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Measurement of t he  Absolute Value &ta  

J.  R .  Smith, S. D. Reeder and R.  G. Fluharty 

A B S T R A C T  
C 

The absolute value of e ta ,  t he  number of f i s s i o n  neutrons per 

absorption, has been measured f o r  U-233, U-235.and Pu-239, using 

monochromatic neutrons from the  c r y s t a l  spectrometer a t  t he  Materials  

~ e s t i n ~  Reactor (wR). Measurements were made on a l l  th ree  isotopes 
-1 

a t  0.025 eV neutron energy, and on U-233 and Pu-239 a t  0.057 eV. The 

Bragg beam from Be (0002) was passed through a mechanical monochromator 

t o  reruove higher order neutrons and yie ld  a t r u l y  monochromatic beam. 

The neutron detector was a manganous sulphate bath, which absorbed i n  

t u rn  t h e  Bragg beam and then t he  f i s s i o n  neutrons produced when the  

beam was completely absorbed i n  a f iss ionable  sample. The r a t i o  of 

t h e  l eve l s  of ~ n - 5 6  a c t i v i t i e s  produced i n  t h e  two types of i r r a d i a t i o n  

yielded t h e  value of e t a  f o r  t he  f iss ionable  mater ia l  of t he  sample, a f t e r  

t he  appl icat ion of a few small corrections.  The method of l e a s t  squares 

was used t o  ex t rac t  the  val.ues of e t a  from t h e  experimental data.  These 

values a r e  a t  0.025 eV: f o r  U-233, 2.298 - + 0.009; f o r  U-235, 2.079 - + 

0.010; f o r  Pu-239, 2.108 - + 0.008. A t  0.057 ev: f o r  U-233, 2.288 - + 0.009; 

f o r  Pu-239, 2.034 - + 0.009. 
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Measure.ment of the  Absolute Value of Eta 
f o r  U-233, U-235 and Pu-239 Using Monochromatic Neutrons 

I. Introduction 

Among the  .many parameters describing the  f i s s ion  charac te r i s t i cs  

of an isotope, none i s  more s ign i f ican t  t o  reactor  theory and appl i -  

cation than 7,  the  number of f i s s i o n  neutrons produced per neutron 
I 

absorbed i n  t he  material .  Not only does 7 appear i n  the  basic four- 

fac tor  formula f o r  c r i t i c a l i t y ,  but i t - i s  the  def in i t ive  f i s s i o n  

parameter involved i n  determining the  breeding r a t i o  of a breeder 

system. For these reasons, .many experiments have been performed t o  

measure t he  absolute value of 7 f o r  one o r  more of the  th ree  common 

f iss ionable  isotopes U-233, U-235 and P ~ - 2 ~ 9 ( ~ ) .  The energy var ia t ion  

of 7 i s  of i n t e r e s t  because of i t s  e f f ec t  on the  temperature coeff ic ient  

of r eac t i v i t y  of a reactor,  and so has i t s e l f  been investigated i n  

several  experiments('). The absolute measurements previously performed 

have used a reactor  spectrum of neutrons. Corrections f o r  spec t r a l  

e f f ec t s  have been made on the  bas i s  of t h e  r e s u l t s  of the  experiments 

measuring the  r e l a t i ve  energy var ia t ion.  

The present experiment measured f o r  the  f i r s t  time the  absolute 

value of 7 using monochromatic neutrons a t  two d i f fe ren t  energies. The 

technique, which was s imilar  t o  t h a t  of the  Macblin-deSaussure(2) ex- 

periment, used a manganous sulphate bath a s  the  neutron detector.  A 

monochromatic neutron beam was t o t a l l y  absorbed i n  a f iss ionable  sample. 

The f i s s i o n  neutrons a r i s i n g  from these absorptions were themselves 

t o t a l l y  absorbed i n  t he  surrounding manganese bath. The r e su l t i ng  ~ n - 5 6  



a c t i v i t y  was a measure of t h e  number of f i s s ion  neutrons produced. 

When the f i s s ionable  sample was not present, t he  incident beam passed 

i n t o  the solution,  where it produced a ~ n - 5 6  a c t i v i t y  proportional t o  

t h e  number of neutrons absorbed by the  sample i n  t he  previous i r r a d i -  

a t ion .  The r a t i o  of t he  two a c t i v i t i e s  yielded the  value of 'q f o r  the  

sample, a f t e r  t he  appl icat ion of a few small corrections t o  be discussed 

be low. 

Measurements of t h e  value of 7 f o r  U-233 and Pu-239 were made a t  

both 0.025 eV and 0.057 eV neutron 'energies. The value f o r  U-235 was 

measured only a t  0.025 eV. 

T I .  Expertmental Description 

A. Monochromator 

Monoenergetic neutrons were obtained from the  Bragg beam of the  

Materials Testing Reactor (MTR) c r y s t a l  spectrometer. A mechanical 

neutron f i l t e r ( 3 )  was used t o  remove neutrons of undesirable orders 

from the beam. Because of t he  presence of the  f i l t . e r ,  it was possible 

t o  u t i l i z e  the  high r e f l e c t i v i t y  of. t he  Be (0002) planes. These planes 

a re  commonly neglected because of t h e i r  extraordinary order problems. 

Not only a r e  t he  &desirable orders present i n  large abundance, but 

(4) under ce r ta in  conditions the  phcnomenon of multiple Bragg sca t t e r ing  . 

( "umweganregung" ), synthesizes t he  norr:~ally forbidden f i r s t  and t h i r d  

order re f lec t ions .  I n  the  present case it i s  t h e  second order neutrons 

t h a t  are desired,  and the  t h i r d  order neutrons t h a t  represent the  

greates t  obstacle t o  the  i so l a t i on  of the  desired re f lec t ion .  While a 

resolut ion DA/A = 1 i s  adequate t o  i s o l a t e  t he  f i r s t  order from the 

second order, a resolut ion of 1/2 i s  required t o  i s o l a t e  the  second 

order i n  t he  presence of the  t h i rd .  

-2- 



The neutron f i l t e r  was a s t r a igh t - s l o t  ve loc i ty  se lec tor  of ' the  

type described by Dash and Som~ners(~) .  The s l o t s  were two inches high 

and twenty-one inches long. A h e l i c a l  p i t ch  was approximated by s e t t i n g  

t h e  ro tor  a t  an angle t o  the  ~ P a g g  beam. Weight and f r i c t i o n  were mini- 

mized by using magnesium and f iberg las  i n  construction and mounting t he  

motor i n t eg ra l l y  with t he  ro tor  so t h a t  only two bearings were required 

(3 )  i n  t he  system.   he' construction was e s sen t i a l l y  a s  described previously , 
except t h a t  only 150 s l o t s  were used. This ro to r  matched t he  coll imation 

of t he  neutron beam used i n  t he  experiment and had an observed t r ans -  

mission of 60$, while re ta in ing  adequate resolut ion t o  suppress t he  

unwanted order neutrons a t  both energies used i n  the  experiment. Rotor 

speed was 6000 rpm a t  0.025 eV and 7200 rpm a t  0.057 eV. 

The pur i ty  of t he  beam passed hy t he  ro to r  was demonstrated by 

t ime-of-fl ight  analysis  of t h e  Bragg beam. For t h i s  t e s t  a Fermi- 

type chopper, placed ahead of t h e  ve loc i ty  se lec tor ,  separated t h e  , 

neutrons i n to  burs t s  whose time of f l i g h t  t o  t he  detector  was measured 

and recorded by a TMC analyzer. The r e su l t i ng  neutron spectra  used i n  

t h e  experiment at t h e  two energies a r e  i l l u s t r a t e d  i n  Fig. 1. I n  each 

case there  i s  only t h e  primary component of t h e  Bragg beam r i s i n g  above 

t he  background leve l .  It i s  c l ea r ly  seen t h a t  the re  i s  no "higher 

order" problem with t he  beam transmitted through t he  f i l t e r .  

