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Abstract

From a set of lowest order quark loop diagrams for static mesonic amplitudes
involving vector and axial-vector vertices, we determine the effective quark
mass and the meson-quark—quark coupling constants for three types of quark mo-
dels. These parameters are applied to evaluate certain mesonic decays and the
SU4 mass splitting of 0 octet and 1 nonet, which serve as tests for the quark
models. Adler's low energy theorem for the % - 2y decay is derived in our
approach without invoking the Adler-Schwinger anomaly. The test favors the
Nambu-Han model of integrally charged quarks. Critical examinations of the
underlying assumption of the quark loop dominance are made, and a speculation

on a physical model which allows such a situation will be proposed.



I. Introduction

1 .
The Sutherland puzzle concerning o > 2y decay was resolved by Adler2 through
the modified PCAC condition taking into account the Adler-Schwinger anomaly3 of
the divergence of the axial-vector currents. It gives the wC - 2y amplitude,

, 4 . .
TTr , 1n terms of the pion decay constant f1T as

i
I
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where S is a number critically dependent on the charge of quarks involved.
Okubo5 used Eq. (1) and a related amplitude for w - n° + y as critical tests for
a variety of quark models. (This paper will be referred to in the following as
0). In using Eq.(l) to test quark models, however, the central question is how
to justify it in the context of quark models. bkubo merely noted that the pseu-
doscalar-meson—quark-quark, mqq, coupling constant consistent with the modified
PCAC condition was /E/fTr and that the n° - 2y triangular diagram with this
coupling constant gave Eq.(1). The crucial point 1is then a determination of the
coupling constant. We may remark in this connection that the old Fukuda-Miya-
moto and Steinberger calculation 6 of w° » 2y by a nucleon loop diagram can

be converted into Eq. (1) if one eliminates 7wNN coupling constant in terms of

fTT by the Goldberger-Treiman relation 7 and neglects all renormalization effects.
Again to apply this scheme to quarks we will have to find the nqq coupling in

the context of a quark model.

In our present paper, we would like to take a general approach which may be

called a quark-loop dynamics to deal with static mesonic amplitudes. We assume

: ] + + N+ + + + + -
that such amplitudes like m > u v , P T Ys T > T Y, P TP, po >Tom o,

n° > 2y, w > noy, etc., are dominated by the corresponding lowest order quark-
loop diagrams, with certain cut-offs if necessary. Our scheme is somewhat rela-
ted to the so-called relativistic quark models 8, where conventionally a cer-
tain simplified relativistic structure is assuméa for a meson wave function
including two quark legs. In calculating loop diagrams with these wave func-
tions the quark propagators are hidden in thé scalar part of the wave function,
and momentum integration is eventually parametrized. In our approach, on the
other hand, we assume a direct YS(YU) coupling for mqq(pqq) vertex and fully

take into account the quark propagators. We will discuss a possible physical




significance of the effects of such quark propagations in sections III and IV.
The hypothesis of the dominance of the lowest order diagrams may be justified
in the following sense. We have a vector gluon model 9 in mind. We may then
expect that because of the Ward identity, the renormalization effects of the
vector and the axial-vector vertices are small. Specifically, it will not be
necessary to saturate vertices by vector or axial-vector mesons, at least as
long as we deal with normalization at zero momentum-transfer squared, which we
are going to do. Renormalization at a meson vertex can be incorporated into the
meson-quark-quark coupling constant. Thus, we are neglecting essentially radi-

ative corrections across two channels, which we expect to be small.

The cut-off must be given a real physical meaning in order for our scheme to
make sense. We do not know a precise mechanism for the cut-off, expect for a
vague'statement that it reflects a certain structure of mesons. Fortunately,
our result is remarkably independent of different cut—off methods as will be
discussed in detail in the next section and in the appendix. We evaluate loop
diagrams neglecting terms inversely proportional to the cut-off mass but re-
taining finite constant terms. In the limit of vanishing external meson masses,
we obtain remarkably simple relations for the coupling constants which repro-
duce Eq(l) and the w ~ ﬂOY amplitude used in O. Thus the analysis of the vari-
ous quark models made there remains to be valid. We will also study effects of
the finite constant terms which are functions of the ratios of external meson
masses to the quark mass. Keeping such terms, we can determine the_ﬂffff;fff§~

for each quark model we study, which turms out to be slightly 1arger\fhan half

of the p mass in each case. Because of the closeness of p mass to the pseudo-
threshold for p + q + a, certain amplitudes are strongly enhanced. However, |
the overall effect is such that physical amplitudes are not greatly affected.
The physical significance of this will be discussed in section IV. We will find
in the following, a remarkably simple and consistent picture in this most
simple-minded approach, provided a certain three-triplet model involving inte-
grally charged quarks is used. In section V we will examine our fundamental
assumption of the quark-loop dominance and propose a speculative physical si-

tuation in which such assumption might be justified.

