

328/68  
1/16/68

This document is  
**PUBLICLY RELEASABLE**

H. Kiner  
Authorizing Official  
Date: 12/21/09

# *health and safety laboratory*

FALLOUT PROGRAM  
QUARTERLY SUMMARY REPORT

January 1, 1968

UNITED STATES ATOMIC ENERGY COMMISSION  
NEW YORK, N. Y. 10014

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

#### LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Printed in the United States of America

Available from

Clearinghouse for Federal Scientific and Technical Information

National Bureau of Standards, U. S. Department of Commerce

Springfield, Virginia 22151

Price: Printed Copy \$3.00; Microfiche \$0.65

HASL-184

UC-41, Health & Safety  
TID-4500, 49th Ed.

HEALTH AND SAFETY LABORATORY

FALLOUT PROGRAM  
QUARTERLY SUMMARY REPORT

(September 1, 1967 through December 1, 1967)

Prepared by

Edward P. Hardy, Jr.  
Joseph Rivera

Environmental Studies Division

Preceding reports in this series:

HASL-42, -51, -65, -77, -84, -88  
-95, -105, -111, -113, -115,  
-117, -122, -127, -131, -132,  
-135, -138, -140, -142, -144,  
-146, -149, -155, -158, -161,  
-164, -165, -171, -172, -173,  
-174, -181, -182, and -183.

January 1, 1968

UNITED STATES ATOMIC ENERGY COMMISSION  
New York Operations Office

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

peg

## **DISCLAIMER**

**This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

## **DISCLAIMER**

**Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.**

NYOO  
Health and Safety

FALLOUT PROGRAM  
QUARTERLY SUMMARY REPORT

January 1, 1968

ABSTRACT

This report presents current data from the HASL Fallout Program, Isotopes Inc., National Radiation Laboratory in New Zealand, the Division of Biological and Medical Research at Argonne National Laboratory, Euratom Joint Nuclear Research Centre, the Division of Biology and Medicine, USAEC, and the Air Resources Laboratories, ESSA. Radionuclide levels in stratospheric air, surface air, fallout, milk, other diet components, and tap water, are given in tabular form. The initial section consists of interpretive reports and notes covering the following topics: Pu-238 fallout from SNAP-9A, significance of Cs-137 levels in man, seasonal stratospheric distribution of Cd-109, Pu-238, and Sr-90, stratospheric radioactivity in November 1967, and the HASL quality control program. A bibliography of recent publications related to radionuclide studies is also presented.

Table of Contents

Introduction

Part I - Interpretive Reports and Notes

Fallout of Pu-238 from the SNAP-9A Burnup-III  
by H. L. Volchok, Health & Safety Laboratory, USAEC

The Significance of Cs-137 in Man and His Diet  
by P.F. Gustafson and J.E. Miller, Division of  
Biology and Medicine, USAEC

Seasonal Stratospheric Distribution of Cadmium-109,  
Plutonium-238 and Strontium-90  
by K. Telegadas, Air Resources Laboratories, ESSA

Project Airstream  
by P. Krey, Health & Safety Laboratory, USAEC

Analysis of Quality Control Samples at HASL and Other  
Laboratories During 1967  
by E. Hardy, Health & Safety Laboratory, USAEC

Part II - HASL Fallout Program Data

/ 1. Fallout Deposition

1.1 Monthly Precipitation

1.11 Sr<sup>90</sup> and Sr<sup>89</sup> at 156 World Land Sites  
1.12 Fission Product and Activation Product  
Radionuclides at Selected Sites

1.2 Sr<sup>90</sup> and Sr<sup>89</sup> at Atlantic Ocean Weather  
Stations

/ 2. Radiostrontium in Milk and Tap Water

3. Sr<sup>90</sup> in Tri-City Diets: First Quarter - 1967  
by J. Rivera

4. Surface Air Sampling Program  
by H.L. Volchok and M. Kleinman

5. High Altitude Balloon Sampling Program  
by P. W. Krey

Page

I - 1

I - 2 I.1-11

I - 11 I.11-54

I - 53 ✓

I - 119 ✓

I - 223 ✓

II - 1

II - 2

II - 2

II - 2

II - 2

II - 3

II - 6 ✓

II - 26 ✓

|                                                                                                                                                                                                                                      | <u>Page</u>    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <b>Part III - <u>Data from Sources Other than HASL</u></b>                                                                                                                                                                           | <b>III - 1</b> |
| 1. Isotopes, Inc., Westwood, N. J.                                                                                                                                                                                                   | III - 2        |
| The Twentieth Progress Report on Project Stardust:<br>"Flight Data and Results of Radiochemical Analyses of<br>Filter Samples Collected During April-June 1967<br>work performed under contract to the Defense Atomic Support Agency |                |
| 2. National Radiation Laboratory, Department of Health<br>Christchurch, New Zealand<br>Environmental Radioactivity in New Zealand<br>Quarterly Report for April-June 1967; NRL F.25                                                  | III - 22       |
| 3. Division of Biological and Medical Research<br>Argonne National Laboratory<br>"Cs-137 in Various Chicago Foods (Collection Month October<br>1967)"<br>by S. S. Brar and D. M. Nelson                                              | III - 54       |
| 4. EURATOM Joint Nuclear Research Centre<br>ISPRA Establishment: Protection Service<br>Site Survey and Meteorology Section Quarterly Report                                                                                          | III - 59       |
| <b>Part IV - <u>Recent Publications Related to Radionuclide Studies</u></b>                                                                                                                                                          | <b>IV - 1</b>  |
| <b>Appendix</b>                                                                                                                                                                                                                      |                |
| A. Sr <sup>90</sup> and Sr <sup>89</sup> in Monthly Deposition at World Land Sites                                                                                                                                                   | A - 1          |
| B. Fission Product and Activation Product Radionuclides in<br>Monthly Deposition at Selected Sites                                                                                                                                   | B - 1          |
| C. Radiostrontium Deposition at Atlantic Ocean Weather Stations                                                                                                                                                                      | C - 1          |
| D. Radiostrontium in Milk and Tap Water                                                                                                                                                                                              | D - 1          |
| E. Table of Conversion Factors                                                                                                                                                                                                       | E - 1          |
| F. Table of Radionuclides                                                                                                                                                                                                            | F - 1          |

List of Tables

Part II

HASL FALLOUT PROGRAM

| <u>Table</u>                                                                                    | <u>Page</u>    |
|-------------------------------------------------------------------------------------------------|----------------|
| <u>Fallout Deposition</u>                                                                       |                |
| 1. a. Sr <sup>90</sup> and Sr <sup>89</sup> in Monthly Deposition at World Land Sites           | Appendix A - 4 |
| b. Fission Product and Activation Product Radionuclides in Monthly Deposition at Selected Sites | Appendix B - 3 |
| c. Radiostrontium Deposition at Atlantic Ocean Weather Stations                                 |                |
| BRAVO Station                                                                                   | Appendix C - 3 |
| CHARLIE "                                                                                       | " C - 4        |
| DELTA "                                                                                         | " C - 5        |
| ECHO "                                                                                          | " C - 6        |
| <u>Milk and Tap Water</u>                                                                       |                |
| 2. a. The Sr <sup>90</sup> to Calcium Ratio in Milk: NYC - liquid                               | Appendix D - 2 |
| b. The Sr <sup>90</sup> to Calcium Ratio in Milk: Perry, N. Y. Powdered                         | " D - 2        |
| c. Sr <sup>90</sup> in New York City Tap Water                                                  | " D - 4        |
| d. The Cs <sup>137</sup> to Sr <sup>90</sup> Ratio in New York City Tap Water                   | " D - 4        |
| <u>Food</u>                                                                                     |                |
| 3. Sr <sup>90</sup> , Tri-City Diet Studies: First Quarter, 1967                                | II - 4         |
| <u>Surface Air Sampling Program</u>                                                             |                |
| 4. a. HASL Surface Air Sampling Stations                                                        | II - 11        |
| b. Manganese-54 Concentrations in Surface Air During 1966                                       | II - 12        |
| c. Iron-55 " " " " "                                                                            | II - 13        |
| d. Strontium-89 " " " " "                                                                       | II - 14        |
| e. Strontium-90 " " " " "                                                                       | II - 15        |
| f. Zirconium-95 " " " " "                                                                       | II - 16        |
| g. Cadmium-109 " " " " "                                                                        | II - 17        |
| h. Cesium-137 " " " " "                                                                         | II - 18        |
| i. Cerium-141 " " " " "                                                                         | II - 19        |
| j. Cerium-144 " " " " "                                                                         | II - 20        |
| k. Plutonium-238 " " " " "                                                                      | II - 21        |
| l. Plutonium-239 " " " " "                                                                      | II - 22        |
| m. Quality Control Results on Blank Samples - 1966                                              | II - 23        |
| n. Quality Control Results on Standard Samples - 1966                                           | II - 24        |
| o. Quality Control Results on Duplicate Samples - 1966                                          | II - 25        |

List of Tables (Cont'd)

Part II

HASL FALLOUT PROGRAM

|                                                                                     | <u>Page</u> |
|-------------------------------------------------------------------------------------|-------------|
| <u>High Altitude Balloon Sampling Program</u>                                       |             |
| 5. a. High Altitude Balloon Launching Sites                                         | II - 39     |
| b. Stratospheric Radionuclide Concentrations -<br>Balloon Samples                   | II - 40     |
| c. Stratospheric Radionuclide Concentrations -<br>Aircraft Samples                  | II - 76     |
| d. Analyses of Coded Blank Samples                                                  | II - 83     |
| e. Recent Standard Deviation of Analysis by Tracerlab<br>of Coded Duplicate Samples | II - 84     |
| f. Analyses of Coded Standard Samples                                               | II - 85     |

List of Figures

Part II

HASL FALLOUT PROGRAM

| <u>Figure</u>             |                                                                                    | <u>Page</u>    |
|---------------------------|------------------------------------------------------------------------------------|----------------|
| <u>Fallout Deposition</u> |                                                                                    |                |
| 1. a.                     | HASL Monthly Fallout Sampling Network                                              | Appendix A - 2 |
| b.                        | Monthly Deposition of Sr <sup>90</sup> in New York City                            | " A - 3        |
| <u>Milk and Tap Water</u> |                                                                                    |                |
| 2. a.                     | Sr <sup>90</sup> in Powdered Whole Milk - Perry, New York                          | Appendix D - 3 |
| b.                        | Sr <sup>90</sup> in Liquid Whole Milk - New York City                              | " D - 3        |
| c.                        | Sr <sup>90</sup> in New York City Tap Water                                        | " D - 5        |
| <u>Food</u>               |                                                                                    |                |
| 3.                        | Average Daily Sr <sup>90</sup> Intake at New York City, Chicago, and San Francisco | II - 5         |

## Introduction

Every three months, the Health and Safety Laboratory issues a report summarizing current information obtained at HASL pertaining to fallout. This report, the latest in the series, contains information that became available during the period from September 1, 1967 to December 1, 1967. The next report is scheduled for publication on April 1, 1968. Preceding reports in the series, starting with HASL-42, "Environmental Contamination from Weapons Tests", and continuing through HASL-51, -65, -77, -84, -88, -95, -105, -111, -113, -115, -117, -122, -127, -131, -132, -135, -138, -140, -142, -144, -146, -149, -155, -158, -161, -164, -165, -171, -172, -173, -174, -181, -182, -183 and -184 (this report); may be purchased from the Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U. S. Department of Commerce, Springfield, Virginia 22151.

To give a more complete picture of the current fallout situation and to provide a medium for rapid publication of radionuclide data, these quarterly reports often contain information from other laboratories and programs, some of which are not part of the general AEC program. To assist in developing, as rapidly as possible, provisional interpretations of the data, special interpretive reports and notes prepared by scientists working in the field of fallout are also included from time to time. Many of these scientists are associated in some way with the general AEC program. Information developed outside of HASL is identified as such and is gratefully acknowledged by the Laboratory. In this report, data from the EURATOM Joint Nuclear Research Center at Ispra, the National Radiation Laboratory in New Zealand, the Division of Biological and Medical Research at Argonne National Laboratory, Isotopes, Inc., The Division of Biology and Medicine, USAEC, and the Air Resources Laboratories ESSA are given.

A portion of the radiochemical analyses are carried out by commercial laboratories under contract to the HASL Environmental Studies and Radiochemistry Divisions. The results of these analyses are reported as part of HASL's regular fallout program. The contractor analytical laboratories which provided data are Nuclear Science and Engineering Corporation, Pittsburgh, Pennsylvania; Isotopes, Inc., Westwood, New Jersey; Radiochemistry, Incorporated, Louisville, Kentucky; Tracerlab, Division of LFE, Richmond, California; Controls for Radiation, Inc., Cambridge, Massachusetts; Hazleton-Nuclear Science Corporation, Palo Alto, California; Food, Chemical and Research Laboratories, Inc., Seattle, Washington; Tracerlab, Division of LFE, Waltham, Massachusetts, and U. S. Testing Co., Inc., Richland, Washington.

This report is divided into four main parts:

1. Interpretive Reports and Notes
2. HASL Fallout Program Data
3. Data from Sources Other than HASL
4. Recent Publications Related to Radionuclide Studies

PART I  
INTERPRETIVE REPORTS  
AND  
NOTES

X FALLOUT OF Pu-238 FROM THE SNAP-9A BURNUP-III

by Herbert L. Volchok, (HASL)

Plutonium-238 was released by the disintegration of a SNAP-9A power source upon re-entry into the atmosphere in April of 1964. It was estimated (1) that the re-entry took place at an altitude of about 46 kilometers, over the Indian Ocean. Krey (2) by integrating the concentrations of SNAP debris from samples obtained by balloon and aircraft sampling, was able to account for 15 kilocuries (kCi) in the stratosphere in the early part of 1966. Eighty percent of this total was found to be in the Southern Hemisphere, at that time.

In order to document the deposition of material from the SNAP-9A burn-up, the Health and Safety Laboratory (HASL) initiated a sampling and analysis program in 1966. Large area collections (about one square meter) of fallout are made each month at Melbourne, Australia and New York City. Brief descriptions of the samplers, analytical procedures and preliminary data were reported earlier, (3, 4).

Data from both sites through July of 1967 are now completed. At Melbourne, sampling was not started until May of 1966, in New York all of 1966 was sampled. Tables 1 and 2 summarize the results of the plutonium analyses and also lists the Pu-238 to Pu-239,240 ratios for each month. The plutonium isotope ratio is useful for indicating the presence or absence of SNAP-9A debris. Measurements of air samples obtained prior to the re-entry of the SNAP showed a fairly constant Pu-238/Pu-239 ratio averaging about 0.03 (5). Thus any sample with a ratio in excess of that may be presumed to contain Pu-238 from the SNAP-9A and the amount may be determined by subtracting out the indicated "background" amount. Tables 1 and 2 also list the amount of Pu-238 calculated by that method. Note that in Table 1, values for the fallout at Melbourne, Australia were estimated for the first four months of 1966, by first computing the

$\text{Pu-239}$  assuming that this is  $1\frac{1}{2}$  percent of the  $\text{Sr-90}$  in all cases.  $\text{Sr-90}$  has been measured at Melbourne as part of another program (6). Then by extrapolating the smoothly increasing ratio  $\text{Pu-238/Pu-239}$  to 0.03, (the pre-SNAP value) the numbers listed in the Table were obtained.

Figure 1 shows the time variation of the  $\text{Pu-238/Pu-239}$  for both sites. The Melbourne ratio was assumed to have initially exceeded the 0.03 background level at the beginning of 1966, since little or no  $\text{Pu-238}$  from the SNAP-9A could be definitely identified in the surface air of the Southern Hemisphere before early 1966 (7). Thus the ratio at Melbourne must have risen rapidly after the first appearance of the debris, in contrast to the situation in New York where the increase was rather gradual until the spring of 1966. It was somewhat surprising to see the Southern Hemisphere ratio decrease from March through July of 1967. Presumably this is an indication of either large scale movements of air, or a seasonal pattern of diffusion in the lower stratosphere. As the Southern Hemisphere spring advances, this trend may reverse with the ratios at Melbourne increasing again.

Figure 2 shows the actual monthly deposition of the SNAP-9A  $\text{Pu-238}$  at the two sites. It is interesting to note that even in the first year of deposition the seasonal effect was quite marked in the Southern Hemisphere in 1966 and recognizable in New York in 1967. Perhaps even more unexpected, the New York fallout of  $\text{Pu-238}$  attributable to the SNAP-9A was greater than that at Melbourne for three out of the four months; April through July. In the subsequent months of 1967, advancing into the Southern Hemisphere spring, it is anticipated that the Melbourne concentrations will sharply increase to even higher levels than in 1966.

As in the prior reports (3, 4) a computation of the global deposit of the SNAP-9A debris has been made. For this calculation it is assumed that the total SNAP-9A fallout in each hemisphere is directly proportional to that at the single sampling site in that hemisphere, and further that these relationships are identical to those observed for Sr-90 fallout. For the Northern Hemisphere, nine years of Sr-90 data gives a value of  $123 \pm 10$  kilocuries (kCi) deposited in the Northern Hemisphere for each millicurie per square kilometer ( $\text{mCi}/\text{km}^2$ ) deposited in New York City. Eight years of measurements at Melbourne, Australia results in a value of  $180 \pm 15$  for the Southern Hemisphere.

Table 3 summarizes the hemispheric and worldwide deposits of the Pu-238 from SNAP-9A by months, through July of 1967. From these data it can be seen that in 1966 a little more than 1.3 kCi was deposited on the earth's surface while almost as much came down in the first seven months of 1967. The total through July of 1967, 2.55 kCi, represents some 17% of the 15 kCi accountable in the stratosphere by Krey in early 1966 (2).

The deposition rate is seen to have increased substantially in 1967 and based upon the last five months a stratospheric half residence time of a little over three years was calculated. Presumably this value will decrease as the distribution of the SNAP-9A material in the stratosphere approaches that which currently exists for the nuclear weapons debris.

References

1. Korsmayer, R. B.  
Nuclear Safety 5, 4  
1964
2. Krey, P. W.  
Atmospheric Burnup of a Plutonium-238 Generator  
Science, 158, No. 3802, pp 769-771, Nov. 10, 1967
3. Volchok, H. L. and Chu, N.  
Fallout of Plutonium-238 from the SNAP-9A Burnup  
USAEC Report HASL-181, April (1967)
4. Volchok, H. L.  
Fallout of Pu-238 From the SNAP-9A Burnup II  
USAEC Report HASL-182, July (1967)
5. Feely, H. W., Biscaye, P.E., Davidson. B. and Seitz, H.  
Eleventh Progress Report on PROJECT STARDUST  
DASA Report No. 1821, July 1, 1966
6. Appendix to USAEC Report HASL-184, Part A, January (1968)
7. Krey, P. W.  
Surface Air Sampling Program  
USAEC Report HASL-173, October (1966)

Table 1  
Plutonium in Melbourne, Australia Fallout<sup>1</sup>  
 (values in  $10^{-3}$  mCi/km<sup>2</sup>)

|            | <u>Pu-239</u> | <u>Pu-239</u> | <u>Pu-238</u> | <u>SNAP-9A</u> |
|------------|---------------|---------------|---------------|----------------|
|            |               |               | <u>Pu-239</u> | <u>Pu-238</u>  |
| Jan. 1966  | 1.35B         | .06B          | 0.04B         | 0.01           |
| Feb. "     | 1.05B         | .08B          | 0.08B         | 0.04           |
| Mar. "     | 1.80B         | .22B          | 0.12B         | 0.16           |
| Apr. "     | 1.20B         | .24B          | 0.20B         | 0.16           |
| May "      | 0.14          | .05           | 0.36          | 0.04           |
| Jun "      | 0.5B          | .32           | 0.55          | 0.30           |
| July "     | 1.35B         | .96B          | 0.71B         | 0.91           |
| Aug. "     | 0.49          | .41B          | 0.84          | 0.39           |
| Sept. "    | 0.51          | .50           | 0.98          | 0.48           |
| Oct. "     | 2.83          | 2.81          | 0.99          | 2.70           |
| Nov. "     | 0.86          | 1.03          | 1.20          | 1.00           |
| Dec. " )   | 1.92          | 2.91          | 1.52          | 2.85           |
| Jan. 1967) |               |               |               |                |
| Feb. "     | 0.19A         | .29           | 1.52          | 0.28           |
| Mar. "     | 0.11A         | .31           | 2.82          | 0.31           |
| Apr. "     | 0.18A         | .47           | 2.61          | 0.46           |
| May "      | 0.21A         | .48           | 2.29          | 0.47           |
| June "     | 0.22A         | .42           | 1.91          | 0.41           |
| July "     | 0.50          | .73           | 1.46          | 0.71           |

1 - Errors are less than  $\pm 20\%$  (1 sigma) except for "A" which indicate 20-50%.

B - Values were derived by extrapolation and from Sr<sup>90</sup> levels.

Table 2

Plutonium in New York City Fallout<sup>1</sup>  
 (values in  $10^{-3}$  mCi/km $^2$ )

|           | <u>Pu-239</u> | <u>Pu-238</u> | <u>Pu-238</u><br><u>Pu-239</u> | <u>SNAP-9A</u><br><u>Pu-238</u> |
|-----------|---------------|---------------|--------------------------------|---------------------------------|
| Dec. 1965 | 3.23          | 0.09          | 0.03                           | 0                               |
| Jan. 1966 | 3.47          | 0.12          | 0.04                           | 0.02                            |
| Feb. "    | 3.18          | 0.30          | 0.09                           | 0.20                            |
| Mar. "    | 2.02          | 0.12          | 0.06                           | 0.06                            |
| Apr. "    | 4.59          | 0.18          | 0.04                           | 0.04                            |
| May "     | 4.45          | 0.57          | 0.13                           | 0.44                            |
| June "    | 2.23          | 0.17          | 0.08                           | 0.10                            |
| July "    | 2.49          | 0.30          | 0.12                           | 0.22                            |
| Aug. "    | 2.21          | 0.27          | 0.12                           | 0.20                            |
| Sept. "   | 1.46          | 0.21          | 0.14                           | 0.17                            |
| Oct. "    | 1.75          | 0.17          | 0.10                           | 0.12                            |
| Nov. "    | 0.82          | 0.15          | 0.18                           | 0.12                            |
| Dec. "    | 1.47          | 0.27          | 0.18                           | 0.23                            |
| Jan. 1967 | 1.66          | 0.14          | 0.08                           | 0.09                            |
| Feb. "    | 1.91          | 0.20          | 0.11                           | 0.14                            |
| Mar. "    | 1.98          | 0.34          | 0.17                           | 0.28                            |
| Apr. "    | 5.18          | 1.53          | 0.30                           | 1.37                            |
| May "     | 3.06          | 0.91          | 0.30                           | 0.82                            |
| June "    | 1.29          | 0.57          | 0.44                           | 0.53                            |
| July "    | 2.57          | 2.44          | 0.95                           | 2.36                            |

1 - Errors are less than  $\pm 20\%$  (1 sigma) for all data.

Table 3

Hemispheric and Worldwide SNAP-9A Pu-238 Deposition  
(values in kilocuries)

|                                    | <u>Northern Hemisphere</u> | <u>Southern Hemisphere</u> | <u>Worldwide</u> |
|------------------------------------|----------------------------|----------------------------|------------------|
| Jan. 1966                          | .002                       | .002                       | .004             |
| Feb. "                             | .023                       | .008                       | .031             |
| Mar. "                             | .007                       | .028                       | .035             |
| Apr. "                             | .005                       | .028                       | .033             |
| May "                              | .050                       | .008                       | .050             |
| June "                             | .011                       | .053                       | .064             |
| July "                             | .026                       | .165                       | .181             |
| Aug. "                             | .022                       | .071                       | .093             |
| Sept. "                            | .019                       | .086                       | .105             |
| Oct. "                             | .014                       | .486                       | .100             |
| Nov. "                             | .015                       | .179                       | .194             |
| Dec. "                             | .026                       | .395*                      | .421             |
| <b>Total 1966</b>                  | <b>.220</b>                | <b>1.509</b>               | <b>1.319</b>     |
| Jan. 1967                          | .010                       | .118*                      | .120             |
| Feb. "                             | .016                       | .050                       | .066             |
| Mar. "                             | .032                       | .056                       | .088             |
| Apr. "                             | .157                       | .083                       | .240             |
| May "                              | .093                       | .085                       | .178             |
| June "                             | .060                       | .074                       | .134             |
| July "                             | .270                       | .128                       | .398             |
| <b>Sub Total</b>                   | <b>.638</b>                | <b>.594</b>                | <b>1.232</b>     |
| <b>Total through<br/>July 1967</b> | <b>.858</b>                | <b>2.103</b>               | <b>2.551</b>     |

\*Derived from the December 1966 - January 1967 combined sample by the Sr-90 proportion.

Figure 1

RATIO Pu-238 / Pu-239 IN DEPOSITION

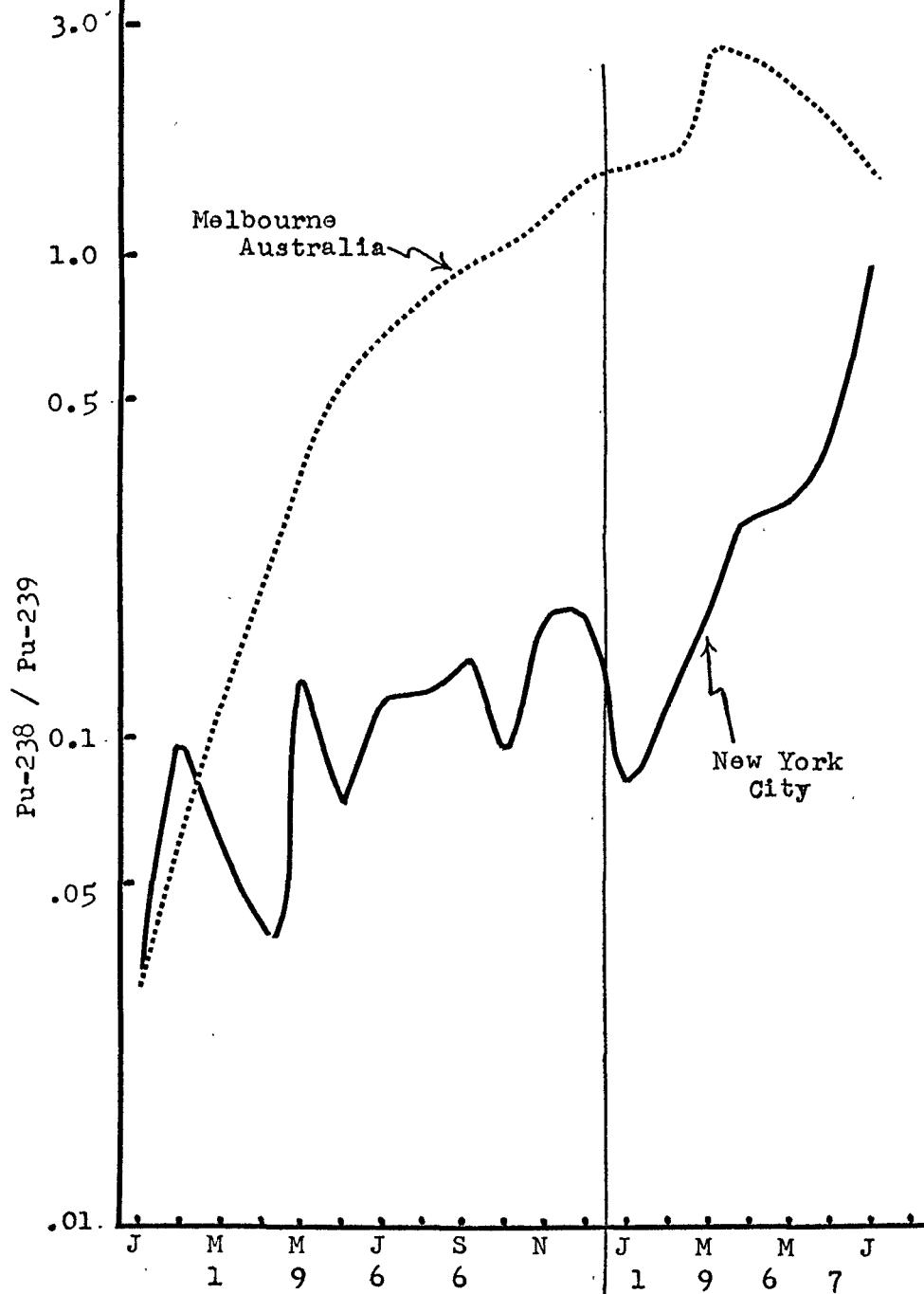
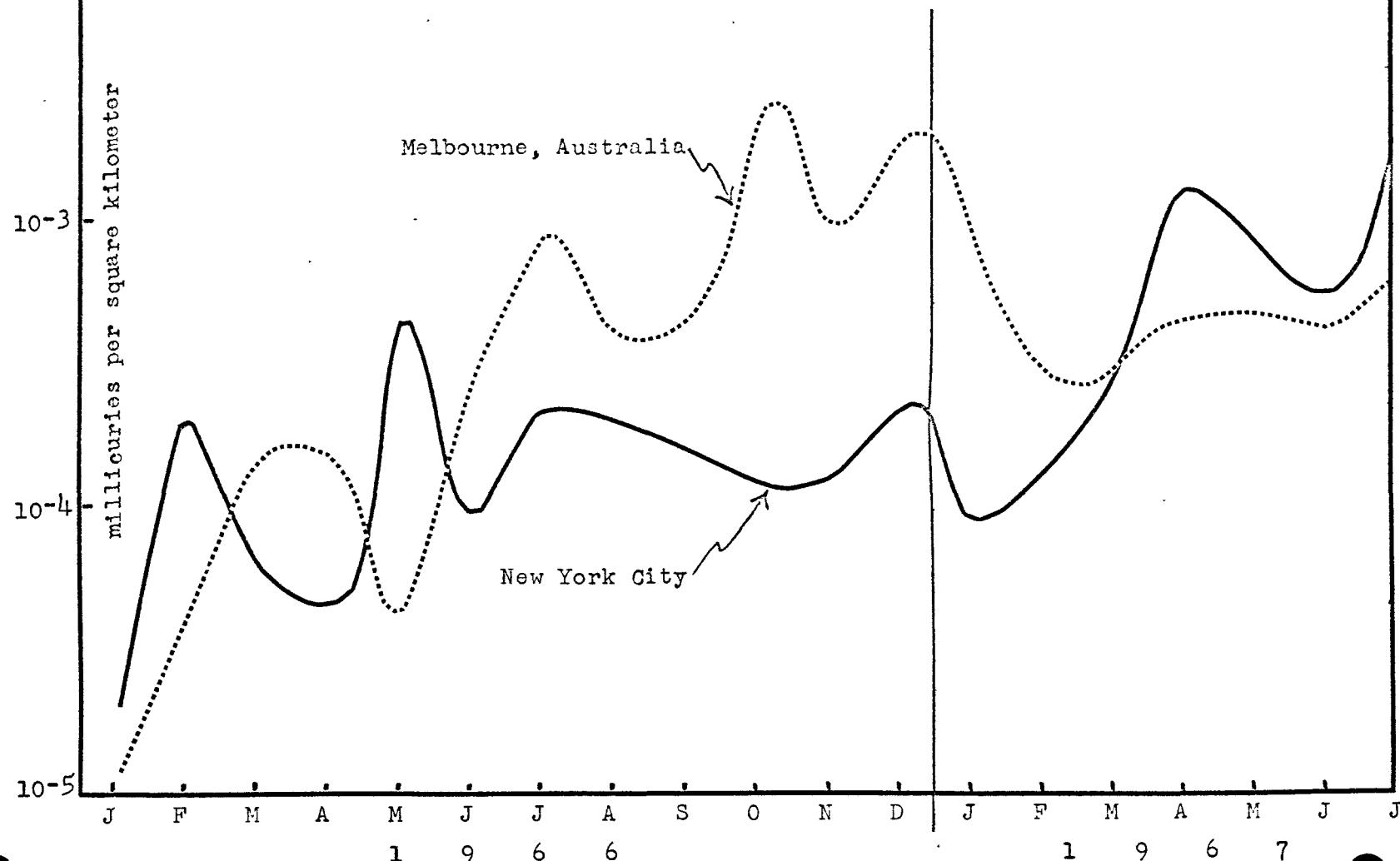




Figure 2

MONTHLY DEPOSITION OF Pu-238 FROM SNAP-9A



X THE SIGNIFICANCE OF  $^{137}\text{Cs}$  IN MAN AND HIS DIET

Philip F. Gustafson & James E. Miller  
Division of Biology and Medicine  
U. S. Atomic Energy Commission  
Washington, D. C.

ABSTRACT

Cesium-137 from the worldwide fallout of nuclear test debris is ubiquitous in the biosphere, throughout the human diet, and is present in measurable quantity in the peoples of the world. Many measurements of  $^{137}\text{Cs}$  have been made in various media, including an AEC sponsored  $^{137}\text{Cs}$  wholebody counting program and diet studies which have been conducted by both AEC and PHS. Diet and wholebody measurements of  $^{137}\text{Cs}$  for the period 1961 through 1966 will be presented in this paper. The human subjects examined may not represent the average population since they have been drawn from a specific group, namely laboratory and university personnel.

The differences in  $^{137}\text{Cs}$  wholebody burden across the country are less than anticipated on the basis of variations in regional  $^{137}\text{Cs}$  fallout levels. In fact, the variations from one regional group to another are no greater than those observed within a group from a specific location. This is attributed to a common source of such staple items as grain products and meats. The biological half life of  $^{137}\text{Cs}$  in adults ranges from 50 to 150 days, and is sufficiently short so that equilibrium or near equilibrium between diet and body burden is established even during times when the dietary level of  $^{137}\text{Cs}$  was changing fairly rapidly.

The mean body burden of  $^{137}\text{Cs}$  in the U. S. population is presented, and the radiation exposure due to this burden is calculated. Implications of the concentration effect observed in going from diet to man will be discussed as will the radiological importance of a possible long-term  $^{137}\text{Cs}$  reservoir in bone. The prediction of future levels of  $^{137}\text{Cs}$  in diet and man will be given for various circumstances.

#### INTRODUCTION

Cesium-137 is produced in the fission process with a yield of  $\sim 6$  atoms per 100 fissions, and the yield is fairly independent of the type of fission involved, i.e. fission induced by either fast or slow neutrons (1). It has a physical half life of 30.5 years and resembles potassium metabolically. Stable cesium is relatively rare geologically, and in the biosphere, and whereas potassium is an essential element, there is no evidence that cesium is a necessary trace element in a biological sense. Radioactive  $^{137}\text{Cs}$  was first detected in man by Miller and Marinelli in 1955 (2), who noted its presence in background subjects measured as part of the Argonne Radium Toxicity Program. Some 10 subjects have been examined by Miller et al from 1955 up to the present, representing a useful set of data for observing the changes in  $^{137}\text{Cs}$  body burden as a function of time. The liquid scintillator wholebody system designed and built at Los Alamos Scientific Laboratory (LASL) by Anderson and Langham (3) was used to examine a large number of human subjects, first from within the laboratory and later from all over the world. A number of diet components were also examined at LASL, and their relative importance as sources of  $^{137}\text{Cs}$  intake was identified by

Anderson et al (3, 4). These initial investigations showed the great importance of milk as a source of  $^{137}\text{Cs}$ . They also showed a close quantitative and temporal correlation between the concentration of  $^{137}\text{Cs}$  in milk and that found in vivo in man. Subsequent attempts were made at LASL and elsewhere to relate fallout deposition (i.e.  $^{137}\text{Cs}$ ) with levels in food (primarily milk) and those occurring in man (5). These early foodchain models were more successful in predicting body burdens of  $^{137}\text{Cs}$  than were similar attempts at modelling the behavior of  $^{90}\text{Sr}$ .

The rapidity with which wholebody  $^{137}\text{Cs}$  follows changes in the dietary level is a direct consequence of its relatively short biological half time in man. Cesium and potassium are both remarkably well absorbed from the diet ( $\sim 100\%$ ) (6) and are deposited in the soft tissues (muscle) of the body from which they are readily turned over. Empirical estimates of the biological half life of  $^{137}\text{Cs}$  in human adults were undertaken by several investigators, using themselves as experimental subjects, taking known amounts of  $^{137}\text{Cs}$  orally (7). The biological half times so observed ranged from 70 to 120 days, and more recent data indicate the spread to be somewhat greater (7). These half times are for a single exposure, i.e. intake event, in all cases. More recent work by Pendleton et al has shown a shorter biological half time for  $^{137}\text{Cs}$  in children than in adults, and experimental animals have also indicated this trend (8).

The rapidity with which body burdens of  $^{137}\text{Cs}$  responded to changes in  $^{137}\text{Cs}$  intake and the speed of change in intake levels as a function of fallout rate led to monitoring of milk by PHS as a means of quick

evaluation of radiological hazard. Milk sampling in a number of major milk-sheds was initiated in 1959. Other foods were added to the PHS sampling program; total diet sampling and specific foods were examined with regularity. The Chicago diet samples collected as part of the AEC Tri City  $^{90}\text{Sr}$  Diet Study were subjected to  $^{137}\text{Cs}$  analyses commencing in 1961.

Also in 1961, the AEC undertook an intercalibration study of whole-body  $^{137}\text{Cs}$  measurements. These involved a number of laboratories having wholebody counters--either NaI(Tl) crystals or liquid scintillator type--which had been in the business for some time or intended to do considerable wholebody counting of  $^{137}\text{Cs}$  in the future. The accuracy and precision attainable under the best, practical situation was determined, as well as the reproducibility of repeated measurements. The end point of this study was the recommendation of standard techniques and an evaluation of errors involved (9). It also provided a basis for the meaningful comparison of data from one laboratory to another, an important aspect as regards this report.

The geographic spread of these laboratories spans the heavily populated areas of the country. Most laboratories have continued to make wholebody measurements after the formal comparisons were ended, and thereby have provided valuable data on  $^{137}\text{Cs}$  burdens for the U. S. These wholebody and the food monitoring programs provide the basic input for this report.

## MATERIALS AND METHODS

The materials used for analysis were those provided by nature, in the form of willing human subjects for wholebody counting, and representative samples of their diets. Wholebody counting by means of NaI(Tl) spectrometry and low background shielding was done at Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Hanford, Idaho Operations Office (IDOO), Massachusetts Institute of Technology (MIT), and the University of California at Los Angeles (UCLA). The liquid scintillator systems were used at LASL. For the specifics of individual counting systems and for a more detailed and sophisticated treatment of wholebody counting, the reader is referred to the literature (9, 10, 11).

The basic approach for in vivo wholebody counting of <sup>137</sup>Cs (or for any other gamma-emitter for that matter) is to accumulate as high a net count from the subject as possible, compare with a standard reference source of the same radionuclide, and thus determine the body content of the subject being examined. There are a number of corrections which may be considered. Those for geometry (detector to subject), body size (height and weight being the common parameters), analyzer calibration, background variations, and such other peculiarities as may seem important in obtaining the best final value. The two common geometries used are: 1) A contour chair in which the subject is in a reclining position and the detector (crystal) is placed over the abdominal region at a fixed distance; 2) A troughlike bed in which the subject lies and which slides into an annular detector filled with liquid scintillator. The NaI crystal possesses high resolution, and

one may more easily discern, and hence cope with, extraneous radio-nuclides. The geometry is poorer because of the small solid angle, although the efficiency is good with a large detector (8" dia. by 4" thick NaI(Tl) crystal for example). Counting times usually run from 20 to 40 minutes. The liquid scintillator system on the other hand has nearly 4 pi geometry, also high efficiency, but poor resolution. Compensation of body movements while in the detector are automatically taken into account. Counts usually run 5 to 10 minutes, and the background is correspondingly higher.

It should be stressed that in addition to measuring  $^{137}\text{Cs}$ , whole-body counting also provides a measure of potassium content via measurement of  $^{40}\text{K}$ . The same is true of gamma-ray measurements of diet components, or total diet samples. This is a fortunate happenstance because here we have two chemically similar elements, both metabolized by biological systems and both measurable at the same time. Comparisons of the two, by the  $^{137}\text{Cs}/\text{K}$  ratio or other means, may often provide useful information.

Among the foods examined, milk has been studied the most extensively from several aspects; number of samples, locations of sampling, and the time period over which sampling has extended. The major categories of foods have been measured for  $^{137}\text{Cs}$  by the AEC Tri City Program and by both PHS and Food and Drug Administration (FDA) studies. The Tri City Program has an adult diet which consists of 16 groups of items which may be reduced to some 5 or 6 major categories, and an infant diet of milk, grain products, and meat (12). PHS and FDA have also

conducted composite diet sampling using both an institutional and a teenage diet as well as a wide range of less common foods, or products consumed in small daily amounts (13, 14). These various studies tend to indicate that the important sources of dietary  $^{137}\text{Cs}$  are included within the more routine sampling programs. There is, of course, always the chance that an item eaten in small abundance or by a small segment of the population will contain a high concentration of  $^{137}\text{Cs}$  and thereby assume unexpected importance.

Two principal analytical procedures have been followed in handling diet samples. The one more commonly used is gamma-ray spectrometry of bulk samples analyzed non-destructively. A variation of this involves drying or in some cases ashing samples to reduce the volume or mass of a given sample. The methods currently employed for sample analysis vary from place to place but basically use a NaI(Tl) detector, bulk samples mounted in a fixed relation to the detector, a low background shield, and a multichannel analyzer. Data reduction (spectrum stripping, least squares analysis, etc.) are normally done by computer (15, 16). A second approach is used in some instances, namely, radiochemical separations from suitably treated diet samples (17). This is more time consuming and at times less accurate due to losses of cesium in the ashing step and hence is less generally used at present.

#### RESULTS AND DISCUSSION

Concurrent measurements of  $^{137}\text{Cs}$  in diet and in man provide an opportunity for studying their interactions and interdependencies, and

for predicting the human body burden to be expected from various intake situations. The resultant radiation exposure from such intakes may also be determined. Perhaps of even greater interest is the chance to follow a widely dispersed environmental contaminant over a considerable period during which time it varies in absolute concentration and in the rate of contamination (deposition).

The rather strong dependence of the  $^{137}\text{Cs}$  concentration in the human diet and in man on the rate of fallout deposition is illustrated in Figure 1. These data collected at Argonne are representative of the Chicago area. The deposition of  $^{137}\text{Cs}$  is expressed in millicuries/km<sup>2</sup>/year (mCi/km<sup>2</sup>/year), and the concentrations of  $^{137}\text{Cs}$  in total diet and man are given in picocuries/g potassium (pCi/g K).

The development of ideas and the illustration of apparent trends and their interpretation will be based upon the data obtained from the Chicago area. This is not entirely arbitrary, since wholebody measurements and fairly detailed  $^{137}\text{Cs}$  data for infant and adult diets including milk are available for this locality. The PHS has data on  $^{137}\text{Cs}$  in milk for the Chicago area as part of their milk sampling network. These data may be compared and some notion of the fit between the two sampling efforts may be derived. Similarly, PHS and FDA have examined institutional diets from the Chicago area for  $^{137}\text{Cs}$ , and again a comparison between two programs is possible.

Several points are apparent in Figure 1: 1) The maximum  $^{137}\text{Cs}$  level in the diet occurs some 6-12 months after maximum deposition of

this radionuclide on the ground. 2) The highest  $^{137}\text{Cs}$  level in man occurs 4-5 months after the maximum level was reached in the diet. 3) All three curves decrease fairly rapidly after attaining their maximum values. The annual deposition drops with a half time of approximately 12 months, whereas the diet and wholebody levels both decrease with an effective half life of 18 months. 4) There is an increase in the  $^{137}\text{Cs}/\text{K}$  ratio by approximately a factor of 3 in going from diet to man. This latter phenomenon is a manifestation of the trophic level effect first identified by Pendleton and Hanson (18) in aquatic biota and later investigated in terrestrial ecosystems by Pendleton et al (19). The trophic level effect is one in which there is an increase in  $^{137}\text{Cs}$  relative to potassium through each step in the trophic scale. This amounts to an actual increase in the concentration of  $^{137}\text{Cs}$  per unit mass in the case of man and his diet because the concentration of potassium is essentially the same in both levels--approximately 2 grams potassium/kg wet weight. The constancy of potassium at these trophic levels is due to homeostatic control by the biological systems involved. The fact that  $^{137}\text{Cs}$  is enhanced relative to potassium is understandable on the basis of the longer biological half time for  $^{137}\text{Cs}$  (and stable cesium) in man relative to that for potassium. The biological half time for potassium in adults is 25 to 50 days compared to 50 to 150 days for  $^{137}\text{Cs}$ ; in fact, the enhancement in the  $^{137}\text{Cs}/\text{K}$  ratio appears to be in direct proportion to the ratio of cesium to potassium biological half times. It should be further

emphasized that  $^{137}\text{Cs}$  is present in trace amount, and hence the higher the concentration of this radionuclide in the diet, the greater will be the concentration in man because the  $^{137}\text{Cs}$  levels are well below those at which homeostatic or other biological control mechanisms will begin to become effective.

The  $^{137}\text{Cs}/\text{K}$  ratio observed in the infant, teenage, and the two adult diets sampled in the Chicago area at various times are shown in Figure 2. At any given time, comparable values of the ratio appear in all four diets. The total daily intake of  $^{137}\text{Cs}$  will increase directly with the amount of food consumed; however, the intake of potassium occurs at such a rate that the  $^{137}\text{Cs}/\text{K}$  ratio remains essentially constant. Differences in the increase in the  $^{137}\text{Cs}/\text{K}$  ratio between consumer and his diet as a function of age will alter the equilibrium body burden as will be discussed when we consider internal radiation dose.

One might presume that the similarity in  $^{137}\text{Cs}/\text{K}$  ratio seen in the various diets arises because of similarities in composition as regards dietary contributors of  $^{137}\text{Cs}$ . This is not true of the infant and adult diets, as far as milk is concerned, as is shown in Figure 3. The portion of the daily intake of  $^{137}\text{Cs}$  which derives from cow's milk in the infant case ranges from 75 to 90 percent, whereas in the adult diet between 20 and 50 percent of the  $^{137}\text{Cs}$  intake comes from milk.

It should also be noted that, on the average, the percentage of total dietary  $^{137}\text{Cs}$  contributed by milk decreased between 1962 and 1967. This is more apparent in the adult diet than in the infant diet in which milk is the

prime source of total nutrient as well as of  $^{137}\text{Cs}$ . The lessening importance of milk as a source of  $^{137}\text{Cs}$  reflects the decreasing rates of fallout, illustrated in Figure 1, following the cessation of large scale nuclear testing in the atmosphere at the end of 1962.

The relative importance of milk, grain products, meat, fruits, and vegetables as regards  $^{137}\text{Cs}$  in the adult diet (Chicago) is shown in Figure 4. All together these 5 food categories provide more than 95 percent of the total  $^{137}\text{Cs}$  intake of the average population. The primary mode of entry of  $^{137}\text{Cs}$  into the food supply is by means of adsorption on plant surfaces (leaves, stem, and other above ground portions of plants) and by means of foliar absorption in which the radionuclide is solubilized and passes through the leaf membrane and into the circulatory system of the plant (20). Cesium-137 has been shown to be strongly bound by clay particles in soils, and hence is not available in most soil types for uptake by plant roots (21). Thus the  $^{137}\text{Cs}$  in plant material depends upon the amount of deposition which occurs during the growing period of the plant in question rather than upon the total accumulation of this radionuclide in the soil.

Entry of  $^{137}\text{Cs}$  into cow's milk is by the very direct route of deposition on grass and other pasture plant surfaces, ingestion of forage by the cow, followed by transfer to milk of a portion of the ingested  $^{137}\text{Cs}$ . Changes in fallout rate quickly result in corresponding changes in the  $^{137}\text{Cs}$  level in milk due to the short biological link outline above. The close correlation between deposition and milk levels is further enhanced by the rapid loss, by physical means, of fallout from pasture vegetation. Because

of its perishable nature, there is normally little delay between the production of milk and its consumption by man. From the foregoing, there is a sound basis for monitoring radioactivity in milk during periods of nuclear testing as an indicator of dietary contamination.

The data for  $^{137}\text{Cs}$  in milk (Figures 3 and 4) and other diet categories (Figure 4) show considerable variability over relatively short time intervals. In part these variations are due to the randomness of sampling. To a fair degree, however, they reflect actual changes in fallout rate due to the sequence of nuclear test or to seasonal influences on fallout deposition.

The large increase in total diet  $^{137}\text{Cs}$  in October 1961, shown in Figure 1, is in response to the resumption of atmospheric nuclear testing in September of that year. The higher  $^{137}\text{Cs}$  levels seen in milk, as well as other food categories, during the spring and summer months reflect definite seasonal variations.

Fallout of  $^{137}\text{Cs}$ , as well as other radionuclides produced in the fission process, show increased levels in surface air during the spring months, the so-called "spring maximum" which is of meteorological origin (22,23). This increase in radioactivity in surface air results from enhanced stratosphere-troposphere transport of debris during the late winter and early spring months. The spring months (here taken to be April through July) are also a time of relatively higher precipitation in the middle latitudes; for example the Great Lakes region receives 50 to 55 percent of the annual rainfall

during April through July. This period coincides with much of the active growing season as well as the pasture feeding season for cows and cattle. The result is higher deposition levels occurring in conjunction with the growing and outdoor grazing season over much of the United States.

The typical pattern of  $^{137}\text{Cs}$  in milk from mid-latitudes is one in which there are higher levels in spring and early summer, with decreases by autumn as the fallout rate diminishes (Figure 4). When cattle are taken indoors for the winter, levels may increase again as cows are put on feed grown during spring and summer which contains correspondingly higher  $^{137}\text{Cs}$  levels than the autumn pasture. Accordingly as fallout levels are successively increasing each spring (1962-63) or decreasing (1964-67) this pattern, due to changes from outdoor to indoor feeding and vice versa, may reverse or become less pronounced. To a degree, fresh fruits and vegetables also show seasonal trends. Thus a portion of the dietary intake of  $^{137}\text{Cs}$  does vary strictly as a function of the time of year.

There are two important diet categories which tend to smooth out seasonal variations as well as changes from one year to another. These categories are grain products and meat, which themselves are strongly related because of the practice of grain-feeding livestock prior to marketing. Grain from a given harvest may be used as feed, or made into flour, which may be consumed over a year's time, thus nullifying any seasonal variation. In addition grain harvested in a given year may be consumed over a period of several years, and may not even reach the market for a year or more after harvest. This delay in marketing tends to minimize annual fluctuations in  $^{137}\text{Cs}$  levels, and may actually produce a

lag in the appearance of maximal  $^{137}\text{Cs}$  levels in this diet component. Such a time lag between production and consumption is the probable cause for the increase in the relative importance of grain products and meat as sources of  $^{137}\text{Cs}$  in the human diet from 1962 to 1967 as shown in Figure 4.

Thus although milk is an important (and rapid) contributor of  $^{137}\text{Cs}$  to man, the total intake of  $^{137}\text{Cs}$  does not vary as abruptly as this foodstuff might indicate, and as a consequence the food intake as a whole varies more slowly, and the body burden comes more nearly into equilibrium with intake.

It should be pointed out that there are significant differences in dairy feeding practices throughout the United States, both as regards the time spent on pasture, and the type of feeds which are involved.

Thus the pattern of seasonal variations of  $^{137}\text{Cs}$  in milk shown in Figures 3 and 4 is representative only of the northern portion of the U.S., with the exception of the Pacific northwest where mild winters make possible pasture feeding throughout the year. Similarly outdoor feeding is done over much of the southern U. S., and field irrigation or drylot feeding is conducted in the southwest. Rainfall patterns are also different over the country as is the magnitude of of spring maximum. The net result is more uniform deposition, and resultant levels of  $^{137}\text{Cs}$  in milk, throughout the entire year in some sections of the U. S. Typical concentrations of  $^{137}\text{Cs}$  in milk as a function of time for various geographic regions and feeding regimens are illustrated in Figure 5. The cold winter, indoor feeding

region is represented by Pittsburgh, the mild winter northwest by Seattle; the mild winter, nearly full-time outdoor grazing region by Montgomery, Alabama; and the arid regions of the southwest by Albuquerque. The weighted average for the entire United States milk supply is also shown in Figure 5. These data are all from the PHS milk network.

As previously stated, the differences in the concentration of  $^{137}\text{Cs}$  in milk from one region to another are closely related to differences in the rate of fallout deposition on the vegetation used for feed, as well as to the feeding routine itself. Total deposition, which is the time integral of the deposition rate, is a more thoroughly documented quantity. The cumulative deposition of  $^{137}\text{Cs}$  over the U. S. for 1959 through 1965 derived from the HASL Fallout Network  $^{90}\text{Sr}$  deposition data (24) using a value of 1.6 for the  $^{137}\text{Cs}/^{90}\text{Sr}$  ratio (25) is shown in Figure 6. There is clearly a factor of 2 to 3 between  $^{137}\text{Cs}$  deposition in various regions of the United States. Differences of this order are also apparent in the  $^{137}\text{Cs}$  data in milk shown in Figure 5.

Milk is, in general, produced and consumed locally, and as a consequence should have the strongest regional influence on the total diet levels of  $^{137}\text{Cs}$ . In certain seasons, the same will be true for locally grown fruits and vegetables; whereas during the winter nationwide distribution of these foodstuffs from the southern growing regions will apply. The principal grain-growing region in the U.S. is in the Great Plains, an area of fairly uniform  $^{137}\text{Cs}$  deposition (Figure 6), with

subsequent distribution over the nation. Similarly major meat production is relatively restricted geographically, and the practice of grain feeding (again that grown primarily in the Great Plains region) before marketing may tend to yield a more uniform concentration of  $^{137}\text{Cs}$  in meat, even though produced locally. Realizing that there are regional differences in growing seasons, amount and rate of  $^{137}\text{Cs}$  deposition, as well as in food eating preferences throughout the country, one would expect to find differences in whole-body  $^{137}\text{Cs}$  levels.

The average  $^{137}\text{Cs}$  body burden expressed in pCi/g K at each of 7 sites extending from Massachusetts to California and from Washington state to New Mexico are shown in Figure 7. In addition to the mean value of all measurements, the average variation about the mean is also indicated for the Argonne data. For the six other sites only the mean values are plotted. Between 10 and 20 individuals were wholebody counted by each laboratory at the beginning of the intercomparison study in 1961-62. The number of individuals examined has decreased with time and there have been substitutions of people from time to time.

Two features of the data in Figure 7 are worth emphasizing; 1) The striking similarity in the temporal behavior of wholebody  $^{137}\text{Cs}$  at all 7 sites, and 2) The  $^{137}\text{Cs}$  body burdens in adults from a low fallout region (Los Angeles and New Mexico) are well within a factor of 2 of those observed from a higher fallout region (Massachusetts and New York). In fact the envelope formed by the deviation from the mean of the Argonne measurements encompasses the bulk of the data points from the other laboratories.

The wholebody measurements of  $^{137}\text{Cs}$  are consistent with the dietary intake postulated above in which grain products and meats are fairly uniformly labelled with  $^{137}\text{Cs}$  on a nationwide scale, and milk reflects local variations in  $^{137}\text{Cs}$  deposition. Examination of  $^{137}\text{Cs}$  institutional diets from the various regions considered in the wholebody counting program confirm the fact that the  $^{137}\text{Cs}$  intake is fairly constant, at any given time, throughout the country, and such differences as do occur may be attributed to differences in the concentration of this radionuclide in milk. We may then proceed on the basis that we understand, or can at least explain, the variations in diet level and the body burden of  $^{137}\text{Cs}$  in the U.S.

Before considering the radiation aspects of the  $^{137}\text{Cs}$  body burden, mention should be made of a group, albeit a relatively small one, of the population which contain appreciably higher levels of  $^{137}\text{Cs}$  than those discussed above. These are the Alaskan Eskimos. Because of the peculiarities of the lichen-caribou-man food chain, influenced by the nutrient deficient arctic environment, caribou-eating Eskimos attain  $^{137}\text{Cs}$  levels 50 to 100 times greater than those shown in Figure 7 (26). People depending to a substantial degree on freshwater fish for food are also likely to have  $^{137}\text{Cs}$  body burdens several times greater than those observed among people eating a more diversified diet. (27). It is not the intent of this paper to discuss these special groups in detail; however, the reader should be aware of their existence in order to place the

dosimetric aspects of  $^{137}\text{Cs}$  in a realistic perspective.

The relatively uniform distribution of  $^{137}\text{Cs}$  throughout the body results in a correspondingly uniform radiation exposure to the entire body including the gonads. Hence potential genetic damage is of primary concern from internal  $^{137}\text{Cs}$ , and the 30-year integral dose is the more crucial in this regard. This contrasts with the case of  $^{90}\text{Sr}$  in which the irradiation of bone marrow (70-year integral dose) and the potential induction of leukemias is of prime consideration.

The average  $^{137}\text{Cs}$  body burden for the U. S. closely approximates that observed in Chicago in both concentration and its variations with time. Thus the Argonne wholebody data have been used to calculate the average dose to adults on the basis that for the standard 70 kg man, 1pCi  $\text{Cs}^{137}$  /g K present in the body for one year delivers a dose of 0.02 mrad (28). The exposure prior to 1955 was calculated based upon  $^{137}\text{Cs}$  deposition data obtained at Argonne. The annual dose commitments from 1953 through 1967 for the average total U. S. adult population are shown in Table I. Extrapolation to future times was done using the diet and body burden trend shown in Figure 1, which indicates an effective half time of about 18 months for  $^{137}\text{Cs}$  in the diet and in man through mid-1967. The 30- and 70-year integral dose calculated on the assumption that this fairly short environmental half time for  $^{137}\text{Cs}$  is maintained, and no further input of  $^{137}\text{Cs}$  occurs, are tabulated in Table II.

This procedure leads to a lower limit of the integral dose which is in accord with the observed diminishing fallout rate as the stratospheric reservoir becomes depleted. It makes no provision, however,

for the following: 1) Differences in metabolism (biological half time) of  $^{137}\text{Cs}$  as a function of age, or of potassium intake level, 2) The effect of a possible long-term  $^{137}\text{Cs}$  compartment in bone, 3) Inputs due to further atmospheric nuclear tests, and 4) Recycling or other means whereby a portion of the  $^{137}\text{Cs}$  already deposited may become available for plant uptake. These factors will now be considered in some detail.

1) Effects of age and potassium intake.

In regard to  $^{137}\text{Cs}$  biological half time as a function of age, Pendleton et al (29) and Rundo et al (30) have observed half times of 15 to 20 days in infants. McCraw (31) in his review paper on half life as a function of age, points out that a smooth relationship exists from infancy to approximately 20 to 25 years of age, with the half time varying from 15 days to 100 days. There is a suggestion that half time may decrease with old age; however, other factors such as decreased diet, weight loss, etc., make this only a supposition at present (31). Pendleton et al (29) have also noted that the  $^{137}\text{Cs}/\text{K}$  ratio in young children is essentially the same as in their diet. Thus the shorter biological half time tends to minimize the  $^{137}\text{Cs}$  burden in children, and hence the radiation dose, by allowing more rapid equilibration between body burden and diet.

From a total dose standpoint, the adult population (for which we fortunately have more data) is the more heavily exposed with the dose to teenagers somewhere in between the adult and infant exposures.

However, we should also bear in mind that the younger age group, although exposed to a lesser degree, is the more radiation sensitive, and hence may be subject to greater risk.

The integral dose for the years 1962 through 1965 has been calculated for infants and teenagers using the  $^{137}\text{Cs}/\text{K}$  diet ratios shown in Figure 2. The increase in the  $^{137}\text{Cs}/\text{K}$  ratio between diet and wholebody was taken as unity for infants and 2.0 for teenagers. The integral dose to adults for this same time interval was obtained from Table I. The results for infants, teenagers, and adults respectively are: 3.8; 6.0; and 7.5 mrads. This indicates adults to be the critical population in the sense of receiving the highest dose.

The work by Pendleton *et al* (29) has shown that the value of the quantity

$$\frac{(^{137}\text{Cs}/\text{K})_{\text{Man}}}{(^{137}\text{Cs}/\text{K})_{\text{Diet}}}$$

increases as the daily intake of potassium increases. The teenage diet postulates a potassium intake of 5.2g/day, leading to an increase on the  $^{137}\text{Cs}/\text{K}$  ratio by a factor of 4 between teenager and his diet. On this basis, instead of the 6.0 mrads stated previously as the dose to teenagers for 1962 through 1965, the dose would be 12.0 mrads. Teenagers would then become the critical population in regard to exposure.

However, there are not sufficient wholebody data on teenagers and adults from the same locale to test out this hypothesis.

## 2) Cesium 137 in bone.

The work of Yamagata and Yamagata (32) in 1960 identified concentrations

of <sup>137</sup>Cs in bone which were comparable to contemporary levels in muscle, and in rib bone the concentration was higher than in muscle. Similar observations were made by Anderson and Gustafson (33) in rib bone collected in 1961 before the resumption of atmospheric testing. Investigations by May et al (34) in 1962-63 showed levels in bone which are lower than in muscle, and in 1965 the West German Federal Ministry of Scientific Research (35) reported data on concentrations of <sup>137</sup>Cs in bone and muscle which indicated that approximately 5 percent of the body burden was present in bone. The question of greatest importance then is whether or not this cesium is tightly bound in bone or is present in a superficial state. The fact that levels in bone during the high body burden period of 1963-1964 were fairly low (yet higher than in 1960-61) may indicate a long biological half time, and hence a slow equilibration between diet levels and those present in bone. Periodic assay of bone <sup>137</sup>Cs appears to be one way of answering this question. Another possibility is that as the total body burden decreases the amount present in bone will become of relatively greater importance and one would then expect to see the body burden decrease more slowly with time. Figure 8 indicates the possible trend assuming that 5 percent of the burden was in bone at the beginning of 1965. According to Figure 8, by the end of 1970 half of the total body burden will be in bone and the curve will show a distinct departure from the present trend. Continued atmospheric testing could mask such a trend, and indeed the recent injection into the stratosphere of nuclear debris from the Chinese Communist event of a few MT on June 17, 1967,

(36), probably will produce a measurable increase in body burden within the next year or so. The  $^{137}\text{Cs}$  body burden anticipated from an arbitrary injection of 5MT of fission products into the atmosphere is also indicated in Figure 8. The dose in 30- and 70-year intervals from a bone compartment is presented in Table II, under the assumption that no significant new inputs of  $^{137}\text{Cs}$  occur.

3) Inputs from further atmosphere testing.

A further factor to consider is the continuous injection of modest amount of  $^{137}\text{Cs}$  into the biosphere by atmospheric testing. Such injections must indeed be highly speculative, and for the sake of argument a level of 5MT of fission per year was chosen, which results in an average deposition of a total of 3 mCi/km<sup>2</sup> in mid-latitudes ( $30^{\circ}$  -  $50^{\circ}$ N) and provides an intake level of 2 pCi/g K and a body burden of approximately 6 pCi/g K. One is certainly free to scale the magnitude of injection up or down. The dose from this level of testing would be 0.12 mrad/year, and the 30- and 70-year integral doses from this source are indicated on Table II.

4) Recycling or continuing availability of deposited  $^{137}\text{Cs}$ .

The continued availability of  $^{137}\text{Cs}$  for plant and animal uptake is even more difficult to assess due to the almost complete lack of data. This lack of data is one cogent reason for the continuation of the food sampling programs as these will directly indicate the degree of dietary contamination resulting from radiocesium already on the ground. The assumption is generally made that  $^{137}\text{Cs}$  in foods depends almost entirely upon fallout coming down during or shortly prior to the growing season. On the basis of relatively sketchy experimental evidence the portion of

<sup>137</sup>Cs in foods which derives from past deposition ranges somewhere between 0 and 10 percent (37). As time goes by it is conceivable that deposited <sup>137</sup>Cs may be weathered and become biologically available, or it may be windblown and hence deposit like fresh fallout, so that a persistent low level contamination may occur. For the sake of computation this persistent level has been taken to be equivalent to 5MT of <sup>137</sup>Cs deposited per year, and hence the dose is the same, 0.12 mrad/year as in the case above in which 5MT is injected per annum. The result of a persistent input of this magnitude on the 30- and 70-year doses is also shown in Table II.

The doses computed and listed in Table II are for the average population and extremes above and below these levels are to be expected. Smaller groups of the population may receive lower doses because of eating habits, for example vegetarians who do not use dairy products might receive the lowest dose. On the other hand heavy meat eaters, and people eating quantities of freshwater fish might receive considerably larger radiation exposures.

Furthermore, the distribution of <sup>137</sup>Cs in man (as is true of <sup>137</sup>Cs and other trace elements in biological systems in general) has been shown to be log-normal (38). Hence certain probabilities of exceeding a specific exposure relative to a given mean exist, and vary according to the parameters of the distribution.

## CONCLUSIONS

The relatively uniform levels of  $^{137}\text{Cs}$  in the human diet which exist in the United States have made it possible to compute with some validity a mean radiation exposure for the U. S. adult population. Annual radiation exposures have followed the patterns of fallout deposition quite closely. The high body burdens observed in 1959 and 1964 were accompanied by correspondingly high radiation exposures (Table I). A close relation exists between diet and body burden and, through early 1967, these parameters were declining with essentially an 18 month half time. Adults receive a somewhat higher dose than do children because of longer biological half time for  $^{137}\text{Cs}$  in the former, and an increment in the  $^{137}\text{Cs}/\text{K}$  ratio in going from diet to man which is not so pronounced in the case of the young. Teenagers may receive more exposure from  $^{137}\text{Cs}$  due to their higher potassium intake.

The mean dose to the U. S. population based upon empirical measurements of  $^{137}\text{Cs}$  body burdens was 15 mrads from 1953 through 1967. Projections, based upon a continuation of the present rate of  $^{137}\text{Cs}$  loss, yield figures of 17.5 mrads for the 30- and 70-year dose commitments respectively, there being essentially no additional exposure after 1980 (Case A, Table II).

The commitment to the whole body from a postulated bone compartment for  $^{137}\text{Cs}$  retention is calculated to be 2.0 and 3.4 mrads for 30- and 70-year intervals, (Case C, Table II); restricting this  $^{137}\text{Cs}$ , and resultant dose, to bone, the 30- and 70-year bone doses are 20 and 34 mrads (Case D, Table II). Contamination from  $^{137}\text{Cs}$  slowly entering into the biosphere taken as

equivalent to the  $^{137}\text{Cs}$  from 5MT of fission will produce increments of 1.9 and 6.7 mrads in the 30- and 70-year dose summed from 1953 (Case B, Table II). Similarly an input of 5MT of fission products into the atmosphere per year would produce a further increment of 1.9 and 6.7 mrads in the 30- and 70-year doses (Case B, Table II). A worst case estimate, involving all of the foregoing parcels to the whole body is 23.3 mrads for the 30-year dose and 34.3 mrads for the 70-year dose (Case E, Table II). These should be compared with the dose for the same time intervals which derives from natural sources, cosmic radiation, natural radioactivity in the environment, and internal natural emitters which amounts, on the average, to 120 mrads per year or 3600 and 8400 mrads for 30 and 70 years respectively.

It is somewhat more difficult to compute a national average for the external dose to man from fallout radionuclides because of the variability of fallout as illustrated in Figure 6. Data collected at Argonne were used to compute the dose from external sources at that locality from 1953 through 1966 and for 30 and 70 years commencing in 1953 as shown in Table III. A summary of the 1953 - 1967, 30- and 70-year doses are also indicated for several other situations in Table III.

It is of interest to compare the 1953 to 1967 and the 30- and 70-year integral doses discussed above with the dose to bone from  $^{90}\text{Sr}$  as is done in Table III. If we assume that the external dose from fallout and the internal dose from  $^{137}\text{Cs}$  pertains to bone as well as to the soft tissue of the body, then the total dose to bone is more than twice

that attributed to  $^{90}\text{Sr}$  alone over the next few decades. It is also apparent from Table III that the external exposure dose exceeds that from internal  $^{137}\text{Cs}$  by roughly a factor of 7. It should be stressed that these relationships apply strictly to the Chicago area, and will vary depending upon fallout deposition.

#### SUMMARY

The results of diet and whole body counting programs have been used to derive the mean integral dose to the average U. S. population from  $^{137}\text{Cs}$ . The uniformity of body burden throughout the adult population is attributed to the homogenizing effect of food distribution within the country. Cesium-137 is clearly dependent to a first approximation on fallout rate and diminishes with an environmental half time of about 18 months. The internal dose from  $^{137}\text{Cs}$  has increased the total dose attributable to fallout by approximately 10 percent over a period of years. The total dose from fallout amounts to only a few percent of that from natural background over the times considered.

The study of  $^{137}\text{Cs}$  in the human environment may have application to the study of other pollutants and may at the very least provide useful guidelines for such studies.

#### ACKNOWLEDGMENTS

We should like to acknowledge the assistance of the many people, too numerous to mention individually, who have supplied additional data, comments, and criticism of this manuscript.

### REFERENCES

1. Katcoff, Seymour; "Fission-Product Yields from Neutron-Induced Fission", Nucleonics 18, #11, November 1960.
2. Miller, C. E., and Marinelli, L. D.; "Gamma-ray Activity of Contemporary Man", Science 124, p. 122, July 20, 1956.
3. Anderson, E. C., Schuch, R. L., Perrings, J. D., and Langham, W. L.; "The Los Alamos Human Counter", Nucleonics 14, #1, p. 26, January 1956.
4. Anderson, E. C., Schuch, R. L., Fisher, W. R., and Langham, W. L.; "Radioactivity of People and Foods", Science 125, #3261, p. 1273, June 28, 1957.
5. Langham, W. L., and Anderson, E. C.; "Entry of Radioactive Fallout into the Biosphere and Man", Bul. Swiss Acad. Med. Sci. 14, p. 434 (1958). (Symposium on Noxious Effects of Low Level Radiation - Lausanne, Mar. 27-29, 1958.)
6. Moore, W., and Comar, C. L.; "Absorption of Caesium-137 from the Gastrointestinal Tract of the Rat", Internal J. Radiation Biol. 5, p. 247, (1962).
7. Rondo, J., and Taylor, B. T.; "The Assessment of Radioactive Caesium in Man", In Proc. Symposium on Assessment of Radioactive Body Burdens in Man, held by the IAEA, Intl. Labor Org. and WHO, Heidelberg, May 11-16, 1964, Assessment of Radioactivity in Man, Vol. II, p. 3, IAEA, Vienna, 1964.
8. Pendleton, R. C., Mays, G. W., Lloyd, R. D., and Church, B. W.; "A Trophic Level Effect on <sup>137</sup>Cs Concentration", Health Physics 11, #12, p. 1503, December 1965.

9. Maletskos, C. J., Dean, P. N., Lough, S. A., and Miller, C. E., "Intercomparison of the Reliability of Body Cesium-137 Measurements on Human Beings", Health Physics 13, #12, p. 1307, December 1967.
10. Anderson, E. C., Hayes, F. N., and Heibert, R. D.; "Walk-in Human Counter", Nucleonics 16, #8, p. 106, August 1958.
11. Langham, W. H.,; "Applications of Whole Body Liquid Scintillation Counters", Symposium on Radioactivity in Man, Vanderbilt University Sch. of Med., April 18-19, 1960, Ed. By Geo. R. Meneely, M. D.
12. Rivera, J., and Harley, J. H.; "HASL Contributions to the Study of Fallout in Food Chains", U. S. Atomic Energy Commission Health and Safety Laboratory, HASL-147, July 1, 1964.
13. National Center for Radiological Health, Public Health Service, "Radionuclides in Institutional Diet Samples, January-March 1967 and Annual Summary 1966", Radiological Health Data and Reports 8, #10, October 1967.
14. Division of Pharmacology, Food and Drug Adm., "Radionuclides in Diets for Teenagers," Radiological Health Data and Reports, Vol. 7, #8, Aug. 1966, Vol. 6, #7, July 1965, and Vol. V, #4, April 1964.
15. Low, K.; and Edvardson, K.; "Caesium-137 in Swedish Milk and Soil", Nature 183, p. 1104, (1959).
16. Brar, S. S., Gustafson, P. F., and Muniak, S. E.; "Cs <sup>137</sup> in Various Chicago Foods", U. S. AEC Health and Safety Laboratory, Fallout Program Quarterly Summary Rpt.; HASL - 146, p. 225, July 1, 1964.
17. Rivera, J.; "Cesium - 137 in Tri-City Diets - Results for 1965", U. S. AEC Health and Safety Laboratory, Fallout Program Quarterly Summary Rpt., HASL - 174, January 1, 1967.

18. Pendleton, R. C., and Hanson, W. C.; *Proceedings of the Second International Conference on Peaceful Uses of Atomic Energy*. United Nation 18, p. 419, (1958).
19. Pendleton, R. C., Mays, C. W., Lloyd, R. D., and Church, B. W.; *IBID*.
20. Russell, R. S.; "The Passage of Fission Products Through Food Chains". *In Radio-isotopes in the Biosphere*, edited by R. S. Caldecott and R. A. Syder, U. Minnesota, Minneapolis, 1960.
21. Nishita, H., Kowalewsky, B. W., Steen, A. J., and Larson, K. H.; "Fixation and Extractability of Fission Products Contaminating Various Soils and Clays: I, Sr90, Y91, Ru 106, Cs 137, and Ce 144", *Soil Sci.* 81, p. 317, (1956).
22. Machta, L.; Statement. Hearings before the Special Subcommittee on Radiation of the Joint Committee on Atomic Energy Congress, First Session on Fallout from Nuclear Weapons Tests, Vol. I, p. 778, May 5, 6, 7, and 8, 1959.
23. Stewart, N. G., Osmond, R. G. D., Crooks, R. N., and Fisher, E. M. R.; "The World-wide Deposition of Long-lived Fission Products from Nuclear Test Explosions", AERE. HP/R 2354, (1957).
24. "Sr<sup>90</sup> and Sr<sup>89</sup> in Monthly Deposition at World Land Sites", U. S. AEC Health and Safety Laboratory, *Fallout Program Quarterly Summary Rpt.*, HASL-182 (Appendix), July 1, 1967.
25. Gustafson, P. F., "Ratio of Cs<sup>137</sup> and Sr<sup>90</sup> Radioactivity in Soil", *Science* 130, p. 1404, (1959); U. N. Document A/AC.82/G/L. 438.

26. Hanson, W. C., and Eberhardt, L. L.; "Effective Half-times of Radionuclides in Alaskan Lichens and Eskimos". In Proceedings Second Radioecology Symposium held in Ann Arbor, Mich., May 15-18, 1957.
27. Gustafson, P. F.; "Comments on Radionuclides in Aquatic Ecosystems". In Proceedings of an Intl. Symposium held in Stockholm April 25-29, 1966, on Radioecological Concentration Processes, p. 853, edited by B. Aberg and F. P. Hungate.
28. Annex A, Part IV, "Doses from Environmental and Internal Contamination", Rpt. of U. N. Scientific Committee on the Effects of Atomic Radiation, Supplement No. 14 (A/5814), New York, 1964.
29. Pendleton, R. C., Mays, C. W., Lloyd, R. D., and Church, B. W.; IBID.
30. Rundo, J., Mason, J. I., Newton, D., and Taylor, B. T.; "Biological Half-life of Caesium in Man in Acute and Chronic Exposure", Nature 200, #4902, p. 188, 1963.
31. McCraw, T. F.; "The Half-time of Cesium-137 in Man", U. S. AEC, Health and Safety Laboratory, Fallout Program Quarterly Summary Rpt., HASL-164, p. 281, Oct. 1. 1965.
32. Yamagata, N.; "Cesium-137 Levels in Human Body, Aug. 1958 - Aug. 1960", U. N. document A/AC,82/G/L.691.
33. Anderson, R. W., and Gustafson, P. F.; "Concentration of Cesium-137 in Human Rib Bone", Science 137, p. 668, August 31, 1962.
34. Nay, U., Stahlhoffen, W., and Kaul, A.; "Distribution of Cesium-137 in Samples Consisting of Soft Tissue, Bone and Bone-Marrow (Preliminary Results)", In Proc. Symposium on Assessment of Radioactive Body

34. Burdens in Man, held by the IAEA, Intl. Labor Org. and WHO, Heidelberg, May 11-16, 1964, Assessment of Radioactivity in Man, Vol. II, p. 49, IAEA, Vienna, 1964.
35. Umweltradioaktivitat und Strahlenselbstung. Bericht 1/66, 2/66, 3/66, 4/66. Der Bundesminister Fur Wissenschaftliche Forschung, Bad Godesberg, June 1, 1966.
36. U. S. AEC Press Release #K-148, June 19, 1967.
37. Russell, R. S.; "Uptake and Accumulation of Radioactive Substances in Terrestrial Plants -- The Radiobiological Aspect", In Proceedings of Intl. Symposium, Radioecological Concentration Processes held in Stockholm, Session E, April 25-29, 1966.
38. Ellett, W. H., and Brownell, G. L.; "The Time Analysis and Frequency Distribution of Caesium-137 Fall-out in Muscle Samples". In Proc. Symposium on Assessment of Radioactive Body Burdens in Man, held by IAEA, Intl. Labor Org. and WHO, Heidelberg, May 11-16, 1964, Assessment of Radioactivity in Man, Vol. II, p. 155, IAEA, Vienna, 1964.

TABLE I  
<sup>137</sup>Cs IN MAN AND CALCULATED INTERNAL DOSE

| <u>Year</u>             | <u>Average Body Burden</u><br>( pCi/ g K) | <u>Annual Dose*</u><br>( mrads) |
|-------------------------|-------------------------------------------|---------------------------------|
| 1953                    | 2**                                       | 0.04                            |
| 1954                    | 7**                                       | 0.14                            |
| 1955                    | 14.5                                      | 0.29                            |
| 1956                    | 31.5                                      | 0.63                            |
| 1957                    | 36.5                                      | 0.73                            |
| 1958                    | 47                                        | 0.94                            |
| 1959                    | 57                                        | 1.14                            |
| 1960                    | 48                                        | 0.96                            |
| 1961                    | 32.5                                      | 0.65                            |
| 1962                    | 43                                        | 0.86                            |
| 1963                    | 79.5                                      | 1.59                            |
| 1964                    | 140                                       | 2.80                            |
| 1965                    | 111.5                                     | 2.23                            |
| 1966                    | 69                                        | 1.38                            |
| 1967                    | 41                                        | 0.82                            |
| Total 1953 through 1967 |                                           | 15.2 mrads                      |

\* On the basis that 1 pCi <sup>137</sup>Cs/g K in man produces a dose of 0.02 mrad/year.

\*\* Estimated from deposition data.

TABLE II

INTEGRAL DOSE FROM  $^{137}\text{Cs}$  FOR THE PERIOD 1953-1967  
AND FOR 30- AND 70-YEARS AFTER 1953

| <u>Exposure Condition</u>                                                 | <u>Dose in mrads per Time Interval</u> |                 |                 |
|---------------------------------------------------------------------------|----------------------------------------|-----------------|-----------------|
|                                                                           | <u>1953-1967</u>                       | <u>30 Years</u> | <u>70 Years</u> |
| A. Current situation with no new input of $^{137}\text{Cs}$               | 15.0                                   | 17.5            | 17.5            |
| B. $^{137}\text{Cs}$ dose from 5MT input per year starting in 1967        | --                                     | 1.9             | 6.7             |
| C. Whole-body dose from bone compartment $^{137}\text{Cs}$ , no new input | 0.7                                    | 2.0             | 3.4             |
| D. Bone dose from bone compartment $^{137}\text{Cs}$ , no new input       | 7.0                                    | 20              | 34              |
| E. Worst case whole-body dose A + 2B + C                                  | 15.7                                   | 23.3            | 34.3            |
| F. Worst case bone only A + 2B + D                                        | 22.0                                   | 41.3            | 64.9            |

I  
-  
C43

TABLE III

WHOLE BODY AND BONE INTEGRAL DOSE FROM VARIOUS SOURCES  
DURING 1953-1967, 1953 + 30 YEARS, AND 1953 + 70 YEARS

| <u>Conditions &amp; Source</u>                  | <u>Dose in mRads per Time Interval</u> |                        |                        |
|-------------------------------------------------|----------------------------------------|------------------------|------------------------|
|                                                 | <u>1953-1967</u>                       | <u>1953 + 30 Years</u> | <u>1953 + 70 Years</u> |
| A. Worst case whole-body from <sup>137</sup> Cs | 15                                     | 23                     | 34                     |
| B. Worst case bone from <sup>137</sup> Cs       | 22                                     | 41                     | 65                     |
| C. External fallout, no new inputs              | 100 mR*                                | 175 mR*                | 270 mR*                |
| D. Bone from <sup>90</sup> Sr                   | 16<br>(89)**                           | --                     | 170***                 |
| E. Natural background                           | 1800                                   | 3600                   | 8400                   |

\* Reduced to 40 percent of open field value due to shielding.

