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1. Introduction

It will be shown that starting from a coordinate system where the 6 phase space
coordinates are linearly coupled, one can go to a new coordinate system, where the motion
is uncoupled, by means of a linear transformation. The original coupled coordinates and
the new uncoupled coordinates are related by a 6 x 6 matrix, R. R will be called the
decoupling matrix.

It will be shown that of the 36 elements of the 6 x 6 decoupling matrix R, only 12
elements are independent. This may be contrasted with the results! for motion in 4-
dimensional phase space, where R has 4 independent elements. A set of equations is given
from which the 12 elements of R can be computed from the one period transfer matrix.
This set of equations also allows the linear parameters, the 8;, a;, ¢ = 1, 3, for the uncoupled
coordinates, to be computed from the one period transfer matrix.

An alternative procedure for computing the linear parameters, f;,q;, ¢ = 1,3, and
the 12 independent elements of the decoupling matrix R is also given which depends on
computing the eigenvectors of the one period transfer matrix.

These results can be used in a tracking program, where the one period transfer matrix
can be computed by multiplying the transfer matrices of all the elements in a period, to
compute the linear parameters a; and f;, z = 1,3, and the elements of the decoupling
matrix R. |

The procedure presented here for studying coupled motion in 6-dimensional phase
space can also be applied to coupled motion in 4-dimensional phase space, where it may
be a useful alternative procedure to the procedure presented by Edwards and Teng!. In
particular, it gives a simpler programing procedure for computing the beta functions and

the emittances for coupled motion in 4-dimensional phase space.
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2. The Decoupling Matrix, R

The particle coordinates are assumed to be z, pg, y, py, 2, p,. The particle is acted
upon by periodic fields that couple the 6 coordinates. The linearized equations of motion

are assumed to be

dz
e =A(s)z

-

C T
Pz

2-1
" (@)

Py
zZ

| Dz |
where the 6 x 6 matrix A(s) is assumed to be periodic in s with the period L. Note that

the symbol z is used to indicate both the column vector z and the first element of this
column vector. The meaning of z should be clear from the context. This kind of double
use of a symbol will be used in several places in this paper. The 6 x 6 transfer matrix

T(s, s0) obeys
z(s) =T(s,s0)z(s0)

dT (2-2)
It is assumed that the motion is symplectic so that
TT =1
e~ (2-3)
T =STS

where I is the 6 x 6 identity matrix, T is the transpose of T and the 6 x 6 matrix S is

given by
0 1 0 0 0 07
-1 0 0 0 0 O
0 0 0 1 0 O
5=10 0 -10 0 o0 (2-42)
0 0 0 0 0 1
| 0 0 0 0 -1 0l
Note that
S=-S, S=871, §?=-1 (2-4b)
and S can be written in terms of 2 X 2 matrices as
S 0 0
Ss=l0 s o (2-4¢)

0 0 S
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where the 2 X 2 matrix S is given by
0 1
S = [_1 0] (2-4d)
Note that the same symbol S is used to indicate the 6 X 6 and 2 X 2 symplectic matrix.
The meaning of S should be clear from the context.
The 6 X6 transfer matrix T(s, s9) has 36 elements. However, the number of independent
elements is smaller because of the symplectic conditions given by Eq. (2-3). There are
15 symplectic conditions or (k% — k)/2 where k = 6. This can be seen by noting that the

equation TT = I can be written as

D=TST-S=0
N (2-5)
D=-D

Since D is anti-symmetric, it has (36 — 6)/2 = 15 independent elements. Eq. (2-5)
then represents 15 symplectic conditions. The transfer matrix T then has 21 independent
elements.

One can also introduce the one period transfer matrix 'i‘(s) defined by
T(s)=T(s+L,s) (2-6)

T(s) is also symplectic and has 21 independent elements.
The 15 symplectic conditions for T can be written down more explicitly. T can be

written in terms of the 2 x 2 matrices Ty;,2 =1,3,7 =1,3 as
Ty Tiz Tis
T=|Tsy Ty To3 (2—7&)
T31 Tz Tss

Using T =ST S, one can show that T is given by

_ [Tn Ta Ta
T=|Tig T Ts (2-7b)
Tz Taz Ts '
Then TT = I gives the conditions
Y TaTj=6; i=13 j=13 (2-8a)

k=1,3
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which can be written as
' IT11] + |T12| + T3] =1
[To1| + |Ta2| + |Tosl =1
|T31| + |Ts2| + |Tas| =1
_ _ _ (2-8b)
T11T21 + T12T22 + T13T23 =0

T11T31 + T12Ta2 + T13Ta3 =0
T21T31 + T22T32 4+ T23T33 = 0

To get the first 3 equations, one uses the result for 2 x 2 matrices
TijTyj = |Tyj]

where |T;;| is the determinant of T;;. Eqgs. (2.8) are the 15 symplectic conditions for T.
One now goes to a new coordinate system where the particle motion is not coupled.