II. Description of Method and Modeis

The diagrams mentioned in the previous section are all at most superficially

linearly divergent, after imposing a gauge condition on the po-y loop diagram




-

with the p mass temporarily off the mass shell. The latter condition is neces-
sary, because without it the photon propagatbr would acquire a mass through p
intermediate state. Then, with an appropriate cut-off A, the dimensionless part

of a diagram i will have a form

1.( + A n? +0 | 2
nl= i B |3 Wil (2)

where M is a quark mass involved and m is an external meson mass. Bi’ a function
of m2/M2, becomes independent of the cut-off method, if further specified by

requiring

Bi (mZ/MZ) = 0 for mZ/MZ - 0. (3)
Ai is then a numerical constant by definition; its value depends on the cut-off
method. Although the value of Ai changes widely for different cut-off methods,
it changes remarkably little for different diagrams once a particular cut-off
method is chosen. Thus we can combine the bulk of A say K, with Zn(AZ/MZ) and

write (2) in the form

L+ sA, + B 5“—2] (4)
M }
with A2\ _
L= 4n [—7 + A (5)
\M ‘I
and ’
LA, = A, - A . - (6)
1 1

Our whole scheme is based on the facts that AAi is small and can be neglected,
and also that there are only two cut-off parameters /\TT and Ap, or Lm and Lp ’
which can be easily eliminated. In the appendix, we will discuss two cut-off

methods, which give, respectively,



As long as we neglect AAi’ it is obvious that the results are cut-off indepen-

dent.

In'view of the results already obtained by the analysis in 0, we will ﬁot exa-
mine all varieties of quark models, but choose three cases ‘of most physical
interest. They are the Gell-Mann - Zweig model of fractionally charged quarks
and two versions of the three triplet model originally due to Nambu and Han 10.
In théAlatter, the three triplets, convenriently called S, U and B form a new

SU3 space, charm space, and they are assigned a charm quantum number C (cor-

responding to hypercharge in the ordinary SU, space) equal to 1, 1, -2 respec-

3
tively. The Gell-Mann - Nishijima formula is modified to

‘C (7)

w|—

which gives quark charges []00]., [100} s and[ 0-1_]] , respectively for S,

U and B. The electromagnetic current is then

jsm = e { Eyu [100] s + GYU{IOO] u + §§U [0—1_1] B} (8)

where S, U and B each represents a triplet of quark spinors.

Since the total charm quantum number C for any ordinary hadron must be zero,

a charm space configuration of mesons must be restricted to either charm sing-
let or the eighth memeber of a charm octet. Since low lying states are not dege-
nerate, we are anticipating here a rather large charm symmetry breaking or a
singlet-octet mixing in order to allow for a case of the octet. HOWever,.for

I mesons (V) we must take a charm singlet, because otherwise we will have a
non~vanishing contribution to V-y coupling constants from the charm octet (and
unitary singlet) component of the electromagnetic current. This would lead to

a large deviation from SU, predicted ratio .of po—Y , w=y and ¢-y coupling con-

3
stants, contrary to available experimental data. Thus,as Vqq interaction we take
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Hvqq = gy [SYuAaS + UyuAa U + Bypka B] ¢a 9)

. . ' 2 u
where Aa, a=1,... 8, are SU, spin matrices (and Ao = /”5 I), and ¢a’ a-=

3
O, 1, ... 8 are nonet vector meson wave functions.

For O mesons (P), the situation is not so simple. There is no a priori reason
why they should be charm singlets llw We notice that the requirement of a chiral
SU3 X SU3 algebra for the weak vector and axial-vector currents dose not spe-.
cify the relative signs of the S, U and B components of the aiial-vector cur-
rent. The following two versions of the Pqq interaction are related to this

ambiguity.

Case I. A charm-singlet weak axial-vector current and a charm-singlet O meson.