\*\* To children 4 years of age in 1967.

\*\*\* Individuals who were children in 1967.

Figure 1

<sup>137</sup>Cs IN SOIL, DIET, AND MAN

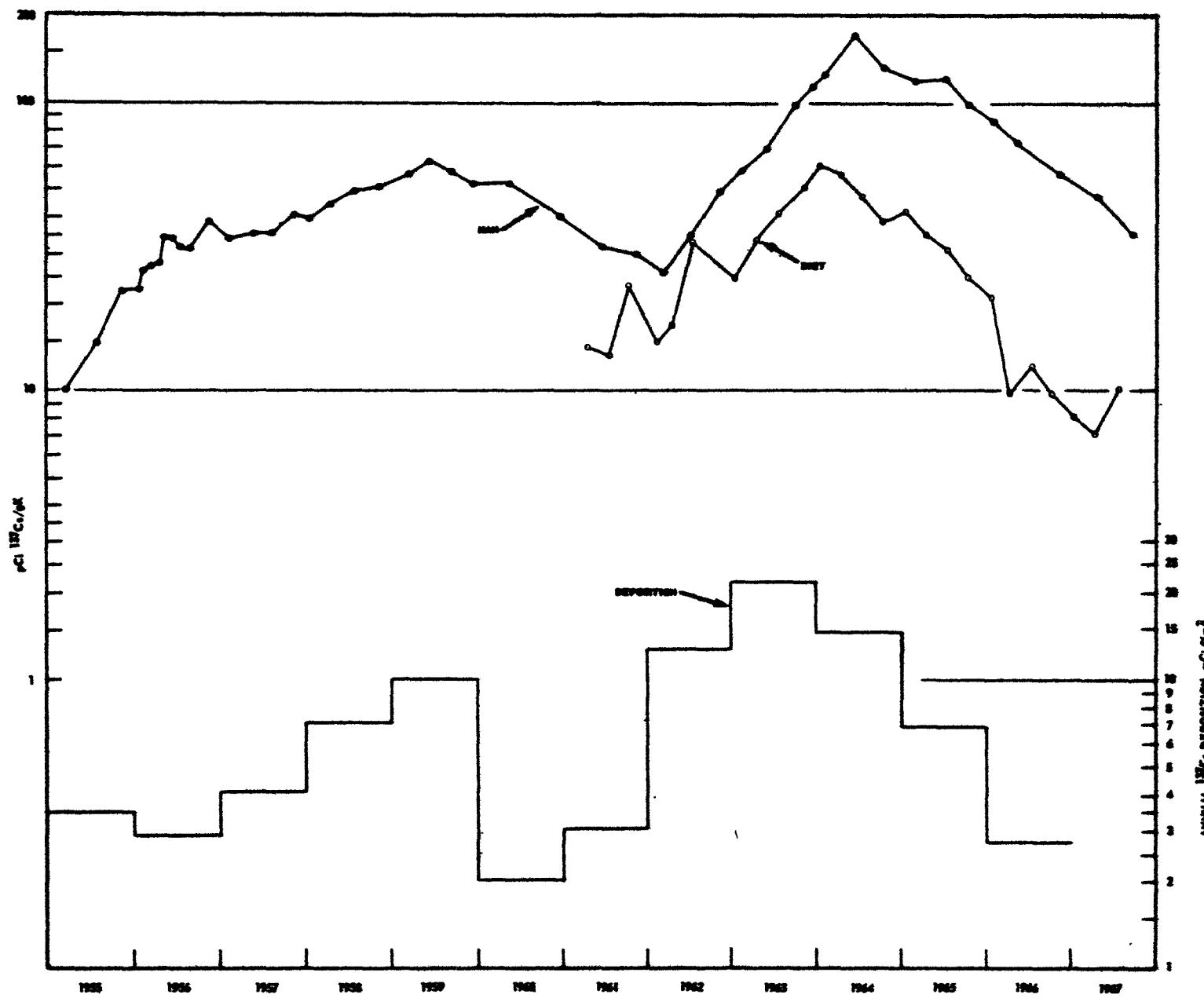



Figure 2

**$^{137}\text{Cs}$  IN VARIOUS DIETS (CHICAGO, ILLINOIS)**

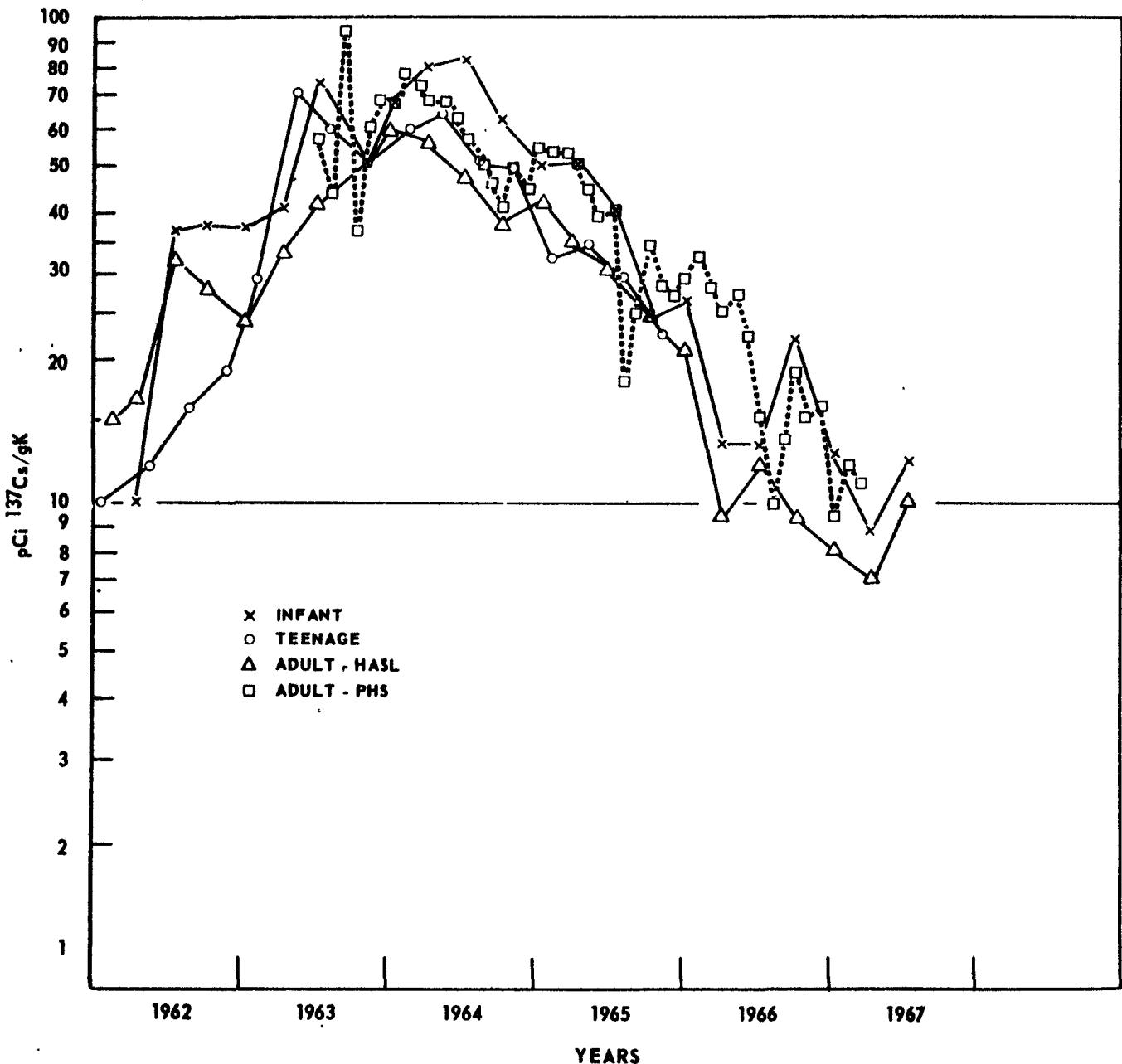



Figure 3  
 **$^{137}\text{Cs}$  INTAKE FROM COW'S MILK**

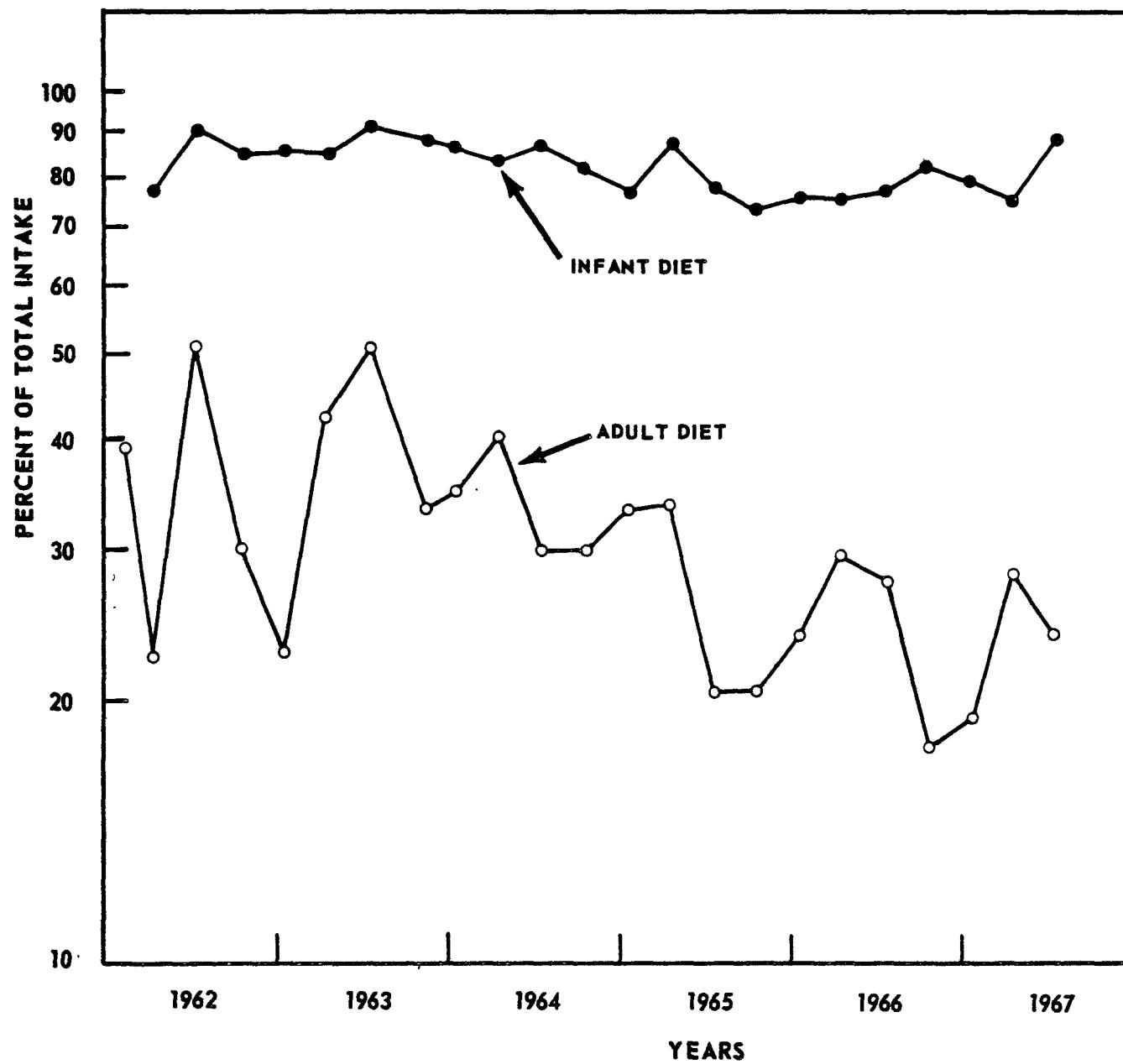



Figure 4

PARTITION OF CHICAGO DIET

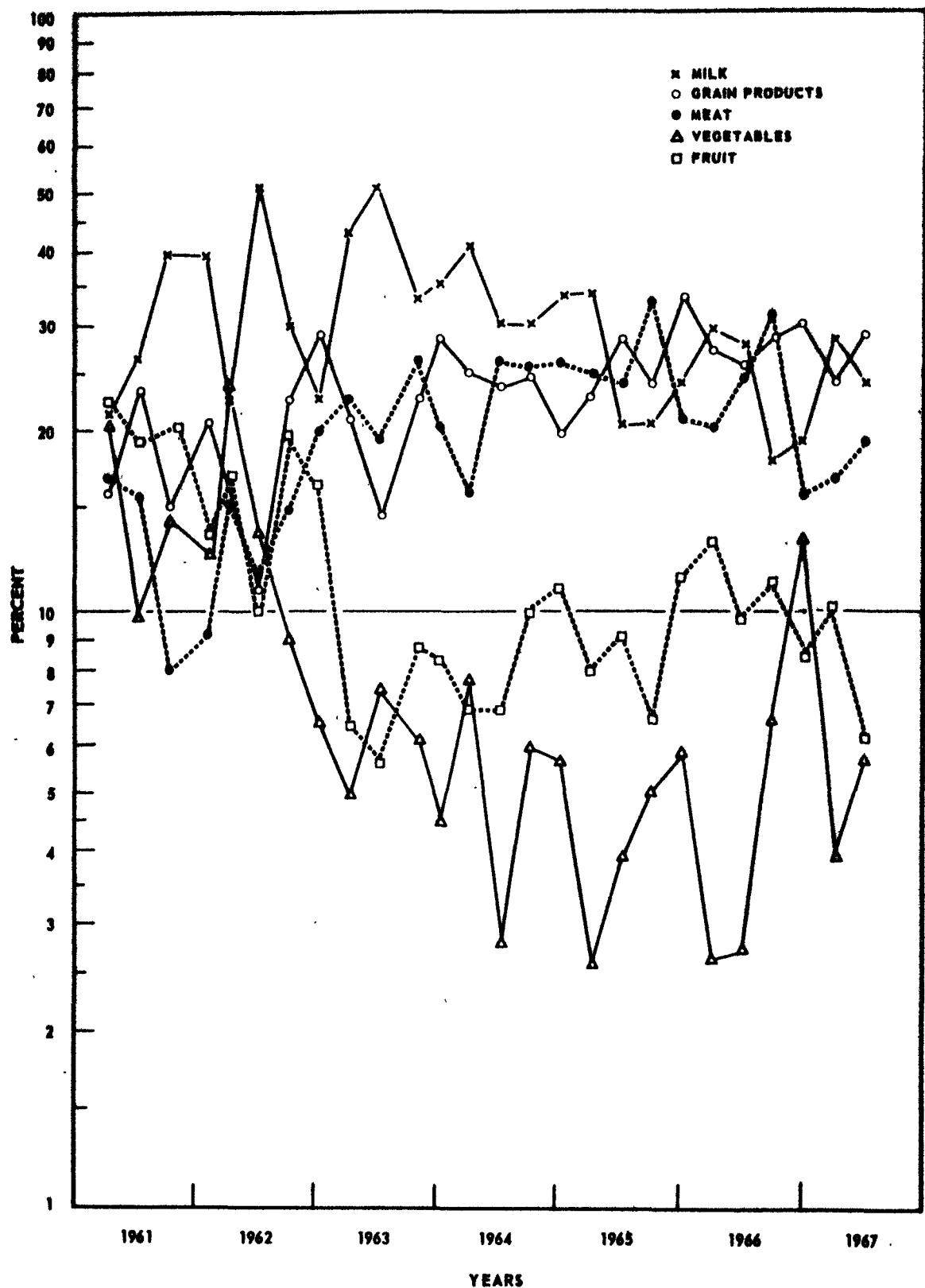



Figure 5

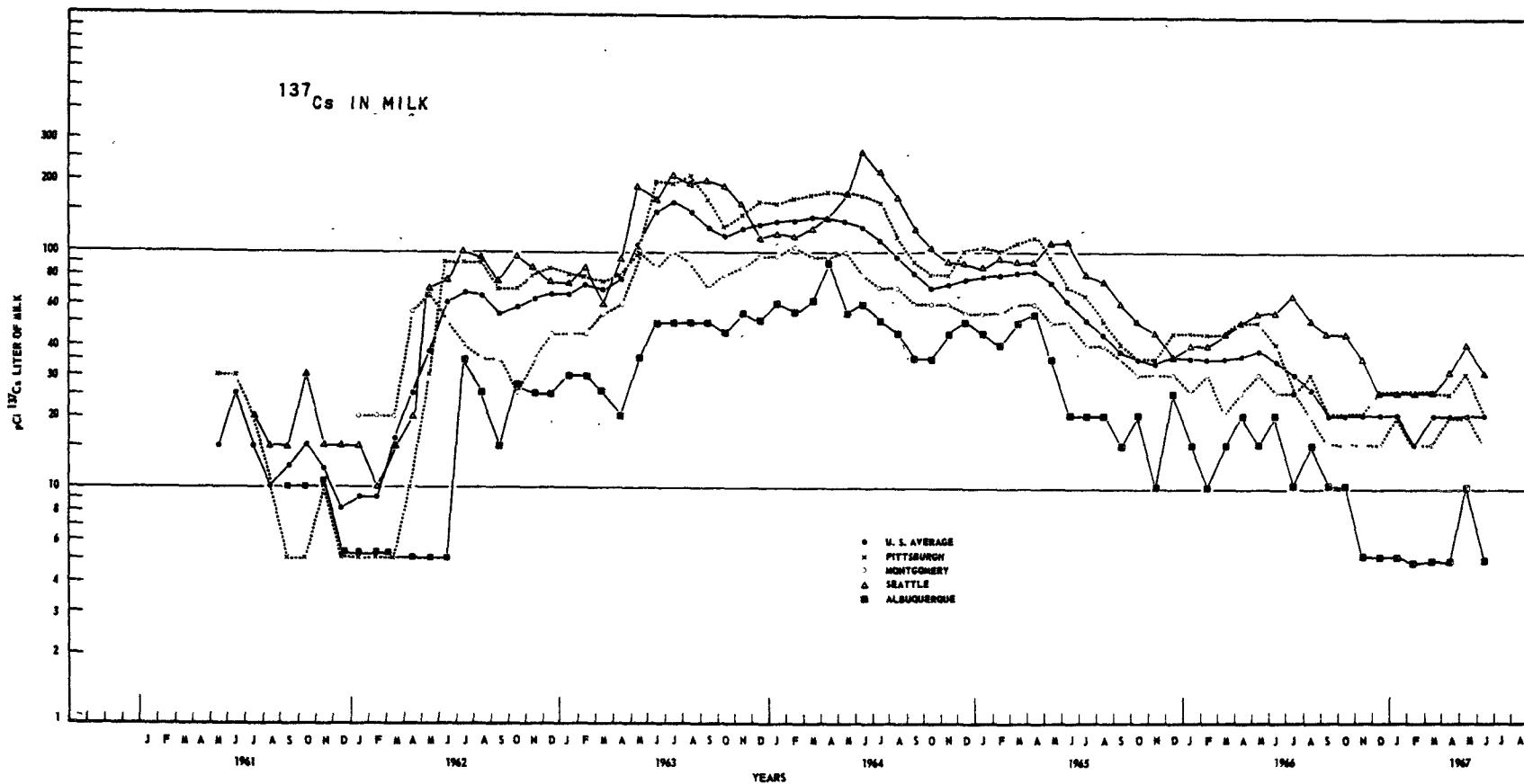



Figure 6

## CESIUM-137 CUMULATIVE DEPOSITION FOR PERIOD 1959-1965

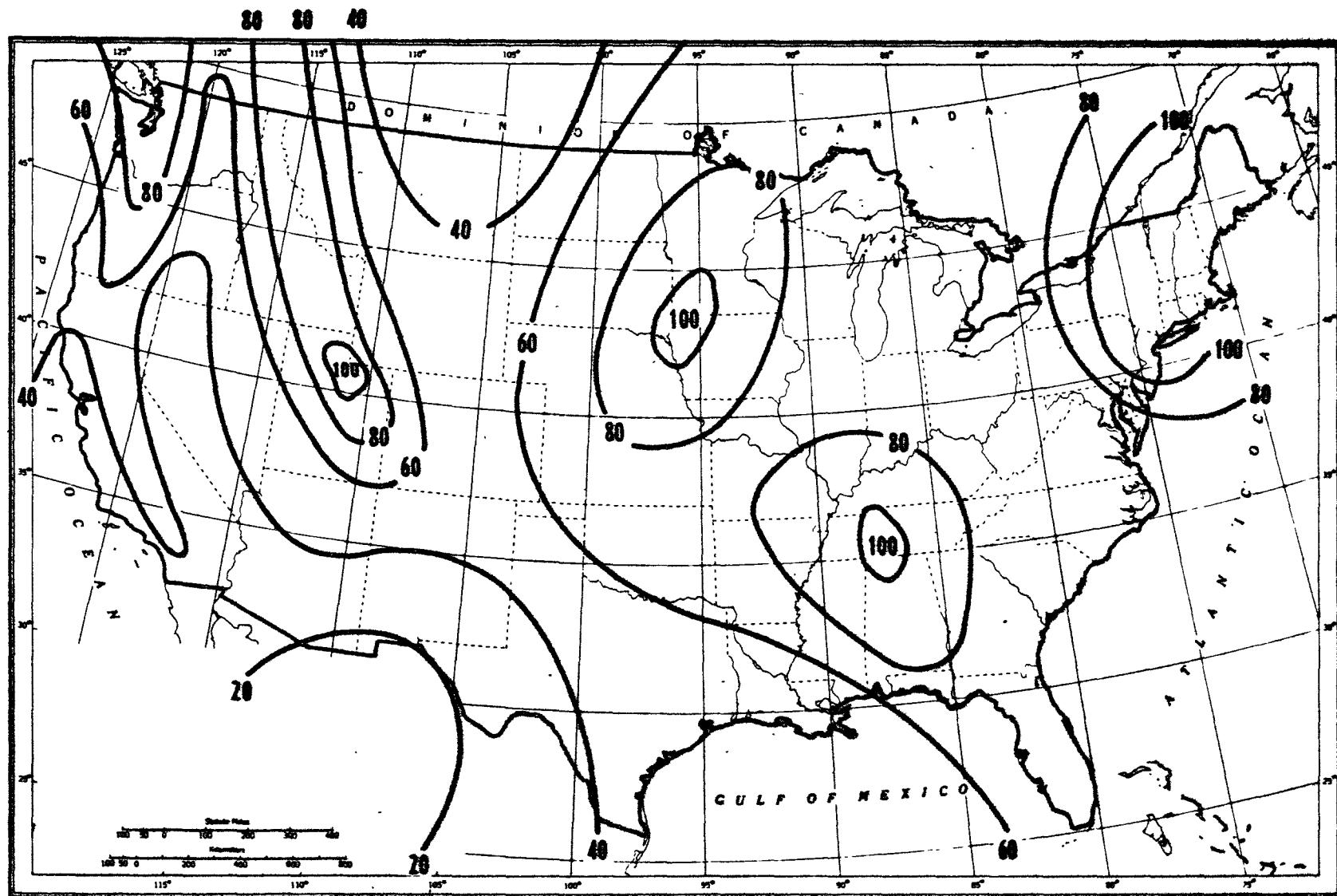



Figure 7

$^{137}\text{Cs}$  IN MAN

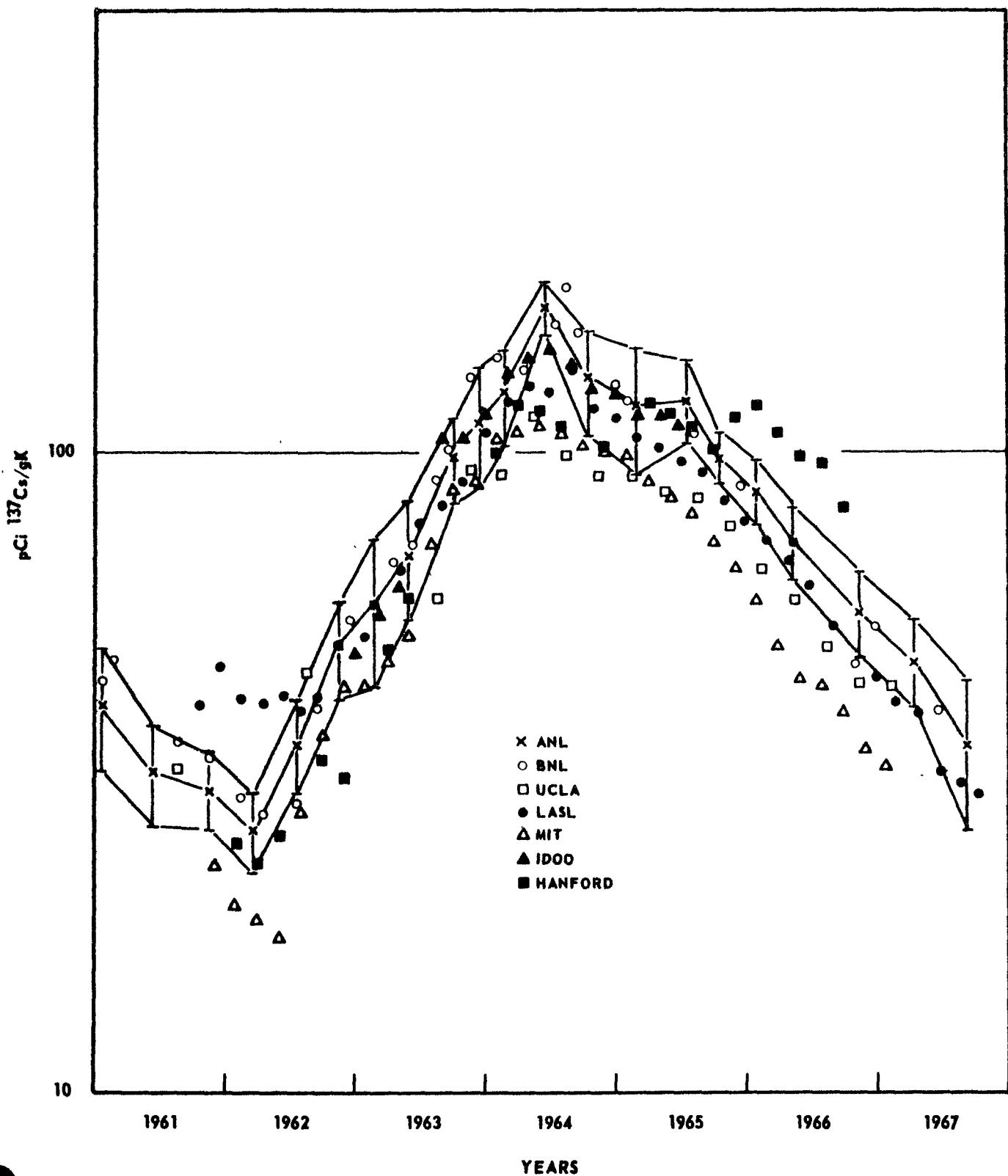
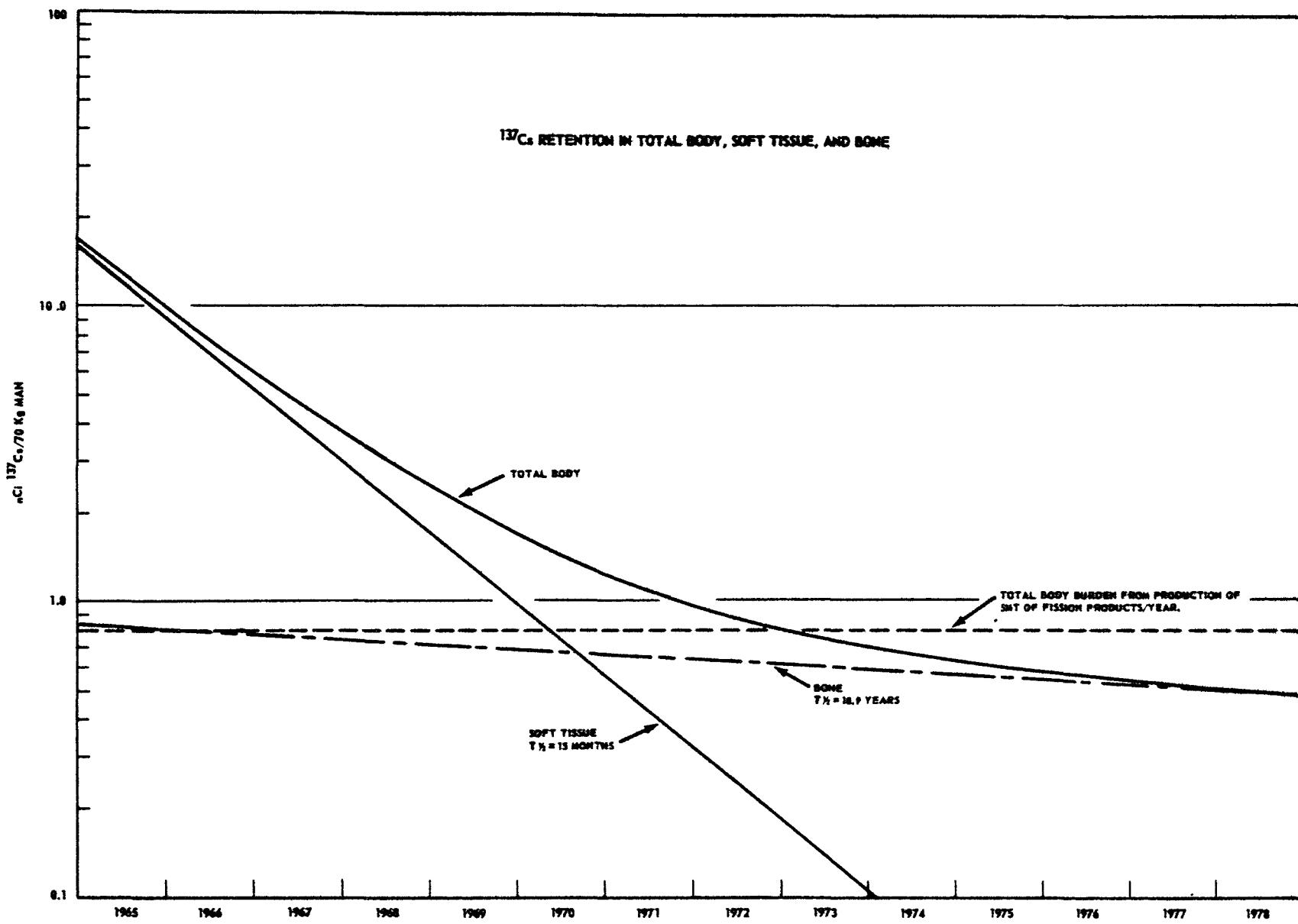




Figure 8



X The Seasonal Stratospheric Distribution of Cadmium-109,  
Plutonium-238 and Strontium-90

by

K. Telegadas  
Air Resources Laboratories  
Environmental Science Services Administration

1. Introduction

Two unique radioactive tracers used to study atmospheric motions are Cadmium-109 (Cd-109) and Plutonium-238 (Pu-238). Background information on these two isotopes is given in Table I (List et al, 1966). Strontium-90 (Sr-90) is another isotope, which although not unique, has been the subject of many measurement programs and used in atmospheric motions studies.

Since there are numerous sources of data for these three isotopes, the primary purposes of this report are to document all of the known stratospheric data in the form of latitudinal cross sections of mean seasonal stratospheric concentrations and to list their inventories in the hope that it will be beneficial to the understanding and modeling of stratospheric motions through the use of radioactive tracers.

In this paper only certain general observations will be discussed. A more detailed report on the possible meteorological factors that caused changes in the observed concentration of the three isotopes was presented at the International Union of Geodesy and Geophysics, Lucerne, Switzerland during October 1967 (List and Telegadas, to be published).

## 2. Data

All of the radioactivity data discussed here results from the filtration of particles from the atmosphere. Samples up to about 70,000 feet (21 km) were obtained by the Defense Atomic Support Agency and by a cooperative effort of the U.S. Department of Defense, Atomic Energy Commission and Environmental Science Services Administration using aircraft. Samples from about 80,000 to 135,000 feet (24 to 41 km) were obtained by the USAEC high-altitude balloon program. The publications from which these data were extracted are listed in Table II.

### a. Cd-109

Cadmium-109, placed high into the atmosphere on July 1962 by a nuclear rocket detonation, was first detected over Mildura, Australia (34°S) on December 1962 at about 105,000 feet (Salter, 1965a). The data and analysis covers the period from December 1962 to August 1966.

Due to the half-life of Cd-109 (410 days) and the relatively small volumes of air collected by the balloon samplers the data in 1965 and 1966 contain large uncertainties (Feely et al, 1966b). The stratospheric analysis of Cd-109 concentrations after August 1965 was restricted to aircraft altitudes.

### b. Pu-238

The inadvertent burnup of a SNAP-9A nuclear power source containing Pu-238 occurred in April 1964. It was not until August 1964 that this material was first detected, again by the AEC sponsored balloon operation at Mildura, Australia (Salter, 1965b). The data and analysis of this isotope encompasses the period August 1964 to February 1967.

### c. Sr-90

Radioactive Sr-90 is produced in all nuclear explosions, it is not

a unique tracer as are Cd-109 and Pu-238. The presentation of the Sr-90 data is in the form of mean seasonal concentration isopleths for the period. March 1963 to February 1967.

Due to recalibration of the Sr-90 standards the reported balloon values measured by Isotopes Inc. from March 1963 to November 1964 should be reduced by 17% and from December 1964 to June 1966 by 8.5% (Krey, personal communication). This correction was applied to the Sr-90 data.

Prior to 1966 all isotopic concentration data were reported in units of disintegrations per minute per 1000 standard cubic feet of air (dpm/1000 SCF). Beginning in 1966 the concentration data were reported in units of picocuries per 100 standard cubic meters of air (pCi/100 SCM). The concentration isolines presented in this report are all in units of dpm/1000 SCF. Multiply dpm/1000 SCF by 1.6 to obtain pCi/100 SCM or by 0.013 to obtain pCi/kg of air.

### 3. Analysis and General Comments

Individual balloon samples are represented on the latitudinal diagrams by crosses. The enormous amount of aircraft data was stratified into latitude and altitude bands and average monthly concentrations were computed. Each monthly average is represented by a solid circle on the cross sections. A schematic tropopause, denoted by the heavy line on the cross sections separate the stratosphere and troposphere.

#### a. Cd-109

The limits of detection of Cd-109 concentrations correspond to  $5 \times 10^{-18}$  parts of the tracer produced per 1000 SCF of air (List et al, 1966), about 3 dpm/1000 SCF for production of 250 kilocuries. Feely et al, (1966b) account for about 75 kilocuries in their atmospheric inventory and explains

the discrepancy as due to both the uncertainty in the production value and also the escape of some Cd-109 into the exosphere. The limit of detection from a 75 kilocurie source would correspond to a concentration of about 1 dpm/1000 SCF. This concentration was therefore used as the lower limit in the analyses. Figures 1-15 show the series of seasonal latitudinal cross sections for Cd-109 concentrations.

The first detection of this tracer in the Southern Hemisphere, shown in figure 1, occurred over the Mildura balloon station at 34°S while figure 2 denotes its arrival at the San Angelo balloon station (31°N). An examination of figures 1-15 indicates that the maximum concentrations observed in the Southern Hemisphere progress downward in time in the polar regions, with a minimum in the equatorial regions. This feature is less discernible in the Northern Hemisphere.

The 1 dpm/1000 SCF isoline, (the approximate limit of detection), has been used as an indicator of the first arrival time at various levels and latitudes. This isoline can be seen to progress downward, more rapidly in the fall and winter seasons than during the spring and summer. Figure 7 indicates the arrival of Cd-109 debris into the lower polar stratospheric compartment of the Southern Hemisphere during the winter (June-August) of 1964 (see fig. 43 for the identification of stratospheric compartments), while surface air measurements show its arrival in the spring (September-November) of 1964 (Krey, 1966a, b, c). This same feature is noticed in the Northern Hemisphere where figure 9 indicates the arrival of Cd-109 into the lower polar stratosphere during the winter (December-February) of 1964-1965, while the surface air measurements indicate its arrival in the spring of 1965.

b. Pu-238

There is a small background of Pu-238 in the atmosphere as a result of nuclear testing. Prior to the SNAP-9A event it corresponded to about 0.03 dpm/1000 SCF (List et al, 1966). The ratio of background Pu-238 to Pu-239 from nuclear testing is fairly uniform and therefore departures from this ratio could be used to discriminate the burnup of Pu-238 from the testing background. List et al (1966) have used a concentration of 0.2 dpm/1000 SCF with an activity ratio of Pu-238 to Pu-239 of 0.2 or larger as positive evidence of Pu-238 from SNAP-9A. These numbers were used as a lower limit in the analysis of the Pu-238 data presented in the series of seasonal latitudinal cross sections (figures 16-26).

Features similar to those observed for Cd-109 are apparent in the Pu-238 cross sections. The first detection at the highest altitude of the balloon collection at 34°S is shown in figure 16 while figure 18 indicates its first detection in the Northern Hemisphere. The maximum concentrations in the Southern Hemisphere are seen to progress downward as a function of time as did the Cd-109 maximum concentrations. Again, this feature is not as noticeable in the Northern Hemisphere.

The 0.2 dpm/1000 SCF isoline is seen to progress downward, more rapidly in the fall and winter seasons than during the spring and summer. The arrival of this debris into the lower polar stratospheric compartment of the Southern Hemisphere is shown in figure 23 (March-May 1966) while its arrival in the comparable zone of the Northern Hemisphere is shown in figures 25 and 26 (September 1966-February 1967). This debris was first detected at the surface in precipitation samples collected at Melbourne, Australia and at New York (Volchok, 1967). The highest deposition values of Melbourne were

observed during the Southern Hemisphere spring of 1966 while at New York, it occurred during the Northern Hemisphere spring and summer of 1967 (Volchok, personal communication).

c. Sr-90

The seasonal latitudinal cross sections for Sr-90 concentrations are shown in figures 27 to 42. The highest observed concentrations are in the northern polar stratosphere at about 60,000 feet (Figs. 27 to 32). For this period (March 1963-August 1964) no data were available from the equatorial regions above 70,000 feet. In October 1964 the USAEC extended its balloon operation to the Panama Canal Zone ( $9^{\circ}\text{N}$ ). As seen in figure 33 and subsequent figures the observed concentrations at about 80,000 feet in equatorial latitudes are as high or higher as those in the northern polar regions at about 60,000 feet. The persistence of a maximum concentration in the equatorial regions is indicative of an absence of large scale organized circulation in that area. The Cd-109 and Pu-238 analyses which indicate a polar maximum and equatorial minimum supports this interpretation.

4. Stratospheric Inventories of Cd-109, Pu-238, and Sr-90

The stratospheric inventories of Cd-109, Pu-238 and Sr-90 are based on all available data. In this study, the stratosphere has been divided into 8 compartments (4 in each hemisphere) as shown schematically in figure 43. This partitioning together with the latitudinal cross sections presented earlier (figure 1-42) can be used to ascertain where the largest uncertainties exist in the compartment inventories due to lack of data. The number in each compartment represent the percentage of the total stratospheric mass between the tropopause and 120,000 feet.,  $1.1 \times 10^{18}$  kilograms of air. Similar stratospheric inventories of Cd-109, Pu-238, Sr-90 and other radioisotopes have been presented by Feely et al (1966a, b).

An examination of average monthly meteorological cross sections for 1 year during the IGY period (U.S. Weather Bureau, 1961) indicate that the average height of the equatorial tropopause oscillates between about 50,000 to 55,000 feet while the mean polar tropopause varies from about 30,000 feet in winter to 45,000 feet in summer. As will be shown later, the relatively large difference in the polar tropopause height does not seriously affect the inventory calculations when one uses the compartments shown schematically in figure 43.

a. Cd-109

The seasonal stratospheric burdens of Cd-109 from December 1962 to August 1966 have been calculated from the distributions shown in figures 1 to 15. The seasonal burden calculations for each stratospheric compartment are summarized in Table 3 and shown graphically in figure 44. Tabulation of the data to tenths of a kilocurie is not intended to imply this degree of accuracy, but is used to avoid any anomalies in the calculation that could rise from rounding off.

As mentioned previously, the large uncertainties in the balloon samples beginning in early 1965 prevented calculation of the stratospheric burden of the upper stratosphere compartments after November 1964. The total Northern and Southern Hemisphere stratospheric inventory is presented in fig. 44 up to this time, and a stratospheric inventory to 70,000 feet is presented for the total period under investigation. The time history of the Cd-109 increase and depletion for the four Northern Hemisphere stratospheric compartments is shown in figure 44b. The progression of the significant inventories is from the upper stratosphere into the middle polar compartment, then to the equatorial portion of the stratosphere and finally into the lower polar

stratosphere. This same sequence of events is noticeable for Southern Hemisphere (fig. 44c). The inventory for June-August 1963 in the Southern Hemisphere upper stratosphere was interpolated since the computed burden appeared to be inconsistent with the period before and after this date. This inconsistency suggests that the upper stratosphere was not well mixed at this time.

The stratospheric burdens of Cd-109 presented by Feely et al (1966a, b) were divided into 4 compartments, 2 in the Northern and Southern Hemispheres above and below 70,000 feet. Feely found the maximum global stratospheric burden to be 75 kilocuries during the period September-December 1964 while Table 3 indicates a burden of 70 kilocuries for September-November 1964. The Northern and Southern Hemisphere burdens below 70,000 feet of Feely et al. were 9 and 34 kilocuries respectively compared to 9 and 39 from Table 3. The largest differences existed in the upper stratosphere where only limited balloon data are available for an analysis.

b. Pu-238

The stratospheric burdens of Pu-238 from June 1964 to February 1967 have been calculated from the distributions shown in figures 16 to 26. The seasonal inventory calculations for each stratospheric compartment are summarized in Table 4 and shown graphically in figure 45.

The Pu-238 burdens for the various compartments show features similar to the Cd-109 inventories. The first appearance noticed in the upper stratospheric compartment of both hemispheres progresses downward into the middle polar stratosphere then to the equatorial stratosphere and finally into the lower polar stratosphere.

The stratospheric burdens of Pu-238 presented by Feely et al (1966b) were divided into compartments comparable to those presented in Table 4, although for slightly different periods. Comparison of the individual and total compartmental burdens listed in Table 4 with those of Feely show very little differences. A total stratospheric burden of 12 kilocuries of Pu-238 was found during the period January-April 1966 by Feely which, compares very well with the inventory of 13 for March-May 1966 in Table 4. After this period the total stratospheric inventory appears to decrease. Since 17 kilocuries were injected into the stratosphere Feely et al. (1966b) suggest that possible causes of the difference between observed and input amounts of Pu-238 are (1) "collections efficiencies of the balloon samplers are less than 100%" and (2) "concentration measured at 34°S by the balloon program are often not representative of those in the southern polar stratosphere". Since Pu-238 did not enter the troposphere in any significant quantities until after September-November 1966, see figure 25, deposition would not account for this discrepancy.

c. Sr-90

The stratospheric burdens of Sr-90 from March 1963 to February 1967 have been calculated from the distributions shown in figures 27 to 42. The seasonal inventory calculations for each stratospheric compartment are summarized in Table 5 and shown graphically in figure 46.

The stratospheric burdens of Sr-90 presented by Feely et al. (1966a, b) were divided into a Northern and Southern Hemisphere compartment. The total Northern burdens listed in Table 5 compare well with Feely's calculations. For the total Southern Hemisphere burdens, those listed in Table 5 are consistently higher than Feely's calculations by as much as 25%. This

difference appears to arise primarily from the analyses in the southern equatorial region above 70,000 feet where data are virtually non-existent.

One noteworthy feature of figure 45 (b, c) that stands out is the cyclical behavior of the lower polar stratospheric burden. In general, for both hemispheres the amount of Sr-90 is a maximum in the winter and spring seasons and a minimum in the summer and fall periods. This suggest an influx of debris from above during fall and winter. In the spring, the period of maximum deposition, debris is transferred into the troposphere. Another possible explanation for the cyclical behavior is that the use of a fixed volume for the lower polar stratosphere compartment for all seasons, introduced a bias in the calculations. As noted previously, the polar tropopause oscillates between 30,000 to 45,000 feet during the year. Integration of the concentrations in this compartment were performed by assuming the mean winter and spring polar tropopause extends from 90° to 50° at 30,000 feet and from 50° to 30° at 35,000 feet (U.S. Weather Bureau, 1961). For the summer and fall period the mean polar tropopause is assumed to extend from 90° to 50° at 35,000 feet and from 50° to 30° at 45,000 feet. A comparison of these average seasonal tropopause boundaries with the fixed boundary method indicates a decrease of the winter and spring burdens by about 10% of those listed in Table 5 and a little less than 10% for the summer and fall burdens. These differences could not explain the cyclical behavior of the lower polar stratospheric burden.

##### 5. Remarks

The main purpose of this report has been to present a series of latitudinal cross sections of the stratospheric concentrations of Cd-109, Pu-238 and Sr-90 in one publication using all available data. A detailed

discussion of the possible causes for the observed changes in the stratospheric distribution and inventories is reserved for a future paper.

Acknowledgement

This work has been supported by the Fallout Studies Branch, Division of Biology and Medicine, U.S. Atomic Energy Commission.

References

Feely, H.W., P.E. Biscaye, B. Davidson and H. Seitz, Eleventh Progress Report on Project Stardust, Report 1821, Defense Atomic Support Agency, Washington, D.C., July 1966a.

Feely, H.W., D. Katzman and C.S. Tucek, Sixteenth Progress Report on Project Stardust, Report 1905, Defense Atomic Support Agency, Washington, D.C., December 1966b.

Krey, P.W., Surface Air Sampling Program 1964, Health and Safety Laboratory, USAEC Publ. HASL-165, pp. 220-248, January 1966a.

\_\_\_\_\_, Surface Air Sampling Program, Health and Safety Laboratory, USAEC Publ. HASL-171, pp. 288-320, April 1966b.

\_\_\_\_\_, Surface Air Sampling Program, Health and Safety Laboratory, USAEC Publ. HASL-173, pp. II-79-II-112, October 1966c.

List, R.J., L.P. Salter and K. Telegadas, Radioactive Debris as a Tracer for Investigating Stratospheric Motions, Tellus, 18, pp. 345-354, 1966.

List, R.J. and K. Telegadas, Using Radioactive Tracers to Develop a Model of the Atmosphere, paper presented at IUGG Meeting in Lucerne, Switzerland, October 1967 (to be published).

Salter, L.P., High Altitude Sampling Program, Health and Safety Laboratory, USAEC Publ. HASL-158, pp. 214-244, April 1965a.

\_\_\_\_\_, Detection of Debris from a SNAP-9A Failure, Health and Safety Laboratory, USAEC Publ. HASL-155, pp. 300-301, January 1965b.

U.S. Weather Bureau, Monthly Mean Aerological Cross Sections Pole to Pole along Meridian, 75°W for the IGY Period, Washington, D.C., 1961.

Volchok, H.L., Fallout of Plutonium-238 from the SNAP-9A Burnup, Health and Safety Laboratory, USAEC Publ. HASL-181, pp. I-16-I-20, April 1967.

Data References

1. Feely, H.W., J.P. Friend, R.J. Lagomarseno, D.C. Bogen, P.E. Biscaye and J.E. Hardaway, Flight Data and Results of Radiochemical Analyses of Filter Samples Collected During 1963, under Project Stardust, HASL-168, March 15, 1966.
2. U.S. Government, Global Atmospheric Radioactivity, June 1963, August-September 1963, February 1964 and August 1964, HASL-165, pp. 301-311, January 1966.
3. U.S. Government, Global Atmospheric Radioactivity November 1963, May 1964, November 1964, May 1965, August 1965, and November 1965, HASL-182, pp. III-30-III-47, July 1967.
4. Kauranen, P., Distribution of Radioactive Nuclides in the Stratosphere, Annual Progress Report to the USAEC, University of Arkansas, December 1963.
5. Palmer, B.D., Distribution of Strontium-90 and Cerium-144 in the Stratosphere, Annual Project Report to the USAEC, University of Arkansas, December 1964.
6. Kalkstein, M.I., A. Thomasian, and J.V. Nikula, Cadmium-109 Results up to 20 Km., Proc. of the Second AEC Conference on Radioactive Fallout from Nuclear Weapons Tests, USAEC Rep. CONF-765, November 1965.
7. Salter, L.P., High Altitude Sampling Program HASL-149, pp. 54-99, October 1964.
8. \_\_\_\_\_, High Altitude Sampling Program, HASL-158, pp. 214-244, April 1965.
9. Krey, P.W., High Altitude Balloon Sampling Program, Stratospheric Pu-238 Concentrations, HASL-165, pp. 249-258, January 1966.

10. Feely, H.W., D.C. Bogen, R.J. Logamarseno, J.E. Hardaway and M.W.M. Leo, Flight Data and Results of Radiochemical Analyses of Filter Samples Collected During 1964 under Project Stardust, HASL-169, March 1966.
11. Krey, P.W., High Altitude Balloon Sampling Program, HASL-171, pp. 223-284, April 1966.
12. \_\_\_\_\_, High Altitude Balloon Sampling Program, HASL-172, pp. II-21-II-62, July 1966.
13. \_\_\_\_\_, High Altitude Balloon Sampling Program, HASL-173, pp. II-21-II-73, October 1966.
14. Feely, H.W., D. Katzman, P.E. Biscaye, J.P. Panaccione and E.R. French, Flight Data and Results of Radiochemical Analyses of Filter Samples, Collected During 1965 under Project Stardust, HASL-176, July 1966.
15. U.S. Government, Global Atmospheric Radioactivity, February 1965, HASL-172, pp. I-64-I-71, July 1966.
16. Feely, H.W., D. Katzman, J.B. Panaccione, and E.R. French, Flight Data and Results of Radiochemical Analyses of Filter Samples Collected During 1966 under Project Stardust, HASL-173, pp. III-2-III-25, Oct. 1, 1966, HASL-174, pp. III-2-III-27, January 1967, HASL-181, pp. III-2-III-23, April 1967, HASL-182, pp. III-2-III-29, July 1967.
17. Krey, P.W., High Altitude Balloon Sampling Program, HASL-174, pp. II-3-II-38, January 1967.
18. \_\_\_\_\_, High Altitude Balloon Sampling Program, HASL-182, pp. II-6-II-52, July 1967.

Table I. Unique Radioactive Tracers

|                     | <u>Cd-109</u>      | <u>Pu-238</u>   |
|---------------------|--------------------|-----------------|
| Date of injection   | July 1962          | April 1964      |
| Type                | Nuclear Test       | Re-entry Burnup |
| Altitude            | 400 Km             | 40-60 Km        |
| Latitude            | 17°N               | Indian Ocean    |
| Source (Kilocuries) | 250 <sup>(a)</sup> | 17              |
| Half-life           | 410 days           | 86 years        |

(a) Best estimate.

Table II. Data References

| Isotope |          | <u>1963</u>   | <u>1964</u>    | <u>1965</u>              | <u>1966</u>    |
|---------|----------|---------------|----------------|--------------------------|----------------|
| Cd-109  | Aircraft | 1, 6, 8       | 2, 3, 6, 8, 10 | 3, 11, 13, 14, 15        | 13, 16, 17, 18 |
|         | Balloon  | 8             | 8, 11          | 11, 12, 13               | 12, 13, 17, 18 |
| Pu-238  | Aircraft |               | 3, 9, 10       | 3, 9, 11, 13, 14, 15     | 13, 16, 17, 18 |
|         | Balloon  |               | 8, 9, 11       | 9, 11, 12, 13            | 12, 13, 17, 18 |
| Sr-90   | Aircraft | 1, 2, 3, 4, 5 | 2, 3, 9, 10    | 3, 9, 10, 11, 13, 14, 15 | 13, 16, 17, 18 |
|         | Balloon  | 7             | 7, 8, 9, 11    | 9, 11, 12, 13            | 12, 13, 17, 18 |

Numbers refer to data references at the end of the paper.

TABLE 3. STRATOSPHERIC BURDENS OF CADMIUM-109 (kilocuries)

| Latitude<br>(Altitude (1000 Ft.)) | NORTHERN HEMISPHERE |                |               |                |                         | Total<br>to 70,000 ft. | World<br>to 120,000 | Total<br>to 70,000 |
|-----------------------------------|---------------------|----------------|---------------|----------------|-------------------------|------------------------|---------------------|--------------------|
|                                   | 0-90<br>70-120      | 30-90<br>50-70 | 0-30<br>50-70 | 30-90<br>30-50 | Total<br>to 120,000 ft. |                        |                     |                    |
| <u>Quarter</u>                    |                     |                |               |                |                         |                        |                     |                    |
| 12/62 - 2/63                      | 0                   | 0              | 0             | 0              | 0                       | 0                      | 15.5                | 0                  |
| 3/63 - 5/63                       | 1.3                 | 0              | 0             | 0              | 1.3                     | 0                      | 38.5                | 0                  |
| 6/63 - 8/63                       | 3.2                 | 0              | 0             | 0              | 3.2                     | 0                      | (22.4)              | 0.7                |
| 9/63 - 11/63                      | 3.1                 | 0              | 0             | 0              | 3.1                     | 0                      | 25.5                | 2.6                |
| 12/63 - 2/64                      | 6.7                 | 0.9            | 0             | 0              | 7.5                     | 0.8                    | 52.3                | 15.3               |
| 3/64 - 5/64                       | 10.9                | 2.9            | 0             | 0              | 13.8                    | 2.9                    | 57.3                | 20.3               |
| 6/64 - 8/64                       | 13.4                | 4.6            | 0.7           | 0.3            | 19.0                    | 5.6                    | 65.6                | 36.1               |
| 9/64 - 11/64                      | 10.9                | 6.5            | 1.3           | 1.1            | 19.8                    | 8.9                    | 69.7                | 47.8               |
| 12/64 - 2/65                      | *                   | 7.1            | 1.7           | 1.8            | -                       | 10.6                   | -                   | 49.2               |
| 3/65 - 5/65                       | *                   | 6.8            | 3.2           | 4.6            | -                       | 14.6                   | -                   | 41.7               |
| 6/65 - 8/65                       | *                   | 7.4            | 3.3           | 4.1            | -                       | 14.8                   | -                   | 43.5               |
| 9/65 - 11/65                      | *                   | 5.6            | 2.9           | 3.9            | -                       | 12.4                   | -                   | 38.1               |
| 12/65 - 2/66                      | *                   | 4.9            | 2.9           | 4.9            | -                       | 12.7                   | -                   | 29.9               |
| 3/66 - 5/66                       | *                   | 4.7            | 2.1           | 4.8            | -                       | 11.6                   | -                   | 28.4               |
| 6/66 - 8/66                       | *                   | 4.3            | 2.4           | 3.0            | -                       | 9.7                    | -                   | 25.2               |
| <u>Southern Hemisphere</u>        |                     |                |               |                |                         |                        |                     |                    |
| 12/62 - 2/63                      | 15.5                | 0              | 0             | 0              | 15.5                    | 0                      |                     |                    |
| 3/63 - 5/63                       | 17.2                | 0              | 0             | 0              | 17.2                    | 0                      |                     |                    |
| 6/63 - 8/63                       | (18.5)              | 0.7            | 0             | 0              | (19.2)                  | 0.7                    |                     |                    |
| 9/63 - 11/63                      | 19.8                | 2.6            | 0             | 0              | 22.4                    | 2.6                    |                     |                    |
| 12/63 - 2/64                      | 30.3                | 13.9           | 0.6           | 0              | 44.8                    | 14.5                   |                     |                    |
| 3/64 - 5/64                       | 26.1                | 16.2           | 0.9           | 0.3            | 43.5                    | 17.4                   |                     |                    |
| 6/64 - 8/64                       | 16.1                | 18.4           | 3.6           | 8.5            | 46.6                    | 30.5                   |                     |                    |
| 9/64 - 11/64                      | 11.0                | 18.4           | 4.8           | 15.7           | 49.9                    | 38.9                   |                     |                    |
| 12/64 - 2/65                      | *                   | 20.0           | 5.0           | 13.6           | -                       | 38.6                   |                     |                    |
| 3/65 - 5/65                       | *                   | 10.5           | 5.0           | 11.6           | -                       | 27.1                   |                     |                    |
| 6/65 - 8/65                       | *                   | 11.0           | 5.4           | 12.3           | -                       | 28.7                   |                     |                    |
| 9/65 - 11/65                      | *                   | 10.3           | 4.8           | 10.6           | -                       | 25.7                   |                     |                    |
| 12/65 - 2/66                      | *                   | 6.8            | 3.5           | 6.9            | -                       | 17.2                   |                     |                    |
| 3/66 - 5/66                       | *                   | 7.1            | 2.8           | 6.9            | -                       | 16.8                   |                     |                    |
| 6/66 - 8/66                       | *                   | 5.3            | 3.0           | 7.2            | -                       | 15.5                   |                     |                    |

\* Stratospheric burden for this compartment not calculated due to large uncertainties in the data.

() Interpolated value, computed burden of 7.1 was inconsistent with other data.

All data decay corrected to July 9, 1962.

TABLE 4. STRATOSPHERIC BURDENS OF SNAP-9A PLUTONIUM-238 (Kilocuries)

| Latitude<br>Altitude<br>(1000 Ft.) | NORTHERN HEMISPHERE |                |               |                |       | SOUTHERN HEMISPHERE |                |               |                |       | World<br>Total |
|------------------------------------|---------------------|----------------|---------------|----------------|-------|---------------------|----------------|---------------|----------------|-------|----------------|
|                                    | 0-90<br>70-120      | 30-90<br>50-70 | 0-30<br>50-70 | 30-90<br>30-50 | Total | 0-90<br>70-120      | 30-90<br>50-70 | 0-30<br>50-70 | 30-90<br>30-50 | Total |                |
| <u>Quarter</u>                     |                     |                |               |                |       |                     |                |               |                |       |                |
| 6/64 - 8/64                        | 0                   | 0              | 0             | 0              | 0     | 0.1                 | 0              | 0             | 0              | 0.1   | 0.1            |
| 9/64 - 11/64                       | 0                   | 0              | 0             | 0              | 0     | 0.4                 | 0              | 0             | 0              | 0.4   | 0.4            |
| 12/64 - 2/65                       | 0.8                 | 0              | 0             | 0              | 0.8   | 3.4                 | 0              | 0             | 0              | 3.4   | 4.2            |
| 3/65 - 5/65                        | 1.6                 | 0              | 0             | 0              | 1.6   | 3.6                 | 0              | 0             | 0              | 3.6   | 5.2            |
| 6/65 - 8/65                        | 1.7                 | 0              | 0             | 0              | 1.7   | 2.6                 | 0.8            | 0.1           | 0              | 3.5   | 5.2            |
| 9/65 - 11/65                       | 1.5                 | 0              | 0             | 0              | 1.5   | 3.5                 | 2.3            | 0.3           | 0              | 6.1   | 7.6            |
| 12/65 - 2/66                       | 1.7                 | 0.5            | 0.1           | 0              | 2.3   | 3.6                 | 2.2            | 0.5           | 0.2            | 6.5   | 8.8            |
| 3/66 - 5/66                        | 1.9                 | 1.0            | 0.2           | 0.2            | 3.3   | 4.1                 | 3.7            | 0.7           | 1.0            | 9.5   | 12.8           |
| 6/66 - 8/66                        | 1.5                 | 1.1            | 0.4           | 0.2            | 3.2   | 2.3                 | 3.5            | 0.8           | 1.4            | 8.0   | 11.2           |
| 9/66 - 11/66                       | 1.4                 | 0.9            | 0.4           | 0.2            | 2.9   | 1.8                 | 2.6            | 0.9           | 1.8            | 7.1   | 10.0           |
| 12/66 - 2/67                       | 1.3                 | 1.1            | 0.6           | 0.7            | 3.7   | 1.6                 | 2.5            | 1.0           | 1.6            | 6.7   | 10.4           |

TABLE 5. STRATOSPHERIC BURDENS OF STRONTIUM-90 (Kilocuries)

| Latitude<br>Altitude<br>(1000 Ft.) | NORTHERN HEMISPHERE |                |               |                |       | SOUTHERN HEMISPHERE |                |               |                |       | World<br>Total |
|------------------------------------|---------------------|----------------|---------------|----------------|-------|---------------------|----------------|---------------|----------------|-------|----------------|
|                                    | 0-90<br>70-120      | 30-90<br>50-70 | 0-30<br>50-70 | 30-90<br>30-50 | Total | 0-90<br>0-120       | 30-90<br>50-70 | 0-30<br>50-70 | 30-90<br>30-50 | Total |                |
| <u>Quarter</u>                     |                     |                |               |                |       |                     |                |               |                |       |                |
| 3/63 - 5/63                        | 1220                | 1960           | 590           | 1480           | 5250  | 410                 | 100            | 150           | 40             | 700   | 5950           |
| 5/63 - 8/63                        | 1150                | 1600           | 660           | 730            | 4140  | 660                 | 150            | 200           | 100            | 1110  | 5250           |
| 9/63 - 11/63                       | 930                 | 1250           | 570           | 460            | 3210  | 500                 | 270            | 290           | 180            | 1240  | 4450           |
| 12/63 - 2/64                       | 390                 | 910            | 440           | 690            | 2630  | 390                 | 190            | 240           | 72             | 892   | 3522           |
| 3/64 - 5/64                        | 390                 | 700            | 350           | 590            | 2030  | 330                 | 210            | 190           | 130            | 860   | 2890           |
| 6/64 - 8/64                        | 340                 | 540            | 310           | 260            | 1450  | 240                 | 200            | 210           | 130            | 780   | 2230           |
| 9/64 - 11/64                       | 290                 | 400            | 280           | 200            | 1170  | 180                 | 170            | 160           | 170            | 680   | 1850           |
| 12/64 - 2/65                       | 220                 | 350            | 230           | 250            | 1050  | 150                 | 130            | 140           | 120            | 540   | 1590           |
| 3/65 - 5/65                        | 200                 | 260            | 150           | 240            | 850   | 160                 | 90             | 110           | 67             | 427   | 1277           |
| 6/65 - 8/65                        | 150                 | 220            | 110           | 140            | 630   | 130                 | 110            | 91            | 120            | 451   | 1081           |
| 9/65 - 11/65                       | 150                 | 180            | 90            | 100            | 520   | 110                 | 100            | 70            | 100            | 380   | 900            |
| 12/65 - 2/66                       | 130                 | 150            | 70            | 130            | 430   | 83                  | 80             | 48            | 61             | 272   | 752            |
| 3/66 - 5/66                        | 100                 | 120            | 55            | 120            | 395   | 71                  | 66             | 38            | 42             | 217   | 612            |
| 6/66 - 8/66                        | 73                  | 100            | 54            | 81             | 308   | 57                  | 67             | 49            | 51             | 224   | 532            |
| 9/66 - 11/66                       | 60                  | 85             | 52            | 37             | 234   | 47                  | 52             | 43            | 60             | 202   | 436            |
| 12/66 - 2/67                       | 37                  | 53             | 32            | 35             | 157   | 45                  | 45             | 34            | 40             | 164   | 321            |

FIGURES 1-15  
Latitudinal Cross Sections of Mean Seasonal  
Cadmium-109 Stratospheric Concentrations  
[December 1962-August 1966]

Units: disintegrations per minute per 1000  
standard cubic feet of air (decay corrected  
to July 9, 1962). Crosses represent individ-  
ual balloon samples, solid circles represent  
average monthly aircraft data.

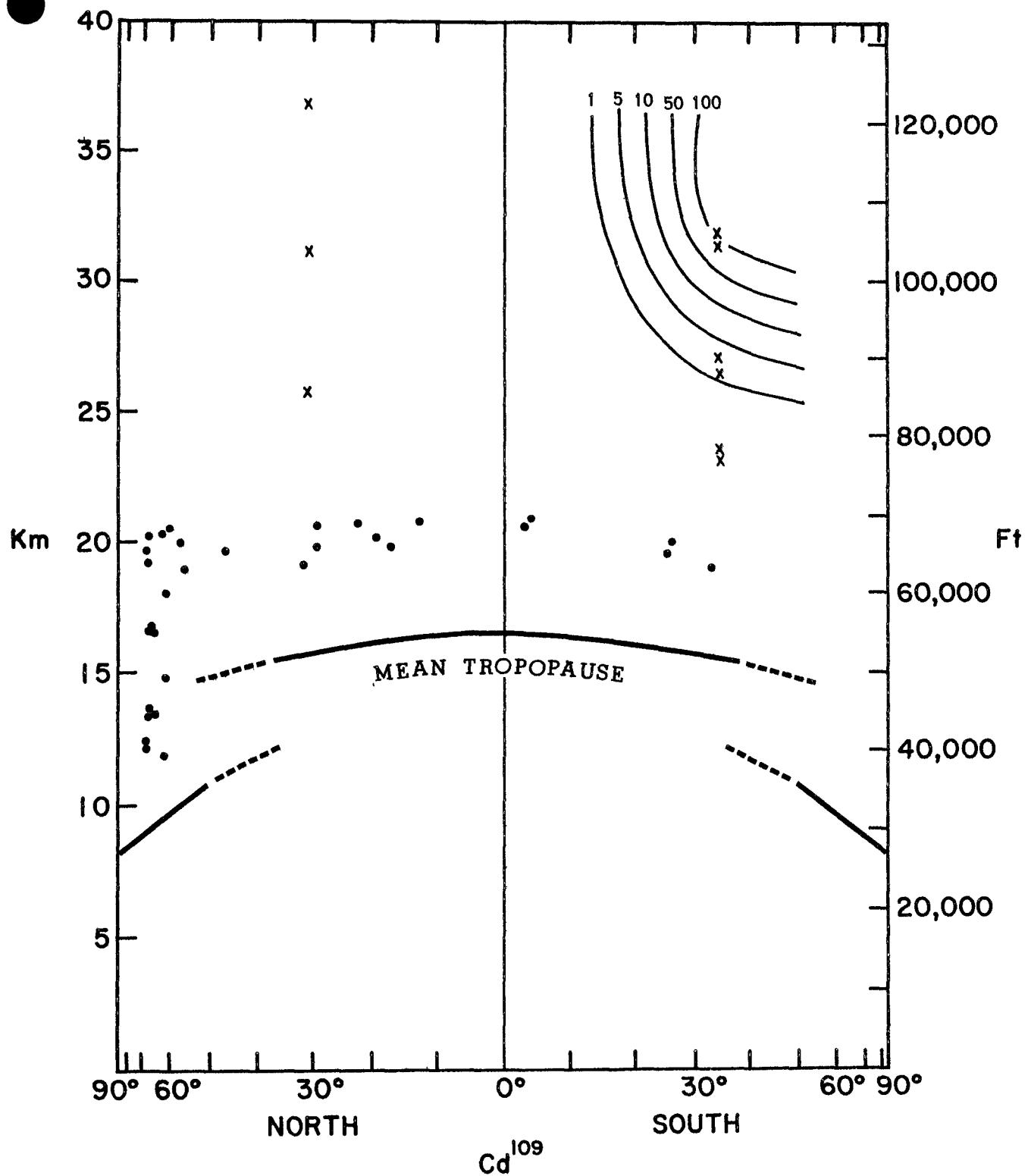



Figure 1

DECEMBER 1962 - FEBRUARY 1963

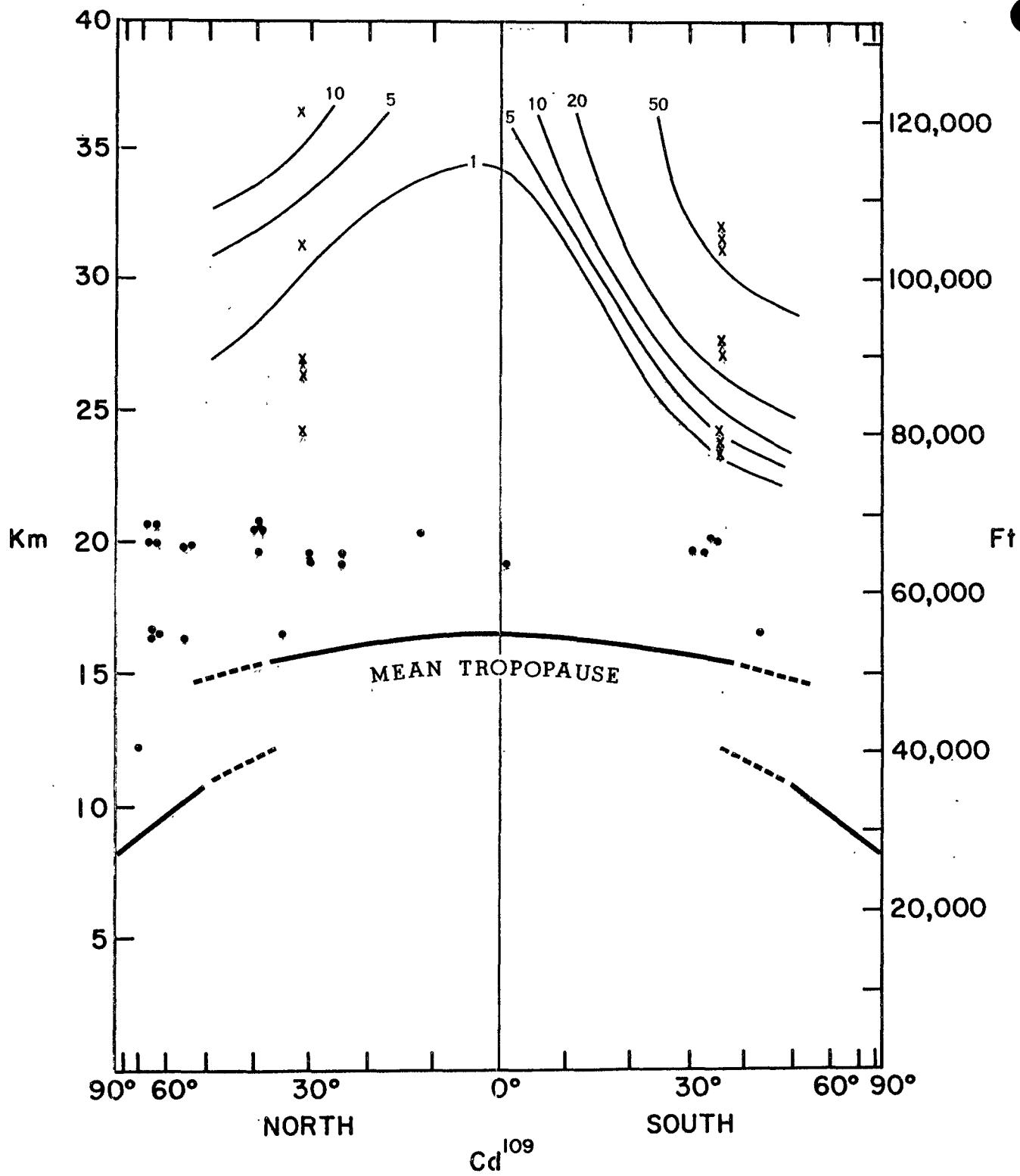



Figure 2

MARCH - MAY 1963

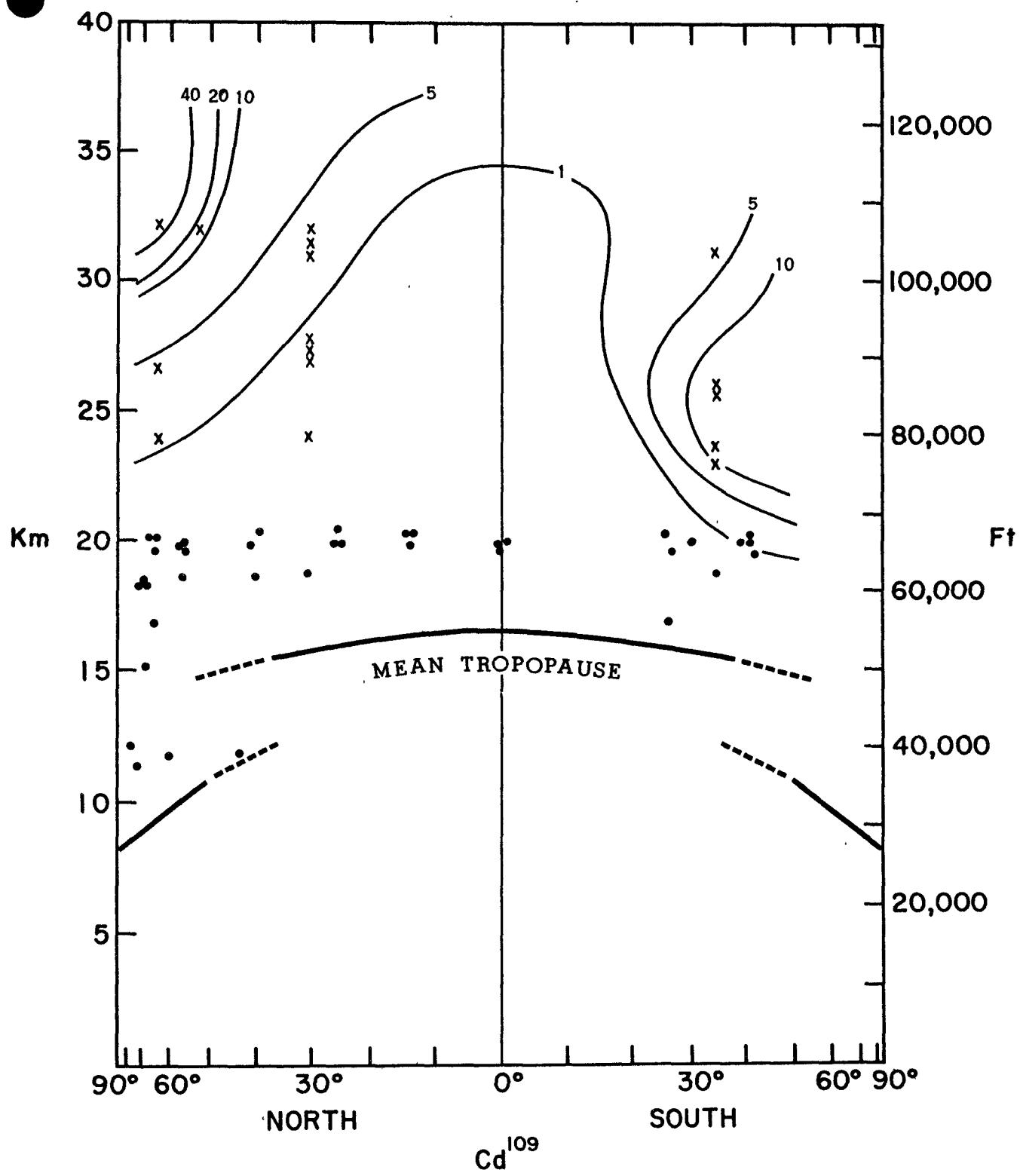



Figure 3

JUNE - AUGUST 1963

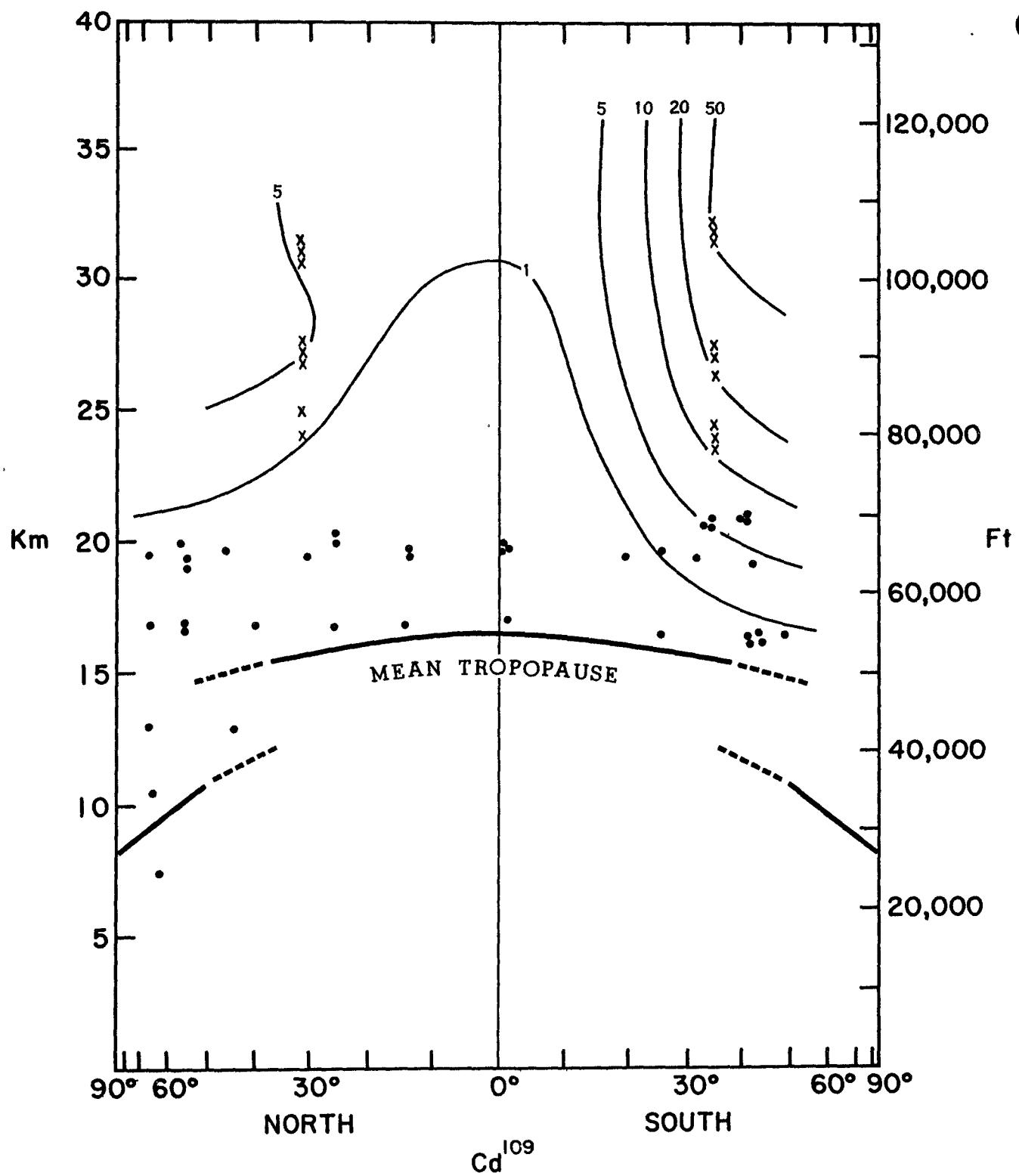



Figure 4

SEPTEMBER - NOVEMBER 1963

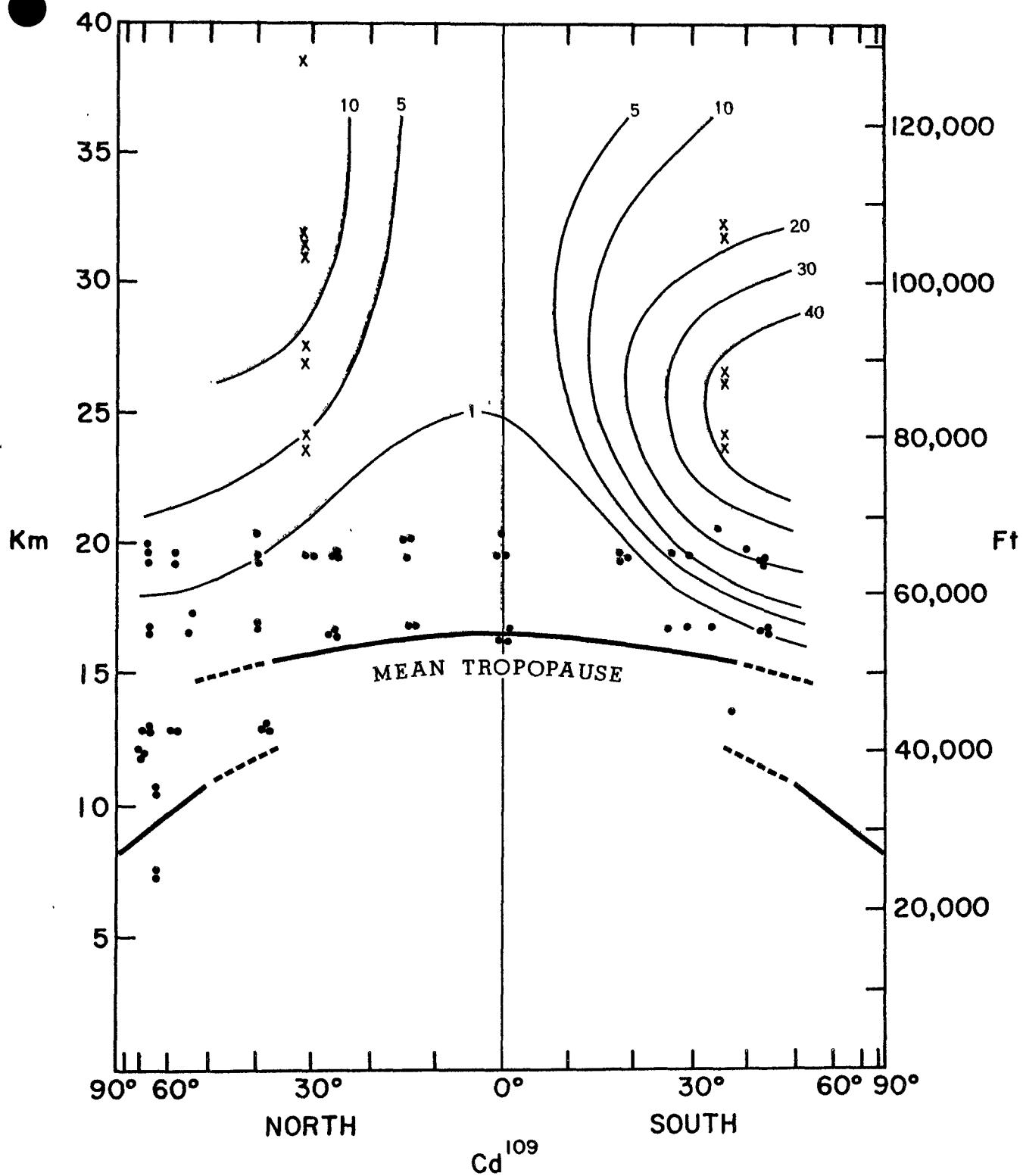
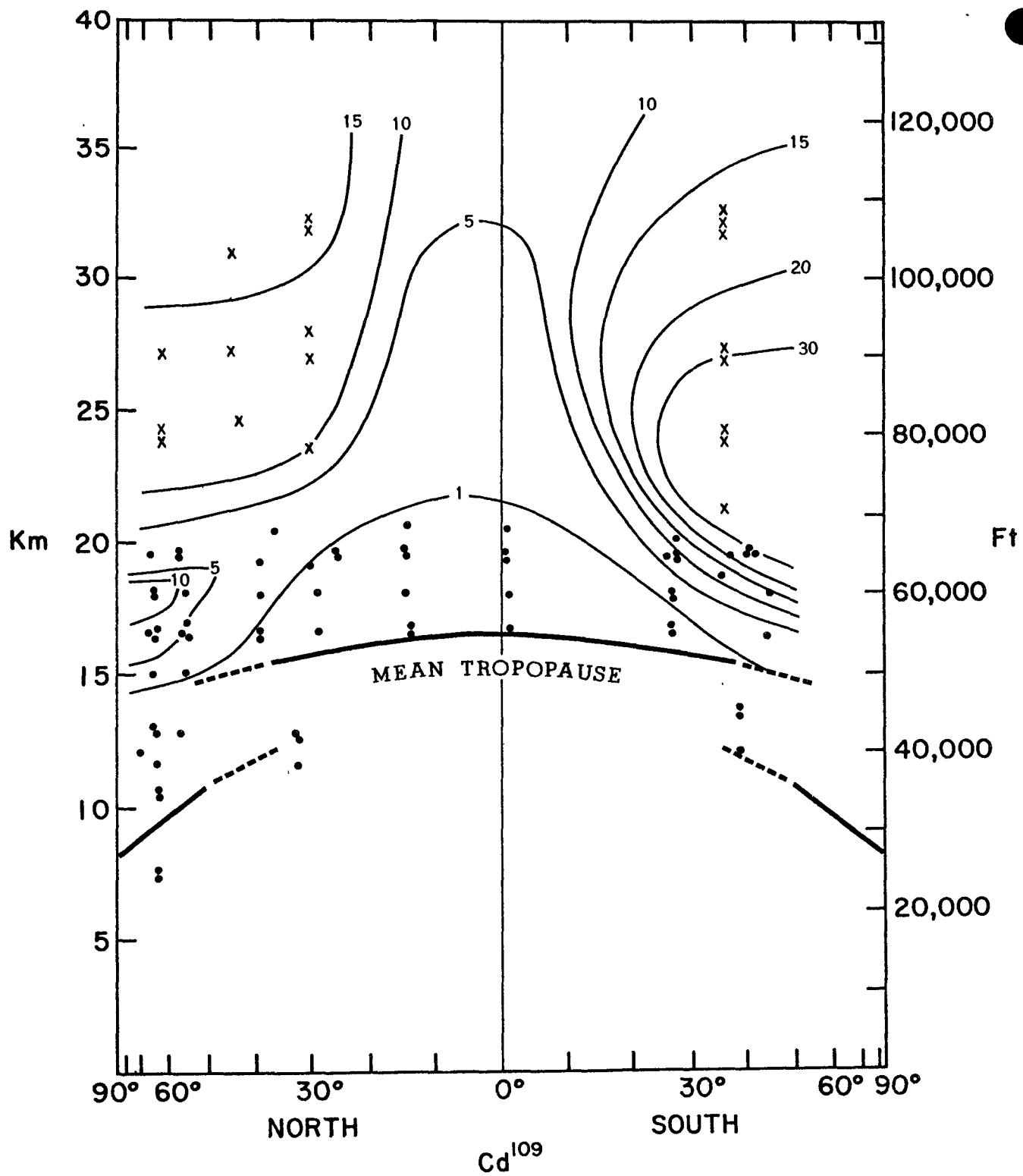