The coordinates in the uncoupled coordinate system will be labeled u, py, v, py, w, pw. It

is assumed that the original coupled coordinate system and the new uncoupled coordinate

system are related by a 6 x 6 matrix R(s)

r=Ru

— —

u
Pu
v (2-9)
Do
w

L Pw

R(s) will be called the decoupling matrix.

One can introduce a 6 x 6 transfer matrix for the uncoupled coordinates called P(s, sp)

such that
u(s) = P(s,80)u (2-10a)
and one finds that
P(s,s0) = R (s) T (s,%0) R(s0) : (2-10b)
one can also introduce the one period transfer matrix P(s) defined by
P(s)=P(s+L,s)

) ) (2-11)
P(s)=R ' (s+L)T(s)R(s)
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The decoupling matrix is defined as the 6 x 6 matrix that diagonalize P(s), which

means here that when the 6 x 6 matrix P is written in terms of 2 x 2 matrices it has the

form .
) Py p 0
P=1]10 Py 0 (2-12)
0 0 Ps;

where ﬁij are 2 x 2 matrices. P will be called a diagonal matrix in the sense of Eq. (2-12).
The definition given so far of the decoupling matrix R, will be seen to not uniquely
define R and one can add the two conditions on R that it is a symplectic matrix and it is

a periodic matrix. Thus

RR=1I
R=SR S (2-13)
R(s+L)=R(s)
The justification for the above is given by the solution found for R(s) below in section 4.
Because T(s,s) and R(s) are symplectic, it follows that P(s,so) and P(s) are sym-
plectic. Eq. (2-8) and (2-9) can be rewritten as

P(s,s0) = R(s) T(s,50) R(s0) (2-14a)
P(s)=TR(s) T(s) R(s) (2-14b)

It also follows that the 2 x 2 matrices has 3 independent elements as Ipul = “522‘ = 11333] =
1. Eq. (2-14Db) can be written as

T(s) = R(s) P(s) R(s) (2-15)

Eq. (2-15) shows that R has 12 independent elements, as T has 21 independent elements
and P has 9 independent elements. As R has only 12 independent elements, one can

suggest that R has the form, when written in terms of 2 x 2 matrices,

g1l Riz Ris
R={Ran ¢l Ry (2-16)
R31 Rsy q3f

where q1, q2, g3 are scalar quantities, the R;; are 2 x 2 matrices and I is the 2 X 2 identity
matrix. The matrix in Eq. (2-16) appears to have 27 independent elements. However, R

is symplectic and has to obey the 15 symplectic conditions, and this reduces the number
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of independent elements to 12. The justification for assuming this form of R, given by Eq.
(2-16), will be provided below where a solution for R will be found assuming this form for

R.

The 15 symplectic conditions for R may be written, using Eq. (2-8b), as

@ + |Ria| + |Ris| =1
|Ra1| + a3 + |Ras| = 1
|Ra1| + [Rs2| + 45 =1
_ - _ (2-17)
@1R21 + Ri2g2 + Ri3Ro3 =0

q@1R31 + Ri1aRs2 + Rizgs =0
Ry1R31 + qaR3z + Razqs =0

Using Eq. (2-16) for R and the symplectic conditions Eq. (2-17), one can, in principle,
solve Eq. (2-15) for R and P in terms of the one period matrix T. This was done by
Edwards and Teng! for motion in 4-dimensional phase space where T has 10 independent
elements, R has 4 independent elements and P has 6 independent elements. An analytical
solution of Eq. (2-15) for the 6-dimensional case was not found. However, a different
procedure for finding P and R will be given below in section 4 by finding the eigenvectors
of P, using the eigenvectors of the one period matrix, T.