B. Manganese Bath 

1. Mechanical Features 

The neutron detector was a bath of MnSOk so lu t ion  contained i n  

a cy l indr ica l  tank 42 i n ?  i n  ins ide  length and dismeter. This tank i s  

shown i n  Fig. 3. A t  the  center  of t he  tank was t he  t a r g e t  chamber, a 

sphere h >.a. in di;a.met,er. This sghere was supported by an aluminum 



channel, which a l so  served t o  admit t h e  neutron beam t o  the  sample 

chamber, o r  snout, a s  i t s  odd appearance led it t o  be called.  An 

extension of t h e  snout, of somewhat l i g h t e r  construction, removed the  

impact a rea  of t h e  beam from the  immediate v i c i n i t y  of the  sphere, f o r  

i r r ad i a t i ons  i n  which'the snout contained no sample. To minimize 

s ca t t e r ing  and absorption of t he  beam, t h i s  sample snout was flushed 

and f i l l e d  with helium a t  about 7 pounds per square inch gauge pressure. 

Two d i f fe ren t  sample snouts were used during various phases of 

t h i s  experiment. Both are shown i n  Fig. 4. Each has a one-inch-thick 

flange, by which it was bolted t o  the  f ront  of the  t a n k .  The view i n  

t h e  photograph shows the  snouts as  they would be seen by one looking 

down from the p o r t  011 the  top  of the  tank. Snout No. i, on the  r igh t ,  

was designed t o  accommodate samples of a va r i e ty  of shapes and s izes .  

It i s  loaded from t h e  top  i n  order not t o  dis turb the  collimation 

system when changing samples. Because of the  st,ra,i.n to whi.ch i.t i . s  

subjected during sample,changeovers, i t s  construction i s  r e l a t i v e l y  

heavy. The entrance channel was made of 0.250 i n .  A l ,  the  sphere 

0.080 in.., t he  extension .120 in . ,  and the  end cap .030 in .  The 

sample holders used i n  the  pr inc ipa l  par t  of t h i s  experiment with the  

heavy snout a re  shown i n  Fig. 5. The rectangular holder accommodated 

a p a i r  of Pu samples already avai lable  a t  the  MTR, while the  round 

holder was used with a s e t  of samples obtained from ORNL. The l a t t e r  

samples were t he  ones fabr icated f o r  use i n  the  Macklin-desaussure 

( 2 )  experiment . 
The l i g h t e r  snout, shown on the  l e f t  i n  Fig. 4, would accomo- 

date only the  ORNL samples. Since it was designed f o r  only one s e t  of 

samples, it could be made of l i g h t e r  mater ia l  t o  minimize the  e f f e c t s  



of s t ruc tu r a l  absorption. The aluminum thicknesses used i n  the  construc- 

t i o n  of t h i s  snout a re :  entrance channel 0.058 in . ,  sphere 0.030 i n . ,  

extension 0.035 in . ,  and end cap 0.010 in .  This snout was loaded from 

the  f ron t  of t he  tank, using t he  sample holder shown between t he  two 

snouts i n  Fig. 3. While it became necessary t o  remove a sect ion of 

coll imator between t h e  ro tor  and t he  tank t o  change samples with t h i s  

system, realignment e r ro r s  were minimized by clamping t h e  coll imator 

against  a s e t  of f ixed stops t h a t  remained i n  place during sample 

changeover. The reproducibi l i ty  of t h e  coll imator posi t ioning was 

b e t t e r  than 0.010 i n .  i n  any di rect ion.  

The standard configuration i n  which t he  round .samples were 

arranged used four f o i l s  of no,minal.thickness 0.025 i n .  Two of these  

were contained i n  individual  cans of aluminum 0.008 in .  th ick.  The 

remaining two were mounted together,  with a backing f o i l  o f  0.020 i n .  

cadmium t o  absorb t h e  res idua l  beam. The sample thus had th ree  

sections,  held a t  f ixed distances apar t  by spacers t o  reduce t h e  multi-  

p l i c a t i on  of fas t -neu t rons .  The spacers used i n  t he  sample holder f o r  

t h e  l i g h t  snout were of 0.010 in .  cadmium. For the  heavy snout sample 

holders shown i n  Fig. 5 aluminum spacers were used, Protect ion from 

thermal neutrons re f lec ted  from the  solut ion was i n  t h i s  case afforded 

by a wrapping of 0.005 in .  cadmium. Figure 6 shows t he  standard sample 

configuration, and Table I gives the  dimensions appropriate t o  the  

vario-us samples and spacers. 

There were a few var ia t ions  from t h e  configurations indicated 

i n  the  preceding paragraph. The rectangular plutonium sample had only 

two f o i l s  and t he  spacing between these  was provided by t h e  framework 

of t h e  sample holder. A wrap of 0.005 i n .  cadmium provided protect ion 



from the themal ized  neutrons i n  the  surrounding solution.  This sample 

was occasionally used reversed, with the  beam s t r i k i n g  the  th icker  f o i l .  

This was done t o  change the  magnitude of the  f a s t  e f f ec t  and t o  determine 

whether t h e  calculated .correction would properly account f o r  the  observed 

change i n  solut ion ac t i v i t y .  A corresponding experiment was performed 

with the  U-233 sample by omitting a l l  spacers. I n  addit ion,  t he  two-foil  

U-233 sample was used alone with varying lengths of cadmium spacers be- 

hind and wrappings around it. From the  l a t t e r  data were determined the  

parameters f o r  ca lcu la t ing  t he  e f f e c t s  of t he  cadmium spacers and 

wrappings. 

2. Chemistry of t h e  Solution 

The mnganese solut ion was prepared from Mallinckrndt, "Anal;y.l:1.i:~1.1 

Reagent" 1MnS04 H 0 powder and demineralized water. The nominal concen- 2 

t r a t i o n  desired was 218 grams MnSO per l i t e r  of solution.  The t rue  4 

concentration d r i f t ed  somewhat from t h i s  f igure ,  because of temperature 

e f f e c t s  and evaporation. Since t h i s  d r i f t  was slow and r e l a t i ve ly  uni- 

form, it was r e l t  t h a t  it would cause l e s s  uncertainty i n  t he  solut ion 

s e n s i t i v i t y  than would the  f luctuat ions  involved i n  a continual ad jus t  - 
ment of concentration. The concentration was measured regular ly  and the  

counting data  corrected fo r  t he  observed change. 

The concentration of manganese su l f a t e  was rout inely  monitored 

using the density-temperature-concentration re la t ionsh ip  i l l u s t r a t e d  i n  

Fig. 7. The data represented i n  t h i s  f igure  were collected through use 

of the  following procedure : A 500 m l .  volumetric f l a s k  containing a 

measured weight of dissolved MnSO was diluted t o  t he  mark a t  a te.mper- 4 

a tu re  of 40'~. The t o t a l  weight of the  solut ion was measured and the  

densi ty  calculated assuming the  volume t o  be 500 m l .  The f l a s k  and 



contents were then progressively cooled t o  temperatures of 30°c, 25'~ 

and 20°c. A t  each of these  t empera tures the  volume was adjusted t o  t h e  

mark by adding water and t he  density was determined a s  before. This 

procedure was followed fo r  concentrations of 225, 218 and 215 grams per  

l i t e r  t o  produce t he  data represented i n  the  f igure .  Since t h e  physical  

dimensions of t he  f l a s k  change s l i g h t l y  with temperature, a f f ec t i ng  t he  

volume of t he  f lask,  t h e  dens i t i es  a r e  only r e l a t i v e  except a t  20°c, t h e  

temperature a t  which t h e  f l a s k  was cal ibra ted.  No e r r o r  i s  introduced 

i n t o  t h e  measurements by t h i s  fac to r ,  however, because t he  same f l a s k  

used i n  obtaining t h e  ca l ib ra t ion  curves was used i n  t h e  concentration 

measurements . 
I n  t h e  routine concentration checks during t he  course of t he  

experiment, a  density sample was drawn immediately a f t e r  t he  counting 

sample. The temperature of t h e  solut ion was recorded a t  t h a t  time. 

The standard 500 m l .  f l a s k  was f i l l e d  and adjusted t o  t he  mark with t he  

solut ion fro:m the  density sample a t  t h e  sampling temperature. The 

contents of t he  f l a s k  were weighed and the  density calculated.  With 

t he  density and temperature known, t h e  concentration of MnS04 could be 

read from the  graph. It was usually necessary t o  in te rpo la te  t o  

temperatures other  than those p lo t ted .  This in te rpo la t ion  could be 

avoided by f i r s t  adjus t ing t he  f l a s k  and solut ion t o  volume a t  the  

sampling temperature and then cooling them t o  a lower temperature 

corresponding t o  one of the  p lo t ted  curves. After  adjus t ing t h e  volume 

t o  t he  mark with water, the  density of t he  so lu t ion  was determined from 

i t s  weight and t h e  concentration read from the  graph. When large  i n -  

t e rpo la t tons  were required, t he  density measurement was checked by t h i s  

second method. Agreement i n  a l l  cases was excel lent .  