Figure 5

DECEMBER 1963 - FEBRUARY 1964



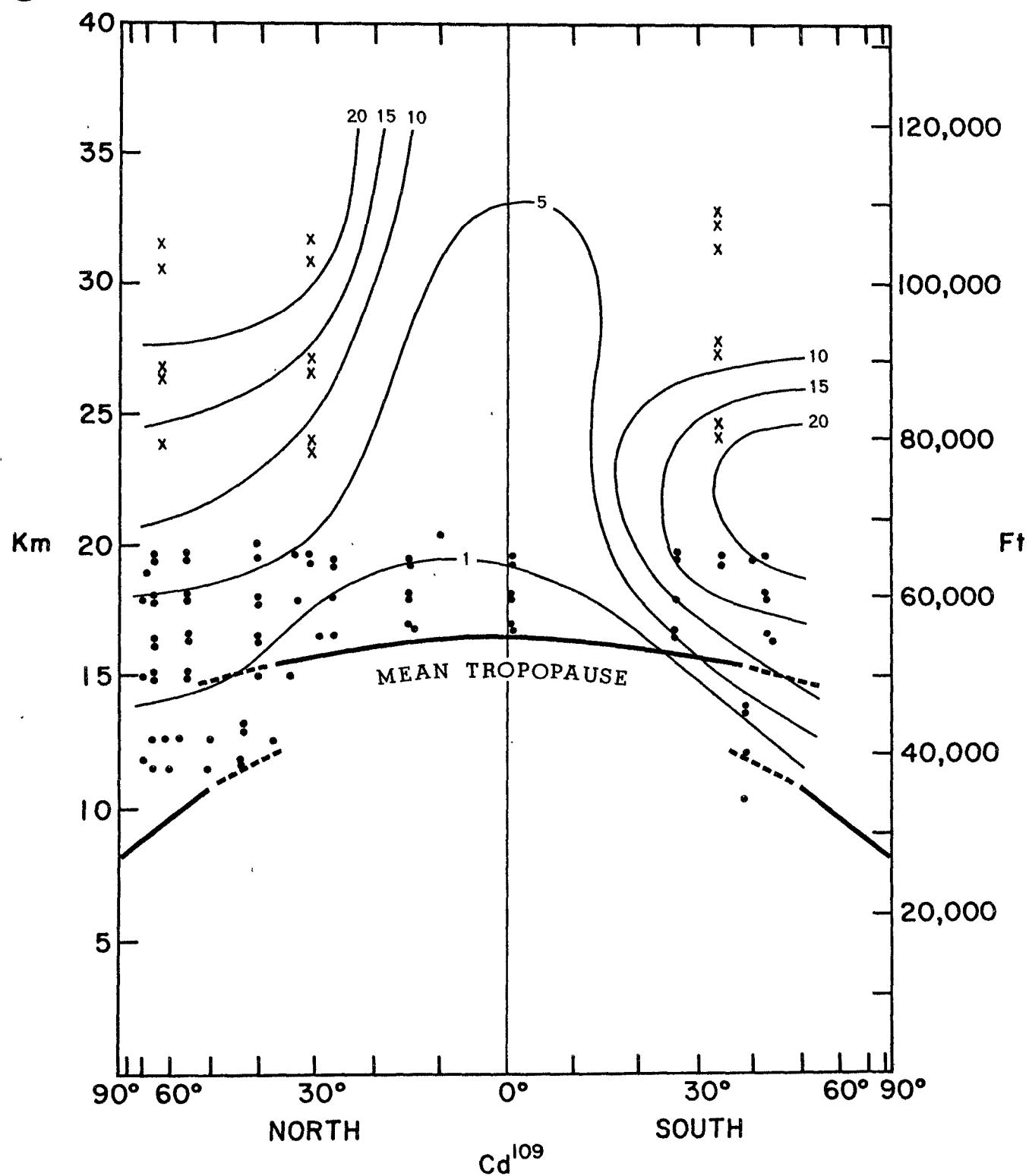



Figure 7

JUNE - AUGUST 1964

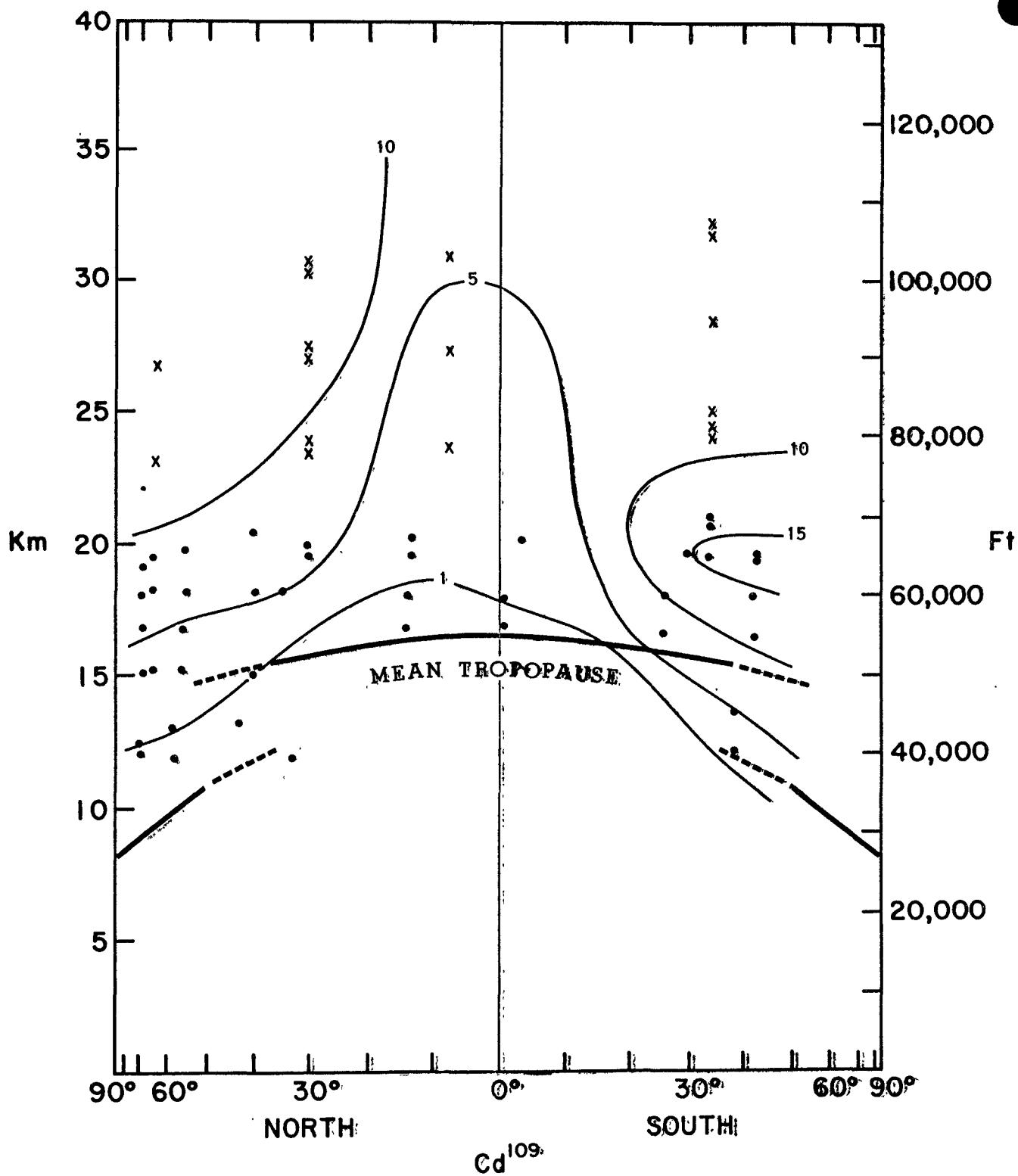



Figure 8

SEPTEMBER - NOVEMBER 1964

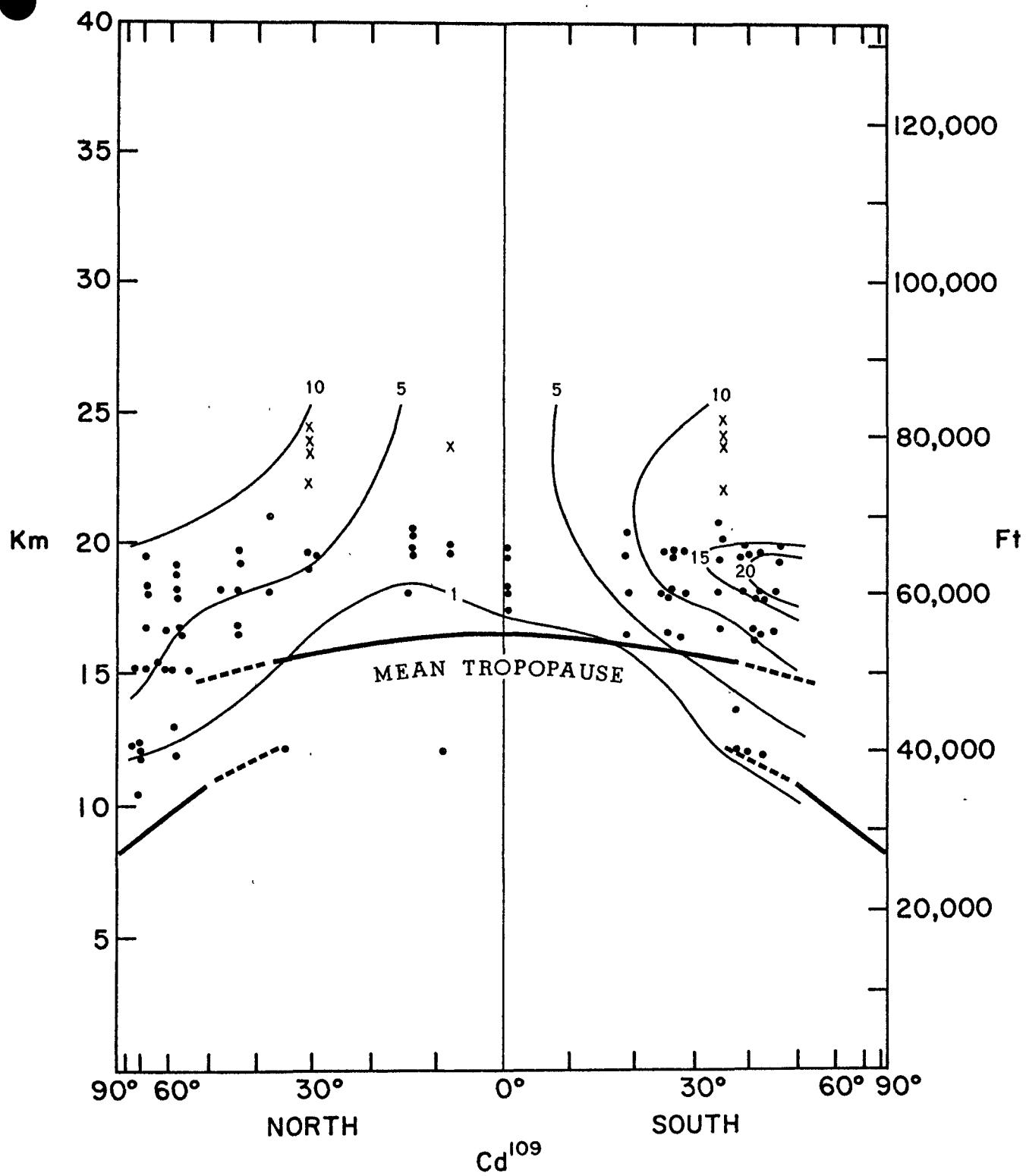
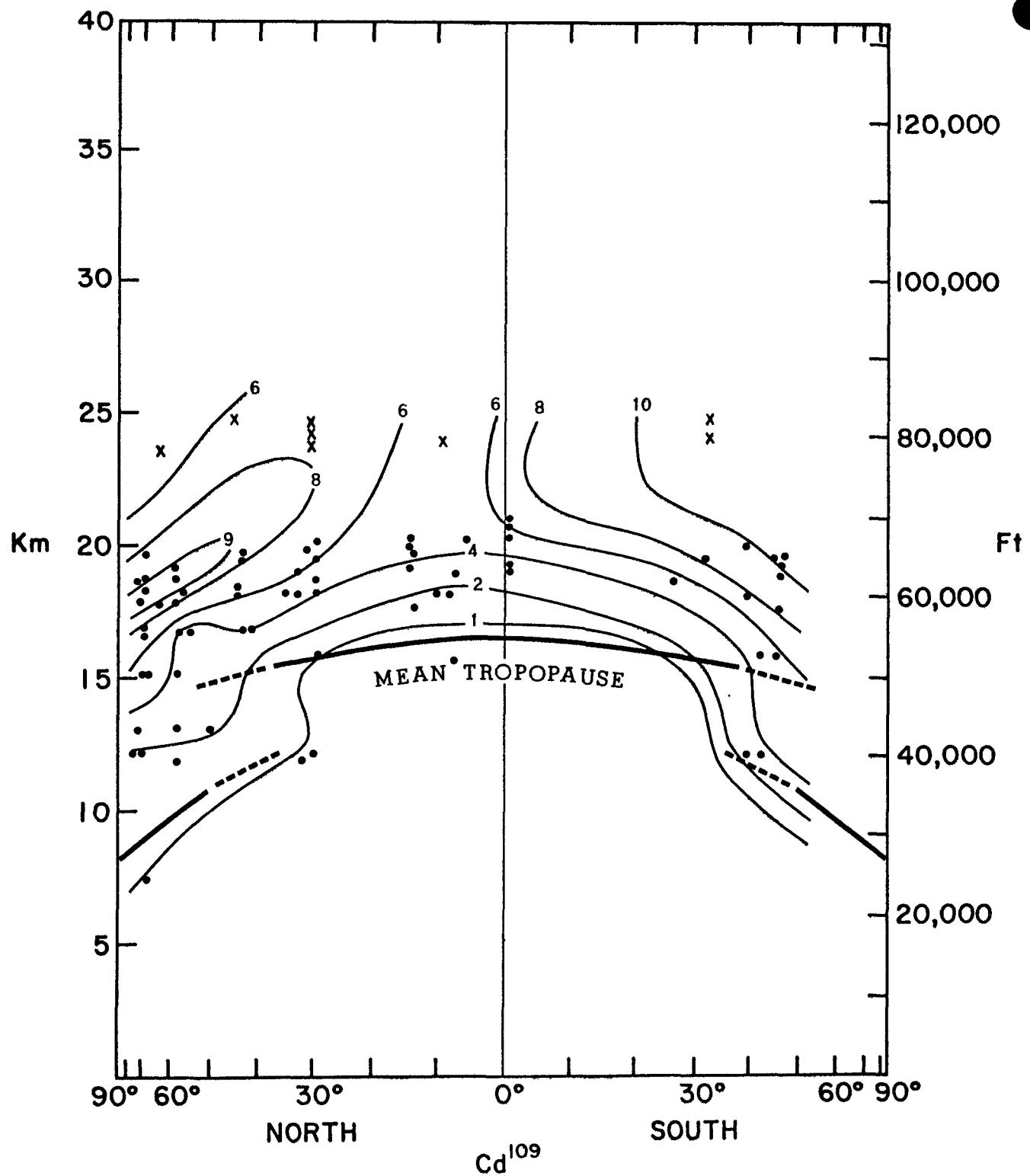
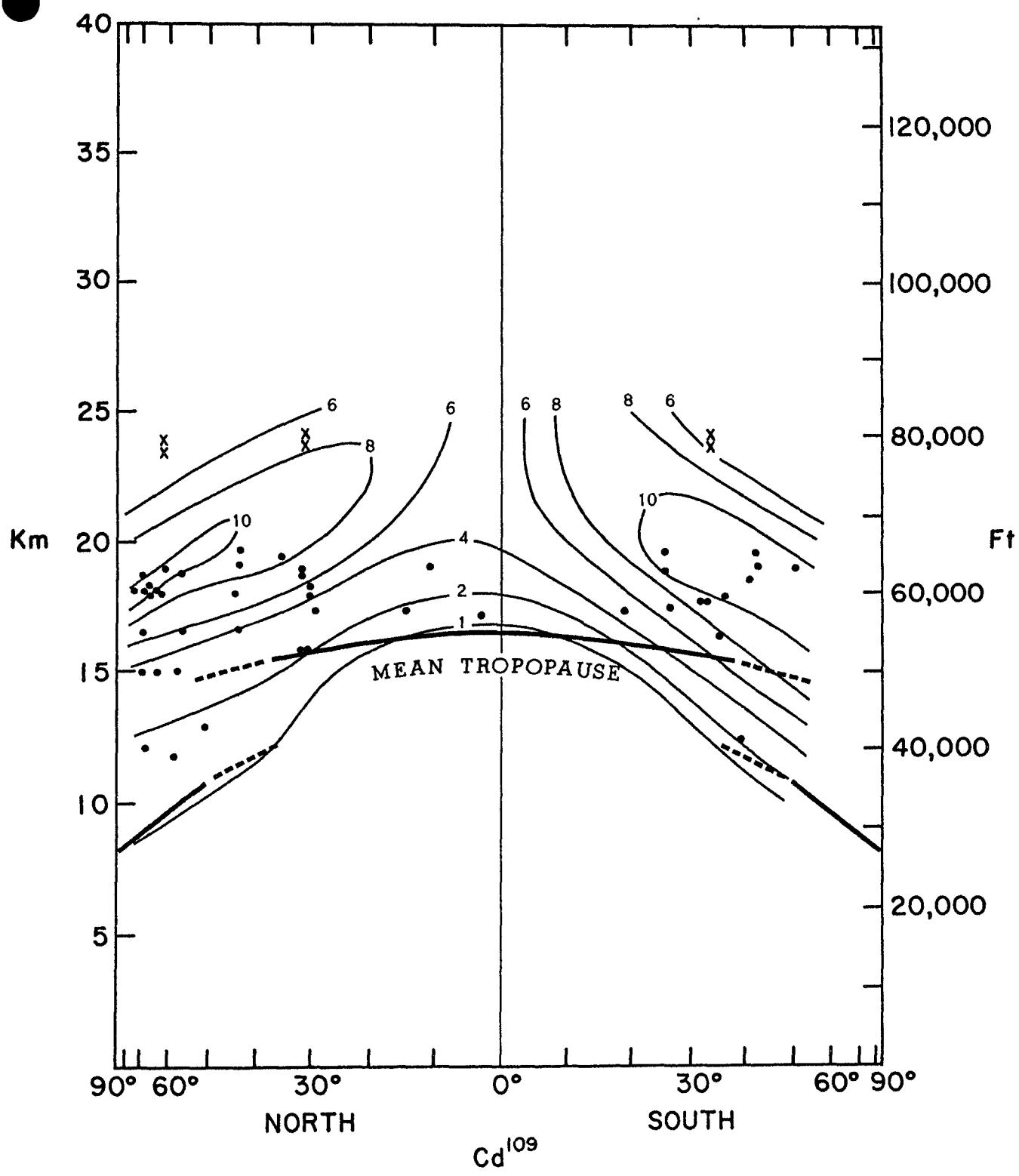





Figure 9

DECEMBER 1964 - FEBRUARY 1965





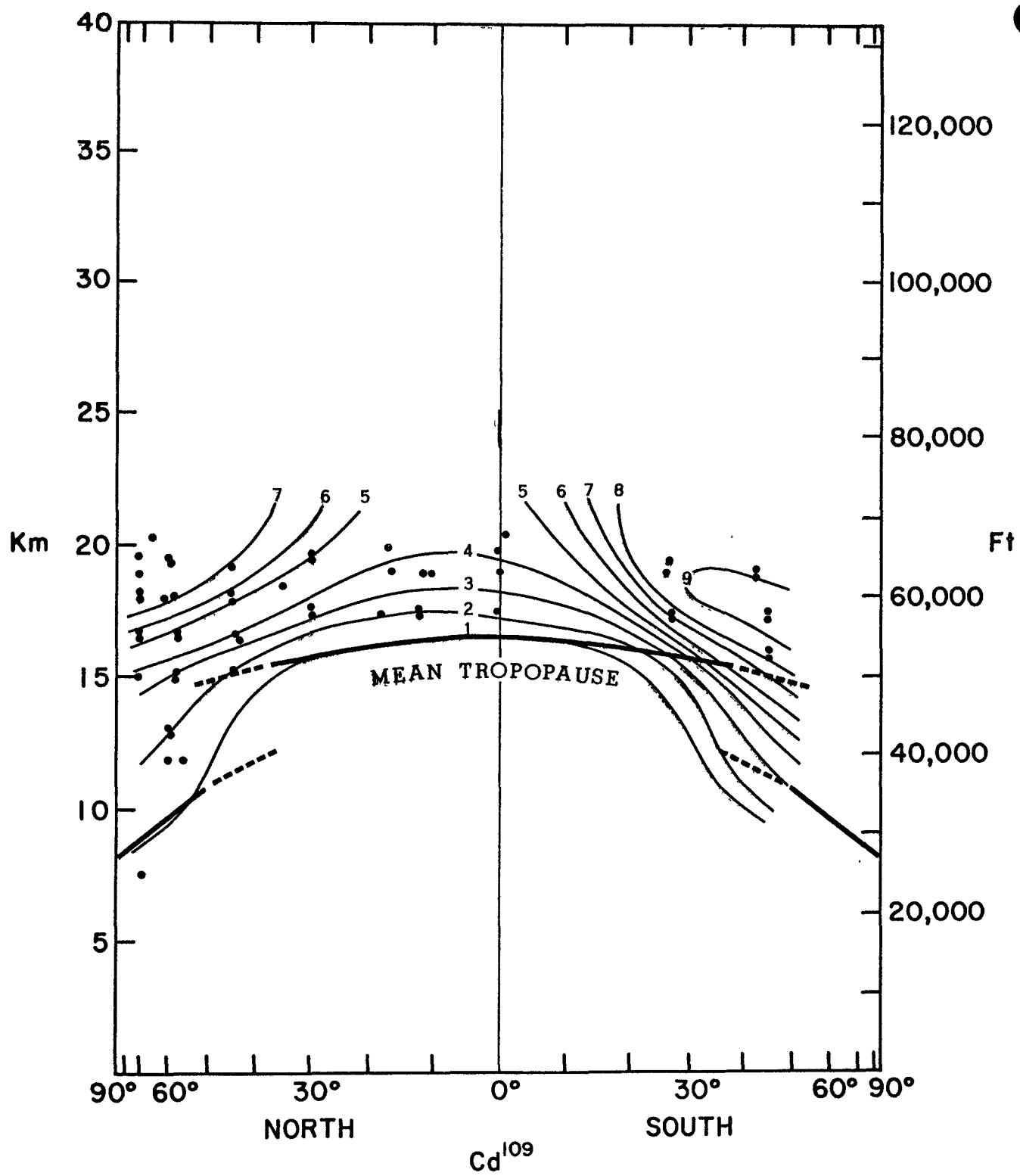



Figure 12

SEPTEMBER - NOVEMBER 1965

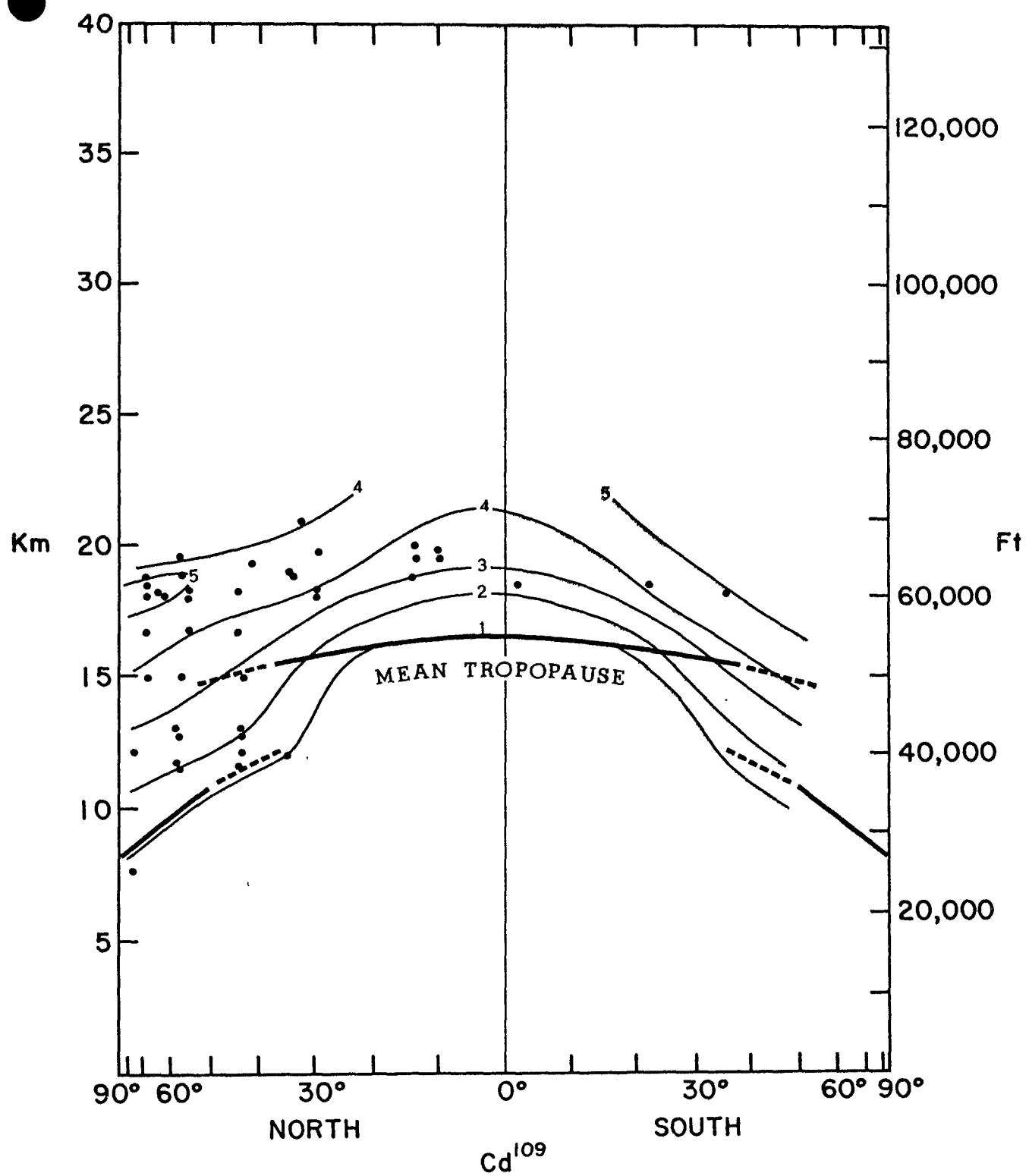



Figure 13

DECEMBER 1965 - FEBRUARY 1966

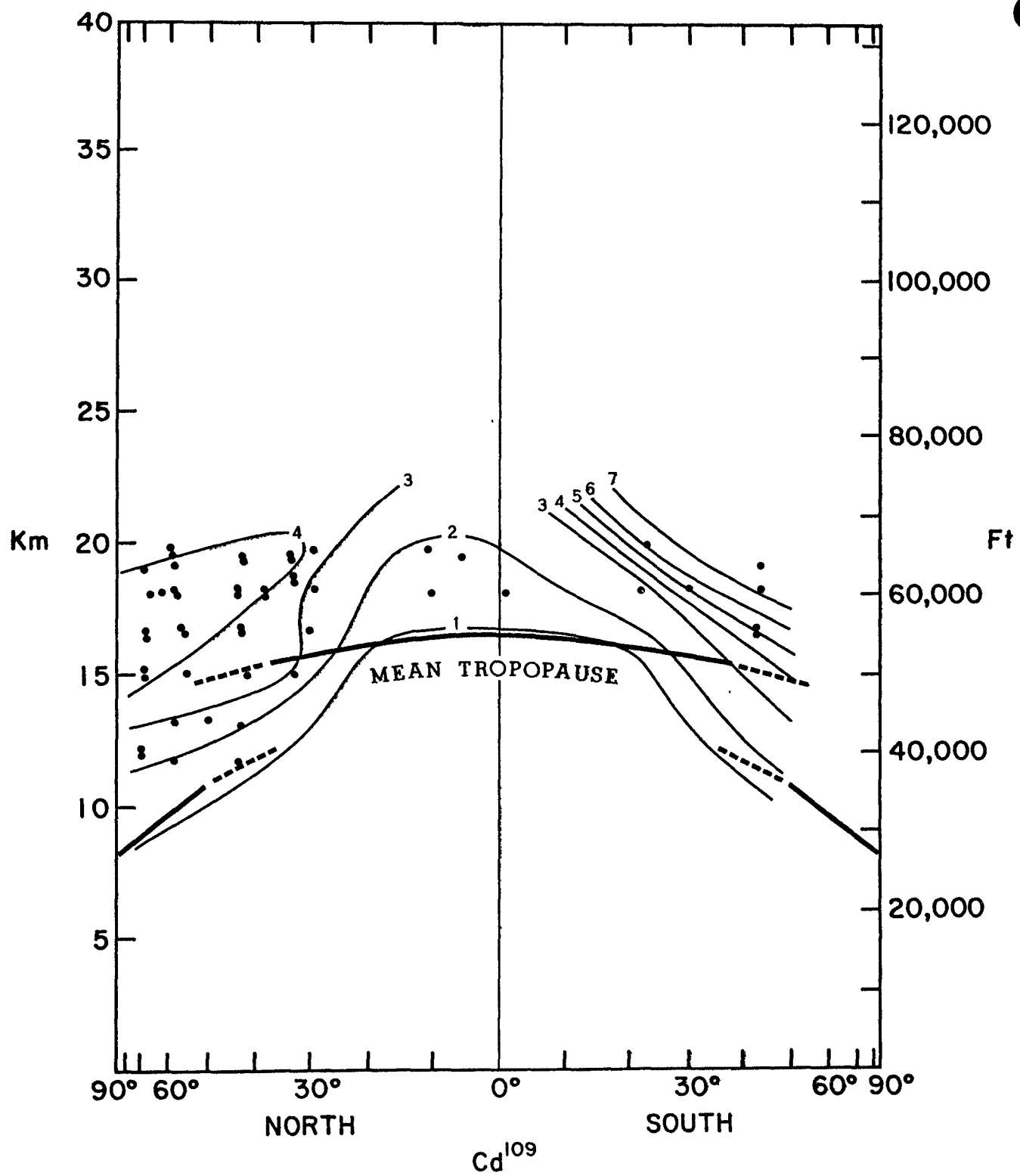



Figure 14

MARCH - MAY 1966

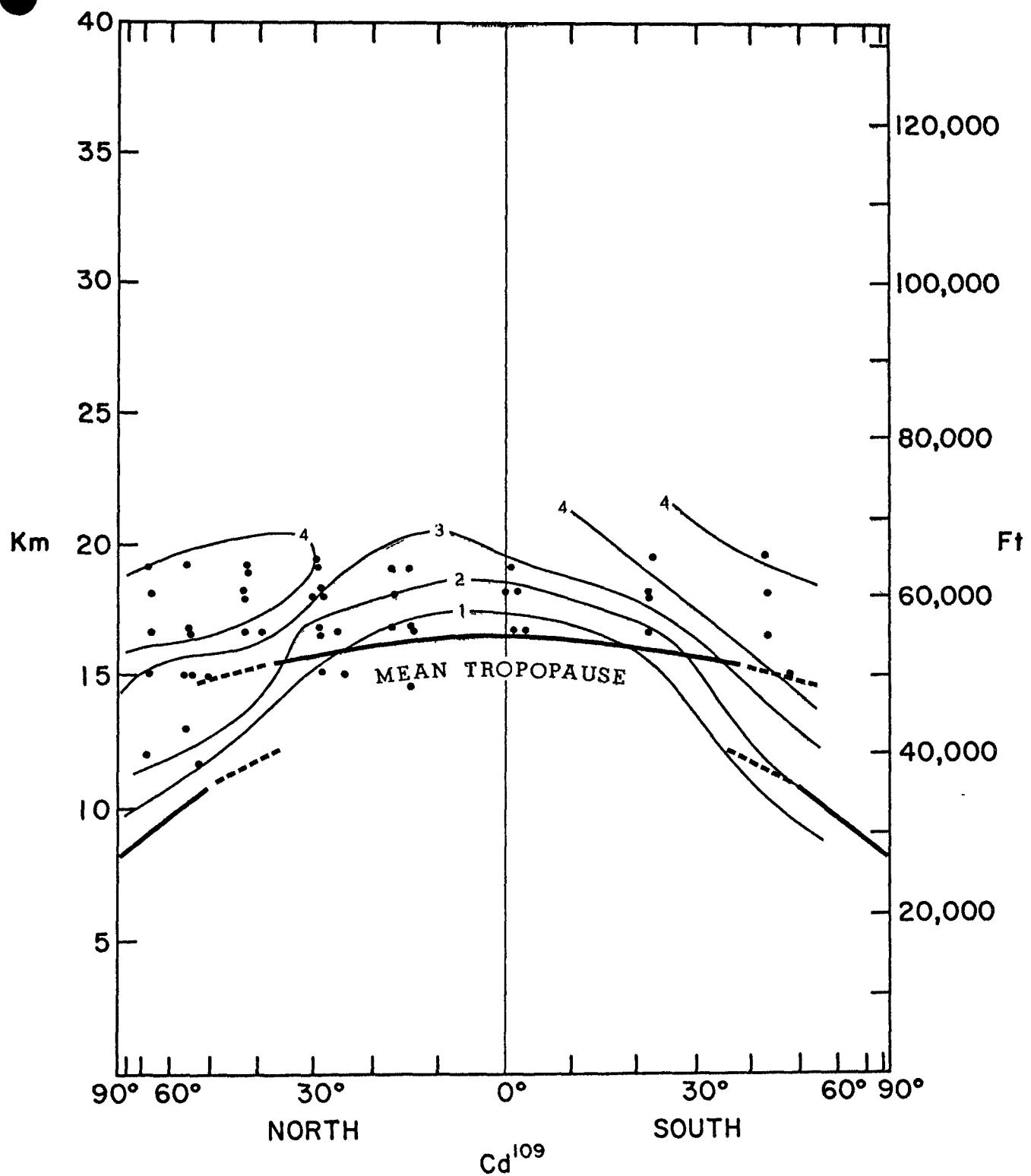



Figure 15

JUNE - AUGUST 1966

**FIGURES 16-26**

**Latitudinal Cross Sections of Mean Seasonal  
SNAP-9A Plutonium-238 Concentrations.**

**[June 1964-February 1967]**

**Units: disintegrations per minute per 1000  
standard cubic feet of air at sampling time.  
Crosses represent individual balloon samples,  
solid circles represent average monthly air-  
craft data.**

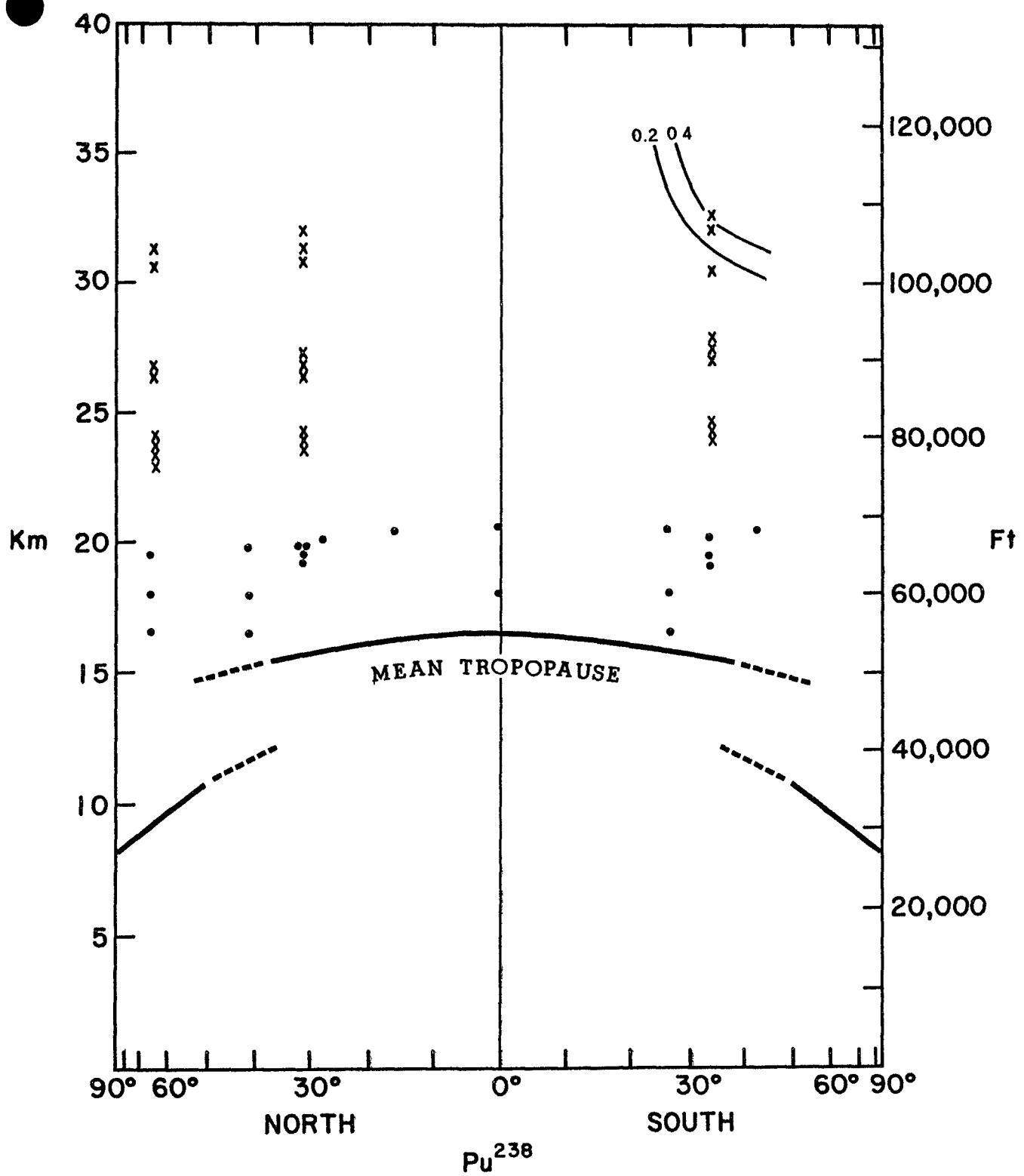



Figure 16

JUNE - AUGUST 1964

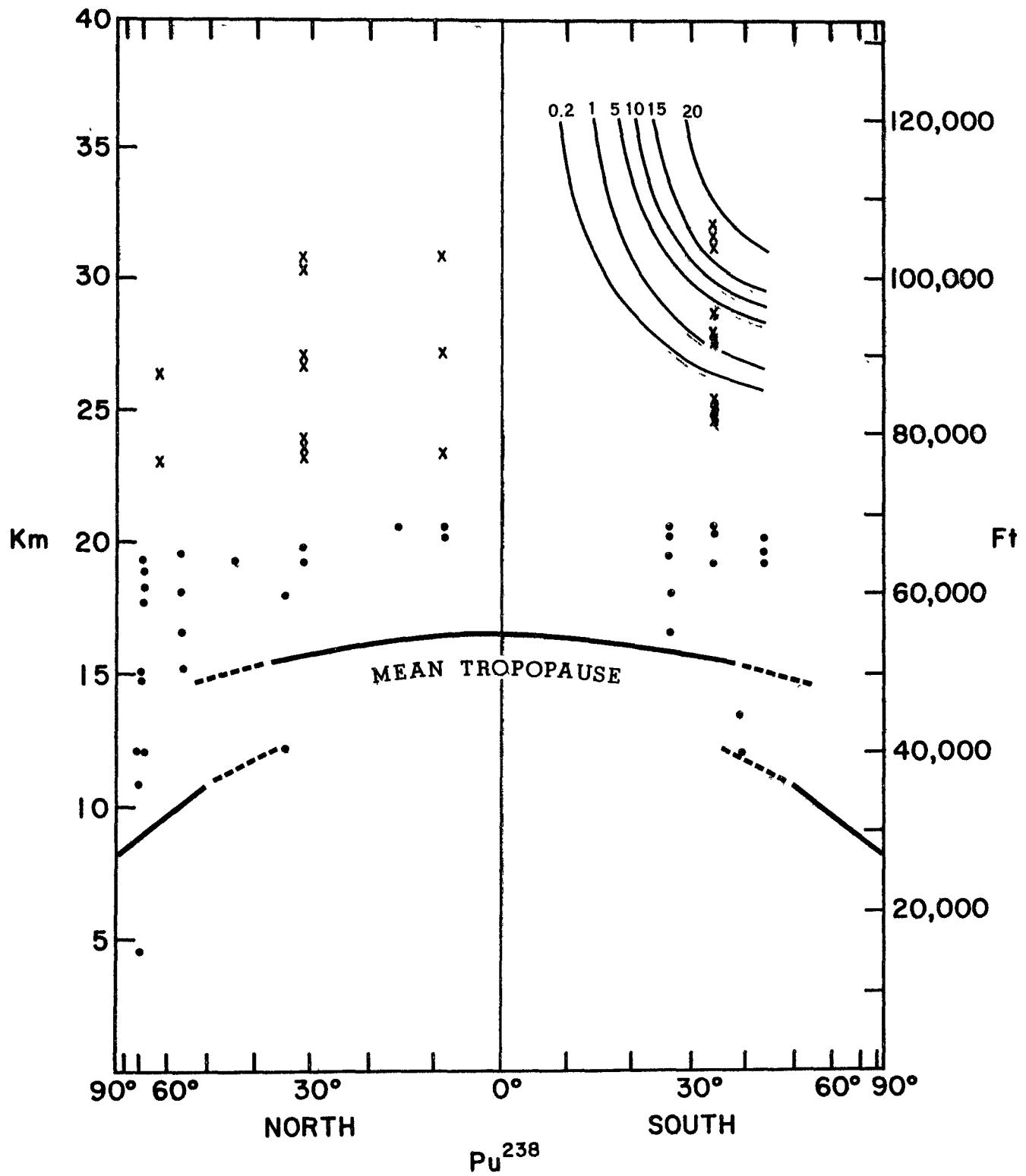



Figure 17

SEPTEMBER - NOVEMBER 1964

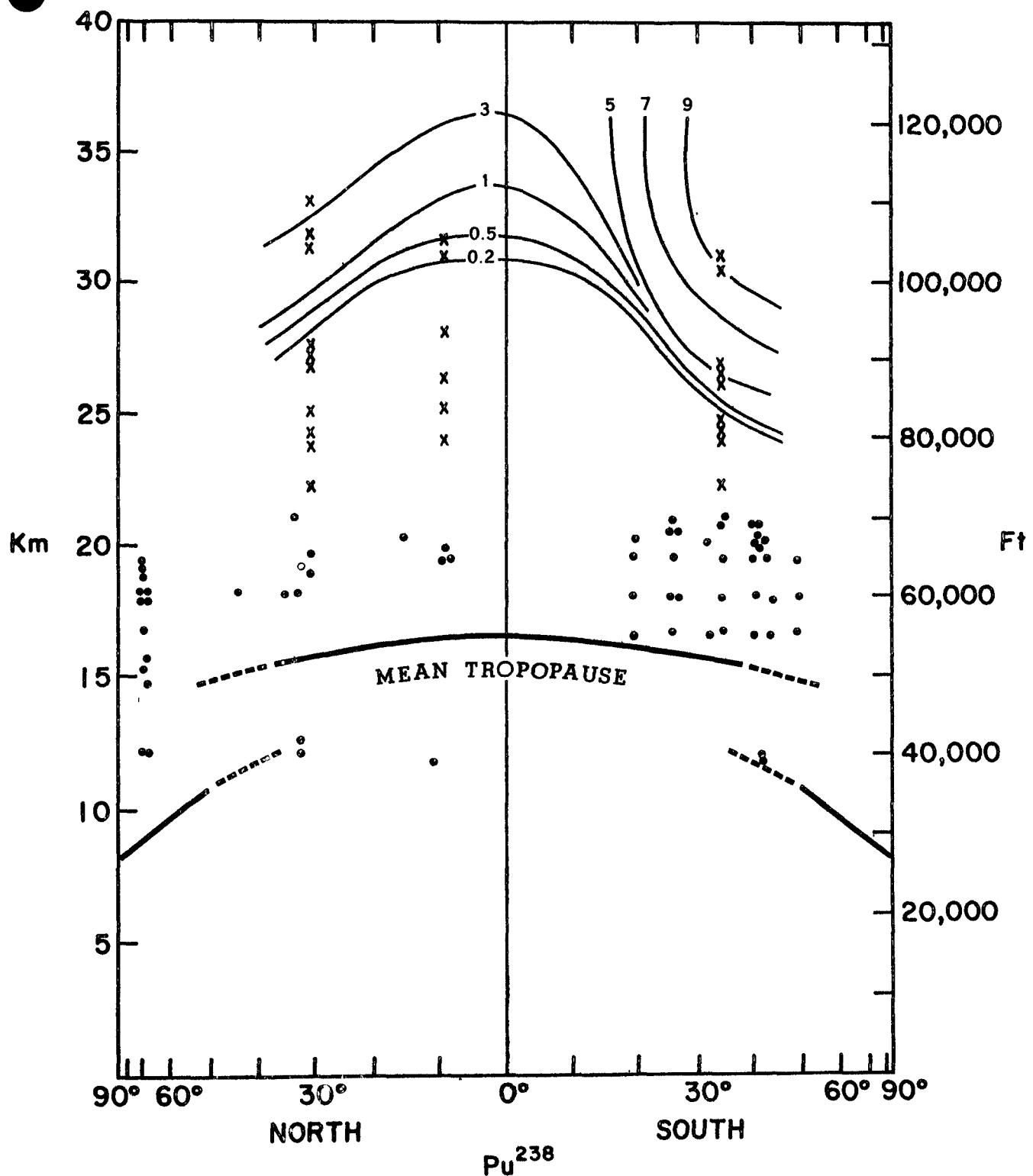
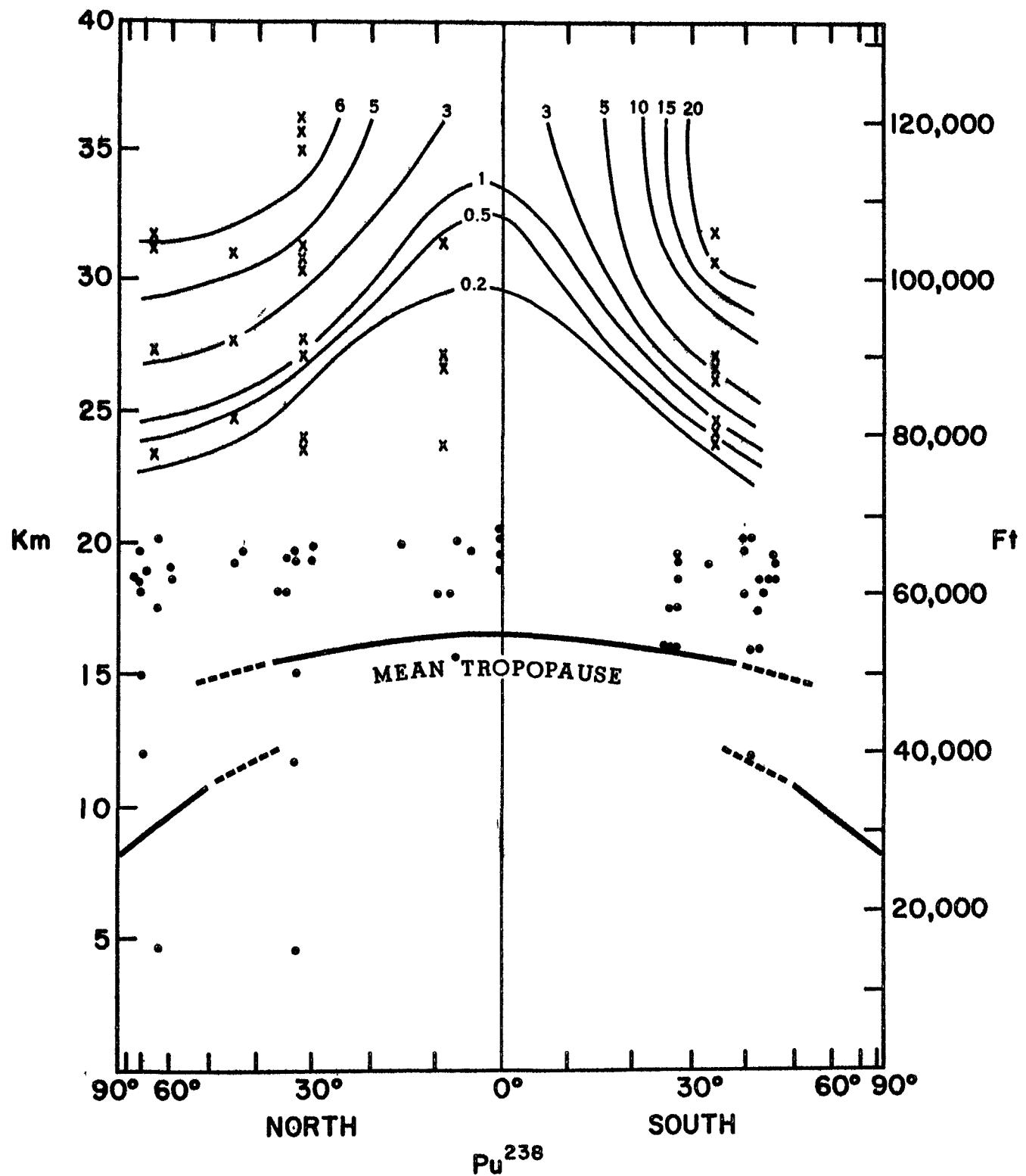




Figure 18

DECEMBER 1964 - FEBRUARY 1965



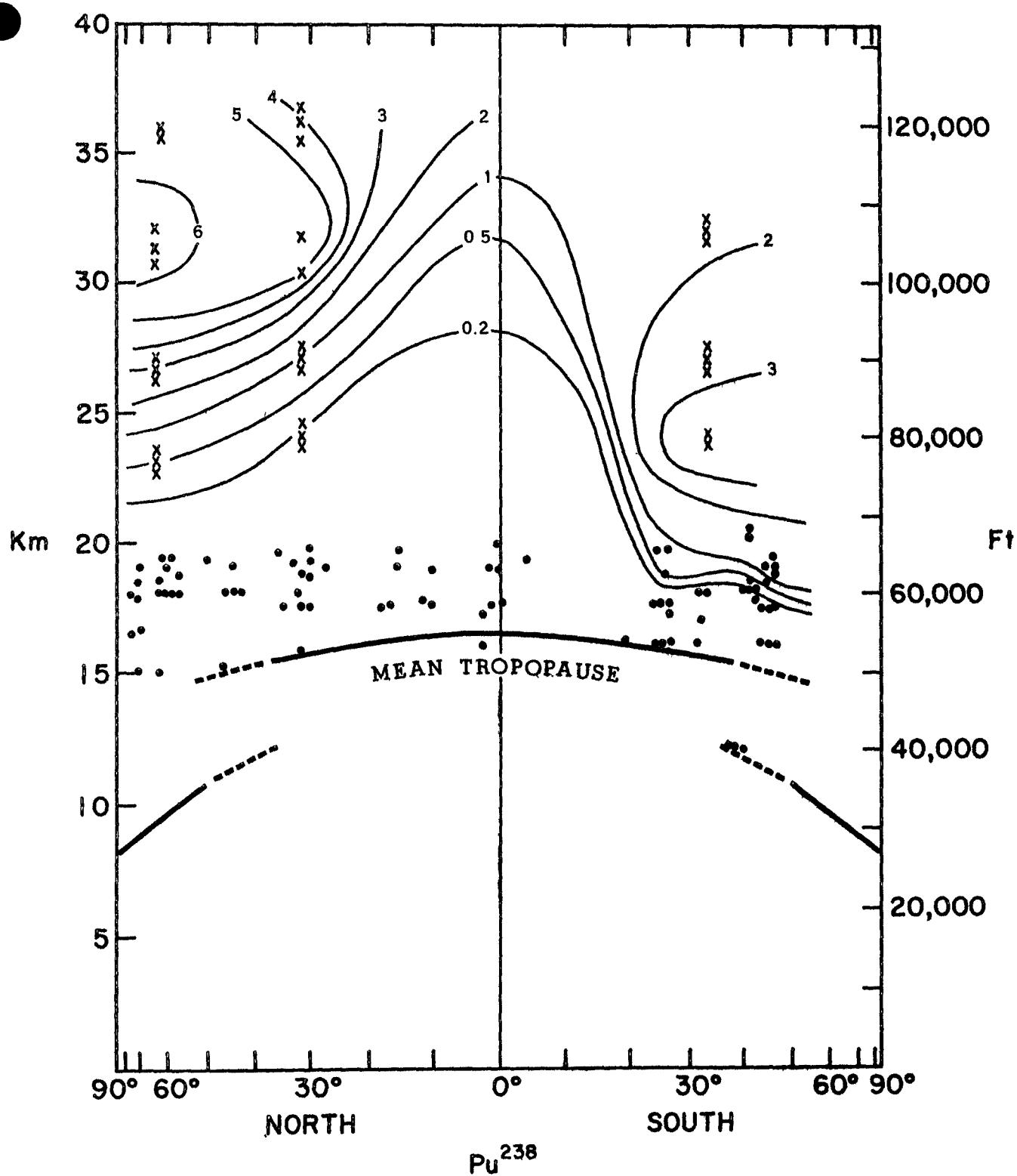



Figure 20

JUNE - AUGUST 1965

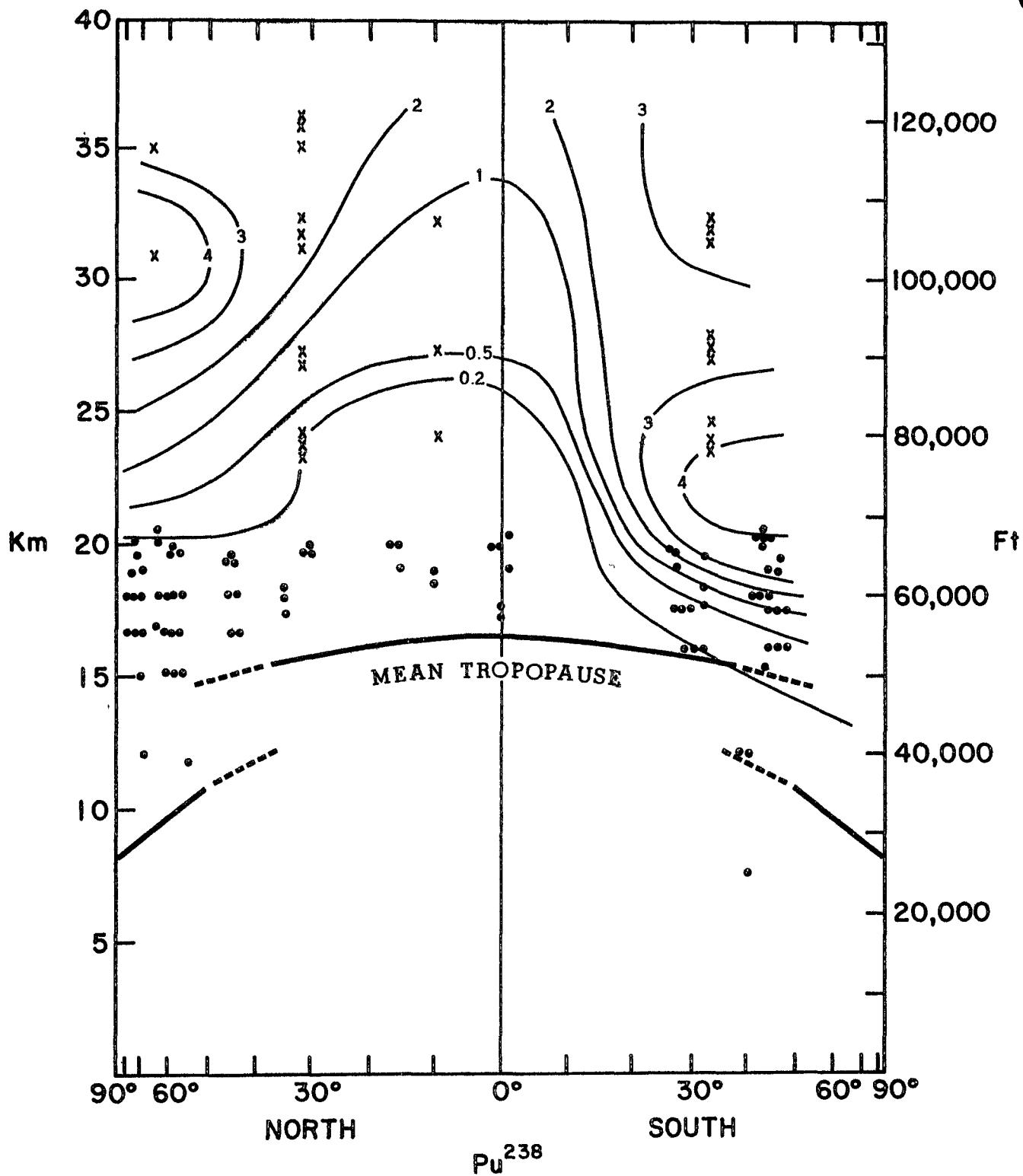



Figure 21

SEPTEMBER - NOVEMBER 1965

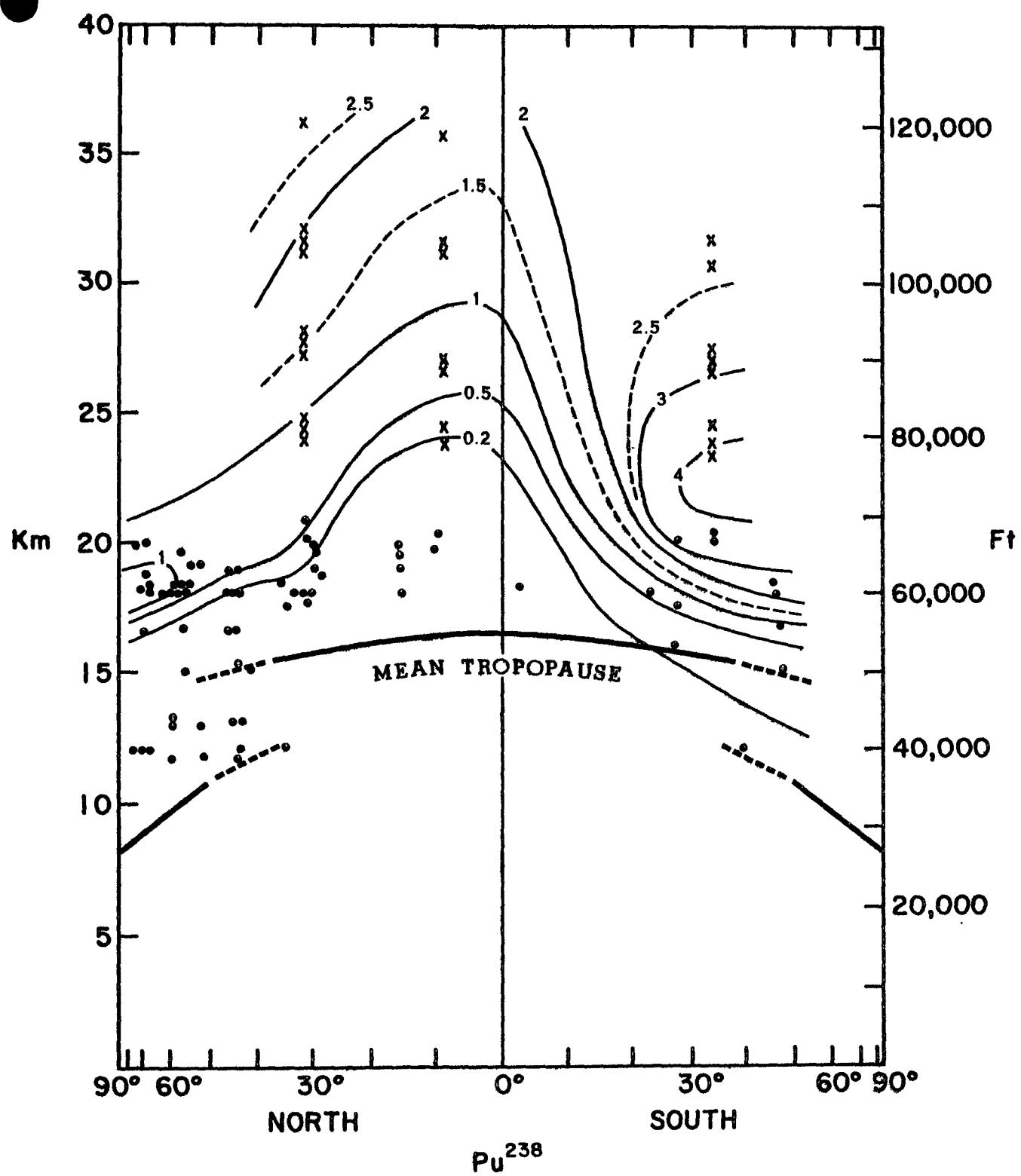



Figure 22

DECEMBER 1965 - FEBRUARY 1966

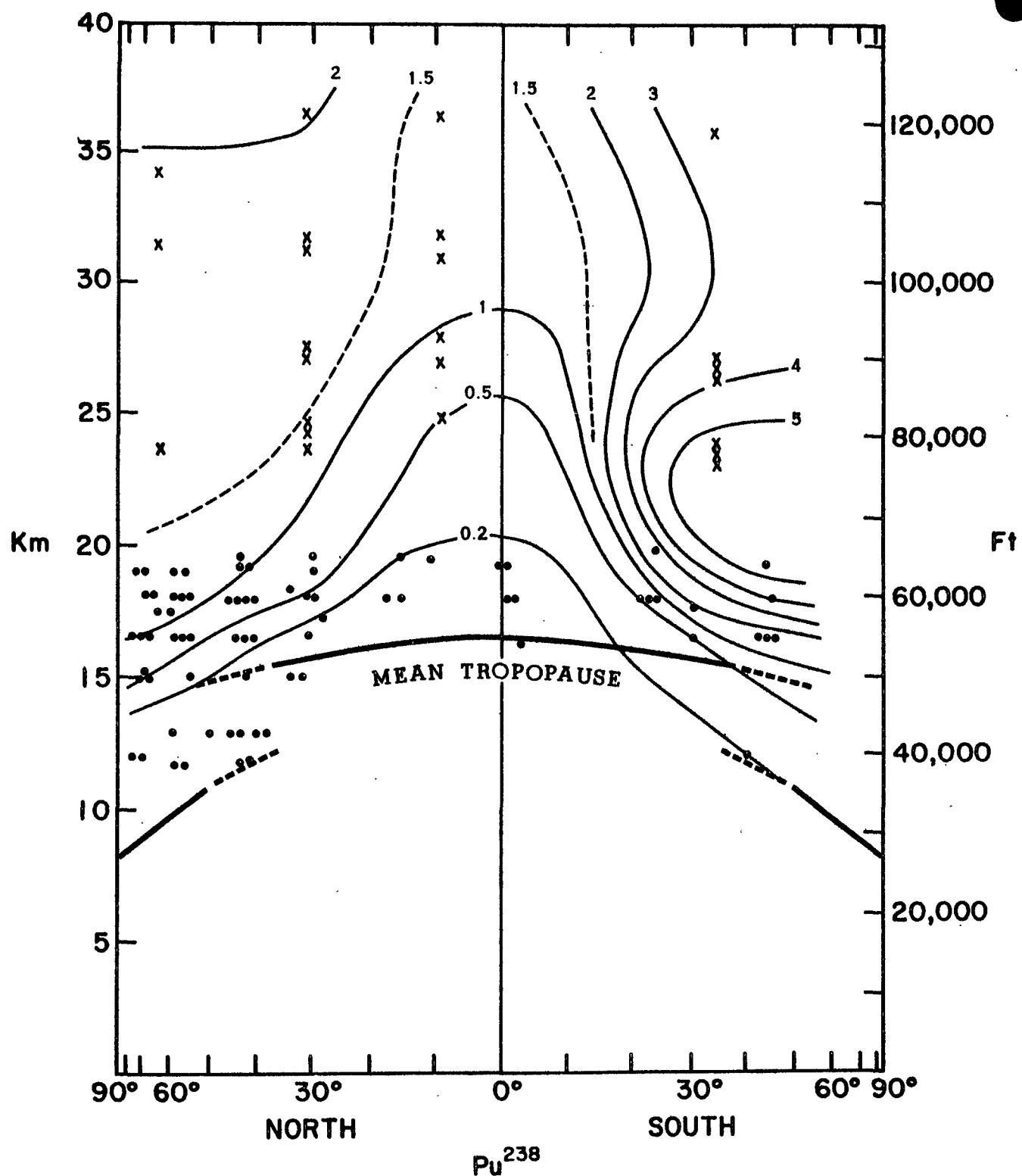



Figure 23

MARCH - MAY 1966

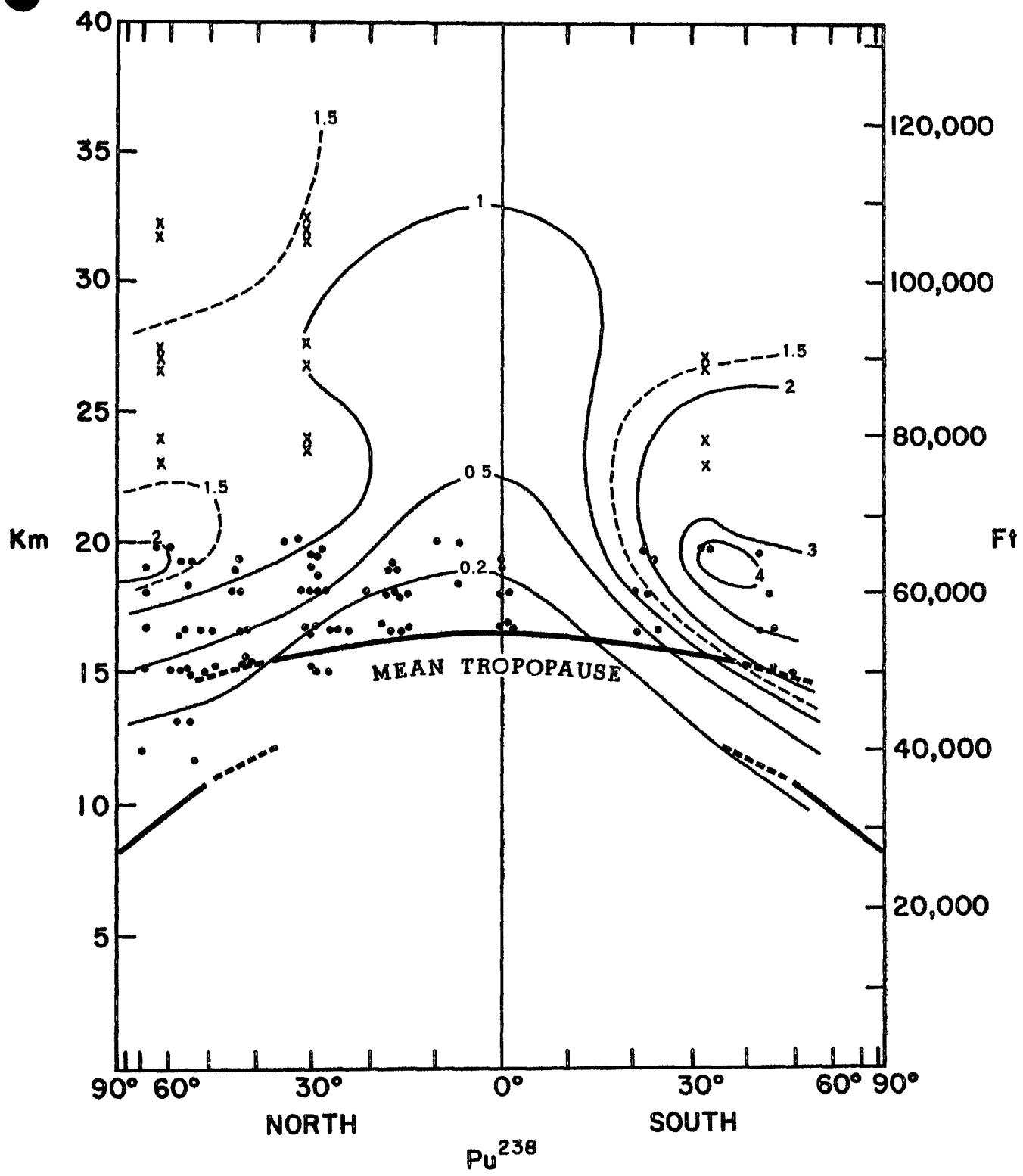



Figure 24

JUNE - AUGUST 1966

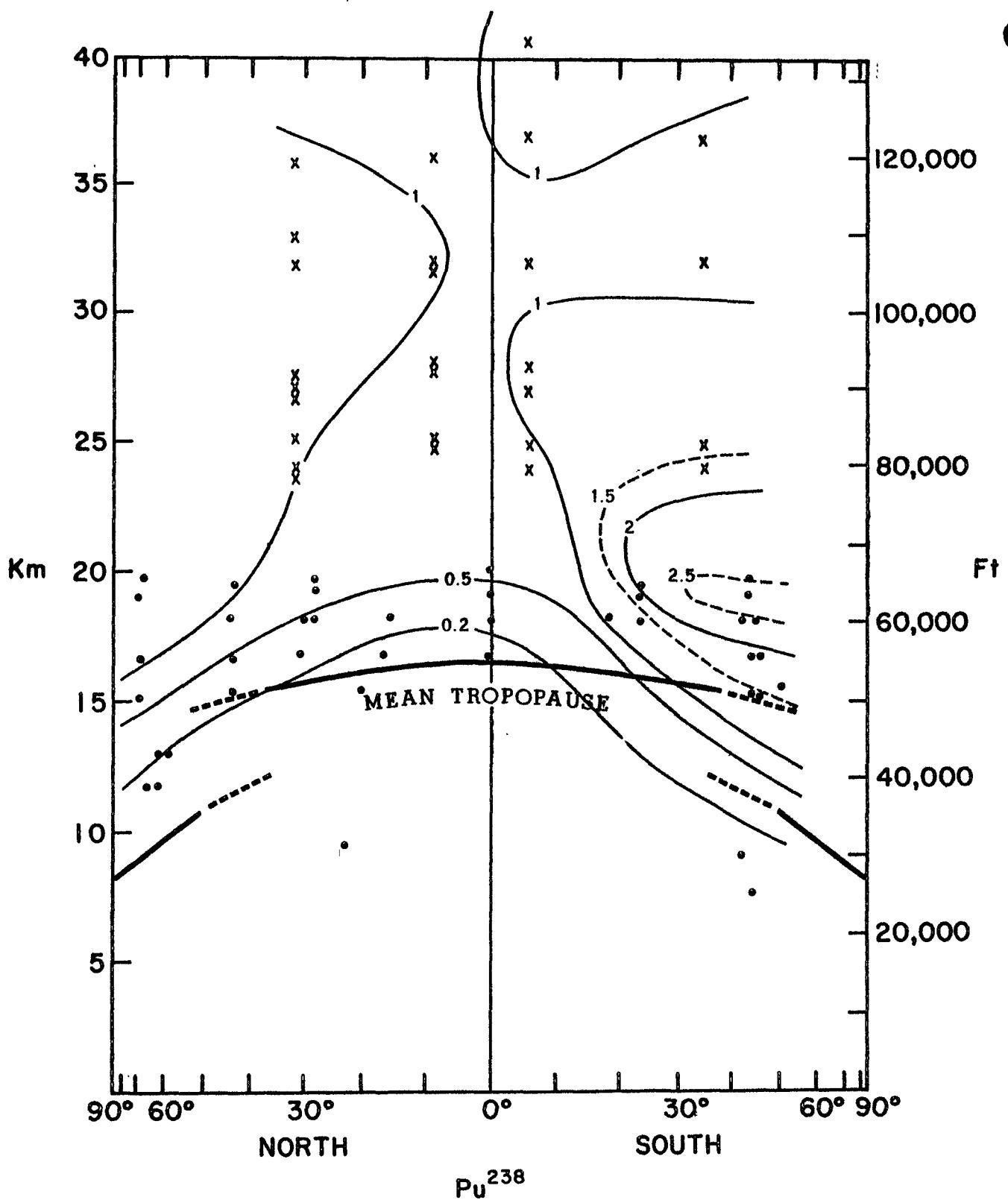
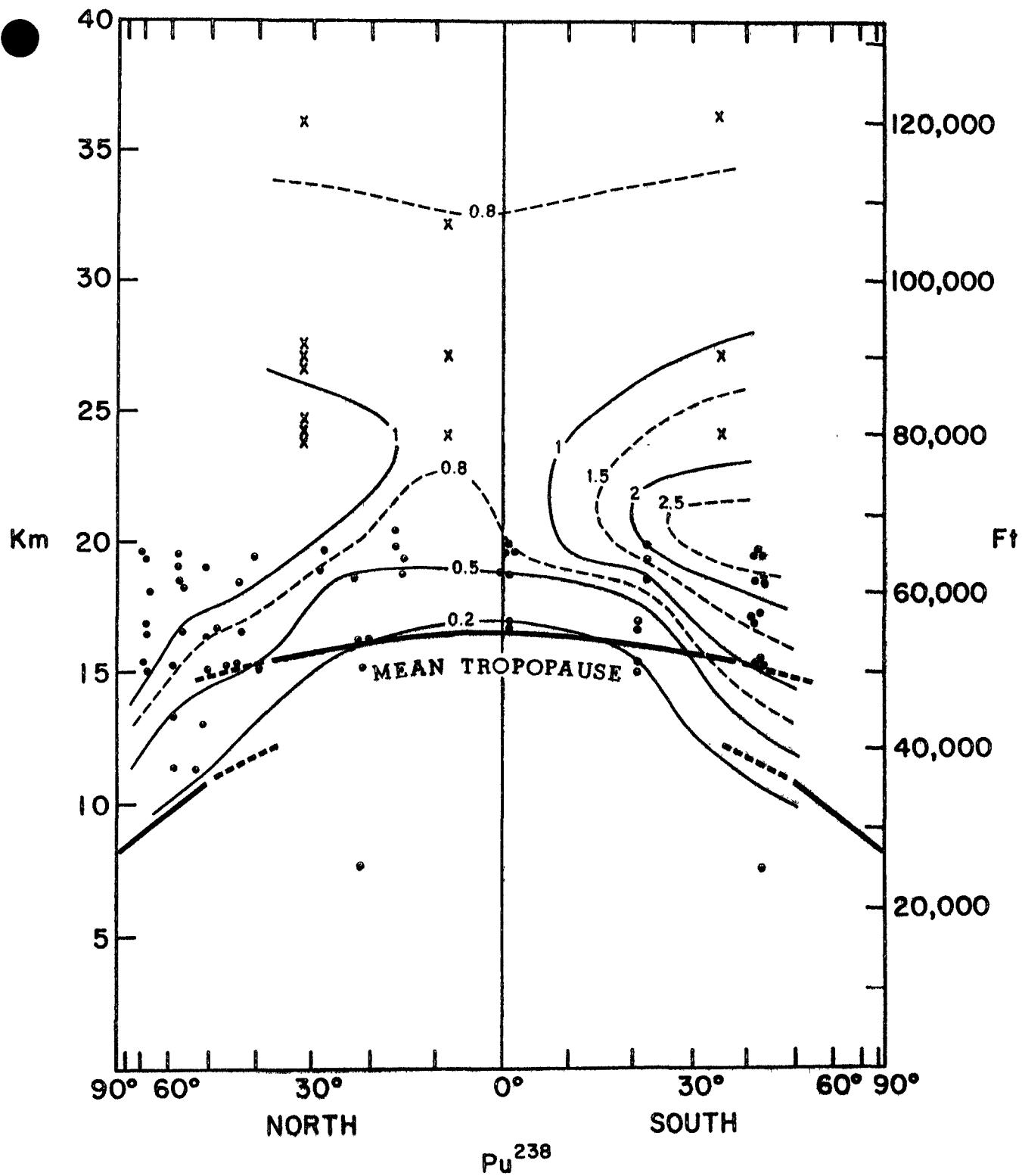
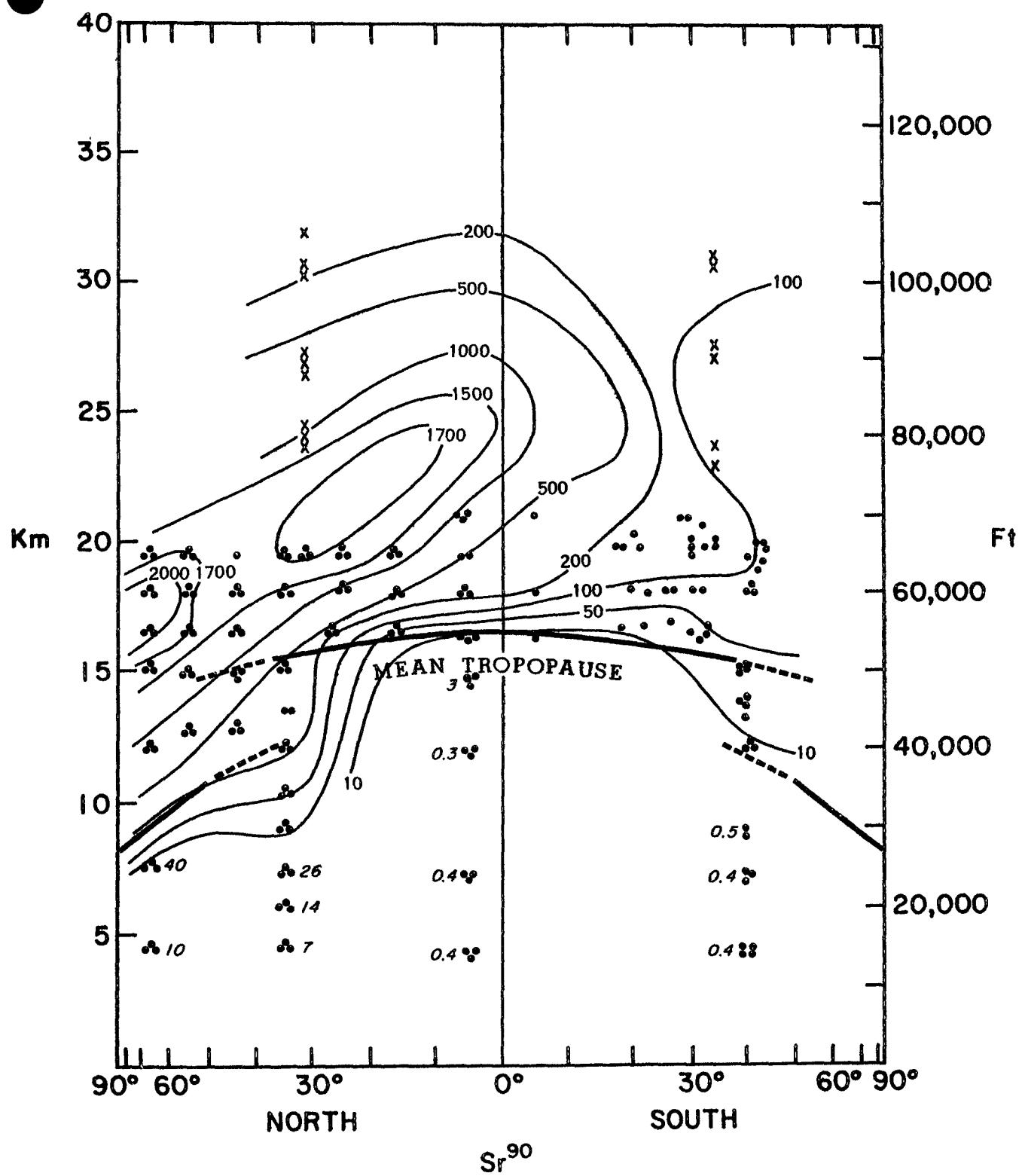



Figure 25

SEPTEMBER - NOVEMBER 1966





Figure 26

DECEMBER 1966 - FEBRUARY 1967

**FIGURES 27-42**

**Latitudinal Cross Sections of Mean Seasonal  
Strontium-90 Concentrations  
(March 1963-February 1967)]**

Units: disintegrations per minute per 1000  
standard cubic feet of air at sampling time.  
(Numbers in italics refer to mean monthly  
tropospheric values.). Crosses represent  
individual balloon samples, solid circles  
represent average monthly aircraft data.






