fig. 2.4).
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WALL

FLUID OUTSIDE FLUID INSIDE
*(uv)
Fig. 2.4 Variable positions at a wall.
a) IN : An input wall allows fluid to move into the system at a constant

velocity; this velocity never changes throughout the run.

i-1j+5 1j+2 ij-?
These are set in the velocity calculation and need not

be of concern thereafter.

2)u.. = u_, This is applied in the calculation of
1j-1 1J
5) (uv 1,1 =0 uv 1. M=
1225 ) 1ngi
These are applied in both the and the wvelocity
calculations.

4) ’i-1j = ’1j - gx8 - S (uitiJ - ““i-13) Thls is appliea

in the calculation of m. ..
T10
n+ . n
>) ui—llj ~ Uy

6) D. .. = D.,. This is applied in the R. calculation.
1-11J 1j 1]
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1)) INCOR: Same as IN cell except

Vij " Mij - e*8* - A (uidj * "i-io'

5x
+ 6y2v vi-ij+i + ur<J-1

c) OUT: An output wall allows for fluid to leave the system.

Velocities are calculated for each time cycle

1 . 1 = . C e L
) ‘&—ﬁiké \lf*é Vi-1lj-1i Vij-i
2) "ij-, u_ . calculation)
1
LA 4 3 [ ) B4 v 6§ bl e b v by b b
3) "i1-1j = ""13 1* (uvi-1J-1 " UTi-1J+1)

This is used in calculation of cp.**d..

i + + + + is i i
IZI-N)u{I—’L_j " u{l—l—i—j+ iS“Z( fntl % This 1s applied

in the velocity calculation and is calculated to

make = 0.

Di 13 ~ Dij This is applied in the calculation of Rij

d) FRSLP: Free-slip boundaries represent a line of symmetry or a non

adhering (''greased") surface.

vi-tja = Vil Vi-13“5  Vij-5
w2 2.
ija = i

3) (uv=i-|J+1 < 0

(uv)i+j-1=0

4) "i-1j - "ij - 8x8*
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e) NOSLP: No-slip boundaries represent a viscous boundary

1) v_ ‘'
1-1j+5 i]
2)
3) (uv)idj 0
0
1-2J- 2

2v / .
D omidlj = vij o 8% - g (s viay)

5) Ui-4d = o

D. .. =D..
6| 1-117J iJ

Free Surface

The free surface is defined by a set of SUR cells. The treatment of

the free surface is relatively simple and is as follows (ij = SUR cell):
1> 7w ™0

2) D1J - O

The only exception is in the case where we have an applied pressure at
the surface. In this case Py =W > a prescribed function of position
and time.

Velocities at the free surface can be handled in a variety of ways,
the main consideration being the requirement that DI.T = 0 for each SUR
cell. For a SUR cell that is open on one side only, we calculate the
other three velocities in the usual manner, and calculate the fourth by

using Eq. (2.1 ) and setting D'J' = 0. For a cell that has two open



sides, we merely set the velocity for each of the open sides equalL to
the velocity opposite. For a cell with three open sides, the open side
opposite the fluid side has the velocity of the fluid side; and the
other two remain unchanged, except for the effect of body forces
(gravity). A SUR cell with four open sides merely follows a free-fall
trajectory.

When Egs. (2.4) and (2.5) are used to calculate velocities in SUR
cells, velocities from EMP cells are sometimes referred to. Because
these velocities are not defined, it is necessary to apply appropriate
boundary conditions. This is done by using the wvelocities for the SUR

cell each time an EMP cell is referred to.

R Calculation

For FULL cells only,R. . is calculated with Eq. (2.2). The only
problems that might arise oicur in cells next to a boundary (QB cells).
In this case, the boundary conditions discussed earlier apply wherever
needed. It is important to assure that the boundary conditions used in
the R calculations are rigorously consistent with those used in the

velocity calculation. This is particularly true at corners of obstacles.

¢p Calculation

The pressure field is represented by a Poisson's equation, solved
by an iterative procedure. Each iteration consists of solving Eq. (2.3)
for every FULL cell in the system, starting at the lower left-hand cor-
ner and working across and upward, respectively. The boundary condition
at the free surface is merely cp® = 0, or cp® = ¢pa for each SUR cell.
The boundary conditions for pressure at a wall are applied for each

iteration. Iteration continues until the following conditions are met:

old

+ v7. +u2, + Ighl+lglL

0O -
Kial* ®new ij iJ y X e
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"mlLHl + ~.1-1 - il
2) I

X - 1.0 <e

Velocity Calculation

Velocities are calculated for all FULL and SUR cells in the system,
using Egs. (2.L) and (2.5)= When calculating for a SUR cell, care must
be taken to assure that for each EMP cell velocity, some other appropriate
velocity is substituted, in order to avoid having the EMP cells exert a
false drag on the fluid. The treatment of COR cells, which must be
taken into consideration, will be discussed under the heading Corners.
Having found the new velocities for all FULL and SUR cells, we now calcu-
late the velocities for BND cells, using appropriate boundary conditions
and assuring that for all SUR cells D* = 0 (as discussed eaxlier under
Free Surface)-

Velocities needed for calculating u.1+21'j. and v, . x are shown in

iJ+i?
Fig. 2.5.

X = u VELOCITIES
- n1 v VELOCITIES

. +
Fig. 2.5 Velocities needed to calculate unl and Vr.1.+1
jty*

Particle Movement

Marker particles are moved with a velocity that is a weighted aver-
age of the nearest cell velocities. Velocity u is calculated as an
interpolated value of the four nearest horizontal cell velocities, and
v~ is calculated as an interpolated value of the four nearest vertical-cell

velocities (see Fig. 2.6).

-54-



CALCULATION of uk CALCULATION of v,

u, ' ) V, A, A2 V]
a2 8y-, ## -maL
- k*
- - - -1
ik
3 m4 A3 A4
U
8Xj->4

SX;

PARTICLE NEAR CORNER

Fig. 2.6 Diagrams showing the quantities used for
calculating particle wvelocities.
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jur + + A + A
AU 2 o T AUy T Ay,

uk = 5x6y

The location of particle k with respect to the cells can be found

as follows:

1 = the integer part of «  —%+— 2)
the integer part of (y*/Sy*. + 2)

—.
Il

This locates particle k as being in cell 1j. When calculating u”™ it is
also necessary to know if the particle is in the upper half of the cell
or in the lower half of the cell, inasmuch as the four nearest cell

values for u are different in the two cases. If we consider
f = the fractional part of {y“Jby —+2)

then, if fy < E-’ we are in the lower half of the cell; and, if fy > o
we are in the upper half of the cell. Likewise, when calculating v it
is necessary to know if we are in the left or right half of the cell.
One other thing needs to be taken into consideration: the movement
of a particle near a COR cell. Again, reference is made only to the
velocity in the x direction (uM)* We have found from experience that a
particle below LINE A (Fig. 2.6, lower drawing) must be moved with an
x-direction velocity which assumes that the wall extends upward (i.e.,
u® = 0), if we are to avoid having a particle move into the COR cell.
As soon as the particle is above LINE A, the particle should be moved
in the x direction, as if the obstacle did not exist (i.e., u” = Ug)*
In the case of a NOSLP wall, = “ ug as soon as the particle has
moved into the cell above the COR cell. These same arguments can be
applied to all COR cell orientations, and to the v” calculation.

After u® and v» have been found, the particles are moved as

follows:
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n+1 n
xk + 5t

n+l

+ vv&t

Corners

Corners of obstacles present numerous problems that must be con-
sidered throughout the program. The most obvious difficulty is that the
cell pressure (cp..) is not uniquely defined for a COR cell, but depends
upon which adjacelit cell is being considered. When applying boundary con
ditions for cell i-1j the value of cp.;.J. is different from that in the case
of cell ij+1 (see Fig. 2.7). This
presents no real problem, but must
be kept in mind when calculating pres-
sures.