The 2 x 2 matrices Py;. Pag, P33 which make up P each have 3 independent elements

and can be written in the form

Py = |8 1 + a3 sinyy 1 siny
H ~1/71sine cos ) — a3 sinyy (2-18)

7= (1+a?) /A

with similar expressions for Py and Py3 Eq. (2-18) and the similar expressions for 1322, Pss
can be used to define the three beta functions f;, #; and @3. This definition of the beta
functions will be further justified below where one finds expressions for the three emittance
invariants €, €2 and €3 in terms of $1, a1, f2, ag and B3, a3. If one could solve Eq. (2-15)
for R and P in terms of the one period transfer matrix T, then Eq. (2-18) could be used
to find the beta functions f#; from the one period transfer matrix. A different procedure

for finding the linear parameters £, a1, f2, ag and B3, a3 will be given below.
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3. The Linear Parameters 3, a, and ¢ and the Eigenvectors of the Trans-
fer Matrix

In this section, the eigenvectors of the one period transfer matrix, P, will be found and
expressed in terms of the linear periodic parameters 8, o and . These will be used below
to compute the linear parameters from the one period transfer matrix T. They will also
be used to find the three emittance invariants €1, €3 and €3 and to express them in terms
of the linear parameters §;, a;, 1 = 1,3.

The uncoupled transfer matrix obeys

&~ P(s,50) = B(s) P(s,%0)
° dR (31)
B=RA R+ —
ds

This follows from Eq. (2-2) and Eq. (2-14).
One sees from Eq. (3-1) that B(s) is a periodic matrix, B(s + L) = B(s). It can also

be shown that B is a diagonal matrix in the sense that written in terms of 2 X 2 matrices,

B O 0 -
B = 0 By O (3-2)

0 0 B

it has the form

To establish Eq. (3-2), one needs the equation for dP/ds

~

dp L
—=BP-PB (3-3)

Eq. (3-3) follows from the result
P (s) = P(s,50) P(s0) P (s0,5) (3-4)

which only requires that P(s + L,sp + L) = P(s,s0), which follows from P(s,so) =
R(s)T(s,s0)R(s0) and T(s+ L, so + L) = T(s, 50). Eq. (3-4) when differentiated gives Eq.
(3-3), using the results .

d

Z;P (s,50) = B(s) P (s,s0)

%P (s0,8) = —P(s0,s) B(s)

(3-5)
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The last equation follows from P(s,s0) P(sg,s) = I. One can show that Bjs = 0 by using

Eq. (3-3) P
d—ﬁ’lz =0 = Bi2Ps; — P11 B3 = Byy (1322 — }311)
s

B2 =0
In the same way one can show that B;; = 0 if ¢ # j. It has now been established that the

(3-6)

uncoupled coordinates indicated by the column vector u obeys the equations of motion

du
—J; = B U (3-78‘)
which can be written as
d u —Bu 0 0 U
s v = 0 By 0 v
*lw] |0 0 Bu||w (3-7b)

7= ,.) =[]

The three sets of coordinates, U, v, w are uncoupled, and the u coordinates obeys
d

E—;H = Buiu : (3-8)

As the 2 x 2 matrix By is periodic, one can show? that the eigenvector of the transfer

ﬂ1/2 .
u = [ 1/2 (_la z)} exp (i¢1)

Il—_—-——lg
cl
.:? cj.
gl

matrix for u is

(3-9a)
%y S up =2

with the eigenvalue A1 = exp(ip1). Bi(s), ai(s) are periodic functions and the phase

function v; = uy1s/L + gi1(s) where ¢1(s) is periodic. One may notice that the Bj; matrix

does not have the properties usually assumed in the large accelerator approximation, that

(B11)11 = (B21)22 = 0 and (Bi1)12 = 1. Thus obtaining Eq. (3-9) requires a study? of

the more general equation (3-8). In particular the relationship between S, a1, ¥ are now

s d
2! =/0 (Bll)lzﬂ_s
1 1dﬂ1
(311)12( 2ds (B u)“ﬂl)

One can write down similar expressions for the eigenfunctions of the transfer matrix of

given by?

(3-9b)

o} =

7 and W, in terms of P2, ag, ¥2 and B3, as, 3, with the eigenvalues Ay = exp(iu2),

Az = exp(tpu3).
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One can now write down the eigenvectors of the P matrix using Eq. (3-9). These

eigenvectors will be called u1, u2, u3, u4, us, ug, each of which is a 6 x 1 column vector.