Figure 28

JUNE - AUGUST 1963

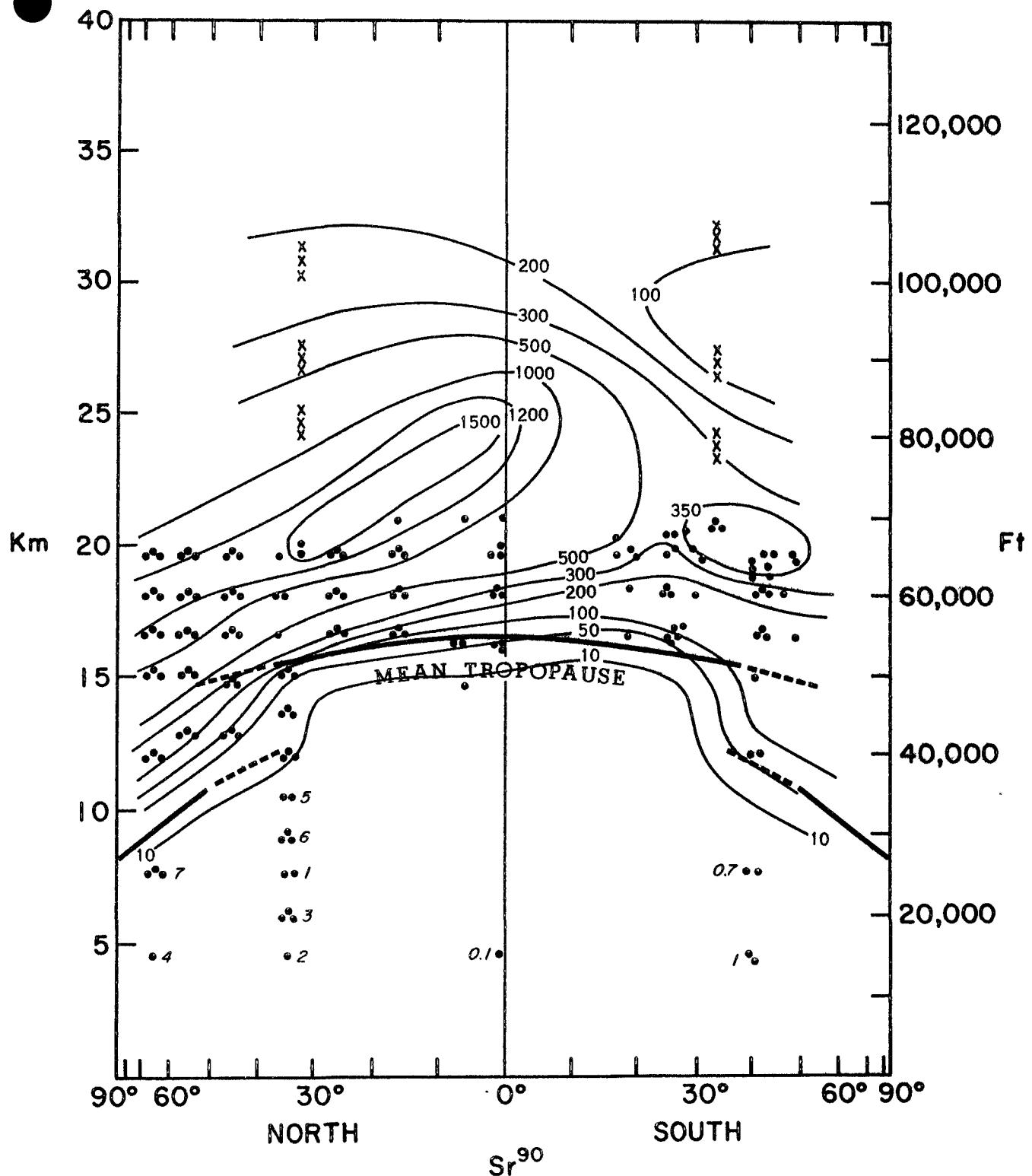



Figure 29

SEPTEMBER - NOVEMBER 1963

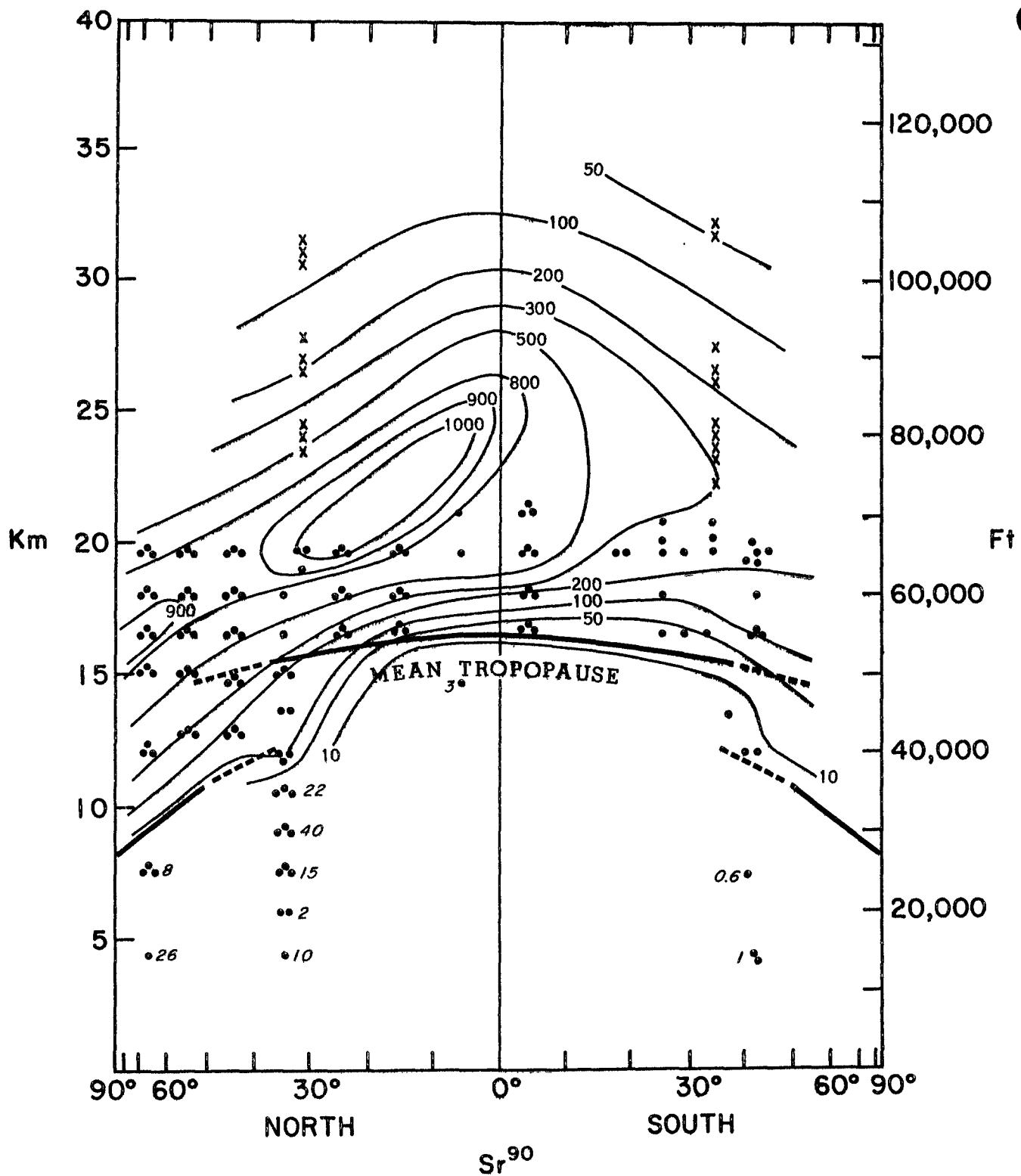



Figure 30

DECEMBER 1963 - FEBRUARY 1964

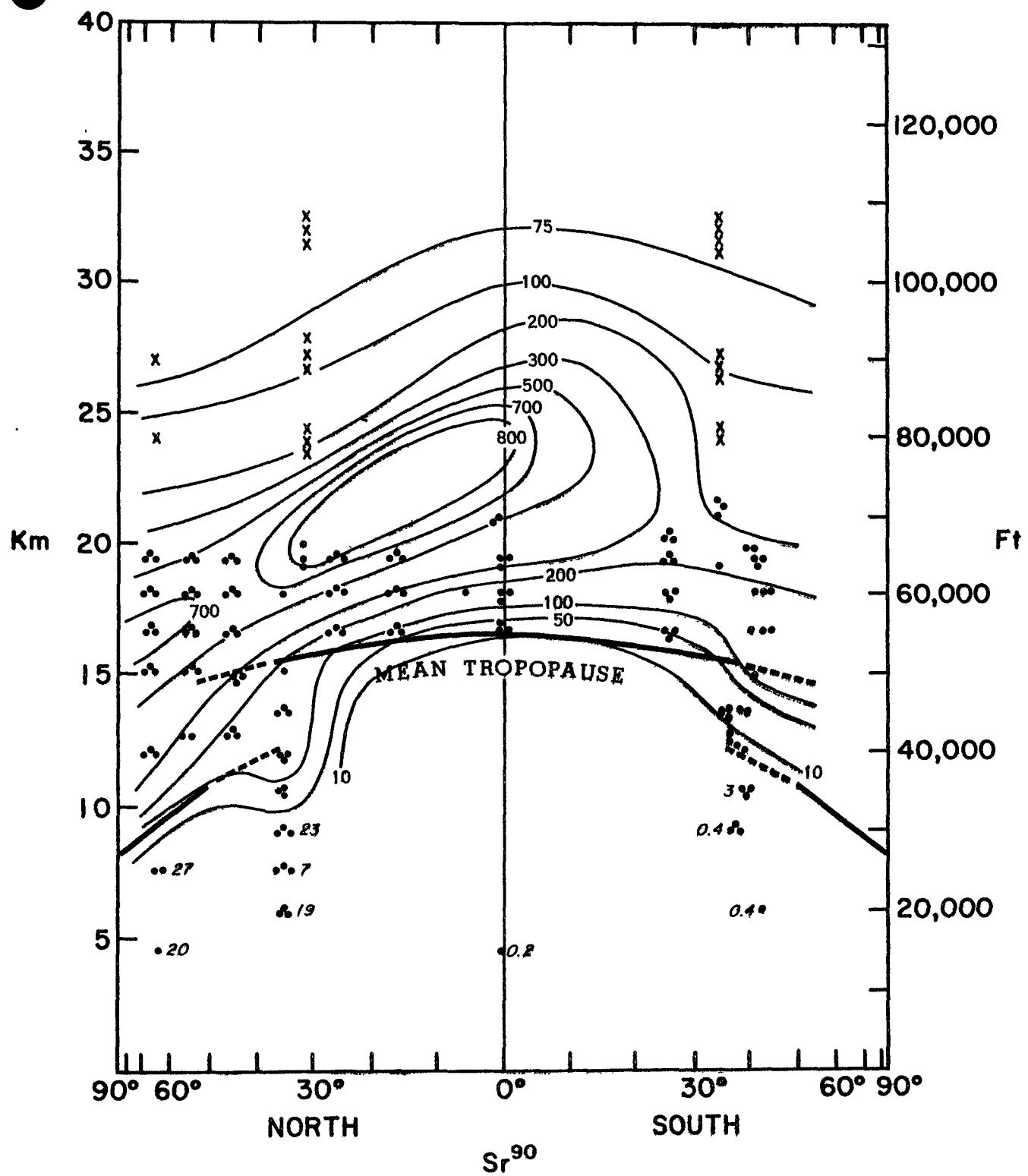
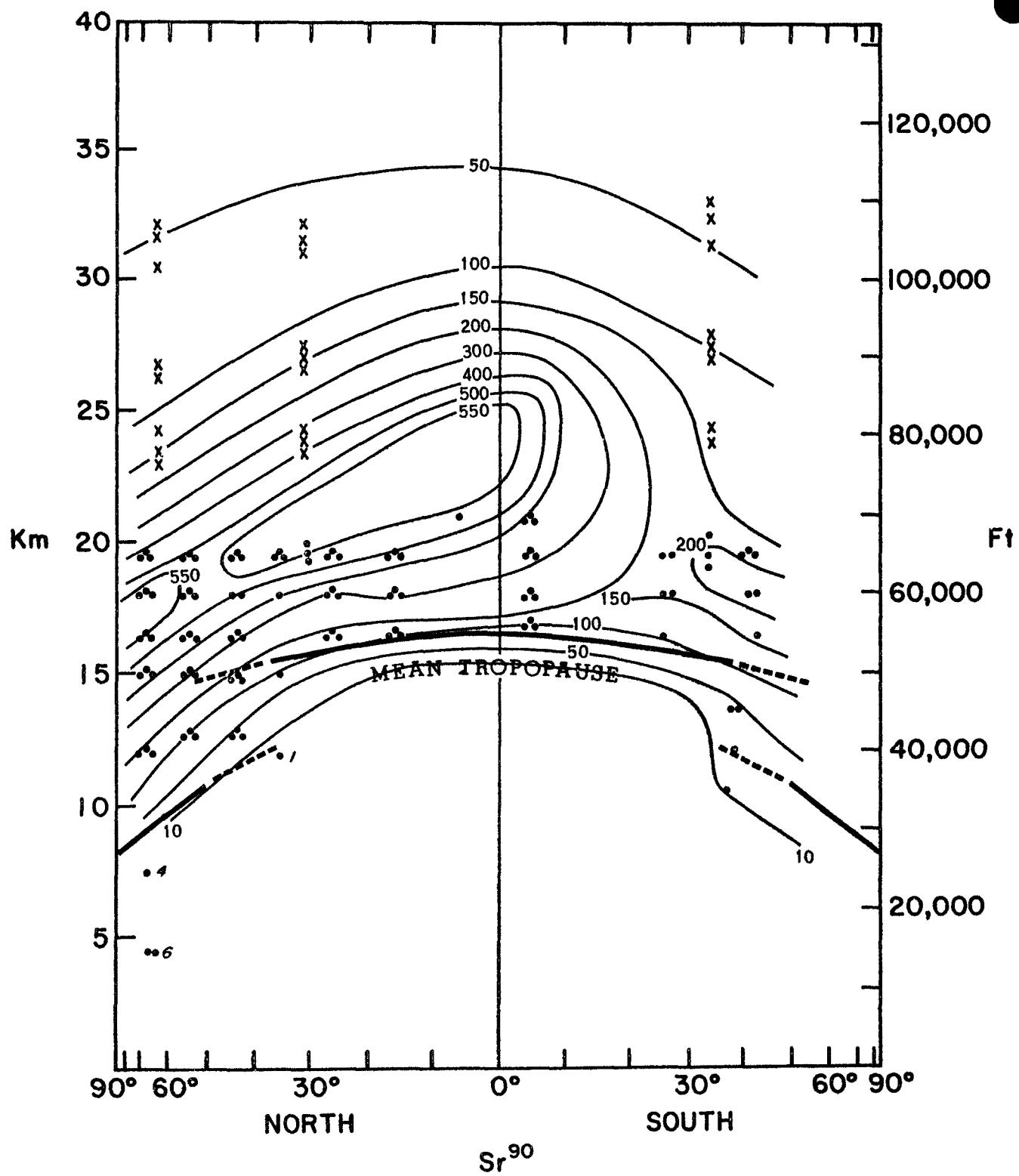




Figure 31

**MARCH - MAY 1964**



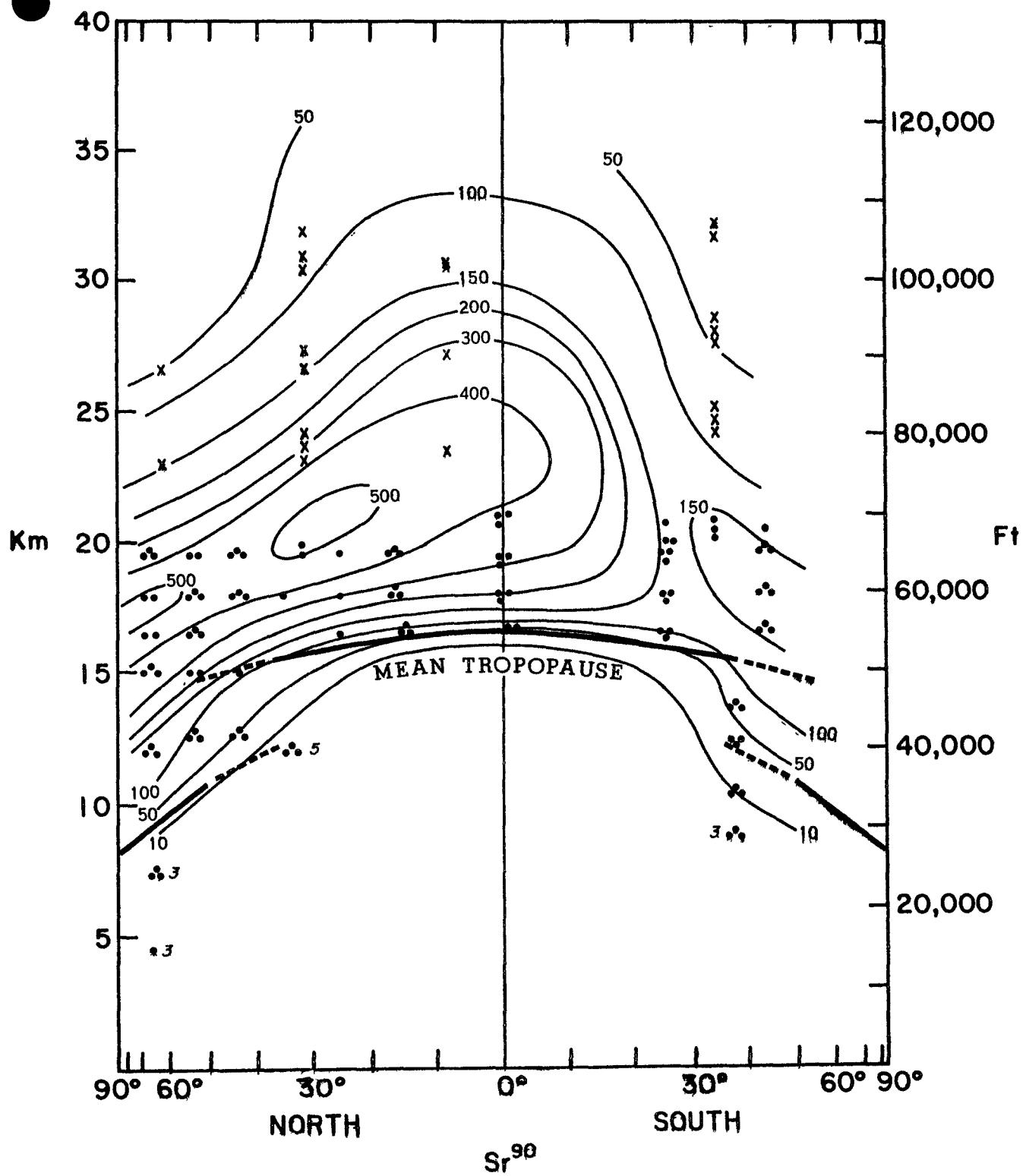



Figure 33

SEPTEMBER - NOVEMBER 1964

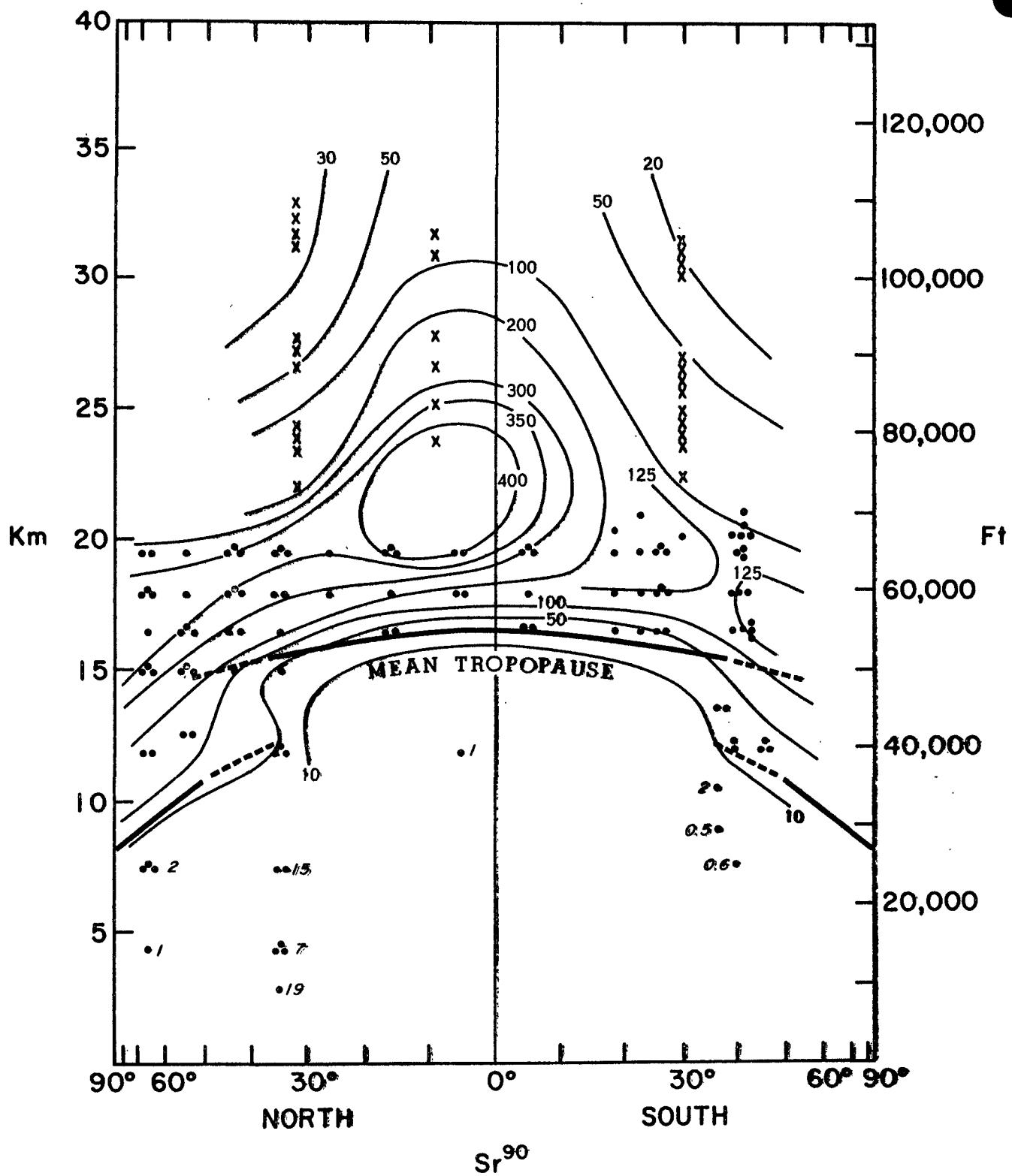



Figure 34

DECEMBER 1964 - FEBRUARY 1965

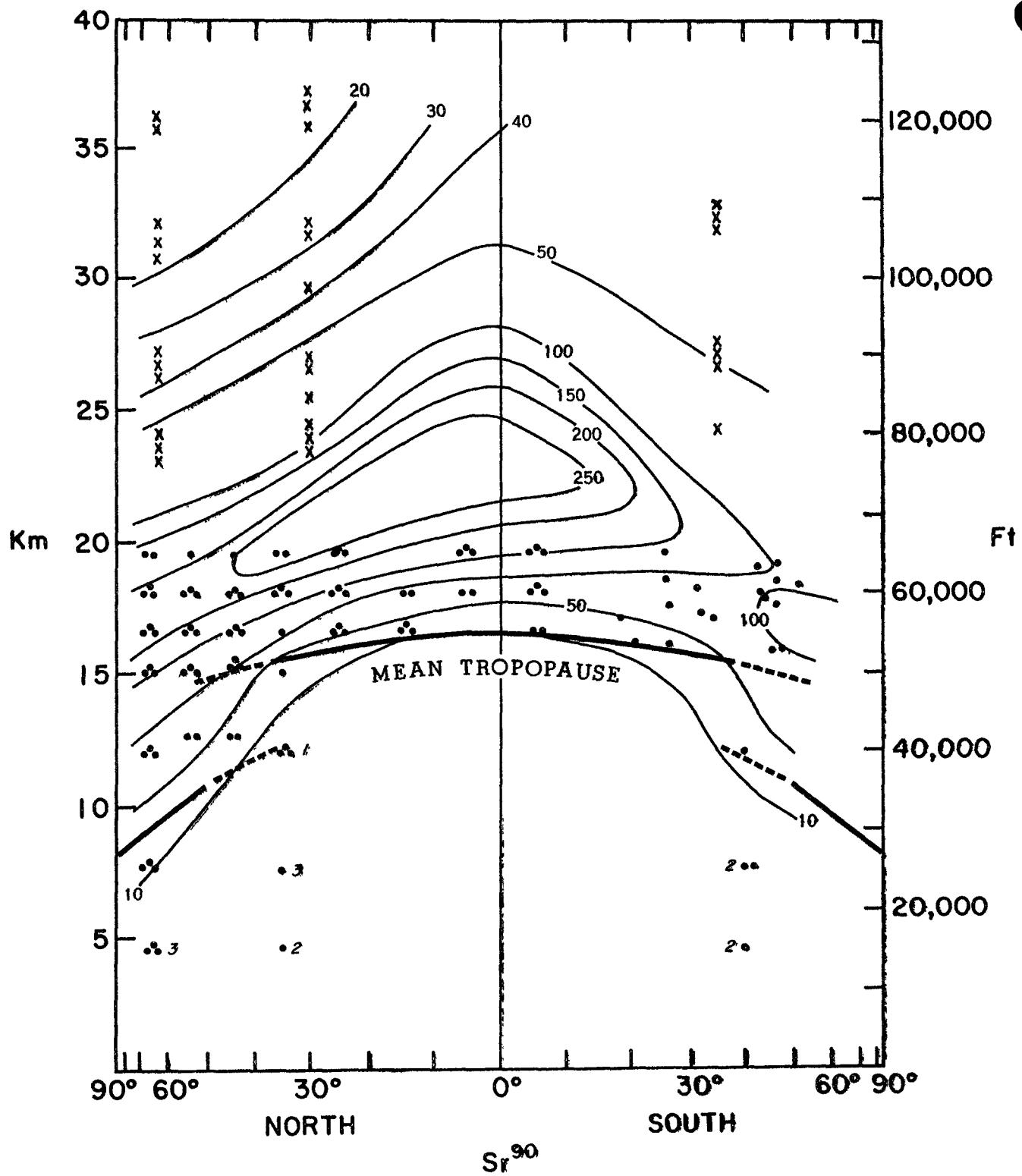

$Sr^{90}$



Figure 35

MARCH - MAY 1965

$\text{Sr}^{90}$



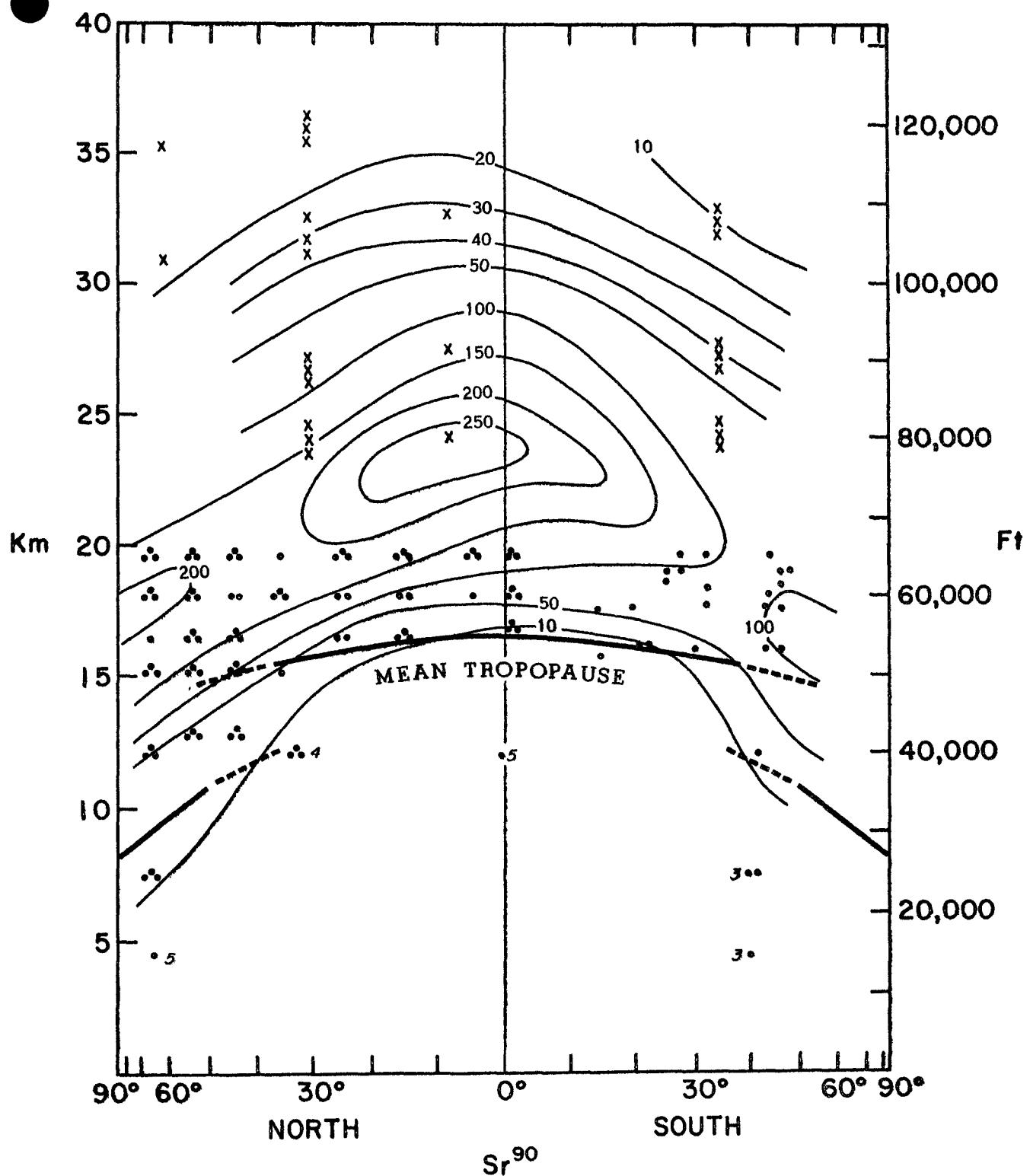



Figure 37

SEPTEMBER - NOVEMBER 1965

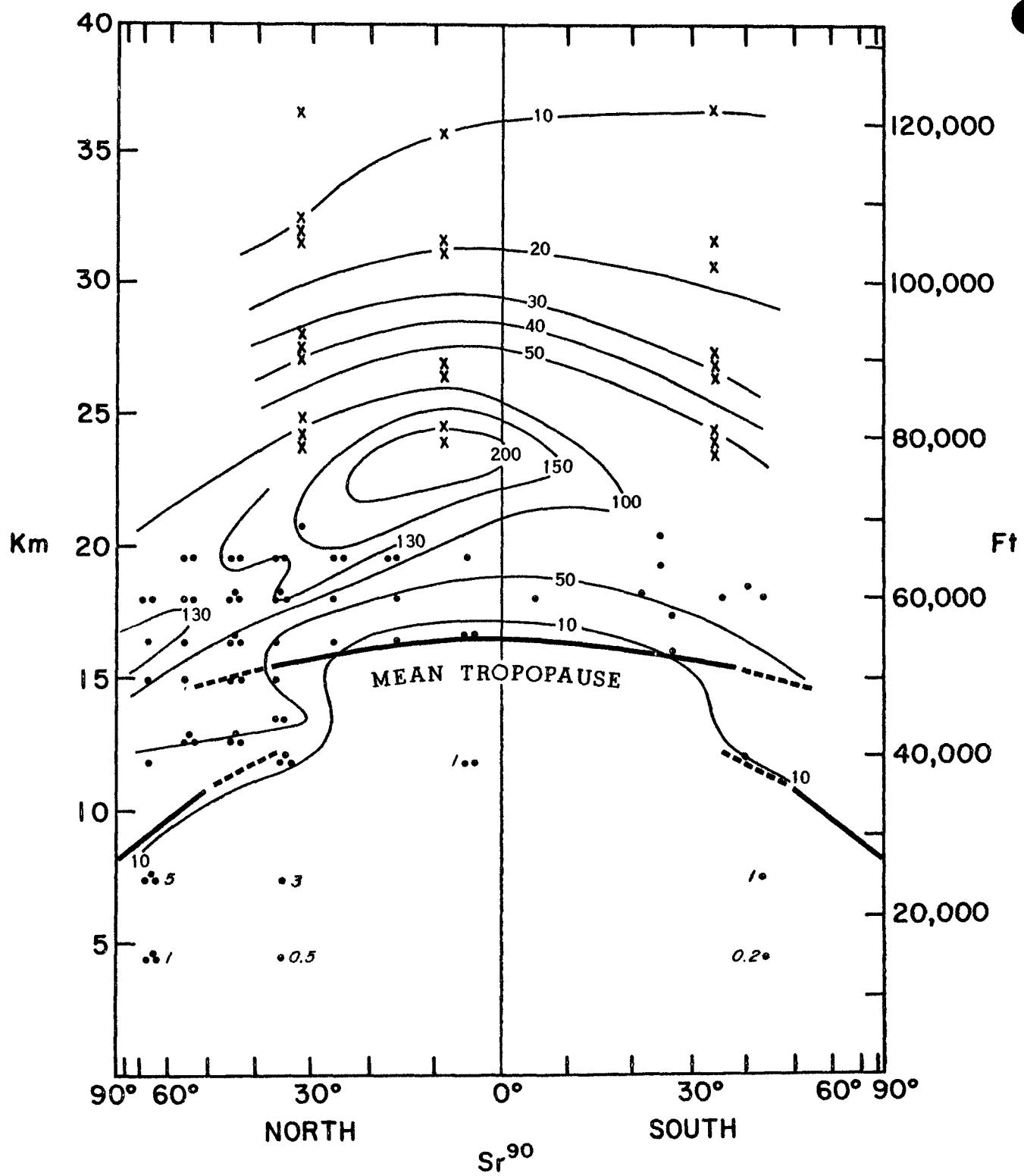
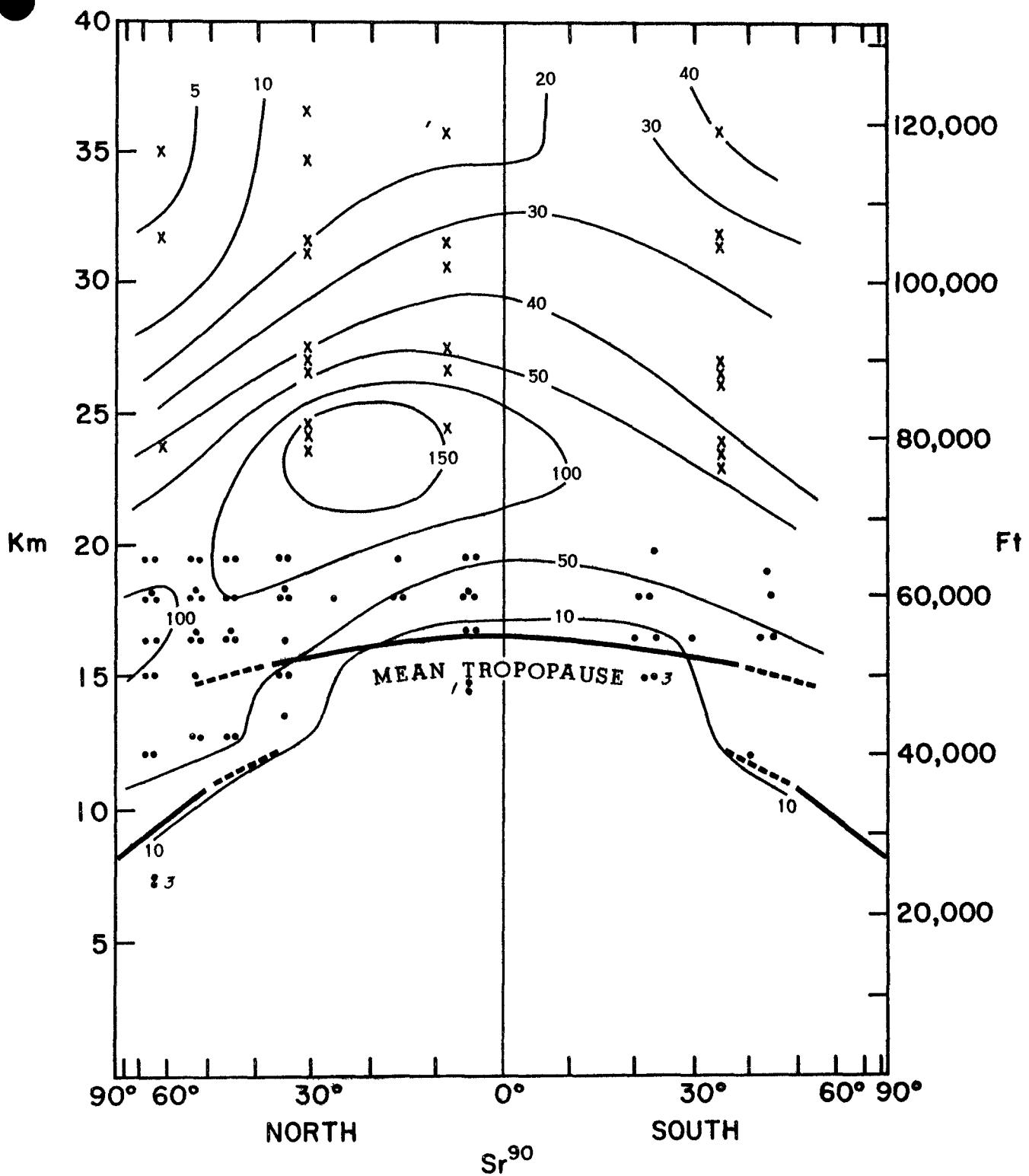




Figure 38

DECEMBER 1965 - FEBRUARY 1966



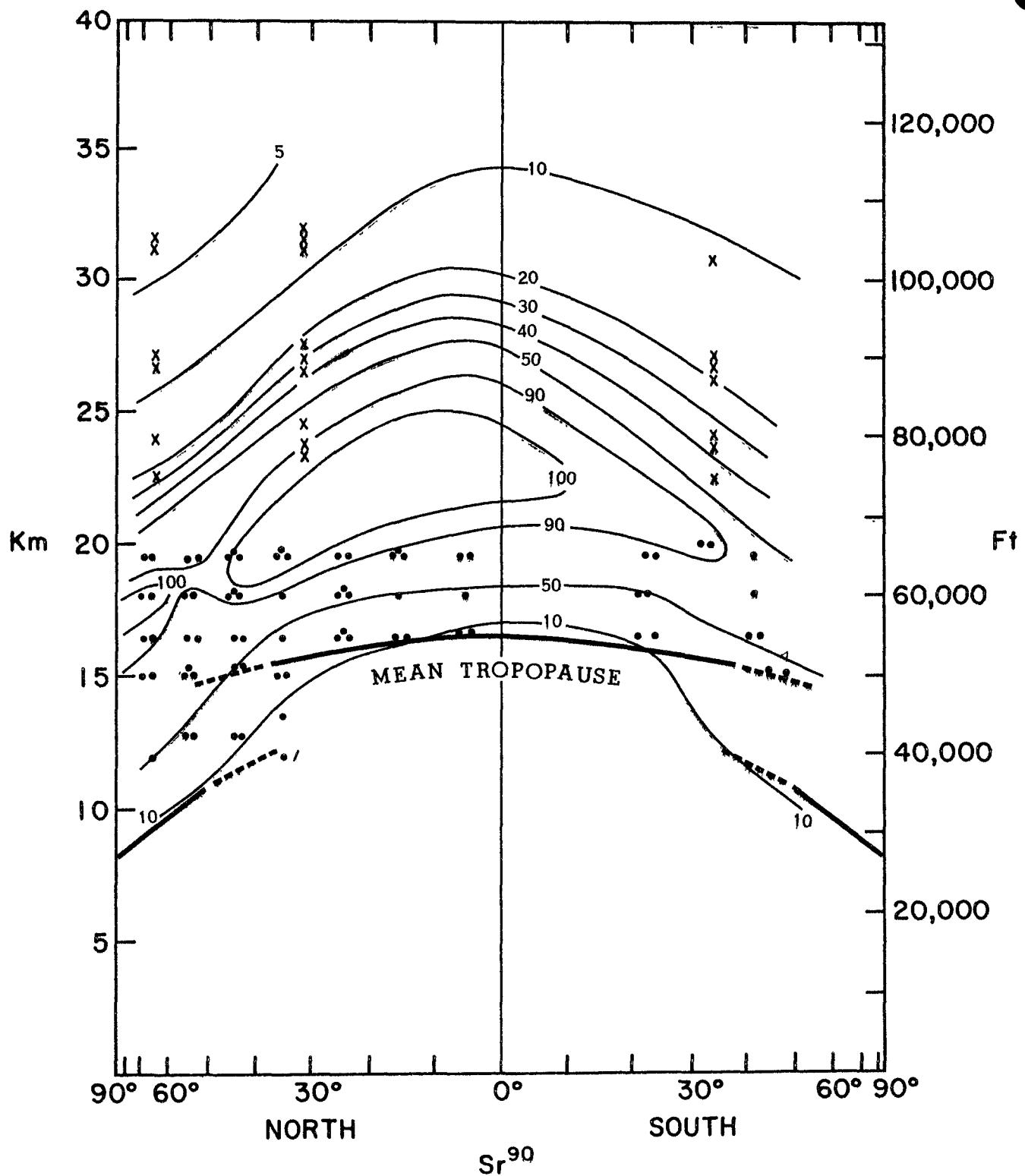



Figure 40

JUNE - AUGUST 1966

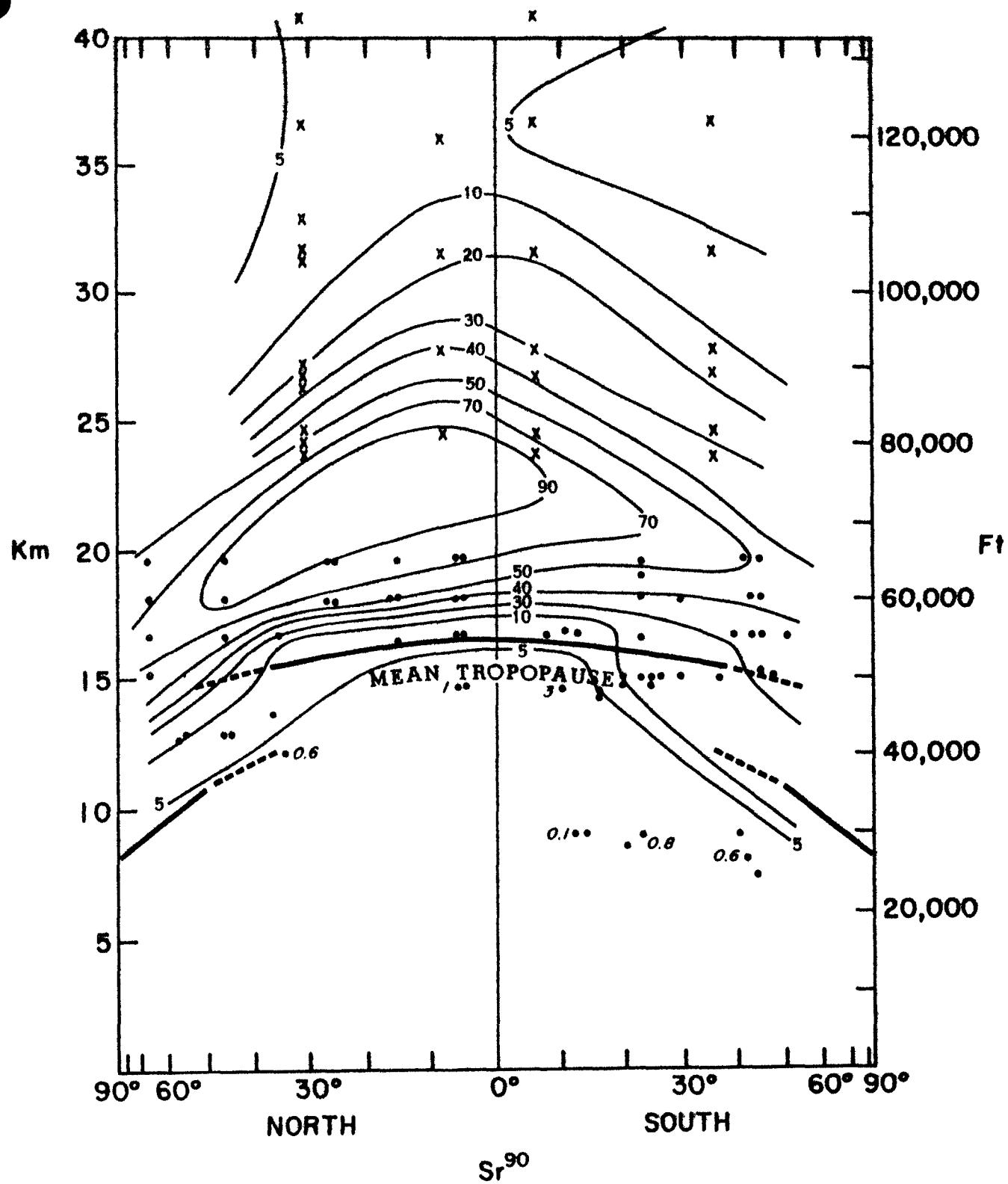



Figure 41

SEPTEMBER - NOVEMBER 1966

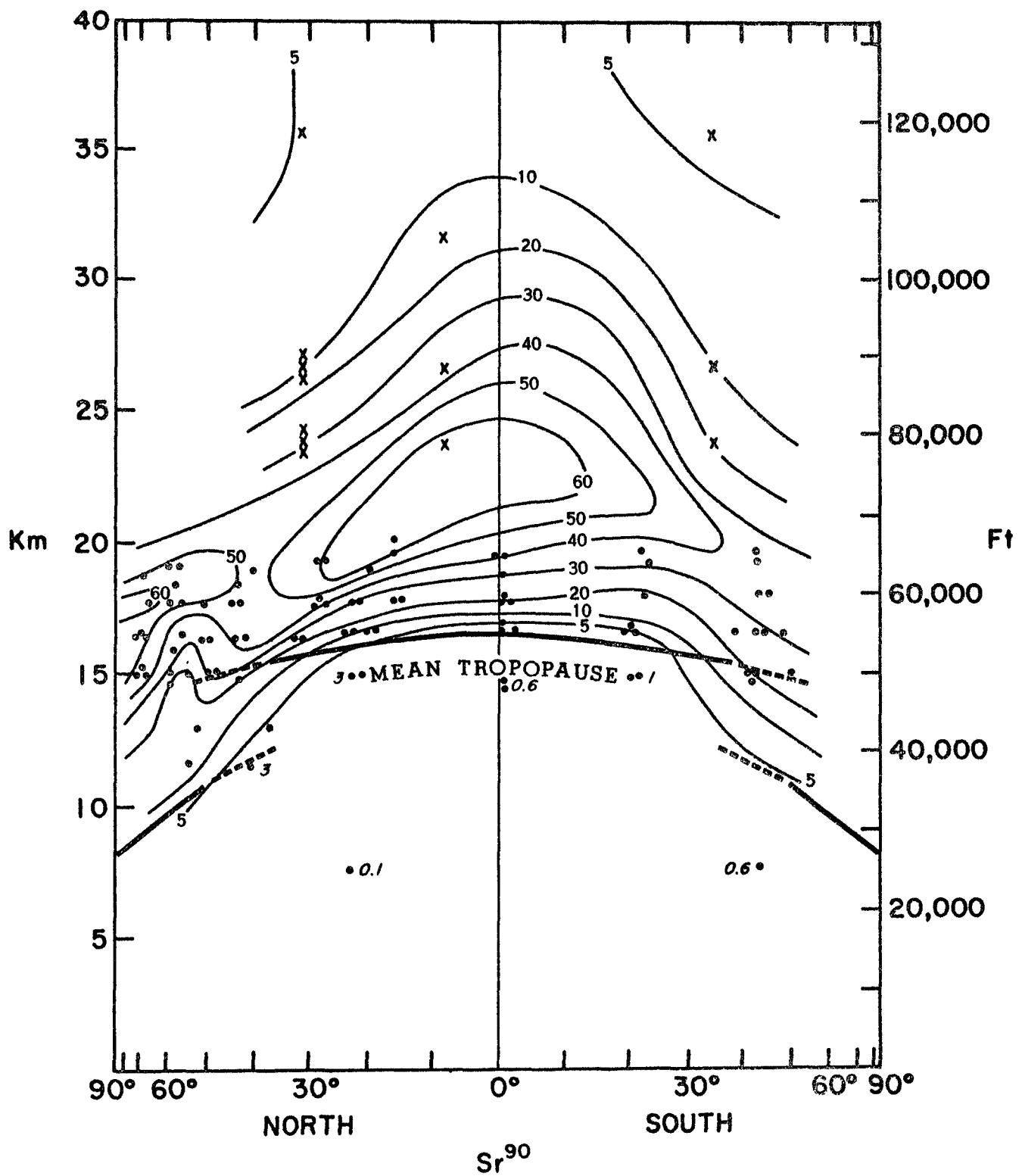



Figure 42

DECEMBER 1966 - FEBRUARY 1967

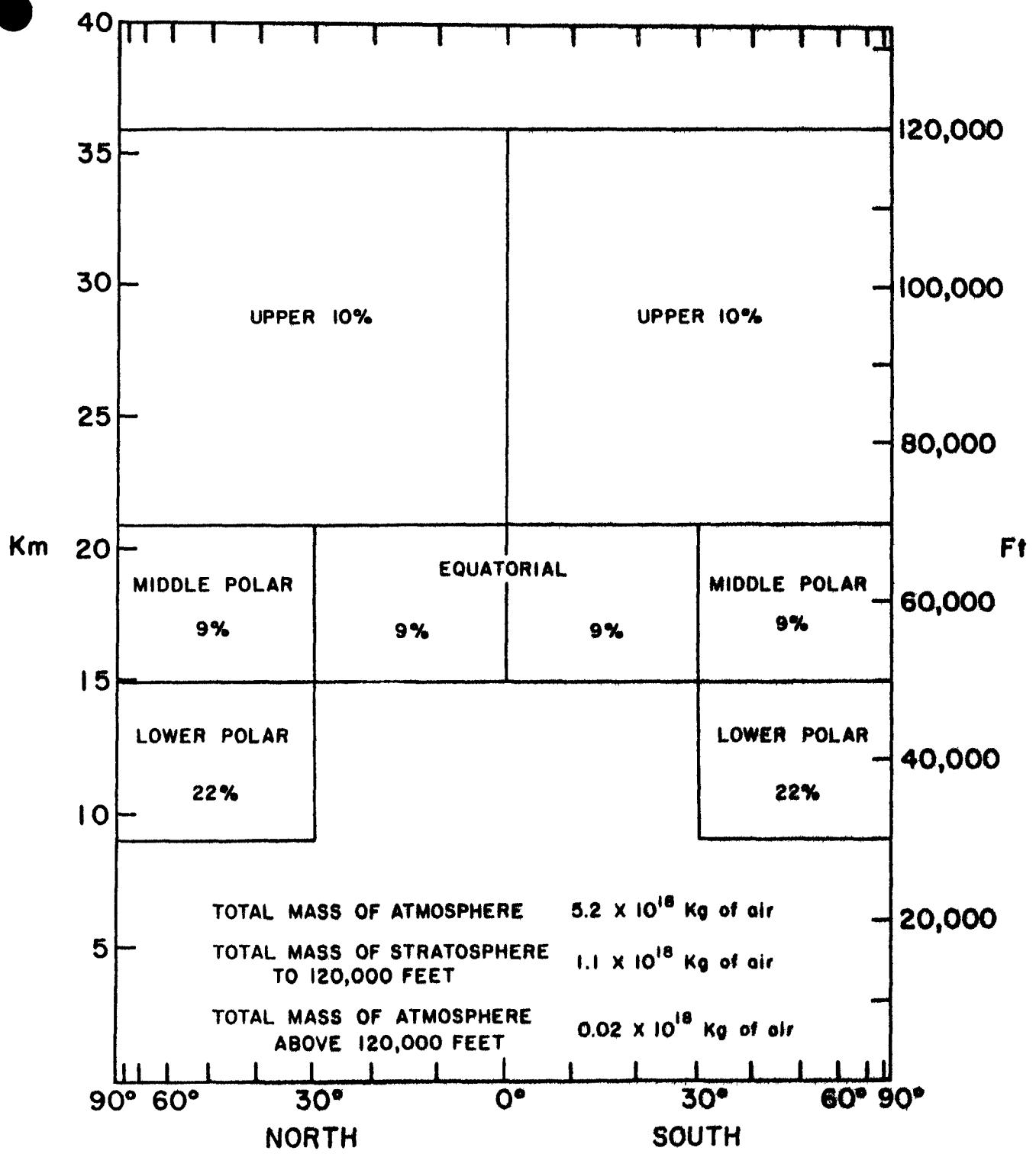



Figure 43 SCHEMATIC STRATOSPHERIC COMPARTMENTS

(Numbers represent percentage of total stratospheric mass)

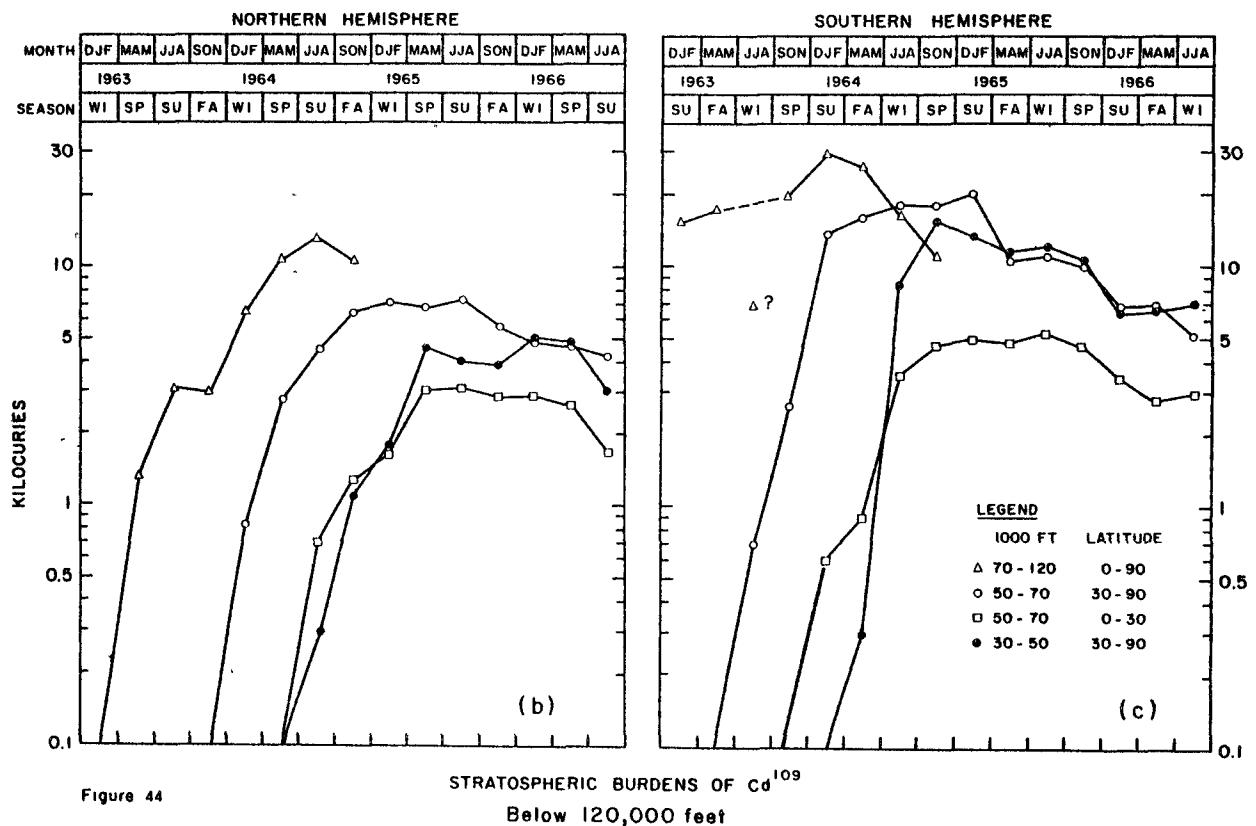
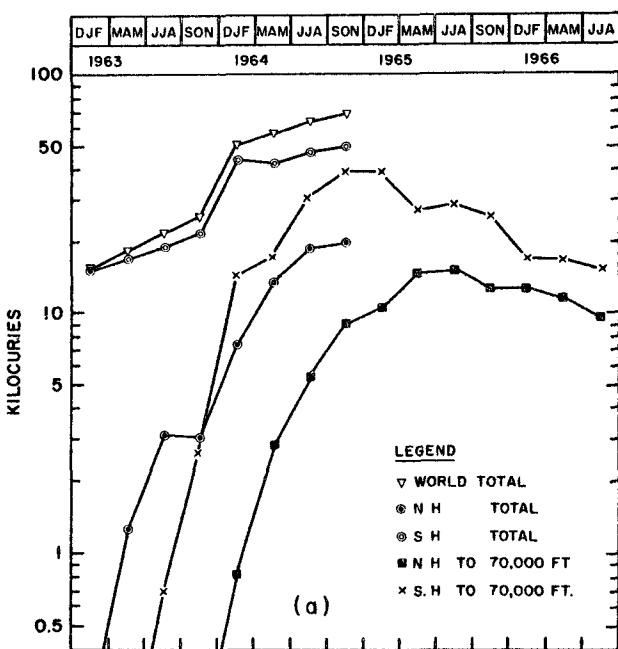
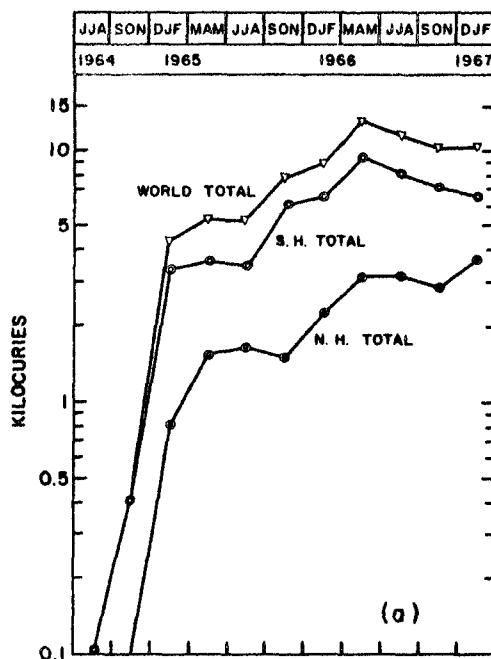





Figure 44



(a)

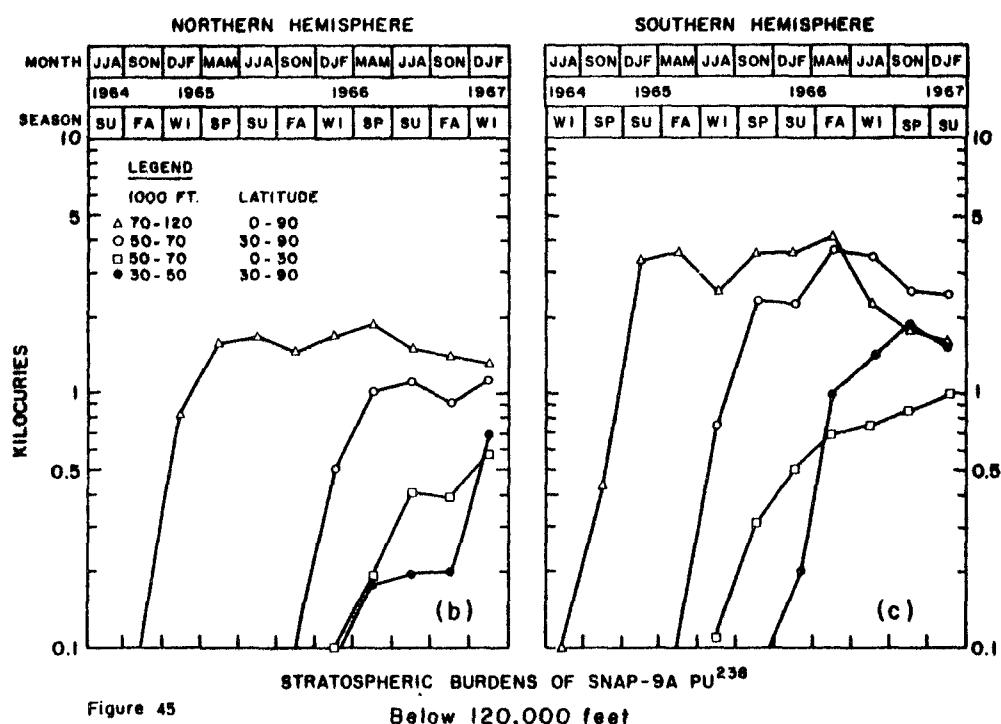



Figure 45

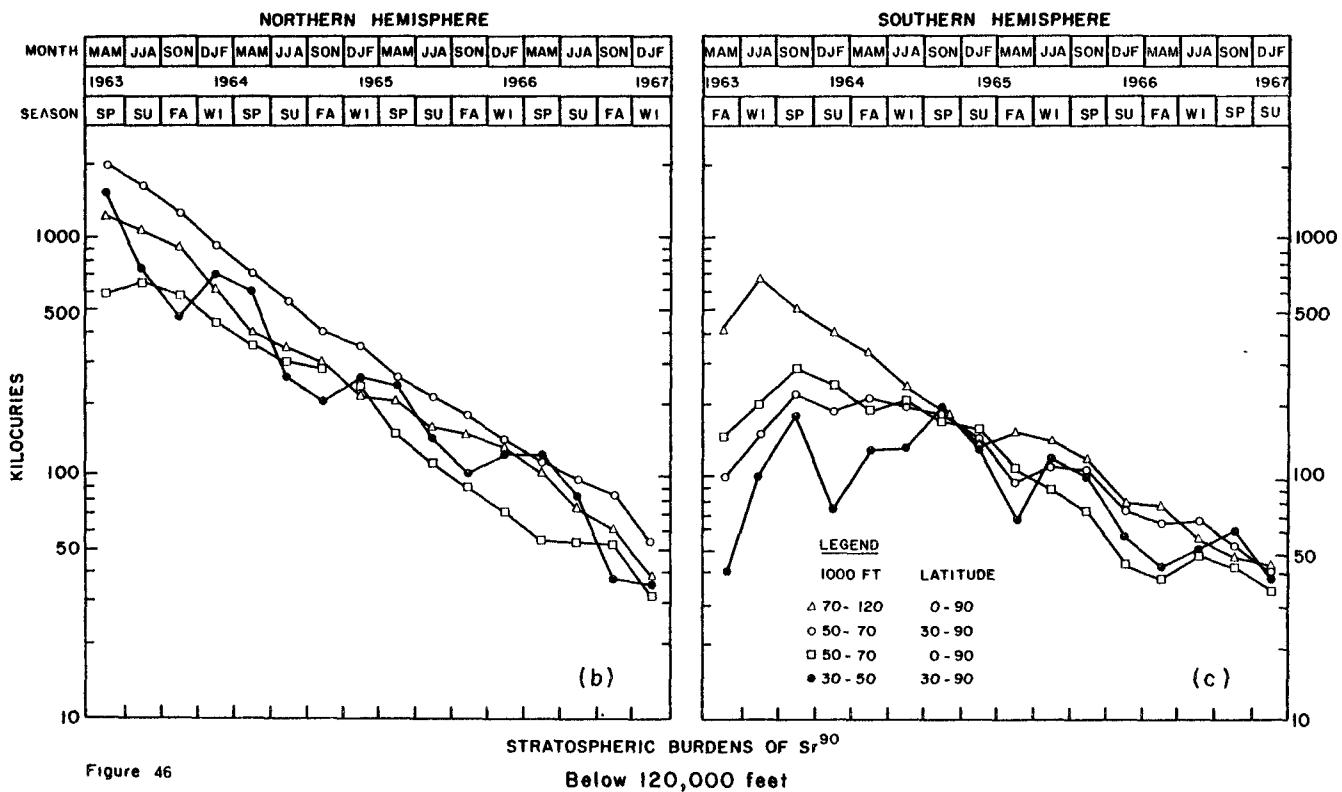
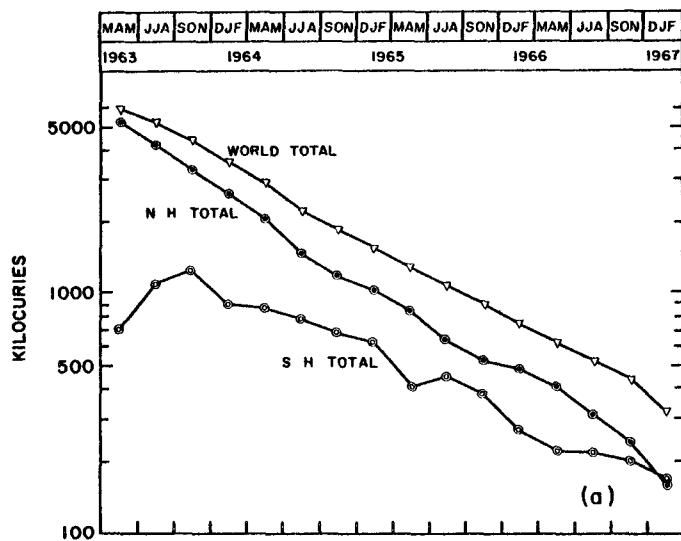




Figure 46

Below 120,000 feet

~~SECRET~~  
PROJECT AIRSTREAM

by Philip W. Krey (HASL)

Project Airstream is HASL's study of radioactivity in the lower stratosphere employing the RB-57F Aircraft as a sampling platform. The aircraft are flown by the 58th Weather Reconnaissance Squadron under the direction of the 9th Weather Wing of the Air Weather Service. This project is a follow-on of the Defense Atomic Support Agency's Project Stardust except that Airstream's sampling missions are limited to only one per season. The missions are scheduled for early August, November, February, and May with a  $\pm$  one month slippage. However, each mission must be completed within a nine-day interval. The flight trajectory is given in Fig. 1 and the anticipated altitude coverage is shown in Fig. 2.

The coverage shown in Fig. 2 extends continuously at the indicated altitudes from  $75^{\circ}$ N to  $51^{\circ}$ S latitude except for a slight gap between  $10^{\circ}$  -  $16^{\circ}$ S. The mission is accomplished by flying the aircraft from four bases of operation:

|              |                     |                     |
|--------------|---------------------|---------------------|
| Eielson AFB  | $64^{\circ} 40'$ N, | $147^{\circ} 06'$ W |
| Kirtland AFB | $35^{\circ} 03'$ N, | $106^{\circ} 36'$ W |
| Albrook AFB  | $08^{\circ} 57'$ N, | $79^{\circ} 34'$ W  |
| Mendoza AFB  | $32^{\circ} 49'$ S  | $68^{\circ} 47'$ W  |

The gap may be closed at the lower altitudes by sampling during the redeployment of aircraft from Mendoza AFB, Argentina after the mission is completed. Redeployment sampling from the other remote bases to the home base at Kirtland AFB may also provide data on the short term variability of the radioactive environment and on the representativeness of the sampling program.

#### AIR FILTER SAMPLES

Air Filter samples are collected during a latitude increment of approximately  $3^{\circ}$  -  $4^{\circ}$  at prescribed altitudes using the U-1 foil system. This system permits the

sequence insertion of up to 12 IPC #1478 filter papers (diameter 16-3/8") into the sampling duct near the bomb bay on the right side of the aircraft. Estimates of the volumes sampled by each filter are made using the calculations developed under Project Stardust.

Upon arrival at HASL, the filters are coded, logged and quartered. The entire sample (or a representative fraction if the activity is too high) is folded and placed in a plastic box, 8 cm x 6.5 cm x 3.1 cm deep, for gamma spectrometric analysis on an 8" x 4" NaI(Tl) crystal. The total gamma activity is integrated between 100 Kev and 3.0 Mev, and the complex spectrum submitted for computer resolution by least squares fitting into its component members. Based upon these measurements, quadrants of the filter are combined into appropriate composites which are sent to contractor laboratories for detailed radiochemical analyses including

|        |            |
|--------|------------|
| Fe-55  | Ce-144     |
| Sr-89  | Pb-210     |
| Sr-90  | Po-210     |
| Zr-95  | Pu-238     |
| Cd-109 | Pu-239,240 |
| Ce-141 |            |

#### RADON SAMPLES

Radon samples are recovered by inserting the HASL Radon sampler into the normal gas sampling system (P System) of the aircraft. The HASL sampler consists of a 190 gram charcoal trap housed within a 13" diameter sphere (Fig. 3). The charcoal used was specially selected for its low radium contamination and yielded <0.3 picocuries of radon per trap at equilibrium. Laboratory tests in a High Altitude Chamber have shown the charcoal to be greater than 80 percent retentive for influent radon provided the air temperature is below -18°C (1). Several measurements have shown that the temperature of the charcoal in the trap while sampling is not widely different from that of ambient air at sampling altitudes, so that the temperature requirement is readily satisfied.

The volume of air routinely sampled by each trap is about 6 SCM. The installation and operation of the radon sampler have been described earlier (2). Special shipping procedures bring the traps back to HASL as soon as possible after sampling. Radon is de-emanated from the traps and assayed in low level ionization chambers.

### RESULTS

The Airstream missions for August and November 1967 have been completed. An error was made in the volume calculations of the August samples, so that the concentrations previously reported in HASL-183 (2) are incorrect. The corrected volumes and gamma concentrations on sampling date for the August mission together with the collection parameters are given in Table 1. One standard deviation of the counting error of any total gamma measurement is generally less than  $\pm 5$  percent.

The initial results of the August Airstream mission and of the High Altitude Balloon program depicted a strangely stratified cloud from the sixth Chinese nuclear test on June 17, 1967. To obtain additional information on the distribution of this debris, three additional flights were conducted in early October. One was an altitude profile flight at  $31^{\circ}\text{N}$  with samples collected at every 0.92 km increments from 12.2 km to 19.2 km. The other two flights combined to give transects at altitudes of 15.2, 16.8, 18.3 and 19.2 km on a northeasterly course from Kirtland AFB to Sioux Falls, South Dakota. These flights were designed to correlate with balloon missions from 21 to 41 km conducted at  $31^{\circ}\text{N}$  and at Foss Field ( $44^{\circ}\text{N}$ ) at similar times. The results of the special Airstream flights are also presented in Table 1.

The concentrations of individual gamma emitting nuclides on collection date derived from a computer least squares resolution of the complex gamma spectrum of each

sample are also presented in Table 1. These data supercede the limited gamma spectral results published in HASL-183. The major revision reflects a calibration change by a factor of 10 for the Zr-95 activities. The Zr-95 concentrations represent the total Zr-95-Nb-95 mixtures in each sample decay corrected from the measurement date to the sampling date with the 65 day half life of Zr-95. Ba-140 concentrations reflect Ba-140+La-140 equilibrium values. Mn-54 is decay corrected to October 15, 1961, its apparent production date, and is the only nuclide not reported on its collection date.

Because the gamma spectrum measurements are performed routinely on hundreds of samples each month for prolonged counting intervals and because the bias and gain adjustments are made manually, the exact electronic conditions pertaining to each radioassay cannot be scrupulously maintained. Consequently, one standard deviation of the precision error is estimated to be  $\pm 15$  percent. Revised estimates of the reliability of these measurements will be made when detailed radiochemistry data of similar samples become available.

Table 2 presents the collection parameters, total gamma concentrations and available nuclide concentrations from spectra resolutions of the samples collected during the November 1966 mission. Plots of the corrected gross gamma concentrations on collection dates versus latitude for the August mission and for the November mission are shown in Figures 4 and 5, respectively. A similar plot of the Zr-95 concentrations on collection date for the August mission is given in Fig. 6. Fig. 7 illustrates the distribution of the Zr-95/Ce-144 ratio in the lower stratosphere during August 1967.