C . Counting Technique 

I n  order  t o  achieve a ~ n - 5 6  counting r a t e  su f f i c i en t  t o  yie ld  

s t a t i s t i c a l  accuracy i n  the  neighborhood of 0.1%, it was necessary t o  

count a l a rge  so lu t ion  sample with good eff ic iency.  A f ive-gallon 

sample s i z e  was chosen.. A s t a in l e s s  s t e e l  container was made with a 

reentrant  thimble i n  t h e  bottom t o  admit a 3 i n .  x 3 i n .  N ~ I ( T ~ )  sc in-  

t i l l a t i o n  counter t o  t h e  center of t h e  sample. Two separate counting 

channels were employed, allowing simultaneous counting of monitor f o i l  

and solution,  p lus  interchange of samples. Each counter was mounted i n  

a s t e e l  framework,, which p r ~ v i d e d  s u ~ ~ o s t  f o r  the  heavy solut ion tank,  

A p a i r  of s t e e l  posts  a t  opposite corners of t h e  framework slipped 

through guides mounted on t he  so lu t ion  tank and allowed the  tank t o  be 

positioned accurate ly  without contacting t h e  s c in t i l l a t o r . .  The same guide 

system was used t o  posi t ion t h e  monitor f o i l ,  with a p a i r  of aluminum 

sleeves sl ipped over t he  posts  t o  s e t  t h e  height of t he  f o i l  holder. The 

counting arrangement i s  shown i n  Figure 8, with the  solut ion sample on onc 

counter and t he  monitor f o i l  on t he  other .  During the  experiment t he  

counters were enclosed i n  separate lead sh ie lds  4 i n .  th ick .  

The ~ n - 5 6  gamma spectrum r e su l t i ng  from t h i s  configuration i s  shown 

i n  Fig.. 9, along with t he  spectrum o'bserved from t h e  monitor f o i l .  It 

i s  immediately evident from a comparison of these  two spectra  t h a t  t he  

solut ion and tank degrade t he  spectrum considerably, and s h i f t  t h e  

r e l a t i v e  pos i t ions  of t he  U.8> MeV gamma ray  and t h e  va l ley  below it. 

The procedure of b ias ing  i n  t he  va l ley  before t h e  peak i n  t h i s  case 

leads  t o  a considerable l o s s  i n  counting r a t e  on t h e  one hand, and an 

uncertain s t a b i l i t y  due t o  t h e  r e l a t i v e  s h i f t  i n  va l ley  posi t ion on the  



other.  For these reasons it was deemed advisable t o  b i a s  at a low l e v e l  

so a s  t o  count t h e  e n t i r e  gamma spectrum above t he  noise l eve l  of t he  

phototube. A low-noise t rans i s to r ized  ampli f ier  t h a t  had been developed 

a t  Chalk River (6' f o r  use with proportional  counters was used f o r  t h i s  

purpose. To determine operating conditions f o r  the  present application,  

voltage plateau curves were taken f o r  both counters on both background 

and Cs-137 Eources. Yhe Cs-137 source was used because . i t s  32-keV Ba 

X-ray gives a convenient low energy reference point ,  while t he  background 

curve shows t h e  onset of the  tube noise more c lea r ly .  The Ba X-ray shows 

up a s  a s t e p  i n  t h e  voltage plateau curve. The operating point chosen 

was on t he  plateau midway between t h e  X-ray s t ep  and t he  onset of t he  

tube noise a s  determined from the  background curve. Figure 10 shows a 

t y p i c a l  s e t  of voltage plateau curves and t he  associated operating point .  

Also shown i s  t h e  plateau curve cbtained using a ~ n - 5 6  source. The 

plateau here i s  much broader than those obtained with background and C s  

sources, showing t h a t  t he  operating conditions were l e s s  s t r ingent  than 

t he  setup conditions. 

The gamma counting done i n  t h i s  experiment was a l l  r e l a t i ve ,  and 

knowledge of t he  absolute e f f i c iency .of  t he  counters was not necessary 

f o r  t h e  in te rpre ta t ion  of t he  data. Nevertheless it was f e l t  worth 

while t o  know something of t h e  counter eff ic iency,  so a ca l ib ra t ion  

program w a s  undertaken. A v i a l  of MnSO powder was i r rad ia ted  i n  t h e  4 
MTR and then dissolved i n to  solution.  From t h i s  solut ion a 1.0 m l .  

a l iquot  whose a c t i v i t y  was approximately lo5 dps was taken, mixed i n t o  

t h e  dead solut ion i n  t h e  sample tank, and counted on both counters. The 

dis integrat ion r a t e  i n  a 0.1 m l .  a l iquot  of t h e  same solut ion was determined 

by both beta-gamma coincidence counting and gamma s c i n t i l l a t i o n  spectrometry. 



The data fr0.m f ive  t r i a l s  of t h i s  experiment showed t h a t  t he  eff ic iency 

of Counter No. 1 was 5.24% + .01, while t h a t  of Counter No. 2 was - 
5.31% - + 0.01. Since t h e  sample tank contained approximately 276 of the  

so lu t ion  i r rad ia ted ,  t h e  overa l l  counting e f f ic iency  f o r  the  experiment 

i s  approximately 10'~ counts per ~ n - 5 6  dis integrat ion i n  the  250-gallon 

bath. 

D. Experimental Procedure 

Normally, i r r ad i a t i ons  were made overnight and the  cou~l t  irlg dune 

t h e  following day. Exceptions t o  t h i s  order occurred during two periods 

of approximately two weeks each, during which the  i r r ad i a t i ng  and the  

counting were done i n  a l t e rna t e  8-hour s h i f t s .    he l a t t e r  arrangement 

allowed more rapid accumulation of data, a t  t he  expense of making the  

corrections f o r  res idua l  a c t i v i t y  i n  the  solut ion and monitor f o i l  

somewhat greater  . 
A day's data col lect ion was begun with four 30-min. background counts. 

These yielded f o r  each counter two counts on t he  decayed solut ion from the 

previous run and two background counts using t h e  empty hnJ,der for the  

monitor f o i l .  It was necessary t o  subtract  from the  counts on the  old 

solut ion t h e  contribution of t h e  res idual  a c t i v i t y  from the preceding 

day's i r r ad i a t i on .  The res idua l  a c t i v i t y  was calculated from the 

previous run's  observed ac t i v i t y ,  using the  appropriate decay time. 

The completion of t he  s e t  of background counts released the  sample 

tank f o r  the  co l lec t ion  of the  new solut ion sample. The neutron beam 

was cut off and t h e  mixer run f o r  15 minutes. Upon completion of t he  

mixing period, the  sample tank was f i r s t  rinsed and then f i l l e d  with t he  

ac t i ve  solution.  The f i l l i n g  was done volumetrically, t he  solut ion l eve l  

being allowed t o  r i s e  u n t i l  t h e  meniscus around the  neck of the  



tank jus t  closed. This volumetric f i l l i n g  was simpler and quicker 

than weighing, with no loss  i n  accuracy. After t he  counting sample had 

been drawn, an additional.sample was taken f o r  t h e  density measurement. 

The solut ion temperature was measured a t  t h i s  time. 

The solut ion sample and monitor f o i l  were next taken t o  t he  counting 

area, where t he  f i r s t  data count f o r  the  day began f o r t y  minutes a f t e r  

t he  time t h e  beam was 'cut o f f .  A total .  of s i x  thirty-minute counts 

characterized t h e  data, with th ree  counts f o r  each sample on each 

counter. Samples were interchanged between counters' following the  f i r s t ,  

t h i r d  and f i f t h  counts. A f ive minute period proved adequate f o r  reading 

out t he  data and changing samples between counts. 

Following the  completion of t h e  counting schedule, t he  monitor f o i l  

was returned t o  the  c rys t a l  spectrometer f o r  inclusion i n  the  next 

i r rad ia t ion .  Any changes i n  the  experimental setup cal led f o r  by t he  

i r r ad i a t i on  schedule were made a t  t h i s  time. I f  the  changes required 

the  snout t o  be opened, a two-minute flow of helium was used t o . f l u s h  

t he  snout before t he  f i n a l  f i l l i n g  t o  7 lbs .  gauge pressure. The 

i r r ad i a t i on  tank was then f i l l e d  t o  a standard mark i n  'the t op  port  and 

the  next exposure begun. 