.Wya

-3 U B 10
JSU Syuyska S + Uyuyska U.+ BYUYSAa B (10)
and
Hpqq = 1gp [SySAa S + UYSAa U + BYSAa B] ¢a’ : (11)
where ¢a’ a = 0,1,...8 are the singlet and octet pseudoscalar meson wave func-

tions. This simplest case is most favored by any of the tests we make in sec-
tion IV. The only drawback is that the radiative correction to the weak
interaction is unrenormalizable in this model. As pointed out by several
authors 12, in order for the electromagnetic radiative correction to be finite,
one has to take V-A weak current for negatively charged quarks (B triplet in
our case) .and V+A for positively charged S and U triplets. The choice (11)

gives only V-A or V+A,

Case II. We take a renormalizable axial current:

W,a

Js, =~ SYUYSAa S - UYUYSAa U + BYUYSAa B (12)




. . . . . .a 3 .
which is combined with a vector current in the form of j . One might
u

_ .a
- I5)
tempted to choose as O state the same S, U and B mixture as in (12) so that
an obvious PCAC holds. However, this choice leads to a too big > 2y ampli-
tude and a too small w’ - my amplitude. We will choose, instead, a pure BB

1 - . . .
state 4 for 0 , analogous to the ¢ meson configuration in the nonet quark model.

This BB configuration for 0 was studied before by Otokozawa and Suura
Hpqq = 1 gp Bygy, B ¢_. (13)

Case .III. Gell-Mann - Zweig model. We have a single triplet q.

.em - |2/3
= " - 1
N eq [ 1/3_1/3] q, (14)
X - !
% = A : : 15
I, =4t q, | . (15)
.a - * )
g, = Y, Y5h, 9 . (16)
- PR u ,
Bvqq = g, ay A, q 9,5 (17)
" and
Hpaq = 1 g, qvgh, 4 ¢,- A (18)
|

ITII. Determination of Parameters

M
+ ¥ . . : + + + +
7 - u v and po + v, and triangle loops for my~> m yand p > p v. The latter

diagrams are used here to utilize a normalization condition for a charge. Using

the current-quark-quark and meson-quark-quark.couplings defined for the three

Coupling constants are derived from combinations of two-point loops for
cases in section II, it is a straight-forward matter to calculate these ampli-

tudes. We neglect AAi term in Eq.(4) and it does not matter in this approxi-
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T 3 5 eI - 1@ - e,ml, (21)
p 1 127
3 gg i
e A O A RO R AT (22)

where LTT and Lp are cut-off parameters as defined in (5). fp is the p°-y coupl-

ing constant defined in the usual way. M] is the p-(or n-)quark mass, and & is

2
mp

€= —— (23)
M]

which we consider to be a variable parameter with mp rather than M] changing.

In(i) is defined by

[x(1-x)]"

1-gx(1-x%) (24)

In(a) NS J dx

We have omitted the ¢ dependent B type terms ( cf.Eq.(3) ) in (19) and (20),

because there £ = mi/Mf is very small. Combining (19) and (20) we obtain
(25)

and

L/



1 (26)

Eq. (25) is an equivalent of the Goldberger-Treiman relation 6, which gives
Eq. (1) when used in n° > 2y triangle diégram. In order that our amplitudes pro-

duce no imaginary part, we must have § < 4, or

M] > mp/2 _ ‘ (27)

The quark mass we evaluate later in the present section indeed satisfies this
AN

condition. This also sets an upper limit for L": Y

1/3 v o
L <25 |1 I ¢1: ) I
, _ o

For case I, we have rather a small value for Lﬂ, which however, does not neces-—
sarily mean a small cut-off A“, if -A is large. gp and Lp are functions of £.
In the limit of vanishing external meson mass or £ - O, we obtain from (21) and

(22)

gp(e) = 3 1 2.8 |1 A (29)
. : 1] 1. : .
and ' g2 1] 2.5
L (0) = —5 1 = [2.5] , (30)
P £ 3 1.6
o L3 ,
16

where we have taken fp = 5.6.

gp(g) and Lp(&) are plotted in Fig. 1 and Fig. 2, where £ is limited to & < 4,
corresponding to (27).

2

Finally we discuss a tricky problém of determining the apparent quark mass M].