Another problem arises with re- COR
gard to velocity calculations. In '
calculating v.y+l (see Fig. 2.8) for
a cell next to a corner, the stored

value of A +15 +i (zero) should not
be used in the equation. The appro- Fig. 2.7 COR cell

priate values to be used are:
Vi j+j‘ = v'ij+j‘ for free-slip condition,

, for no-slip condition.

= - V.
ij+1?

v, , . 1
i+1j+5
Analogous conditions apply for both u and v, and for the four different
orientations of the corners.
Problems arising during particle movement near a COR cell were dis-
cussed in the preceding section.
The most elusive problem arising near a corner is making the R *

calculation consistent with the u%_'_‘:}._. and v. i calculation.
17J]
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Vij + 12

ij +
} ® Slai+ 'z g4

Vi-1je'2 Vij+y2 it

COR

Tt 25

Vij- 2

Fig. 2.8 Variables needed for calculating V.. i, and
relationship to a COR cell.

If this is not carefully handled, the for the three cells bordering
a COR cell will not be nearly as small as they should be; and the system
will not conserve mass properly. Let us consider the velocity calculation
for cell ij in Fig. 2.8. Conditions for the calculation of v i have al-
ready been discussed. As part of the boundary condition,

u?+1. is set to zero. Then, the important question arises: In setting

n+l

u.1+2iJ. equal to zero, what have we assumed? We have assumed that if we
were to actually calculate u x we would, indeed, get zero. Therefore,

. n+l ..
we must look at the equation for u'1+§J' and see what set of conditions

would give us zero if we performed the calculations. A careful analysis

of the equation shows that the only part of the equation that does not
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vanish naturally is a term involving . We have, therefore, been

assuming that:

wi+nj+ — 0

when we set u?+i . equal to zero.

Therefore, we must go to the R., calculation and make this same

assumption. The only place in the R, . calculation where u. i_+., occurs
1 1T2]7T1
is in the D,. , term. Thus, we must subtract u, i . ,/&x from the value
1j+1 ¥ 1+50+1
of before we use it. Analogous arguments pertain to any cell

lying above, below, or to the right of a COR cell.
Cells that are diagonal to a corner also require careful treatment.
Referring to cell ij+1 in Fig. 2.8, what must we assume when calculating
il In the Velocit}/ calculation for u. 1. ,, we have assumed that

Ui+"j Ui+jH1  °r Ui+|j = " Ui+|j+l

We must, therefore, make the same assumption in the calculation of R ..

1)—+r
this time by adding or subtracting u'+}\J/5X from D_J before using it in
i i
the R., calculation, depending on whether it is a free-slip or a no-slip

1]+l
wall, respectively.

Another approach is to assume that the (cp.ij PN j)/&x term must
+
balance the term incorporating u”+i.j+]> when calculating uRJr]JLj* This

leads to an additional term that must be added to the boundary conditions

in the pressure calculation. When calculating the condition for
Ripy must have the additional term
5xv u
r. 2
Sy

This method is easier to apply than the other, but increases the required
computer time, as additional tests are necessary within the pressure-

iteration loops.
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Setup Regions

The setup for the problem comprises three main regions. The re-
gions are gone through once at the beginning of a run, and are not in-
cluded in the time cycle.

The first part of the setup is termed a GENERAL SETUP. This re-
gion reads input cards containing general information, such as the
number of cells, viscosity, time step, and other parameters pertaining
to the problem. Then, index words and constant parameters needed for
the problem are set up and stored for later use. The x and y coordinates
for the cells are calculated and stored, and finally, information needed
by the output routines is calculated and stored.

The second part pertains to the setup of the CELLS. Cards are read
that contain information concerning the system boundaries, including the
shape of the system of cells and the types of boundaries represented.
This information is then used to flag all cells in the system, as dis-
cussed earlier. Because at this time there are no particles in the sys-
tem, all interior cells are flagged as EMP cells. The coordinates for
the boundary points are stored in such a way that the plot routines can
use them to draw the boundaries of the system whenever necessary.

Once all the cells are flagged, we can proceed to the third por-
tion of the setup, which has to do with MARKER PARTICLES. Data concern-
ing the marker particles are read into the machine; then the array of
particles that will represent the fluid is created, and the coordinates
of the particles are stored for future reference. The velocity field of
the fluid is calculated and stored into the appropriate cells in the
system, and the cells that contain particles are flagged as FULL or SUR
cells. The setup is then essentially finished. Only two things remain
to be done: A print is made of the initial conditions, and a plot is
drawn to show how the cells are flagged. We are now ready to go into

the first time cycle.
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Program Output

The program output is in the form of on-line and off-line list-
ings, and Stromberg Carlson SC-"020 plots of particle configurations, ve-
locity vectors, and pressure contours. A one-line, on-line print is
taken for every cycle, showing the time, time step, number of itera-
tions, number of cells containing particles, and other information per-
taining to the iterative procedure.

There are two types of off-line prints, one presenting information
pertaining to each marker particle, and the other containing cell data,
such as velocities and pressures. The prints are made only occasionally,
according to a predetermined print interval incorporated in the program

or upon demand by the operator through the use of sense switches.

Plots

The best output from the program is in the form of the SC-4020
plots. Three types of plots are taken at given time intervals, which
are input to the program.

In the programs employing marker particles, perhaps the most de-
scriptive pictures and the easiest to obtain are those of particle con-
figurations. Each marker particle has an x and y coordinate stored in
the computer memory. By plotting these coordinates and drawing the
boundaries that define the system, we get a picture showing the shape of
the fluid and its relationship to the confining walls of the system.

Figure 3*2,in the next part of the report, shows a set of particle
plots representing the flow of water from a broken dam. The first frame
in the picture shows the fluid configuration an instant after the dam
has broken. (The dam pieces have been removed.) Subsequent frames show
the water as it flows downstream and collides with an immovable object.
The mesh of cells is not shown in these plots.

Another type of picture produced by using particles is a plot of

smoke (or streak) lines. In Fig. 3.14 there is a continuous input of
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fluid from the left, and a continuous output of fluid on the right. As
the fluid comes in from the left, it flows past an obstruction. The smoke
lines shown in the top picture are formed by feeding in particles from
the left, and allowing these particles to move downstream with the motion
of the fluid. The effect is the same as that of injecting lines of smoke
into a wind tunnel, or jets of dye into water flowing down a channel. As
the fluid flows past the obstruction and into the channel, eddies are
formed. The smoke particles visually demonstrate this quite well.

Particle plots, then, have the advantages of giving a nice visual
effect, and of being relatively easy to obtain. They do not, however,
convey complete information with respect to details of the flow. A
single particle plot, for example, does not show the direction of flow,
or any information about pressures or velocities.

For showing the direction of flow and the velocity field of the
fluid, we use velocity vector plots (see Fig. 3*1")* For each cell in
the system, we draw one velocity vector starting at the cell center,
with a length proportional to the cell velocity and in the direction of
the local flow. For each cell there is an x component of velocity (u),
and a y component of velocity (v). We create a velocity vector by
plotting two points, and connecting them with a straight line in the

following manner:

X T Xeem

= ycell
Xy =% P Ruen
y2 = yi+ kVcell

where k is chosen in such a way as to give the vectors a reasonable
length for display.
A useful method for showing the pressure field is to make contour

plots (again, see Fig. 3.1i0« This is done by plotting lines of constant cp.
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That is, each contour line represents a given value of c¢p; and a given
contour plot will show lines for several, values of c¢p, separated by a
prescribed contour interval. The effect is the same as that of geo-
graphical contour maps, where each contour represents a certain
altitude.