111. Corrections t o  the  Data 

The value of e t a  i s  given c lose ly  by the  r a t i o  of solut ion a c t i v i t i e s  

observed with and without the  f iss ionable  sample i n  the  snout. Quanti- 

t a t i v e  accounting must be made f o r  several  small systematic e f f e c t s  

before t he  t r u e  value of 7 i s  revealed. These corrections,  ranging i n  

s i ze  from l e s s  than 0.141, t o  s l i g h t l y  over 3%, a re  considered i n  the  

following paragraphs. Their calculated values a re  summarized i n  Table.11. 



The correct ions  were applied through a l e a s t  squares adjustment pro- 

cedure, described i n  Section I V  below. The l ea s t  squares program 

performed some minor adjustments i n  some of the  corrections.  The 

adjusted values a r e  a l s o  shown i n  Table 11. As might be expected, 

no appreciable adjustment accrued t o  a calculated value unless t he  

correct ion involved varied during the  experiment. 

A. Fast  Mult ipl icat ion 

Tne f i s s ionable  samplec used i n  t h i s  experinlent were desired t o  be 

approximately 0.100 in .  th ick so they would absorb e s sen t i a l l y  a l l  of 

t h e  thermal neutrons. Samples of t h i s  thickness w i l l  a l so  absorb a 

c e r t a i n  number of the  f i s s ion  neutrons, and it proved necessary t o  make 

a correction Sor the  f a s t  neutron muftiplication a r i s i n g  from the  f a s t  

f i s s i o n  events. The magnitude of the  mult ipl icat ion was reduced by 

separating t he  samples i n to  two o r  th ree  f o i l s  with spaces between t o  

i r~c rease  t h e  chance f o r  escape of the  f i s s i o n  neutrons. S t i l l ,  t h e  

f a s t  e f f ec t  increased the  number of f i s s ion  neutrons absorbed i n  t he  

so lu t ion  by about 1.5$ t o  3%, depending upon t h e  samp1.e i.~sed, 

The magnitude of t he  f a s t  e f f ec t  was computed f o r  each f o i l  by a 

Monte Carlo technique. The t a l l i e s  from which the  f a s t  neutron multi-  

p l ica t ion  was *computed were those 1ist.i ng n ~ i ~ t r o n s  born of thermal 

f i s s ions ,  neutrons escaping irnrnediately a f t e r  f i s s ion ,  and f i s s i o n  

neutrons escaping following subsequent co l l i s i ons  i n  t he  sample. The 

f a s t  e f fec t  i s  sim~ly t h e  r a t io  of t8he nlxnber of neutrons occaping from 

t h e  sample t o  t he  number of neutrons or ig ina t ing  from thermal f i s s ion .  

With t he  f a s t  mul t ipl icat ion r a t i n s  known for  each f o i l  of an cxpcri-  

mental sample, t he  overa l l  f a s t  e f f ec t  can be wri t ten 



where € = the  f a s t  e f fec t  f o r  t he  i - t h  f o i l .  i 

'i 
= t he  f rac t ion  of the  thermal neutrons absorbed i n  the  

i - t h  f o i l .  

P = the  probabi l i ty  t h a t  a f i s s i o n  neutron emerging from 
iJ f o i l  i w i l l  be absorbed i n  f o i l  j . - 

~ , a a , a s , a  t he  average values of q, absorption cross section,  
tr= sca t te r ing  cross section,  and t ransport  cross sect ion f o r  

f i s s i o n  n.ei.l,tnrnns i n t,he samp1.e used, 

The probabi l i ty  Pij was approximated from the  formula 

where Nu t . i s  t h e  thickness of f o i l  j i n  mean f i s s i o n  neutron mean f r ee  
tr J B 

paths, R i s  t he  radius of the  f o i l ,  
and Hi j  

i s  t h e  distance between f o i l  

centers.  The corresponding in te rac t ion  probabi l i ty  f o r  the  rectangular 1 

samples was obtained by numerical in tegrat ion.  T 

Since most of t he  samples used were the  ones used f o r  the  Macklin- 

desaussure manganese bath experiment, and the  geometries were similar,  

it was deemed worthwhile t o  compute t h e  f a s t  e f f ec t  a l so  by t h e i r  method. 

This method i s  an application of t h e  Weinberg-Wigner formula(7) f o r  t he  

fast e f f ec t .  The expression used is: 

where v i s  t he  number of neutrons per f i s s ion ,  a i s  t h e  r a t i o  of capture 



t o  f i s s i o n  cross section,  and a a and utr a re  t he  f i s s ion ,  scat ter ing,  f '  s '  

and t ransport  cross sections,  respectively.  P i s  the  probabi l i ty  t h a t  a 
C 

f i s s i o n  neutron born i n  the  sample w i l l  undergo a co l l i s i on  i n  the  sample 

before escaping. I n  t h e  present application it i s  assumed t h a t  t h i s  

p robabi l i ty  i s  t he  same f o r  t he  f i r s t  neutrons produced from thermal 

f i s s i o n  and f o r  t he  neutrons proceeding from subsequent fast col l i s ions .  

The in te rac t ion  between samples has t o  be considered here too, and the  

value of PC t o  be used i s  t he  weighted sum of t he  contributions of e a c h  

f o i l :  

where P i s  t h e  t o t a l  co l l i s i on  probabi l i ty  f o r  t he  sample, Pi i s  the  
C 

p robabi l i ty  t h a t  a neutron i n  f o i l  i w i l l  have a co l l i s i on  before it 

escapes from the  f o i l ,  and W .  and P a re  a s  defined previously. The 
1 i j  

individual f o i l  co l l i s i on  probabi l i ty ,  Pi, was computed i n  t he  same 

Monte Carlo calculat ion which yielded the  previously discussed value of 

t h e  f a s t  e f fec t .  The values of P were computed from Equation ( 2 )  above. LJ 
The two methods agreed everywhere t o  .better  than r).l$, with +he second 

method yielding the  higher values. The average of t he  two values was used 

i n  correct ing the  data.  

The e r ro r s  associated w i t h t h e  calculated values of the  f a s t  multi-  

p l i ca t i on  f ac to r  a r e  of three  sources: the  uncertainty of cross sections 

put i n t o  t h e  Monte Carla program, t he  s t a t i s t i c a l  Pl.ilcti~.a.tions of t he  

I\lonte Carlo process, and the  uncertainty i n  t he  in te rac t ion  calculations,  

due both t o  approximations involved i n  Equation ( 2 )  and t o  possible 

e r r o r s  i n  t h e  measurement of t he  spacing of t h e  f o i l s .  An estimate .of 

t h e  e r ror  associated with cross  sect ion uncertainty was obtained by 



calculat ing the  f a s t  e f f ec t  f o r  a U-235 f o i l  assuming cross sections 

from d i f fe ren t  compilations(8'-10). S t a t i s t i c a l  analysis of the  Monte 

Carlo r e s u l t s  produced an estimate of t he  e r ro r  associated with the  

calculation.  The r e su l t s  of these  calculations a r e  summarized i n  

Table 111. The calcu.l.ations of in te rac t ion  probabi l i ty  were inves t i -  

gated by changing the  spacing of the  samples during the  course of t he  

experiment . 
Table I11 

Fast Effect  Calculations f o r  U-235 Fo i l  
Using Different Cross Section Compilations 

Compilation Fast Effect  

Yiftah e t  a 1  (8) 

Los Alamos ( 9  

K l ? ~ ( ~ O ) ( l J s i n ~  t o t a l  Cross sec t .  ) 1.0148 

KFK(~O) (using transport  cross 1.0141 
sect ion)  

Average Value 1.0138 

B. S t ruc tura l  A'bsolption 

There i s  an unavoidable loss  of neutrons t o  absorption i n  t he  

materials  of which t he  snout and sample holders a r e  constructed. This 

l o s s  i s  greater  f o r  t he  thermal neutrons than f o r  t he  f i s s i o n  neutrons, 

since the  l a t t e r  penetrate the  solut ion f a r the r  on the  average before 

undergoing absorption. To reduce the  loss  of thermal neutrons, an 

extension of the  snout past  t he  sample sphere was incorporated. This 

removed the  impact area of the  thermal beam from the v i c i n i t y  of the  

greates t  mass of aluminum. For t he  purpose of evaluating the  s t ruc tu ra l  



e f f ec t s ,  a  sheath of aluminum was added t o  t he  snout and sample holders. 