. o] + . . . .
For this we turn to the p > m 7 triangle diagram to define the coupling con-

stant fpﬂﬂ. Here, both cut—off parameters ATT and LTT are involved. How to cut-off
in this case is unambiguously prescribed in methods 2 illustrated in the appen-
dix, while an ad hoc postulate must be made in method 1. We notice from (26)
and (30) that L1T << Lp in cases I and III, and Ln N Lp in case II. If LTT << Lp,
we expect the lower one, Ln’ gives an effective cut-off and this is confirmed
in the case of method 2. Then in each case, the cut-off will be given roughly

by Ln' Thus

2
4 3 &, - 1
Eon = |1 T8, T+3 10 - 217, (31)
| 27
where
L =L +e¢. (32)

€ is a small positive number representing a possible error in using LTT as the

effective cut-off. Setting £ = O and using (20) and (29), we have

e ). (33)

. . el . 1 .
Since the relation fpnn = fp holds within experimental errors 7, we will take
€ = 0 in the following. Conversely speaking, a physically reasonable assumption
that L = Ln leads to the universality relation of the vector meson dominance

model

f =f . (34)

Now keeping & finite, setting L =.Ln, and using (20) and (25), Eq.(31) can be

written as

5 oM [+ I (¢) €1} (35)
f = f 1 + |1} —s =1 (§) - 21, (¢
oXiki] o gp(o) : 4“2 fi 2 o 1
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which determines M] as a function of £. This is plotted in Fig. 3. The values

of £ and therefore M are determined from the intersects of the curves

2 2 2
M] = Ml (5) and M1 = m§/£, and we get

3.95 : 385
£ = [2.85 M, = [453 MeV . (36)
3.83

391

With these values of £ and M], gp and g are determined from Fig. 1 and Eq. (25)

m
as
0.9 [4.1
g = |2.0] , g = - 4.9 (37)
ot " 6.2
\
The cut-off parameters are determined from Fig. 2 and (26); as .
i
i
0.8 5.8 /
L = |1.7 L =] 2.7 (38)
2.2 °  Tlio.s

IV. Test of the Parameters and Models

We study 1m0 > 2y, n > 2y, n' + 2y, w > n°+y, w + 37 and mass splittings of o
and l—loctets as tesg;—;;_;;;;;EE;;;_3E?ETEEH“Tﬁ'SEET—TTT—;;E;Eﬁ;;;Zﬂriggké of
the three models. As for the radiative decays of ﬁo, n, n', and w, in the limit
of £ = 0, we obtain the same expressions as were used in 0. For”this part, we

will repeat very briefly the conclusions of O for the sake of Eompleteness.

For n° - 2y, the triangle diagram gives

' 62 gﬂ ! a mﬂ' !
T = = — [ —] m" -1 = —_ -1 ) (39)
1/3 m 1/3

3|
h

where we have used (25). The cases I and II give a decay rate 1"TT »2y = 7.65 eV
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whereas the experimental value is 7.74 (1+0.12) eV 18. If we believe in an

analysis of sign of Tnfn by Okubo ]9, the case II is excluded, but the analy-

sis may nct be completely conclusive.

The n > 2y and n' -+ 2y amplitudes can also be calculated likewise. Here we have
_ ey
“to take into account of a small singlet-octet mixing. Introducing mixing angle 6

by

n> = cos 6 |n8> + sin 8 no>
n'> = - sin 6 | n_> + cos® n.’ (40)

8

where |n8> and n,> are pure octet and singlet states we obtain

‘ a m_ | ] 2 v
T = - ?1-—— { 1-1 | cos o +2/2 |1 sin 6 }
n /3 1/3 1//3
TiI) 2.1
= - 0.41]| , (41)
/3 0.50
o m 1 1 2
T, =— ?I- —{ - |21 sin 6 + 2/2 |1 cos 6 }
- —
T /3 1/3 1/3
LS ES
= —— 3.0 , . (42)
/3 0.86 :

.. o . .. 20
where we have used a mixing angle O = 11  as was determined from the mass fit“ .

These give decay widths
P P

0.76 25.6
T oy = 0.033] KeV and T , 59 = 8.2 KeV (43)
n ey 0.043 nooTey 0.67

whereas experimental data give
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r = 1.01 +0.25. and T , < 264 + 148 KeV.

>2y

The large contribution of the singlet component in case I is due to the fact
that all S, U and B components of the singlet contribute additively. In case
II, singlet and octet contributions tend to cancal leading to the strong sup-
" pression of Tn' Unless an argument for reversing the sign of 6 is put forth,
case II is in great difficulty. Case III fails again as in 7% > 2y because

of the suppression factor 1/3 resulting from the fractional charges of quarks.