As long as the data are relatively smooth, the contour plots pro-
vide very useful and informative pictures. However, a knowledge of the
problem under consideration is necessary in order to decide whether the
lines show increasing values or decreasing values of c¢p, as the values of
the individual lines are not printed on the plots. We do, however, know
the value of the lowest and highest contours, and the contour interval.
From these wvalues it is possible to determine the values of the other
lines.

Contour plots are not easy to produce. It is necessary to first
find the maximum and minimum values for the pressure. From these
values the contour interval., 6cp, is calculated in such a way as to give
a desired number of lines. It is also desirable that 6cp be a rounded
number, so that the contour plots can be more easily read and inter-
preted. One solution is to allow the number of contour lines for a
given plot to fall somewhere between N and 2N, where N is an integer to

be chosen. If we calculate

c ®min  cmax
fxp - ------- T —

and then change 6¢p to the next lower power of 2, we have accomplished
two things. First, 5¢p has been rounded off, and second, the number of
lines will fall somewhere between N and 2N. Because &p was originally
calculated to give exactly N lines, use of the next lowest power of 2
will never give more than 2N lines. An appropriate value of N depends
largely on the type of problem under consideration.

Having found the contour interval, we next find the locations of
the contour lines within our system of cells. Inasmuch as ¢ is de-

fined at the cell center for each cell in the system, the positions of
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these values form a rectangular array of points. The points can he
thought of as forming a series of triangles. It can he shown that if a
contour line passes between the two points that form one side of a
triangle, it must also pass between the two points forming one of the
other sides of the triangle (but never both of the other sides). The
point where the contour line enters and the point where the line exists
can be found by a simple linear interpolation; the two points can then
be connected by a straight line. Therefore, if we consider each triangle
individually and draw the short segment for each contour line that passes

through the triangle, we will have a completed contour plot.

Motion Pictures

In a given computer run, there are usually several hundred time-
cycles. If plots are made for every time-cycle, we have a motion pic-
ture that runs for several seconds. The motion pictures are useful
demonstration techniques and also give additional information concerning
the nature of the flow.

The most graphic movies are those made from marker particle plots.
Marker particle movies have been made for the flow of water from a broken
dam (see Fig. the flow of water under a sluice gate (Fig. 3*5)> and
the von Karman Vortex Street (Fig.

The movies have been compiled into a short film, with appropriate

titles, available on request from the IASL Report Library.

Flow Diagrams

Flow diagrams of the SPIASH code are on the following pages of

this section.
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LIST OF SYMBOLS

uij. = horizontal cell velocity Stp = time between plots
V1J = vertical cell velocity StPP = time between particle prints
lllj = source term for pressure calculation 6th - time between cell prints
D#j = divergence
t d = time between tape dumps
¢p. . = cell pressure divided by (constant) density ump
t-J . .
bs scaling constant for velocity vectors
= horizontal position of cell center
NID number of different particle configurations to be loaded
y* = wvertical position of cell center
1D type of setup to be used
= horizontal position of points defining closed boundary
initial x coordinate of first particle to be created
y = vertical position " " " " "
m oy I (S SRS R
Typem = type of boundary between points m and m + |
6xk initial particle spacing in x direction
u® =horizontal particlevelocity
initial particle spacing in y direction
Vi =vertical " "
initial particle velocity in x direction
x* = horizontal particle position
initial particle velocity in y direction
y~ = wvertical " !
fluid height (maximum expected)
I = total number of cells in x direction
fluid length ( " " )
J = y nt+l
current time [6t (n+1) where n = number of cycles completed]
M = total number of boundary points
next time to plot
K =total number of possible particles
next time to take a cell print
v =kinematic viscosity °p
" particle print
gx = gravity in x direction PP
tape dump
gy = gravity in y direction
bx* = cell width C = maximum number of pressure contours
6y, = cell height V4 = a temporary summation of terms
J
6t = time step
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Region #10, page
General Setup

START,

Read three cards
containing general
information.

Set up index words to be
needed later.

Set up constant parameters
needed

For | <j < J, calculate

index word.

For | < j < J, calculate

plot routines.

Print contents of first
three input cards.
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Region #15, page 2
Cell Setup

Set up index to sweep
mesh one time storting
at lower left-hand corner

more

Flag any IN cell which
is adjacent to a NOSLP

-69-



Regions #16 and #17
Particle Setup

#16

[ —
P ———— 1 S —
Set up index for number

of different particle
configurations

Print input data

Read cards for one
particle configuration

the maximum

the maximum
yes/More particle 9
~configurations J

jno Store

Flag all remaining particle
storage as AVAIL

t

Calculate velocities for all
BND cells according to
the type boundary
condition needed

#17
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Set up index for one
sweep through mesh

Advance film one
frame, label grid

Q j = FRSLP.A

no

Return
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Region #20, page |
Control Region
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(Ilime to plot.AV~-

noL.
(sw # o
oy EFE
Time for \yes” ] . no
particle print t+ Stpp ‘PP (SW # 9.7
no, yyes
(SW # 22) Y
no/\
Time for \ Y®5
cell print ?
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(sw # 12pYe
no.
(SW # 37> Y¢S
noi
(Time to quit?)yes
noj
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no”
(SwW # 5 Y Double St
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(SW # 12.7) Memory print
Read
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Region #Dump, page |
Dump memory on tape
Region -~ Dump

Read tape and restart

Restart



Region #21, page |
Plot Region

Advance film
table grid
Draw boundaries

Set up index for
sweep through
particles (I < k <K)

{k = AVAIL))

Plot a point

(More particles .?)-

Return
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Region #22, page |
Cell Print

Set up index for one
sweep through mesh

Set up index for a
one-page print

Print heading

(i j = FULL or SUR?)

Print for

(SKip to next page/

Set up index for a
one-page print

Print heading

Return,
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Region #23, page |
Particle Print

#23

Set up index for one sweep
through particles.

Set up index for a
one-page print

Print heading

(k = AVAIL?)

Print for particle k

(Skip to next page

Set up index for a
one-page print

Print heading

“More particles

Retur
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Advance film
Label grid
Plot boundaries

Set up index for one
sweep through cell
mesh

Plot straight line
connecting (x( ,y(

Return
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Region #25, page |
Reflag Cells

Determine which particles

Set up index to sweep
through cell mesh

EMP?)

Does i j contain
~”"wvany particles ?

Flag cell

any particles ?

Flag cell

for all

particles in

EMP or OUT ?

EMP or OUT?

EMP or SUR?
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Set up index to sweep
through cell mesh
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FULL .7)

Flag cell

max

Set up index to sweep
through cell mesh

PHIA
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Region #26, page 1
Pressure Contours
<#H26>
grid , draw boundaries

Set up index for one
sweep through cell mesh

in system (

An approximate value
for the contour interval
is calculated as

appropriate bits in 8<g,
calculate the next
lower power of two and

Set up index to store
all contour values

-(More contour values?')
no
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Region #26, page 2
Pressure Contours

Set up index for one sweep through cells

Set up index for one sweep through contour values

4]+

(More contour values .?)

Set up index for one sweep through contour values

—(More contour values ?)
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Region #26, page 3

Pressure Contours

Set up index for one sweep through contour values

i+ jH

-(More contour values .?)

Set up index for one sweep through contour values

it j+ i+l j+1

i+ j+

(More contour values

Print on film Return
8<¢ , time, prob #
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Plot line connecting

Return
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Region jfo.6, page 4
Pressure Contours



Set up index to sweep
through particle mesh

\k = AVAIL 7)

integer value

j = integer value

Destroy particle
Flag particle
k = REG

Find AVAIL particle

storage to creat new
INPUT particle (m)

(lop boundary ?y

(Bottom boundary ?