- » l1/2 T T g i
BTV (a1 +4) gir2
Uy = g exp (ih1), uz= ﬂ{l/z(.z_az-{-i) exp (#¥2),
0 0
0 0
L d - - -1
0 (3-10)
0
0 .
ug = 0 exp (it3)
Bs"?
| 5% (—as +1)

ug = uj, u4=uj, ug=ug
~% ~% ~¥ .
u; Suy = uzSuz = ugSus =21
with the eigenvalues A; = exp(ip1), A3 = exp(ipa), As = exp(ipus), Az = A}, Ay = A} and
Ae = A5,
These results for the eigenvectors will be used below to express the 3 emittance invari-
ants €1, €9, €3, in terms of the linear parameters f;, a;, ¥;,t = 1,3, and to find a procedure

for finding the linear parameters f;, &, 1; from the one period transfer matrix T.

4. Computing the Linear Parameters 3, a, ¢ from the Transfer Ma-

trix

An important problem in tracking studies is how to compute the linear parameters, 3,
a, ¥, defined in section 3, from the one period transfer matrix. The one period transfer
matrix can be found by multiplying the transfer matrices of each of the elements in a period.
A procedure is given below for computing the linear parameters, which also computes the
decoupling matrix R from the one period transfer matrix.

The first step in this procedure is to compute the eigenvectors and their corresponding
eigenvalues for the one period transfer matrix T. This can be done using one of the standard

routines available for finding the eigenvectors of a real matrix. T is assumed to be known.
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In this case, there are 6 eigenvectors indicated by the 6 column vectors 1, z2,x3,24, 25
and z¢. Because T is a real 6 x 6 matrix, £3 = 2}, £4 = 2}, v¢ = z;. The corresponding
eigenvalue for z1 is A\; = exp(ig1) and the eigenvalue for z5 is A} = exp(¢¢1). In a similar
way, A2, A} are the eigenvalues for z3 and x4, and A3, A} are the eigenvalues for =5 and zs.
The eigenvectors are then normalized so that

~%

zq S$]=22

~¥

e S 23 =2 (1)

~%

Ts Sa5=2
It will then follow that T, Sz = —2i, 34 Sz4 = —2i and 74 Sze = —2i.
Let us now examine the eigenvectors of the one period transfer matrix in the uncoupled
coordinate system, P =RT R as given by Eq. (2-14). The eigenvectors of P will be
denoted by uj,ug,us, uq,us,ug. If 1 is an eigenvector of T with the eigenvalue zj then

one can see that u; given by
uy =Rz
(4-2)
z1=Ru;

is an eigenvector of P with the same eigenvalue A;. u; is related to the linear parameters

B1, a1, 11 by Eq. (3-10)
— 1/2 -

u1

exp (%)1) (4-3)

z1 will be written as

z1

Pz1
n

i o1 (4-4)

z1

L D=1

Putting this result for u; into Eq. (4-2) and using the result for R given by Eq. (2-16),

one finds 12
z1 = q18," " exp (11h1)

Pzl = ql,Bl—l/2 (—a1 + 1) exp (z¢91) (4-5)

prifz1 = (a1 + 1) /B
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Solving Eqgs. (4-5) for §1, a1, % one finds
Y1 = ph(z1)
1/61 = Im (ps1/1) (4-6)
a1 = —p1Re(ps1/z1)
where Im and Re stand for the imaginary and real part, and ph indicates the phase.
Using Eq. (4-6), one can find the linear parameters 1, a1, and ¥; from the eigenvector
z1 of T. In a similar way, one can find fo, a2, ¥ from the eigenvector =3, and B3, as, ¥s
from the eigenvector zs.

One may note that one can also compute ¢; from Eq. (4-5)
1/2
a1 = [a11/8)/ (47)

with similar results for g2 and ¢3. A procedure is given below for computing the entire R
matrix. Also, the tunes of the three normal modes can be computed from the eigenvalues
of the 6 x 6 transfer matrix T, \; = exp(tpi) 1 = 1,2,3. The y; are the phase shifts for a
period, and give the fractional part of the tunes.

Having found the f;, a;, %; from the one period transfer matrix, one can write the

decoupled eigenvectors ui, ug, uz, ug, us, g as

- 1 2 - ~ -
1/2 ! 0
By (—oq + 1) gl/2
. O B o _ 2 .
up = exp (i), us=1| _ ~ | exp (ayp2),
1 0 p (i), us 57 (g + ) P (i%2)
0 0
I 0 ] ! 0 ]
' 0 7 (4-8)
0
0 )
Uus = 0 exp (13)
8"
|85 (—ag +9) |
ug = uj, ug = uj, ug = uj

Using the decoupled eigenvector u;, and the eigenvectors of T, z; one can find a solution
for the decoupling matrix R.
Let the 6 x 6 matrix X, and the 6 x 6 matrix U be defined as
X = (——2i)"1/2 [z1 T2 T3 24 T5 T6)

) (4-9)
U= (—2i)_1/ [u1 Uy U3 U4 US us]
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where the z; and u; are 6 x 1 column vectors.