. . . . .. o} .
w > noy is given by a triangle diagram similar to that of ©n - 2y but here we

TT"have to keep £ finite. We obtain

37.A8gp g8
) f = ] —m_J(&)
‘ CUAI P S M, "
3] £ a m g (&)
= - P _ _r P :
L P .
with ‘=ﬂ‘%
|
1 d
e = - ¢ J = e L-ex(1-0)] | (45)
o
3f (1)
At £ = 0, case I gives waY = £ T1T , the same result as in vector meson
2e

A

dominance model which gives I'|, "o¥ = 0.56(1 + 0.13) MeV about two standard

deviation below the experimental data..Again in this limit, cases II and III
are worse off. The finite mass effect does not change the results at £ = O
drastically, because the reduced value of g, is offset by an enhancement due

to J(&).

7

0 J() =

-g_(&) 0.
5© ¥ o

—‘O\l
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The factor J(£) is as large as 2.5 for £ = 4. The enhancement is due to the
fact that mo mp is close to the pseudo-threshold p(w) -~ q + a. One could
doubt the physical reality of such an effect, in which case we should limit
ourselves entirely to £ = O. The reduction of the value of gp for finite ¢
is originally due to the same effect. However, we would like to take the view
point that the finiteness of ¢ reflects a physical reality in the following
sense. The actual quark mass may be very large but inside a hadron they move
with the small effective mass we found within a certain broad potential bar-
rier. We consider that the ground state 0 octet and ! nonet are.stable bound
systems of q a inside the barrier, neglecting decay channels. The quark-loop
diagrams may then be considered as representing local propagations of quarks

inside the barrier.

It is of some interest to examine the w - 37 amplitude by a quark-loop dia-
gram although higher order corrections to such a four-point loop are expected

fairly large. We obtain

T, = '? Eﬂf Ex ’ m K (£)
i 1 2 M, m
31 £ m 3. g. (&) ' ' ‘
- H 2 [ ' ——— ko (47)
1 b4r if“ go(o) ‘

Here K(£) is an enhancement factor similar to J(£) in (45), but is hard to cal-
culate for general values of ‘7 momenta. We may expect that its effect is again
cancelled partly by reduction of gp. Neglecting the last bracket in (47), we

get

3 _
Y (48)
4

A numerical evaluation of K(£), which is, in fact, a function of £ and appro-
priate products of the pion momenta, is gréater than 4 and can be as large as

10 in the phase space of w - 3m. An average value K(§) = 5 is reasonable.If we
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take this value, then

(49)

w3m

NN —
—_—

To obtain the observed width of w, we must have Tw3n = 3.6 + 0.9. Again case I
is relatively favored. It seems that there is a consistent tendency for quark-

loop diagrams to underestimate amplitudes involving w meson.

Finally, we shall examing a perturbation calculation of SU, mass splitting of

0 and 1 octets by means of quark-loop diagrams. As an unperturbed systém we

~--- will take the O octet and the 1 nonet degenerézé with the physical m and p,
‘—M -

respectively. The p~ (n-) quark mass M, is given by (36). The perturbation ener-

1

gy is then the mass difference of A and p quarks, GM] = M3—M]. The interaction
Hamiltonian which gives rise to (strong interaction) mass splittings of the

mesons 1is

for cases I and II; and

B! = &M, g [Ool] q ' ’ (51)

for case III. A triangle diagram involving (50) or (51) and two K meson verti-

ces (The unperturbed K mass degenerate with that of w.) gives

2
2 3 g, R .
m” = |1 MM L = (1| 2M &M ' (52)
2 171 _ 171
1| 2w 1
Finite terms have been dropped safely, as & = mi/M? << 1. There is some ambi-

guity as to what value we should use for Gmﬂ. The right hand side of (52) which

may be written as GMf suggests that we take

2 2
tSm.TT = 2mn6mTT = 2(mk —-m_n)mTT ~ 0,1 GeV™, (53)

o
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while taking dmi = mi - mi , We get Gmi = 0.22 GeVz. We will use the value (53),
which gives from (52)

M]cSM1 = 0.05 GeV2. (54)

Using M] given in (36), we find

1133
110]. MeV (55)
128] .

M

13

Thege values are close to m¢ - mk* = mk* - mp N 127 MeV.