The radon-222 concentrations at the midpoint of collection obtained from the November mission are reported in Table 3. The data are grouped according to decreasing altitude of collection and sub-grouped by decreasing latitude. The Rn<sup>222</sup> content of two blank traps which were flown in the stratosphere under routine conditions but through which little or no air was drawn are also presented in Table 3. These data are corrected for the approximate average radon background of the charcoal traps, but not for the observed values of the blank traps.

#### DISCUSSION

##### DISTRIBUTION AND CHARACTER OF DEBRIS FROM THE CHINESE 7th NUCLEAR TEST - AUGUST 1967

The distribution of the revised total gamma concentrations in August 1967 (Fig. 4) is not markedly different from that presented in HASL-183. The main core of the Chinese cloud is concentrated above 18 km directly over the point of detonation. The debris was transported both equatorward and poleward with a downward vector in each direction, although the downward movement was apparently inhibited by the high tropopause in the equatorial regions. The cell of high activity in the Southern Hemisphere from the French tests in June and July 1967 is clearly visible. This cell appears to extend unnaturally high into the equatorial stratosphere, and may actually be due in part to the most southward migration of the Chinese debris.

The distribution of the Zr-95 concentration in Figure 6 essentially reflects the same pattern as the gross gamma concentrations. Zr-95 concentrations in the lower stratosphere of the Northern Hemisphere just prior to the 6th Chinese test are unavailable. However, based upon Sr-89 concentrations in early 1967, the Zr-95 concentrations should be less than 0.15 pCi/SCM (3) if one assumes that most of the Northern Hemispheric burden of these two nuclides was generated by the 5th Chinese nuclear test of December 28, 1966. The 0.20 pCi/SCM contour of the Chinese cloud is

drawn to have reached only  $3^{\circ}$ N latitude which automatically and arbitrarily dictates the altitude to which one can ascribe the ascent of the Zr-95 from the French clouds.

The distribution of the Zr-95/Ce-144 ratios at collection time in Fig. 7 parallels those in Figures 4 and 6. The ratio reaches a maximum of about 4 in the core of greatest Chinese debris and decreases toward lower concentrations of that debris. As in the case of Zr-95, no Ce-144 concentrations are available for the lower stratosphere just prior to the 6th Chinese test. However, the High Altitude Balloon data in early 1967 suggests a Ce-144/Sr-90 ratio of about 0.6 would be appropriate for relatively old stratospheric debris in August 1967 (4). Stardust data for early 1967 showed relatively little increase in the lower stratosphere of Sr-90 from the 5th Chinese nuclear test (3). Therefore the Ce-144 concentrations would not be drastically affected, and we assume that the extrapolated ratio of 0.6 for Ce-144/Sr-90 in August calculated from the balloon data applies to the lower stratosphere. Extrapolating the Stardust Sr-90 concentrations to August and applying this 0.6 Ce-144/Sr-90 ratio gives a probable Ce-144 concentration of about 450 pCi/KSCM above 15 km in the mid latitudes. This is a significant part of the total Ce-144 measured in the August samples, and, in general, it explains why the Zr-95/Ce-144 ratio falls off as the background Ce-144 becomes a major contributor at the edges of the Chinese 6th test cloud.

Although there were three samples with Zr-95/Ce-144 ratios of about 5.9, a more representative ratio of the Chinese debris collected in August seems to be about 3.0. If all ratios above 1.6 are averaged (25 samples), the average ratio is 3.0. If only those samples with Zr-95 concentrations  $>2000$  pCi/KSCM are averaged (10 samples), the value is 3.1. If only those 4 samples in which the assumed background Ce-144 represents 30% or less are averaged, the average ratio is 2.7. Decay

orrecting this 3.0 average value back to shot time, gives a Zr-95/Ce-144 ratio of 2.6 which is about half the expected value of 4.7 (5). This result is surprising because in the lower regions of a nuclear cloud where these samples were apparently collected, one would not expect enhancement of Ce-144 over the refractory nuclide, Zr-95.

The Ba-140/Zr-95 ratios derived from the data in Table 1 show two slight trends. One is a minimum in the ratio (~0.20) generally coinciding with the lobe of Chinese 6th debris extending into the lower polar stratosphere (Figures 4 and 6). The second trend is the higher ratios (~1.0) in the Southern Hemisphere and at some of the lower altitudes in the low latitudes of the Northern Hemisphere, presumably the effect of the French tests in the Southern Hemisphere. Selecting the same set of 10 highest activity samples chosen in the Zr-95/Ce-144 discussion yields a ratio of 0.30 at collection date. Averaging all the ratios from 10°N poleward gives a ratio of 0.44. Accepting the higher value and making the appropriate decay corrections to shot time gives an average production ratio of 5.9 which is in good agreement with the 5.2 reference value for a large megaton shot (5).

#### OCTOBER - NOVEMBER 1967

The stratospheric distribution of relatively fresh fission products during November 1967 is illustrated in Fig. 5. The fresh debris in the Northern Hemisphere was produced by the Chinese 6th nuclear weapons test, and remarkable changes in the concentrations of this debris have occurred during the months when Project Airstream was sampling. The fresh debris from the French tests in mid 1967 which was evident in the Southern Hemisphere during August (Fig. 4) is no longer observable during November.

The 6th Chinese test occurred at  $42^{\circ}\text{N}$  on June 17, 1967 (6) and the resultant cloud was shown to be centralized above that latitude between 18 and 24 km in August 1967 (2). The special Airstream flights in early October indicated that maximum concentrations were still at or above 18.3 km, but that the maximum concentrations at 18.3 km had shifted northward to  $49^{\circ}\text{N}$  or higher latitudes. Fig. 5 clearly shows that by November debris from this test had already deeply penetrated the polar stratosphere and had descended in that region to as low as 12 km.

In addition to the polar compartment, there was a second cell of Chinese debris observable during November. This was a smaller cell than the polar compartment, but with a higher concentration core extending downward from the upper altitudes at about  $22^{\circ}\text{N}$ . It may be a more intense development at a slightly lower latitude of a similar lobe of fresh debris visible in the August distribution (Fig. 4). Correcting for decay, the highest concentrations in the November gross gamma distributions were greater than those found in August indicating that larger amounts of the Chinese cloud were descending into the Airstream sampling profile.

In Fig. 5 a lobe of the fresh fission products assigned to the 6th Chinese test is depicted to have reached  $10^{\circ}\text{S}$  latitude at about 17 km. In Figures 4, 6, and 7 representing the August distributions, high values in this region were assigned, without strong foundation, to the debris from the French tests in the Southern Hemisphere in mid 1967. With no other evidence of French debris apparent in the November stratosphere, it seems reasonable to assign the higher gamma concentrations still existing in this region to the Chinese test. One strong reason for this November assignment is that the gross gamma concentrations in this region when corrected for decay back to the August collections are greater than those

measured in August. The French clouds situated in the low stratosphere of the Southern Hemisphere cannot reasonably support this region with additional debris especially since these French clouds appear to have disappeared by November. The bulk of the Chinese cloud in the higher stratosphere to the north of this region should be in a better position to supply the additional fresh debris. Further consideration will be given to the possibility of extending even the August distributions of the Chinese debris further south to incorporate this debris of questionable origin at 10°S.

It appears that significant changes in debris concentrations were occurring over a period of a few days during the November mission. For example, sample Nos. 348 and 349 were flown south of Eielson on November 5, 1967 three days after sample Nos. 294 and 295 were collected at identical locations. The concentrations of the later samples were 4 to 7 times higher than the earlier collections. Similar circumstances apply to samples 330 and 308 flown south of Eielson and to samples 279 and 375 collected north of Albrook with even greater differences.

The reproducibility of collection was demonstrated for areas of low total gamma concentrations by flight 298 on November 6, 1967 south of Albrook. Four samples were collected at specific latitude intervals at 15.2 km on the outbound track of the flight, and these exact intervals were resampled at the same altitude on the inbound track. The average percent standard deviation of the four sets of duplicate collections was  $\pm 16$  percent.

## RADON CONCENTRATIONS

The two sets of duplicate radon collections in Table 3 show a standard deviation of  $\pm 9$  and  $\pm 41\%$  [statistical treatment by Volk (7)], similar to earlier measurements (2). While not exactly duplicates, sampler Nos. 13 and 14 were collected only about  $4^{\circ}$  apart at the same altitude (18.3 km) and on the same day. Assuming that the radon concentrations would be equivalent in these samples, the standard deviation of the two is a reasonable  $\pm 21\%$ . It would be desirable during future missions to obtain duplicate samples with greatly differing volumes. Unfortunately, this is not readily attainable with the P system in the aircraft. Nevertheless, the duplicate collections analyzed during the last two Airstream missions indicate a precision of about  $\pm 30\%$ .

The charcoal in sampler #9, one of the two blank samplers, was from the same batch of charcoal used in all the other samples in Table 3. A blank sampler is one in which the device is flown under routine conditions although little or no air is drawn through the sampler. Analyses of blank samplers indicate the level of radon contamination which is injected into the system during routine handling. The charcoal in sampler No. 18 was taken from a new batch which later was shown to be highly contaminated with radium-226. The 17 pCi of Rn-222 reported is the excess over and above this background contamination. No explanation is offered for this high value. However, since the trap is already suspect because of the contaminated charcoal, no further consideration will be given to it until additional blank traps are analyzed. A number of blank samplers will have been assayed before the next mission (February 1968) will begin.

The value of blank sampler No. 9 should represent an upper limit of the contamination level because air was drawn through this sampler for about one minute at 7.6 km where the radon concentration is relatively high. This level is generally less than 35% of the radon content found in the exposed radon samplers. However, it represents more than the total radon found in Sampler No. 7. As more blank data become available, appropriate values will be subtracted from the total content of each sampler. Unless some unforeseen and serious problem arises, it is not anticipated that this correction will reduce concentrations by more than about 35%.

The radon concentrations given in Table 3 are lower, sometimes by a factor of 1/10, than the Airstream values reported earlier (2). The radon concentrations during November appear to decrease with increasing altitude as they did in the mid-latitudes in August. Further, the concentrations in the equatorial stratosphere are lower than those in the mid-latitudes at similar altitudes. Additional data and testing should be awaited before discussions of these changes in terms of environmental parameters or sampling artifacts can be fruitful.

REFERENCES

- (1) Harley, N.H. and Harley, J. H.  
Stratospheric Radon Sampling  
HASL Technical Memorandum 65-14
- (2) Krey, P. W.  
Project Airstream  
USAEC Report HASL-183, October (1967)
- (3) Feely, H.W., et al  
Flight Data and Results of Radiochemical Analyses of Filter  
Samples Collected During January-March 1967  
USAEC Report HASL-183, October (1967)
- (4) Krey, P. W.  
High Altitude Balloon Sampling Program  
USAEC Report HASL-184, January (1968)
- (5) Harley, N., Fisenne, I., Ong, L.D.Y. and Harley, J.  
Fission Yield and Fission Product Decay  
USAEC Report HASL-164, October (1967)
- (6) Impact of Chinese Communist Nuclear Weapons Progress on United States  
National Security  
Report of Joint Committee on Atomic Energy  
Congress of the United States, August 3, 1967
- (7) Volk, W.  
Applied Statistics for Engineers  
McGraw-Hill, New York



**AIRSTREAM FLIGHT TRAJECTORY**

I - 131

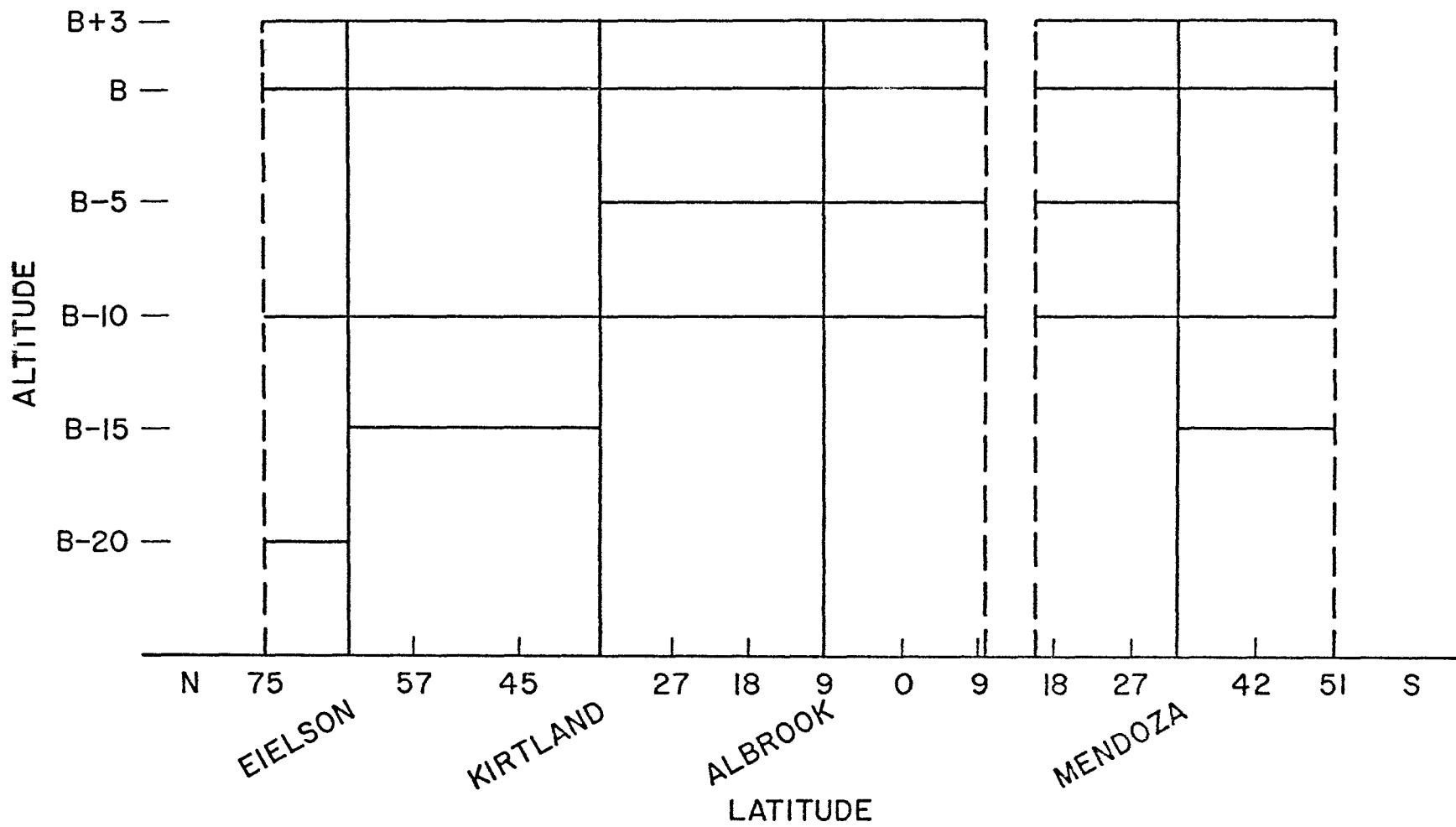



Fig. 2

- Project Airstream Altitude and Latitude Coverage

Fig. 3

I - 133

HASL Radon Sampler

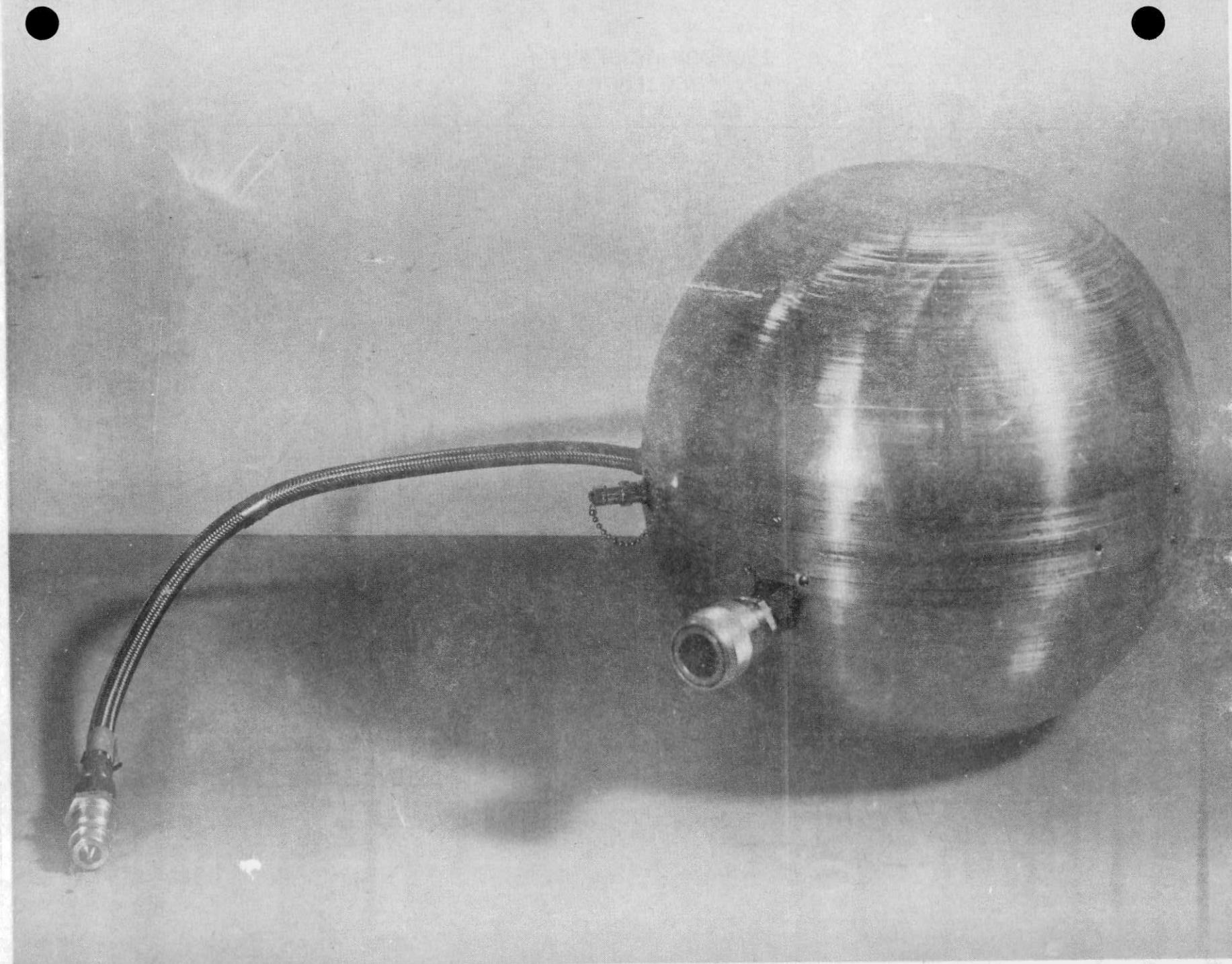
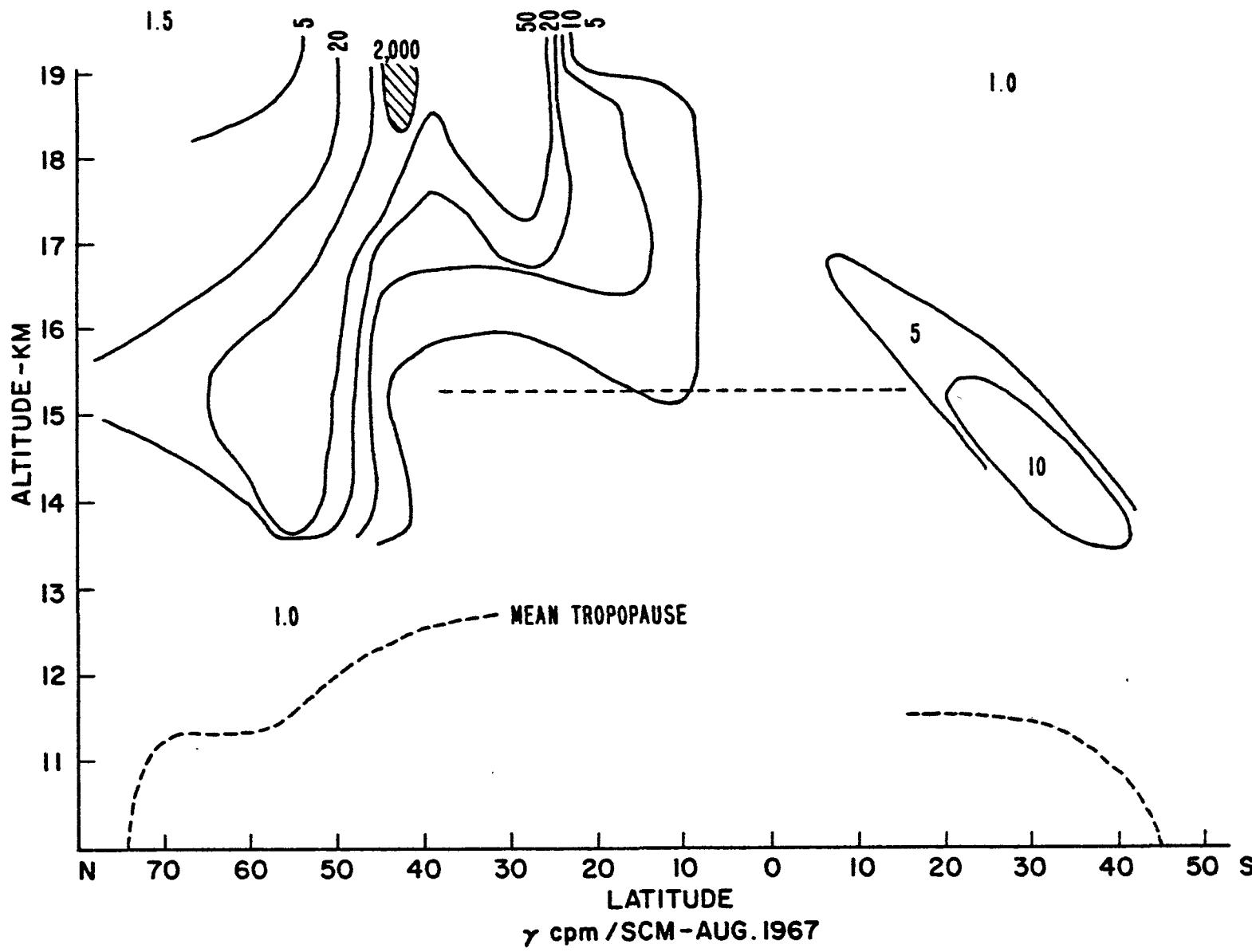




Fig. 4 - Distribution of Gross Gamma Activity - Aug. 1967

I - 134



$I = 135$

Fig. 5 - Distribution of Gross Gamma Activity - Nov. 1967

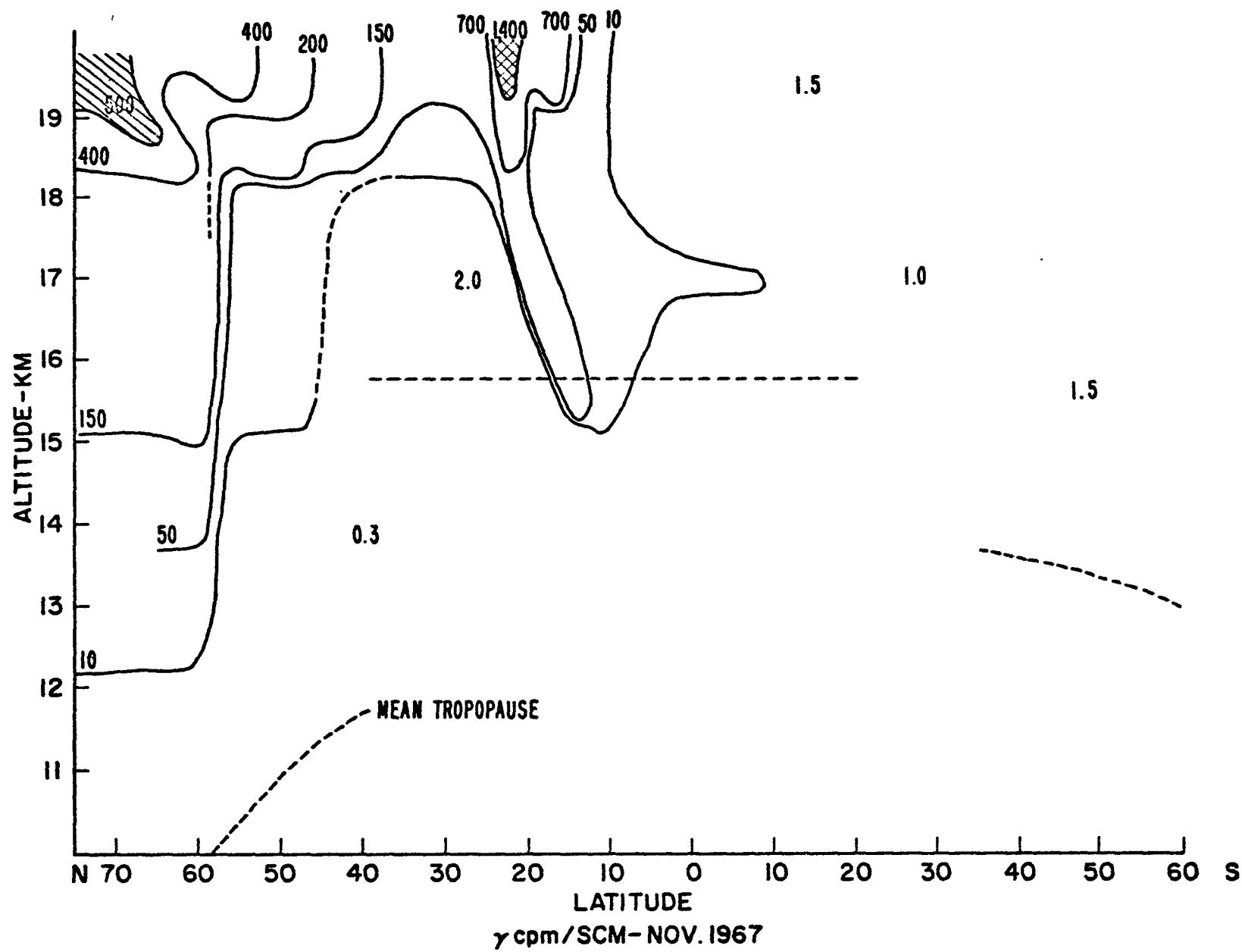
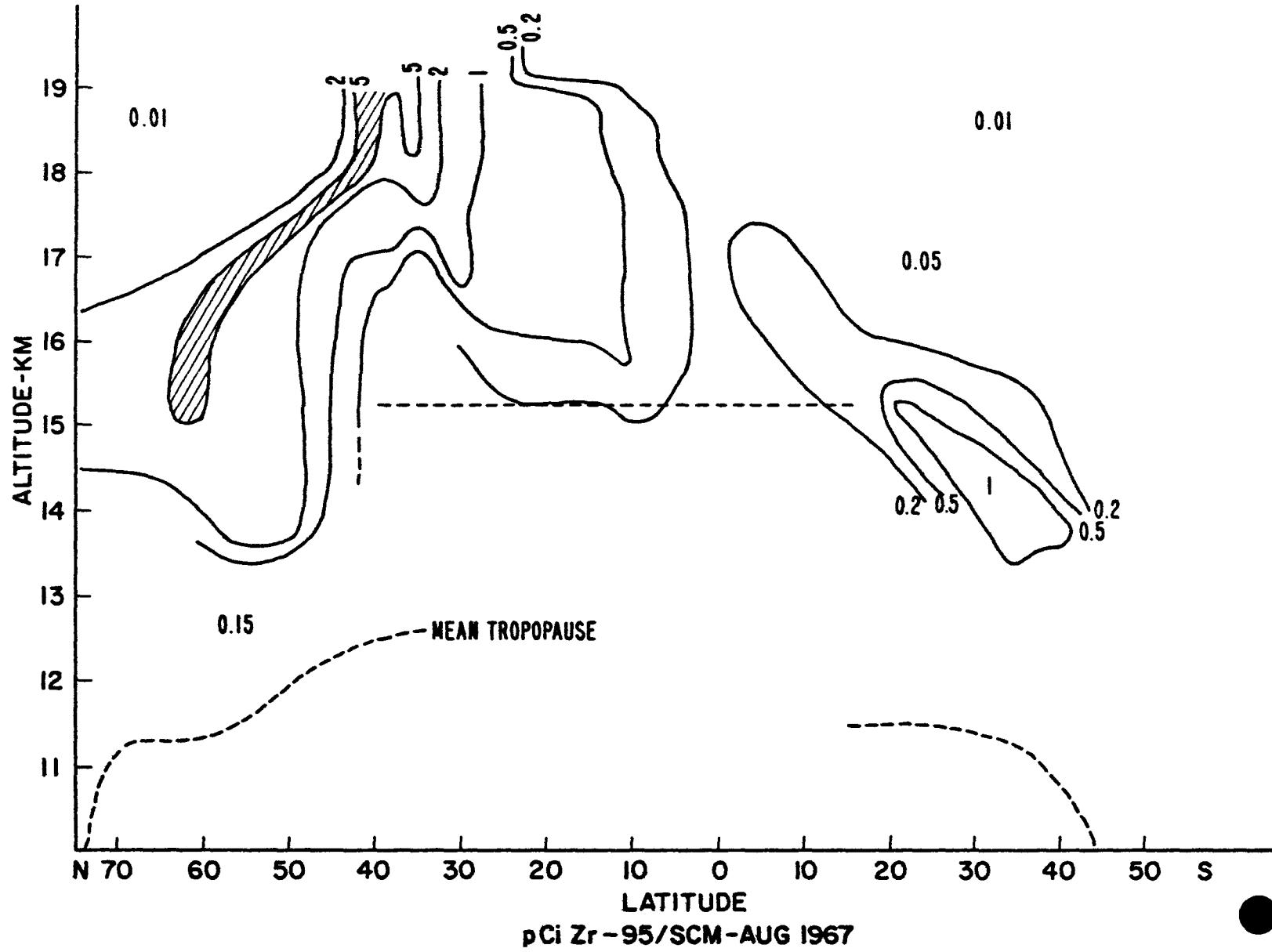



Fig. 6 - Distribution  $Zr^{95}$  Activity - Aug. 1967

I - 136



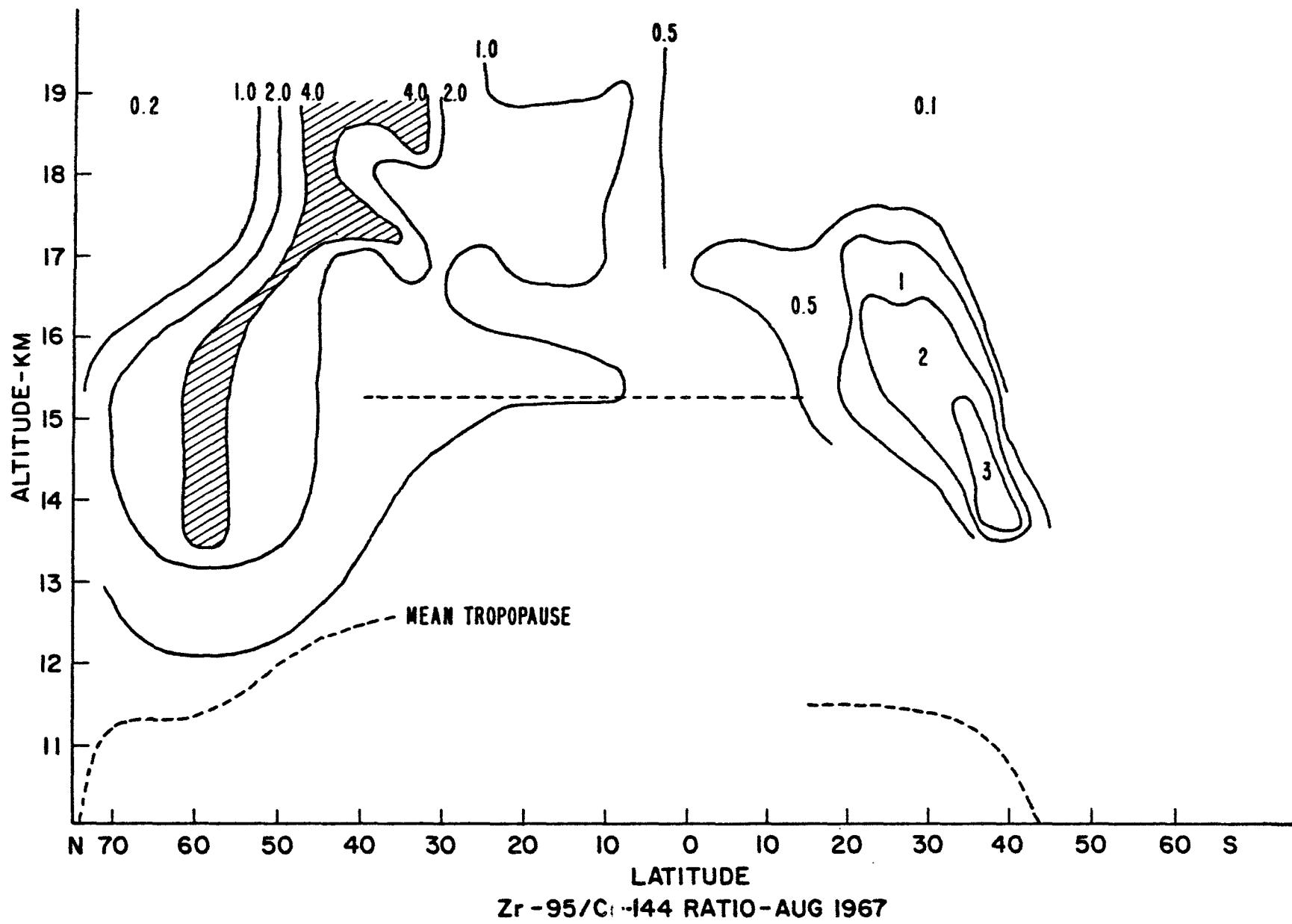


Fig. 7 -  $Zr^{95}/Ce^{144}$  Ratio - Aug. 1967

Table 1

NORTH OF EIELSON  
(75N-64N)  
ALTITUDE 19.2 KM

|                             |         |         |         |
|-----------------------------|---------|---------|---------|
| SAMPLE #                    | 193     | 194     | 195     |
| FLIGHT #                    | 288     | 288     | 288     |
| DATE                        | 8/ 3/67 | 8/ 3/67 | 8/ 3/67 |
| BEGIN-                      |         |         |         |
| TIME                        | 2100    | 2124    | 2200    |
| LAT.                        | 75-00N  | 72-00N  | 68-00N  |
| LONG.                       | 143-00W | 143-25W | 144-30W |
| END-                        |         |         |         |
| TIME                        | 2124    | 2200    | 2230    |
| LAT.                        | 72-00N  | 68-00N  | 64-00N  |
| LONG.                       | 143-25W | 144-30W | 147-00W |
| VOL. OF AIR<br>(100 CU.M.)  | 1.91    | 2.86    | 2.38    |
| GROSS GAMMA/<br>M/100 CU.M. | 170     | 160     | 150     |

DPM/100 CU.M.

|        |        |        |        |
|--------|--------|--------|--------|
| BE-7   | 46600. | 34900. | 31300. |
| MN-54  | 1070.A | 755.A  | 718.A  |
| ZR-95  | *      | 18.    | 11.A   |
| RU-103 | *      | 236.A  | 359.   |
| RU-106 | 195.A  | 187.A  | 212.   |
| SB-125 | 109.   | 80.    | 52.    |
| I-131  | *      | *      | *      |
| CS-137 | 79.    | 69.    | 83.    |
| BA-140 | *      | *      | *      |
| CE-141 | *      | *      | *      |
| CE-144 | 252.A  | 227.   | 46.A   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 NORTH OF EIELSON  
 (75N-64N)  
 ALTITUDE 18.3 KM

|                             |         |         |
|-----------------------------|---------|---------|
| SAMPLE #                    | 191     | 190     |
| FLIGHT #                    | 288     | 288     |
| DATE                        | 8/ 3/67 | 8/ 3/67 |
| BEGIN-                      |         |         |
| TIME                        | 1957    | 1931    |
| LAT.                        | 68-00N  | 64-00N  |
| LONG.                       | 144-30W | 147-00W |
| END-                        |         |         |
| TIME                        | 2030    | 1957    |
| LAT.                        | 72-00N  | 68-00N  |
| LONG.                       | 143-25W | 144-30W |
| VOL. OF AIR<br>(100 CU.M.)  | 3.15    | 2.43    |
| GROSS GAMMA/<br>M/100 CU.M. | 190     | 210     |

DPM/100 CU.M.

|        |        |        |
|--------|--------|--------|
| BE-7   | 48300. | 28700. |
| MN-54  | 975.   | 2110.  |
| ZR-95  | 10.A   | 70.    |
| RU-103 | *      | 477.   |
| RU-106 | 198.   | 231.   |
| SB-125 | 78.    | 83.    |
| I-131  | *      | *      |
| CS-137 | 137.   | 159.   |
| BA-140 | *      | *      |
| CE-141 | *      | 43.A   |
| CE-144 | 65.A   | 63.A   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)

NORTH OF EIELSON  
(75N-64N)  
ALTITUDE 15.2 KM

|                             |         |         |         |
|-----------------------------|---------|---------|---------|
| SAMPLE #                    | 104     | 105     | 106     |
| FLIGHT #                    | 292     | 292     | 292     |
| DATE                        | 8/ 3/67 | 8/ 3/67 | 8/ 3/67 |
| BEGIN-                      |         |         |         |
| TIME                        | 2342    | 13      | 47      |
| LAT.                        | 75-00N  | 72-00N  | 68-00N  |
| LONG.                       | 143-00W | 143-20W | 144-30W |
| END-                        |         |         |         |
| TIME                        | 13      | 47      | 118     |
| LAT.                        | 72-00N  | 68-00N  | 64-00N  |
| LONG.                       | 143-20W | 144-30W | 147-00W |
| VOL. OF AIR<br>(100 CU.M.)  | 5.77    | 6.37    | 5.77    |
| GROSS GAMMA/<br>M/100 CU.M. | 4100    | 3100    | 2700    |

DPM/100 CU.M.

|        |         |         |         |
|--------|---------|---------|---------|
| BE-7   | 137000. | 65800.A | 111000. |
| MN-54  | 5650.A  | 13400.A | 3920.A  |
| ZR-95  | 78300.  | 62200.  | 54100.  |
| RU-103 | 4800.   | 3990.   | 3080.   |
| RU-106 | 716.A   | 1000.A  | 549.A   |
| SB-125 | 236.A   | 228.A   | 198.A   |
| I-131  | 537.A   | 1090.A  | 432.A   |
| CS-137 | 130.A   | 289.    | 123.    |
| BA-140 | 3240.   | 2070.   | 2240.   |
| CE-141 | 1650.   | 1900.   | 919.    |
| CE-144 | 6200.   | 2720.   | 4990.   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 NORTH OF EIELSON  
 (75N-64N)  
 ALTITUDE 12.2 KM

|                             |         |         |         |
|-----------------------------|---------|---------|---------|
| SAMPLE #                    | 103     | 102     | 101     |
| FLIGHT #                    | 292     | 292     | 292     |
| DATE                        | 8/ 3/67 | 8/ 3/67 | 8/ 3/67 |
| BEGIN-                      |         |         |         |
| TIME                        | 2312    | 2227    | 2140    |
| LAT.                        | 72-00N  | 68-00N  | 64-00N  |
| LONG.                       | 143-20W | 144-30W | 147-00W |
| END-                        |         |         |         |
| TIME                        | 2342    | 2312    | 2227    |
| LAT.                        | 75-00N  | 72-00N  | 68-00N  |
| LONG.                       | 143-00W | 143-20W | 144-30W |
| VOL. OF AIR<br>(100 CU.M.)  | 7.92    | 12.20   | 13.80   |
| GROSS GAMMA/<br>M/100 CU.M. | 270     | 130     | 130     |

DPM/100 CU.M.

|        |        |        |       |
|--------|--------|--------|-------|
| BE-7   | 22600. | 15700. | 3140. |
| MN-54  | 1030.  | 689.   | 420.A |
| ZR-95  | 381.   | 1020.  | 3360. |
| RU-103 | 69.A   | *      | 107.  |
| RU-106 | 167.   | 104.   | *     |
| SB-125 | 128.   | 87.    | *     |
| I-131  | *      | *      | *     |
| CS-137 | 73.    | 59.    | 4.A   |
| BA-140 | 179.   | *      | *     |
| CE-141 | *      | 15.A   | 22.   |
| CE-144 | 538.   | 159.   | 210.  |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 SOUTH OF EIELSON  
 (64N-53N)  
 ALTITUDE 19.2 KM

|                             |         |         |         |
|-----------------------------|---------|---------|---------|
| SAMPLE #                    | 176     | 175     | 174     |
| FLIGHT #                    | 288     | 288     | 288     |
| DATE                        | 8/ 4/67 | 8/ 4/67 | 8/ 4/67 |
| BEGIN-                      |         |         |         |
| TIME                        | 2154    | 2135    | 2055    |
| LAT.                        | 62-00N  | 60-00N  | 56-51N  |
| LONG.                       | 145-00W | 140-30W | 135-30W |
| END-                        |         |         |         |
| TIME                        | 2211    | 2154    | 2135    |
| LAT.                        | 64-00N  | 62-00N  | 60-00N  |
| LONG.                       | 145-50W | 145-00W | 140-30W |
| VOL. OF AIR<br>(100 CU.M.)  | 1.51    | 1.68    | 3.54    |
| GROSS GAMMA/<br>M/100 CU.M. | 130     | 140     | 150     |

1 - 142

DPM/100 CU.M.

|        |        |        |        |
|--------|--------|--------|--------|
| BE-7   | 22800. | 22700. | 41000. |
| MN-54  | *      | *      | 548.A  |
| ZR-95  | 13.A   | 20.    | *      |
| RU-103 | 381.   | 358.   | *      |
| RU-106 | *      | 198.A  | 173.   |
| SB-125 | *      | 48.    | 47.    |
| I-131  | *      | *      | *      |
| CS-137 | 101.   | 99.    | 91.    |
| BA-140 | *      | *      | *      |
| CE-141 | *      | *      | *      |
| CE-144 | *      | 59.A   | 38.A   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)

SOUTH OF EIELSON  
(64N-53N)  
ALTITUDE 18.3 KM

|                             |         |         |         |         |         |         |
|-----------------------------|---------|---------|---------|---------|---------|---------|
| SAMPLE #                    | 99      | 171     | 98      | 172     | 97      | 173     |
| FLIGHT #                    | 292     | 288     | 292     | 288     | 292     | 288     |
| DATE                        | 7/29/67 | 8/ 4/67 | 7/29/67 | 8/ 4/67 | 7/29/67 | 8/ 4/67 |
| BEGIN-                      |         |         |         |         |         |         |
| TIME                        | 2219    | 1927    | 2151    | 1945    | 2115    | 2008    |
| LAT.                        | 62-00N  | 64-00N  | 60-00N  | 62-00N  | 56-51N  | 60-00N  |
| LONG.                       | 145-00W | 145-50W | 140-40W | 145-00W | 135-33W | 140-30W |
| END-                        |         |         |         |         |         |         |
| TIME                        | 2245    | 1945    | 2219    | 2008    | 2151    | 2043    |
| LAT.                        | 64-40N  | 62-00N  | 62-00N  | 60-00N  | 60-00N  | 56-51N  |
| LONG.                       | 147-06W | 145-00W | 145-00W | 140-30W | 140-40W | 135-30W |
| VOL. OF AIR<br>(100 CU.M.)  | 2.73    | 1.85    | 2.94    | 2.36    | 3.78    | 3.44    |
| GROSS GAMMA/<br>M/100 CU.M. | 950     | 250     | 170     | 190     | 1100    | 170     |

DPM/100 CU.M.

|        |        |        |        |        |        |        |
|--------|--------|--------|--------|--------|--------|--------|
| BE-7   | 54200. | 31800. | 17900. | 32100. | 51100. | 28900. |
| MN-54  | 4540.  | 2830.  | 1570.  | 966.A  | 7750.  | 1060.A |
| ZR-95  | 1640.  | 182.   | 55.    | 8.A    | 1390.  | 8.A    |
| RU-103 | 828.   | 270.A  | 388.   | 274.   | 1350.  | *      |
| RU-106 | 505.A  | 172.A  | *      | 103.A  | 505.A  | 195.   |
| SB-125 | 233.   | 103.   | 28.A   | 76.    | 237.   | 146.   |
| I-131  | 451.A  | *      | 134.A  | *      | 7940.  | *      |
| CS-137 | 197.   | 148.   | 129.   | 185.   | 161.   | 148.   |
| BA-140 | 447.   | *      | *      | *      | 870.   | *      |
| CE-141 | 370.   | *      | *      | *      | 90.A   | *      |
| CE-144 | 1140.  | 273.   | 241.   | 244.   | 1670.  | 190.   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table I (Cont'd)  
 SOUTH OF EIELSON  
 (64N-53N)  
 ALTITUDE 15.2 KM

|                             |         |         |         |
|-----------------------------|---------|---------|---------|
| SAMPLE #                    | 183     | 182     | 181     |
| FLIGHT #                    | 292     | 292     | 292     |
| DATE                        | 8/ 4/67 | 8/ 4/67 | 8/ 4/67 |
| BEGIN-                      |         |         |         |
| TIME                        | 2204    | 2137    | 2105    |
| LAT.                        | 62-00N  | 60-00N  | 56-51N  |
| LONG.                       | 145-00W | 140-40W | 135-35W |
| END-                        |         |         |         |
| TIME                        | 2220    | 2204    | 2137    |
| LAT.                        | 64-00N  | 62-00N  | 60-00N  |
| LONG.                       | 145-45W | 145-00W | 140-40W |
| VOL. OF AIR<br>(100 CU.M.)  | 3.16    | 5.33    | 6.44    |
| GROSS GAMMA/<br>M/100 CU.M. | 7500    | 4500    | 3700    |

DPM/100 CU.M.

|        |         |         |         |
|--------|---------|---------|---------|
| BE-7   | 175000. | 61700.A | 120000. |
| MN-54  | 8040.A  | 23600.A | 4770.A  |
| ZR-95  | 22700.  | 12700.  | 10100.  |
| RU-103 | 5660.   | 4900.   | 3180.   |
| RU-106 | 1060.A  | 1310.A  | 644.A   |
| SB-125 | 342.A   | *       | 214.A   |
| I-131  | *       | 4350.A  | *       |
| CS-137 | 312.A   | 326.A   | 194.A   |
| BA-140 | 4020.   | 2420.A  | 1850.   |
| CE-141 | 3860.   | 3450.   | 1880.   |
| CE-144 | 7090.   | 2250.A  | 3630.   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)

 SOUTH OF EIELSON  
 (64N-53N)  
 ALTITUDE 13.7 KM

| SAMPLE #                    | 117     | 116     | 178     | 115     | 179     | 114     | 180     |
|-----------------------------|---------|---------|---------|---------|---------|---------|---------|
| FLIGHT #                    | 288     | 288     | 292     | 288     | 292     | 288     | 292     |
| DATE                        | 7/29/67 | 7/29/67 | 8/ 4/67 | 7/29/67 | 8/ 4/67 | 7/29/67 | 8/ 4/67 |
| BEGIN-                      |         |         |         |         |         |         |         |
| TIME                        | 2205    | 2140    | 1933    | 2115    | 1953    | 2040    | 2021    |
| LAT.                        | 64-00N  | 62-00N  | 64-00N  | 60-00N  | 62-00N  | 56-45N  | 60-00N  |
| LONG.                       | 145-30W | 141-20W | 145-45W | 140-00W | 145-00W | 135-40W | 140-40W |
| END-                        |         |         |         |         |         |         |         |
| TIME                        | 2217    | 2205    | 1953    | 2140    | 2021    | 2115    | 2100    |
| LAT.                        | 64-40N  | 64-00N  | 62-00N  | 62-00N  | 60-00N  | 60-00N  | 56-51N  |
| LONG.                       | 147-06W | 145-30W | 145-00W | 141-20W | 140-40W | 140-00W | 135-35W |
| VOL. OF AIR<br>(100 CU.M.)  | 2.68    | 5.59    | 4.56    | 5.59    | 6.46    | 7.82    | 8.80    |
| GROSS GAMMA/<br>M/100 CU.M. | 700     | 890     | 870     | 370     | 860     | 2100    | 590     |

H  
-  
145

## DPM/100 CU.M.

|        |         |        |       |        |        |         |        |
|--------|---------|--------|-------|--------|--------|---------|--------|
| BE-7   | *       | 29900. | 9540. | *      | 25500. | 59000.A | 20900. |
| MN-54  | 131000. | 5510.  | 1200. | 1010.A | *      | 9570.A  | 2260.  |
| ZR-95  | 293.    | 1880.  | 399.  | 780.   | 2260.  | 5650.   | 1500.  |
| RU-103 | 1800.   | 2090.  | 191.A | 2060.  | 1110.  | 2470.   | 741.   |
| RU-106 | 720.A   | *      | *     | *      | *      | 730.A   | 133.A  |
| SB-125 | 232.A   | 130.   | 38.   | 92.    | 169.   | 180.A   | 123.   |
| I-131  | *       | *      | 170.A | *      | *      | 2110.A  | *      |
| CS-137 | *       | 94.    | 22.   | *      | 41.A   | 252.    | 104.   |
| BA-140 | 970.A   | 2420.A | *     | 415.   | 452.   | 1590.A  | *      |
| CE-141 | 743.    | 673.   | 119.  | 243.   | 678.   | 1430.   | 374.   |
| CE-144 | *       | 646.   | 206.  | 403.   | 381.   | 1820.A  | 264.   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 SOUTH OF EIELSON  
 (64N-53N)  
 ALTITUDE 13.7 KM

|                             |         |         |
|-----------------------------|---------|---------|
| SAMPLE #                    | 113     | 112     |
| FLIGHT #                    | 288     | 288     |
| DATE                        | 7/29/67 | 7/29/67 |
| BEGIN-                      |         |         |
| TIME                        | 2033    | 1950    |
| LAT.                        | 56-45N  | 52-00N  |
| LONG.                       | 135-40W | 129-30W |
| END-                        |         |         |
| TIME                        | 2040    | 2033    |
| LAT.                        | 56-45N  | 56-45N  |
| LONG.                       | 135-40W | 135-40W |
| VOL. OF AIR<br>(100 CU.M.)  | 1.62    | 10.80   |
| GROSS GAMMA/<br>M/100 CU.M. | 9800    | 10000   |

DPM/100 CU.M.

|        |         |         |
|--------|---------|---------|
| BE-7   | 317000. | *       |
| MN-54  | 16500.A | 55100.A |
| ZR-95  | 25400.  | 20600.  |
| RU-103 | 12000.  | 26500.  |
| RU-106 | 2180.A  | 3360.A  |
| SB-125 | *       | *       |
| I-131  | *       | 10300.A |
| CS-137 | *       | 401.A   |
| BA-140 | 11700.  | 11200.  |
| CE-141 | 5650.   | 11700.  |
| CE-144 | 11000.  | *       |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 NORTH OF KIRTLAND  
 (153N-35N)  
 ALTITUDE 19.2 KM

| SAMPLE #                    | 268      | 269      | 270      | 271      | 272      |
|-----------------------------|----------|----------|----------|----------|----------|
| FLIGHT #                    | 295      | 295      | 295      | 295      | 295      |
| DATE                        | 10/ 5/67 | 10/ 5/67 | 10/ 5/67 | 10/ 5/67 | 10/ 5/67 |
| BEGIN-                      |          |          |          |          |          |
| TIME                        | 1936     | 2008     | 2042     | 2112     | 2145     |
| LAT.                        | 49-16N   | 47-00N   | 44-35N   | 42-04N   | 39-26N   |
| LONG.                       | 87-20W   | 91-40W   | 95-25W   | 99-00W   | 102-15W  |
| END-                        |          |          |          |          |          |
| TIME                        | 2008     | 2042     | 2112     | 2145     | 2217     |
| LAT.                        | 42-00N   | 44-35N   | 42-04N   | 39-26N   | 36-40N   |
| LONG.                       | 91-40W   | 95-25W   | 99-00W   | 102-15W  | 105-15W  |
| VOL. OF AIR<br>(100 CU.M.)  | 2.63     | 2.80     | 2.58     | 2.82     | 2.74     |
| GROSS GAMMA/<br>M/100 CU.M. | 40000    | 29000    | 30000    | 31000    | 36000    |

DPM/100 CU.M.

|        |          |          |         |         |          |
|--------|----------|----------|---------|---------|----------|
| BE-7   | *        | 4430000. | 380000. | 624000. | *        |
| MN-54  | 344000.A | 364000.A | 185000. | *       | 272000.A |
| ZR-95  | 87800.   | 704000.  | 74000.  | 70200.  | 75900.   |
| RU-103 | 59300.   | 203000.  | 24800.  | 28100.  | 52900.   |
| RU-106 | 19900.A  | 96400.   | 11200.  | 11800.  | 17200.A  |
| SB-125 | *        | 16900.A  | 2430.A  | 1790.A  | *        |
| I-131  | *        | *        | *       | *       | *        |
| CS-137 | *        | *        | 2630.   | *       | 2010.A   |
| BA-140 | *        | 12900.A  | 1600.A  | 1510.A  | *        |
| CE-141 | 24900.   | 135000.  | 12300.  | 15600.  | 22000.   |
| CE-144 | *        | 110000.  | 19500.  | 12400.  | *        |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 NORTH OF KIRTLAND  
 (53N-35N)  
 ALTITUDE 18.3 KM

| SAMPLE #                    | 247      | 18      | 248      | 19       | 20      | 249      | 250      |
|-----------------------------|----------|---------|----------|----------|---------|----------|----------|
| FLIGHT #                    | 295      | 289     | 295      | 289      | 289     | 295      | 295      |
| DATE                        | 10/ 9/67 | 8/ 5/67 | 10/ 9/67 | 8/ 5/67  | 8/ 5/67 | 10/ 9/67 | 10/ 9/67 |
| BEGIN-                      |          |         |          |          |         |          |          |
| TIME                        | 1847     | 1941    | 1915     | 2029     | 2121    | 1948     | 2019     |
| LAT.                        | 49-20N   | 47-27N  | 47-00N   | 44-00N   | 40-00N  | 44-30N   | 42-00N   |
| LONG.                       | 87-30W   | 122-15W | 91-30W   | 115-53W  | 110-00W | 95-25W   | 99-00W   |
| END-                        |          |         |          |          |         |          |          |
| TIME                        | 1915     | 2029    | 1948     | 2121     | 2156    | 2019     | 2050     |
| LAT.                        | 47-00N   | 44-00N  | 44-30N   | 40-00N   | 36-30N  | 42-00N   | 39-25N   |
| LONG.                       | 91-30W   | 115-53W | 95-25W   | 110-00W  | 107-50W | 99-00W   | 102-15W  |
| VOL. OF AIR<br>(100 CU.M.)  | 2.93     | 1.32    | 3.53     | 0.16     | 3.89    | 3.31     | 3.31     |
| GROSS GAMMA/<br>M/100 CU.M. | 53000    | 22000   | 41000    | 28200000 | 2800    | 27000    | 24000    |

DPM/100 CU.M.

|        |         |        |          |          |         |          |         |
|--------|---------|--------|----------|----------|---------|----------|---------|
| BE-7   | 785000. | 91800. | *        | 7240000. | 49600.  | 381000.A | 332000. |
| MN-54  | *       | 16700. | 314000.A | *        | 14600.A | *        | 141000. |
| ZR-95  | 110000. | 10500. | 81600.   | 394000.  | 51900.  | 58300.   | 53500.  |
| RU-103 | 56700.  | 6680.  | 61500.   | 231000.  | 1140.A  | 27300.   | 20600.  |
| RU-106 | 23300.  | 1020.A | 19900.A  | 48700.   | *       | 5290.A   | 9370.   |
| SB-125 | 4610.A  | 291.A  | 4820.A   | *        | 241.A   | 3870.    | 2110.A  |
| I-131  | *       | *      | *        | *        | 388.A   | *        | *       |
| CS-137 | *       | 401.   | *        | *        | 344.    | *        | 2260.   |
| BA-140 | 2440.A  | 3160.  | *        | 190000.  | 751.    | 915.A    | 1150.A  |
| CE-141 | 30000.  | 3010.  | 24300.   | 82100.   | 1160..  | 11900.   | 9850.   |
| CE-144 | *       | 2650.  | *        | 240000.  | 2130.   | 17300.   | 16100.  |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*\*:NOT DETECTABLE

Table 1 (Cont'd)  
 NORTH OF KIRTLAND  
 (53N-35N)  
 ALTITUDE 18.3 KM

|                             |          |         |
|-----------------------------|----------|---------|
| SAMPLE #                    | 251      | 21      |
| FLIGHT #                    | 295      | 289     |
| DATE                        | 10/ 9/67 | 8/ 5/67 |
| BEGIN-                      |          |         |
| TIME                        | 2050     | 2156    |
| LAT.                        | 39-25N   | 36-30N  |
| LONG.                       | 102-15W  | 107-50W |
| END-                        |          |         |
| TIME                        | 2122     | 2210    |
| LAT.                        | 36-40N   | 35-00N  |
| LONG.                       | 105-15W  | 106-47W |
| VOL. OF AIR<br>(100 CU.M.)  | 3.44     | 0.38    |
| GROSS GAMMA/<br>M/100 CU.M. | 26000    | 130000  |

DPM/100 CU.M.

|        |          |         |
|--------|----------|---------|
| BE-7   | 314000.A | 538000. |
| MN-54  | *        | 84200.A |
| ZR-95  | 58100.   | 54300.  |
| RU-103 | 26300.   | 45200.  |
| RU-106 | 5350.    | 8290.A  |
| SB-125 | 3690.    | *       |
| I-131  | *        | *       |
| CS-137 | *        | 1390.A  |
| BA-140 | 936.A    | 22300.  |
| CE-141 | 9740.    | 18800.  |
| CE-144 | 19700.   | 17800.  |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 NORTH OF KIRTLAND  
 (53N-35N)  
 ALTITUDE 16.8 KM

| SAMPLE #                    | 267      | 17      | 266      | 265      | 16      | 264      | 15      |
|-----------------------------|----------|---------|----------|----------|---------|----------|---------|
| FLIGHT #                    | 295      | 289     | 295      | 295      | 289     | 295      | 289     |
| DATE                        | 10/ 5/67 | 8/ 5/67 | 10/ 5/67 | 10/ 5/67 | 8/ 5/67 | 10/ 5/67 | 8/ 5/67 |
| BEGIN-                      |          |         |          |          |         |          |         |
| TIME                        | 1845     | 1819    | 1815     | 1744     | 1727    | 1715     | 1652    |
| LAT.                        | 47-00N   | 44-00N  | 44-35N   | 42-04N   | 40-00N  | 39-26N   | 36-30N  |
| LONG.                       | 91-40W   | 115-53W | 95-25W   | 99-00W   | 110-00W | 102-15W  | 107-50W |
| END-                        |          |         |          |          |         |          |         |
| TIME                        | 1915     | 1909    | 1845     | 1815     | 1819    | 1744     | 1727    |
| LAT.                        | 49-16N   | 47-27N  | 47-00N   | 44-35N   | 44-00N  | 42-04N   | 40-00N  |
| LONG.                       | 87-20W   | 122-15W | 91-40W   | 95-25W   | 115-53W | 99-00W   | 110-00W |
| VOL. OF AIR<br>(100 CU.M.)  | 4.11     | 7.15    | 4.03     | 4.48     | 7.82    | 4.18     | 5.35    |
| GROSS GAMMA/<br>M/100 CU.M. | 5900     | 1900    | 5300     | 2000     | 1400    | 1600     | 1300    |

150

DPM/100 CU.M.

|        |          |         |        |        |        |        |        |
|--------|----------|---------|--------|--------|--------|--------|--------|
| BE-7   | 127000.A | 20700.A | 76700. | 31500. | 35400. | 34400. | 41900. |
| MN-54  | *        | *       | 30300. | 10300. | 6020.A | 9520.  | 1930.A |
| ZR-95  | 28200.   | 35700.  | 12300. | 5110.  | 19300. | 4380.  | 19300. |
| RU-103 | 12500.   | 1660.   | 3970.  | 1210.  | 1140.  | 888.A  | 763.   |
| RU-106 | 2000.A   | *       | 1740.  | 618.   | 390.A  | 560.A  | 153.A  |
| SB-125 | 1850.    | 245.    | 484.A  | 228.   | 121.A  | 114.A  | 116.   |
| I-131  | *        | 114.A   | *      | *      | 206.A  | 522.A  | 104.   |
| CS-137 | *        | 66.A    | 529.   | 254.   | 141.   | 186.   | 92.    |
| BA-140 | 377.A    | 755.    | 199.A  | *      | 666.   | *      | 600.   |
| CE-141 | 4620.    | 860.    | 1760.  | 563.   | 481.   | 450.   | 241.   |
| CE-144 | 8810.    | 1450.   | 3900.  | 1650.  | 1730.  | 1690.  | 2410.  |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 NORTH OF KIRTLAND  
 (53N-35N)  
 ALTITUDE 16.8 KM

|                             |          |         |
|-----------------------------|----------|---------|
| SAMPLE #                    | 263      | 14      |
| FLIGHT #                    | 295      | 289     |
| DATE                        | 10/ 5/67 | 8/ 5/67 |
| BEGIN-                      |          |         |
| TIME                        | 1643     | 1637    |
| LAT.                        | 36-40N   | 35-00N  |
| LONG.                       | 105-15W  | 106-47W |
| END-                        |          |         |
| TIME                        | 1715     | 1652    |
| LAT.                        | 39-26N   | 36-30N  |
| LONG.                       | 102-15W  | 107-50W |
| VOL. OF AIR<br>(100 CU.M.)  | 4.99     | 2.40    |
| GROSS GAMMA/<br>M/100 CU.M. | 1300     | 2900    |

DPM/100 CU.M.

|        |        |        |
|--------|--------|--------|
| BE-7   | 29100. | 14500. |
| MN-54  | *      | 1190.A |
| ZR-95  | 3990.  | 671.   |
| RU-103 | 275.A  | 663.   |
| RU-106 | 289.A  | *      |
| SB-125 | 116.A  | 98.    |
| I-131  | *      | *      |
| CS-137 | 28.A   | 36.    |
| BA-140 | *      | *      |
| CE-141 | 265.   | 258.   |
| CE-144 | 1200.  | 244.   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 NORTH OF KIRTLAND  
 (53N-35N)  
 ALTITUDE 15.2 KM

|                             |          |          |         |          |         |          |         |
|-----------------------------|----------|----------|---------|----------|---------|----------|---------|
| SAMPLE #                    | 246      | 245      | 185     | 244      | 186     | 243      | 187     |
| FLIGHT #                    | 295      | 295      | 288     | 295      | 288     | 295      | 288     |
| DATE                        | 10/ 9/67 | 10/ 9/67 | 8/ 5/67 | 10/ 9/67 | 8/ 5/67 | 10/ 9/67 | 8/ 5/67 |
| BEGIN-                      |          |          |         |          |         |          |         |
| TIME                        | 1805     | 1735     | 2126    | 1703     | 2210    | 1631     | 2305    |
| LAT.                        | 47-00N   | 44-30N   | 47-24N  | 42-00N   | 44-00N  | 39-25N   | 40-00N  |
| LONG.                       | 91-30W   | 95-25W   | 122-19W | 99-00W   | 116-45W | 102-15W  | 110-30W |
| END-                        |          |          |         |          |         |          |         |
| TIME                        | 1834     | 1805     | 2210    | 1735     | 2305    | 1703     | 2344    |
| LAT.                        | 49-20N   | 47-00N   | 44-00N  | 44-30N   | 40-00N  | 42-00N   | 36-30N  |
| LONG.                       | 87-30W   | 91-30W   | 116-40W | 95-25W   | 110-30W | 99-00W   | 107-50W |
| VOL. OF AIR<br>(100 CU.M.)  | 5.51     | 5.77     | 8.63    | 6.37     | 11.10   | 6.30     | 8.15    |
| GROSS GAMMA/<br>M/100 CU.M. | 6200     | 2900     | 760     | 1000     | 450     | 1100     | 99      |

DPM/100 CU.M.

|        |         |        |        |        |        |        |       |
|--------|---------|--------|--------|--------|--------|--------|-------|
| BE-7   | 57200.A | 58900. | 20600. | 16000. | 26100. | 22500. | 5470. |
| MN-54  | 42800.A | *      | 2210.A | 5370.  | 844.A  | *      | 659.A |
| ZR-95  | 13200.  | 6550.  | 1820.  | 2170.  | 1000.  | 2560.  | 221.  |
| RU-103 | 4280.A  | 1080.  | 1890.  | 251.A  | 468.   | 171.A  | 97.A  |
| RU-106 | 2720.A  | 958.   | 242.A  | 264.A  | 102.A  | 251.A  | *     |
| SB-125 | *       | 166.A  | 119.   | 72.A   | 47.A   | 90.A   | 19.A  |
| I-131  | 797.A   | *      | *      | 87.A   | *      | *      | 255.  |
| CS-137 | 475.A   | *      | 82.    | 110.   | 34.    | *      | 12.   |
| BA-140 | *       | *      | 815.   | *      | 393.   | *      | *     |
| CE-141 | 1940.   | 692.   | 747.   | 143.A  | 197.   | 157.   | 65.   |
| CE-144 | 4100.A  | 2250.  | 394.   | 904.   | 694.   | 857.   | 115.  |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 NORTH OF KIRTLAND  
 (53N-35N)  
 ALTITUDE 15.2 KM

|                             |          |         |
|-----------------------------|----------|---------|
| SAMPLE #                    | 242      | 188     |
| FLIGHT #                    | 295      | 288     |
| DATE                        | 10/ 9/67 | 8/ 5/67 |
| BEGIN-                      |          |         |
| TIME                        | 1556     | 2344    |
| LAT.                        | 36-40N   | 36-30N  |
| LONG.                       | 105-15W  | 107-50W |
| END-                        |          |         |
| TIME                        | 1631     | 2358    |
| LAT.                        | 39-25N   | 35-03N  |
| LONG.                       | 102-15W  | 106-36W |
| VOL. OF AIR<br>(100 CU.M.)  | 7.11     | 2.85    |
| GROSS GAMMA/<br>M/100 CU.M. | 360      | 63      |

DPM/100 CU.M.

|        |       |        |
|--------|-------|--------|
| BE-7   | 7510. | 4210.A |
| MN-54  | 1600. | *      |
| ZR-95  | 865.  | 123.   |
| RU-103 | 111.A | *      |
| RU-106 | 64.A  | *      |
| SB-125 | 44.   | 35.A   |
| I-131  | *     | *      |
| CS-137 | 43.   | *      |
| BA-140 | *     | *      |
| CE-141 | 59.   | 22.A   |
| CE-144 | 288.  | *      |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 NORTH OF KIRTLAND  
 (53N-35N)  
 ALTITUDE 13.7 KM

|                             |         |         |         |         |
|-----------------------------|---------|---------|---------|---------|
| SAMPLE #                    | 111     | 110     | 109     | 108     |
| FLIGHT #                    | 288     | 288     | 288     | 288     |
| DATE                        | 7/29/67 | 7/29/67 | 7/29/67 | 7/29/67 |
| BEGIN-                      |         |         |         |         |
| TIME                        | 1900    | 1810    | 1710    | 1635    |
| LAT.                        | 48-00N  | 44-00N  | 40-00N  | 36-50N  |
| LONG.                       | 122-50W | 116-30W | 110-20W | 108-10W |
| END-                        |         |         |         |         |
| TIME                        | 1950    | 1900    | 1810    | 1710    |
| LAT.                        | 52-00N  | 48-00N  | 44-00N  | 40-00N  |
| LONG.                       | 129-30W | 122-50W | 116-30W | 110-20W |
| VOL. OF AIR<br>(100 CU.M.)  | 13.10   | 13.70   | 15.90   | 9.70    |
| GROSS GAMMA/<br>M/100 CU.M. | 2200    | 1200    | 3500    | 230     |

DPM/100 CU.M.

|        |        |        |        |       |
|--------|--------|--------|--------|-------|
| BE-7   | 76300. | 63800. | 17500. | *     |
| MN-54  | 2630.A | 5790.  | *      | 950.A |
| ZR-95  | 47400. | 2470.  | 589.   | 3490. |
| RU-103 | 4290.  | 2040.  | 596.   | 408.  |
| RU-106 | *      | 555.   | 37.A   | *     |
| SB-125 | 235.   | 209.   | 94.    | 46.   |
| I-131  | *      | *      | *      | 94.A  |
| CS-137 | 80.A   | 110.   | 31.    | 36.   |
| BA-140 | 2440.  | 2040.  | 433.   | 202.  |
| CE-141 | 1730.  | 193.A  | 221.   | 131.  |
| CE-144 | 1810.  | 2990.  | 387.   | 279.  |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 SOUTH OF KIRTLAND  
 (35N-24N)  
 ALTITUDE 18.3 KM

| SAMPLE #                    | 10      | 9       | 8       | 7       |
|-----------------------------|---------|---------|---------|---------|
| FLIGHT #                    | 289     | 289     | 289     | 289     |
| DATE                        | 8/ 4/67 | 8/ 4/67 | 8/ 4/67 | 8/ 4/67 |
| BEGIN-                      |         |         |         |         |
| TIME                        | 2128    | 2047    | 2014    | 1949    |
| LAT.                        | 32-00N  | 29-00N  | 26-00N  | 24-00N  |
| LONG.                       | 099-00W | 094-40W | 091-15W | 089-00W |
| END-                        |         |         |         |         |
| TIME                        | 2230    | 2128    | 2047    | 2014    |
| LAT.                        | 35-00N  | 32-00N  | 29-00N  | 26-00N  |
| LONG.                       | 106-50W | 099-00W | 094-40W | 091-15W |
| VOL. OF AIR<br>(100 CU.M.)  | 1.70    | 4.50    | 3.61    | 2.78    |
| GROSS GAMMA/<br>M/100 CU.M. | 44000   | 3700    | 6000    | 5000    |

DPM/100 CU.M.

|        |         |        |        |         |
|--------|---------|--------|--------|---------|
| BE-7   | 172000. | 27800. | 65400. | 21900.A |
| MN-54  | 23500.  | 3960.A | 2590.A | *       |
| ZR-95  | 19100.  | 2120.  | 2040.  | 14200.  |
| RU-103 | 16100.  | 804.A  | 1450.  | 2560.   |
| RU-106 | 1910.A  | 307.A  | 332.A  | *       |
| SB-125 | 463.A   | 128.   | 188.   | 247.    |
| I-131  | *       | 1220.A | *      | 249.    |
| CS-137 | 531.    | 169.   | 135.   | 103.A   |
| BA-140 | 8180.   | 440.A  | 839.   | 982.    |
| CE-141 | 6350.   | 444.   | 427.   | 727.    |
| CE-144 | 4650.   | 1120.  | 2070.  | 1280.   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*\*NOT DETECTABLE

Table 1 (Cont'd)  
 SOUTH OF KIRTLAND  
 (35N-24N)  
 ALTITUDE 17.7 KM

SAMPLE # 259  
 FLIGHT # 295  
 DATE 10/ 7/67  
 BEGIN-  
 TIME 1854  
 LAT. 31-15N  
 LONG. 100-10W  
 END-  
 TIME 1928  
 LAT. 31-00N  
 LONG. 100-00W  
 VOL. OF AIR 3.83  
 (100 CU.M.)  
 GROSS GAMMA/ 8500  
 "100 CU.M.

DPM/100 CU.M.

BE-7 156000.  
 MN-54 11900.A  
 ZR-95 19500.  
 RU-103 5510.  
 RU-106 2160.A  
 SB-125 687.A  
 I-131 \*  
 CS-137 \*  
 BA-140 \*  
 CE-141 2850.  
 CE-144 5720.

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 SOUTH OF KIRTLAND  
 (35N-24N)  
 ALTITUDE 16.8 KM

| SAMPLE #                    | 3       | 4       | 258      | 5       | 6       |
|-----------------------------|---------|---------|----------|---------|---------|
| FLIGHT #                    | 289     | 289     | 295      | 289     | 289     |
| DATE                        | 8/ 4/67 | 8/ 4/67 | 10/ 7/67 | 8/ 4/67 | 8/ 4/67 |
| BEGIN-                      |         |         |          |         |         |
| TIME                        | 1651    | 1759    | 1830     | 1842    | 1920    |
| LAT.                        | 35-00N  | 32-00N  | 31-20N   | 29-00N  | 26-00N  |
| LONG.                       | 106-50W | 099-00W | 100-05W  | 094-40W | 091-15W |
| END-                        |         |         |          |         |         |
| TIME                        | 1759    | 1842    | 1851     | 1920    | 1945    |
| LAT.                        | 32-00N  | 29-00N  | 31-50N   | 26-00N  | 24-00N  |
| LONG.                       | 099-00W | 94-40W  | 100-35W  | 091-15W | 089-00W |
| VOL. OF AIR<br>(100 CU.M.)  | 2.58    | 6.57    | 3.32     | 5.81    | 3.82    |
| GROSS GAMMA/<br>M/100 CU.M. | 4200    | 2800    | 1600     | 3000    | 3900    |

DPM/100 CU.M.

|        |         |         |         |        |        |
|--------|---------|---------|---------|--------|--------|
| BE-7   | 156000. | 37100.A | 16500.A | 43000. | 30100. |
| MN-54  | 11900.A | *       | *       | 2070.A | 3040.A |
| ZR-95  | 1740.   | 32000.  | 3520.   | 16000. | 14400. |
| RU-103 | 1370.   | 4230.   | 898.    | 1340.  | 1760.  |
| RU-106 | 111.A   | *       | *       | *      | *      |
| SB-125 | 121.    | 394.    | 238.    | 107.A  | 120.A  |
| I-131  | *       | 192.A   | *       | 269.   | 317.   |
| CS-137 | 88.     | 78.A    | 50.A    | 67.    | 106.   |
| BA-140 | 585.    | 1550.   | *       | 821.   | 856.   |
| CE-141 | 601.    | 1260.   | 304.    | 322.   | 510.   |
| CE-144 | 488.    | 2220.   | 1150.   | 2410.  | 1700.  |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 SOUTH OF KIRTLAND  
 (35N-24N)  
 ALTITUDE 15.9 KM

SAMPLE # 257  
 FLIGHT # 295  
 DATE 10/ 7/67  
 BEGIN-  
 TIME 1808  
 LAT. 31-25N  
 LONG. 99-55W  
 END-  
 TIME 1828  
 LAT. 31-35N  
 LONG. 100-00W  
 VOL. OF AIR 3.70  
 (100 CU.M.)  
 GROSS GAMMA/  
 M/100 CU.M.

DPM/100 CU.M.

|        |        |
|--------|--------|
| BE-7   | 21300. |
| MN-54  | 5220.  |
| ZR-95  | 2050.  |
| RU-103 | 234.A  |
| RU-106 | 335.A  |
| SB-125 | 66.A   |
| I-131  | 117.A  |
| CS-137 | 107.   |
| BA-140 | *      |
| CE-141 | 149.   |
| CE-144 | 932.   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)

SOUTH OF KIRTLAND  
(35N-24N)  
ALTITUDE 14.9 KM

SAMPLE # 256  
FLIGHT # 295  
DATE 10/ 7/67  
BEGIN-  
TIME 1745  
LAT. 21-15N  
LONG. 100-10W  
END-  
TIME 1805  
LAT. 31-45N  
LONG. 100-05W  
VOL. OF AIR 4.55  
(100 CU.M.)  
GROSS GAMMA/  
M/100 CU.M.

DPM/100 CU.M.

BE-7 5780.  
MN-54 3230.  
ZR-95 831.  
RU-103 111.A  
RU-106 \*  
SB-125 43.A  
I-131 \*  
CS-137 \*  
BA-140 \*  
CE-141 43.A  
CE-144 288.

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
SOUTH OF KIRTLAND  
135N-24W  
ALTITUDE 14.0 KM

SAMPLE # 255  
FLIGHT # 295  
DATE 10/ 7/67  
BEGIN-  
TIME 1723  
LAT. 31-30N  
LONG. 100-10W  
END-  
TIME 1743  
LAT. 31-20N  
LONG. 100-00W  
VOL. OF AIR 4.93  
(100 CU.M.)  
GROSS GAMMA/ 1000  
M/100 CU.M.

H  
160 DPM/100 CU.M.

BE-7 3550.A  
MN-54 454.A  
ZR-95 241.  
RU-103 55.A  
RU-106 \*  
SB-125 39.  
I-131 \*  
CS-137 \*  
BA-140 \*  
CE-141 22.  
CE-144 65.

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
SOUTH OF KIRTLAND  
(35N-24N)  
ALTITUDE 13.7 KM

SAMPLE # 254  
FLIGHT # 295  
DATE 10/ 7/67  
BEGIN-  
TIME 1700  
LAT. 31-35N  
LONG. 100-45W  
END-  
TIME 1720  
LAT. 31-40N  
LONG. 100-10W  
VOL. OF AIR 5.15  
(100 CU.M.)  
GROSS GAMMA/  
M/100 CU.M.

DPM/100 CU.M.

BE-7 1830.  
MN-54 307.A  
ZR-95 81.  
RU-103 \*  
RU-106 \*  
SB-125 8.A  
I-131 \*  
CS-137 \*  
BA-140 \*  
CE-141 8.A  
CE-144 26.A

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
SOUTH OF KIRTLAND  
(35N-24N)  
ALTITUDE 12.2 KM

SAMPLE # 253  
FLIGHT # 295  
DATE 10/ 7/67  
BEGIN-  
TIME 1638  
LAT. 31-45N  
LONG. 101-03W  
END-  
TIME 1658  
LAT. 31-30N  
LONG. 100-50W  
VOL. OF AIR 5.69  
(100 CU.M.)  
GROSS GAMMA/ 1000  
M/100 CU.M.

DPM/100 CU.M.

BE-7 2710.  
MN-54 1060.  
ZR-95 236.  
RU-103 \*  
RU-106 38.A  
SB-125 11.A  
I-131 \*  
CS-137 6.A  
BA-140 \*  
CE-141 20.A  
CE-144 115.