Since the eigenvectors are related by z; = Ru; one has the relationship
X=RU (4-10)

U can be written in terms of 2 X 2 matrices as

-U11 0 0
U=1| 0 Uxp 0
E 0 0 U33 (4_11)
vae| B e (i) Pew (i) | g
BT (~an + i) exp (1) B7? (—an — i) exp (—ithn)
with similar expressions for Use and Usg.
The inverse matrix of U can be written as
Ut 0 0
Ul=1 0 U} o
L0 0 Uy |
- ,—1/2 . . 1/2 . (4-12)
_— 1 (e —i)exp(~it1) —B;'" exp(ith) (i) 2
i1 = —l
|87 (—ar + ) exp (i1) By exp (i)

It can be shown? that both X and U are sy;nplectic matrices. Thus U™! = U and one can

then find for R from Eq. (4-10)
R=XT | (4-13)

Eq. (4-13) provides an explicit solution for R and justifies the assumptions made in
section 2 that R is symplectic, periodic and has the form given by Eq. (2-16). Since X and
U are both symplectic, then from Eq. (4-13) R is’ also symplectic. Since the eigenvector
z1 has the form exp(ius/L)f(s), where f(s) is periodic with similar results for the other
5 eigenvectors, all the phase factors in the product XU cancel and R is periodic in S.

Equations (4-13) and (4-6) give a way to compute the parameters f;, a;, 1¥; and the
R matrix from the one period transfer matrix T = T(s + L,s). It can also be used for
coupled motion in 4-dimensional phase space, and provides an alternative procedure to the
one given by Edwards and Teng! found by solving Eqs. (2-15). The procedure given in

this paper may be preferable for use in a tracking program, as it appears more simple to

program.
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An interesting relationship that can be found from Eq. (4-13) is the connection between
R(s) and R(sp). _
R(s)=X(s)U(s)
R(s)=T(s,30) X (s0)U (s0) P (5, 50) (4-14)
R(s)=T(s,s0)R(s0) P (s0,s)
Eq. (4-14) that relates R(s) and R(sg) is similar to the result T(s) = T(s, so) T(s0) T(s0, 3).
In section 2, the decoupling matrix was defined as the 6 x 6 matrix that diagonalizes
13(3), when written in terms of 2 X 2 matrices, according to Eq. (2-14b). It can be shown
that R(s) also diagonalizes P(s,sg). One can write P(s,sp) in terms of the eigenvectors
of P(s) as®
P(s,s0) = U(s) U (s0) (4-15)

Using the result for the decoupled eigenvectors u; given by Eq. (4-8), one sees that P(s,sq)

is diagonalized when written in terms of 2 X 2 matrices.

5. The Three Emittance Invariants

Three emittance invariants will be found for linear coupled motion in 6-dimensional
phase space. Expressions will be found for these invariants in terms of 8;, «;. A simple and
direct way to find the emittance invariants is to use the definition of emittance suggested

by A. Piwinski? for 4-dimensional motion. This is given by
a=|z1 Sz (5-1)

z is a 6 X 1 column vector representing the coordinates z, ps, ¥, py, 2, pz. z1isa 6 x 1
column vector which is an eigenvector of the one period transfer matrix T. z; is assumed

to be normalized so that

7, Sa=2 | (5-2)

One first notes that e; given by Eq. (5-1) is an invariant since T, S z is a Lagrange

invariant as z; and z are both solutions of the equations of motion. Eq. (4-1) then

represents an invariant which is a quadratic form in z, ps, ¥, py, 2z, p.. This result can
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be expressed in terms of the linear parameters f;, a; by evaluating €; in the coordinate
system of the uncoupled coordinates. Since the uncoupled coordinates, represented by the

column vector u, is related to = by the symplectic matrix R,
e = |uy S uf? (5-3)
uy is an eigenvector of the one period matrix P, and one sees that because of Eq. (2-14),
z1=Ruy (5-4)
one can now use the result for u, given by Eq. (3-10) and find that