A triangle diagram involving K* is finite, and gives
24 g g g

r 2
2 3 gp
sm- = 3] 22— MM [~ 3/2 + 2/¢ T (£)]
P 11 o -
) 2
- 2w
2 | 2
3 fp‘ . gp(g) - 4
= [3 5 M oM { [F3+7 @] 1. (56
] 167° - g (0) »
p
At & = 0, the last bracket is unity, and we have
. [3] £ ~ [o.03 ) .
mo = [3] S M §M, = [0.03] GeV°. (57)
P 1] t6m - {o.01
This should be compared with the experimental value
sl =2 (mam) m = 0.19 Gevd. ~ (58)
p K" "p" p :

The finite-mass correction factor is huge and is‘

s

o
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g (&) 2[4 5.2
41 (e;)-3] - |53 (59)
g (0) 3 7o 9.0
which gives
0.16 9
sm~ = 0.1. | GeV™, : (60)
0.9

close enough to the required value (58) in case I. It should be remarked that

the factor (59) has a finite limit as ¢ » O, although g (¢£) » O and
p

4 } . . .
3 Io(g) - 3 > » at this piont. The limiting value in case I and II is

6m§ (8=4) = 4 6M]M] = 2.0 GeVz.

V. Concluding Remarks

Under the assumption that static mesonic amplitudes are dominated by the lowest
order quark loop diagrams, we reaffirmed the Okubo's conclusion that Gell-Mann-
Zweig model consistently underestimates mesonic radiative decay amplitudes and
that the Namba-Han model with a charm singlet assignment for the pseudoscalar and
the vector mesons yields a right order of magnitude for these amplitudes. In

view of the importance of the result, a critical examination of our fundamental

. . 0 .
assumption will be necessary. Let us take m = 2y amplitude as an example, for
P -

which the G-Z model gives a value 1/3 of that of the N-H model. Besides our quark

quark

loop amplitude (1), which we may call TTT , we can also consider diagrams in-

volving hadronic intermediate states, like baryon loop diagrams, which we denote

by Tﬂhadron. Our Assumption of the quark loop dominance amounts to either

=T quark _ T hadron 61)
™ m
or

T = Tﬂquark, TTThadron - 0. (62)
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The former relation may be called complementary, in that we have two ways of

in duality terminology anuark corresponds to the Veneziano amplitude and

hadro . . . . . .
T % to the higher order unitarity diagrams.The relation between the residue

| evaluating the same thing. We can find an analogous situation if we remark that
‘ T

of poles in the Veneziano amplitudes and the absorptive part of all the unitarity

|

|

ﬂ diagrams could quite conceivably be of the complementary type like (61). In any
case all calculations termed as quark models, including quark parton models, do

; neglect hadronic intermediate states, and ours is within this general context

: of the quark models.

don either the assumption of minimal electromagnetic interaction for quarks

: The above considerations show that in order to save the G-~Z model we must aban-
(we will not discuss this possibility here),or our fundamental -assumption of

quark loop dominance and assume instead that

T =‘T quark _ T hadron (63)
m ™ kil

In the G-Z model, then, T“hadron should be the main part, and this is quite

possible in view of the fact that the nucleon loop diagram alone accounts for

the required Tﬂ. It is extremely instructive to compare Eq.(63) with another
evaluation of TTr obtained by one of the authors (BLY) 24 from the point of the
dispersion relation in the two photon mass variables. There we have two terms,

. .y le
vector meson pole terms (simultaneous poles in both photon channels) T"po

corresponding to Tnhadron and a subtraction term (single pole terms) TﬂETC,

which is determined by the equal time commutators of spatial components of elec—

. tromagnetic current (BJL limit).

(64)

T =T ETC . T pole
kU - ki)

. . ETC
From the point of the pure vector meson dominance model, we have T = 0 and

Tnp01e is given by w-p poles (Gell-Mann, Sharp and Wagner model 25), which gives

a reasonable fit of Tn. If we use quark algebra on the other hand, we have

fm
T ETC - grq LI s (65) -
K

m

0
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which -is very close to (1) in value. In fact equating both, we obtain a good

relation

m = 81 f (66)

In the G-Z model T"ETC is again small and w—p pole term in T pole dominates Tn'
If we take the N-H model in (64),5then Tﬂpole must be ?gall as TTTETC alone
accounts for Tn' Such possibility was explored before . However, it would

be more logical, from the point of quark models, to doubt the validity of

"hybrid' relations like (63) and (64), as discussed below.