This added aluminum duplicated t he  o r ig ina l  s t ruc ture  a s  c losely  a s  

possible  i n  mass and d i s t r ibu t ion ,  so the  e f f ec t  of t he  addi t ional  

aluminum was equal t o  t h a t  of t he  o r ig ina l  s t ruc ture .  This procedure, 

applied t o  both t h e  t h i ck  and the  t h i n  snouts, gave two separate extrapo- 

l a t i o n s  t o  zero snout thickness. Since the  U-233 and MTR Pu-239 samples 

used d i f fe ren t  sample holders, individual runs using ex t ra  aluminum were 

made with both these  samples i n  t he  t h i ck  snout. Only t he  U-233 sample 

was used i n  t h e  s t r u c t u r a l  absorption runs with t h e  t h i n  snout, because 

a l l  samples used i n  t h i s  snout used t he  same holder. The values and 

standard deviations f o r  the  various s t ruc tu ra l  absorption terms, a s  given 

by t h e  l e a s t  squares program output, a re  summarized i n  Table 11. 

C. Ind i rec t  Mult ipl icat ion 

The hydrogenous bath around the  sample, i n  addi t ion t o  absorbing 

t h e  f i s s ion  neutrons, a l s o  a c t s  a s  a  r e f l ec to r .  Neutrons may be scat tered 

back i n t o  t h e  sample, where they may multiply through addi t ional  f i s s ions .  

It was t o  minimize t h i s  e f f ec t  by holding t h e  solut ion away from t h e  sample 

t h a t  t h e  6 i n .  .diameter sphere was placed around the  sample. To reduce 

t h e  e f f ec t  fur ther ,  t he  samples were wrapped' i n  cadmium except f o r  one 

face, which had t o  be l e f t  open t o  admit t he  neutron beam. The problem 

then became t o  evaluate the  e f f e c t s  of t h e  cadmium. A s e r i e s  of i r r a d i -  

a t ions  were performed i n  which t he  thickness and area  of the  cadmium 

cover were a l t e r ed  without changing e i t h e r  t he  mass o r  t he  open area  of 

the  sample. From these  data it appeared t h a t  both t he  area and the  thick-  

ness of the cadmium had an e f fec t  on t h e  solut ion a c t i v i t y  obtained. 



Accordingly, it seemed,appropriate t o  use a correct ion f ac to r  employing 

a mass term and an area  term. This fac tor  was expressed a s  follows: 

I = 1 - F'M - @[(l -7)as  .+ A,,] = 1 - l?M - #A 

I n  t h i s  expression, M i s  the  mass of cadmium i n  t he  wrap, ACd i s  t h e  

area  of cadmium exposed t o  t he  re f lec ted  f lux,  A i s  t he  exposed area  s 

of t h e  sample, and F and @ a re  t h e  constants t o  be deduced from analysis  

of t he  experimental data.  The f ac to r  (1-7) takes  i n t o  account t he  f a c t  

t h a t  a neutron s t r i k i n g  the  sample face w i l l  l i k e l y  be absorbed, los ing  

one neutron and producing 7 others.  A i s  t h e  combined area  coef f ic ien t .  

The values determined i n  t h i s  .manner a r e  shown i n  Table I. 
,. r 

D. Resonance Absorption i n  Mn 

I n  t he  thermal energy region a l l  t he  competing absorbers i n  t h e  

manganese bath a r e  l/v absorbers. Under t h i s  condition t h e  detection 

efficiency,  i n  terms of ~ n - 5 6  a c t i v i t y  per neutron absorbed, i s  constant 

with energy. I n  t he  v i c i n i t y  of t h e  manganese resonances, however, t he  

f r ac t i on  of neutrons absorbed i n  manganese r i s e s .  Since t h e  f i s s i o n  

neutrons must pass through t h i s  resonance energy region i n  slowing down, 

they produce r e l a t i v e l y  more ~ n - 5 6  a c t i v i t y  per absorption than do t he  

thermal neutrons. 

Since it i s  only t he  above-l/v port ion of t he  resonance i n t e g r a l  

t h a t  contributes t o  t h e  change i n  absorption f rac t ion ,  t h e  correct ion 

was expressed i n  terms of t he  thermal absorption cross  sect ions  and t he  

above-l/v components of t h e  resonance in tegra l s .  The f ac to r  by which 

the  solut ion a c t i v i t y  i s  ra ised by resonance absorption .my be wr i t t en  

a s  



where r" + 1' are  the  above-l/v components of the  macroscopic resonance 
a a 

H 
i n t eg ra l s  of Mn and S, respectively.  fl" Za, and zS are  the  macroscopic a )  a 

absorption cross sect ions  of Mn, H, and S and CsEis t h e  composite product 

of s ca t t e r ing  cross sect ion times logarithmic energy decrement f o r  t h e  

solut ion.  

While t he re  i s  a i 'a i r ly  wide spread i n  the  reported values 
( 11-14) 

f o r  t he  above-l/v resonance i n t eg ra l  of manganese, t he  recent values (13-14) , 
f o r  which t h e  highest accuracy i s  claimed, appear t o  agree t h a t  a good 

P4.n p n  is estimate of the  i n t e g r a l  i s  8.0 2 0.5 barns. The f r ac t i on  In / a 

then  0.60 - + .06. For t h e  solut ion used i n  t h i s  experiment t he  values of 
- 

t h e  remaining parameters a re  : Zs( = 1.323, f = 0.0217, Z: = 0.00045, 

and 1: = 0.00033. An e r ro r  of about 1% i s  estimated f o r  these l a t t e r  

quant i t i es .  The correction f o r  t he  e f f ec t  of resonance absorption i n  

manganese then takes  t h e  value 1.0098 - + 0.0020. 

E. TransmTssion 

Although the  samples were almost t o t a l l y  absorbing, the  transmissions 

were not qui te  zero f'or any of them. The transmitted neutrons were absorbed 

i n  t he  cadmium backing, and so  contributed t o  nei ther  Pin ac t iva t ion  i n  the  

solut ion nor f i s s i o n  i n  the  sample. The transmissions of t he  f o i l s  used 

were individually measured on the  c r y s t a l  spectmmeter i n  the  same neutron 

beam and a t  the  same energies used i n  the  q experiment. Those samples 

having in t eg ra l l y  mounted cadmium backing could not be measured a t  these 

energies, but t h e i r  thicknesses were compared t o  those of the  unbacked 

samples by means of transmission measurements above the  Cd cutoff .  This 



comparison could be only approximate, s ince it was not possible t o  make 

a precision measurement of t he  transmission of t h e  Cd backing enclosed 

i n  t he  sample. 

The transmission measurements disclosed a degree of non-uniformity 

i n  f o i l  thickness.  The U-235 f o i l s  appear t o  be uniform within  ,001 i n .  

o r  l e s s ,  but the  U-233 f o i l  measurements indicated a spread of ,002 i n .  

i n  thickness and t h e  Pa-239 f o i l s  indicated a .003 i n .  spread. While 

t h e  nominal thicknesses of a l l  f o i l s  were 0.025 in . ,  t he  averages appear 

t~ be .O23 in .  f o r  t h e  U-235 f o i l s ,  .O27 in . ,  f o r  t he  'u-233 . . f o i l s ,  and 

.020 i n .  f o r  the  round Pu f o i l s .  The rectangular Pu sample consisted 

of two f o i l s  .Ol5 in .  and .O7O in .  th ick .  

The transmission corrections and t h e i r  e r ro rs ,  a s  indicated by t he  

, ' 
measurements, a r e  shown i n  Table I V .  The corresponding correct ion used 

i n  t h e  l e a s t  squares analysis  was t he  product of t he  transmission and 

sample pu r i t y  corrections.  Neither t h e  experiment nor the  analysis  was 

designed t o  d i f f e r en t i a t e  between t he  two e f f ec t s .  