(Left boundary

(Right boundary ?

Flag particle
m = INPUT

{"More particles
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Region #28
j Calculation
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Region #50, page !
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Region jjb0O, page !
Pressure Calculations
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Region #40, page 2
Pressure Calculation

(Tpl Iterations since last convergence test ? }
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Region #50, page |
Velocity Calculation
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Region #50, page 2
Velocity Calculation
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Region #50, page 3
Velocity Calculation
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Region #50, page 4
Velocity Calculation

For a
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Region #60, page |
Particle Movement

Set up index for one sweep through particles
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—
]

the integer value of (yk/Syj +2)
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Region #60, page 2
Particle Movement
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Region #60, page J
Particle Movement
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(More particles P)
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PART 3 - SOME CALCULATIONAL EXAMPLES

A few results of MAC-method calculations have been published, but
these fail to show anything like the full scope of applicability.2’3’4'
This part of the report presents an album of calculational results, de-
signed to illustrate some additional types of problems for which the
technique is suited. None of the examples is analyzed in detail. Pre-
vious publications have shown, by comparison, that the MAC-method re-
sults are accurate; and only a few additional comments in this regard
are given here.

All of the calculations were performed on the IBM 7030 (Stretch)
Computer. The plots were processed directly from computer output
through the Stromberg Carlson SC-4020 Microfilm Recorder, and are not

retouched or otherwise altered.
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Fig. 5*1« Wave on a Sloping Beach

The figures are tilted to give downward direction to gravity; in the ac-
tual calculation, the bottom of the tank was level, and there was a nega-
tive horizontal component of the body acceleration. The wave was genera-
ted by dropping the blob of fluid shown to the left at t = 0. By the
time t = 6.0, the resulting wave reached the tip of water; subsequently,

it ran up on the shore with decreasing amplitude. The bottom allows free
slip, and the viscosity is negligible.

g= - 1.0
Height ofmesh= 2.1
v =  0.01
No. cells in vertical direction = 23
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Figo J.2. Water from a Reservoir

The dam holding the reservoir is removed at t = 0. Subsequently, the water falls away toward
the obstacle in its path. The collision and splash over the top of the obstacle are shown in
the last two frames. The calculated pressure history on the obstacle can then be used to pre-
dict damage. The bottom allows free slip, and the viscosity is negligible. Comparison of
similar calculations (but lacking an obstacle) have been made with the results of experiments,
and the agreement is well within experimental error.5

g=-1.0 v = 0.01

Length of mesh = 4.8 Height of mesh = 4.0
No. cells across bottom = 50



t=4.0 t= 6.5
t=5.0 t=7.0
t=6.0 +=7.5

Fig. 3»3. Wave on a Breakwater

The wave is generated, as it was in Fig. 3*1> ty dropping a blob of fluid
at the left, outside the computing region shown. The relatively empty
region just under the wave crest is treated, calculationally, as being
full of water. As in Figs. 3»1 and 3.2, all rigid boundaries allow free
slip; and the viscosity is small enough to have a negligible effect on
all results, except for a slight smoothing of the particle arrangements.

g=-1.0

Length of mesh = 9.0
Height of mesh = 2.1
v = 0.01

No. cells 92 X 23 (2116)
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= 5.5 t=75

Fig. 3.4. Wave on a Reef

The calculation is similar to that in Fig. 3.3* hut the breakwater has
been widened into a shelf or reef, Note that the wave breaks at late
times.

g=-1.0
Length of mesh = 9.0
Height of mesh = 2.1
v = 0.01

No. cells = 92 X 23 (2116)
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Fig. 3.5« Water Under a Sluice Gate

Water in a reservoir behind a sluice gate is forced out under pressure
into a shallow, quiescent reservoir. The resulting wave breaks back-

ward, toward the gate. The walls allow free slip, and the viscosity
is negligible.

g= —1.0 v = 0.01
Length of mesh = 4.8 Height of mesh = 5.0
Applied ¢¢p in deep reservoir = 2.5 No. cells = 50 X 32 (1600)
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Fig. 3.6. Water Under a Sluice Gate

The calculation resembles that of Fig. 3*5 Note that the shallower downstream reservoir per
mits the wave to break forward, at first.

v = 0.01
Height of mesh = 3*0
No. cells = 50 x 32 (1600)

g = -
Length of mesh
Applied ¢ in deep reservoir

I
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1.0 t =40

Fig. 5.7. Jet of Water

From an opening at the upper left, water pours down onto the bottom and splashes off to the
right. The resulting wave becomes highly irregular. The left wall allows free slip; but the
bottom has a no-slip condition, and viscous drag is important.

g - 1.0 v = 0.01
Length of mesh 7%5 Height of mesh = 2.5
Input velocity =-1.0 No. cells = 77 X 27 (2079)



=90 1«

0.0

Fig. 5.8. Jet of Water
This is the same calculation as shown in Fig. 3.7* The line segments are computer-plotted
Note the effect of the no-slip bottom boundary condition.

velocity vectors.



Fig. 3.9. Jet of Water

The run shown in Figs. 3»7 and 3*8 was continued to very late times, giv-
ing these marker-particle and velocity vector configurations.
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t

0.0

t=20

t

4.0

t=6.0

Fig. 3.10. Formation of Hydraulic Jump

The box of water has rigid ends, and the water is initially moving to
the right. It piles up on the end, and a jump progresses to the left,
at first into water of uniform depth, then into shallowing water. The
walls and bottom allow free-slip, and the viscosity was chosen to be
just great enough to prevent breaking of the wave. (For the effects

of varying viscosity, see Fig. 3.12.) In calculations of this type, the
height and speed of the jump agree very well with analytical predictions.
Tests of this type were made for a variety of situations, as a useful
way to demonstrate the validity of the calculations.

g=-1.0 v = 0.10
Length of mesh = 9.6 Height of mesh =2.2
Initial water velocity = 1.0 No. cells = 98 x 25 (2450)
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t = 2.0
t=4.0 t=4.0
t = 6.0 t = 6.0
t = 8.0 t = 8.0
VELOCITY

PRESSURE
Fig. 3.11. Formation of a Hydraulic Jump
These are velocity vectors (one for each computational cell) and isobars for the same calcula-
tion illustrated in Fig. 3.10.
line at ¢p = 0.05.

The interval betveen lines of equal ¢ is 6cp = 0.10 with the top



Fig. 3*12. The Hydraulic Jump

Effects of viscosity are shown in these comparative frames, all of
which are at a time t = 4.0 after the jump was input. In each calcula-
tion, quiescent water was present at t = 0; and the jump, vith a vertical
face, was fed in thereafter from the left. The input conditions were
chosen to match the analytical jump predictions. The comparison between
no-slip and free-slip bottom boundary is designed to show that viscosity
can affect the appearance of the jump in two different ways: both inter-
nally in the fluid and as a result of drag. Many aspects of these re-
sults have been compared qualitatively with experimental data, and no dis-
agreements were observed. Unfortunately, the available experimental data
are too restricted for such comparisons to be really crucial tests of com-
puting accuracy.