Finally we would like to speculate on a physical situation in which our scheme
might be justified. Since quarks have not been detected at extremely high ener-
gies, as in the CERN ISR, the quarks must have an extremely high mass, or even
an infinite mass. Thus, we may call the quark field as a non-asymptotic, or
quasi-nonasymptotic field, in the sense that quarks do not propagate asymptoti-
cally. If we want to describe an amplitude and its intermediate states in terms
of asymptotic fields, we should not include quarks into such states. Eq.(63)
and (64) lose their vaiidity and we have instead T = T hadron or T =T pole.
How do we obtain a quark description then? We imagine that quarks are trapped
permanently in hadrons. In a hadron, quarks must move with a small effective
mass inside a certain broad trapping barrier. Our quark loop diagrams must be
regarded as describing approximately local propagation of quarks inside the

barrier. In a rigorous treatment, we would have to talk in terms of excitation

into discrete levels in the barrier rather than free particle-like propagationms.

The nature of the complementarity between hadronic and quark descriptions can
be understood by considering the absorptive part of a hadronic amplitude. In
our quark model, a hadronic transition occurs via an excitation of trapped
quarks into higher states and their eventual decays into hadronic channels. The
transition rate-can be obtained by just the -excitation cross section of quarks,
the decay prohability being 100 %Z. It remains to be seen how good our approxi-
mation of the free quark propagation with a small effective mass will be. For

that, we will have to know the nature and mechanism of the trapping barrier.
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Appendix

Two cut-off methods will be discussed in this appendix.

This is<by far the simplest of all the cut-off methods. In this method, Feynman
integrals are simply performed in a finite sphere of radius A in the Euclidean
space after.the Wick rotation is performed. The well known ambiguity in shift-
ing the origin of the integration variable, when a given Feynman integral is
(superficially) lineraly divergent or more singular 26, can only produce finite
constants in all the cases we considered; it does not affect the 1n AZ terms.

A consistent set of Ai’ the moﬁentum independent finite constant terms, can be
calculated by choosing a certain prescription for evaluating the divergent
Euclidean integrals. We use the prescription described in Akhiezer and

Berestetsky; 27 it gives
L=1ln — -1, A= -1 (A. 1)

Another class of cut—offs can be constructed by taking into account the possi-
ble non-point like structure of the meson-quark-quark vertex whén the quark
4-momenta are large. Such a construction has to satisfy the analyticity and
spectral function constraints of a vertex function. It can be given the meaning
for a representation of hadronic wave functions. For example, instead of

a point coupling, the meson—quark-quark vertex can be put into the following

form:

f (z,0)
2 2
o] zkl (1 z)k2

dz J do (A.2)
o ,

where kf and k., are the momenta of the quarks; the normalization of the func-

2
tion £ (z,0) 1is

1

[la

[ do Eingl = | ‘ (A.3)
° ,



We also add the symmetry condition

f (z,0) = £ (1-z,0) (A.4)

£ (z,0) = 2%'(0-1%) (A.5)

which leads to the following form for the meson-quark—-quark. vertex:

(A.6)

In the present method we insert (A.6) at all the meson—quark—quark vertices
(not at the current current—quark-quark vertices). For example in the n++u+v
two—point loop, (A.6) is inserted at the pion vertex and obviously the cut-offs
are applied independently to the two quark propagators. In this case A = 2

and

12 °
L=1In|-| -2 (A.7)

"

There are other cut-off methods, for example, the Feynman'cut-off 28, or more
generally the Pauli-Villars regularization method 29. They lead to the results

A= AAi = 0 when in the former a gauge condition is implemented for the p-y

two-point loop. We shall not elaborate them further.

In table 1, we list the values of A and AAi for several diagrams See, Egs. (2)-

(6)
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Table 1. Values of A and bA,

method ' 1 2

A -1 -2
ﬂ+ - u+v 0] 0
T Ty 1/2 -7/12
P>y 1/6 1/3

p > pY - =5/6 1/12
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Vector meson—quark-quark coupling as a function of &,

0 < & < 4, for the 3 models.

Vector meson cut—off as a function of &£.

P-(n-) quark mass as a function of £. The values of M

termined from the intersects of the

[See Eq.(35)] and V¥ mz/g.
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