1 2, 2
a=z [(ﬂlpu +aqu)’ +u ]
e1 = v’ + 2a1up, + Aot (5-5)
m=0+a)?/h

One can define €; and €3 as
e2=|73 S z|?
~ (5-6)
e3=]z5 S z|°

and find ) .
€2 = 12v° + 2a20p, + PB2p; (5.7)
€3 = 3w + 2a3wpy + F3pl,

Egs. (5-1) and (5-6) can be used in a tracking progress to compute the emittances ¢;, €,
€3. The tracking program can compute the one period transfer matrix T by multiplying
the transfer matrices of each element in a period. One can find the eigenfunctions of T,

zy, T2, T3, T4, 5, ¢ and normalize them so that

~%

~k

z3 Sz3=2 (5-8)
':E; Sz5=2
For a given set of the coordinates z, ps, ¥, py, 2, Pz, then €1, €2, €3 can be computed using
Egs. (5-1) and (5-6).
One can also show that the volume in phase space enclosed by these three emittances

is given by

/ dz dp,dydpydzdp, = n3ereae3 (5-9)
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The volume in phase space can be computed by going to the coordinate system of the

uncoupled coordinates u, py, v, py, W, pw and using |R| = 1.

6. Summary of Results for Use in a Program to Compute the Lin-
ear Parameters and the Decoupling Matrix

The results given above can be used to compute the linear parameters 3, « and v and
the decoupling matrix R from the one period transfer matrix T. This section will give
the steps required to do this using the results given above for particle motion in either
4-dimensional phase space or 6-dimensional phase space.

It is assumed that the one period transfer matrix T is known, having been computed

by multiplying the transfer matrices of the elements in one period.

6.1. Computing the Linear Parameters g3, a, v

First, compute the eigenvectors and the corresponding eigenvalues of the one period
transfer matrix T. To do this one uses one of the standard routines available for computing
the eigenvalues of a real matrix. One such set of routines is the routine SGEEV (single
precision) and DGEEV (double precision) available in the IBM Engineering and Scientific
Subroutine Library (ESSL). |

Let us denote the eigenvectors by z; and the eigenvalues by Ai. The eigenvectors and
eigenvalues can be arranged in pairs such that z = z] and Ay = A}, and 24 = 23, A\ = A3,
and z¢ = zf, A¢é = Ai. Choose z; to have the eigenvalue exp(iy1) and z to have the
eigenvalue exp(—:ty1) and similarly for z3, z4 and zs, zs.

Normalize z1, z3, x5 so that these 3 eigenvectors satisfy
~F .
z; Szi=2 (6.1-1)

The linear parameters 81, a; can be computed from the normalized z; using Eq. (4-6)

1/61 = Im(ps1/21)

6.1-2
ay = —P1Re(ps1 /1) ( )
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z1 and p;; are the first two elements of the column vector ;. The fractional part of the
normal mode tune, v; can be computed from the phase advance in a period, y3. In the
same way one can compute f, ag, 12 from z3, p3 and B3, as, v3 from s, us.

One may note that the normal mode tunes can be computed directly, without finding
the eigenvectors, using the results of reference 6. This may provide a good check of the
program.

The diagonal elements of the decoupling matrix R ¢1, g2, g3 [see Eq. (2-16)] can be
found using Eq. (4-2)

“a=lal/g?

6.2. Computing the Decoupling Matrix R

To compute the decoupling matrix R, from the X matrix defined by Eq. (4-9)
X = (=2 [z 29 23 74 5 T6] (6.2-1)

Form the U matrix given by Eq. (4-12)

. Un __p 0
U=]10 Ux O (6.2-2)
0 0 Uss

The —U_ij are 2 X 2 matrices where

-1/2 . y 1/2 .
Uit = 1 (e —i)exp(—P1) —pf;' " exp(—ih) _9\"1/2
S T S S A R

with similar results for Usqg and Uss.

Having formed the matrices X and U one can compute R from
R=XU (6.2-3)

One may note that above results can be used for particle motion in 4-dimensional phase,

or in 6-dimensional phase space with some minor modjifications.
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6.3. Computing the Emittance Invariants

The emittance invariants for a set of coordinates given by the column vector z can be
computed using Eq. (5-1)
a=|z Szl (6.3-1)

where the column vector z; is an eigenvector of the one period transfer matrix T. Similar
results are found for the other invariants ez, €3. For €; use the eigenvector z3, and for €3

use the eigenvector xs.
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