Another set of tests of these particular runs compared the number of
cells containing any fluid with the Santalo prediction given in Eq. (1.21).
In every case, the comparison was accurate to well within the fluctua-

tional uncertainty of the statistical equation.

g = 1.0

Length of mesh - 9.8

Height of mesh = 23
No. cells = 100 X 25 (2500)

Initial depth = 0.5

Input depth = | .5

Input velocity = 1.0
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v = 0.04 v

0.04

/' = 0.10 v - 0.10

FREE-SLIP BOTTOM NO-SLIP BOTTOM



FREE-SLIP BOTTOM

(o)
n

7.0

NO-SLIP BOTTOM

Fig. 3.13. Flow of Viscous Fluid

A very viscous fluid is input from the left onto a flat plate. A com-
parison between no-slip and free-slip bottom boundary conditions shows
a very large difference in results.

g= 1.0
Length of mesh = 9.8
Height of mesh = 2.2
v = 0.10

No. cells = 100 X 24 (2400)
Input depth = 1.5

Input velocity 1.0
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Fig. 3.1"* Fovintain of Water

Water pumped in from the central region rises against gravity and falls
sideways in both directions. The particle plot is shown above; velocity

vectors, below.
g= _ 1.0 v = 0.01

Input velocity = 1.0 Length of mesh = 3*0
No. cells across bottom = 30
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Fig. 3.15» von Karman Vortex Street

The applicability of the MAC technique to confined flows is illus-
trated by this calculation of the von Karman vortex street formed behind
a rectangular cylinder. The results have been compared with those ob-
tained previously and the agreement is excellent.5 The example shown
here is for a downstream Reynolds number of 100. Both the obstacle and
the confining walls had free-slip boundary conditions, so that vorticity
had to be created at the obstacle corners. Production of the proper
amount confirms the wvalidity of the present treatment at corners (see
discussion in Part 2). The figures show different ways of plotting the
fluid state, all for the same time after the street was well developed.

The top frame illustrates the streakline configuration created by
lines of particles fed in from the left. The middle frame is a plot of
velocity vectors; the streamlines can be visualized easily from this
plot. The bottom frame gives lines of constant pressure, with equal in-
tervals between lines. Lift and wall stresses can be obtained accurately

by integrating such pressure details.

g = 0.0

Distance between walls = 3»0
Height of obstacle =1.0
0.01

v
Input velocity = 1.5
Output velocity = 1.0

Interval between isobars = 0.03125
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Fig. 3.16. von Karman Street
Below a Free Surface

The calculation resembles
that of Fig. 3 1 but there is
a free surface above the ob-
stacle. The pictures show late-
time configurations of particles
(above), velocities (middle),
and isobars (below).

g . 1.0

Length of mesh 5.625
Height of mesh 4.0
v 0.01

No. cells 45 X 32
Input velocity 1.5

Obstacle height 2.0
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Fig. J.17* A Waterfall of Viscous Fluid

A thick, viscous fluid is pumped in from the upper right. It falls onto
a rigid plane surface, some splashing backward and some forward, where it
is lost from the computing region. A late-time particle configuration is

shown above. Corresponding velocity vector and isobar plots are also
given (middle and below, respectively).

g=-1.0 V=10.10
Length of mesh = 4.5 Height of mesh =3.8
No. cells 1710 Input velocity =1.0
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Fig. J.18. Rise of a Two-Dimensional Bubble

A bubble, initially circular in shape (bottom), deforms as it rises through
a confined fluid. The particle configurations are shown for t = 0, 1.6,
3.5 and 4.5 (from bottom to top, respectively).

g 1.0
Height of mesh 4.7
v 0.1
No. cells 4?7 x 12
Initial bubble radius 0.4
Bubble pressure 0.0 (constant in time)
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Velocities at t = 1.6, 3.2 and 4.5 (bottom to top)
Fig. 3-19* Rise of a Two-Dimensional Bubble

Velocity vectors (at t = 1.6, 3.2 and 4.5) and the pressure at t = 4.5
are shown for the calculation described in Fig. 3.18.
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PART 4 - TWO-MATERIAL CALCULATIONS

Introduction

The MAC method has had its greatest application in the investiga-
tion of the effects of inhomogeneity on the dynamics of an incompressible
fluid. The inhomogeneity discussed previously was of the extreme form
represented by a free surface. In this part of the report we describe
an extension of the MAC technique which studies the effects of more mod-
erate density discontinuities. The change is one more of emphasis than
of degree and, therefore, requires a somewhat different procedure for ob-
taining a numerical solution. For this reason, the calculation of the
flow of mildly inhomogeneous fluids is being considered as a separate
part of this report.

The crucial difference in the two techniques concerns their treat-
ment of the fluid interface. As implied by its name, a free-surface cal-
culation considers the interface to be a boundary line between a fluid
region and an empty region. Its position is determined through the use
of marker particles, which have no other function in the calculation.
Computations are made only for the occupied parts of the mesh, and the
fluid in these cells is considered to be uniform.

In the two-material technique, however, provision must be made for
gradations in density in the cells that mark the interface. Further-
more, this treatment must be such that the position of the interface re-
mains well defined throughout the course of the calculation. This dual
requirement has been satisfied by enlarging the role which the particles

play in the calculation. They are now used not only to mark the density
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discontinuity, but also to determine the values of cellular densities

and viscous coefficients in all cells in the mesh.

The Differential Equations

The list of field wvariables for calculating the dynamics of a het-

erogeneous fluid must be somevhat expanded over that of Part | to

include:
u = fluid velocity
p = pressure
p = density
p

= coefficient of viscosity

The independent variables are the time and the Eulerian coordinates.

The density and viscosity coefficient are considered to be constant
in homogeneous regions of the fluid. At the interface these constant
values change abruptly; but we assume that there is always a functional
relationship between p and p, so that the above list of dependent var-
iables can be reduced by one. In general, however, this relationship is
not a direct proportionality, so that we cannot assume a constant kine-
matic viscosity, v = n/p, throughout the system.

The equations describing the flow of a heterogeneous, incompressible,

viscid fluid are most often written in the forms

+ ulVp= 0 “4.1)
V*u = 0 4.2)
+ (W¥*V) vt= - - Vp + — [2(V*iV)u + Vx(pVxu) + g*
at p p

Equation (4.1) relates local density changes to fluid transport. Equa-
tions (4.2) and (4.3), expressing volume and momentum conservation, re-

spectively, are identical to their one-material counterparts, Eqgs. (1.2)
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and (1.3), except that the two-material momentum equation contains a
more complicated viscous diffusion term. This complication is necessary
to account for spacial variations in the coefficient of viscosity. 1In
the case where p is constant throughout the fluid, it can he shown —
with the aid of Eq. (4.2) — that Eq. (4.3) reduces to Eq. (1.3)»

The similarity between these two equations extends to their conser-
vation properties. Just as Eq. (1.3) when written in finite difference
form, fails to rigorously conserve momentum, so also does Eq. (4.3).
Furthermore, the latter equation is inappropriate to a two-material cal-
culation because it does not take into account the changes in momentum
that result from density variations. Both of these difficulties can be

remedied by combining Egqs. (4.1) and (4.3) and using Eq. (4.2) to obtain

A (puu*) = -vp + 2(V.pV)w + Vx(pVxu) + pgf “4.4)

It is this form of the momentum equation that is used throughout Part 4.
The conservative nature of Eq. (4.4) can be demonstrated in the
same way as was that of Eq. (1.4). Integrating over a fixed volume and

applying the divergence theorem to the appropriate volume integrals,
can show that, neglecting gravitational accelerations, momentum changes

result entirely from external forces.

The Solution Technique
The Fluid Model

Although Eulerian finite difference techniques have previously been
applied to multifluid flow calculations, they have been limited in appli-
cation by their tendency to smear density discontinuities. This charac-
teristic difficulty results from the fact that the method makes no pro-
vision for resolving interfaces. An Eulerian cell containing two fluids
is usually assumed to have the mixture distributed uniformly throughout.