Table I V  

'i'ransmission Correction 

Isotope 0.025 eV 

u-233 .9994 - + . O O O l  

U-233 (2 - fo i l  sample) 

U-235 .9996 - + . O O O ~  

Pu-239 (both samples) 1.0000 - + .0001. .9998 - + .000l 

F. Sca t te r ing  

A second cause of the  f a i l u r e  of t he  samples t o  be t o t a l l y  absorbing 

i s  t h a t  some neutrons a r e  scat tered out of t he  sample. I f  a f r ac t i on  S/N 



of incident neutrons a r e  scat tered from the  sample, and a  f r ac t i on  W of 

these  a r e  absorbed i n  t he  solution,  the  e f f ec t  on a  mater ia l  of value 7 

i s  

It was assumed t h a t  only the  neutrons scat tered out of the  incident face 

of t h e  sample would be asorbed i n  the  solution.  Those scat tered out t he  

back a r e  absorbed i n  t he  Cd wrapping. 

The f rac t ions  of neutrons scat tered out of t he  f ront  and back of the  

samples were computed using the  ana ly t ica l  expressions i n  terms of ex- 

ponent ia l  in tegrs l s (15) .  The Monte Carlo calculat ion also yielded the  

probabi l i ty  of escape of t he  scat tered neutrons. These r e s u l t s  agreed 

with those from the  ana ly t ica l  calculation,  within t h e  l im i t s  of s t a t i s t i c a l  

e r r o r  of t h e  Monte Carlo calculation.  

The s ca t t e r ing  corrections applied i n  t h e  experiment a re  summarized 

i n  Table 11. The e r ro r s  quoted a r e  estimated from the  uncer ta int ies  i n  

cross  sect ions  and i n  t he  f r ac t i on  W. 

G .  D u c t  St-roaming 

The channel through which the  neutron beam entered t he  sample chamber 

a l s o  formed a  path f o r  neutrons t o  escape from the  tank. Since t h i s  loss  

was small, it was approximated by the  so l id  angle subtended a t  t he  sample 

by t h e  mouth of t h e  neutron channel. 

11. Leakage 

The manganese bath i s  not t r u l y  i n f i n i t e l y  thick,  and some neutrons 

can escape through the  solution.  Leakage -calculat ions  were made by D r .  

Herbert Goldstein' 16), using several  techniques including Monte Carlo, 

moments method, and a  computer-programmed solution t o  t h e  Boltzman equation. 



The geometry used i n  these calculations took i n t o  consideration the  void 

around the  sample, assuming spher ical  symmetry throughout. Since t he  r e a l  

tank i s  cyl indr ical ,  some approximations had t o  be made t o  adapt the  

Goldstein calculat ions  to. the  physical  s i tua t ion .  The leakage was taken 

t o  be t he  value shown by the  calculations f o r  a thickness of solution 

equal t o  t he  average thickness of t he  cy l indr ica l  solution.  The value 

obtained i n  t h i s  manner i s  0.9988. 

I n  addit ion t o  the  spher ical  approximation, use of t he  Goldstein 

calculations d i r ec t l y  involved another uncertainty. The calculations 

assumed t h a t  -the solut ion continued i n f i n i t e l y  beyond the  point f o r  

which t he  leakage f igure  was given, and t h e  neutrons were followed 

i n  energy down only t o  1 eV. The e r ro r  introduced i n  the  leakage value 

by these fac tors  should be small, since t h e  leakage i t s e l f  i s  small and 

the  borated para f f in  shie ld  around the  tank approximates t he  solut ion 

a s  a r e f l ec to r  f o r  the  above-1 eV neutrons considered i n  t he  calculations.  

Nevertheless, t he  quoted e r ro r  f o r  t h i s  leakage correction i s  a r b i t r a r i l y  

increased from the  11% e r r o r  associated with the  calculat ion alone t o  100% 

of the  leakage i t s e l f ,  making the  leakage correction 0.9988 + 0.0012. - 
. . 

1. High ~ n e r &  ~ b ~ o r p t i o n  

P a r t i a l l y  compensating t he  excess resonance absorption i n  Mn i s  t he  

l o s s  of neutrons t o  high energy reactions i n  the  oxygen and su l fur  i n  

the  MI bath. Tile calcula.tionc by Coldstein f o r  t he  leakage fac tor  (16) 

a l so  yielded the  f r ac t i ona l  loss  of neutrons t o  these high energy 

reactions.  These caLcy1atlons showed a. I.nss to ~) (n , -p )  and ~ ( n , c r )  

reactions of 0.4846, and t o  ~ ( n , p )  0.11% of the  source neutrons. The 

correction for  high energy absorption i s  thus 0.9941 + 0.0005. - 



J. Impurit ies 

The measured value of 11 i s  affected by any impurit ies i n  t he  sample 

which absorb neutrons but do not produce the  same number of f i s s i o n  

neutrons a s  the  p r inc ipa l  isotope of t he  sample: The correction f o r  

t h i s  e f fec t  i s  straightforward, consis t ing simply of t h e  r a t i o  of the  

number of neutrons ac tua l ly  produced i n  the  sample t o  t he  number t h a t  

would be produced i f  a l l  components of t he  sample had the  same value of 

a s  does the  pr inc ipa l  isotope. The ana ly t i ca l  expression i s  

where ISi, al, and q.. are the  number of nuclei  per cubic centimeter, t he  
J. 

absorption cross sect ion,  and the  value of 'q f o r  t h e  i - t h  component of 

t he  sample. The pr inc ipa l  isotope of t he  sample i s  specified by i = 0. 

Since t he  samples used i n  t h i s  experiment were a l l  prepared a t  o ther  

laborator ies ,  no independent determination of t h e  sample composition was 

.made a t  t h e  National Reactor Testing Stat ion.  The sample compositions, 

a s  supplied by t h e  1abortz.l;ories of o r ig in  of t h e  samples, a re  given i n  

Table V. Also shown i n  Table V a re  t he  correction f ac to r s  f o r  impurit ies 

a ~ s o c i a t e d  with each sample. 

IV. In te rpre ta t ion  of Data 

The key numeric extracted from the  data f o r  each i r r ad i a t i on  was 

the  r a t i o  of solut ion a c t i v i t y  t o  monitor ac t i v i t y .  This r a t i o  was 

comput~d separate ly  f o r  each counter, since small difference3 i n  s i ze  

and mounting of t he  two c rys t a l s  gave them s l i g h t l y  d i f fe ren t  e f -  

f i c i enc i e s  f o r  t he  two types of samples counted. Each count was 



corrected f o r  counting background and f o r  decay since t he  termination 

of the  i r rad ia t ion .  Counts of the  same type, characterized by the  

counter and sample involved, were weighted by the  inverse of t h e i r  

s t a t i s t i c a l  variances and averaged. Each average was corrected f o r  

res idual  ac t i v i t y ,  a s  calculated from the  a c t i v i t y  observed f o r  the  

previous i r r ad i a t i on  and the  decay time since t h a t  observation. From 

t h e  corrected average,, t he  r a t i o  of solut ion a c t i v i t y  t o  monitor f o i l  

a c t i v i t y  was calculated f o r  each counter's data. 

I r rad ia t ion  backgrounds were measured by i r r ad i a t i ng  t he  solut ion 

with a cadmium f i l t e r  between t h e  monitor f o i l  and the  tank. This 

posi t ion f o r  t he  cadmium.filter was chosen because it allowed ea s i e r  

inser t ion  and removal of t h e  f i l t e r  than d i d ' a  posi t ion ins ide t h e  

sample sphere, and the  two posit ions yielded the  same background de- 

termination. I n  f ac t ,  a c r i t e r i o n  f o r  alignment of t h e  system was 

t h a t  t he  background obtained .with t he  f i l t e r  outside should be 

indist inguishable from t h a t  using a sample-sized cadmium f i l t e r  a t  t he  

sample posit ion.  A 0.020 in-thick.cadmium f i l t e r  allowed about 0.5% of 

t he  beam t o  pass through, but with a 0.040 in-thick f i l t e r  there  was no 

observable difference i n  irradiationbackground between the  U-233, U-235,,, 

and open beam i r rad ia t ions .  On the other  hand, the  backgrounds Yor the  

Fu-239 samples were s l i g h t l y  higher because of the  spontaneous f i s s i o n  

a c t i v i t y  of t he  Pu-240 contaminant i n  these samples. I n  both cases t h e  

i r r ad i a t i on  backgrounds were about 5% of the  foregrounds. The i r r ad i a t i on  

backgrounds were subtracted from the  solution-to-monitor r a t i o s  of t he  

data runs. 