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)

NORTH OF ALBROOK  
(24N-09N)  
ALTITUDE 19.2 KM

|                             |         |         |         |         |         |
|-----------------------------|---------|---------|---------|---------|---------|
| SAMPLE #                    | 82      | 83      | 84      | 85      | 86      |
| FLIGHT #                    | 298     | 298     | 298     | 298     | 298     |
| DATE                        | 8/ 2/67 | 8/ 2/67 | 8/ 2/67 | 8/ 2/67 | 8/ 2/67 |
| BEGIN-                      |         |         |         |         |         |
| TIME                        | 1605    | 1647    | 1729    | 1800    | 1829    |
| LAT.                        | 24-00N  | 20-00N  | 16-00N  | 16-00N  | 10-00N  |
| LONG.                       | 89-00W  | 86-00W  | 83-15W  | 81-50W  | 80-15W  |
| END-                        |         |         |         |         |         |
| TIME                        | 1647    | 1729    | 1800    | 1829    | 1843    |
| LAT.                        | 20-00N  | 16-00N  | 13-00N  | 10-00N  | 08-50N  |
| LONG.                       | 86-00W  | 85-15W  | 81-50W  | 80-15W  | 79-30W  |
| VDL. OF AIR<br>(100 CU.M.)  | 3.83    | 3.93    | 2.91    | 2.73    | 1.34    |
| GROSS GAMMA/<br>M/100 CU.M. | 360     | 150     | 100     | 87      | 210     |

## DPM/100 CU.M.

|        |        |        |        |        |       |
|--------|--------|--------|--------|--------|-------|
| BE-7   | 26100. | 10600. | 7320.A | 2700.A | 7610. |
| MN-54  | 2310.  | 1410.  | 1170.  | 1290.  | 4150. |
| ZR-95  | 4200.  | 868.   | 550.   | 527.   | 188.  |
| RU-103 | 355.   | 104.A  | *      | 211.   | 523.  |
| RU-106 | 242.A  | 136.   | 70.A   | *      | *     |
| SB-125 | 182.   | 124.   | 78.    | 56.    | 81.   |
| I-131  | *      | 80.A   | *      | *      | *     |
| CS-137 | 140.   | 131.   | 99.    | 87.    | 160.  |
| BA-140 | 142.A  | *      | *      | *      | *     |
| CE-141 | 76.A   | 22.A   | 34.A   | 43.    | 81.A  |
| CE-144 | 726.   | 234.   | 90.A   | 66.A   | 199.A |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)

NORTH OF ALBROOK  
(24N-09N)  
ALTITUDE 18.3 KM

| SAMPLE #                    | 32      | 33      | 34      | 35      | 36      |
|-----------------------------|---------|---------|---------|---------|---------|
| FLIGHT #                    | 298     | 298     | 298     | 298     | 298     |
| DATE                        | 8/ 8/67 | 8/ 8/67 | 8/ 8/67 | 8/ 8/67 | 8/ 8/67 |
| BEGIN-                      |         |         |         |         |         |
| TIME                        | 1626    | 1716    | 1758    | 1828    | 1858    |
| LAT.                        | 24-00N  | 20-00N  | 16-00N  | 13-00N  | 10-00N  |
| LONG.                       | 89-00W  | 86-00W  | 83-15W  | 81-50W  | 80-10W  |
| END-                        |         |         |         |         |         |
| TIME                        | 1716    | 1758    | 1828    | 1858    | 1910    |
| LAT.                        | 20-00N  | 16-00N  | 13-00N  | 10-00N  | 8-57N   |
| LONG.                       | 86-00W  | 83-15W  | 81-50W  | 80-10W  | 79-35W  |
| VOL. OF AIR<br>(100 CU.M.)  | 5.10    | 4.36    | 3.17    | 3.13    | 1.25    |
| GROSS GAMMA/<br>M/100 CU.M. | 820     | 1600    | 850     | 1200    | 640     |

## DPM/100 CU.M.

|        |        |         |        |        |       |
|--------|--------|---------|--------|--------|-------|
| BE-7   | 40200. | 30700.A | 23800. | 49200. | *     |
| MN-54  | *      | *       | 2540.A | 2170.A | *     |
| ZR-95  | 4730.  | 21900.  | 1090.  | 14300. | 7010. |
| RU-103 | 2240.  | 3280.   | 1310.  | 1260.  | 1380. |
| RU-106 | 157.A  | *       | 192.A  | 249.A  | *     |
| SB-125 | 296.   | 319.    | 154.   | 160.   | 225.  |
| I-131  | *      | 77.A    | 79.A   | 100.A  | *     |
| CS-137 | 133.   | 93.A    | 121.   | 128.   | 106.  |
| BA-140 | *      | 1180.   | 571.   | 764.   | 308.  |
| CE-141 | 941.   | 860.    | 360.   | 269.   | 330.  |
| CE-144 | 1430.  | 1950.   | 1070.  | 2410.  | 630.  |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 NORTH OF ALBROOK  
 (24N-09N)  
 ALTITUDE 16.8 KM

|                             |         |         |         |         |
|-----------------------------|---------|---------|---------|---------|
| SAMPLE #                    | 31      | 30      | 29      | 28      |
| FLIGHT #                    | 298     | 298     | 298     | 298     |
| DATE                        | 8/ 8/67 | 8/ 8/67 | 8/ 8/67 | 8/ 8/67 |
| BEGIN-                      |         |         |         |         |
| TIME                        | 1533    | 1452    | 1424    | 1353    |
| LAT.                        | 20-00N  | 16-00N  | 13-00N  | 10-00N  |
| LONG.                       | 86-00W  | 83-15W  | 81-50W  | 80-10W  |
| END-                        |         |         |         |         |
| TIME                        | 1614    | 1535    | 1452    | 1424    |
| LAT.                        | 24-00N  | 20-00N  | 16-00N  | 13-00N  |
| LONG.                       | 89-00W  | 86-00W  | 83-15W  | 81-50W  |
| VOL. OF AIR<br>(100 CU.M.)  | 6.06    | 6.10    | 4.14    | 4.53    |
| GROSS GAMMA/<br>M/100 CU.M. | 1400    | 1100    | 1400    | 830     |

DPM/100 CU.M.

|        |        |        |        |        |
|--------|--------|--------|--------|--------|
| BE-7   | 36500. | 47700. | 29200. | 18700. |
| MN-54  | *      | 2280.A | 3840.  | *      |
| ZR-95  | 17500. | 14900. | 2270.  | 11300. |
| RU-103 | 2010.  | 1340.  | 2210.  | 1650.  |
| RU-106 | *      | 161.A  | 241.A  | *      |
| SB-125 | 248.   | 115.   | 122.   | 172.   |
| I-131  | 78.A   | 100.A  | *      | 46.A   |
| CS-137 | 55.A   | 58.    | 122.   | 34.A   |
| BA-140 | 807.   | 707.   | 713.   | 554.   |
| CE-141 | 617.   | 270.   | 778.   | 424.   |
| CE-144 | 1390.  | 2260.  | 647.   | 940.   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 NORTH OF ALBROOK  
 (24N-09N)  
 ALTITUDE 15.2 KM

|                             |         |         |         |         |         |
|-----------------------------|---------|---------|---------|---------|---------|
| SAMPLE #                    | 81      | 80      | 79      | 78      | 77      |
| FLIGHT #                    | 298     | 298     | 298     | 298     | 298     |
| DATE                        | 8/ 2/67 | 8/ 2/67 | 8/ 2/67 | 8/ 2/67 | 8/ 2/67 |
| BEGIN-                      |         |         |         |         |         |
| TIME                        | 1504    | 1420    | 1350    | 1317    | 1305    |
| LAT.                        | 40-00N  | 16-00N  | 13-00N  | 10-00N  | 08-50N  |
| LONG.                       | 86-00W  | 83-15W  | 81-50W  | 80-15W  | 79-30W  |
| END-                        |         |         |         |         |         |
| TIME                        | 1545    | 1504    | 1420    | 1350    | 1317    |
| LAT.                        | 24-00N  | 20-00N  | 16-00N  | 13-00N  | 10-00N  |
| LONG.                       | 89-00W  | 86-00W  | 83-15W  | 81-50W  | 80-15W  |
| VOL. OF AIR<br>(100 CU.M.)  | 8.20    | 9.16    | 6.44    | 7.11    | 2.67    |
| GROSS GAMMA/<br>M/100 CU.M. | 360     | 330     | 590     | 370     | 590     |

DPM/100 CU.M.

|        |        |        |        |        |         |
|--------|--------|--------|--------|--------|---------|
| BE-7   | 7890.A | 10700. | 19300. | 22400. | 10600.A |
| MN-54  | *      | 533.A  | 2140.A | 941.A  | *       |
| ZR-95  | 6570.  | 5320.  | 8660.  | 5920.  | 9550.   |
| RU-103 | 1140.  | 965.   | 1430.  | 648.   | 2370.   |
| RU-106 | *      | *      | 188.A  | 65.A   | *       |
| SB-125 | 134.   | 51.    | 43.A   | 25.A   | 187.    |
| I-131  | 344.A  | 57.A   | 370.A  | 100.A  | *       |
| CS-137 | 49.A   | *      | 28.A   | 7.A    | 63.A    |
| BA-140 | *      | 639.   | 913.   | 567.   | *       |
| CE-141 | 277.   | 282.   | 415.   | 153.   | 509.    |
| CE-144 | 506.   | 395.   | 797.   | 823.   | 933.    |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)

SOUTH OF ALBROOK

(09N-09S)

ALTITUDE 19.2 KM

|                             |         |         |         |         |         |
|-----------------------------|---------|---------|---------|---------|---------|
| SAMPLE #                    | 62      | 61      | 60      | 59      | 58      |
| FLIGHT #                    | 293     | 293     | 293     | 293     | 293     |
| DATE                        | 8/ 3/67 | 8/ 3/67 | 8/ 3/67 | 8/ 3/67 | 8/ 3/67 |
| BEGIN-                      |         |         |         |         |         |
| TIME                        | 1812    | 1739    | 1703    | 1623    | 1544    |
| LAT.                        | 07-00N  | 3-00N   | 01-00S  | 05-00S  | 09-00S  |
| LONG.                       | 79-35W  | 79-40W  | 79-25W  | 79-04W  | 78-31W  |
| END-                        |         |         |         |         |         |
| TIME                        | 1826    | 1812    | 1739    | 1703    | 1623    |
| LAT.                        | 08-47N  | 07-00N  | 03-00N  | 01-00S  | 05-00S  |
| LONG.                       | 79-35W  | 79-35W  | 79-40W  | 79-25W  | 79-04W  |
| VOL. OF AIR<br>(100 CU.M.)  | 1.29    | 2.98    | 3.26    | 3.50    | 3.43    |
| GROSS GAMMA/<br>M/100 CU.M. | 170     | 160     | 420     | 100     | 180     |

DPM/100 CU.M.

|        |       |       |         |       |       |
|--------|-------|-------|---------|-------|-------|
| BE-7   | *     | 6340. | 275000. | 3570. | 9560. |
| MN-54  | 2200. | 1950. | *       | 1300. | 1990. |
| ZR-95  | 1260. | 49.   | 18300.  | 28.   | 46.   |
| RU-103 | 343.A | 124.A | 15500.  | 45.A  | *     |
| RU-106 | 149.A | 122.A | 1910.A  | 92.A  | 109.A |
| SB-125 | 57.A  | 141.  | 798.    | 71.   | 125.  |
| I-131  | *     | *     | 2580.A  | *     | 69.A  |
| CS-137 | 122.  | 220.  | 162.A   | 141.  | 235.  |
| BA-140 | *     | *     | 9200.   | 32.A  | 62.A  |
| CE-141 | 82.   | *     | 7360.   | *     | *     |
| CE-144 | 111.A | 219.  | 5370.   | 131.  | 190.  |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table I (Cont'd)  
 SOUTH OF ALBROOK  
 (09N-09S)  
 ALTITUDE 18.3 KM

|                             |         |         |         |         |
|-----------------------------|---------|---------|---------|---------|
| SAMPLE #                    | 73      | 72      | 71      | 70      |
| FLIGHT #                    | 294     | 294     | 294     | 294     |
| DATE                        | 8/ 6/67 | 8/ 6/67 | 8/ 6/67 | 8/ 6/67 |
| BEGIN-                      |         |         |         |         |
| TIME                        | 1942    | 1908    | 1831    | 1753    |
| LAT.                        | 03-00N  | 01-00S  | 05-00S  | 09-09S  |
| LONG.                       | 79-40W  | 79-10W  | 78-05W  | 76-55W  |
| END-                        |         |         |         |         |
| TIME                        | 2017    | 1942    | 1908    | 1831    |
| LAT.                        | 07-00N  | 03-00N  | 01-00S  | 05-00S  |
| LONG.                       | 79-35W  | 79-40W  | 79-10W  | 78-05W  |
| VOL. OF AIR<br>(100 CU.M.)  | 3.96    | 3.97    | 4.35    | 4.34    |
| GROSS GAMMA/<br>M/100 CU.M. | 95      | 100     | 87      | 110     |

DPM/100 CU.M.

|        |        |       |       |       |
|--------|--------|-------|-------|-------|
| BE-7   | 2830.A | 9870. | 6230. | 5740. |
| MN-54  | 1180.  | 1010. | 975.  | 1710. |
| ZR-95  | 417.   | 208.  | 163.  | 276.  |
| RU-103 | 209.   | *     | *     | 128.  |
| RU-106 | *      | 71.A  | 93.A  | *     |
| SB-125 | 95.    | 70.   | 78.   | 69.   |
| I-131  | *      | 39.A  | *     | *     |
| CS-137 | 116.   | 140.  | 123.  | 150.  |
| BA-140 | *      | *     | *     | *     |
| CE-141 | 22.A   | *     | *     | *     |
| CE-144 | 72.A   | 78.   | 134.  | 106.  |

A:COUNTING ERROR IS 20-50 PER CENT  
 B:COUNTING ERROR IS 51-100 PERCENT  
 \*:NOT DETECTABLE

Table 1 (Cont'd)  
 SOUTH OF ALBROOK  
 (09N-09S)  
 ALTITUDE 16.8 KM

| SAMPLE #                    | 49      | 53      | 48      | 54      | 47      | 55      | 46      |
|-----------------------------|---------|---------|---------|---------|---------|---------|---------|
| FLIGHT #                    | 298     | 293     | 298     | 293     | 298     | 293     | 298     |
| DATE                        | 7/31/67 | 8/ 3/67 | 7/31/67 | 8/ 3/67 | 7/31/67 | 8/ 3/67 | 7/31/67 |
| BEGIN-                      |         |         |         |         |         |         |         |
| TIME                        | 2027    | 1247    | 1947    | 1303    | 1909    | 1337    | 1831    |
| LAT.                        | 07-00N  | 08-47N  | 03-00N  | 07-00N  | 01-00S  | 03-00N  | 05-00S  |
| LONG.                       | 079-35W | 79-35W  | 79-40W  | 79-35W  | 79-10W  | 79-40W  | 78-05W  |
| END-                        |         |         |         |         |         |         |         |
| TIME                        | 2042    | 1303    | 2027    | 1337    | 1947    | 1411    | 1909    |
| LAT.                        | 08-50N  | 07-00N  | 07-00N  | 03-00N  | 03-00N  | 01-00S  | 01-00S  |
| LONG.                       | 79-30W  | 79-35W  | 79-30W  | 79-40W  | 79-40W  | 79-25W  | 79-10W  |
| VOL. OF AIR<br>(100 CU.M.)  | 2.42    | 2.54    | 6.51    | 5.34    | 6.25    | 5.31    | 6.14    |
| GROSS GAMMA/<br>M/100 CU.M. | 270     | 130     | 440     | 200     | 360     | 130     | 480     |

DPM/100 CU.M.

|        |        |       |        |        |        |       |        |
|--------|--------|-------|--------|--------|--------|-------|--------|
| BE-7   | 6820.A | 8350. | 23000. | 11900. | 7460.A | 6400. | 19700. |
| MN-54  | 1630.A | 1390. | 833.A  | 468.A  | *      | 706.  | 736.A  |
| ZR-95  | 3450.  | 1720. | 6160.  | 272.   | 4350.  | 155.  | 5680.  |
| RU-103 | 645.   | 292.  | 575.   | 219.   | 1090.  | 203.  | 922.   |
| RU-106 | *      | *     | 90.A   | 69.A   | *      | *     | 79.A   |
| SB-125 | 55.A   | 45.   | 64.    | 46.    | 133.   | 25.   | 81.    |
| I-131  | 82.A   | 47.A  | 51.A   | *      | 160.A  | 33.A  | 133.   |
| CS-137 | 20.A   | 8.A   | 37.    | *      | 54.    | 11.   | 24.    |
| BA-140 | 189.   | 48.A  | 413.   | 305.   | 152.A  | 203.  | 744.   |
| CE-141 | 124.   | 85.   | 123.   | 37.    | 230.   | 19.A  | 319.   |
| CE-144 | 698.   | 275.  | 900.   | 455.   | 518.   | 305.  | 546.   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 SOUTH OF ALBROOK  
 (09N-09S)  
 ALTITUDE 16.8 KM

|                             |         |         |         |         |
|-----------------------------|---------|---------|---------|---------|
| SAMPLE #                    | 56      | 45      | 57      | 94      |
| FLIGHT #                    | 293     | 298     | 293     | 296     |
| DATE                        | 8/ 3/67 | 7/31/67 | 8/ 3/67 | 8/ 8/67 |
| BEGIN-                      |         |         |         |         |
| TIME                        | 1141    | 1755    | 1443    | 1913    |
| LAT.                        | 01-00S  | 09-09S  | 05-00S  | 09-09S  |
| LONG.                       | 79-25W  | 076-55W | 79-04W  | 76-55W  |
| END-                        |         |         |         |         |
| TIME                        | 1443    | 1831    | 1520    | 1944    |
| LAT.                        | 05-00S  | 05-00S  | 09-00S  | 05-00S  |
| LONG.                       | 79-04W  | 78-05W  | 78-31W  | 78-05W  |
| VOL. OF AIR<br>(100 CU.M.)  | 5.24    | 5.62    | 5.93    | 4.92    |
| GROSS GAMMA/<br>M/100 CU.M. | 190     | 580     | 350     | 480     |

DPM/100 CU.M.

|        |        |        |        |        |
|--------|--------|--------|--------|--------|
| BE-7   | 10900. | 16900. | 12300. | 22000. |
| MN-54  | 542.A  | 2440.A | 1610.A | 2340.A |
| ZR-95  | 248.   | 6350.  | 450.   | 6830.  |
| RU-103 | 261.   | 1210.  | 661.   | 892.   |
| RU-106 | 72.A   | 165.A  | 121.A  | 168.A  |
| SB-125 | 12.A   | 42.A   | 24.A   | 71.A   |
| I-131  | 70.A   | 402.   | 134.A  | 159.A  |
| CS-137 | *      | 36.    | 24.    | 60.    |
| BA-140 | 250.   | 922.   | 482.   | 502.   |
| CE-141 | 74.    | 358.   | 197.   | 244.   |
| CE-144 | 357.   | 792.   | 491.   | 821.   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)
 NORTH OF MENDOZA  
 (09S 33S)  
 ALTITUDE 19.2 KM

|                             |         |         |         |         |         |
|-----------------------------|---------|---------|---------|---------|---------|
| SAMPLE #                    | 125     | 126     | 127     | 128     | 129     |
| FLIGHT #                    | 294     | 294     | 294     | 294     | 294     |
| DATE                        | 8/ 4/67 | 8/ 4/67 | 8/ 4/67 | 8/ 4/67 | 8/ 4/67 |
| BEGIN-                      |         |         |         |         |         |
| TIME                        | 1645    | 1714    | 1746    | 1823    | 1858    |
| LAT.                        | 15-25S  | 19-00S  | 23-00S  | 27-00S  | 31-00S  |
| LONG.                       | 75-20W  | 74-05W  | 72-30W  | 70-50W  | 68-50W  |
| END-                        |         |         |         |         |         |
| TIME                        | 1714    | 1746    | 1823    | 1858    | 1914    |
| LAT.                        | 19-00S  | 23-00S  | 27-00S  | 31-00S  | 32-50S  |
| LONG.                       | 74-05W  | 72-30W  | 70-50W  | 68-50W  | 68-47W  |
| VOL. OF AIR<br>(100 CU.M.)  | 2.64    | 2.97    | 3.39    | 3.09    | 1.41    |
| GROSS GAMMA/<br>M/100 CU.M. | 110     | 100     | 110     | 110     | 140     |

## DPM/100 CU.M.

|        |       |        |        |        |        |
|--------|-------|--------|--------|--------|--------|
| BE-7   | 9510. | 10700. | 12900. | 13900. | 16700. |
| MN-54  | 1420. | 1300.  | 773.A  | 922.   | 2020.  |
| ZR-95  | 20.   | 14.    | 13.    | 9.A    | 16.A   |
| RU-103 | *     | 79.A   | *      | 105.A  | 196.A  |
| RU-106 | 138.A | 92.A   | 193.   | *      | *      |
| SB-125 | 78.   | 48.    | 89.    | 41.    | 122.   |
| I-131  | *     | *      | *      | *      | *      |
| CS-137 | 148.  | 141.   | 123.   | 124.   | 140.   |
| BA-140 | *     | *      | *      | *      | *      |
| CE-141 | *     | *      | *      | *      | *      |
| CE-144 | 170.  | 109.   | 73.    | 106.   | 161.A  |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 NORTH OF MENDOZA  
 (09S 33S)  
 ALTITUDE 18.3 KM

| SAMPLE #                    | 138     | 139     | 140     | 141     | 142     |
|-----------------------------|---------|---------|---------|---------|---------|
| FLIGHT #                    | 294     | 294     | 294     | 294     | 294     |
| DATE                        | 8/ 3/67 | 8/ 3/67 | 8/ 3/67 | 8/ 3/67 | 8/ 3/67 |
| BEGIN-                      |         |         |         |         |         |
| TIME                        | 2015    | 2042    | 2116    | 2150    | 2225    |
| LAT.                        | 15-25S  | 19-00S  | 23-00S  | 27-00S  | 31-00S  |
| LONG.                       | 75-20W  | 74-15W  | 72-30W  | 70-50W  | 68-47W  |
| END-                        |         |         |         |         |         |
| TIME                        | 2042    | 2116    | 2150    | 2225    | 2241    |
| LAT.                        | 19-00S  | 23-00S  | 27-00S  | 31-00S  | 32-50S  |
| LONG.                       | 74-15W  | 72-30W  | 70-50W  | 68-50W  | 68-47W  |
| VOL. OF AIR<br>(100 CU.M.)  | 3.04    | 3.79    | 3.70    | 3.82    | 1.75    |
| GROSS GAMMA/<br>M/100 CU.M. | 92      | 100     | 130     | 120     | 150     |

DPM/100 CU.M.

|        |       |        |        |        |        |
|--------|-------|--------|--------|--------|--------|
| BE-7   | 6480. | 11400. | 16200. | 15000. | 18500. |
| MN-54  | 1200. | 929.   | 1110.A | 1250.  | 1560.A |
| ZR-95  | 19.   | 16.    | 9.A    | 14.    | 16.A   |
| RU-103 | 142.A | 115.A  | 121.A  | *      | *      |
| RU-106 | *     | 112.A  | *      | 137.A  | *      |
| SB-125 | 97.   | 64.    | 81.    | 118.   | 105.   |
| I-131  | *     | *      | *      | *      | *      |
| CS-137 | 113.  | 124.   | 146.   | 129.   | 166.   |
| BA-140 | *     | *      | *      | *      | *      |
| CE-141 | *     | *      | *      | *      | *      |
| CE-144 | 113.A | 87.    | 203.   | 168.   | 155.A  |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 NORTH OF MENDOZA  
 (09S 33S)  
 ALTITUDE 16.8 KM

| SAMPLE #                    | 44      | 43      | 93      | 137     | 42      | 92      | 136     |
|-----------------------------|---------|---------|---------|---------|---------|---------|---------|
| FLIGHT #                    | 298     | 298     | 296     | 294     | 298     | 296     | 294     |
| DATE                        | 7/31/67 | 7/31/67 | 8/ 8/67 | 8/ 3/67 | 7/31/67 | 8/ 8/67 | 8/ 3/67 |
| BEGIN-                      |         |         |         |         |         |         |         |
| TIME                        | 1655    | 1620    | 1739    | 1937    | 1544    | 1705    | 1858    |
| LAT.                        | 15-21S  | 19-00S  | 19-00S  | 19-00S  | 23-00S  | 23-00S  | 23-00S  |
| LONG.                       | 75-10W  | 73-55W  | 73-50W  | 74-15W  | 072-30W | 72-30W  | 72-30W  |
| END-                        |         |         |         |         |         |         |         |
| TIME                        | 1755    | 1655    | 1817    | 2010    | 1620    | 1739    | 1937    |
| LAT.                        | 09-09S  | 15-21S  | 15-21S  | 15-25S  | 19-00S  | 19-00S  | 19-00S  |
| LONG.                       | 76-55W  | 75-10W  | 75-10W  | 75-20W  | 073-55W | 73-50W  | 74-15W  |
| VOL. OF AIR<br>(100 CU.M.)  | 9.35    | 5.29    | 5.92    | 5.05    | 5.51    | 5.30    | 6.01    |
| GROSS GAMMA/<br>M/100 CU.M. | 370     | 47      | 520     | 110     | 130     | 330     | 93      |

DPM/100 CU.M.

|        |        |       |        |        |       |        |       |
|--------|--------|-------|--------|--------|-------|--------|-------|
| BE-7   | 24500. | 955.A | 30400. | 11500. | 7950. | 22800. | 7500. |
| MN-54  | 1190.  | 682.  | 1650.A | 1190.  | 1050. | 1920.  | 1080. |
| ZR-95  | 4020.  | 325.  | 7350.  | 133.   | 976.  | 732.   | 94.   |
| RU-103 | 483.   | 160.  | 813.   | 140.A  | 198.  | 685.   | 185.  |
| RU-106 | 128.A  | *     | 130.A  | 68.A   | 38.A  | 186.A  | 61.A  |
| SB-125 | 71.    | 29.   | 70.    | 40.    | 60.   | 74.    | 42.   |
| I-131  | 158.   | 66.   | *      | *      | 77.   | *      | *     |
| CS-137 | 52.    | 24.   | 42.    | 38.    | 63.   | 51.    | 45.   |
| BA-140 | 547.   | *     | 532.   | *      | 92.   | 574.   | *     |
| CE-141 | 112.   | 23.   | 167.   | 35.A   | 55.   | 90.    | 51.   |
| CE-144 | 796.   | 31.A  | 1110.  | 190.   | 114.  | 745.   | 52.   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)

NORTH OF MENDOZA  
(09S 33S)  
ALTITUDE 16.8 KM

|                             |         |         |
|-----------------------------|---------|---------|
| SAMPLE #                    | 91      | 135     |
| FLIGHT #                    | 296     | 294     |
| DATE                        | 8/ 8/67 | 8/ 3/67 |
| BEGIN-                      |         |         |
| TIME                        | 1625    | 1818    |
| LAT.                        | 27-00S  | 27-00S  |
| LONG.                       | 70-50W  | 70-50W  |
| END-                        |         |         |
| TIME                        | 1705    | 1858    |
| LAT.                        | 23-00S  | 23-00S  |
| LONG.                       | 72-30W  | 72-30W  |
| VOL. OF AIR<br>(100 CU.M.)  | 6.10    | 6.18    |
| GROSS GAMMA/<br>M/100 CU.M. | 210     | 110     |

DPM/100 CU.M.

|        |        |        |
|--------|--------|--------|
| BE-7   | 16300. | 15500. |
| MN-54  | 1170.  | 644.   |
| ZR-95  | 370.   | 89.    |
| RU-103 | 349.A  | *      |
| RU-106 | 70.A   | 81.    |
| SB-125 | 93.    | 67.    |
| I-131  | *      | *      |
| CS-137 | 41.    | 64.    |
| BA-140 | 310.   | 54.A   |
| CE-141 | 69.    | 48.    |
| CE-144 | 384.   | 74.    |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
NORTH OF MENDOZA  
(09S 33S)  
ALTITUDE 16.2 KM

SAMPLE # 40  
FLIGHT # 298  
DATE 7/31/67  
BEGIN-  
TIME 1421  
LAT. 31-00S  
LONG. 063-50W  
END-  
TIME 1503  
LAT. 27-00S  
LONG. 070-50W  
VOL. OF AIR 6.32  
(100 CU.M.)  
GROSS GAMMA/  
M/100 CU.M.

DPM/100 CU.M.

1  
-  
175

|        |        |
|--------|--------|
| BE-7   | 13000. |
| MN-54  | 733.   |
| ZR-95  | 18.    |
| RU-103 | *      |
| RU-106 | 107.   |
| SB-125 | 73.    |
| I-131  | *      |
| CS-137 | 94.    |
| BA-140 | *      |
| CE-141 | *      |
| CE-144 | 75.    |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)

NORTH OF MENDOZA  
(09S 33S)  
ALTITUDE 16.8 KM

|                             |         |         |         |
|-----------------------------|---------|---------|---------|
| SAMPLE #                    | 90      | 134     | 133     |
| FLIGHT #                    | 296     | 294     | 294     |
| DATE                        | 8/ 8/67 | 8/ 3/67 | 8/ 3/67 |
| BEGIN-                      |         |         |         |
| TIME                        | 1545    | 1739    | 1721    |
| LAT.                        | 31-00S  | 31-00S  | 32-50S  |
| LONG.                       | 68-50W  | 68-50W  | 68-47W  |
| END-                        |         |         |         |
| TIME                        | 1625    | 1818    | 1739    |
| LAT.                        | 27-00S  | 27-00S  | 31-00S  |
| LONG.                       | 70-50W  | 70-50W  | 68-50W  |
| VOL. OF AIR<br>(100 CU.M.)  | 5.94    | 5.97    | 2.66    |
| GROSS GAMMA/<br>M/100 CU.M. | 200     | 90      | 110     |

DPM/100 CU.M.

|        |        |       |       |
|--------|--------|-------|-------|
| BE-7   | 17300. | 4420. | 9470. |
| MN-54  | 1100.  | 1680. | 812.A |
| ZR-95  | 1670.  | 76.   | 73.   |
| RU-103 | 161.A  | 285.  | 261.A |
| RU-106 | 136.A  | *     | *     |
| SB-125 | 102.   | 32.   | 60.   |
| I-131  | *      | *     | *     |
| CS-137 | 77.    | 49.   | 82.   |
| BA-140 | 82.A   | *     | *     |
| CE-141 | 66.    | 48.   | 35.A  |
| CE-144 | 313.   | 48.A  | 65.A  |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 NORTH OF MENDOZA  
 (09S 33S)  
 ALTITUDE 15.2 KM

|                             |         |         |         |         |         |         |         |
|-----------------------------|---------|---------|---------|---------|---------|---------|---------|
| SAMPLE #                    | 69      | 124     | 68      | 123     | 67      | 122     | 66      |
| FLIGHT #                    | 294     | 294     | 294     | 294     | 294     | 294     | 294     |
| DATE                        | 8/ 6/67 | 8/ 4/67 | 8/ 6/67 | 8/ 4/67 | 8/ 6/67 | 8/ 4/67 | 8/ 6/67 |
| BEGIN-                      |         |         |         |         |         |         |         |
| TIME                        | 1618    | 1601    | 1538    | 1523    | 1457    | 1442    | 1416    |
| LAT.                        | 19-00S  | 19-00S  | 23-00S  | 23-00S  | 27-00S  | 27-00S  | 31-00S  |
| LONG.                       | 74-55W  | 74-05W  | 72-30W  | 72-30W  | 70-55W  | 70-50W  | 68-50W  |
| END-                        |         |         |         |         |         |         |         |
| TIME                        | 1655    | 1636    | 1618    | 1601    | 1538    | 1523    | 1457    |
| LAT.                        | 15-20S  | 15-25S  | 19-00S  | 19-00S  | 23-00S  | 23-00S  | 27-00S  |
| LONG.                       | 75-10W  | 75-20W  | 74-55W  | 74-05W  | 72-30W  | 72-30W  | 70-55W  |
| VOL. OF AIR<br>(100 CU.M.)  | 8.04    | 7.60    | 8.69    | 8.25    | 8.68    | 8.82    | 8.50    |
| GROSS GAMMA/<br>M/100 CU.M. | 520     | 380     | 1800    | 300     | 1200    | 230     | 1000    |

DPM/100 CU.M.

|        |       |        |        |        |        |        |         |
|--------|-------|--------|--------|--------|--------|--------|---------|
| BE-7   | *     | 25000. | 46700. | 13500. | 63800. | 10500. | 20500.A |
| MN-54  | *     | 720.A  | 7180.A | 691.A  | 2200.A | *      | *       |
| ZR-95  | 6680. | 593.   | 23900. | 465.   | 15800. | 355.   | 12400.  |
| RU-103 | 1690. | 611.   | 4290.  | 702.   | 1990.  | 652.   | 3270.   |
| RU-106 | *     | 87.A   | 626.A  | 121.A  | 315.A  | *      | *       |
| SB-125 | 149.  | 24.A   | *      | 33.    | 73.A   | 48.    | 374.    |
| I-131  | 249.A | *      | 727.A  | 164.A  | 340.   | *      | 569.A   |
| CS-137 | 45.A  | *      | 65.A   | 22.    | 34.A   | 10.A   | 125.A   |
| BA-140 | 243.A | 616.   | 2620.  | 475.   | 1680.  | 374.   | 506.A   |
| CE-141 | 377.  | 103.   | 1250.  | 251.   | 491.   | 214.   | 712.    |
| CE-144 | 710.  | 895.   | 2210.  | 267.   | 2320.  | 181.   | 1560.   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 NORTH OF MENDOZA  
 (09S 33S)  
 ALTITUDE 15.2 KM

|                             |         |         |
|-----------------------------|---------|---------|
| SAMPLE #                    | 121     | 120     |
| FLIGHT #                    | 294     | 294     |
| DATE                        | 8/ 4/67 | 8/ 4/67 |
| BEGIN-                      |         |         |
| TIME                        | 1401    | 1345    |
| LAT.                        | 31-00S  | 32-50S  |
| LONG.                       | 68-50W  | 68-47W  |
| END-                        |         |         |
| TIME                        | 1442    | 1401    |
| LAT.                        | 27-00S  | 31-00S  |
| LONG.                       | 70-50W  | 68-50W  |
| VOL. OF AIR<br>(100 CU.M.)  | 8.50    | 3.26    |
| GROSS GAMMA/<br>M/100 CU.M. | 220     | 550     |

DPM/100 CU.M.

|        |        |        |
|--------|--------|--------|
| BE-7   | 11000. | 18500. |
| MN-54  | 1210.  | *      |
| ZR-95  | 318.   | 840.   |
| RU-103 | 587.   | 1610.  |
| RU-106 | *      | 87.A   |
| SB-125 | 35.A   | 105.   |
| I-131  | *      | *      |
| CS-137 | 23.    | 18.A   |
| BA-140 | *      | 951.   |
| CE-141 | 184.   | 537.   |
| CE-144 | 142.   | 402.   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 SOUTH OF MENDOZA  
 (33S 50S)  
 ALTITUDE 19.2 KM

|                             |         |         |         |         |         |
|-----------------------------|---------|---------|---------|---------|---------|
| SAMPLE #                    | 168     | 167     | 166     | 165     | 164     |
| FLIGHT #                    | 296     | 296     | 296     | 296     | 296     |
| DATE                        | 8/ 2/67 | 8/ 2/67 | 8/ 2/67 | 8/ 2/67 | 8/ 2/67 |
| BEGIN-                      |         |         |         |         |         |
| TIME                        | 1905    | 1828    | 1746    | 1711    | 1646    |
| LAT.                        | 35-00S  | 39-00S  | 43-00S  | 47-00S  | 50-00S  |
| LONG.                       | 68-47W  | 68-13W  | 68-47W  | 67-30W  | 68-35W  |
| END-                        |         |         |         |         |         |
| TIME                        | 1922    | 1905    | 1828    | 1746    | 1711    |
| LAT.                        | 32-50S  | 35-00S  | 39-00S  | 43-00S  | 47-00S  |
| LONG.                       | 68-47W  | 68-25W  | 68-13W  | 68-47W  | 67-30W  |
| VOL. OF AIR<br>(100 CU.M.)  | 1.55    | 3.38    | 3.52    | 3.37    | 2.27    |
| GROSS GAMMA/<br>M/100 CU.M. | 120     | 100     | 140     | 120     | 110     |

H  
I  
176 DPM/100 CU.M.

|        |        |        |        |        |        |
|--------|--------|--------|--------|--------|--------|
| BE-7   | 26500. | 16000. | 22200. | 17900. | 14800. |
| MN-54  | 1320.A | 1040.  | 1060.  | 875.A  | 749.A  |
| ZR-95  | *      | 6.A    | 13.    | 10.A   | 9.A    |
| RU-103 | *      | 208.   | *      | 97.A   | 151.A  |
| RU-106 | 179.A  | 57.A   | 277.   | 133.A  | 149.A  |
| SB-125 | 79.    | 43.    | 134.   | 109.   | 54.    |
| I-131  | *      | *      | *      | *      | *      |
| CS-137 | 119.   | 136.   | 155.   | 112.   | 109.   |
| BA-140 | *      | *      | *      | *      | *      |
| CE-141 | *      | *      | *      | *      | *      |
| CE-144 | *      | 138.   | 162.   | 145.   | 57.A   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 SOUTH OF MENDOZA  
 (33S 50S)  
 ALTITUDE 18.3 KM

|                             |         |         |         |         |         |
|-----------------------------|---------|---------|---------|---------|---------|
| SAMPLE #                    | 159     | 160     | 161     | 162     | 163     |
| FLIGHT #                    | 296     | 296     | 296     | 296     | 296     |
| DATE                        | 8/ 2/67 | 8/ 2/67 | 8/ 2/67 | 8/ 2/67 | 8/ 2/67 |
| BEGIN-                      |         |         |         |         |         |
| TIME                        | 1414    | 1433    | 1507    | 1541    | 1614    |
| LAT.                        | 32-50S  | 35-00S  | 39-00S  | 43-00S  | 47-00S  |
| LONG.                       | 68-47W  | 68-25W  | 68-13W  | 67-47W  | 67-30W  |
| END-                        |         |         |         |         |         |
| TIME                        | 1433    | 1507    | 1541    | 1614    | 1640    |
| LAT.                        | 35-00S  | 39-00S  | 43-00S  | 47-00S  | 50-00S  |
| LONG.                       | 68-25W  | 68-13W  | 67-47W  | 67-30W  | 68-35W  |
| VOL. OF AIR<br>(100 CU.M.)  | 2.12    | 3.77    | 3.71    | 3.41    | 2.78    |
| GROSS GAMMA/<br>M/100 CU.M. | 110     | 110     | 130     | 150     | 93      |

DPM/100 CU.M.

|        |        |        |        |        |        |
|--------|--------|--------|--------|--------|--------|
| BE-7   | 21800. | 12900. | 17500. | 24500. | 33000. |
| MN-54  | 1020.A | 1080.  | 1280.  | 1030.A | 899.A  |
| ZR-95  | *      | 14.    | 7.A    | 15.    | *      |
| RU-103 | *      | 102.A  | 89.A   | 109.A  | *      |
| RU-106 | 194.   | 153.   | 100.A  | 163.A  | 189.   |
| SB-125 | 108.   | 73.    | 73.    | 138.   | 90.    |
| I-131  | *      | *      | *      | *      | *      |
| CS-137 | 127.   | 134.   | 144.   | 136.   | 137.   |
| BA-140 | *      | *      | *      | *      | *      |
| CE-141 | *      | *      | *      | *      | *      |
| CE-144 | 109.A  | 83.    | 135.   | 171.   | 120.   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 SOUTH OF MENDOZA  
 (33S 50S)  
 ALTITUDE 15.2 KM

|                             |         |         |         |         |         |
|-----------------------------|---------|---------|---------|---------|---------|
| SAMPLE #                    | 155     | 154     | 153     | 152     | 151     |
| FLIGHT #                    | 294     | 294     | 294     | 294     | 294     |
| DATE                        | 8/ 2/67 | 8/ 2/67 | 8/ 2/67 | 8/ 2/67 | 8/ 2/67 |
| BEGIN-                      |         |         |         |         |         |
| TIME                        | 1917    | 1851    | 1816    | 1740    | 1714    |
| LAT.                        | 35-00S  | 39-00S  | 43-00S  | 47-00S  | 50-00S  |
| LONG.                       | 68-25W  | 68-10W  | 67-50W  | 67-50W  | 68-40W  |
| END-                        |         |         |         |         |         |
| TIME                        | 1945    | 1927    | 1851    | 1816    | 1740    |
| LAT.                        | 32-50S  | 35-00S  | 39-00S  | 43-00S  | 47-00S  |
| LONG.                       | 68-47W  | 68-25W  | 68-10W  | 67-50W  | 67-50W  |
| VOL. OF AIR<br>(100 CU.M.)  | 3.58    | 7.17    | 6.81    | 6.77    | 4.97    |
| GROSS GAMMA/<br>M/100 CU.M. | 360     | 430     | 120     | 79      | 150     |

DPM/100 CU.M.

|        |        |        |        |        |        |
|--------|--------|--------|--------|--------|--------|
| BE-7   | 16900. | 30800. | 13700. | 6600.A | 24100. |
| MN-54  | 1680.A | 506.A  | 683.A  | 703.A  | 1210.  |
| ZR-95  | 578.   | 621.   | 19.    | 31.    | 15.    |
| RU-103 | 1080.  | 930.   | *      | 279.A  | 113.A  |
| RU-106 | *      | 106.A  | 292.   | 122.A  | 111.A  |
| SB-125 | 84.    | 132.   | 454.   | *      | 94.    |
| I-131  | *      | *      | *      | *      | *      |
| CS-137 | 60.    | 76.    | *      | 76.    | 157.   |
| BA-140 | *      | 675.   | *      | *      | *      |
| CE-141 | 360.   | 424.   | *      | *      | *      |
| CE-144 | 153.A  | 250.   | 253.   | *      | 177.   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 1 (Cont'd)  
 SOUTH OF MENDOZA  
 (33S 50S)  
 ALTITUDE 13.7 KM

|                             |         |         |         |         |         |
|-----------------------------|---------|---------|---------|---------|---------|
| SAMPLE #                    | 146     | 147     | 148     | 149     | 150     |
| FLIGHT #                    | 294     | 294     | 294     | 294     | 294     |
| DATE                        | 8/ 2/67 | 8/ 2/67 | 8/ 2/67 | 8/ 2/67 | 8/ 2/67 |
| BEGIN-                      |         |         |         |         |         |
| TIME                        | 1430    | 1448    | 1526    | 1604    | 1640    |
| LAT.                        | 32-50S  | 35-00S  | 39-00S  | 43-00S  | 47-00S  |
| LONG.                       | 68-47W  | 68-25W  | 68-10W  | 67-50W  | 67-50W  |
| END-                        |         |         |         |         |         |
| TIME                        | 1448    | 1526    | 1604    | 1640    | 1709    |
| LAT.                        | 35-00S  | 39-00S  | 43-00S  | 47-00S  | 50-00S  |
| LONG.                       | 68-25W  | 68-10W  | 67-50W  | 67-50W  | 68-40W  |
| VOL. OF AIR<br>(100 CU.M.)  | 4.42    | 9.24    | 8.93    | 8.50    | 6.67    |
| GROSS GAMMA/<br>M/100 CU.M. | 2400    | 1500    | 1400    | 340     | 140     |

DPM/100 CU.M.

|        |         |         |        |        |        |
|--------|---------|---------|--------|--------|--------|
| BE-7   | 147000. | 44400.A | 48900. | 27200. | 20700. |
| MN-54  | 4000.A  | *       | 3700.A | 1350.A | 1290.  |
| ZR-95  | 4300.   | 2620.   | 2430.  | 419.   | 94.    |
| RU-103 | 5320.   | 5510.   | 4460.  | 564.   | 151.A  |
| RU-106 | 810.A   | *       | 566.A  | 229.   | 71.A   |
| SB-125 | *       | 233.    | 217.   | 109.   | 75.    |
| I-131  | 1130.A  | *       | 1100.A | 285.A  | *      |
| CS-137 | 69.A    | 62.A    | 130.   | 92.    | 91.    |
| BA-140 | 5410.   | 3040.   | 3020.  | 402.   | 142.   |
| CE-141 | 1780.   | 1790.   | 1610.  | 208.   | 30.    |
| CE-144 | 3670.   | 804.    | 651.   | 389.   | 149.   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 2

NORTH OF EIELSON  
(75N-64N)  
ALTITUDE 19.2 KM

|                             |          |          |          |
|-----------------------------|----------|----------|----------|
| SAMPLE #                    | 313      | 314      | 315      |
| FLIGHT #                    | 288      | 288      | 288      |
| DATE                        | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 |
| BEGIN-                      |          |          |          |
| TIME                        | 2208     | 2248     | 2308     |
| LAT.                        | 75-00N   | 71-00N   | 68-00N   |
| LONG.                       | 143-00W  | 143-20W  | 144-30W  |
| END-                        |          |          |          |
| TIME                        | 2245     | 2308     | 2338     |
| LAT.                        | 71-00N   | 68-00N   | 64-34N   |
| LONG.                       | 143-20W  | 144-30W  | 147-48W  |
| VOL. OF AIR<br>(100 CU.M.)  | 3.16     | 1.70     | 2.48     |
| GROSS GAMMA/<br>M/100 CU.M. | 54000    | 52000    | 46000    |

Table 2 (Cont'd)  
NORTH OF EIELSON  
(75N-64N)  
ALTITUDE 18.3 KM

|                             |          |          |          |
|-----------------------------|----------|----------|----------|
| SAMPLE #                    | 312      | 311      | 310      |
| FLIGHT #                    | 288      | 288      | 288      |
| DATE                        | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 |
| BEGIN-                      |          |          |          |
| TIME                        | 2132     | 2106     | 2042     |
| LAT.                        | 71-00N   | 68-00N   | 65-00N   |
| LONG.                       | 143-20W  | 144-30W  | 146-35W  |
| END-                        |          |          |          |
| TIME                        | 2202     | 2132     | 2106     |
| LAT.                        | 75-00N   | 71-00N   | 68-00N   |
| LONG.                       | 143-00W  | 143-20W  | 144-30W  |
| VOL. OF AIR<br>(100 CU.M.)  | 3.18     | 2.71     | 2.43     |
| GROSS GAMMA/<br>M/100 CU.M. | 42000    | 34000    | 41000    |

Table 2 (Cont'd)  
NORTH OF EIELSON  
(75N-64N)  
ALTITUDE 15.2 KM

|                             |          |          |          |
|-----------------------------|----------|----------|----------|
| SAMPLE #                    | 320      | 321      | 322      |
| FLIGHT #                    | 293      | 293      | 293      |
| DATE                        | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 |
| BEGIN-                      |          |          |          |
| TIME                        | 2148     | 2226     | 2255     |
| LAT.                        | 75-00N   | 71-00N   | 68-00N   |
| LONG.                       | 143-00W  | 143-00W  | 144-30W  |
| END-                        |          |          |          |
| TIME                        | 2226     | 2255     | 2324     |
| LAT.                        | 71-00N   | 68-00N   | 65-00N   |
| LONG.                       | 143-00W  | 144-30W  | 146-30W  |
| VOL. OF AIR<br>(100 CU.M.)  | 6.91     | 5.19     | 5.19     |
| GROSS GAMMA/<br>M/100 CU.M. | 16000    | 17000    | 6100     |

Table 2 (Cont'd)  
 NORTH OF EIELSON  
 (75N-64N)  
 ALTITUDE 12.2 KM

|                             |          |          |          |
|-----------------------------|----------|----------|----------|
| SAMPLE #                    | 319      | 318      | 317      |
| FLIGHT #                    | 293      | 293      | 293      |
| DATE                        | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 |
| BEGIN-                      |          |          |          |
| TIME                        | 2056     | 2023     | 1950     |
| LAT.                        | 71-00N   | 68-00N   | 65-00N   |
| LONG.                       | 143-00W  | 144-30W  | 146-30W  |
| END-                        |          |          |          |
| TIME                        | 2139     | 2056     | 2023     |
| LAT.                        | 75-00N   | 71-00N   | 68-00N   |
| LONG.                       | 143-00W  | 143-00W  | 144-30W  |
| VOL. OF AIR<br>(100 CU.M.)  | 11.80    | 9.14     | 9.08     |
| GROSS GAMMA/<br>M/100 CU.M. | 740      | 1300     | 1000     |

DPM/100 CU.M.

|        |        |        |
|--------|--------|--------|
| BE-7   | 17500. | 20200. |
| MN-54  | *      | 5110.  |
| ZR-95  | 1640.  | 2250.  |
| RU-103 | 216.   | 346.   |
| RU-106 | 112.A  | 309.   |
| SB-125 | 114.   | 134.   |
| I-131  | *      | *      |
| CS-137 | 21.A   | 119.   |
| BA-140 | *      | *      |
| CE-141 | 142.   | 177.   |
| CE-144 | 359.   | 735.   |

A:COUNTING ERROR IS 20-50 PER CENT  
 B:COUNTING ERROR IS 51-100 PERCENT  
 \*:NOT DETECTABLE

Table 2 (Cont'd)  
 SOUTH OF EIELSON  
 (64N-53N)  
 ALTITUDE 19.2 KM

|                             |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|
| SAMPLE #                    | 338      | 337      | 336      | 335      |
| FLIGHT #                    | 288      | 288      | 288      | 288      |
| DATE                        | 11/ 4/67 | 11/ 4/67 | 11/ 4/67 | 11/ 4/67 |
| BEGIN-                      |          |          |          |          |
| TIME                        | 0003     | 2340     | 2306     | 2232     |
| LAT.                        | 61-00N   | 59-00N   | 56-00N   | 53-00N   |
| LONG.                       | 139-00W  | 135-30W  | 131-20W  | 128-00W  |
| END-                        |          |          |          |          |
| TIME                        | 0053     | 0003     | 2340     | 2306     |
| LAT.                        | 65-00N   | 61-00N   | 59-00N   | 56-00N   |
| LONG.                       | 148-00W  | 139-00W  | 135-30W  | 131-20W  |
| VOL. OF AIR<br>(100 CU.M.)  | 4.19     | 1.93     | 2.93     | 2.62     |
| GROSS GAMMA/<br>M/100 CU.M. | 24000    | 27000    | 38000    | 42000    |

Table 2 (Cont'd)  
 SOUTH OF EIELSON  
 (64N-53N)  
 ALTITUDE 18.3 KM

|                             |          |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|----------|
| SAMPLE #                    | 309      | 308      | 330      | 331      | 332      |
| FLIGHT #                    | 288      | 288      | 288      | 288      | 288      |
| DATE                        | 11/ 6/67 | 11/ 6/67 | 11/ 4/67 | 11/ 4/67 | 11/ 4/67 |
| BEGIN-                      |          |          |          |          |          |
| TIME                        | 1953     | 1947     | 2002     | 2024     | 2056     |
| LAT.                        | 60-00N   | 61-30N   | 61-00N   | 59-00N   | 56-00N   |
| LONG.                       | 139-05W  | 140-00W  | 139-00W  | 135-30W  | 131-20W  |
| END-                        |          |          |          |          |          |
| TIME                        | 2042     | 1953     | 2024     | 2056     | 2125     |
| LAT.                        | 65-00N   | 61-00N   | 59-00N   | 56-00N   | 53-00N   |
| LONG.                       | 146-35W  | 139-05W  | 135-30W  | 131-20W  | 138-00W  |
| VOL. OF AIR<br>(100 CU.M.)  | 4.93     | 0.61     | 2.34     | 3.41     | 3.17     |
| GROSS GAMMA/<br>M/100 CU.M. | 46000    | 39000    | 4400     | 9700     | 430      |

DPM/100 CU.M.

|        |         |
|--------|---------|
| BE-7   | 389000. |
| MN-54  | *       |
| ZR-95  | 80300.  |
| RU-103 | 35900.  |
| RU-106 | 11700.  |
| SB-125 | 3980.   |
| I-131  | *       |
| CS-137 | *       |
| BA-140 | *       |
| CE-141 | 17400.  |
| CE-144 | *       |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 2 (Cont'd)

SOUTH OF EIELSON

(64N-53N)

ALTITUDE 15.2 KM

|                             |          |          |          |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|----------|----------|----------|
| SAMPLE #                    | 295      | 349      | 294      | 348      | 293      | 347      | 292      |
| FLIGHT #                    | 293      | 293      | 293      | 293      | 293      | 293      | 293      |
| DATE                        | 11/ 2/67 | 11/ 5/67 | 11/ 2/67 | 11/ 5/67 | 11/ 2/67 | 11/ 5/67 | 11/ 2/67 |
| BEGIN-                      |          |          |          |          |          |          |          |
| TIME                        | 2300     | 0003     | 2236     | 2339     | 2203     | 2309     | 2127     |
| LAT.                        | 61-00N   | 61-00N   | 59-00N   | 59-00N   | 56-00N   | 56-00N   | 53-00N   |
| LONG.                       | 139-00W  | 139-05W  | 135-40W  | 135-45W  | 131-30W  | 131-30W  | 127-50W  |
| END-                        |          |          |          |          |          |          |          |
| TIME                        | 0025     | 0044     | 2300     | 0003     | 2236     | 2339     | 2203     |
| LAT.                        | 64-40N   | 64-34N   | 61-00N   | 61-00N   | 59-00N   | 59-00N   | 56-00N   |
| LONG.                       | 147-06W  | 149-00W  | 139-00W  | 139-05W  | 135-40W  | 135-45W  | 131-30W  |
| VOL. OF AIR<br>(100 CU.M.)  | 15.80    | 7.24     | 4.39     | 4.22     | 6.10     | 5.67     | 6.65     |
| GROSS GAMMA/<br>M/100 CU.M. | 3900     | 16000    | 2500     | 18000    | 1300     | 5100     | 1300     |

DPM/100 CU.M.

|        |        |
|--------|--------|
| BE-7   | 34400. |
| MN-54  | 15400. |
| ZR-95  | 5580.  |
| RU-103 | 1280.  |
| RU-106 | 859.   |
| SB-125 | 271.   |
| I-131  | *      |
| CS-137 | 269.   |
| BA-140 | *      |
| CE-141 | 487.   |
| CE-144 | 2180.  |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 2 (Cont'd)  
SOUTH OF EIELSON  
(64N-53N)  
ALTITUDE 15.2 KM

SAMPLE # 346  
FLIGHT # 293  
DATE 11/ 5/67  
BEGIN-  
TIME 2232  
LAT. 53-00N  
LONG. 127-55W  
END-  
TIME 2309  
LAT. 56-00N  
LONG. 131-30W  
VOL. OF AIR 7.38  
(100 CU.M.)  
GROSS GAMMA/ 380  
M/100 CU.M.

DPM/100 CU.M.

BE-7 9910.  
MN-54 741.A  
ZR-95 997.  
RU-103 108.A  
RU-106 77.A  
SB-125 40.  
I-131 \*  
CS-137 20.A  
BA-140 \*  
CE-141 60.  
CE-144 331.

A:COUNTING ERROR IS 20-50 PER CENT  
B:COUNTING ERROR IS 51-100 PERCENT  
\*:NOT DETECTABLE

Table 2 (Cont'd)  
 SOUTH OF EIELSON  
 (64N-53N)  
 ALTITUDE 13.7 KM

|                             |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|
| SAMPLE #                    | 340      | 341      | 342      | 343      |
| FLIGHT #                    | 293      | 293      | 293      | 293      |
| DATE                        | 11/ 5/67 | 11/ 5/67 | 11/ 5/67 | 11/ 5/67 |
| BEGIN-                      |          |          |          |          |
| TIME                        | 1946     | 1951     | 2017     | 2049     |
| LAT.                        | 61-30N   | 61-00N   | 59-00N   | 56-00N   |
| LONG.                       | 140-00W  | 139-05W  | 135-45W  | 131-30W  |
| END-                        |          |          |          |          |
| TIME                        | 1951     | 2017     | 2049     | 2124     |
| LAT.                        | 61-00N   | 59-00N   | 56-00N   | 53-00N   |
| LONG.                       | 139-05W  | 135-45W  | 131-30W  | 127-55W  |
| VOL. OF AIR<br>(100 CU.M.)  | 0.93     | 6.16     | 7.92     | 8.74     |
| GROSS GAMMA/<br>M/100 CU.M. | 6200     | 3200     | 510      | 50       |

H  
I  
191

DPM/100 CU.M.

|        |         |        |       |
|--------|---------|--------|-------|
| BE-7   | 92900.A | 53600. | 2390. |
| MN-54  | *       | 24500. | 289.A |
| ZR-95  | 15700.  | 8250.  | 126.  |
| RU-103 | 3640.   | 1300.  | *     |
| RU-106 | 771.A   | 1280.  | *     |
| SB-125 | 1220.   | 378.   | 11.A  |
| I-131  | *       | *      | *     |
| CS-137 | *       | 365..  | *     |
| BA-140 | *       | *      | *     |
| CE-141 | 855.    | 378.A  | *     |
| CE-144 | 6620.   | 3510.  | 64.   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 2 (Cont'd)  
 NORTH OF KIRTLAND  
 (53N-35N)  
 ALTITUDE 19.2 KM

| SAMPLE #                    | 334      | 356      | 357      | 358      | 359      | 360      |
|-----------------------------|----------|----------|----------|----------|----------|----------|
| FLIGHT #                    | 288      | 292      | 292      | 292      | 292      | 292      |
| DATE                        | 11/ 4/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 |
| BEGIN-                      |          |          |          |          |          |          |
| TIME                        | 2210     | 2021     | 2043     | 2110     | 2134     | 2158     |
| LAT.                        | 51-00N   | 49-00N   | 47-00N   | 45-00N   | 43-00N   | 41-00N   |
| LONG.                       | 126-00W  | 124-00W  | 121-25W  | 118-01W  | 115-07W  | 111-41W  |
| END-                        |          |          |          |          |          |          |
| TIME                        | 2232     | 2043     | 2110     | 2134     | 2158     | 2222     |
| LAT.                        | 53-00N   | 47-00N   | 45-00N   | 43-00N   | 41-00N   | 39-00N   |
| LONG.                       | 128-00W  | 121-25W  | 118-01W  | 115-07W  | 111-41W  | 108-47W  |
| VOL. OF AIR<br>(100 CU.M.)  | 1.81     | 2.09     | 2.66     | 2.37     | 2.37     | 2.49     |
| GROSS GAMMA/<br>M/100 CU.M. | 22000    | 29000    | 19000    | 18000    | 17000    | 14000    |

Table 2 (Cont'd)  
 NORTH OF KIRTLAND  
 (53N-35N)  
 ALTITUDE 18.3 KM

|                             |          |          |          |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|----------|----------|----------|
| SAMPLE #                    | 333      | 355      | 354      | 353      | 352      | 351      | 472      |
| FLIGHT #                    | 288      | 292      | 292      | 292      | 292      | 292      | 294      |
| DATE                        | 11/ 4/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 9/67 |
| BEGIN-                      |          |          |          |          |          |          |          |
| TIME                        | 2125     | 1942     | 1915     | 1850     | 1821     | 1754     | 1915     |
| LAT.                        | 53-00N   | 47-00N   | 45-00N   | 43-00N   | 41-00N   | 39-00N   | 39-02N   |
| LONG.                       | 128-00W  | 121-25W  | 118-01W  | 115-07W  | 111-41W  | 108-47W  | 108-48W  |
| END-                        |          |          |          |          |          |          |          |
| TIME                        | 2144     | 2004     | 1942     | 1915     | 1850     | 1821     | 1953     |
| LAT.                        | 51-00N   | 49-00N   | 47-00N   | 45-00N   | 43-00N   | 41-00N   | 35-00N   |
| LONG.                       | 126-00W  | 124-00W  | 121-25W  | 118-01W  | 115-07W  | 111-41W  | 106-50W  |
| VOL. OF AIR<br>(100 CU.M.)  | 2.09     | 2.54     | 3.26     | 3.02     | 3.50     | 3.25     | 4.45     |
| GROSS GAMMA/<br>M/100 CU.M. | 14000    | 14000    | 7400     | 4500     | 5700     | 4400     | 1600     |

DPM/100 CU.M.

|        |         |
|--------|---------|
| BE-7   | 76000.A |
| MN-54  | *       |
| ZR-95  | 14300.  |
| RU-103 | 4490.   |
| RU-106 | 1390.   |
| SB-125 | 1040.   |
| I-131  | *       |
| CS-137 | *       |
| BA-140 | *       |
| CE-141 | 954.    |
| CE-144 | 6630.   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 2 (Cont'd)  
NORTH OF KIRTLAND  
(53N-35N)  
ALTITUDE 18.3 KM

SAMPLE # 345  
FLIGHT # 293  
DATE 11/ 5/67  
BEGIN-  
TIME 2157  
LAT. 50-00N  
LONG. 125-00W  
END-  
TIME 2232  
LAT. 53-00N  
LONG. 127-55W  
VOL. OF AIR 7.35  
(100 CU.M.)  
GROSS GAMMA/ 140  
M/100 CU.M.

H - 194 DPM/100 CU.M.

|        |       |
|--------|-------|
| BE-7   | 4330. |
| MN-54  | 1360. |
| ZR-95  | 373.  |
| RU-103 | *     |
| RU-106 | *     |
| SB-125 | 24.   |
| I-131  | *     |
| CS-137 | 19.   |
| BA-140 | *     |
| CE-141 | 7.A   |
| CE-144 | 132.  |

A:COUNTING ERROR IS 20-50 PER CENT  
B:COUNTING ERROR IS 51-100 PERCENT  
\*:NOT DETECTABLE

Table 2 (Cont'd)
 NORTH OF KIRTLAND  
 (53N-35N)  
 ALTITUDE 15.2 KM

|                             |          |          |          |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|----------|----------|----------|
| SAMPLE #                    | 368      | 290      | 289      | 367      | 288      | 366      | 287      |
| FLIGHT #                    | 292      | 293      | 293      | 292      | 293      | 292      | 293      |
| DATE                        | 11/ 7/67 | 11/ 2/67 | 11/ 2/67 | 11/ 7/67 | 11/ 2/67 | 11/ 7/67 | 11/ 2/67 |
| BEGIN-                      |          |          |          |          |          |          |          |
| TIME                        | 1944     | 2016     | 1943     | 1909     | 1913     | 1838     | 1844     |
| LAT.                        | 47-00N   | 43-00N   | 45-00N   | 45-00N   | 43-00N   | 43-00N   | 41-00N   |
| LONG.                       | 121-25W  | 121-20W  | 117-35W  | 118-00W  | 114-30W  | 115-05W  | 111-20W  |
| END-                        |          |          |          |          |          |          |          |
| TIME                        | 2022     | 2053     | 2016     | 1944     | 1943     | 1909     | 1913     |
| LAT.                        | 50-00N   | 50-00N   | 47-00N   | 47-00N   | 45-00N   | 45-00N   | 43-00N   |
| LONG.                       | 125-15W  | 125-00W  | 121-20W  | 121-25W  | 117-35W  | 118-00W  | 114-20W  |
| VOL. OF AIR<br>(100 CU.M.)  | 7.49     | 6.93     | 6.37     | 7.03     | 5.79     | 6.36     | 5.60     |
| GROSS GAMMA/<br>M/100 CU.M. | 650      | 2200     | 450      | 270      | 410      | 88       | 360      |

DPM/100 CU.M.

|        |        |        |
|--------|--------|--------|
| BE-7   | 11600. | 12400. |
| MN-54  | 3490.  | *      |
| ZR-95  | 943.   | 889.   |
| RU-103 | 136.A  | 93.A   |
| RU-106 | 148.A  | 127.A  |
| SB-125 | 64.A   | 63.    |
| I-131  | *      | *      |
| CS-137 | 61.    | 19.A   |
| BA-140 | *      | *      |
| CE-141 | 35.A   | 41.    |
| CE-144 | 542.   | 413.   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 2 (Cont'd)  
 NORTH OF KIRTLAND  
 (53N-35N)  
 ALTITUDE 15.2 KM

|                             |          |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|----------|
| SAMPLE #                    | 365      | 286      | 364      | 471      | 363      |
| FLIGHT #                    | 292      | 293      | 292      | 294      | 292      |
| DATE                        | 11/ 7/67 | 11/ 2/67 | 11/ 7/67 | 11/ 9/67 | 11/ 7/67 |
| BEGIN-                      |          |          |          |          |          |
| TIME                        | 1812     | 1814     | 1744     | 1823     | 1725     |
| LAT.                        | 41-00N   | 39-00N   | 39-00N   | 35-00N   | 37-00N   |
| LONG.                       | 111-45W  | 108-45W  | 108-50W  | 106-50W  | 108-50W  |
| END-                        |          |          |          |          |          |
| TIME                        | 1838     | 1844     | 1812     | 1901     | 1732     |
| LAT.                        | 43-00N   | 41-00N   | 41-00N   | 39-02N   | 38-00N   |
| LONG.                       | 115-05W  | 111-20W  | 111-45W  | 108-48W  | 108-10W  |
| VOL. OF AIR<br>(100 CU.M.)  | 5.34     | 6.02     | 5.85     | 7.95     | 1.46     |
| GROSS GAMMA/<br>M/100 CU.M. | 42       | 270      | 41       | 240      | 120      |

DPM/100 CU.M.

|        |       |
|--------|-------|
| BE-7   | 7440. |
| MN-54  | 1620. |
| ZR-95  | 523.  |
| RU-103 | 90.A  |
| RU-106 | 83.A  |
| SB-125 | 46.   |
| I-131  | *     |
| CS-137 | 34.   |
| BA-140 | *     |
| CE-141 | 37.   |
| CE-144 | 188.  |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 2 (Cont'd)  
 NORTH OF KIRTLAND  
 (53N-35N)  
 ALTITUDE 13.7 KM

| SAMPLE #                    | 344      | 369      | 370      | 371      | 372      | 373      | 374      |
|-----------------------------|----------|----------|----------|----------|----------|----------|----------|
| FLIGHT #                    | 293      | 292      | 292      | 292      | 292      | 292      | 292      |
| DATE                        | 11/ 5/67 | 11/ 7/67 | 11/ 7/67 | 11/ 7/67 | 11/ 7/67 | 11/ 7/67 | 11/ 7/67 |
| BEGIN-                      |          |          |          |          |          |          |          |
| TIME                        | 2124     | 2027     | 2106     | 2138     | 2208     | 2233     | 2301     |
| LAT.                        | 53-00N   | 50-00N   | 47-00N   | 45-00N   | 43-00N   | 41-00N   | 39-00N   |
| LONG.                       | 127-55W  | 125-15W  | 121-25W  | 118-00W  | 115-05W  | 111-45W  | 108-50W  |
| END-                        |          |          |          |          |          |          |          |
| TIME                        | 2153     | 2106     | 2138     | 2208     | 2233     | 2301     | 2338     |
| LAT.                        | 50-00N   | 47-00N   | 45-00N   | 43-00N   | 41-00N   | 39-00N   | 35-00N   |
| LONG.                       | 125-00W  | 121-25W  | 118-00W  | 115-05W  | 111-45W  | 108-50W  | 106-50W  |
| VOL. OF AIR<br>(100 CU.M.)  | 7.53     | 9.80     | 7.38     | 7.37     | 6.06     | 7.00     | 9.19     |
| GROSS GAMMA/<br>M/100 CU.M. | 26       | 160      | 150      | 69       | 22       | 32       | 15       |

DPM/100 CU.M.

|        |        |
|--------|--------|
| BE-7   | 2010.A |
| MN-54  | 205.A  |
| ZR-95  | 64.    |
| RU-103 | *      |
| RU-106 | *      |
| SB-125 | 13.A   |
| I-131  | *      |
| CS-137 | *      |
| BA-140 | *      |
| CE-141 | 6.A    |
| CE-144 | 14.A   |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

1-197

Table 2 (Cont'd)  
 SOUTH OF KIRTLAND  
 (35N-24N)  
 ALTITUDE 19.2 KM

|                             |          |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|----------|
| SAMPLE #                    | 493      | 492      | 491      | 490      | 489      |
| FLIGHT #                    | 292      | 292      | 292      | 292      | 292      |
| DATE                        | 11/ 8/67 | 11/ 8/67 | 11/ 8/67 | 11/ 8/67 | 11/ 8/67 |
| BEGIN-                      |          |          |          |          |          |
| TIME                        | 2155     | 2122     | 2044     | 2001     | 1938     |
| LAT.                        | 33-00N   | 31-00N   | 29-00N   | 26-00N   | 24-00N   |
| LONG.                       | 102-15W  | 98-10W   | 94-37W   | 91-15W   | 89-00W   |
| END-                        |          |          |          |          |          |
| TIME                        | 2235     | 2155     | 2122     | 2044     | 2001     |
| LAT.                        | 35-00N   | 33-00N   | 31-00N   | 29-00N   | 26-00N   |
| LONG.                       | 106-40W  | 102-15W  | 98-10W   | 94-37W   | 91-15W   |
| VOL. OF AIR<br>(100 CU.M.)  | 3.71     | 3.06     | 3.64     | 4.02     | 2.19     |
| GROSS GAMMA/<br>M/100 CU.M. | 4100     | 5100     | 6700     | 8200     | 9000     |

Table 2 (Cont'd)

SOUTH OF KIRTLAND  
(35N-24N)  
ALTITUDE 18.3 KM

|                             |          |          |          |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|----------|----------|----------|
| SAMPLE #                    | 473      | 275      | 485      | 276      | 486      | 277      | 487      |
| FLIGHT #                    | 294      | 290      | 292      | 290      | 292      | 290      | 292      |
| DATE                        | 11/ 9/67 | 10/31/67 | 11/ 8/67 | 10/31/67 | 11/ 8/67 | 10/31/67 | 11/ 8/67 |
| BEGIN-                      |          |          |          |          |          |          |          |
| TIME                        | 1953     | 1607     | 1719     | 1640     | 1756     | 1710     | 1827     |
| LAT.                        | 35-00N   | 33-00N   | 33-00N   | 31-00N   | 31-00N   | 29-00N   | 29-00N   |
| LONG.                       | 106-50W  | 102-00W  | 102-15W  | 098-00W  | 98-10W   | 094-35W  | 94-37W   |
| END-                        |          |          |          |          |          |          |          |
| TIME                        | 2032     | 1640     | 1756     | 1710     | 1827     | 1750     | 1908     |
| LAT.                        | 33-00N   | 31-00N   | 31-00N   | 29-00N   | 29-00N   | 26-00N   | 26-00N   |
| LONG.                       | 102-00W  | 098-00W  | 98-10W   | 094-35W  | 94-37W   | 091-20W  | 91-15W   |
| VOL. OF AIR<br>(100 CU.M.)  | 4.46     | 3.55     | 4.25     | 3.29     | 3.56     | 4.57     | 4.71     |
| GROSS GAMMA/<br>M/100 CU.M. | 3100     | 29000    |          | 16000    |          | 3600     |          |

Table 2 (Cont'd)  
SOUTH OF KIRTLAND  
(35N-24N)  
ALTITUDE 18.3 KM

|                             |          |          |
|-----------------------------|----------|----------|
| SAMPLE #                    | 278      | 488      |
| FLIGHT #                    | 290      | 292      |
| DATE                        | 10/31/67 | 11/ 8/67 |
| BEGIN-                      |          |          |
| TIME                        | 1750     | 1908     |
| LAT.                        | 26-00N   | 26-00N   |
| LONG.                       | 091-20W  | 91-15W   |
| END-                        |          |          |
| TIME                        | 1815     | 1931     |
| LAT.                        | 24-00N   | 24-00N   |
| LONG.                       | 089-00W  | 89-00W   |
| VOL. OF AIR<br>(100 CU.M.)  | 2.93     | 2.68     |
| GROSS GAMMA/<br>M/100 CU.M. | 2800     |          |

Table 2 (Cont'd)  
 SOUTH OF KIRTLAND  
 (35N-24N)  
 ALTITUDE 16.8 KM

|                             |          |          |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|----------|----------|
| SAMPLE #                    | 482      | 299      | 481      | 300      | 480      | 301      |
| FLIGHT #                    | 293      | 291      | 293      | 291      | 293      | 291      |
| DATE                        | 11/ 9/67 | 10/31/67 | 11/ 9/67 | 10/31/67 | 11/ 9/67 | 10/31/67 |
| BEGIN-                      |          |          |          |          |          |          |
| TIME                        | 2144     | 1622     | 2111     | 1651     | 2036     | 1728     |
| LAT.                        | 31-00N   | 31-00N   | 29-00N   | 29-00N   | 26-00N   | 26-00N   |
| LONG.                       | 98-12W   | 098-00W  | 94-35W   | 094-45W  | 91-15W   | 091-20W  |
| END-                        |          |          |          |          |          |          |
| TIME                        | 2220     | 1651     | 2144     | 1728     | 2111     | 1754     |
| LAT.                        | 33-00N   | 29-00N   | 31-00N   | 26-00N   | 29-00N   | 24-00N   |
| LONG.                       | 102-12W  | 094-45W  | 98-12W   | 091-20W  | 94-35W   | 089-00W  |
| VOL. OF AIR<br>(100 CU.M.)  | 5.63     | 4.17     | 5.16     | 5.60     | 5.44     | 4.33     |
| GROSS GAMMA/<br>M/100 CU.M. |          | 220      |          | 35       |          | 180      |

H  
I  
201

DPM/100 CU.M.

|        |        |       |       |
|--------|--------|-------|-------|
| BE-7   | 4100.A | 6880. | 3420. |
| MN-54  | *      | 2630. | *     |
| ZR-95  | 525.   | 866.  | 462.  |
| RU-103 | 130.A  | 66.A  | 52.A  |
| RU-106 | *      | 67.A  | *     |
| SB-125 | 67.    | 38.   | 17.A  |
| I-131  | *      | *     | *     |
| CS-137 | *      | 39.   | *     |
| BA-140 | *      | *     | *     |
| CE-141 | 32.    | 50.   | 20.A  |
| CE-144 | 150.   | 239.  | 188.  |

A:COUNTING ERROR IS 20-50 PER CENT

B:COUNTING ERROR IS 51-100 PERCENT

\*:NOT DETECTABLE

Table 2 (Cont'd)  
 SOUTH OF KIRTLAND  
 (35N-24N)  
 ALTITUDE 15.2 KM

|                             |          |          |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|----------|----------|
| SAMPLE #                    | 470      | 274      | 475      | 476      | 477      | 478      |
| FLIGHT #                    | 294      | 290      | 293      | 293      | 293      | 293      |
| DATE                        | 11/ 9/67 | 10/31/67 | 11/ 9/67 | 11/ 9/67 | 11/ 9/67 | 11/ 9/67 |
| BEGIN-                      |          |          |          |          |          |          |
| TIME                        | 1741     | 1535     | 1753     | 1831     | 1902     | 1942     |
| LAT.                        | 33-00N   | 34-30N   | 33-00N   | 31-00N   | 29-00N   | 26-00N   |
| LONG.                       | 102-00W  | 105-00W  | 102-12W  | 98-12W   | 94-35W   | 91-15W   |
| END-                        |          |          |          |          |          |          |
| TIME                        | 1823     | 1607     | 1831     | 1902     | 1942     | 2003     |
| LAT.                        | 35-00N   | 33-00N   | 31-00N   | 29-00N   | 26-00N   | 24-00N   |
| LONG.                       | 106-50W  | 102-00W  | 98-12W   | 94-35W   | 91-15W   | 89-00W   |
| VOL. OF AIR<br>(100 CU.M.)  | 8.78     | 5.20     | 7.80     | 6.36     | 8.25     | 4.33     |
| GROSS GAMMA/<br>M/100 CU.M. | 140      | 9200     | 39       | 38       | 40       |          |

Table 2 (Cont'd)

NORTH OF ALBROOK

(24N-09N)

ALTITUDE 19.2 KM

| SAMPLE #                    | 376      | 377      | 378      | 379      | 380      |
|-----------------------------|----------|----------|----------|----------|----------|
| FLIGHT #                    | 289      | 289      | 289      | 289      | 289      |
| DATE                        | 11/ 4/67 | 11/ 4/67 | 11/ 4/67 | 11/ 4/67 | 11/ 4/67 |
| BEGIN-                      |          |          |          |          |          |
| TIME                        | 1758     | 1831     | 1901     | 1932     | 2002     |
| LAT.                        | 24-00N   | 21-00N   | 18-00N   | 15-00N   | 12-00N   |
| LONG.                       | 089-00W  | 086-30W  | 084-25W  | 082-50W  | 081-15W  |
| END-                        |          |          |          |          |          |
| TIME                        | 1831     | 1901     | 1932     | 2002     | 2023     |
| LAT.                        | 21-00N   | 18-00N   | 15-00N   | 12-00N   | 09-00N   |
| LONG.                       | 086-00W  | 084-25W  | 082-50W  | 081-15W  | 079-40W  |
| VOL. OF AIR<br>(100 CU.M.)  | 3.23     | 2.83     | 2.90     | 2.76     | 2.03     |
| GROSS GAMMA/<br>M/100 CU.M. | 130000   | 52000    | 71000    | 360      | 1200     |

Table 2 (Cont'd)

NORTH OF ALBROOK  
(24N-09W)  
ALTITUDE 18.3 KM

|                             |          |          |          |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|----------|----------|----------|
| SAMPLE #                    | 279      | 375      | 280      | 584      | 281      | 583      | 282      |
| FLIGHT #                    | 290      | 289      | 290      | 289      | 290      | 289      | 290      |
| DATE                        | 10/31/67 | 11/ 4/67 | 10/31/67 | 11/ 4/67 | 10/31/67 | 11/ 4/67 | 10/31/67 |
| BEGIN-                      |          |          |          |          |          |          |          |
| TIME                        | 1815     | 1716     | 1852     | 1644     | 1925     | 1614     | 1952     |
| LAT.                        | 24-00N   | 21-00N   | 21-00N   | 18-00N   | 18-00N   | 15-00N   | 15-00N   |
| LONG.                       | 089-00W  | 086-30W  | 087-30W  | 084-25W  | 084-30W  | 082-50W  | 082-50W  |
| END-                        |          |          |          |          |          |          |          |
| TIME                        | 1852     | 1749     | 1925     | 1716     | 1952     | 1644     | 2020     |
| LAT.                        | 21-00N   | 24-00N   | 18-00N   | 21-00N   | 15-00N   | 18-00N   | 12-00N   |
| LONG.                       | 087-30W  | 089-00W  | 084-30W  | 086-30W  | 082-50W  | 084-25W  | 081-20W  |
| VOL. OF AIR<br>(100 CU.M.)  | 4.38     | 3.87     | 3.95     | 3.94     | 3.22     | 3.69     | 3.33     |
| GROSS GAMMA/<br>M/100 CU.M. | 2200     | 73000    | 1400     |          | 860      | 4        | 1600     |

DPM/100 CU.M.

|        |        |        |       |
|--------|--------|--------|-------|
| BE-7   | 27400. | 33200. | 9750. |
| MN-54  | 12000. | *      | 3660. |
| ZR-95  | 4630.  | 2990.  | 1050. |
| RU-103 | 1200.  | 481.   | 176.A |
| RU-106 | 742.   | 484.   | 200.A |
| SB-125 | 237.   | 156.   | 85.   |
| I-131  | *      | *      | 27.A  |
| CS-137 | 260.   | 108.   | 89.   |
| BA-140 | *      | *      | *     |
| CE-141 | 521.   | 236.   | 75.A  |
| CE-144 | 1680.  | 1450.  | 519.  |

A:COUNTING ERROR IS 20-50 PER CENT  
B:COUNTING ERROR IS 51-100 PERCENT  
\*:NOT DETECTABLE

Table 2 (Cont'd)  
NORTH OF ALBROOK  
(24N-09N)  
ALTITUDE 18.3 KM

|                             |          |          |          |
|-----------------------------|----------|----------|----------|
| SAMPLE #                    | 582      | 283      | 397      |
| FLIGHT #                    | 289      | 290      | 289      |
| DATE                        | 11/ 4/67 | 10/31/67 | 11/ 7/67 |
| BEGIN-                      |          |          |          |
| TIME                        | 1546     | 2020     | 1839     |
| LAT.                        | 12-00N   | 12-00N   | 09-00N   |
| LONG.                       | 081-15W  | 081-20W  | 079-35W  |
| END-                        |          |          |          |
| TIME                        | 1614     | 2050     | 1911     |
| LAT.                        | 15-00N   | 09-00N   | 12-00N   |
| LONG.                       | 082-50W  | 079-40W  | 081-42W  |
| VOL. OF AIR<br>(100 CU.M.)  | 3.39     | 3.57     | 3.88     |
| GROSS GAMMA/<br>M/100 CU.M. | 430      | 3200     | 570      |

Table 2 (Cont'd)  
 NORTH OF ALBROOK  
 (24N-09N)  
 ALTITUDE 16.8 KM

|                             |          |          |          |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|----------|----------|----------|
| SAMPLE #                    | 302      | 433      | 303      | 434      | 304      | 435      | 305      |
| FLIGHT #                    | 291      | 298      | 291      | 298      | 291      | 298      | 291      |
| DATE                        | 10/31/67 | 11/ 4/67 | 10/31/67 | 11/ 4/67 | 10/31/67 | 11/ 4/67 | 10/31/67 |
| BEGIN-                      |          |          |          |          |          |          |          |
| TIME                        | 1754     | 1705     | 1828     | 1736     | 1902     | 1808     | 1931     |
| LAT.                        | 24-00N   | 24-00N   | 21-00N   | 21-00N   | 18-00N   | 18-00N   | 15-00N   |
| LONG.                       | 089-00W  | 89-00W   | 086-30W  | 86-30W   | 084-25W  | 84-25W   | 082-50W  |
| END-                        |          |          |          |          |          |          |          |
| TIME                        | 1828     | 1736     | 1902     | 1808     | 1931     | 1835     | 2001     |
| LAT.                        | 21-00N   | 21-00N   | 18-00N   | 18-00N   | 15-00N   | 15-00N   | 12-00N   |
| LONG.                       | 086-30W  | 86-30W   | 084-25W  | 84-25W   | 082-50W  | 82-50W   | 081-20W  |
| VOL. OF AIR<br>(100 CU.M.)  | 5.78     | 5.37     | 5.78     | 5.42     | 4.97     | 4.61     | 5.17     |
| GROSS GAMMA/<br>M/100 CU.M. | 140      |          | 5800     |          | 5400     |          | 4        |