Therefore, when mass fluxes are calculated, it is this mixture that is
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transported to the neighboring cells. This results in a calculational
mass diffusion that quickly eradicates sharp density discontinuities.

Therefore, a technique was needed which would maintain sharp fluid
interfaces without becoming so complicated and time-consuming in opera-
tion as to preclude the calculation of meaningful physical problems.

It was discovered that this could be accomplished by extending the marker-
particle -and-cell concept of the MAC method.

The approach is similar to that used in Part | in that the calcula-
tions are performed relative to the Eulerian mesh of cells, while the
fluid is represented within these cells by marker particles. But, whereas
in a typical one-fluid problem the particles differentiate fluid cells
from empty cells, in a two-fluid problem they must distinguish one fluid
from the other. This is accomplished by using different types of par-
ticles to represent each fluid. We differentiate between them by flagging
the data associated with each type of particle in a characteristic way.

In addition to the fact that the particles are no longer uniform,
there is another important manner in which they differ from those used in
a single-fluid calculation. While the latter particles merely mark the
position of the fluid but do not directly affect the calculations, the
particles with which we deal in Part 4 are used to determine the values
of p and p needed for the cellwise calculations. Specifically, if a
given Eulerian cell contains n" particles of x fluid and n" particles of

y fluid, then p and u in that cell are given by

+
n)é)x rlypy
P = n + n
X y
and .
n)il + n yp
_ X y Ne
P = n +n ("+5)
X y

At the fluid-fluid interface one could expect to find cells with various
values of p and p intermediate between those of the homogeneous cells.
In many respects, this type of interface treatment is far easier to

incorporate into a numerical technique than is the free-surface treatment
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of Part |. For example, there is no ambiguity concerning the volume of
fluid contained in an interface cell; it is entirely filled with fluid
just like any other cell in the mesh. Therefore, the criterion for
volume conservation holds without modification, even though the mass of
the cell may be changing.

Theoretically, the normal and tangential stress conditions are
also automatically satisfied at the interface (at least to the extent
that the finite-difference resolution and our knowledge of the viscosity
of inhomogeneous fluids will permit). Experience has shown, however,
that there may be difficulty in achieving continuity of pressure at an
interface when the fluids have markedly different densities, and that
drag will occur along strong slip lines even if the fluids are inviscid.
The latter problem results from the particle movement procedure described
below. Each of these difficulties is calculational in nature, and
neither is considered insurmountable. They do, however, require further

study.

The Finite Difference Equations

The points of definition of the velocity components relative to the
cellular mesh are the same as those indicated by Fig. 1.1. The other
field variables — pressure, density, and viscous coefficient — are
cell centered.

With these definitions, we can write the finite-difference analogies

of the two components of Eq. (4.E):

(pu2)ij ~ (Pu2W1i * (puv)n4d.i”™ - (ouv)iti.i

M - , ,
( CL (pu%iij + 6t o . iigits

+ 2 Vii(ui+li

Sx

(Equation Cont'd)
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~uinj i4-|j~Ui4j-1 VY ‘-Vij_
+ 5y 6x ' N kd 6x
By
ij i+l j e
[W)H.~. 1 - (puv) 1 1 (pv?) - (pv )
(pv)n+ll = (pv).. ! + 6t 1+2J+2 1J 1J+1
1J+2 1J+-| - 8x + 5y
+ 2 Nj+H (vijtHt~ Vij+H2N ~ A -~
By2
A Wi RN ¢ LiH KV ) u Ci-gjtl Ui-nj | Yijreici-TinN
i-Hgj-4 V === =< J \% Sy Sx
5x
e ~ Pij ~ Pij+l
T Pij+5 gy | &y (.7

As in Part 1, the absence of a superscript indicates that the quantity
should be evaluated at time nSt.

When values of the velocity components, the density, or the vis-
cosity coefficient are required at localities other than their point of
definition, a simple average is generally used. The only exception to
this rule involves the terms that express momentum transport normal to
the calculated direction. In such cases, the momentum flux is taken in
the direction indicated by the flow field. We illustrate the procedure
with the term (puV).l_'_éj,_'ai1 from Eq. (4.6). This term expresses the flux
of x-direction momentum in the y-direction. It could assume either of

two possible forms:
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A similar prescription applies to the other momentum flux terms.

The incompressibility condition, Eq. (1.12), is the third and final differ-
ence equation that is required. It is used, in the manner described below,
to determine the pressure and density fields necessary for the solution of

Egs. (4-.6) and (4.7)*

The Computing Method

Before explaining how these difference equations are applied, let us
briefly review the computing procedure in Part 1. The incompressibility
condition is applied in each cell in such a way as to be effective at time
(n+1)bt. This process yields a finite difference Poisson equation for the
pressure with a known source term in each cell. The Poisson equation is
solved by means of an iterative technique. Finally, the resulting pressure
field is used in the momentum equations to evaluate the advanced values of
the velocity components. This velocity field is automatically conservative.

The same technique is used here, except that we now must solve for the
pressure field and the (advanced time) density field simultaneously. This
is accomplished by means of a double relaxation method: By guessing at an
advanced time density field, the associated pressure field is determined
by an iterative procedure. These pressures and densities are then used to
find the velocities. Particle trajectories are calculated from the veloci-
ties in order to determine the new density field. This dual iteration pro-
cess is repeated until, eventually, the densities remain static and the
pressure field is sufficiently relaxed. Essential to this technique is the
marker particle method of determining densities, for it insures that cell

densities will change only by discrete increments.

-126-



Let us now go through the procedure in detail. For convenience we

abbreviate Egs. (4.6) and (4.?) as
+
ouwidy - 1. 2% Apij " pit1~

v)n+li = r 5t ,
(V) j+2 + Sy Pij " Pij+ |

where £.1+i5 ; and 17 _& can be determined by inspection. For a given den-

sity field. the incompressibility condition, Eq. (1.12), can be written

. . .- “4.8)
N=
i-M _— LA 4341

n+l ntl 1 ntl n+l
pi~M Dido pil 1 Pij—+|

The density field at time n6t is used as the starting guess for the
advanced densities* With these density values, Eq. (4.8) is solved (to a
rather crude degree of accuracy) for the pressures. This provides us with
sufficient data to compute the advanced velocity values from Egs. (4.6) and
(4.7) and. to determine particle trajectories. The particles are not
actually moved at this time. We merely note any trajectories that would
cause a particle to cross a cell boundary and contribute to a density
change. The appropriate changes are made by means of Eq. (4.5), and the
resulting density field is used as the second guess in solving for the
pressures in Eq. (4.8). The process is repeated until there are no
changes in density. Then, the pressures are relaxed very accurately;
the new velocities are calculated; and the particles are moved. The final
values of the densities and the viscous coefficients are calculated from
Eq. (4.5). A flow diagram showing the order of these steps is presented
in Fig. 4.1.
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PROBLEM SETUP

DATA PRINTOUT

CALCULATE QUANTITIES
NEEDED FOR THE
PRESSURE ITERATIONS

OLD DENSITY FIELD
—>»NEW DENSITY FIELD

CRUDE PRESSURE
ITERATION

CALCULATE PARTICLE
TRAJECTORIES

CALCULATE DENSITY
CHANGES

FINE PRESSURE
ITERATION

CALCULATE VELOCITIES

MOVE PARTICLES

CALCULATE DENSITIES,
VISCOUS COEFFICIENTS

Fig. . Flow Diagram of the Multifluid Calculation Scheme
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In general, the final density values will be identical to those
used in the last pressure iteration; a discrepancy would be an indica-
tion that the crude pressure iteration was not sufficiently accurate.
Occasionally, however, a cell density will fluctuate from one value to
another on each succeeding iteration as a result of the fact that a
particle has landed almost exactly on the cell boundary. In such a
situation the density field would, of course, never converge. There-
fore, it is necessary to sense this condition when it occurs and ter-
minate the iterations. In this case a density change after the final

iteration is permitted.