The use of t h e  manganese moniker removed from the  solution-to-monitor 

r a t i o s  any dependence upon, neutron ,beam strength.  The measured numerics 

depended upon 7 and the  quant i t ies  tabulated i n  the  l i s t  of corrections,  

i n  combinations depending upon the  pa r t i cu l a r  setup of t he  individual 

i r r ad i a t i ons .  

The l e a s t  squares method described by Cohen, Crowe, and DuMond ( 17) 

i s  i dea l ly  sui ted t o  t h e  t a sk  of analyzing the  data from a many-parameter 

experiment such a s  t he  present one. To apply t h i s  method, t he  r e su l t  of 

each i r r ad i a t i on  was expressed a s  an equation fil which the  produc.1; ur lhe 

fac tors  a f f ec t i ng  t he  solution-to-monitor r a t i o  was equated t o  t h a t  r a t i o .  

The equations were then l inear ized.  A s  an example of t he  procedure 

followed, consider t he  type of equation d e ~ c r i b i n g  the  frradlatlons made 

with the  U-233 sample, using aluminum spacers and 0.005 in .  cadmium wrap, 

i n  t he  heavy snout a t  0.025 eV neutron energy: 

Here R i s  t h e  solution-to-monitor r a t i o ,  K i s  a fac tor  describing the  

r e l a t i v e  e f f ic iency  of the counter f o r  the  solut ion and monitor samples, 

and 7 i s . t h e  value of 7 f o r  U-233. The other  fac tors  a re  corrections 

f o r  scat ter ing,  f a s t  e f f ec t ,  ind i rec t  multiplication,  s t ruc tu ra l  absorp- 

t ion ,  duct streaming, a sample-dependent f ac to r  involving transmission 

and pur i ty  considerations, and a solution-dependent ?actor including 

resonance absorption i n  manganese, high energy paras i t f  c absurp liuu, a ~ i d  

leakage. The equation i s  l inear ized by making var iable  changes of the  

form K = ~ ~ ( k  + 1). I n  t h i s  subst i tu t ion,  k i s  the  l inear ized var iable  

and KO i s  a constant, called t h e  or ig in  value of var iable  K. R i s  
0 



defined a s  t he  value of R t h a t  w i l l  s a t i s f y  the  equation when or ig in  

values a r e  used throughout t he  r igh t  hand side of the  equation. 

When the  subst i tu t ions  a re  made i n  the  equation, a l inear ized 

equation resu l t s ,  provided t h a t  t h e  or ig in  values have been chosen 

i n  such a manner a s  t o  make the  l inear ized var iables  small enough t h a t  

products of two o r  more of these variables can be neglected. The 

l inear ized equation represents a hyperplane approximating i n  the  

v i c i n i t y  of t he  or ig in  t he  t rue  surface represented by Equation (9 ) .  

Ideal ly ,  the  planes of a l l  the  equations of the  experiment should 

in te rsec t  a t  t h e  same point .  Because of e r rors  associated with the  

experiment, the  planes do not ac tua l ly  in te rsec t  i n  such a point, but 

form an envelope of a small region. The l ea s t  squares technique locates  

the  point within t h a t  regXon t h a t  i s  most l i k e l y  t a  be t he  pofnt of 

in te rsec t ion  i f  a l l  e r ro r  could be removed from a l l  pa r t s  of t h e  

experiment. 

I n  order f o r  t he  l ea s t  squares method t o  give best  values and 

variances f o r  the  variables,  it i s  necessary t o  have more equations 

than var iables ;  i . e . ,  t h a t  t he  system be overdetermined. To solve t he  

overdetermined system, t he  s e t  of equations must be reduced t o  a s e t  of 

normal equations, equal i n  number t o  t he  number of var iables .  Each 

equation i s  multiplied by a weighting fac tor  proportional t o  t he  recip- 

roca l  of the  variance associated with i t s  numeric, and by the  coeff ic ient  

of the  f i r s t  variable.  The resu l t ing  equations a re  added t o  produce one 

of the  normal s e t .  The other normal equations a re  obtained s imilar ly ,  

but using as  mul t ipl iers  the  coeff ic ients  of t he  remaining var iables  i n  

order. The solut ion of t he  s e t  of normal equations gives t he  best  

estimate of the  values of a l l  the  variables.  Inversion of t he  matrix of 



t h e  normal equat.ions yie lds  the  covariance .matrix whose elements a re  the  

variances .. .arid covariences associated 'Qith the  solut ion *of .the .. di rec t  matrix. 

The a r r ay  of data f o r  t he  measurements a t  0.025 eV comprised 39 

var iables  i n  154 equations. Of these equations, 130 described t h e  

r e s u l t s  of i r r ad i a t i ons  and 24 specified t he  values and variances 

calculated f o r  corrections.  The corresponding system a t  0.057 eV 

contained 26 var iables  i n  103 equations, 86 being experimental equations 

and 17 aux i l i a ry  calculated data. 

An IBM 7040 computer was used t o  perform t h e  l e a s t  squares analysis .  

I n  addit ion t o  solving the  system of equations, the  computer was pro- 

grammed t o  compute t he  value of chi-square f o r  the  system. Chi-square 

* 
where Cu and CU a re  t he  input and output values o f t h e  numerics of the  

equations. A .measure of how wel l  t he  data f i t  t he  assumed s t a t i s t i c a l  

d i s t r ibu t ion  i s  given by the  value of chi-square, which should be equal 

t o  t h e  number of degrees of freedom of the  system. The number of degrees 

of free-dom i s  given by the  difference between the  number of equations and 

t h e  number of unknowns i n  t he  system. The r a t i o ,  of chi-square t o  the  

number of degrees of freedom i s  expected t o  be unity. For the  data a t  

0.057 eV t h i s  r a t i o  was 1.7 which, though a b i t  high, i s  s t i l l  s t a t i s t i c a l  

a t  t h e  0.05 level .  On the  other  hand the  data a t  0.025 eV showed a r a t i o  

of 3.5 between chi-square and the  degrees of freedom. This r a t i o  i s  highly 

unlikely s t a t i s t i c a l l y ,  and indicates  e i t h e r  an underestimate of e r ro r  o r  

t he  existence of systematic e r ro r s  i n  t he  experiment. Some equipment 

problems were indeed encountered during t he  course of t h i s  phase of t he  



experiment, and a few data were discarded when a malfunction could be 

pinpointed with cer ta in ty .  The sample s izes  were i n  general too  small 

f o r  t he  application of ou t r ider  t e s t s  t o  indicate  erroneous values i n  

t he  remaining data. Therefore a l l  these data were retained,  with the  

variances being multiplied by the  indicated fac tor  3.5. The rerun of 

the  least-squares analysis  showed t h e  values changed very l i t t l e ,  but 

t he  r a t i o  of chi-square t o  number of degrees of freedom dropped t o  a 

comfortable 1.08. 

Since t he  correction fac tors  t o  t he  experiment were t rea ted  a s  

var iables  i n  t he  l e a s t  squares analysis,  these  fac tors  underwent some 

adjustment f r o m t h e i r  calculated values. Table I1 summarized the  

calculated values of t he  corrections and the  least-squares adjusted 

values, along with t he  estimated standard deviations i n  each case. 

X. Conclusions 

The values and standard e r rors  f o r  7 f o r  t h e  th ree  isotopes a r e  

summarized i n  Table V I .  The e r ro r s  shown here, and throughout t h i s  

report ,  represent one standard deviation i n  t he  quanti ty a t  hand. Also 

given i n  Table V I  a r e  r a t i o s  between t h e  values of 7 f o r  t he  various 

isotopes. Table V I I  shows a comparison between these r e su l t s  and those 

of the  Oak Ridge manganese bath experiment(2), along with t he  values given 

by the  recent l e a s t  squares analysis by Sher and ~e lberbaum( '~) .  This 

analysis  did not include the  present ,re,sults. The drop i n  f o r  Pu-239 

from 0.025 t o  0.057 eV i s  i n  good agreement with the  energy var ia t ion  

curve f i t  by Leonard (19') t o  the  ex is t ing  data. The apparent change i n  

q f o r  U-233 from 0.025 eV t o  0.057 eV i s  within t h e  standard deviations 

of t he  quant i t ies  involved. Nevertheless, the  commonality of t h e  measure- 

ments suggest t h a t  there  i s  a t r u e  decrease i n  q a s  t he  neutron energy 

increases i n  t h i s  region. 
-27- 
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Figure Captions 

Figure 1 - Time-of-flight analyses of neutron beams used i n  the  experi- 
ment. No higher order peaks a r e  evident i n  e i t h e r  spectrum. 