DPM/100 CU.M.

|        |       |
|--------|-------|
| BE-7   | 3750. |
| MN-54  | 1440. |
| ZR-95  | 313.  |
| RU-103 | 80.A  |
| RU-106 | *     |
| SB-125 | 26.   |
| I-131  | *     |
| CS-137 | 16.   |
| BA-140 | *     |
| CE-141 | 18.A  |
| CE-144 | 182.  |

A:COUNTING ERROR IS 20-50 PER CENT  
 B:COUNTING ERROR IS 51-100 PERCENT  
 \*:NOT DETECTABLE

Table 2 (Cont'd)

NORTH OF ALBROOK  
(24N-09N)  
ALTITUDE 16.8 KM

|                             |          |          |
|-----------------------------|----------|----------|
| SAMPLE #                    | 436      | 437      |
| FLIGHT #                    | 298      | 298      |
| DATE                        | 11/ 4/67 | 11/ 4/67 |
| BEGIN-                      |          |          |
| TIME                        | 1835     | 1904     |
| LAT.                        | 15-00N   | 12-00N   |
| LONG.                       | 82-50W   | 81-20W   |
| END-                        |          |          |
| TIME                        | 1904     | 1936     |
| LAT.                        | 12-00N   | 09-00N   |
| LONG.                       | 81-20W   | 79-40W   |
| VOL. OF AIR<br>(100 CU.M.)  | 5.02     | 5.46     |
| GROSS GAMMA/<br>M/100 CU.M. | 5700     | 22       |

Table 2 (Cont'd)  
 NORTH OF ALBROOK  
 (24N-09N)  
 ALTITUDE 15.2 KM

|                             |          |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|----------|
| SAMPLE #                    | 432      | 431      | 430      | 429      | 394      |
| FLIGHT #                    | 298      | 298      | 298      | 298      | 289      |
| DATE                        | 11/ 4/67 | 11/ 4/67 | 11/ 4/67 | 11/ 4/67 | 11/ 7/67 |
| BEGIN-                      |          |          |          |          |          |
| TIME                        | 1626     | 1555     | 1525     | 1456     | 1640     |
| LAT.                        | 21 00N   | 18 00N   | 15 00N   | 12 00N   | 12 00N   |
| LONG.                       | 86 30W   | 84 25W   | 82 50W   | 81 20W   | 091-42W  |
| END-                        |          |          |          |          |          |
| TIME                        | 1659     | 1626     | 1555     | 1525     | 1721     |
| LAT.                        | 24 00N   | 21 00N   | 18 00N   | 15 00N   | 09 00N   |
| LONG.                       | 82 00W   | 86 30W   | 84 25W   | 82 50W   | 079-35W  |
| VOL. OF AIR<br>(100 CU.M.)  | 7.43     | 7.07     | 6.75     | 6.61     | 9.02     |
| GROSS GAMMA/<br>M/100 CU.M. | 72       | 130      | 25       |          | 1600     |

Table 2 (Cont'd)  
 SOUTH OF ALBROOK  
 (09N-09S)  
 ALTITUDE 19.2 KM

|                             |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|
| SAMPLE #                    | 446      | 445      | 444      | 443      |
| FLIGHT #                    | 289      | 289      | 289      | 289      |
| DATE                        | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 |
| BEGIN-                      |          |          |          |          |
| TIME                        | 1729     | 1655     | 1622     | 1557     |
| LAT.                        | 01-00N   | 03-00S   | 07-00S   | 10-00S   |
| LONG.                       | 79-40W   | 78-45W   | 77-45W   | 77-00W   |
| END-                        |          |          |          |          |
| TIME                        | 1804     | 1729     | 1655     | 1622     |
| LAT.                        | 05-00N   | 01-00N   | 03-00S   | 07-00S   |
| LONG.                       | 79-30W   | 79-40W   | 78-45W   | 77-45W   |
| VOL. OF AIR<br>(100 CU.M.)  | 3.49     | 3.39     | 3.31     | 2.45     |
| GROSS GAMMA/<br>M/100 CU.M. | 160      | 160      | 120      | 150      |

Table 2 (Cont'd)

SOUTH OF ALBROOK  
(09N-09S)  
ALTITUDE 18.3 KM

|                             |          |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|----------|
| SAMPLE #                    | 396      | 439      | 440      | 441      | 442      |
| FLIGHT #                    | 289      | 289      | 289      | 289      | 289      |
| DATE                        | 11/ 7/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 |
| BEGIN-                      |          |          |          |          |          |
| TIME                        | 1806     | 1345     | 1418     | 1452     | 1525     |
| LAT.                        | 05-00N   | 05-00N   | 01-00N   | 03-00S   | 07-00S   |
| LONG.                       | 079-37W  | 79-30W   | 79-40W   | 78-45W   | 77-45W   |
| END-                        |          |          |          |          |          |
| TIME                        | 1838     | 1418     | 1452     | 1525     | 1551     |
| LAT.                        | 09-00N   | 01-00N   | 03-00S   | 07-00S   | 10-00S   |
| LONG.                       | 079-35W  | 79-40W   | 78-45W   | 77-45W   | 77-00W   |
| VOL. OF AIR<br>(100 CU.M.)  | 3.66     | 3.90     | 3.99     | 3.87     | 3.05     |
| CROSS GAMMA/<br>M/100 CU.M. | 200      | 340      | 270      | 160      | 200      |

Table 2 (Cont'd)

SOUTH OF ALBROOK

(09N-09S)

ALTITUDE 16.8 KM

| SAMPLE #                    | 412      | 404      | 411      | 405      | 410      | 406      | 409      |
|-----------------------------|----------|----------|----------|----------|----------|----------|----------|
| FLIGHT #                    | 298      | 298      | 298      | 298      | 298      | 298      | 298      |
| DATE                        | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 |
| BEGIN-                      |          |          |          |          |          |          |          |
| TIME                        | 1909     | 1437     | 1834     | 1512     | 1759     | 1549     | 1725     |
| LAT.                        | 05-00N   | 05-00N   | 01-00N   | 01-00N   | 03-00S   | 03-00S   | 07-00S   |
| LONG.                       | 79-35W   | 79-35W   | 79-35W   | 79-35W   | 78-40W   | 78-40W   | 77-40W   |
| END-                        |          |          |          |          |          |          |          |
| TIME                        | 1958     | 1512     | 1909     | 1549     | 1834     | 1628     | 1759     |
| LAT.                        | 09-00N   | 01-00N   | 05-00N   | 03-00S   | 01-00N   | 07-00S   | 03-00S   |
| LONG.                       | 79-30W   | 79-35W   | 79-35W   | 78-40W   | 79-35W   | 77-40W   | 78-40W   |
| VOL. OF AIR<br>(100 CU.M.)  | 8.58     | 5.76     | 6.12     | 6.23     | 5.81     | 6.39     | 5.63     |
| GROSS GAMMA/<br>M/100 CU.M. |          | 440      | 940      | 530      | 810      | 780      | 650      |

Table 2 (Cont'd)

SOUTH OF ALBROOK  
(09N-09S)  
ALTITUDE 16.8 KM

|                             |          |          |
|-----------------------------|----------|----------|
| SAMPLE #                    | 407      | 408      |
| FLIGHT #                    | 298      | 298      |
| DATE                        | 11/ 6/67 | 11/ 6/67 |
| BEGIN-                      |          |          |
| TIME                        | 1628     | 1658     |
| LAT.                        | 07-00S   | 10-00S   |
| LONG.                       | 77-40W   | 77-00W   |
| END-                        |          |          |
| TIME                        | 1654     | 1725     |
| LAT.                        | 10-00S   | 07-00S   |
| LONG.                       | 77-00W   | 77-40W   |
| VOL. OF AIR<br>(100 CU.M.)  | 4.35     | 4.70     |
| CROSS GAMMA/<br>M/100 CU.M. | 990      | 840      |

Table 2 (Cont'd)  
 SOUTH OF ALBROOK  
 (09N-09S)  
 ALTITUDE 15.2 KM

|                             |          |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|----------|
| SAMPLE #                    | 395      | 399      | 400      | 401      | 402      |
| FLIGHT #                    | 289      | 289      | 289      | 289      | 289      |
| DATE                        | 11/ 7/67 | 11/ 5/67 | 11/ 5/67 | 11/ 5/67 | 11/ 5/67 |
| BEGIN-                      |          |          |          |          |          |
| TIME                        | 1722     | 1451     | 1529     | 1608     | 1650     |
| LAT.                        | 09-00N   | 05-00N   | 01-00N   | 03-00S   | 07-00S   |
| LONG.                       | 079-35W  | 079-34W  | 079-37W  | 078-40W  | 077-44W  |
| END-                        |          |          |          |          |          |
| TIME                        | 1758     | 1529     | 1608     | 1650     | 1720     |
| LAT.                        | 05-00N   | 01-00N   | 03-00S   | 07-00S   | 10-00S   |
| LONG.                       | 079-37W  | 079-37W  | 078-40W  | 077-44W  | 077-00W  |
| VOL. OF AIR<br>(100 CU.M.)  | 8.11     | 8.00     | 8.12     | 8.84     | 6.32     |
| GROSS GAMMA/<br>M/100 CU.M. | 76       | 34       | 160      | 29       |          |

Table 2 (Cont'd)

NORTH OF MENDOZA  
(09S 33S)  
ALTITUDE 19.2 KM

| SAMPLE #                    | 521      | 522      | 523      | 524      | 525      |
|-----------------------------|----------|----------|----------|----------|----------|
| FLIGHT #                    | 299      | 299      | 299      | 299      | 299      |
| DATE                        | 11/ 8/67 | 11/ 8/67 | 11/ 8/67 | 11/ 8/67 | 11/ 8/67 |
| BEGIN-                      |          |          |          |          |          |
| TIME                        | 1618     | 1654     | 1724     | 1752     | 1825     |
| LAT.                        | 16-00S   | 20-00S   | 23-00S   | 26-00S   | 29-00S   |
| LONG.                       | 75-00W   | 73-35W   | 72-30W   | 71-20W   | 69-50W   |
| END-                        |          |          |          |          |          |
| TIME                        | 1654     | 1724     | 1752     | 1825     | 1903     |
| LAT.                        | 20-00S   | 23-00S   | 26-00S   | 29-00S   | 33-00S   |
| LONG.                       | 73-35W   | 72-30W   | 71-20W   | 69-50W   | 68-50W   |
| VOL. OF AIR<br>(100 CU.M.)  | 3.43     | 2.88     | 2.67     | 3.11     | 3.54     |
| GROSS GAMMA/<br>M/100 CU.M. | 160      | 130      | 140      | 73       | 150      |

Table 2 (Cont'd)  
 NORTH OF MENDOZA  
 (09S 33S)  
 ALTITUDE 18.3 KM

|                             |          |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|----------|
| SAMPLE #                    | 520      | 519      | 518      | 517      | 529      |
| FLIGHT #                    | 299      | 299      | 299      | 299      | 291      |
| DATE                        | 11/ 8/67 | 11/ 8/67 | 11/ 8/67 | 11/ 8/67 | 11/ 8/67 |
| BEGIN-                      |          |          |          |          |          |
| TIME                        | 1537     | 1507     | 1445     | 1414     | 1448     |
| LAT.                        | 20-00S   | 23-00S   | 26-00S   | 29-00S   | 29-00S   |
| LONG.                       | 73-35W   | 72-30W   | 71-20W   | 69-50W   | 70-00W   |
| END-                        |          |          |          |          |          |
| TIME                        | 1613     | 1537     | 1507     | 1445     | 1529     |
| LAT.                        | 16-00S   | 20-00S   | 23-00S   | 26-00S   | 33-00S   |
| LONG.                       | 75-00W   | 73-35W   | 72-30W   | 71-20W   | 68-45W   |
| VOL. OF AIR<br>(100 CU.M.)  | 4.25     | 3.58     | 2.63     | 3.69     | 5.00     |
| GROSS GAMMA/<br>M/100 CU.M. | 130      | 160      | 140      |          |          |

Table 2 (Cont'd)

NORTH OF MENDOZA

(09S 33S)

ALTITUDE 16.8 KM

| SAMPLE #                    | 576      | 577      | 578      | 579      | 516      | 580      |
|-----------------------------|----------|----------|----------|----------|----------|----------|
| FLIGHT #                    | 291      | 291      | 291      | 291      | 299      | 291      |
| DATE                        | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 8/67 | 11/ 6/67 |
| <b>BEGIN-</b>               |          |          |          |          |          |          |
| TIME                        | 1615     | 1650     | 1725     | 1755     | 1350     | 1825     |
| LAT.                        | 16-00S   | 20-00S   | 23-00S   | 26-00S   | 31-00S   | 29-00S   |
| LONG.                       | 75-00W   | 73-35W   | 72-25W   | 71-20W   | 67-30W   | 69-50W   |
| <b>END-</b>                 |          |          |          |          |          |          |
| TIME                        | 1650     | 1725     | 1755     | 1825     | 1414     | 1855     |
| LAT.                        | 20-00S   | 23-00S   | 26-00S   | 29-00S   | 29-00S   | 33-00S   |
| LONG.                       | 73-35W   | 72-25W   | 71-20W   | 69-50W   | 69-50W   | 68-55W   |
| VOL. OF AIR<br>(100 CU.M.)  | 5.70     | 5.54     | 4.75     | 4.69     | 3.59     | 4.69     |
| GROSS GAMMA/<br>M/100 CU.M. | 83       | 99       | 100      | 120      |          | 120      |

Table 2 (Cont'd)

NORTH OF MENDOZA  
(09S 33S)  
ALTITUDE 15.2 KM

|                             |          |          |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|----------|----------|
| SAMPLE #                    | 575      | 574      | 573      | 572      | 571      | 528      |
| FLIGHT #                    | 291      | 291      | 291      | 291      | 291      | 291      |
| DATE                        | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 8/67 |
| BEGIN-                      |          |          |          |          |          |          |
| TIME                        | 1530     | 1458     | 1428     | 1357     | 1335     | 1359     |
| LAT.                        | 20-00S   | 23-00S   | 26-00S   | 29-00S   | 31-00S   | 33-00S   |
| LONG.                       | 73-35W   | 72-25W   | 71-20W   | 69-50W   | 68-50W   | 68-45W   |
| END-                        |          |          |          |          |          |          |
| TIME                        | 1610     | 1530     | 1458     | 1428     | 1357     | 1436     |
| LAT.                        | 16-00S   | 20-00S   | 23-00S   | 26-00S   | 29-00S   | 29-00S   |
| LONG.                       | 75-00W   | 73-35W   | 72-25W   | 71-20W   | 69-50W   | 70-00W   |
| VOL. OF AIR<br>(100 CU.M.)  | 8.45     | 6.75     | 6.50     | 6.38     | 4.53     | 7.32     |
| GROSS GAMMA/<br>M/100 CU.M. | 25       | 35       | 50       | 81       | 110      |          |

Table 2 (Cont'd)  
 SOUTH OF MENDOZA  
 (33S 50S)  
 ALTITUDE 19.2 KM

|                             |          |          |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|----------|----------|
| SAMPLE #                    | 556      | 555      | 554      | 553      | 552      | 551      |
| FLIGHT #                    | 299      | 299      | 299      | 299      | 299      | 299      |
| DATE                        | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 |
| BEGIN-                      |          |          |          |          |          |          |
| TIME                        | 1839     | 1814     | 1749     | 1724     | 1659     | 1646     |
| LAT.                        | 37-00S   | 40-00S   | 43-00S   | 46-00S   | 49-00S   | 51-00S   |
| LONG.                       | 68-45W   | 68-45W   | 68-45W   | 68-45W   | 68-45W   | 68-45W   |
| END-                        |          |          |          |          |          |          |
| TIME                        | 1914     | 1839     | 1814     | 1749     | 1724     | 1659     |
| LAT.                        | 33-00S   | 37-00S   | 40-00S   | 43-00S   | 46-00S   | 49-00S   |
| LONG.                       | 68-45W   | 68-45W   | 68-45W   | 68-45W   | 68-45W   | 68-45W   |
| VOL. OF AIR<br>(100 CU.M.)  | 3.21     | 2.30     | 2.23     | 2.21     | 2.15     | 1.10     |
| GROSS GAMMA/<br>M/100 CU.M. |          |          |          |          |          |          |

Table 2 (Cont'd)

SOUTH OF MENDOZA  
(33S 50S)  
ALTITUDE 18.3 KM

|                             |          |          |          |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|----------|----------|----------|
| SAMPLE #                    | 530      | 545      | 546      | 547      | 548      | 549      | 550      |
| FLIGHT #                    | 291      | 299      | 299      | 299      | 299      | 299      | 299      |
| DATE                        | 11/ 8/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 | 11/ 6/67 |
| BEGIN-                      |          |          |          |          |          |          |          |
| TIME                        | 1529     | 1436     | 1441     | 1506     | 1530     | 1555     | 1620     |
| LAT.                        | 33-00S   | 36-15S   | 37-00S   | 40-00S   | 43-00S   | 46-00S   | 49-00S   |
| LONG.                       | 68-45W   |
| END-                        |          |          |          |          |          |          |          |
| TIME                        | 1605     | 1441     | 1506     | 1530     | 1555     | 1620     | 1637     |
| LAT.                        | 37-00S   | 37-00S   | 40-00S   | 43-00S   | 46-00S   | 49-00S   | 51-00S   |
| LONG.                       | 68-45W   |
| VOL. OF AIR<br>(100 CU.M.)  | 4.36     | 0.56     | 2.74     | 2.63     | 2.67     | 2.68     | 1.76     |
| GROSS GAMMA/<br>M/100 CU.M. |          | 140      | 130      | 110      | 170      | 11       |          |

Table 2 (Cont'd)  
SOUTH OF MENDOZA  
(33S 50S)  
ALTITUDE 18.3 KM

SAMPLE # 527  
FLIGHT # 291  
DATE 11/ 8/67  
BEGIN-  
TIME 1350  
LAT. 34-15S  
LONG. 68-45W  
END-  
TIME 1359  
LAT. 33-00S  
LONG. 68-45W  
VOL. OF AIR 1.78  
(100 CU.M.)  
GROSS GAMMA/  
M/100 CU.M.

Table 2 (Cont'd)  
 SOUTH OF MENDOZA  
 (33S 50S)  
 ALTITUDE 15.2 KM

|                             |          |          |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|----------|----------|
| SAMPLE #                    | 569      | 568      | 567      | 566      | 565      | 564      |
| FLIGHT #                    | 291      | 291      | 291      | 291      | 291      | 291      |
| DATE                        | 11/ 5/67 | 11/ 5/67 | 11/ 5/67 | 11/ 5/67 | 11/ 5/67 | 11/ 5/67 |
| BEGIN-                      |          |          |          |          |          |          |
| TIME                        | 1807     | 1740     | 1713     | 1645     | 1621     | 1603     |
| LAT.                        | 37-00S   | 40-00S   | 43-00S   | 46-00S   | 49-00S   | 51-00S   |
| LONG.                       | 68-45W   | 68-45W   | 68-45W   | 68-45W   | 68-45W   | 68-45W   |
| END-                        |          |          |          |          |          |          |
| TIME                        | 1835     | 1807     | 1740     | 1713     | 1645     | 1621     |
| LAT.                        | 33-00S   | 37-00S   | 40-00S   | 43-00S   | 46-00S   | 49-00S   |
| LONG.                       | 68-45W   | 68-45W   | 68-45W   | 68-45W   | 68-45W   | 68-45W   |
| VOL. OF AIR<br>(100 CU.M.)  | 5.70     | 5.46     | 5.48     | 5.66     | 4.85     | 3.64     |
| GROSS GAMMA/<br>M/100 CU.M. | 91       | 99       |          | 130      | 150      | 140      |

Table 2 (Cont'd)

SOUTH OF MENDOZA  
(33S 50S)  
ALTITUDE 13.7 KM

|                             |          |          |          |          |          |          |
|-----------------------------|----------|----------|----------|----------|----------|----------|
| SAMPLE #                    | 558      | 559      | 560      | 561      | 562      | 563      |
| FLIGHT #                    | 291      | 291      | 291      | 291      | 291      | 291      |
| DATE                        | 11/ 5/67 | 11/ 5/67 | 11/ 5/67 | 11/ 5/67 | 11/ 5/67 | 11/ 5/67 |
| BEGIN-                      |          |          |          |          |          |          |
| TIME                        | 1325     | 1342     | 1412     | 1441     | 1509     | 1538     |
| LAT.                        | 35-00S   | 37-00S   | 40-00S   | 43-00S   | 46-00S   | 49-00S   |
| LONG.                       | 68-45W   | 68-45W   | 68-45W   | 68-45W   | 68-45W   | 68-45W   |
| END-                        |          |          |          |          |          |          |
| TIME                        | 1342     | 1412     | 1441     | 1509     | 1538     | 1603     |
| LAT.                        | 37-00S   | 40-00S   | 43-00S   | 46-00S   | 49-00S   | 51-00S   |
| LONG.                       | 68-45W   | 68-45W   | 68-45W   | 68-45W   | 68-45W   | 68-45W   |
| VOL. OF AIR<br>(100 CU.M.)  | 3.97     | 7.12     | 6.88     | 6.60     | 6.72     | 5.79     |
| GROSS GAMMA/<br>M/100 CU.M. | 180      | 1        | 110      | 91       | 76       | 56       |

Table 3

## Stratospheric Rn-222 Concentrations

| Alt Km | Sampler # | Coll Date | Lat. | Long. | Lat. | Long. | Vol. SCM | Rn <sup>222</sup> pCi/SCM |
|--------|-----------|-----------|------|-------|------|-------|----------|---------------------------|
| 19.2   | 8         | 11/4/67   | 24°N | 89°W  | 13°N | 81°W  | 6.46     | 0.85                      |
|        | 12        | 11/6/67   | 10°S | 77°W  | 5°S  | 80°W  | 7.20     | 0.61                      |
| 18.3   | 14        | 11/6/67   | 43°N | 115°W | 46°N | 120°W | 3.43     | 2.89                      |
|        | 13        | 11/6/67   | 39°N | 109°W | 43°N | 114°W | 3.24     | 2.27                      |
|        | 20        | 11/9/67   | 39°N | 109°W | 33°N | 102°W | 3.77     | 1.91                      |
|        | 19        | 11/8/67   | 33°N | 102°W | 24°N | 93°W  | 6.12     | 1.28                      |
|        | 7         | 11/4/67   | 12°N | 81°W  | 24°N | 89°W  | 4.45     | 0.24                      |
|        | 11        | 11/6/67   | 5°N  | 80°W  | 10°S | 77°W  | 4.89     | 0.86                      |
| 16.8   | 6         | 11/8/67   | 12°N | 81°W  | 22°N | 88°W  | 7.00     | 0.84                      |
|        | 10        | 11/6/67   | 5°N  | 80°W  | 6°S  | 79°W  | 7.29     | 0.76                      |
| 15.2   | 15        | 11/7/67   | 39°N | 109°W | 41°N | 111°W | 3.08     | 2.04)<br>dupl.            |
|        | 16        | "         | "    | "     | "    | "     | 2.54     | 3.28)                     |
|        | 17        | 11/9/67   | 33°N | 103°W | 39°N | 109°W | 4.75     | 2.91                      |
|        | 4         | 11/8/67   | 33°N | 102°W | 24°N | 89°W  | 6.70     | 10.1                      |
|        | 1         | 11/4/67   | 12°N | 81°W  | 15°N | 83°W  | 2.96     | 2.68)<br>dupl.            |
|        | 5         | "         | "    | "     | "    | "     | 2.75     | 2.93)                     |
|        | 2         | 11/5/67   | 5°N  | 80°W  | 6°S  | 78°W  | 7.58     | 1.09                      |
|        | 3         | 11/7/67   | 50°N | 125°W | 44°N | 112°W | 6.70     | 1.15                      |
| Blanks | 9         | 11/5/67   |      |       |      |       | -        | 1.96 *(a)                 |
|        | 18        | 11/8/67   |      |       |      |       | -        | 17.0 *                    |

\*Total pCi of Rn-222 in trap corrected to midpoint of flight.

(a)Operated for approximately 1 minute at 7.6 km at about 9°N.

X ANALYSES OF QUALITY CONTROL SAMPLES AT HASL AND OTHER LABORATORIES DURING 1967

by E. Hardy (HASL)

It has been customary to present the results of quality control analyses performed at HASL and contractor laboratories on an annual basis (1 - 6). With each group of air particulate, water, soil, food, or bone samples submitted in-house or to contractor laboratories for radiochemical or stable element analyses, at least ten percent of the samples are for quality control purposes. This report covers the quality control data obtained by the Health and Safety Laboratory for biological and monthly fallout samples analyzed during the period from January 1967 through December 1967. Similar data for air particulate and soil samples are reported separately in these Quarterly reports.

The quality control samples consist of blanks, natural samples analyzed repeatedly over a long period of time, and replicates of unknowns. In the accompanying tables, the Health and Safety Laboratory is identified as HASL and contractor laboratories by code letters. Following is a summary of quality control data for bone ash, milk ash, vegetation ash, ion-exchange resin and simulated pot samples analyzed during 1967. Results of individual analyses and average values for 1. Blanks, 2. natural samples, 3. replicates, and 4. spikes, are given in the Tables.

Summary of Results

1. Blanks

The average value obtained at HASL for 12 analyses of calcium phosphate during 1967 was  $0.07 \pm 0.04$  dpm  $\text{Sr}^{90}$  per gram. The error term is one standard deviation from the mean. Laboratory Q averaged  $0.11 \pm 0.07$  dpm  $\text{Sr}^{90}$  per gram for 8 blind analyses and laboratory F,  $0.10 \pm 0.03$  dpm per gram for 3 analyses.

Only two analyses of pre-1945 powdered milk ash were made at HASL. Both results were less than or equal to the single Poisson standard deviation due to counting.

Seventy gram aliquots of Dowex-50 WX-12 cation exchange resin, conditioned at HASL and used in monthly ion-exchange column fallout collections were analyzed as blanks. Contractor laboratory NN analyzed three unexposed resin samples per month and averaged over a year's time,  $1.5 \pm 1.4$  dpm Sr<sup>90</sup>. Contractor laboratory CC performed five analyses of blank resin during the first quarter of 1967 and averaged  $1.0 \pm 0.5$  dpm Sr<sup>90</sup>. Five resin blanks were analyzed at HASL during 1967 and the average value found was  $1.4 \pm 1.1$  dpm Sr<sup>90</sup>. These blank levels are considered acceptable in terms of the activity level required to measure 0.01 mCi Sr<sup>90</sup> per Km<sup>2</sup> which is the lowest monthly deposition rate reported. The simulated pot collections analyzed as blanks showed similar Sr<sup>90</sup> levels. Contractor NN found  $1.3 \pm 1.7$  dpm Sr<sup>90</sup> over the twelve month term of the contract while HASL, based on only 6 analyses, averaged  $0.8 \pm 0.5$  dpm Sr<sup>90</sup>.

## 2. Natural Samples

Ashed natural samples of human bone, animal bone, powdered milk and hay have been analyzed repetitively at HASL for Sr<sup>90</sup> for several years. The averages of all results reported through December 1967 have Gaussian standard deviations of ten percent or less. Contractor laboratory F analyzed three samples of hay ash (HASL No. V0214) in June 1967. The results were unacceptable from the standpoint of reproducibility and accuracy.

### 3. Replicates

HASL and Contractor laboratory Q analyzed blind duplicate human bone ash samples during 1967. The average percent deviation from the mean was less than 10 percent for both laboratories. The HASL results were obtained periodically during the year while the contractor analyzed the entire set during November 1967.

Blind replicates of ashed food analyzed by HASL during 1967 showed an average deviation from the mean of 8.5 percent. Laboratory Q averaged 15 percent deviation from the mean for a set of ashed foods analyzed in March 1967. The results were considered acceptable.

A set of blind duplicate food ash samples analyzed by Contractor laboratory F, however, were not acceptable. The average percent deviation from the mean for Sr<sup>90</sup> was 23 percent with a range of from 1 to 60 percent. The calcium analyses showed even poorer reproducibility. Subsequent re-milkings demonstrated no improvement.

### 4. Spikes

Known amounts of standardized Sr<sup>90</sup> solutions are added to simulated pot and unexposed resin samples and submitted with unknowns to HASL and contractor laboratories.

Average recovery values for analyses performed over the past year are shown below:

| Type<br><u>sample</u> | dpm Sr <sup>90</sup><br><u>added</u> | % Sr <sup>90</sup> recovered |          |          |
|-----------------------|--------------------------------------|------------------------------|----------|----------|
|                       |                                      | NN                           | CC       | HASL     |
| resin                 | 24                                   | 104 ± 16                     | 100 ± 17 | 108 ± 12 |
|                       | 43                                   | 88 ± 10                      |          |          |
|                       | 54                                   | 96 ± 14                      | 102 ± 13 | 102 ± 7  |
| pot                   | 24                                   | 112 ± 30                     |          | 112 ± 7  |
|                       | 43                                   | 79 ± 20                      |          | 91 ± 8   |
|                       | 54                                   | 100 ± 13                     |          | 92 ± 8   |

The lower recoveries reported by Contractor laboratory NN for the spiked samples containing 43 dpm Sr<sup>90</sup>, were obtained during the early phases of the contract period. This apparent problem was rectified after a standard used at HASL was sent to the Contractor.

The short-lived isotope, Sr<sup>89</sup>, was measured in monthly fallout samples by contractor laboratory NN during the past year. Known amounts of Sr<sup>89</sup> were added to simulated pot and unexposed resin samples. Average recovery values are shown below:

| Type<br><u>Sample</u> | dpm<br>range of<br><u>Sr<sup>89</sup> added</u> | % Sr <sup>89</sup><br><u>recovered</u> |
|-----------------------|-------------------------------------------------|----------------------------------------|
| resin                 | 200 - 300                                       | 102 ± 17                               |
|                       | 1000 - 3000                                     | 91 ± 14                                |
| pot                   | 200 - 500                                       | 106 ± 21                               |
|                       | 1000 - 1500                                     | 90 ± 24                                |

The quality control results for monthly fallout samples submitted to contractor NN during the last contract period indicate acceptable performance.

REFERENCES

- (1) Harley, J. H.  
Errors in Measurement  
USAEC Report HASL-105, p. 132 January (1961)
- (2) Hardy, E.  
Errors in Measurement of Strontium-90 During 1961  
USAEC Report HASL-122, p. 197, April (1962)
- (3) Hardy, E.  
Analyses of Interlaboratory Comparison Samples, Blind Duplicates,  
and Blanks at HASL and Other Laboratories During 1962 and 1963  
USAEC Report HASL-140, p. 248, October (1963)
- (4) Hardy, E.  
Analyses of Interlaboratory Comparison Samples, Blind Duplicates, and  
Blanks at HASL and Other Laboratories from September 1963 through  
December 1964  
USAEC Report HASL-158, p. 278, April (1965)
- (5) Hardy, E.  
Analyses of Interlaboratory Comparison Samples, Blind Duplicates, and  
Blanks at HASL and Other Laboratories During 1965  
USAEC Report HASL-165, p. 332, January (1966)
- (6) Hardy, E.  
Analyses of Interlaboratory Comparison Samples, Blind Duplicates, and  
Blanks at HASL and Other Laboratories During 1966  
USAEC Report HASL-174, p. I-16, January (1967)

LIST OF TABLES

|                             |                         | <u>Page</u> |
|-----------------------------|-------------------------|-------------|
| 1. BLANKS                   |                         |             |
| A. Calcium Phosphate        | : Sr <sup>90</sup>      | I - 230     |
| B. Powdered Milk Ash        | : Sr <sup>90</sup>      | I - 231     |
| C. Ion-Exchange Resin       | : Sr <sup>90</sup>      | I - 232     |
| D. Simulated Pot Collection | : Sr <sup>90</sup>      | J - 233     |
| 2. NATURAL SAMPLES          |                         |             |
| A. Human Bone Ash           | : Sr <sup>90</sup>      | I - 234     |
| B. Animal Bone Ash          | : Sr <sup>90</sup> , Ca | I - 234     |
| C. Powdered Milk Ash        | : Sr <sup>90</sup>      | I - 235     |
| D. Hay Ash                  | : Sr <sup>90</sup> , Ca | I - 236     |
| 3. BLIND REPLICATES         |                         |             |
| A. Human Bone Ash           | : Sr <sup>90</sup> , Ca | I - 237     |
| B. Vegetation and Food Ash  | : Sr <sup>90</sup> , Ca | I - 239     |
| 4. SPIKES                   |                         |             |
| A. Ion-Exchange Resin       | : Sr <sup>90</sup>      | J - 242     |
| B. Simulated Pot Collection | : Sr <sup>90</sup>      | I - 243     |
| C. Ion-Exchange Resin       | : Sr <sup>89</sup>      | J - 244     |
| D. Simulated Pot Collection | : Sr <sup>89</sup>      | I - 245     |

1. BLANKS \*

A. Calcium Phosphate (Orig. HASL No. 8849), Sr<sup>90</sup>

Data Period: Jan - Dec 1967  
Laboratory : HASL

dpm Sr<sup>90</sup>/gram

0.05  
≤0.11  
≤0.06  
≤0.01  
≤0.02  
0.08  
0.04  
≤0.05  
≤0.13  
0.07  
≤0.12  
≤0.08

12 analyses: avg. 0.07 ± 0.04 dpm Sr<sup>90</sup> per gram

Data Period: Mar. 1967 and Nov. 1967  
Laboratory : Q

dpm Sr<sup>90</sup>/gram

0.04  
0.18  
0.22  
0.18  
0.11  
0.09  
0.02  
0.07

8 analyses: avg. 0.11 ± 0.07 dpm Sr<sup>90</sup> per gram

Data Period: June 1967  
Laboratory : F

dpm Sr<sup>90</sup>/gram

0.13  
0.09  
0.07

3 analyses: avg. 0.10 ± 0.03 dpm Sr<sup>90</sup> per gram

\*A less than or equal sign (≤) precedes the Poisson Standard deviation in those cases where the value obtained was less than.

1. BLANKS (cont'd)

B. Powdered Milk Ash - Pre-1945 (Orig. HASL No. M0209), Sr<sup>90</sup>

Data Period: Jan.-Dec. 1967  
Laboratory : HASL

dpm Sr<sup>90</sup> / gram

≤0.14

≤0.08

## 1. BLANKS (Cont'd)

C. Ion-Exchange Resin, Sr<sup>90</sup>

Data Period: Oct. 1966 - Oct. 1967: Lab. NN  
 Jan. 1967 - Apr. 1967: Lab. CC  
 Jan. 1967 - Dec. 1967: HASL

| dpm Sr <sup>90</sup>                |                                     |                                     |
|-------------------------------------|-------------------------------------|-------------------------------------|
| <u>Lab. NN</u>                      | <u>Lab CC</u>                       | <u>HASL</u>                         |
| ≤ 0.7                               | ≤ 1.5                               | ≤ 0.8                               |
| 2.1                                 | ≤ 0.9                               | ≤ 0.2                               |
| 2.0                                 | ≤ 1.4                               | 2.0                                 |
| 5.0                                 | ≤ 0.6                               | 3.1                                 |
| 1.9                                 | ≤ 0.4                               | ≤ 1.1                               |
| 1.0                                 |                                     |                                     |
| 3.9                                 | 5 analyses:                         | 5 analyses                          |
| 2.5                                 | avg. 1.0 ± 0.5 dpm Sr <sup>90</sup> | avg. 1.4 ± 1.1 dpm Sr <sup>90</sup> |
| ≤ 0.6                               |                                     |                                     |
| ≤ 0.5                               |                                     |                                     |
| ≤ 0.5                               |                                     |                                     |
| ≤ 0.6                               |                                     |                                     |
| ≤ 0.4                               |                                     |                                     |
| ≤ 0.3                               |                                     |                                     |
| ≤ 0.4                               |                                     |                                     |
| ≤ 0.4                               |                                     |                                     |
| 1.2                                 |                                     |                                     |
| 1.2                                 |                                     |                                     |
| 1.4                                 |                                     |                                     |
| 1.5                                 |                                     |                                     |
| ≤ 0.3                               |                                     |                                     |
| 5.5                                 |                                     |                                     |
| ≤ 0.4                               |                                     |                                     |
| 3.6                                 |                                     |                                     |
| 2.2                                 |                                     |                                     |
| 1.4                                 |                                     |                                     |
| 3.6                                 |                                     |                                     |
| ≤ 0.4                               |                                     |                                     |
| ≤ 0.4                               |                                     |                                     |
| 1.4                                 |                                     |                                     |
| ≤ 0.4                               |                                     |                                     |
| 2.0                                 |                                     |                                     |
| 4.0                                 |                                     |                                     |
| ≤ 0.4                               |                                     |                                     |
| ≤ 0.4                               |                                     |                                     |
| ≤ 0.4                               |                                     |                                     |
| <u>36 analyses</u>                  |                                     |                                     |
| avg. 1.5 ± 1.4 dpm Sr <sup>90</sup> |                                     |                                     |

1. BLANKS - cont'd

D. Simulated Pot Collection, Sr<sup>90</sup>

Data Period: Oct. 1966 - Oct. 1967: Lab NN  
Jan. 1967 - Dec. 1967: HASL

| <u>dpm Sr<sup>90</sup></u>          |                                     |
|-------------------------------------|-------------------------------------|
| <u>Lab NN</u>                       | <u>HASL</u>                         |
| ≤0.6                                | ≤0.7                                |
| 1.0                                 | ≤1.2                                |
| ≤0.2                                | ≤0.6                                |
| 1.4                                 | ≤0.3                                |
| 1.4                                 | ≤1.5                                |
| 6.0                                 | ≤0.5                                |
| ≤0.3                                |                                     |
| ≤0.4                                | 6 analyses                          |
| ≤0.7                                | avg. 0.8 ± 0.5 dpm Sr <sup>90</sup> |
| ≤0.4                                |                                     |
| ≤0.4                                |                                     |
| 1.8                                 |                                     |
| ≤0.4                                |                                     |
| ≤0.4                                |                                     |
| ≤0.4                                |                                     |
| ≤0.4                                |                                     |
| ≤0.4                                |                                     |
| 6.4                                 |                                     |
| 4.5                                 |                                     |
| ≤0.4                                |                                     |
| ≤0.4                                |                                     |
| ≤1.5                                |                                     |
| 3.5                                 |                                     |
| ≤0.5                                |                                     |
| ≤0.4                                |                                     |
| ≤0.4                                |                                     |
| 2.3                                 |                                     |
| ≤0.4                                |                                     |
| <u>29 analyses</u>                  |                                     |
| avg. 1.3 ± 1.7 dpm Sr <sup>90</sup> |                                     |

## 2. NATURAL SAMPLES

### A. Human Bone Ash (Orig. HASL No. 5407), Sr<sup>90</sup>

Data Period: Jan. - Dec. 1967  
Laboratory: HASL

dpm Sr<sup>90</sup> /gram<sup>(1)</sup>

1.25  
0.93  
1.41  
1.41  
1.28  
1.26

avg. of results from July 1957 to Dec. 1967 -

dpm Sr<sup>90</sup>/gram<sup>(1)</sup>: 1.27 ± 0.13 (10.2%) (2,3)

- (1) decay corrected to 7/1/57
- (2) error term is one std. dev. of the mean
- (3) based on 48 blind analyses at HASL

### B. Animal Bone Ash (Orig. HASL No. B0126)

Data Period: Jan. - Dec. 1967  
Laboratory: HASL

dpm Sr<sup>90</sup> /gram <sup>(1)</sup>

19.5  
14.6  
17.2

Avg. of results from April 1961 to Dec. 1967 -

dpm Sr<sup>90</sup>/gram<sup>(1)</sup>: 18.2 ± 1.5 (8.2%) (2,3)

- (1) decay corrected to 4/1/61
- (2) error term is one std. dev. of the mean
- (3) based on 49 blind analyses at HASL

Data Period: Nov. 1967  
Laboratory: Q

dpm Sr<sup>90</sup>/gram<sup>(1)</sup>      gCa/gram

|      |       |
|------|-------|
| 18.7 | 0.364 |
| 13.5 | 0.368 |

(1) decay corrected to  
4/1/61.

2. NATURAL SAMPLES - Cont'd

C. Powdered Milk Ash (Orig. HASL No. 7604)

Data Period: Jan. - Dec. 1967

Laboratory: HASL

dpm Sr<sup>90</sup>/gram (1)

2.15

2.23

1.99

avg. of results from March 1959 to Dec. 1966 -

dpm Sr<sup>90</sup>/gram (1): 2.24 ± 0.18 (8.0%) (2,3)

(1) decay corrected to 3/1/59

(2) error term is one std. dev. of the mean

(3) based on 65 blind analyses at HASL

2. NATURAL SAMPLES - cont'd

D. Hay Ash (Orig. HASL No. V0214)

Data Period: Jan. - Dec. 1967  
Laboratory: HASL

dpm Sr<sup>90</sup>/gram<sup>(1)</sup>

25.2  
24.1  
26.5  
26.0  
23.5  
25.9  
26.0

Avg. of results from July 1963 to Dec. 1967

dpm Sr<sup>90</sup>/gram<sup>(1)</sup>: 24.9 ± 1.5 (6.0%)<sup>(2,3)</sup>

(1) decay corrected to 7/1/63

(2) error term is one Std. deviation of the mean

(3) based on 28 blind analyses at HASL

Data Period: Mar 1967

Laboratory: Q

dpm Sr<sup>90</sup>/gram<sup>(1)</sup>      g Ca/gram

|      |       |
|------|-------|
| 24.8 | 0.125 |
| 23.3 | 0.106 |
| 25.3 | 0.094 |

(1) decay corrected to 7/1/63

Data Period: June 1967

Laboratory: F

dpm Sr<sup>90</sup>/gram<sup>(1)</sup>      g Ca/gram

|      |       |
|------|-------|
| 8.88 | 0.079 |
| 9.05 | 0.052 |
| 16.1 | 0.141 |

(1) decay corrected to 7/1/63

3. BLIND DUPLICATES

A. Human Bone Ash

Data Period: Jan. - Dec. 1967  
Laboratory: HASL

| <u>HASL No.</u> | <u>dpm Sr<sup>90</sup>/gram</u> |
|-----------------|---------------------------------|
| HB 975          | 2.74                            |
| HB 991          | 3.06                            |
| HB 989          | 3.16                            |
| HB 990          | 2.88                            |
| HB 1005         | 1.35                            |
| HB 1006         | 1.39                            |
| HB 1029         | 1.5                             |
| HB 1030         | 1.4                             |
| HB 1034         | 0.7                             |
| HB 1035         | 0.8                             |
| HB 1036         | 0.88                            |
| HB 1068         | 1.0                             |
| HB 1037         | 1.01                            |
| HB 1069         | 1.1                             |
| HB 1038         | 1.10                            |
| HB 1070         | 0.9                             |
| HB 1042         | 2.01                            |
| HB 1071         | 1.5                             |
| HB 1072         | 3.64                            |
| HB 1075         | 3.39                            |
| HB 1097         | 1.14                            |
| HB 1100         | 1.13                            |

11 sets of blind duplicates

avg. percent deviation from mean: 9.0%  
range: 2 - 20%

## 3. BLIND DUPLICATES (Cont'd)

A. Human Bone Ash

Data Period: November 1967  
 Laboratory: Q

| <u>HASL No.</u> | <u>dpm Sr<sup>90</sup>/gm</u> | <u>gCa/gm</u> | <u>HASL No.</u>                                                                | <u>dpm Sr<sup>90</sup>/gm</u> | <u>gCa/gm</u> |  |
|-----------------|-------------------------------|---------------|--------------------------------------------------------------------------------|-------------------------------|---------------|--|
| B1843           | 1.26                          | 0.365         | B1888                                                                          | 1.09                          | 0.365         |  |
| B1844           | 1.31                          | 0.364         | B1889                                                                          | 0.91                          | 0.359         |  |
| B1845           | 1.66                          | 0.346         | B1890                                                                          | 0.95                          | 0.382         |  |
| B1846           | 2.53                          | 0.350         | B1891                                                                          | 0.86                          | 0.353         |  |
| B1852           | 1.86                          | 0.361         | B1892                                                                          | 0.78                          | 0.346         |  |
| B1853           | 2.00                          | 0.358         | B1893                                                                          | 0.71                          | 0.351         |  |
| B1858           | 0.91                          | 0.356         | B1894                                                                          | 0.95                          | 0.356         |  |
| B1859           | 0.89                          | 0.369         | B1895                                                                          | 0.80                          | 0.359         |  |
| B1860           | 0.75                          | 0.369         | B1896                                                                          | 0.89                          | 0.349         |  |
| B1861           | 0.75                          | 0.367         | B1897                                                                          | 0.71                          | 0.363         |  |
| B1862           | 0.71                          | 0.368         | B1898                                                                          | 0.75                          | 0.347         |  |
| B1863           | 0.71                          | 0.374         | B1899                                                                          | 0.82                          | 0.351         |  |
| B1864           | 0.86                          | 0.369         | B1900                                                                          | 1.13                          | 0.358         |  |
| B1865           | 0.71                          | 0.369         | B1901                                                                          | 0.73                          | 0.355         |  |
| B1866           | 0.86                          | 0.371         |                                                                                |                               |               |  |
| B1867           | 0.95                          | 0.382         | 21 sets of blind duplicates                                                    |                               |               |  |
| B1868           | 0.80                          | 0.378         | Sr <sup>90</sup> : avg. percent deviation<br>from mean: 9.9%<br>range: 1 - 30% |                               |               |  |
| B1869           | 0.60                          | 0.382         |                                                                                |                               |               |  |
| B1870           | 0.82                          | 0.367         | Ca : avg. percent deviation<br>from mean: 1.1%<br>range: 0.4 - 5.4%            |                               |               |  |
| B1871           | 0.98                          | 0.363         |                                                                                |                               |               |  |
| B1873           | 1.31                          | 0.353         |                                                                                |                               |               |  |
| B1874           | 1.31                          | 0.355         |                                                                                |                               |               |  |
| B1875           | 2.22                          | 0.360         |                                                                                |                               |               |  |
| B1876           | 2.15                          | 0.355         |                                                                                |                               |               |  |
| B1880           | 1.50                          | 0.380         |                                                                                |                               |               |  |
| B1881           | 1.29                          | 0.375         |                                                                                |                               |               |  |
| B1886           | 1.00                          | 0.369         |                                                                                |                               |               |  |
| B1887           | 0.84                          | 0.366         |                                                                                |                               |               |  |

## 3. BLIND DUPLICATES -- Cont'd

B. Vegetation and Food Ash

Data Period: Jan. - Dec. 1967  
 Laboratory: HASL

| <u>HASL No.</u> | <u>dpm Sr<sup>90</sup> /gram</u> |
|-----------------|----------------------------------|
| F1728           | 2.94                             |
| F1742           | 2.78                             |
| F1735           | 1.96                             |
| F1743           | 1.68                             |
| F1820           | 7.35                             |
| F1837           | 7.06                             |
| F1827           | 10.7                             |
| F1838           | 11.4                             |
| F1939           | 4.34                             |
| F1987           | 4.23                             |
| F1946           | 2.17                             |
| F1988           | 1.79                             |
| F2014           | 1.77                             |
| F2064           | 2.43                             |
| F2015           | 2.03                             |
| F2065           | 2.54                             |
| F2016           | 2.25                             |
| F2066           | 1.64                             |
| F1813           | 3.60                             |
| F2067           | 3.54                             |
| F1972           | 2.02                             |
| F2035           | 2.51                             |
| F1979           | 3.22                             |
| F2036           | 3.15                             |
| F1997           | 1.22                             |
| F2057           | 1.22                             |
| F2004           | 0.89                             |
| <u>F2058</u>    | <u>0.95</u>                      |

14 sets of blind duplicates  
 avg. percent deviation from mean: 8.5%  
 range: 1 - 22%

## 3. BLIND DUPLICATES - Cont'd

B. Vegetation and Food Ash

Data Period: Mar. 1967  
 Laboratory: Q

| <u>HASL No.</u> | <u>dpm Sr<sup>90</sup> /gram</u> | <u>gCa/gram</u> |
|-----------------|----------------------------------|-----------------|
| F1752           | 1.93                             | 0.043           |
| F1764           | 1.73                             | 0.048           |
| F1759           | 1.82                             | 0.019           |
| F1765           | 1.13                             | 0.016           |
| F1774           | 6.66                             | 0.051           |
| F1786           | 6.44                             | 0.044           |
| F1781           | 1.35                             | 0.015           |
| F1787           | 1.95                             | 0.015           |
| F1796           | 5.55                             | 0.047           |
| F1832           | 6.08                             | 0.047           |
| F1803           | 1.40                             | 0.014           |
| F1833           | 1.60                             | 0.015           |
| F1888           | 0.11                             | 0.028           |
| F1893           | 0.33                             | 0.030           |
| F1896           | 0.33                             | 0.039           |
| F1900           | 1.00                             | 0.041           |
| F1903           | 0.42                             | 0.035           |
| F1908           | 0.36                             | 0.034           |
| F1895           | 19.9                             | 0.021           |
| F1902           | 14.2                             | 0.022           |
| <u>F1910</u>    | <u>17.8</u>                      | <u>0.021</u>    |

10 sets of blind replicates

Sr<sup>90</sup>: avg. percent deviation from mean: 14.7% (1)  
 range: 2 - 33% (1)

(1) excluding two samples below 1 dpm/gm

Ca: avg. percent deviation from mean: 5.1%  
 range: 0 - 10%

3. BLIND DUPLICATES - Cont'd

B. Vegetation and Food Ash

Data Period: June 1967  
Laboratory: F

| <u>HASL No.</u> | <u>dpm Sr<sup>90</sup> /gram</u> | <u>gCa/gram</u> |
|-----------------|----------------------------------|-----------------|
| F1847           | 2.89                             | 0.040           |
| F1859           | 2.90                             | 0.046           |
| F1854           | 0.82                             | 0.006           |
| F1860           | 1.04                             | 0.021           |
| F1869           | 3.00                             | 0.020           |
| F1929           | 1.22                             | 0.022           |
| F1875           | 2.00                             | 0.008           |
| F1930           | 2.09                             | 0.015           |
| F1917           | 0.60                             | 0.003           |
| F1956           | 0.40                             | 0.036           |
| F1924           | 1.04                             | 0.015           |
| F1957           | 1.51                             | 0.014           |

6 sets of blind duplicates

Sr<sup>90</sup>: avg. percent deviation from mean: 22.6%  
range: 1 - 60%

Ca: avg. percent deviation from mean: 42.7%  
range: 5 - 115%

4. SPIKES

A. Ion-Exchange Resin Sr<sup>90</sup>

**Data Period:** Oct. 1966 - Oct. 1967: Lab NN  
 Jan. 1967 - Apr. 1967: Lab CC  
 Jan. 1967 - Dec. 1967: HASL

| <u>Lab NN</u>        |                            |                      | <u>Lab CC</u>        |                            |                      | <u>HASL</u>          |                            |              |
|----------------------|----------------------------|----------------------|----------------------|----------------------------|----------------------|----------------------|----------------------------|--------------|
| 24                   | <u>dpm Sr<sup>90</sup></u> | <u>added</u>         | 24                   | <u>dpm Sr<sup>90</sup></u> | <u>added</u>         | 24                   | <u>dpm Sr<sup>90</sup></u> | <u>added</u> |
|                      | 43                         | 54                   |                      | 24                         | 54                   |                      | 24                         | 54           |
| 29                   | 30                         | 43                   | 29                   | 58                         |                      | 24                   | 58                         |              |
| 18                   | 32                         | 36                   | 25                   | 52                         |                      | 25                   | 56                         |              |
| 21                   | 43                         | 50                   | 20                   | 60                         |                      | 27                   | 58                         |              |
| 29                   | 39                         | 61                   | 24                   | 62                         |                      | 30                   | 49                         |              |
| 26                   | 40                         | 47                   | —                    | 45                         |                      | —                    | —                          |              |
| 25                   | 39                         | 39                   |                      |                            |                      |                      |                            |              |
| 21                   | 34                         | 52                   | 4 results            | 5 results                  | 4 results            | 4 results            | 4 results                  |              |
| 27                   | 31                         | 54                   | avg. 24±4            | avg. 55±7                  | avg. 26±3            | avg. 55±4            |                            |              |
| 26                   | 30                         | 50                   | dpm Sr <sup>90</sup> | dpm Sr <sup>90</sup>       | dpm Sr <sup>90</sup> | dpm Sr <sup>90</sup> | dpm Sr <sup>90</sup>       |              |
| 25                   | 34                         | 56                   |                      |                            |                      |                      |                            |              |
| 21                   | 41                         | 57                   |                      |                            |                      |                      |                            |              |
| 26                   | 40                         | 55                   |                      |                            |                      |                      |                            |              |
| 28                   | 32                         | 54                   |                      |                            |                      |                      |                            |              |
| 24                   | 42                         | 51                   |                      |                            |                      |                      |                            |              |
| 25                   | 32                         | 53                   |                      |                            |                      |                      |                            |              |
| 24                   | 34                         | 62                   |                      |                            |                      |                      |                            |              |
| 33                   | 46                         | 50                   |                      |                            |                      |                      |                            |              |
| 26                   | 41                         | 62                   |                      |                            |                      |                      |                            |              |
| 25                   | 38                         | 53                   |                      |                            |                      |                      |                            |              |
| 28                   | 32                         | 47                   |                      |                            |                      |                      |                            |              |
| 35                   | 47                         | 32                   |                      |                            |                      |                      |                            |              |
| 21                   | 46                         | 52                   |                      |                            |                      |                      |                            |              |
| 25                   | 37                         | 66                   |                      |                            |                      |                      |                            |              |
| 25                   | 43                         | 53                   |                      |                            |                      |                      |                            |              |
| 27                   |                            | 54                   |                      |                            |                      |                      |                            |              |
| 24                   |                            | 61                   |                      |                            |                      |                      |                            |              |
| 23                   |                            | 52                   |                      |                            |                      |                      |                            |              |
| 27                   |                            | 52                   |                      |                            |                      |                      |                            |              |
| 23                   |                            | 53                   |                      |                            |                      |                      |                            |              |
| 27                   |                            | 56                   |                      |                            |                      |                      |                            |              |
| 31                   | results                    | 25 results           | 31 results           |                            |                      |                      |                            |              |
| avg:                 | 25±4                       | avg. 38±4            | avg. 52±7            |                            |                      |                      |                            |              |
| dpm Sr <sup>90</sup> |                            | dpm Sr <sup>90</sup> | dpm Sr <sup>90</sup> |                            |                      |                      |                            |              |

## 4. SPIKES - Cont'd

B. Simulated Pot Collection - Sr<sup>90</sup>

Data Period: Oct. 1966 - Oct. 1967: Lab NN  
 Jan. 1967 - Dec. 1967: HASL

Lab NN

|                      | <u>dpm Sr<sup>90</sup> added</u> | <u>dpm found</u>     |  | <u>dpm Sr<sup>90</sup> added</u> | <u>dpm found</u> |    |
|----------------------|----------------------------------|----------------------|--|----------------------------------|------------------|----|
| 24                   | 43                               | 54                   |  | 24                               | 43               | 54 |
| 25                   | 34                               | 54                   |  | 26                               | 38               | 55 |
| 29                   | 34                               | 50                   |  | 27                               | 44               | 50 |
| 23                   | 40                               | 55                   |  | 29                               | 37               | 44 |
| 10                   | 36                               | 51                   |  |                                  | 38               | 50 |
| 25                   | 38                               | 50                   |  |                                  |                  |    |
| 24                   | 20                               | 55                   |  |                                  |                  |    |
| 23                   | 41                               | 48                   |  |                                  |                  |    |
| 26                   | 25                               | 45                   |  |                                  |                  |    |
| 26                   | 22                               | 51                   |  |                                  |                  |    |
| 25                   | 38                               | 55                   |  |                                  |                  |    |
| 19                   | 13                               | 37                   |  |                                  |                  |    |
| 25                   | 34                               | 51                   |  |                                  |                  |    |
| 14                   | 39                               | 57                   |  |                                  |                  |    |
| 26                   | 42                               | 49                   |  |                                  |                  |    |
| 25                   | 38                               | 46                   |  |                                  |                  |    |
| 24                   | 38                               | 64                   |  |                                  |                  |    |
| 28                   | 42                               | 58                   |  |                                  |                  |    |
| 33                   | 52                               | 54                   |  |                                  |                  |    |
| 26                   | 20                               | 59                   |  |                                  |                  |    |
| 26                   | 44                               | 52                   |  |                                  |                  |    |
| 27                   |                                  | 63                   |  |                                  |                  |    |
| 35                   |                                  | 56                   |  |                                  |                  |    |
| 26                   |                                  | 58                   |  |                                  |                  |    |
| 26                   |                                  | 54                   |  |                                  |                  |    |
| 29                   |                                  | 63                   |  |                                  |                  |    |
| 52                   |                                  | 50                   |  |                                  |                  |    |
| 21                   |                                  | 49                   |  |                                  |                  |    |
| 23                   |                                  | 53                   |  |                                  |                  |    |
| 28                   |                                  | 70                   |  |                                  |                  |    |
| 54                   |                                  | 54                   |  |                                  |                  |    |
| 25                   |                                  | 49                   |  |                                  |                  |    |
| 25                   |                                  | 57                   |  |                                  |                  |    |
| 27                   |                                  |                      |  |                                  |                  |    |
| 30                   |                                  |                      |  |                                  |                  |    |
| <u>34 results</u>    | <u>20 results</u>                | <u>32 results</u>    |  |                                  |                  |    |
| avg. 27 $\pm$ 8      | avg. 34 $\pm$ 7                  | avg. 54 $\pm$ 7      |  |                                  |                  |    |
| dpm Sr <sup>90</sup> | dpm Sr <sup>90</sup>             | dpm Sr <sup>90</sup> |  |                                  |                  |    |



4. SPIKES - Cont'd

D. Simulated Pot Collection - Sr<sup>89</sup>

Data Period: Oct. 1966 - Oct. 1967  
Laboratory: NN

| <u>expected</u> | dpm Sr <sup>89</sup><br><u>found</u> |
|-----------------|--------------------------------------|
| 440             | 440                                  |
| 440             | 440                                  |
| 290             | 280                                  |
| 290             | 290                                  |
| 250             | 250                                  |
| 250             | 300                                  |
| 230             | 250                                  |
| 230             | 280                                  |
| 250             | 270                                  |
| 250             | 340                                  |
| 240             | 170                                  |
| 240             | 310                                  |
| 210             | 340                                  |
| 210             | 220                                  |
| 230             | 220                                  |
| 230             | 260                                  |
| 230             | 230                                  |
| 230             | 250                                  |
| 230             | 210                                  |
| 230             | 210                                  |
| 220             | 240                                  |
| 220             | 140                                  |

| <u>expected</u> | dpm Sr <sup>89</sup><br><u>found</u> |
|-----------------|--------------------------------------|
| 1450            | 500                                  |
| 1450            | 1400                                 |
| 1200            | 1020                                 |
| 1200            | 1140                                 |
| 940             | 990                                  |
| 940             | 830                                  |
| 1240            | 1290                                 |
| 1240            | 220                                  |
| 1200            | 1240                                 |
| 1200            | 1400                                 |
| 1140            | 1100                                 |
| 1140            | 1120                                 |
| 1220            | 1200                                 |
| 1220            | 1160                                 |
| 1140            | 1070                                 |
| 1140            | 1050                                 |
| 1150            | 1060                                 |
| 1150            | 1170                                 |
| 1230            | 1190                                 |
| 1230            | 1180                                 |

22 pairs of results  
avg. percent recovered:  
106±21%

20 pairs of results  
avg. percent recovered:  
90±24%

PART II  
HASL FALLOUT PROGRAM DATA

## 1. Fallout Deposition

### 1.1 Monthly Precipitation

#### 1.11 Sr<sup>90</sup> and Sr<sup>89</sup> in Monthly Deposition at World Land Sites

Precipitation and dry fallout are collected over monthly periods at stations in the United States and overseas. The samples are analyzed for strontium-90 and strontium-89 when it is expected to be present. A description of the sampling network and available data for each site are given in the Appendix, Section A.

#### 1.12 Fission Product and Activation Product Radionuclides in Monthly Deposition at Selected Sites

At a number of stations in the United States, monthly precipitation and dry fallout collections have been analyzed for radiostrontium and other nuclides of interest to the Atomic Energy Commission. These sites and associated data are given in the Appendix, section B.

### 1.2 Radiostrontium Deposition at Atlantic Ocean Weather Stations

Measurements of radiostrontium in precipitation and dry fallout collections at four U. S. Coast Guard stations in the North Atlantic Ocean are carried out for comparison with land stations in the same latitude band. A description of the stations and available data are given in the Appendix, section C.

## 2. Radiostrontium in Milk and Tap Water

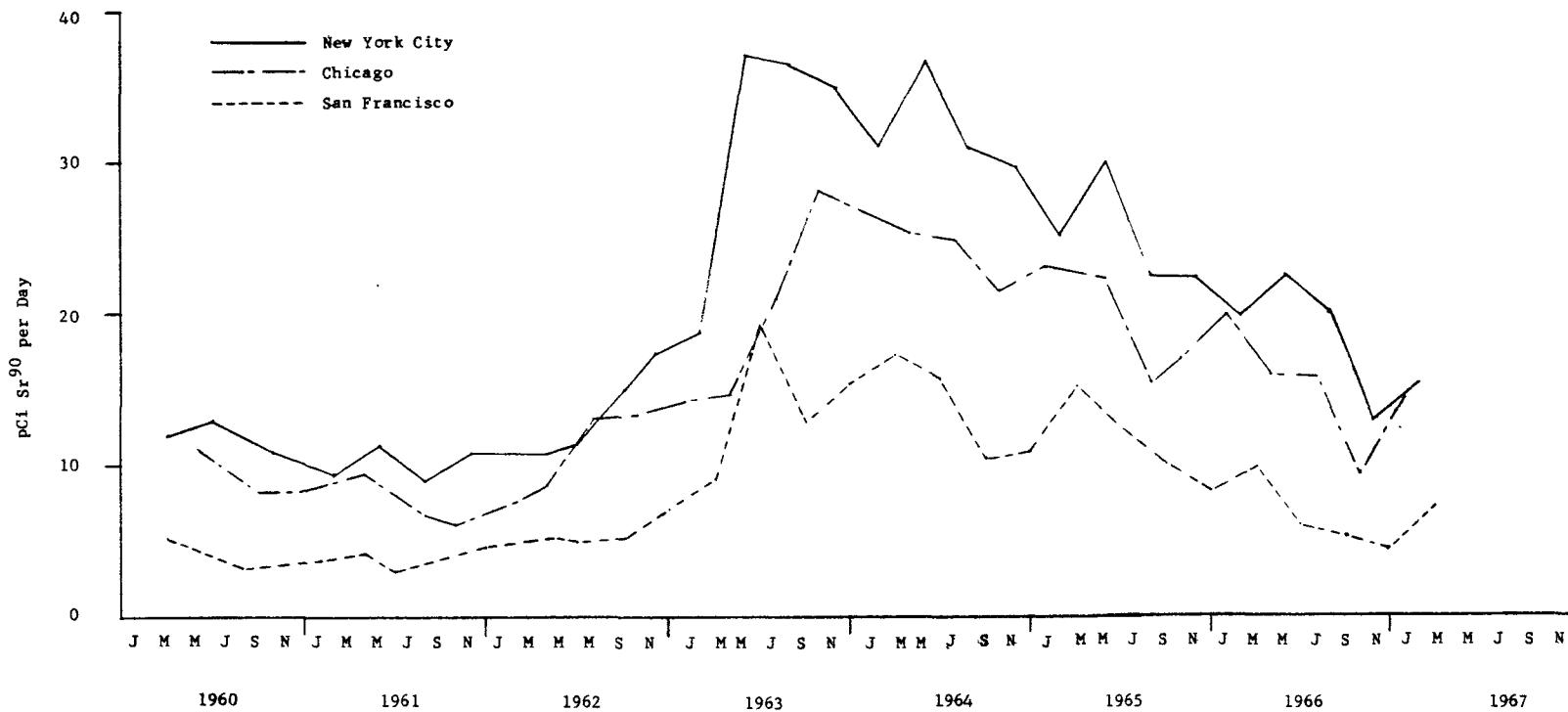
Strontium-90 levels in milk distributed in New York City and tap water sampled at the Health and Safety Laboratory have been measured on a monthly basis since 1954. These data are summarized in tabular and graphical forms in the Appendix, section D.

### 3. Tri-City Diet Studies - First Quarter, 1967

by J. Rivera, (HASL)

Quarterly estimates of the annual dietary intake of Sr-90 of New York City, Chicago, and San Francisco residents, have been made based on the analyses of foods purchased at these cities every three months since March 1960. The foods purchased were grouped in nineteen categories prior to ashing for analysis. Starting in 1965, to reduce the number of analyses required for this program, only 14 of the diet categories were analyzed on a quarterly basis. The ash obtained from eggs, poultry, fresh fish, shellfish, and meat purchased quarterly were combined and yearly composites of each category were analyzed for Sr-90. The reason why these particular diet categories were chosen for yearly rather than quarterly analyses is that they generally have a much lower Sr-90 concentration than the other categories. From data obtained over a four-year period, the contribution of these five diet categories to the total annual intake of Sr-90 was about 5%, therefore this amount was added to the computed intake of Sr-90 from the 14 categories analyzed to obtain quarterly estimates of annual Sr-90 intake at the three cities.

The results of the analyses of foods and estimates of the intake of Sr-90 at each of the cities made this way are shown in Table 3. The estimated average daily intakes of Sr-90 at each of the cities since the tri-city diet studies began are shown in Figure 3.


Details of the sampling methods and a description of the results of these studies obtained through 1963 may be found in HASL-147 (HASL Contributions to the Study of Fallout in Food Chains, Joseph Rivera and John Harley, July 1, 1964).

STRONTIUM-90 IN TRI-CITY DIETS - FIRST QUARTER - 1967

|                            | kg/yr | gCa/yr | CHICAGO - 1/67 | NEW YORK CITY - 2/67 | SAN FRANCISCO - 3/67 |        |
|----------------------------|-------|--------|----------------|----------------------|----------------------|--------|
|                            |       |        | pCi/kg         | pCi/yr               | pCi/kg               | pCi/yr |
| MILK                       | 221   | 234.5  | 6.0            | 1326                 | 10.4                 | 2298   |
| FRESH FRUIT                | 68    | 12.9   | 7.0            | 476                  | 14.6                 | 993    |
| FRESH VEGETABLES           | 43    | 15.3   | 17.7           | 761                  | 9.6                  | 413    |
| ROOT VEGETABLES            | 17    | 6.3    | 10.4           | 177                  | 9.3                  | 158    |
| POTATOES                   | 45    | 4.9    | 13.6           | 612                  | 0.9                  | 41     |
| MACARONI                   | 3     | 0.6    | 7.4            | 22                   | 7.4                  | 22     |
| RICE                       | 3     | 1.0    | 1.7            | 5                    | 3.5                  | 11     |
| FRUIT JUICES               | 19    | 1.7    | 4.1            | 78                   | 7.1                  | 135    |
| CANNED VEGETABLES          | 20    | 4.2    | 11.0           | 220                  | 16.3                 | 326    |
| CANNED FRUIT               | 26    | 1.3    | 2.6            | 68                   | 3.3                  | 86     |
| DRYED BEANS                | 3     | 3.1    | 21.1           | 63                   | 16.2                 | 49     |
| FLOUR                      | 43    | 8.6    | 12.4           | 533                  | 12.0                 | 516    |
| BAKERY PRODUCTS            | 37    | 39.2   | 9.4            | 348                  | 5.3                  | 196    |
| WHOLE GRAIN PRODUCTS       | 11    | 10.1   | 39.6           | 436                  | 11.0                 | 121    |
| FRESH FISH                 | 8     | 8.4    | 4.3            | 34                   | 0.6                  | 5      |
| SHELL FISH                 | 1     | 1.2    | 0.3            | 0                    | 1.8                  | 2      |
| POULTRY                    | 17    | 8.2    | 1.3            | 22                   | 1.4                  | 24     |
| MEAT                       | 73    | 11.7   | 0.7            | 51                   | 1.3                  | 95     |
| EGGS                       | 16    | 9.3    | 2.9            | 46                   | 7.1                  | 114    |
| TOTAL                      |       |        |                | 5278                 | 5605                 | 2660   |
| pCi/Sr <sup>90</sup> /day  |       |        |                | 14.4                 | 15.4                 | 7.3    |
| pCi/Sr <sup>90</sup> /g Ca |       |        |                | 13.8                 | 14.6                 | 6.9    |

DAILY INTAKE OF STRONTIUM-90

5 - II



## SURFACE AIR SAMPLING PROGRAM

by Herbert L. Volchok (HASL) and  
Michael T. Kleinman (HASL)

Since January 1963, the Health and Safety Laboratory (HASL) has been conducting the Surface Air Sampling Program. This study is a direct outgrowth of a program initiated by the U. S. Naval Research Laboratory (NRL) in 1957 and continued through 1962, for sampling and analysis of radioactivity in the surface air along the 80th Meridian (west). The primary objective of this program is to study the spatial and temporal distribution of nuclear weapons debris in the surface air.

### Sampling Sites

Most of the original NRL sites, which grouped roughly along the 80th Meridian (west) have been continued in the current program. Since 1963 a number of other sites were added to investigate the possible effects of longitude, elevation and proximity to coastlines; and in late 1965 samplers were placed on four Atlantic Ocean weather ships to extend the surface air study over the marine environment. The present network extends from about 76° North to 63° South. Table 4a lists the sampling stations along with their coordinates and elevations.

### Sampling Collection and Analysis

For the routine program approximately 1400 cubic meters of ambient air per day are drawn through a 20 centimeter diameter Microsorban filter for the land stations. For the ocean stations, about 2200 cubic meters of air per day are filtered by a 20 x 25 cm Microsorban filter. Each filter is changed on the first, 8th, 15th and 22nd of the month or more frequently if the filter becomes clogged. Under normal conditions,

the filters from each station are compressed into a monthly composite and the gamma spectrum of the composite is obtained with an 8" x 4" NaI (Tl) crystal approximately two weeks after the last collection in the month.

The integrated response between 100 Kev and 3.0 Mev is corrected by the average detection efficiency (35%) of the gamma photons present in fallout, and the total gamma activity is reported in units of photons/min/ $10^3\text{m}^3$ . Average monthly gamma concentrations are calculated by weighting the concentrations in each sampling interval by the relative period of time in the interval. After the gamma measurements have been completed, monthly composites from each site are submitted to contractor laboratories for radiochemical analyses.

Since the last major nuclear weapon test series occurred at the end of 1962, only the longer lived artificially produced radionuclides were present in the filters analyzed prior to May 1966. Consequently, emphasis was given to the determination of Mn-54, Fe-55, Sr-90, Cd-109, Ce-144, Pu-238 and Pu-239. In samples collected after May 1966, following the Chinese and French nuclear weapons tests, additional shorter lived nuclides were analyzed such as Sr-89, Zr-95, and Ce-141.

The longer lived fission products and Pu-239 concentrations should describe the general distribution in surface air of all previous nuclear weapon debris which was transferred from the lower stratosphere to the troposphere during the collection period of this report. Other tracer nuclides can be associated with debris from a single detonation or a series of detonations. Mn-54 and Fe-55 were produced in large quantities in the 1961 and 1962 test series. Cd-109 was generated by the U. S. high altitude test over Johnston Island on July 9, 1962. While Pu-238 is present in low

concentrations in nuclear weapons debris, about 17,000 curies of Pu-238 was disseminated at high altitude in the stratosphere on April 21, 1964 during the re-entry burn-up of a SNAP-9A power source.

#### Analytical Laboratories

Food, Chemical and Research Laboratories, Inc. (FCRL) of Seattle, Washington, performed the analyses of most of the samples in this report. Isotopes, Inc., of Westwood, New Jersey analyzed most of the samples collected at Westwood, N. J., and a few samples from Chacaltaya, Bolivia, Antofagasta, and Santiago, Chile. Previous reports containing data on the HASL Surface Air Sampling Program are given in References (1, 2, 3, 4, 5, 6, and 7).

#### Results

The activity concentrations in surface air during 1966 of all the radio-nuclides investigated in this program are presented in Tables 4-b through 4-1. The sites are listed according to latitude beginning with the most northern site at Thule, Greenland.

The concentrations are reported at the midpoint of the collection month for the plutonium isotopes and the fission products and on the specified dates for the following induced nuclides:

Mn<sup>54</sup> and Fe<sup>55</sup>: October 15, 1961

Cd<sup>109</sup> : July 9, 1962

One standard deviation of the counting error for these data is always less than  $\pm 20\%$  unless otherwise indicated by the following symbols:

- A: One standard deviation of the counting error between 20 - 100%
- B: One standard deviation of the counting error greater than 100%  
(Data do not appear in the tables).

#### Data Reliability

Quality of the radiochemical analyses is monitored through the use of various "knowns" submitted to the contractor each month along with the regular samples. There are basically three kinds of quality control samples: blanks, standards and duplicates.

A blank is prepared by sprinkling a small amount of pre-1945 soil (10 mg) onto an unexposed Microsorban filter. Then carbon soot from burning napthalene is filtered onto the Microsorban paper for a few moments under laboratory conditions. This procedure produces blanks which are very similar in appearance, and in some respects, composition to the routine filters collected by this program. When the blanks are coded, as are all the filters submitted to radiochemistry, they are not readily distinguishable from routine samples. Table 4-m lists the results of analyses of blanks in 1966. The Table summarizes the average dpm reported from blanks sent out each month. It is evident from a review of these data that the contamination problem has been quite variable, and consequently low level concentrations in the real samples must be considered with care.

A standard is prepared by evaporating weighed aliquots of standard solutions of various nuclides calibrated at HASL onto a blank sample. A few drops of a wetting agent is applied to the blank prior to the addition of the standard to permit permeation of the solution between the polyethylene fibers of the Microsorban filter.

Table 4-n presents the results of these analyses for each nuclide in 1966. The values are average percent deviations of the reported analyses from the known. Again the results are seen to be extremely variable and generally non-systematic.

Duplicate collections are made monthly at the New York site. These samples are composited and split before analysis thereby providing a measure of the reproducibility of the radiochemical procedures. The results of these tests are shown as the % standard deviation from the mean, in Table 4-o.