The Relaxation Technique

At first reading, the finite difference scheme described above may
appear so complicated and time-consuming as to preclude its application
to meaningful physical problems. 1In fact, however, such is not the case.
Calculation times appear to be roughly equivalent to the time required
for single-fluid MAC problems. The reason is that there are ways to
optimize the efficiency of the two-part relaxation technique, which con-
sumes the largest percentage of the calculation time. The iteration
scheme and its important timesaving features are described in the follow-
ing paragraphs.

Prior to the start of the iterations, the !' and £ terms are computed;
thereafter, these terms remain fixed throughout the entire calculation
cycle. Also during this preliminary period, we combine the source terms
and the coefficients of the pressures in Eq. (4.8) in order to write
that equation in the simplified form.

Fi5 = Bij'pliﬂj%ijpi-lj " Bijpijﬂ ¥ Bij'pij-l * Ay (4.9)
These coefficients and the source term, A”,will also remain fixed for
the entire cycle, unless the cell or one of its neighbors undergoes a

density change in the course of the iteration. Notice that Eq. (4.9) is
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a Poisson equation only in those (homogeneous) regions of the fluid
where the B's are all equal to unity.

To obtain the solution of Eq. (4.9), we employ the relaxation tech-
nique described in Part 2 of this report. Successive sweeps of the
mesh (from left to right and from bottom to top) are made, computing
the pressure in each cell by solving Eq. (4.9) in terms of the most re-
cent pressures from the neighboring cells. Convergence is tested per-
iodically to determine whether additional iterations are required.

Two types of pressure iterations have been discussed in Part 4:

1) Crude iterations that determine a pressure field of suffi-
cient accuracy to permit the calculation of particle tra-
jectories and density changes.

2) Fine iterations that use the final density field and pro-
duce a (final) pressure field of a higher degree of accuracy.

The crude iterations are simply a timesaving device, because absolute
accuracy is not required at that stage of the calculation. They do,
however, provide a headstart toward the solution and thereby shorten
the fine iterations. Both types make use of the method described
above, but they differ in respect to their convergence criteria and
the frequency with which these criteria are checked. The convergence
of the crude iteration is tested after four sweeps of the mesh against

the criterion

where g is the magnitude of the body acceleration and h is the depth of
the fluid. The fine iteration is checked after every 13 sweeps of the
mesh against the number 0.0002.

The process of calculating density changes is greatly facilitated
by a constraint placed on the time increment, 5t. We require, for the

accuracy of the numerical method, that the time step be sufficiently
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small so that no particle could traverse more than a single cell in one
time cycle. As a result, we may be sure that the interface will not
move more than a cell width in a cycle. This permits us to restrict
our attention to a relatively few cells in the vicinity of the interface
for the purpose of calculating density changes. All other cells will
remain homogeneous during this time cycle.

In order to take advantage of this restriction, we define two par-
ticular types of cells:

') Interface cells, including all cells capable of experiencing

a density change during the time cycle. Any two adjacent

cells (i.e., with either a corner or a side in common) con-
taining different fluids are interface cells.

2) Contributing cells, including all cells that might contri-
bute particles to an interface cell. All interface cells
and cells adjacent to interface cells are contributing cells.

Before any iterations begin, a search is made through the cells to
determine the interface and contributing cells for that time cycle.
These cells are then suitably marked by flagging the data associated
with them.

In calculating particle trajectories after the crude pressure iter-
ations, we may limit our attention to the contributing cells, inasmuch
as these are the only particle movements that could cause density
changes. The wvelocities used to calculate these trajectories use the
latest pressure and density data by applying the following simple for-

mulas:
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We take note only of those trajectories that cross cell boundaries, and
register their effect by tallying the gains and losses for each type of
particle for the cells involved.

When all the required particle movements have been accounted for,
it is time to determine the resulting density changes, if any. For this
purpose we consider only the interface cells. The number and type of
particles gained or lost by each interface cell are combined with the
number of particles of each type that were contained in the cell at the
beginning of the cycle, in order to determine the cell density by means
of Eq. (4-.5)* 1If the new cell density is different from its previous
value, then new values of the B's and of A.. must be calculated for that
cell and its four neighbors for use in Eq. lJ(4.9). If the density is un-
changed, we proceed to the next interface cell.

If none of the interface cells ejqperience a density change, then we
consider the density iterations to be complete and proceed with the final
pressure iterations. 1If, however, there were density changes, then the
crude pressure iteration and density change calculation must be repeated.
After three such repetitions, we review all interface cells to determine
which have undergone density changes. The interface cell flags are
turned off for those cells that have experienced no changes during the
three iteration cycles. The contributing cells are similarly re-
evaluated in order to progressively reduce the number of cells for which

these calculations are required.

Particle Movement

The particle movement technique is exactly the same as that used for
the single-fluid calculations. The components of the particle velocity
are computed as a weighted average of the four nearest cellular velocity
components. The purpose of the weighting is to give the greatest emphasis
to the cell velocities nearest the particle.

Figure 2.6 illustrates the manner in which the weights are determined

for each velocity component. Consider the x-component. A cell-size
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rectangle is imagined to be centered about the coordinates of the four
nearest u-velocity components, and a similar rectangle is placed about
the particle in question. The proportion of area overlap of this
latter box on the other four determines the weighting to be applied to
each of the four velocities.

For the purposes of numerical calculation, the whole process may
be reduced to a single algebraic expression (see the flow diagrams for
Region 60 in Part 2 for a detailed description of this numerical treat-
ment; a similar procedure for the y-component of the particle velocity

is also described there).

Boundary Conditions

The calculations described here use rather simple boundaries. In
all cases, the calculational regions are rectangles, bounded by rigid
walls (coincident with mesh lines) with no interior obstacles. At the
rigid walls, the normal component of velocity vanishes. The tangential
component may also vanish; or it may be unaffected by the wall, depend-
ing on whether no-slip or free-slip boundary conditions are used. As
mentioned in Part 1, the choice of the boundary condition depends upon
the width of the boundary layer anticipated in the actual problem. If
the boundary layer were on the order of a cell width or greater, a no-
slip boundary condition would probably be required. If it were smaller,
a free-slip boundary could be used.

The finite-difference implications of the no-slip and free-slip
boundary conditions have been described in some detail in Parts | and 2;
and in this part of the report, we merely summarize the points of addi-
tion to it.

The Eulerian calculation method requires the consideration of an
extra row (or column) of boundary cells outside the region of calcula-
tion (see Fig. A.2). The following summary discusses the treatment of
the flow wvariables in those cells for no-slip and free-slip boundary

conditions.
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EXTERNAL BOUNDARY CELLS

INTERNAL CELLS

Fig. 4.2. The Calculation Mesh
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Density and viscosity coefficient; In order to make the boundary
treatment of velocities and pressures consistent with that used in the
single-fluid calculations, it is necessary to choose the density and
the viscosity coefficient in the external boundary cell equal to the
values of those quantities in the image cell inside the boundary. This
is done at both no-slip and free-slip walls.

Velocity components: Rigid walls are always chosen to correspond
to mesh lines, along which normal velocity components are defined. The
vanishing of the normal component of velocity at rigid walls is there-
fore easily specified. The tangential components and the normal com-
ponent outside the wall are chosen in such a way as to simultaneously
satisfy the boundary condition and the incompressibility condition in
the exterior cell.