Figure 2 - Schematic view of experimental arrangement. 

Figure 3 - ~hotograph of tank, coll imator and mechanical neutron f i l t e r .  

Figure 4 - The two sample snouts used i n  t h e  experiment. The tube i n  
t he  center i s  t he  sample holder f o r  the  l i g h t  snout, shown a t  l e f t .  

Figure 5 - The two sample holders used with t h e  heavy snout. The holder 
on t h e  l e f t  i s  f o r  use with the  rectangular Pu-239 samples. The holder 
on t he  r i gh t  accommodates t he  round samples obtained from Oak Ridge. 

Figure 6 - Schematic diagram of sample configuration. For dimensions 
see Tah1.e I. 

Figure 7 - Variation of observed density of MnSO4 solut ion with concen- 
t r a t  ion and t emperat w e .  

Figure 8 - Counter arrangement showing sample posit ioning devices. The 
five-gallon solut ion sample i s  shown on the  counter a t  t h e  l e f t ,  while 
the  monitor f o i l  i s  positioned on the  counter a t  r i gh t .  

56 Figure 9 - Gamma ray  spectra from Mn . Curve A shows the  spectrum from 
the  monitor f o i l ,  while Curve B shows the  dis tor ted spectrum observed 
from t h e  solut ion sample. 

Figure 10 - Voltage plateau curlfes obtained using 3 in .  x 3 in .  ~ a 1 i ~ 1 )  
s c i n t i l l a t i o n  counter: ( A )  ~ n 5  spectrum from monitor f o i l  (B) C s  37 
and (C ) Room background. 
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Sample Shape 

3HC 
round 

round 

round 

round 

round 

H* 
rec t  . 
round 

Table I I 

3t 
Sample Configurations 

Spacers a (  

A 1  0.020 A 1  

Short Cd .020 A 1  

Long Cd .020 A 1  

A 1  .020 A 1  

Long Cd .020 A 1  

.013 N i  

Long Cd .020 A 1  

t3(cm) hl! cm) 

0.132 1.48 

0.132 1.61 

,132 2.72 

090 1.48 

og0 2.72 

none 2.30 

.116 2.72 

* 
See Figure 6 for  iden t i f ics t ion  o l  dimensions 

3HC 
Round samples a re  3.65 cn diameter 

w 
Dimensions 7.04 x 2.70 cm 

h2(cm) ca(cm) 

0.85 0.051 

-87 .051 

2.10 .051 

85 .051 

-85 .051 

none none 

2.10 .051 



Table I1 

EFFECT 

* 
A. Fast Effect  

Corrections t o  the  Experiment 
Calculated Values and Adjusted Values 

from Least Squares Data Analysis 

# B. S t ruc tu ra l  Absorption 

1. Heavy Snout 

CALCULATED VALUE 

a .  Open beam, round holder 
b. Fiss ion neuts.,  round sample 
c.  Open beam, rec t .  holder 
d. Fiss ion neutr .  r ec t .  holder 

2. Light Snout 

a. Open beam 
b. Fiss ion neuts. 

C.  Scat ter ing 

1. U-233 
2. U-235 , 

3. Pq-239 (round) 
4. Pu-239 ( r e c t . )  

D. Sample Ef fec t s  % 

1. U-233 
2. U-235 
3. .Pu-239 (round) 
4. Pu-239 ( r e c t . )  

* 
Description. of samples given i n  Table I. 

'No calculated values. 

A.INUSTED VALUE 

''Transmission and impurit ies.  



Table I1 (cont.) 

EFFECT CALCULATED VALUE ADJUSTED VALUE 

E . Solution 3 f  f ect s t 1.0023 + .0024 - 1.0023 + .0024 - 
4 F. Cd. Wrap Effects (x 10 ) 

1. F (mass coef .) 2.08 - + .25 2.11 , + .29 
2. $ (area coef. ) 2.72 - + .07 2.73 . '7 ..12 - 

G. Duct Streaming 

1. Heavy Snout 
2. Light Snout 

* 
A. . Fast Effect 

U-233 A 1.0320 + 0.0020 . 1.0319 + 0.0013 
U-233 (2- fo i l  sample) 1.0408 ? ' .OOZO 1.0409 7 .0016 
U-233 (no spacers) 1.0559 1 .0020 1.0562 ? .0015 
Pu-239 % 1.0326 + .0020 1.0323 7 ,001'7 
Pu-239 C (reversed) 1.0598 - ? .0020 1.0601 '7 - .0017 

#/ B. Structural Absorption 
( ~ e a v y  snout only) 

1. Open beam 
2. Fission neuts., U-233 
3. Fission neuts., Pu-239 

C. . Scattering 

1. U-233 A 0.9941 + 0.0015 0.9939 + 0.0013 
2. U-233 (no spacers) .9969 z . O O ~ O  .9970 .Ooog 
3. U-233 ( % f o i l  samp1.e) .9957 2 .OOlO 09957 2 00009 
4. ~u-239 c .9978 2 .0015 .9976 2 .0014 
5. Pu-239 C (reversed) .9989 2 .0010 .gggO 2 . O O l O  

D. Sample Effects % 

U-233 A .9930 2 . O O l l  .9930 2 .OOlO 
IJ-233 (2- fo i l  sample) .9154 + .00.11 .9154 + . O O l O  
Pu-239 .9937 5 .0014 .9933 i .0014 

' ~ e a k a ~ e ,  Mn resonance absorption, and high energy absorption i n  0. and S. * 
Description of samples given i n  Table ,I. 

'NO calculated values. 

SbTranskission and impurities. 



Table I1 (dont. ) 

EFFECT CALCULATED VALUE ADJUSTED VALUE 

E .  Solution Ef fec t s  * 
4 # F. ~d Wrap  effect.^ '(:x 10 ) 

F ( m s s  coef.)  
$ (a rea  coef. ) 

*I,eakage, Mn resonance absorption, 0 and S high energy absorption, and 
duct streaming. 

'40 calculated values. 



Table V 

Composition o f  Samples 

A. U-233 Sample 

U-232 . .  -6 PPm 
U-233 .99.76 + 0.01% 
U-234 0.022 7 .00l% .Tot a 1  Uranium 99.97 2 0.2% 
U-235 0.07 '7 .ooo7$ 
U-236 1 P P ~  Others < - 0.23% 

Impurity correction 0.9999 + .0010 - 
B. U-235 Sample 

U-234 0.10 +- i02% 
u-235 99.70 ' 2  -05% Total Uranium 99.40 - + 0.2$ 
u-236 . o . u  '+ A% 
U-238 0.10 - 7 -10% Others <0.7$ 

Impurity correction 0.9998 ct .0010 - 
C .  Pu-239 Sample (round) 

Impurity correction .9943 + .0010 - 
D. Pu-239 Sample (rectangular) 

. . 

Total Pu: 98.90 + 0.2% - 
A l :  0.95 

Others: 0.1 

Total Pu: 98.80% 
A l :  1% 

Others: 0.2% 

Impurity correction 0.9941 + - .. .0010 



Table V I  

Summary of Results 

E = 0.025 eV E = 0.057 eV 

Isotope 'I Ratio t o  U-235 'I Ratio t o  U-233 

U-233 2.298 - + 0.00'9. 1.105 - + 0.005 . 2.288 - + 0.009 

u-235 2.079 - .  + 0.010'. 

PU-239 2.108 - + 0.008 1.014 - + 0.005 2.034 - + 0.009 0.889 - + 0.005 



Comparison of 0;025 e~ Values With Other Work 

. - . . ..\ - 
u-233 7) u-239 ij Pi\ - 239 323jij25 r149/~25 

Present ~ x ~ e r i m e n t  2.298+.009 - i . 079 ,+B .b lb  - i b 1 0 & + 0 ; 0 6 8  - 1,1&j+.665 - 1.~14 - +.oo5  

Macklin e t  a1  
(Mn bath expt. ) 2.296+.010 - 2.077+ - ;bib 2.143; + *OLO 1;195 - + . 0 5  1.032 + .006 - .oog 
Sher and Felberbaum I 

( l eas t  squares anal.) 2.292 - + .006 2.078 - f .do5 h i 6  - + ;a09 1.103 + .003 1.0183 + .0041 - - 
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