In the following examples, consider a rectangular mesh with hori-
zontal cell indices varying from 1 = | to I and vertical cell indices
from j = | to J. The external boundary cells have a horizontal index
of 0 on the left or I + | on the right and a vertical index of 0 on the
bottom or J + | on the top (see Fig. 4.2).

No-slip walls: Tangential velocities reverse, while the ex-

ternal normal velocity is equal to that at its image point.

At the left-hand wall.

Yy T O Ve v

[N

At the right-hand wall,

Vi < bI+HJ  Ul-sj’ VvI+1J+i  "Vijii
At the bottom wall.

V,i :0, v. | =v 3, Ui:|:|0 "UitM

At the top wall:

ij+f TJ+2 Yogr g
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Free-slip vails: The tangential velocity is equal to that at

its image point vhile the external normal velocity reverses.
At the left wall,

ui. = 0, ui = -ul , A =V
2] "20 1] J£2

At the right wall,

Ul = 0 ul+§J T Yesyr Vi T Vg
At the bottom wall.
v.i =0, 1= _ 5 -
i> vi_1 Y. Uixr0 Uizt

At the top wall.

o

va+is ViJ+1 ~Vig-4'  Uix?J+1 = Uizij

Pressures; With densities, viscosity coefficients, and velocities
determined as above, the pressures are defined in such a way as to
satisty Eqgs. (4.6) or (4.7) identically (depending upon whether the bound-

ary is vertical or horizontal).

No-slip walls;

At the left wall,
P-,. P.. p g 8. rm——m

?20f = PL5 " Plj Sx

5x Sy
At the right wall,

VvV o u 1 A ,(u +u ) - v i(lu +¢q
P = p-tp.g5Sx + P D — 1l L3 LlzJ
1+1 3 1§ I X 5x 6y
At the bottom wall.
P =I})) -B o eee 4NN M uidi(b, N 1,11 > - ui-»i(bi + *i-n>
piO il il 377 5y 5x
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At the top wall,
Psrs-s - + 8 sy + LUl (T S oS - *

iJ+1 1J ij y &y 5x

Free-slip walls:

At the left wall,

POj * P1j - PU eKSX

At the right wall,

Vijg" piLy+ pu g*Sx
At the bottom wall,
Pi0 * Pil - Pil V*

At the top wall,

—~

pij+i = pij + pij

Stability and Accuracy

The stability requirements for one-fluid calculations, Eqgs. (1.20)
and (1.21), apply equally well in homogeneous regions of multifluid
problems. At the interface, however, the analytic determination of sta-
bility criteria is complicated by variations in density and viscosity
coefficient. Here one must rely on experience, which to date indicates
that no difficulties are encountered at the interface when the homogen-
eous fluid requirements are satisfied.

These stability criteria are, in effect, limitations on the size
of the time increment, 6t. Another limitation, required for accuracy,
restricts fluid motion through the cellular mesh by means of the

requirement

U 5t
_~_=0.5 (4.10)
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where Umax is the maximum wvelocity component in the mesh and SX is the
smaller of Sx and Sy.

The numerical examples described below make use of the maximum
value of St, consistent with these stability and accuracy requirements,
in order to reduce calculation times. The time step is tested at each
cycle of calculation to determine whether an increase or a decrease is
in order. In the event that one or more of the above conditions is vio-
lated, St is halved; and then the tests are repeated as many times as
necessary to avoid violations. The time increment is doubled if the left-
hand expression in the inequality (4.10) is less than 0.125 and if the
stability requirements are satisfied using the new value of St. Only a
single doubling is permitted in each time cycle.

As mentioned in Part 1, an important measure of accuracy is the
degree of rigorous mass and momentum conservation of the finite-
difference equations. The discussion of momentum conservation given
there is equally true here and will not be repeated. The subject of mass
conservation in a multifluid closed system is, however, sufficiently dif-
ferent from that in single-fluid, free-surface calculation to warrant
additional comment.

Volume conservation for the system as a whole follows from the fact
that i1t is closed, plus the requirement that all cells in the system be
full of fluid at all times. The latter requirement holds even in those
cells temporarily void of particles. In such a case, the cell retains
the density and viscosity coefficient associated with it at the time it
became empty of particles. Such instances are not uncommon, especially
where the fluid as a whole is undergoing large distortions, but they are
generally shortlived.

Volume conservation on a cell basis results from the stipulation
that Dj,j vanish in every cell at each time cycle, so that the net flow
into a cell is exactly balanced by the outward flow. However, the mass
in a particular cell may vary as a result of a change in the propor-

tionate number of particles of each type that the cell contains.
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Overall mass conservation, therefore, depends upon maintaining the ini-
tial areal distribution of the marker particles of each fluid. Conse-
quently, mass is not rigorously conserved at every time cycle; but we
do expect only minor fluctuations, because the motion of the marker par-
ticles is governed by a conservative velocity field. As a test of con-
servation, we sum the mass in all cells at every time cycle and compare
it with the initial mass. Typically, the percentage absolute mean de-
viation from the initial mass is about 0.1 $. The maximum deviations for
particular examples are given in the following section.

A reduction in the size of the mass deviation could no doubt be
achieved by increasing the number of marker particles. However, the
small discrepancies noted in the calculations performed to date do not
seem to warrant the added calculation time that would result from such
an increase. All of these calculations used an average of four par-

ticles per cell.

Examples

Examples of calculations performed with the multifluid extension of
the MAC technique are presented in the form of particle plots printed
directly from the computer data, with the aid of a Stromberg-Carlson SC
4020 microfilm recorder. The particles of the two fluids are differen-
tiated by being printed with different degrees of darkness. For clarity
the interface between the fluids has been sketched in by hand; but other

wise the photos are not retouched.

-139-



Fig. 4.3. The Fractured Diaphragm

Two fluids rest side by side in a box, separated by a thin dia-
phragm. The lighter fluid, marked by the heavy black dots, is on the
left; and the heavier fluid is on the right. At t = 0 the diaphragm
is removed, the heavy fluid falls under the force of gravity, which is
directed vertically downward. The two fluids revolve until the inter-
face is nearly a horizontal line in the final figure of the sequence.
Further running of the problem indicates that the interface overshoots
this equilibrium line, reaching to the top of the box.

The walls of the box are rigid boundaries at which free-slip
boundary conditions apply. Both fluids are inviscid. The apparent
drag along the interface is the result of using area-weighted veloci-

ties for particle movementl

Number of calculation cells = 30 X 20 (600)

Number of marker particles = 2400
Density radius = 2
Kinematic viscosity (both fluids) = 0

Maximum deviation from initial mass = 0.5/6
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Fig. 4.4. Taylor Instability, Inviscid Fluids

A heavy fluid is superposed over a lighter fluid in a gravitational
field. Initially, the fluid is perturbed by a low-amplitude, conserva-
tive-velocity field whose vertical component varies in the form of a
cosine wave along the interface. This small perturbation grows exponen-
tially for a time. When nonlinear effects become important, the inter-
face develops a spike and bubble shape characteristic of Taylor insta-
bility. At late times, the effects of Helmholtz instability are visible
along the edge of the spike.

Number of calculation cells = 20 x 60 (1200)
4800

Number of marker particles
Density ratio = 2
Kinematic viscosity (both fluids) = 0

Maximum deviation from initial mass = 0.1%
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Fig. 4.5. Taylor Instability, Viscous Fluids

This problem is the same as that illustrated in Fig. 4.4, except for
the added complication of viscosity. The primary effect of viscosity is

to retard the growth of both Taylor and Helmholtz instabilities:

Number of calculation cells 20 X 60 (1200)
Number of marker particles = 4800

Density ratio = 2

Kinematic viscosity (both fluids) = 10 *

Maximum deviation from initial mass = 0.2$
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