#### REFERENCES

- (1) Volchok, H. L.  
The HASL Surface Air Sampling Program - Summary Report for 1963  
USAEC Report HASL-156, January (1965)
- (2) Surface Air Sampling Program  
USAEC Report HASL-165, January (1966)
- (3) Krey, P. W.  
Surface Air Sampling Program  
USAEC Report HASL-171, April (1966)
- (4) Krey, P. W.  
Surface Air Sampling Program  
USAEC Report HASL-172, July (1966)
- (5) Krey, P. W.  
Surface Air Sampling Program  
USAEC Report HASL-173, October (1966)
- (6) Krey, P. W.  
Surface Air Sampling Program  
USAEC Report HASL-174, January (1967)
- (7) Krey, P. W.  
Surface Air Sampling Program  
USAEC Report HASL-182, July (1967)

Table 4-a

HASL SURFACE AIR SAMPLING STATIONS

| <u>STATIONS</u>            | <u>LATITUDE</u> | <u>LONGITUDE</u> | <u>ELEVATION(m)</u> |
|----------------------------|-----------------|------------------|---------------------|
| Thule, Greenland           | 76° 36' N       | 68° 35' W        | 259                 |
| Charlie Ocean Station      | 57° 00' N       | 35° 30' W        | 0                   |
| Bravo Ocean Station        | 56° 30' N       | 51° 00' W        | 0                   |
| Moosonee, Ontario, Canada  | 51° 16' N       | 80° 30' W        | 10                  |
| Delta Ocean Station        | 49° 00' N       | 41° 00' W        | 0                   |
| Seattle, Washington        | 47° 36' N       | 122° 20' W       | 3                   |
| Westwood, New Jersey       | 41° 00' N       | 74° 01' W        | 38                  |
| New York, New York         | 40° 48' N       | 73° 58' W        | 38                  |
| Sterling, Virginia         | 38° 58' N       | 77° 25' W        | 76                  |
| Echo Ocean Station         | 35° 00' N       | 48° 00' W        | 0                   |
| Miami, Florida             | 25° 49' N       | 80° 17' W        | 4                   |
| Bimini, Bahamas            | 25° 46' N       | 79° 22' W        |                     |
| Mauna Loa, Hawaii          | 19° 28' N       | 155° 36' W       | 3401                |
| San Juan, Puerto Rico      | 18° 26' N       | 66° 00' W        | 10                  |
| Balboa, Panama Canal Zone  | 8° 58' N        | 79° 34' W        | 23                  |
| Guayaquil, Ecuador         | 2° 10' S        | 79° 52' W        | 7                   |
| Lima, Peru                 | 12° 06' S       | 77° 01' W        | 134                 |
| Chacaltaya, Bolivia        | 16° 21' S       | 68° 07' W        | 5220                |
| Antofagasta, Chile         | 23° 37' S       | 70° 16' W        | 519                 |
| Portillo, Chile            | 32° 50' S       | 70° 08' W        | 2850                |
| Santiago, Chile            | 33° 27' S       | 70° 42' W        | 520                 |
| Puerto Montt, Chile        | 41° 27' S       | 72° 57' W        | 5                   |
| Punta Arenas, Chile        | 53° 08' S       | 70° 53' W        | 3                   |
| Pedro Aguirre Cerdá, Chile | 62° 56' S       | 60° 36' W        | 16                  |

Table 4-3

MANGANESE - 54 CONCENTRATIONS IN SURFACE AIR DURING 1966  
(DPM / KSCM )

| SITE                  | JAN.   | FEB.   | MAR.   | APR.   | MAY   | JUNE  | JULY  | AUG.  | SEP.  | OCT.  | NOV.  | DEC.  |
|-----------------------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| THULE, GREENLAND      | *****  | 243.86 | 286.08 | 237.98 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| CHARLIE               | *****  | 50.29  | 391.12 | 126.95 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| BRAVO                 | *****  | 80.20  | 128.02 | 215.02 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| MOOSONEE, ONTARIO     | 95.67  | 115.67 | 152.26 | 96.76  | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| DELTA                 | *****  | 97.87  | 151.90 | 125.05 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| WESTWOOD, NEW JERSEY  | *****  | *****  | *****  | 160.33 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| NEW YORK, NEW YORK    | 110.79 | 93.65  | 201.61 | 147.55 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| STERLING, VIRGINIA    | 77.78  | 96.02  | 157.73 | 90.63  | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| ECHO                  | *****  | 212.11 | 182.02 | 143.05 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| MIAMI, FLORIDA        | 133.25 | 149.16 | 258.97 | 276.19 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| MAUNA LOA, HAWAII     | 189.52 | 163.00 | 340.00 | 207.48 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| SAN JUAN, PUERTO RICO | 53.22  | 131.44 | 235.64 | 108.79 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| BALBOA, PANAMA        | 53.91  | 97.46  | 139.08 | 75.00  | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| GUAYAQUIL, ECUADOR    | 19.69A | 24.09A | 38.54A | 16.72A | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| LIMA, PERU            | 51.77  | 75.91  | 48.22  | 14.08A | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| CHACALTAYA, BOLIVIA   | 30.24A | *****  | 54.98A | 50.93A | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| ANTOFAGASTA, CHILE    | 50.68  | 52.69  | 34.15A | 38.70A | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| SANTIAGO, CHILE       | 63.66  | 71.08  | 43.34A | *****  | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| PUERTO MONTT, CHILE   | 33.92  | 44.85  | 36.96  | 49.74  | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| PUNTA ARENAS, CHILE   | 30.36  | 16.93A | 36.34  | 22.79A | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |

## NOTES

\*\*\*\*\* - NO DATA

ERRORS ARE LESS THAN 20% EXCEPT:

A - ERROR BETWEEN 20% AND 100%

B - ERROR GREATER THAN 100%

Table 4-C

IRON - 55 CONCENTRATIONS IN SURFACE AIR DURING 1966  
(DPM / KSCM )

| SITE                  | JAN.   | FEB.   | MAR.   | APR.    | MAY    | JUNE   | JULY   | AUG.   | SEP.   | OCT.   | NOV.    | DEC.   |
|-----------------------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|---------|--------|
| THULE, GREENLAND      | *****  | 209.12 | 319.59 | 163.80  | 141.80 | 122.03 | 99.68  | 84.27  | 16.04  | 58.49  | 27.37   | 47.92  |
| CHARLIE               | *****  | 61.40  | 395.79 | 82.32   | 87.72  | 62.57  | 124.04 | 40.29  | 14.80  | 13.77  | 28.26   | 18.27  |
| BRAVO                 | *****  | 69.59  | 169.96 | 177.09  | 67.87  | 70.33  | 47.65  | 58.49  | 16.37  | 9.80   | 19.61   | 19.64  |
| MOOSONEE, ONTARIO     | 83.89  | 103.66 | 192.40 | 114.21  | 119.95 | 138.15 | 166.32 | 69.34  | 36.67  | 28.89  | 24.40   | 32.81  |
| DELTA                 | *****  | 104.88 | 220.44 | 100.92  | 149.04 | 91.86  | 81.48  | 45.60  | 25.55  | 23.72  | 32.65   | 10.31A |
| SEATTLE, WASHINGTON   | 83.20  | 103.36 | 183.77 | 146.15  | 152.78 | 104.23 | 80.23  | 107.14 | 34.07  | 20.27A | 0.0     | 25.07A |
| WESTWOOD, NEW JERSEY  | 80.28  | 84.73  | 149.44 | 160.33  | 176.52 | 222.46 | 173.39 | 65.75  | 42.78  | *****  | *****   | *****  |
| NEW YORK, NEW YORK    | 134.69 | 97.62  | 265.16 | 153.60  | 265.00 | 319.49 | 260.00 | 95.17  | 40.05A | *****B | 211.87A | 54.04A |
| STERLING, VIRGINIA    | 89.86  | 114.85 | 246.38 | 124.30  | 214.69 | 263.94 | 235.48 | 126.53 | 22.30A | 59.07  | 13.69A  | 44.94A |
| ECHO                  | *****  | 161.97 | 254.13 | 163.00  | 199.01 | 67.86  | *****  | 51.95  | *****  | 18.88  | 27.22   | 22.51  |
| MIAMI, FLORIDA        | 159.08 | 136.52 | 341.03 | 291.07  | 141.79 | 104.70 | 82.13  | 1.51A  | 6.07A  | 28.91  | 30.28A  | 70.18  |
| BIMINI, BAHAMAS       | *****  | *****  | *****  | *****   | *****  | *****  | 53.39  | 106.25 | 46.61A | 104.17 | 112.15  | 59.53A |
| MAUNA LOA, HAWAII     | 213.31 | 246.26 | 327.17 | 267.35  | 234.26 | 218.85 | 174.52 | 65.89  | 11.67A | 19.53A | 25.56A  | 33.54  |
| SAN JUAN, PUERTO RICO | 62.18  | 147.49 | 313.86 | 129.30  | 117.97 | 110.64 | 71.81  | 74.28  | 16.31A | 8.34A  | 16.09A  | 36.09  |
| BALBOA, PANAMA        | 60.89  | 86.35  | 154.89 | 92.33   | 38.58  | 100.00 | 25.04  | 6.55A  | *****  | 0.0    | *****B  | *****B |
| GUAYAQUIL, ECUADOR    | 13.94A | 25.88  | 17.45A | 34.78A  | *****  | 17.38A | 28.65A | 44.53  | *****  | 0.0    | *****B  | 22.53A |
| LIMA, PERU            | 60.22  | 58.84  | 66.85  | 36.87A  | 34.48  | 32.68  | 72.22  | 59.79A | 30.65A | *****  | 24.28A  | 108.36 |
| CHACALTAYA, BOLIVIA   | 32.92  | 28.36  | 34.98  | 25.67A  | 26.54  | 58.02  | 68.72  | 78.42  | 172.83 | 61.50  | 71.49   | 48.42  |
| ANTOFAGASTA, CHILE    | 60.96  | 52.69  | 42.01  | 47.79   | 30.26  | 24.41A | 59.29  | 98.55  | 9.49A  | 49.75  | 95.23   | 19.53A |
| PORTILLO, CHILE       | *****  | *****  | *****  | *****   | 157.30 | 44.84  | 364.00 | 244.05 | *****  | *****  | *****   | 312.00 |
| SANTIAGO, CHILE       | 85.71  | 152.96 | 138.91 | 109.32A | *****  | 21.20A | 69.07A | 39.38A | *****  | 42.49A | *****B  | 58.52A |
| PUERTO MONTT, CHILE   | 43.29  | 52.65  | 54.68  | 46.41   | 18.40  | 11.76  | 21.96  | 41.16  | 6.80A  | 15.48  | 0.0     | 63.54A |
| PUNTA ARENAS, CHILE   | *****  | 54.66  | 49.74  | 25.63A  | 8.49A  | 12.32  | 17.23  | 22.32  | *****  | 0.0    | 0.0     | 29.06A |

## NOTES

\*\*\*\*\* - NO DATA

ERRORS ARE LESS THAN 20% EXCEPT:

A - ERROR BETWEEN 20% AND 100%

B - ERROR GREATER THAN 100%

Table 4-D

 STRONTIUM - 89 CONCENTRATIONS IN SURFACE AIR DURING 1966  
 (DPM / KSCM )

| SITE                  | JAN.  | FEB.  | MAR.  | APR.  | MAY    | JUNE   | JULY    | AUG.   | SEP.   | OCT.    | NOV.   | DEC.   |
|-----------------------|-------|-------|-------|-------|--------|--------|---------|--------|--------|---------|--------|--------|
| THULE, GREENLAND      | ***** | ***** | ***** | ***** | 93.65A | *****  | 8.08    | 4.94   | 9.60   | 4.34A   | 103.52 | 34.47  |
| CHARLIE               | ***** | ***** | ***** | ***** | *****  | *****  | 9.90    | 6.27   | 1.44A  | 0.81A   | 36.32  | 12.12  |
| BRAVO                 | ***** | ***** | ***** | ***** | 2.16   | 4.84   | 2.20A   | 9.20   | *****  | 0.0     | 14.30  | 10.49  |
| MOOSONEE, ONTARIO     | ***** | ***** | ***** | ***** | *****  | 25.07  | *****   | 6.55   | *****  | 0.0     | 46.93  | 13.26  |
| DELTA                 | ***** | ***** | ***** | ***** | *****  | 14.20  | 20.60   | 6.45   | *****  | *****B  | 36.11  | 13.42  |
| SEATTLE, WASHINGTON   | ***** | ***** | ***** | ***** | *****  | 5.11   | 10.00   | 16.00  | 12.47A | 0.0     | 25.80  | 4.76   |
| NEW YORK, NEW YORK    | ***** | ***** | ***** | ***** | 228.57 | 538.46 | 292.50  | 9.43A  | 6.64   | 4.68A   | 57.99  | 36.26  |
| STERLING, VIRGINIA    | ***** | ***** | ***** | ***** | 22.53  | 65.63  | 55.11   | 7.98   | 6.30A  | 0.0     | 51.46  | 10.32A |
| ECHO                  | ***** | ***** | ***** | ***** | 0.66A  | 15.89  | *****   | 5.89   | *****  | *****B  | 30.89  | 0.0    |
| MIAMI, FLORIDA        | ***** | ***** | ***** | ***** | 110.51 | 103.87 | 24.64   | 11.96  | 1.78A  | 12.20   | 141.11 | 0.0    |
| BIMINI, BAHAMAS       | ***** | ***** | ***** | ***** | *****  | *****  | 29.82A  | 7.23   | 17.24  | 13.26A  | 139.50 | 20.29  |
| MAUNA LOA, HAWAII     | ***** | ***** | ***** | ***** | 121.51 | 366.92 | 44.49   | 7.29   | 4.57A  | 0.0     | 8.78A  | 0.0    |
| SAN JUAN, PUERTO RICO | ***** | ***** | ***** | ***** | 43.49  | 76.75  | 32.98   | *****  | *****  | *****B  | 18.26  | 0.0    |
| BALBOA, PANAMA        | ***** | ***** | ***** | ***** | 20.33  | 9.97   | 8.90    | 4.66   | 3.87   | 5.92    | 12.18  | 5.89A  |
| GUAYAQUIL, ECUADOR    | ***** | ***** | ***** | ***** | *****  | 3.36   | 230.95  | 5.75   | 11.76  | 144.82  | 175.26 | 74.15  |
| LIMA, PERU            | ***** | ***** | ***** | ***** | 0.61A  | 5.84   | 526.46  | 44.50  | 25.57A | 1108.70 | 332.37 | 83.57  |
| CHACALTAYA, BOLIVIA   | ***** | ***** | ***** | ***** | *****  | 37.92  | 1859.03 | 253.53 | 12,746 | 1478.87 | 337.72 | 84.21  |
| ANTOFAGASTA, CHILE    | ***** | ***** | ***** | ***** | *****  | *****  | 261.90  | 43.48  | *****  | 826.63  | 131.03 | 63.06  |
| PORTILLO, CHILE       | ***** | ***** | ***** | ***** | 8.46   | *****  | 7933.33 | 145.83 | *****  | *****   | *****  | 222.40 |
| SANTIAGO, CHILE       | ***** | ***** | ***** | ***** | *****  | *****  | 251.89  | 44.86  | 80.69  | 202.07  | 117.54 | 60.45  |
| PUERTO MONTT, CHILE   | ***** | ***** | ***** | ***** | *****  | *****  | 2.01    | 22.92  | 5.09   | 19.43   | 47.53  | 23.46  |
| PUNTA ARENAS, CHILE   | ***** | ***** | ***** | ***** | 0.76   | *****  | 1.08    | 4.64   | 4.72   | 13.59   | 15.25  | 6.28   |

## NOTES

\*\*\*\*\* - NO DATA

ERRORS ARE LESS THAN 20% EXCEPT:

A - ERROR BETWEEN 20% AND 100%

B - ERROR GREATER THAN 100%

Table 4-E

STRONTIUM - 90 CONCENTRATIONS IN SURFACE AIR DURING 1966  
(DPM / KSCM )

| SITE                  | JAN.  | FEB.  | MAR.  | APR.  | MAY    | JUNE  | JULY    | AUG.  | SEP.   | OCT.  | NOV.  | DEC.  |
|-----------------------|-------|-------|-------|-------|--------|-------|---------|-------|--------|-------|-------|-------|
| THULE, GREENLAND      | ***** | 26.04 | 26.29 | 27.80 | 3.54   | 14.70 | 7.95    | 6.32  | 5.46   | 4.74  | 2.44  | 5.11  |
| CHARLIE               | ***** | 5.26  | 41.50 | 15.31 | 8.42   | 5.45  | 3.30    | 4.33  | 2.17   | 1.62  | 2.39  | 1.48  |
| BRAVO                 | ***** | 8.80  | 12.60 | 20.91 | 5.99   | 7.05  | 3.79    | 4.08  | 1.95A  | 0.91  | 1.38  | 1.69  |
| MOOSONEE, ONTARIO     | 9.74  | 12.09 | 12.47 | 12.94 | 17.37  | 14.77 | 14.90   | 6.05  | 4.14   | 2.72  | 3.31  | 2.06  |
| DELTA                 | ***** | 9.18  | 16.39 | 13.50 | 14.79  | 11.49 | 7.15    | 3.20  | 4.16   | 2.23  | 2.70  | 1.63  |
| SEATTLE, WASHINGTON   | 8.15  | 9.76  | 14.23 | 15.31 | 10.83  | 10.18 | 6.16    | 5.57A | 3.60   | 2.34  | 2.69  | 1.97  |
| WESTWOOD, NEW JERSEY  | 12.28 | 13.68 | 22.54 | 19.10 | 24.90  | 34.77 | 21.40   | 9.64  | 5.98   | ***** | ***** | ***** |
| NEW YORK, NEW YORK    | 12.42 | 8.85  | 20.10 | 18.93 | 22.50  | 27.38 | 19.45   | 9.27  | 6.71   | 4.50  | 3.95  | 3.12  |
| STERLING, VIRGINIA    | 9.93  | 11.14 | 17.10 | 13.22 | 23.92A | 26.76 | 17.98   | 8.91  | 5.38   | 4.46  | 3.58  | 3.80  |
| ECHO                  | ***** | 17.01 | 17.60 | 19.51 | 22.22  | 5.29  | *****   | 5.04  | 4.33   | 2.03  | 2.40  | 1.71  |
| MIAMI, FLORIDA        | 13.45 | 12.70 | 21.74 | 32.44 | *****  | 12.51 | 6.11    | 1.08  | 1.89   | 3.13  | 5.94  | 4.27  |
| BIMINI, BAHAMAS       | ***** | ***** | ***** | ***** | *****  | ***** | 16.61   | 9.96  | 4.08   | 5.42  | 7.38  | 4.20  |
| MAUNA LOA, HAWAII     | 18.06 | 18.81 | 36.68 | 30.85 | 31.59  | 21.88 | 15.25   | 5.78  | 4.33   | 2.45  | 2.44  | 4.46  |
| SAN JUAN, PUERTO RICO | 6.16  | 14.28 | 18.32 | 13.41 | 12.19  | 14.68 | 6.25    | 5.85  | 2.95   | 1.24  | 2.41  | 2.56  |
| BALBOA, PANAMA        | 6.48  | 10.22 | 11.90 | 9.23  | 3.18   | 0.73  | 1.08    | 1.16  | 0.24A  | 0.20A | 1.39  | 1.36  |
| GUAYAQUIL, ECUADOR    | 2.07  | 2.38  | 1.33  | 1.27  | 1.17   | 1.75  | 2.56    | 3.56  | 1.75   | 2.24  | 4.77  | 2.77  |
| LIMA, PERU            | 8.42  | 7.71  | 5.12  | 3.97  | 2.73   | 2.65  | 7.04    | 5.01  | 7.17   | 12.61 | 9.08  | 5.27  |
| CHACALTAYA, BOLIVIA   | 3.70  | 2.20  | 3.47  | 2.59  | 3.19   | 6.04  | 14.54   | 6.27  | 27.81A | 10.42 | 6.80  | 3.81  |
| ANTOFAGASTA, CHILE    | 7.36  | 5.98  | 3.58  | 3.19  | 2.85   | 2.51  | 5.79    | 4.28  | 5.33   | 12.16 | 4.08  | 2.93  |
| PORTILLO, CHILE       | ***** | ***** | ***** | ***** | 8.18   | 5.08  | 152.00A | 27.68 | *****  | ***** | ***** | 21.60 |
| SANTIAGO, CHILE       | 9.13  | 11.05 | 5.80  | 4.91A | 3.43   | 2.71  | 6.70    | 5.41  | 3.74   | 5.05  | 5.66  | 3.92  |
| PUERTO MONTT, CHILE   | 4.86  | 5.54  | 3.32  | 3.00  | 1.78   | 1.59A | 1.46    | 3.34  | 1.78   | 2.00  | 3.35  | 1.43  |
| PUNTA ARENAS, CHILE   | 2.84  | 2.72  | 3.14  | 1.88  | 1.29   | 1.30  | 1.55    | 2.12  | 1.34   | 0.72  | 0.83A | 1.03  |

## NOTES

\*\*\*\*\* - NO DATA

ERRORS ARE LESS THAN 20% EXCEPT:

A - ERROR BETWEEN 20% AND 100%

B - ERROR GREATER THAN 100%

Table 4-F

 ZIRCONIUM - 95 CONCENTRATIONS IN SURFACE AIR DURING 1966  
 (DPM / KSCM )

| SITE                  | JAN.  | FEB.  | MAR.  | APR.  | MAY   | JUNE   | JULY    | AUG.   | SEP.   | OCT.    | NOV.   | DEC.   |
|-----------------------|-------|-------|-------|-------|-------|--------|---------|--------|--------|---------|--------|--------|
| THULE, GREENLAND      | ***** | ***** | ***** | ***** | 5.16A | 39.15  | 10.45   | 3.29   | 2.50   | 1.45A   | 29.00  | 12.35  |
| CHARLIE               | ***** | ***** | ***** | ***** | 5.34  | 6.60   | 10.80   | 4.08   | 2.46   | 1.07A   | 23.66  | 4.83A  |
| BRAVO                 | ***** | ***** | ***** | ***** | 2.65A | 7.20   | 13.50   | 86.31  | 2.72   | 3.75    | 12.29  | 11.36A |
| MOOSONEE, ONTARIO     | ***** | ***** | ***** | ***** | 9.60  | 27.79  | 13.83   | 2.47   | 2.34A  | 3.19    | 31.47  | 8.46   |
| DELTA                 | ***** | ***** | ***** | ***** | 8.64  | 26.78  | 34.97   | 1.79   | 2.73   | 6.07    | 36.89  | 4.07A  |
| SEATTLE, WASHINGTON   | ***** | ***** | ***** | ***** | 58.06 | 17.98  | 12.76   | 4.60   | 2.26A  | 1.60    | 15.65  | 2.26   |
| NEW YORK, NEW YORK    | ***** | ***** | ***** | ***** | 34.61 | 68.21  | 39.50   | 5.47   | 3.15   | 5.89    | 88.81  | 12.82  |
| STERLING, VIRGINIA    | ***** | ***** | ***** | ***** | 32.22 | 85.07  | 271.51  | 6.76   | 3.59A  | 1.47A   | 41.38  | 11.73  |
| ECHO                  | ***** | ***** | ***** | ***** | 37.98 | 20.79  | *****   | 3.29   | 1.70   | 1.24A   | 24.96  | *****B |
| MIAMI, FLORIDA        | ***** | ***** | ***** | ***** | 64.36 | 131.22 | 17.52   | 37.00  | 1.01A  | 6.92    | 167.50 | 9.21   |
| BIMINI, BAHAMAS       | ***** | ***** | ***** | ***** | ***** | *****  | 123.21  | 14.15  | 4.52A  | 7.54    | 160.22 | 9.63   |
| MAUNA LOA, HAWAII     | ***** | ***** | ***** | ***** | 90.44 | 453.85 | 55.89   | 6.09   | 4.73   | 19.53   | 18.41  | 17.12  |
| SAN JUAN, PUERTO RICO | ***** | ***** | ***** | ***** | 97.14 | 144.26 | 62.23   | 7.51   | 2.93A  | 10.77   | 15.13  | 11.00  |
| BALBOA, PANAMA        | ***** | ***** | ***** | ***** | 16.94 | 16.81  | 10.73   | 5.45   | 2.62A  | 12.12   | 11.06  | 5.97   |
| GUAYAQUIL, ECUADOR    | ***** | ***** | ***** | ***** | ***** | 11.96  | 42.41   | 5.40   | 28.61  | 16.50   | 207.47 | 112.27 |
| LIMA, PERU            | ***** | ***** | ***** | ***** | 5.99A | 6.45   | 767.20  | 154.42 | 96.13  | 1266.30 | 595.38 | 274.93 |
| CHACALTAYA, BOLIVIA   | ***** | ***** | ***** | ***** | 3.93A | 52.36  | 4537.45 | 614.11 | 14,498 | 2784.04 | 758.77 | 204.21 |
| ANTOFAGASTA, CHILE    | ***** | ***** | ***** | ***** | 1.38A | *****  | 585.71  | 103.62 | 8.36   | 19.80   | 251.99 | 109.76 |
| PORTILLO, CHILE       | ***** | ***** | ***** | ***** | 46.29 | *****B | 15,775  | 410.71 | *****  | *****   | *****  | 514.40 |
| SANTIAGO, CHILE       | ***** | ***** | ***** | ***** | ***** | *****  | 450.17  | 172.26 | 16.48  | 2.64A   | 272.92 | 138.26 |
| PUERTO MONTT, CHILE   | ***** | ***** | ***** | ***** | ***** | *****  | 44.63   | 56.68  | 12.75  | 46.67   | 122.35 | 50.00  |
| PUNTA ARENAS, CHILE   | ***** | ***** | ***** | ***** | ***** | *****  | 6.45    | 12.15  | 8.38   | 24.24   | 28.31  | 26.35  |

## NOTES

\*\*\*\*\* - NO DATA

ERRORS ARE LESS THAN 20% EXCEPT:

A - ERROR BETWEEN 20% AND 100%

B - ERROR GREATER THAN 100%

Table 4-G

## CADMIUM - 109 CONCENTRATIONS IN SURFACE AIR DURING 1966

(DPM / KSCM) X 100

| SITE                  | JAN.  | FEB.    | MAR.   | APR.   | MAY    | JUNE   | JULY   | AUG.   | SEP.   | OCT.   | NOV.   | DEC.   |
|-----------------------|-------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| THULE, GREENLAND      | ***** | *****   | 78.87  | 80.12  | 77.25  | *****  | *****  | *****  | 23.93  | 0.0    | 0.0    | 24.45  |
| CHARLIE               | ***** | 1301.17 | 62.15  | 61.05  | 12.29  | 37.99  | *****  | 26.75  | 52.01  | 0.0    | 0.0    | 0.0    |
| BRAVO                 | ***** | *****   | 50.92  | 27.09  | 15.83  | 40.23  | *****  | *****  | 26.96  | 20.60  | 34.31  | 54.71  |
| MOOSONEE, ONTARIO     | 18.13 | *****   | 68.65  | 59.35  | 39.14  | *****  | 53.63  | *****  | *****  | 0.0    | 0.0    | 0.0    |
| DELTA                 | ***** | *****   | 56.91  | *****  | 58.15  | *****  | 11.61  | *****  | 20.98  | 37.50  | 0.0    | 37.80  |
| SEATTLE, WASHINGTON   | 41.05 | *****   | 62.90  | *****  | 45.00  | 108.46 | *****  | 117.43 | *****  | 77.03  | 0.0    | 47.35  |
| WESTWOOD, NEW JERSEY  | ***** | *****   | *****  | 59.78  | 79.55  | 63.08  | 108.12 | 63.29  | 25.95  | *****  | *****  | *****  |
| NEW YORK, NEW YORK    | 48.98 | *****   | 84.19  | 46.11  | 94.64  | 119.49 | 58.50  | 75.53  | 497.63 | 657.89 | 121.00 | 15.47  |
| STERLING, VIRGINIA    | ***** | 140.85  | 104.35 | 80.25  | 55.15  | *****  | 194.35 | 31.03  | *****  | 0.0    | 0.0    | 67.41  |
| ECHO                  | ***** | *****   | 90.91  | 2.69   | 43.95  | 9.89   | *****  | *****  | 125.96 | 0.0    | 0.0    | 49.19  |
| MIAMI, FLORIDA        | 62.15 | *****   | 62.05  | 109.52 | 54.62  | 84.25  | *****  | *****  | *****  | 80.11  | 61.11  | 65.17  |
| BIMINI, BAHAMAS       | ***** | *****   | *****  | *****  | *****  | *****  | 310.71 | 339.29 | 47.06  | 0.0    | 0.0    | 53.26  |
| MAUNA LOA, HAWAII     | 52.02 | 50.22   | 153.96 | 267.35 | 169.72 | 30.46  | *****  | 109.30 | *****  | 0.0    | 0.0    | 25.00  |
| SAN JUAN, PUERTO RICO | 24.51 | *****   | 381.19 | *****  | 58.07  | 22.80  | *****  | 50.39  | *****  | 0.0    | 13.91  | 65.91  |
| BALBOA, PANAMA        | 17.93 | 80.00   | 58.91  | *****  | 28.04  | *****  | 566.20 | *****  | *****  | 74.38  | 0.0    | 80.56  |
| GUAYAQUIL, ECUADOR    | ***** | *****   | 153.12 | *****  | *****  | *****  | 65.62  | 36.32  | *****  | 0.0    | 12.37  | 0.0    |
| LIMA, PERU            | 96.46 | *****   | 219.18 | *****  | 44.03  | *****  | *****  | *****  | 48.51  | 0.0    | 0.0    | 62.25  |
| CHACALTAYA, BOLIVIA   | 47.12 | *****   | 76.78  | 263.92 | *****  | *****  | 85.46  | 65.15  | 112.08 | 384.98 | 22.37  | 116.84 |
| ANTOFAGASTA, CHILE    | 81.51 | 37.39   | 135.23 | 121.30 | *****  | *****  | 47.86  | *****  | 47.22  | 9.55   | 0.0    | 21.11  |
| PORTILLO, CHILE       | ***** | *****   | *****  | *****  | 161.80 | *****  | 167.33 | 280.36 | *****  | *****  | *****  | 170.40 |
| SANTIAGO, CHILE       | ***** | *****   | 275.43 | *****  | 22.45  | 167.44 | 41.24  | 40.07  | 42.68  | 0.0    | 0.0    | 60.13  |
| PUERTO MONTT, CHILE   | 62.53 | 42.34   | 36.71  | 37.18  | 20.95  | *****  | *****  | 46.93  | *****  | 250.00 | 0.0    | 0.0    |
| PUNTA ARENAS, CHILE   | ***** | *****   | 80.41  | 30.87  | 43.27  | *****  | 162.18 | *****  | 53.03  | 0.0    | 0.0    | 146.55 |

## NOTES

\*\*\*\*\* - NO DATA

ERRORS ARE LESS THAN 20% EXCEPT:

A - ERROR BETWEEN 20% AND 100%

B - ERROR GREATER THAN 100%

Table 4-H

 CESIUM - 137 CONCENTRATIONS IN SURFACE AIR DURING 1966  
 (DPM / KSCM )

| SITE                  | JAN.  | FEB.  | MAR.  | APR.  | MAY   | JUNE  | JULY  | AUG.  | SEP.  | OCT.  | NOV.  | DEC.  |
|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| THULE, GREENLAND      | ***** | 37.54 | 42.27 | 37.98 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| CHARLIE               | ***** | 7.13  | 55.61 | 17.60 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| BRAVO                 | ***** | 11.20 | 16.50 | 25.37 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| MOOSONEE, ONTARIO     | 15.34 | 16.87 | 24.23 | 17.46 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| DELTA                 | ***** | 15.91 | 21.64 | 15.51 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| WESTWOOD, NEW JERSEY  | ***** | ***** | ***** | 27.07 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| NEW YORK, NEW YORK    | 24.64 | 15.75 | 39.35 | 26.66 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| STERLING, VIRGINIA    | 15.24 | 16.07 | 29.47 | 16.48 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| ECHC                  | ***** | 24.31 | 29.75 | 22.65 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| MIAMI, FLORIDA        | 24.07 | 21.80 | 44.10 | 44.05 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| MAUNA LOA, HAWAII     | 38.99 | 24.80 | 57.74 | 41.16 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| SAN JUAN, PUERTO RICO | 10.76 | 22.58 | 30.50 | 18.28 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| BALBOA, PANAMA        | 9.94  | 14.63 | 18.33 | 14.01 | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| GUAYAQUIL, ECUADOR    | 3.80  | 3.70  | 2.79  | 2.16  | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| LIMA, PERU            | 13.71 | 12.29 | 7.45  | 5.34  | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| CHACALTAYA, BOLIVIA   | 9.29  | 3.61  | 5.12  | 4.68  | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| ANTOFAGASTA, CHILE    | 8.70  | 9.46  | 19.51 | 5.56  | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| SANTIAGO, CHILE       | 20.06 | 18.68 | 10.03 | 6.56  | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| PUERTO MONTT, CHILE   | 9.77  | 7.99  | 5.32  | 4.38  | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |
| PUNTA ARENAS, CHILE   | 5.79  | 4.10  | 5.18  | 3.17  | ***** | ***** | ***** | ***** | ***** | ***** | ***** | ***** |

## NOTES

\*\*\*\*\* - NO DATA

ERRORS ARE LESS THAN 20% EXCEPT:

- A - ERROR BETWEEN 20% AND 100%
- B - ERROR GREATER THAN 100%

Table 4-I

CERIUM - 141 CONCENTRATIONS IN SURFACE AIR DURING 1966  
(DPM / KSCM )

| SITE                  | JAN.  | FEB.  | MAR.  | APR.  | MAY     | JUNE   | JULY    | AUG.    | SEP.    | OCT.     | NOV.    | DEC.     |
|-----------------------|-------|-------|-------|-------|---------|--------|---------|---------|---------|----------|---------|----------|
| THULE, GREENLAND      | ***** | ***** | ***** | ***** | 608.47A | 22.03  | 36.69A  | *****   | *****   | 0.0      | 46.88A  | 0.0      |
| CHARLIE               | ***** | ***** | ***** | ***** | *****   | 33.62A | *****   | *****   | 101.93A | 0.0      | 94.37A  | 0.0      |
| BRAVO                 | ***** | ***** | ***** | ***** | 261.76  | 17.97  | 32.10   | 81.88   | 41.54A  | 0.0      | 80.39A  | *****B   |
| MOOSONEE, ONTARIO     | ***** | ***** | ***** | ***** | *****   | 64.03  | *****   | *****   | 103.06A | 21.61A   | 44.53A  | *****B   |
| DELTA                 | ***** | ***** | ***** | ***** | *****   | 39.05  | 28.24A  | 27.52A  | 69.72A  | 0.0      | 88.23A  | 221.65A  |
| SEATTLE, WASHINGTON   | ***** | ***** | ***** | ***** | 21.89A  | 28.10  | 28.92A  | *****   | 108.52A | 40.27A   | 0.0     | 0.0      |
| NEW YORK, NEW YORK    | ***** | ***** | ***** | ***** | 496.43  | 166.15 | 52.75A  | 54.38A  | 78.91A  | 19.63A   | *****   | 102.08A  |
| STERLING, VIRGINIA    | ***** | ***** | ***** | ***** | 35.31A  | 105.63 | 108.60  | 33.16A  | *****   | 26.68A   | 117.51A | 0.0      |
| ECHO                  | ***** | ***** | ***** | ***** | 26.53A  | 37.86A | *****   | 72.37   | 44.09A  | 0.0      | 0.0     | 94.90A   |
| MIAMI, FLORIDA        | ***** | ***** | ***** | ***** | 261.54  | 166.30 | 63.47   | 65.42A  | 95.22A  | 13.40A   | 0.0     | 0.0      |
| BIMINI, BAHAMAS       | ***** | ***** | ***** | ***** | *****   | *****  | 105.36  | 79.91A  | 414.93  | 0.0      | 134.53A | 0.0      |
| MAUNA LOA, HAWAII     | ***** | ***** | ***** | ***** | 294.42  | 646.15 | 141.83  | 52.71   | *****   | 0.0      | 0.0     | 0.0      |
| SAN JUAN, PUERTO RICO | ***** | ***** | ***** | ***** | 125.52  | 147.90 | 84.57   | *****   | *****   | 0.0      | 0.0     | 0.0      |
| BALBOA, PANAMA        | ***** | ***** | ***** | ***** | 33.83A  | 16.44  | 18.42A  | 40.27   | 51.86A  | 0.0      | 0.0     | 323.94A  |
| GUAYAQUIL, ECUADOR    | ***** | ***** | ***** | ***** | *****   | 16.96A | 593.12  | 18.01A  | 77.27A  | 428.57A  | 0.0     | 845.95A  |
| LIMA, PERU            | ***** | ***** | ***** | ***** | 3.24A   | 16.82  | 1240.74 | 154.42  | *****   | 2078.80A | 0.0     | 1135.45A |
| CHACALTAYA, BOLIVIA   | ***** | ***** | ***** | ***** | 13.88   | 88.21  | 7224.67 | 684.65A | *****A  | 2281.69A | 0.0     | 0.0      |
| ANTOFAGASTA, CHILE    | ***** | ***** | ***** | ***** | *****   | *****  | 854.76  | 200.24A | *****   | 2369.35  | 0.0     | 0.0      |
| PORTILLO, CHILE       | ***** | ***** | ***** | ***** | 30.11A  | 18.37  | *****   | 123.81A | *****   | *****    | *****   | 0.0      |
| SANTIAGO, CHILE       | ***** | ***** | ***** | ***** | *****   | 4.11A  | 652.92  | 222.60  | 210.28A | 0.0      | 0.0     | *****B   |
| PUERTO MONTT, CHILE   | ***** | ***** | ***** | ***** | *****   | *****  | 11.81   | 152.71  | 208.19A | 0.0      | 764.71A | 0.0      |
| PUNTA ARENAS, CHILE   | ***** | ***** | ***** | ***** | *****   | 3.75A  | 10.56   | 32.92   | 84.85A  | 0.0      | 201.56A | 0.0      |

## NOTES

\*\*\*\*\* - NO DATA

ERRORS ARE LESS THAN 20% EXCEPT:

A - ERROR BETWEEN 20% AND 100%

B - ERROR GREATER THAN 100%

Table 4-J

 CERIUM - 144 CONCENTRATIONS IN SURFACE AIR DURING 1966  
 (DPM / KSCM )

| SITE                  | JAN.  | FEB.  | MAR.  | APR.  | MAY    | JUNE   | JULY    | AUG.   | SEP.    | OCT.   | NOV.   | DEC.   |
|-----------------------|-------|-------|-------|-------|--------|--------|---------|--------|---------|--------|--------|--------|
| THULE, GREENLAND      | ***** | 55.09 | 46.65 | 46.88 | 31.75  | 21.78  | 11.01   | 9.38   | 6.99    | 6.58   | 9.24   | 10.39  |
| CHARLIE               | ***** | 9.53  | 70.56 | 27.37 | 13.77  | 8.29   | 5.35    | 6.15   | 2.77    | 2.12   | 8.59   | 3.78   |
| BRAVO                 | ***** | 17.41 | 21.61 | 25.12 | 8.07   | 10.90  | 5.02    | 6.70   | 2.85    | 0.91   | 4.56   | 3.77   |
| MOOSONEE, ONTARIO     | 18.75 | 23.03 | 26.13 | 19.10 | 24.55  | 22.26  | 25.23   | 9.36   | 5.89    | 4.19   | 10.88  | 4.84   |
| DELTA                 | ***** | 21.10 | 27.45 | 20.63 | 23.48  | 18.79  | 13.99   | 4.62   | 5.02    | 2.44   | 11.26  | 3.73   |
| SEATTLE, WASHINGTON   | 15.07 | 18.29 | 25.97 | 25.78 | 27.11  | 15.92  | 12.88   | 8.20   | 4.89    | 3.62   | 1.13   | 3.59   |
| WESTWOOD, NEW JERSEY  | 24.22 | 24.49 | 34.36 | 27.99 | 52.78  | 57.23  | 31.37   | 11.64  | 6.49    | *****  | *****  | *****  |
| NEW YORK, NEW YORK    | 26.24 | 17.66 | 36.77 | 28.70 | 47.86  | 56.92  | 40.25   | 14.86  | 7.01    | *****B | 36.30  | 9.52   |
| STERLING, VIRGINIA    | 19.71 | 22.41 | 30.43 | 18.73 | 38.92  | 49.30  | 30.65   | 12.76  | 6.59    | 5.80   | 13.40  | 7.36   |
| ECHO                  | ***** | 34.08 | 34.50 | 30.27 | 35.66  | 12.89  | *****   | 7.16   | 5.12    | 2.75   | 8.43   | 2.69   |
| MIAMI, FLORIDA        | 33.76 | 31.74 | 51.54 | 50.60 | *****B | *****B | 13.76   | 7.91   | 2.60    | 5.52   | 33.89  | 10.29  |
| BIMINI, BAHAMAS       | ***** | ***** | ***** | ***** | *****  | *****  | 27.50   | 15.09  | 6.20    | 8.98   | 51.93  | 14.05  |
| MAUNA LOA, HAWAII     | 45.56 | 39.12 | 62.64 | 43.54 | 127.89 | *****B | 29.96   | 8.29   | 5.55    | 3.85   | 8.56   | 10.00  |
| SAN JUAN, PUERTO RICO | 12.75 | 29.16 | 28.71 | 20.92 | 26.30  | *****  | 17.34   | 9.69   | 4.14    | 3.39   | 6.43   | 5.34   |
| BALBOA, PANAMA        | 12.21 | 22.60 | 19.31 | 17.30 | 7.33   | 2.48   | 3.63    | 2.65   | 0.87    | 2.74   | 4.66   | 3.24   |
| GUAYAQUIL, ECUADOR    | 3.77  | 4.37  | 2.22  | 2.03  | 1.70   | *****B | 43.84   | 6.72   | 5.78    | 56.30  | 31.96  | 42.82  |
| LIMA, PERU            | 14.20 | 13.75 | 8.41  | 5.45  | 3.69   | 6.26   | 110.58  | 23.70  | 24.35   | 277.17 | 178.32 | 95.97  |
| CHACALTAYA, BOLIVIA   | 6.42  | 5.55  | 5.02  | 4.79  | 4.38   | 18.58  | 647.58  | 114.94 | 1573.58 | 461.03 | 182.46 | 71.05  |
| ANTOFAGASTA, CHILE    | 12.81 | 10.23 | 5.42  | 4.81  | 3.95   | 5.73   | 95.71   | 16.14  | 18.89   | 250.00 | 93.37  | 46.17  |
| PORTILLO, CHILE       | ***** | ***** | ***** | ***** | 16.97  | 12.22  | 2460.00 | 108.93 | *****   | *****  | *****  | 269.60 |
| SANTIAGO, CHILE       | 13.98 | 15.54 | 9.18  | 6.16  | 4.67   | 4.11   | 749.14  | 33.01  | 16.98   | 79.02  | 85.23  | 67.85  |
| PUERTO MONTT, CHILE   | 8.71  | 9.39  | 5.67  | 8.03  | 2.67   | 3.65   | 2.98    | 12.09  | 8.06    | 9.67   | 36.00  | 16.77  |
| PUNTA ARENAS, CHILE   | 5.10  | 4.53  | 4.54  | 2.90  | 1.83   | 1.58   | 2.34    | 3.85   | 2.95    | 5.24   | 9.35   | 7.00   |

## NOTES

\*\*\*\*\* - NO DATA  
 ERRORS ARE LESS THAN 20% EXCEPT:  
 A - ERROR BETWEEN 20% AND 100%  
 B - ERROR GREATER THAN 100%

II  
20

Table 4-K

## PLUTONIUM - 238 CONCENTRATIONS IN SURFACE AIR DURING 1966

(DPM / KSCM) X 100

| SITE                  | JAN.  | FEB.  | MAR.  | APR.  | MAY   | JUNE  | JULY  | AUG.  | SEP.  | OCT.  | NOV.  | DEC.  |
|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| THULE, GREENLAND      | ***** | 0.93  | 0.96  | 2.18  | 1.09  | 1.50  | 0.51  | 10.20 | 3.10  | 2.32  | 0.41  | 0.30  |
| CHARLIE               | ***** | ***** | 2.56  | 4.34  | 0.96  | 1.03  | 0.49  | 1.39  | 0.70  | 1.22  | 2.94  | 0.0   |
| BRAVO                 | ***** | ***** | ***** | 2.64  | 0.87  | 0.96  | 1.55  | ***** | 1.10  | 2.52  | 2.27  | 0.0   |
| MOOSONEE, ONTARIO     | ***** | 1.93  | 0.55  | ***** | 0.97  | 0.81  | 1.72  | 3.07  | 2.67  | 1.58  | 0.89  | 0.77  |
| DELTA                 | ***** | 1.15  | 0.82  | 1.37  | 1.02  | 3.55  | 0.53  | 0.75  | 0.55  | 1.83  | 1.87  | 0.0   |
| SEATTLE, WASHINGTON   | 1.30  | ***** | 0.62  | 3.26  | 1.34  | ***** | 5.58  | 0.95  | 3.32  | 2.03  | 2.35  | 1.39  |
| WESTWOOD, NEW JERSEY  | 0.87  | 0.52  | 0.89  | 8.21  | 1.87  | 2.32  | ***** | ***** | ***** | ***** | ***** | ***** |
| NEW YORK, NEW YORK    | 1.71  | 2.06  | 0.74  | 5.65  | 4.86  | 8.00  | 2.95  | 2.08  | 2.35  | 2.50  | 3.68  | 2.31  |
| STERLING, VIRGINIA    | ***** | 0.49  | 0.64  | ***** | 98.45 | 2.08  | 2.90  | 4.40  | 5.49  | 1.87  | 0.0   | 1.56  |
| ECHO                  | ***** | ***** | 0.87  | 3.27  | 2.21  | 0.73  | ***** | 4.86  | 3.39  | 2.81  | 1.95  | 0.0   |
| MIAMI, FLORIDA        | 1.29  | ***** | 1.61  | 2.13  | 2.56  | 1.71  | 1.46  | ***** | 1.94  | 1.27  | 1.58  | 0.74  |
| BIMINI, BAHAMAS       | ***** | ***** | ***** | ***** | ***** | ***** | 2.20  | 5.89  | ***** | 3.37  | 4.53  | 0.0   |
| MAUNA LOA, HAWAII     | 0.77  | 2.21  | 1.86  | 5.58  | 2.73  | 2.26  | 2.10  | 6.20  | ***** | 1.88  | 0.0   | 9.00  |
| SAN JUAN, PUERTO RICO | 2.67  | 0.91  | 0.51  | ***** | 2.19  | 0.90  | 0.77  | 3.25  | 4.58  | 3.95  | 0.0   | 1.28  |
| BALBOA, PANAMA        | 0.94  | ***** | 0.41  | ***** | ***** | ***** | ***** | ***** | 1.35  | 2.59  | 2.64  | 4.25  |
| GUAYAQUIL, ECUADOR    | ***** | ***** | 0.34  | ***** | 0.35  | 2.00  | ***** | 2.10  | 4.84  | 6.78  | 2.45  | 6.29  |
| LIMA, PERU            | 0.08  | ***** | 10.30 | 0.54  | 1.72  | 1.43  | 5.40  | 5.66  | 14.91 | 27.72 | 1.79  | 13.60 |
| CHACALTAYA, BOLIVIA   | 0.61  | ***** | 0.50  | 6.86  | 3.13  | 10.05 | 15.15 | 10.83 | 99.62 | 25.82 | 4.25  | 8.42  |
| ANTOFAGASTA, CHILE    | 0.29  | 1.05  | 0.46  | 1.67  | 1.58  | 2.13  | 20.76 | 5.72  | 14.62 | 26.88 | 1.83  | 7.04  |
| PORTILLO, CHILE       | ***** | ***** | ***** | ***** | 10.40 | 8.17  | 76.00 | 42.14 | ***** | ***** | ***** | 50.64 |
| SANTIAGO, CHILE       | 1.65  | 0.52  | 1.26  | 1.08  | ***** | 4.84  | 2.77  | 1.68  | 16.73 | 4.79  | 2.77  | 8.59  |
| PUERTO MONTT, CHILE   | 0.47  | 1.03  | ***** | 2.49  | 0.71  | 2.70  | 1.73  | 12.31 | 37.97 | 3.69  | 4.29  | 2.14  |
| PUNTA ARENAS, CHILE   | ***** | ***** | 0.06  | 1.78  | 0.51  | 1.78  | ***** | 3.76  | 4.97  | 3.97  | 3.38  | 3.25  |

## NOTES

\*\*\*\*\* - NO DATA

ERRORS ARE LESS THAN 20% EXCEPT:

A - ERROR BETWEEN 20% AND 100%

B - ERROR GREATER THAN 100%

Table 4-L

## PLUTONIUM - 239 CONCENTRATIONS IN SURFACE AIR DURING 1966

(DPM / KSCM ) X 100

| SITE                  | JAN.  | FEB.  | MAR.  | APR.  | MAY    | JUNE   | JULY   | AUG.  | SEP.   | OCT.  | NOV.  | DEC.  |
|-----------------------|-------|-------|-------|-------|--------|--------|--------|-------|--------|-------|-------|-------|
| THULE, GREENLAND      | ***** | 36.84 | 41.24 | 52.23 | 39.42  | 22.58  | 9.12   | 6.04  | 33.13  | 3.85  | 3.20  | 4.40  |
| CHARLIE               | ***** | 7.81  | 0.26  | 30.74 | 16.87  | 6.84   | 3.97   | 6.83  | 2.50   | 3.88  | 6.82  | 2.04  |
| BRAVO                 | ***** | 9.20  | 19.41 | 45.32 | 15.09  | 10.80  | 4.09   | 3.24  | 9.30   | 2.43  | 6.47  | 2.61  |
| MOOSONEE, ONTARIO     | 8.65  | 14.60 | 28.98 | 32.67 | 25.51  | 21.80  | 17.67  | 5.66  | 20.19  | 5.72  | 3.68  | 3.75  |
| DELTA                 | ***** | 12.20 | 33.27 | 25.05 | 25.88  | 14.10A | 6.77   | 2.78  | 10.80  | 27.98 | 2.75  | 1.72  |
| SEATTLE, WASHINGTON   | 8.71  | 13.06 | 26.90 | 40.05 | 27.69  | 14.23  | 13.87  | 1.95  | 21.95  | 6.43  | 10.77 | 3.57  |
| WESTWOOD, NEW JERSEY  | 31.94 | 18.74 | 34.08 | 52.72 | 52.02  | 78.15  | *****  | ***** | *****  | ***** | ***** | ***** |
| NEW YORK, NEW YORK    | 20.41 | 6.71  | 38.71 | 51.58 | 123.57 | 41.38  | 27.75  | 20.85 | 12.89  | 23.58 | 9.52  | 9.79  |
| STERLING, VIRGINIA    | 14.71 | 10.93 | 32.37 | 29.87 | 44.85  | 40.85  | 26.18  | 12.04 | 50.54  | 9.17  | 7.45  | 5.56  |
| ECHO                  | ***** | 13.89 | 32.02 | 41.26 | 39.80  | 5.21   | *****  | 15.10 | 7.60   | 6.02  | 7.19  | 4.85  |
| MIAMI, FLORIDA        | 30.18 | ***** | 54.62 | 67.26 | 18.33  | 19.03  | 8.93   | 2.03  | 12.61  | 6.29  | 5.14  | 6.20  |
| BIMINI, BAHAMAS       | ***** | ***** | ***** | ***** | *****  | *****  | 15.36  | 14.24 | 216.74 | 10.64 | 40.06 | 6.95  |
| MAUNA LOA, HAWAII     | 31.69 | 26.96 | 64.53 | 55.78 | 49.40  | 42.31  | 18.78  | 12.40 | *****  | 4.96  | 4.11  | 9.12  |
| SAN JUAN, PUERTO RICO | 10.67 | 27.29 | 34.46 | 27.36 | 27.60  | 15.66  | 8.46   | 8.66  | 92.26  | 8.21  | 2.28  | 5.94  |
| BALBOA, PANAMA        | 10.00 | 10.19 | 19.57 | 1.32  | 7.80   | 0.94   | 2.90   | 4.03  | 15.79  | 4.13  | 4.89  | 5.92  |
| GUAYAQUIL, ECUADOR    | 2.57  | 5.21  | 3.23  | 3.36  | 1.82   | 2.05   | 33.24  | 5.02  | 7.43   | 12.02 | 3.66  | 7.31  |
| LIMA, PERU            | 7.63  | 17.29 | 1.33  | ***** | 5.78   | 3.55   | 47.35  | 6.14  | 18.42  | 30.43 | 2.63  | 16.28 |
| CHACALTAYA, BOLIVIA   | 6.56  | 8.98  | 6.82  | 21.06 | 3.75   | 9.53   | 68.72  | 29.00 | 172.83 | 48.83 | 6.23  | 16.11 |
| ANTOFAGASTA, CHILE    | 11.95 | 10.03 | 5.72  | 8.05  | 5.78   | 5.02   | 47.86  | 10.19 | 65.40  | 31.91 | 15.65 | 9.74  |
| PORTILLO, CHILE       | ***** | ***** | ***** | ***** | 13.48  | 10.28  | 596.00 | 5.68  | *****  | ***** | ***** | 42.64 |
| SANTIAGO, CHILE       | 7.64  | 10.98 | 9.01  | 10.29 | *****  | 5.89   | 15.50  | 12.05 | 14.98  | 11.66 | 12.71 | 13.41 |
| PUERTO MONTT, CHILE   | 7.65  | 12.79 | 5.75  | 6.95  | 2.98   | 4.00   | 5.18   | 9.93  | 27.54  | 7.14  | 10.18 | 6.82  |
| PUNTA ARENAS, CHILE   | 5.13  | 4.78  | 5.21  | 4.67  | 2.26   | 2.25   | 3.30   | 10.09 | 19.02  | 3.47  | 7.79  | 4.51  |

## NOTES

\*\*\*\*\* - NO DATA

ERRORS ARE LESS THAN 20% EXCEPT:

A - ERROR BETWEEN 20% AND 100%

B - ERROR GREATER THAN 100%

Table 4-m

Quality Control Results on Blank Samples - 1966  
 (Average Values in dpm per sample)

|       | Mn-54 | Fe-55 | Sr-89 | Sr-90 | Zr-95 | Cd-109 | Cs-137 | Ce-141 | Ce-144 | Pu-238 | Pu-239 |
|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|
| Jan.  | 288   | 47 A  |       | 1.0 B |       | 16 B   | 1.1 B  |        | 0      | 0.1 B  | 0.1 B  |
| Feb.  | 150 A | 47 A  |       | 1.0 B |       | 20 A   | 2.0 B  |        | 1.3 B  | 0.1 B  | 0.3 B  |
| Mar.  | 475   | 123 A |       | 0.2 B |       | 0      | 44.5   |        | 0      | 0      | 0.1 B  |
| April | 0     | 207   |       | 0.6 B |       | 0      | 3.3 B  |        | 3 B    | 0.1 B  | 0      |
| May   |       | 0     | 8 B   | 0     | 0     | 0      |        |        | 0      | 0.3 B  | 0.1 B  |
| June  |       | 104 A | 0     | 0     | 0     | 0      |        |        | 56 A   | 4 B    | 0.1 B  |
| July  |       | 139   | 0     | 0     | 310   | 0      |        |        | 100 A  | 4 B    | 0.1 B  |
| Aug.  |       | 0     | 0     | 0     | 102   | 14 B   |        |        | 0      | 0      | 0      |
| Sept. |       | 0     | 2 B   | 0.4 B | 0     | 0      |        |        | 584    | 0      | 0.8 B  |
| Oct.  |       | 0     | 0     | 0     | 47 A  | 27 B   |        |        | 4000   | 0      | 1.3 B  |
| Nov.  |       | 0     | 33 A  | 0     | 12 B  | 54 A   |        |        | 0 B    | 2 B    | 0.3 B  |
| Dec.  |       | 0     | 0     | 0.7 B | 0 B   | 0 B    |        |        | 0 B    | 1 B    | 0.2 B  |

One standard deviation of counting error is  $\pm 20\%$  except for:

A =  $\pm 20\%$  to  $\pm 100\%$

B = Greater than  $\pm 100\%$

Table 4-n

Quality Control Results on Standard Samples - 1966  
 (Average values in % Deviation)

|       | Mn-54 | Fe-55 | Sr-89 | Sr-90 | Zr-95 | Cd-109 | Cs-137 | Ce-141 | Ce-144 | Pu-238 | Pu-239 |
|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|
| Jan.  | -2    | -17   |       | -2    |       | -28    | -1     |        | +15    |        | -8     |
| Feb.  | +10   | -18   |       | -10   |       | -86    | 0      |        | +38    |        | -46    |
| Mar.  | -50   | +13   |       | -6    |       | +4     | -34    |        | -14    |        | -10    |
| April | -2    | +5    |       | -30   |       | -75    | -40    |        | -14    |        | +16    |
| May   |       | -10   |       | -4    |       | -2     |        |        | -1     |        | +10    |
| June  |       | -58   | -18   | +12   | +19   | -17    |        | -1     | -10    |        | +10    |
| July  |       | +43   | -24   | -11   | +23   | -26    |        | -72    | +20    |        | -58    |
| Aug.  |       | +2    | -32   | +10   | +29   | -19    |        | +700   | -24    | -23    | +30    |
| Sept. |       | -36   | -40   | -9    | +25   | -40    |        | +250   | -9     | -36    | +870   |
| Oct.  |       | -1    | -24   | -8    | +100  | -34    |        | +1000  | -100   | -24    | +2     |
| Nov.  |       | +28   | -15   | +2    | -8    | -14    |        | +10    | +16    | +200   | +62    |
| Dec.  |       | +31   | +49   | -78   | -9    | -22    |        | +69    | +109   | -93    | -59    |

Table 4-0

Quality Control Results on Duplicate Samples - 1966  
 (Values are  $\pm$  % Standard Deviation)

|       | Mn-54 | Fe-55 | Sr-89 | Sr-90 | Zr-95 | Cd-109 | Cs-137 | Ce-141 | Ce-144 | Pu-238 | Pu-239 |
|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|
| Jan.  | 9     | 4     |       | 9     |       | 176    | 8      |        | 2      | 70     | 5      |
| Feb.  | 10    | 6     |       | 4     |       | -      | 1      |        | 2      | 45     | 14     |
| Mar.  | 5     | 13    |       | 5     |       | 64     | 2      |        | 1      | 42     | 4      |
| April | 3     | 10    |       | 1     |       | -      | 3      |        | 2      | -      | 32     |
| May   |       | 11    | 2     | 8     | 24    | 54     |        | 54     | 3      | 96     | 16     |
| June  |       | 18    | 28    | 2     | 31    | 27     |        | 17     | 2      | 90     | 38     |
| July  |       | 3     | 36    | 1     | 11    | 5      |        | 38     | 14     | 33     | 76     |
| Aug.  |       | 176   | 5     | 38    | 27    | -      |        | 2      | 6      | 15     | 20     |
| Sept. |       | 46    | -     | 10    | 8     | 74     |        | -      | 58     | 76     | 23     |
| Oct.  |       | 37    | 16    | 9     | 45    | -      |        | 37     | 16     | 58     | 9      |
| Nov.  |       | 11    | 43    | 3     | 61    | 40     |        | -      | 76     | 9      | 36     |
| Dec.  |       | 23    | -     | 32    | 13    | -      |        | 21     | 2      | 61     | 74     |

4. ✓ HIGH ALTITUDE BALLOON SAMPLING PROGRAM

by Philip W. Krey (HASL)

The U. S. Atomic Energy Commission's program for measuring upper stratospheric nuclear debris collected by balloon-borne filtering devices has been in continuous operation since 1956. The collection period for the balloon samples covered in this report is from October 1966 through June 1967. During this time interval, monthly collections were made at three or more altitudes up to a maximum of 41 Km at the locations given in Table 5a. Because of unique activity distributions which were observed after the 6th Chinese nuclear test (1), a special set of balloon flights were conducted during early October from Foss Field, South Dakota ( $43^{\circ} 34' N$ ).

Aircraft samples collected at 15 to 20 Km during the period February 1966 to August 1966 were obtained from the Stardust Program through the cooperation of the Defense Atomic Support Agency. The analyses of these aircraft samples will provide the area of intercomparison and correlation between the Stardust and High Altitude Balloon Sampling Programs.

Filters are shipped to HASL where total gamma measurements and gamma spectra of each sample are obtained under uniform geometry. Selected filters are then analyzed at contractor laboratories and at HASL for fission products, plutonium isotopes and other radionuclides of current interest.

RESULTS

Results of gross gamma activity and radionuclide concentrations for balloon and aircraft samples collected during the period covered by this report are given in Tables 5b and 5c, respectively. Previously reported data are repeated until all the

nuclide analyses requested for the earliest sample in the report have been completed. The balloon samples are listed in order of their latitude of collection beginning with the most northern site at 65°N. The aircraft samples are listed chronologically and then with latitude within each collection month. The results of the coded quality control program administered by the Health and Safety Laboratory during the course of these analyses without the knowledge of the contractor laboratories are given in Tables 5d, 5e and 5f.

Previous reports containing data from this program are given in references 2 through 13.

#### BALLOON SAMPLE COLLECTION DATA

Information pertaining to the collection of the balloon samples is provided by the Atmospheric Radioactivity Research Branch of the Environmental Science Services Administration where flight data prepared by the balloon operations organizations are summarized and evaluated.

#### HASL NUMBER

A number is assigned by the Health and Safety Laboratory to each individual air filter received. Filters split for radiochemical assay, after gross gamma measurements were obtained, are designated by a letter suffix to the HASL number. The gross gamma activity of each fraction of a split filter is also measured. On the assumption that the gross gamma activity of a stratospheric air filter sample is directly proportional to the volume of standard air sampled, the fraction of the total air volume sampled by each split is calculated on the basis of its total gamma activity.

### ALTITUDE

Altitude data are obtained from barometric readings on the balloon gondola and refer to pressure altitude in the ICAO Standard Atmosphere. The predominant sampling altitude is given in units of 1000 meters (KM). The entire sample was collected within  $\pm 0.6$  KM of the predominant altitude unless annotated with the symbol, ?. This symbol indicates that:

1. The altitude varies greater than the allowed  $\pm 0.6$  Km, or
2. The altitude is estimated or uncertain because of flight operational difficulties, or
3. The volume assigned to the filter is uncertain or estimated also because of flight operational difficulties.

### SAMPLING UNIT AND FLIGHT DATA

Most collections are made with the "Direct Flow Sampler" which is referred to as unit D7 in Table 5b. This system utilized one square foot of I.P.C. No. 1478 filter paper together with a Westinghouse motor and Torrington 704 blower. A discussion of this sampling unit has been presented by Wood (14).

Many samples at the higher altitudes (32 KM and above) are collected by an Air Ejector pump unit which is referred to as unit AE in Table 4b. This system employs two square feet of I.P.C. No. 1478 filter paper. The air is drawn through the filter by the aspirator action of escaping nitrogen gas released downstream of the filter. This sampler was developed by the Applied Science Division, Litton Systems, Inc. under Contract No. AT (11-1)-401 to the U. S. Atomic Energy Commission (15).

A larger model Air Ejector system has been developed by the Applied Science Division (16) to sample greater volumes of air particularly at the upper altitudes. This system, identified as HV3K in Table 5b, uses 8 square feet of IPC filter paper and filters about 50% more volume at sampling altitude than the air ejector.

For each successful flight, two equivalent air filtering units of a single type are carried aloft by the same balloon giving rise to two equivalent air filters per flight. This duplication has been limited to the lower altitude samplings in recent times. In Table 5b, the day of the flight is given for each filter, and the number of the appropriate sampling unit is also identified, i.e., D7-1 or D7-2.

#### GAMMA ACTIVITY MEASUREMENTS

The gross gamma activity concentrations (Gr Gamma) expressed as counts per minute per  $10^3$  standard cubic meters of air (cpm/KSCM) are reported in Tables 5b and 5c as of the counting date, one to two weeks after collection. Filters gamma counted beyond this two week lapse period after collection are indicated with the symbol #. Only 3 figures of the gross gamma concentrations are significant, the additional figures are the result of a machine computation and are not meaningful.

To indicate the current distribution of the debris from the Chinese 6th nuclear weapons test, the gross gamma activities of all samples received to date, even though no specific radiochemical data are yet available, are presented at the end of each section in Table 5b.

#### COUNTING PROCEDURE

The filter samples are received in the plastic bags from the collection sites and counted without prior treatment. The samples collected prior to January 1, 1966 were folded into a plastic box 80 mm x 65 mm x 31 mm deep which is placed in the center of a heavily shielded 8" diameter x 4" NaI (Tl) crystal. Of the two samples received from each flight after January 1, 1966, one (usually the sample from unit #1) is compressed into a nylon planchet 2 inches in diameter, 1 inch high. The planchets offer a more uniform and reproducible geometry than the plastic box. The second filter from each flight is still assayed in the plastic box as before. This filter is not

compressed because it may be selected at a later date for SNAP-9A particle studies or other research which could be unduly complicated by the pelletizing. There is no significant variation in the detection efficiencies of the two methods of counting.

The large filters from the HV-3K sampler are quartered, and each quarter compressed into a nylon planchet for counting. The activity reported is the integral of the four individual measurements. For all types of samples, the pulses from three phototubes, matched for pulse height response, are summed, amplified, and fed to a multichannel analyzer to obtain a gamma spectrum. The total gamma activity is obtained between 0.1 and 3.0 MeV.

#### STANDARDIZATION AND PRECISION

Because of the complexity involved in estimating the disintegration rate from the observed gamma counts per minute in a mixture of nuclides such as those present in composited weapons debris, such a conversion has not been attempted. The CPM results reported therefore, are of significance on a relative basis only. The efficiency of the counting system has been compared, however, to a standard Cs-137 source counted under the same geometry. This source yields about 0.3 counts per emitted photon which is equivalent to about 0.25 counts per disintegration of Cs-137.

The percent standard deviation of the gross gamma measurements excluding the counting statistics is about 1.3%. This estimate includes all sources of error such as fluctuations in counter response and factors relating to sampling handling, but does not include the counting statistic of an individual filter. Precision of gamma activity measurements are discussed in more detail in an earlier report (17).

### RADIOCHEMICAL MEASUREMENTS

At least one filter collected from each successful flight during the period covered by this report has been analyzed radiochemically. Since the last major nuclear weapon test series occurred at the end of 1962, only the longer lived artificially produced radionuclides were present in most of the filters analyzed. Consequently, emphasis was given to the determinations of Fe-55, Sr-90, Cd-109, Ce-144, Pu-238 and Pu-239. Periodically, Mn-54, Cd-113m, Sb-125, Cs-137 and Pm-147 were also measured.

The Chinese and French tests in 1966 injected fresh debris into the lower atmosphere. Although little of this debris was expected to rise to the balloon sampling altitudes, a search for traces of fresh fission products such as Sr-89, Zr-95, and Ce-141 was made. The half lives and dominant radiations of all these radio-nuclides are given on the last page of the Appendix to this HASL Quarterly.

The long-lived fission product and Pu-239 behavior should describe the general distribution of all previous nuclear weapon debris still present in the stratosphere. The other tracer nuclides can be associated with debris from a single detonation or a series of detonations. Mn-54 and Fe-55 were produced in large quantities in the 1961 and 1962 test series. Cd-109 was generated by the U. S. high altitude test over Johnston Island July 9, 1962. About 17,000 curies of Pu-238 were disseminated on April 21, 1964 during the reentry burnup of a SNAP-9A power source.

### ANALYTICAL LABORATORY

Practically all radiochemical analyses conducted under this program have been performed by independent contractor laboratories. These laboratories are identified as follows:

Isotopes, Inc.: II  
Tracerlab, West: TLW

### RADIOMUCIDE CONCENTRATIONS

The radionuclide concentrations reported in Tables 5b and 5c are expressed in picocuries per  $10^3$  standard cubic meters of air (pCi/KSCM). The volume of air was computed at 1013 millibars and  $15^{\circ}\text{C}$ , such that  $1\text{SCM} = 1.225$  kilograms of air. Most filters sampled between 14 and  $42\text{ m}^3$  depending upon the altitude of collection. The concentrations are reported on the collection date for the fission products and the plutonium isotopes, but on the following dates for the other nuclides:

Mn-54 and Fe-55: October 15, 1961

Cd-109 : July 9, 1962

Results of split samples or duplicate collections are listed together in the tables. One standard deviation of the counting error for all data in the tables is less than 20% and usually less than 10%, unless otherwise annotated with the symbols described below.

### QUALITY CONTROL PROGRAM

To evaluate the analytical performance of the contractor laboratories, HASL routinely submits coded blank, duplicate and standard samples for analysis. A blank is an appropriate sized piece of unexposed IPC filter paper taken from the roll of paper currently used by the flight organizations. A duplicate sample is the fraction of a single filter which was split or the equivalent sample taken from the same balloon flight. As indicated earlier, the gamma activity of each split was determined so that the geometric division of the sample and the volume of air associated with each fraction could be accurately determined. A standard is prepared by evaporating weighed aliquots of various tracer solutions calibrated at HASL onto a regulation size blank of IPC paper.

No new data from Isotopes, Inc. have been submitted since the last report on this program. Consequently, the evaluation of Isotopes, Inc. performance reported in reference 13 remains unchanged.

The analyses of the blank samples in Table 5d illustrate that the laboratory contamination for most of the nuclides investigated was either unmeasurable or relatively unimportant compared to the activities present in the aircraft and balloon filters at the lower altitudes. However, the concentrations of Cd-109 at all altitudes have essentially reached blank levels by the early part of 1966.

At the higher altitudes, similar conditions prevail with the exception that for the very small concentrations of many nuclides, the blank levels for these nuclides sometimes represent as much as 50% of the activity collected by the filter. However, the concentrations reported by Tracerlab are corrected for the average blank value, and the uncertainty of the reported data include the variability of the blank. The impact of the possibly high blank level in any one sample from the upper altitudes on the reliability of the data from that sample is appreciably lessened by the evaluation of the reasonableness of each datum in this program. Each nuclide analysis is compared with analyses of other nuclides in the same sample and with the analyses of other samples adjacent in time and space before it is accepted. If these comparisons uncover unreasonable concentrations or composition of radioactive debris, the suspect nuclides are annotated. Since it is unlikely that laboratory contamination can satisfy these criteria, acceptable data in this program, even at the very low levels, probably do not suffer seriously from laboratory contamination.

According to Volk (18), an estimate of the standard deviation of a measurement can be obtained by the equation:

$$\sigma = 0.8862d$$

where  $\sigma$  = percent standard deviation  
 $d$  = deviation between duplicate measurements  
expressed as percent of the mean.

A summary of the duplicate analyses reported by Tracerlab in Tables 5b and 5c is given in Table 5e where the average percent standard deviation is listed for each nuclide with the number of duplicate analyses involved. Only duplicates in which the counting error was less than 20% were included. The average percent standard deviation was about  $\pm 10\%$  or less for all nuclides measured during this reporting period.

Table 5f presents the analyses of coded standard samples performed by Tracerlab since February 1966, the earliest collection date covered by this report. The average percent deviation for each nuclide is recorded at the bottom of Table 5f calculated from individual analyses in which the precision of measurement was  $\pm 20\%$  or less. These average deviations are less than  $\pm 10\%$  for all nuclides except the following:

|        |      |
|--------|------|
| Zr-95  | -15% |
| Cd-109 | -14% |
| Sb-125 | -14% |
| Po-210 | -30% |

While there is some variability in the above deviations for individual analyses, it appears likely at this time that a negative bias in calibration of radioassay equipment is primarily responsible for these differences.

## NOTATION SYSTEM

The notation system described here applies to all the tables covered by this report. One standard deviation of the counting error for all data is less than  $\pm 20\%$  and usually less than  $\pm 10\%$  unless annotated with these symbols:

- # : Gross gamma measurement was made beyond two week lapse period after collection
- A: One standard deviation of the counting error is between  $\pm 20$  - 50%.
- B: One standard deviation of the counting error is between  $\pm 51$  - 100%.
- \*: Activity is not detectable. This designation is applied to data when an equal to or less than value ( $\leq$ ) is reported or when one standard deviation of the counting error is greater than 100%.
- ? : When annotating an altitude of collection, this symbol signifies that the altitude or volume of air sampled is estimated or uncertain. When the symbol is applied to a concentration value, the datum is considered suspect because:
  1. The magnitude of the concentration is inconsistent with adjacent samples in space and time; or
  2. The relative activity of the nuclide is inconsistent with other nuclides in the same sample.
  3. The sample activity approaches the average value of blank samples for the analytical laboratory.

## DISCUSSION

In an attempt to increase the volume of air of the balloon samples, experimental flights of a light weight IPC paper with a lower pressure drop have been conducted at San Angelo, Texas in late 1967. In these tests, the face velocity across the light weight filter paper was equal to the face velocity across the standard IPC paper which was flown as a separate unit on the same balloon. A comparison of the

gamma activity concentrations reflected by these two filters in Table 5b indicates that their filter efficiencies are essentially equivalent. Additional comparisons are scheduled wherein the face velocity of the light weight paper will be increased to effect larger sampling volumes.

While no radiochemical data for samples collected after the 6th Chinese nuclear test of June 17, 1967 are yet available, good indication of the behavior of debris from this event at the balloon sampling altitudes can be derived from the gross gamma concentrations in Table 5b. No indication of fresh fission products have yet been observed at 21.8 km or above at Albrook, Natal or Mildura. At San Angelo as was described earlier (1), fresh Chinese debris was absent during July from 24.1 to 31.8 km only to appear at 40 km. This stratified pattern, although on the wane, can still be observed during August and September, and the top of the Chinese cloud in September extended to 21.7 km. In October at both Foss Field, South Dakota and San Angelo, the top of the Chinese cloud rose still higher to 24.4 km. However, at 41 km at Foss Field in October, very little fresh fission products can be discerned.

These and future trends as well as those obtained from Project Airstream will be studied to evaluate the significance of diffusion, mass motion and particle setting velocity (if any) to mixing of the Chinese debris in the stratosphere. A limited study of the radioactive particle size distribution of the Chinese debris in different regions of the stratosphere would offer valuable information toward this end.

## BIBLIOGRAPHY

- (1) Krey, P. W.  
Project Airstream  
USAEC Report HASL-183, P. I-62, October (1967)
- (2) Salter, L. P.  
High Altitude Balloon Sampling Program  
USAEC Report HASL-161, p. 216, July (1965)
- (3) Ibid, HASL-158, p. 214, April 1, 1965
- (4) Ibid, HASL-155, p. 211, January 1, 1965
- (5) Ibid, HASL-149, p. 54, October 1, 1964
- (6) Ibid, HASL-140, p. 166, October 1, 1963
- (7) High Altitude Sampling Program (Project Ash Can)  
USAEC Report HASL-127, p. 151, July 1, 1962
- (8) Ibid, HASL-115, p. 70, October 1, 1961
- (9) Ibid, HASL-171, p. 223, April 1, 1966
- (10) Ibid, HASL-172, p. II-21, July 1, 1966
- (11) Ibid, HASL-173, p. II-21, October 1, 1966
- (12) Ibid, HASL-174, p. II-3, January 1, 1967
- (13) Ibid, HASL-182, p. II-6, July 1, 1967
- (14) Wood, R.C.  
Development of Sampling Equipment Used in the Upper Atmosphere  
Monitoring Program  
USAEC Report HASL-115, p. 155, October (1961)
- (15) Wood, R. C.  
Air Ejector Particle Sampler, A Progress Report  
Litton Systems, Inc. Report No. 2584, September 1, 1964
- (16) Wood, R. C. and Olson, R.  
Equipment and Services in Support of High Altitude  
Sampling Flights at San Angelo, Texas  
Litton Systems, Inc., Report No. 2589, December 1965

BIBLIOGRAPHY (Cont'd)

- (17) High Altitude Balloon Sampling Program  
USAEC Report HASL-131, p. 151, October (1962)
- (18) Volk, W.  
Applied Statistics for Engineers  
Mcgraw-Hill, New York (1958)

Table 5a

HIGH ALTITUDE BALLOON LAUNCHING SITES

| <u>LOCATION</u>                              | <u>LATITUDE</u> | <u>FREQUENCY</u>        | <u>FLIGHT ORGANIZATION</u>                        |
|----------------------------------------------|-----------------|-------------------------|---------------------------------------------------|
| Eielson Air Force Base,<br>Alaska            | 65°N            | May-Aug.,<br>Nov        | Detachment 31, 6th<br>Weather Wing (MAC)          |
| San Angelo, Texas                            | 31°N            | Monthly                 | Detachment 31, 6th<br>Weather Wing (MAC)          |
| Albrook Air Force Base,<br>Panama Canal Zone | 9°N             | Jan-Apr<br>Sept and Oct | Detachment 31, 6th<br>Weather Wing (MAC)          |
| Natal, Brazil                                | 6°S             | Oct. 1966               | Detachment 31, 6th<br>Weather Wing (MAC)          |
| Mildura, Australia                           | 34°S            | Monthly                 | Department of Supply<br>Commonwealth of Australia |

TABLE 5b

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

BALLOON SAMPLES COLLECTED DURING JUNE 1967  
LATITUDE, 65N EILSON AIR FORCE BASE, ALASKA

| ALTITUDE (KM)          | 23      | 23      | 27      | 27      | 32      | 32a     |
|------------------------|---------|---------|---------|---------|---------|---------|
| FLIGHT DAY             | 08      | 14      | 07      | 12      | 06      | 11      |
| HASL NUMBER            | 2701    | 2714    | 2700    | 2705    | 2698    | 2704    |
| COLLECTION UNIT        | D7-1    | D7-1    | D7-1    | D7-1    | AE-1    | AE-1    |
| ANALYTICAL LABORATORY  | TLW     | TLW     | TLW     | TLW     | TLW     | TLW     |
| GROSS GAMMA (CPM/KSCM) | 1332.4# | 1248.2# | 1810.7# | 1389.3# | 1086.5# | 1147.6# |

|               | PC/KSCM |       |       |       |       |       |
|---------------|---------|-------|-------|-------|-------|-------|
| ANTIMONY-125  |         | 64.7A | *     | *     | *     | *     |
| CESIUM-137    | 135     | 237   | 144   | 101   | 65.5  | 73.7  |
| CERIUM-144    | 55.5A   | 103   | 41.3A | 30.7B | *     | 52.4B |
| PLUTONIUM-238 | 11.8    | 10.9  | 9.60  | 10.6  | 2.71B | 6.62  |
| PLUTONIUM-239 | 1.33A   | 2.46  | .543B | .772A | *     | *     |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.

B: ONE STANDARD DEVIATION OF COUNTING ERROR IS >50% TO 100% OF COUNT.

\*: STANDARD DEVIATION GREATER THAN DATA VALUE

a: VOLUME ESTIMATED

#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5b

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

BALLOON SAMPLES COLLECTED DURING JUNE 1967  
LATITUDE, 65N EILSON AIR FORCE BASE, ALASKA

|                        | 36<br>10 | 37<br>03 | 40 <sup>a</sup><br>02 | 41<br>13 |
|------------------------|----------|----------|-----------------------|----------|
| ALTITUDE (KM)          |          |          |                       |          |
| FLIGHT DAY             |          |          |                       |          |
| HASL NUMBER            | 2706     | 2697     | 2715                  | 2709     |
| COLLECTION UNIT        | AE-1     | AE-1     | HV3K                  | AE-1     |
| ANALYTICAL LABORATORY  | TLW      | TLW      | TLW                   | TLW      |
| GROSS GAMMA (CPM/KSCM) | 808.3#   | 1177.0#  | 490.4#                | 546.0#   |

|               | PC/KSCM |       |      |       |
|---------------|---------|-------|------|-------|
| ANTIMONY-125  | *       | *     | *    | *     |
| CESIUM-137    | 51.1A   | 53.2A | 44.5 | 54.6  |
| CERIUM-144    | *       | *     | *    | *     |
| PLUTONIUM-238 | 10.5    | 6.09A | 7.51 | 6.55A |
| PLUTONIUM-239 | .851B   | *     | *    | 1.09B |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.

B: ONE STANDARD DEVIATION OF COUNTING ERROR IS >50% TO 100% OF COUNT.

\*: STANDARD DEVIATION GREATER THAN DATA VALUE

<sup>a</sup>: VOLUME ESTIMATED

#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

Table 5b (Cont'd)

GROSS GAMMA ACTIVITY MEASUREMENTS OF SUBSEQUENT SAMPLES AT 44°N

Foss Field, South Dakota

| <u>HASL<br/>#</u> | <u>Collection</u> |            |                        | <u>Gross Gamma<br/>cpm/KSCM</u> |
|-------------------|-------------------|------------|------------------------|---------------------------------|
|                   | <u>Month</u>      | <u>Day</u> | <u>Altitude<br/>Km</u> |                                 |
| 2768              | Oct. 67           | 5          | 20.8                   | $7.1 \times 10^5$               |
| 2774              | "                 | 10         | 24.4                   | $3.7 \times 10^4$               |
| 2775              | "                 | 11         | 27.2                   | $1.7 \times 10^3$               |
| 2780              | "                 | 17         | 42.3                   | $9.2 \times 10^2$               |

TABLE 5b (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS  
 BALLOON SAMPLES COLLECTED DURING DECEMBER 1966  
 LATITUDE, 31N SAN ANGELO, TEXAS

|                        |         |         |        |
|------------------------|---------|---------|--------|
| ALTITUDE (KM)          | 24      | 27      | 36     |
| FLIGHT DAY             | 09      | 08      | 14     |
| HASL NUMBER            | 2556    | 2547    | 2559   |
| COLLECTION UNIT        | D7-1    | D7-1    | D7-1   |
| ANALYTICAL LABORATORY  | TLW     | TLW     | TLW    |
| GROSS GAMMA (CPM/KSCM) | 2658.9# | 1103.4# | 196.2# |
|                        | PC/KSCM |         |        |
| IRON-55                | 8950    | 8148    | *      |
| STRONTIUM-89           | *       | *       | *      |
| STRONTIUM-90           | 897     | 128A    | 80.7   |
| ZIRCONIUM-95           | *       | *       | *      |
| CADMIUM-109            | *       | *       | *      |
| CERIUM-141             | *       | *       | *      |
| CERIUM-144             | 965     | 143     | 71.3   |
| LEAD-210               | *       |         |        |
| POLONIUM-210           | 5.32A   |         |        |
| PLUTONIUM-238          | 13.9    | 17.4    | 9.81   |
| PLUTONIUM-239          | 14.5    | 3.31    | 1.31A  |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.  
 B: ONE STANDARD DEVIATION OF COUNTING ERROR IS >50% TO 100% OF COUNT.  
 #: STANDARD DEVIATION GREATER THAN DATA VALUE  
 #: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5b (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS  
 BALLOON SAMPLES COLLECTED DURING JANUARY 1967  
 LATITUDE, 31N SAN ANGELO, TEXAS

|                        |         |        |                    |
|------------------------|---------|--------|--------------------|
| ALTITUDE (KM)          | 24      | 27     | 42 <sup>a</sup>    |
| FLIGHT DAY             | 12      | 05     | 20                 |
| HASL NUMBER            | 2565    | 2563   | 2639               |
| COLLECTION UNIT        | D7-1    | D7-1   | HV3K               |
| ANALYTICAL LABORATORY  | TLW     | TLW    | TLW                |
| GROSS GAMMA (CPM/KSCM) | 3472.8  | 3509.2 | 620.2 <sup>#</sup> |
|                        | PC/KSCM |        |                    |
| IRON-55                | 1050A   | 2270A  | *                  |
| STRONTIUM-89           | 51.0A   | 88.9A  | *                  |
| STRONTIUM-90           | 149     | 163    | 86.8A              |
| ZIRCONIUM-95           | 91.7A   | 100B   | *                  |
| CADMIUM-109            | *       | *      | *                  |
| CERIUM-141             | *       | *      | *                  |
| CERIUM-144             | 174     | 206    | 50.6B              |
| LEAD-210               | *       | 10.2B  | *                  |
| POLONIUM-210           | 4.66    | 18.7   | 21.5               |
| PLUTONIUM-238          | 17.4    | 13.3   | 13.3A              |
| PLUTONIUM-239          | 2.91A   | 3.49   | 2.86B              |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.

B: ONE STANDARD DEVIATION OF COUNTING ERROR IS >50% TO 100% OF COUNT.

\*: STANDARD DEVIATION GREATER THAN DATA VALUE

@: VOLUME ESTIMATED

#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5b (Cont'd)

## STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

BALLOON SAMPLES COLLECTED DURING FEBRUARY 1967  
LATITUDE, 31N SAN ANGELO, TEXAS

| ALTITUDE (KM)          | 24     | 27    | 31     | 31     | 31     | 36     |
|------------------------|--------|-------|--------|--------|--------|--------|
| FLIGHT DAY             | 07     | 02    | 12     | 03     | 03     | 28     |
| HASL NUMBER            | 2583   | 2580  | 2610   | 2601   | 2602   | 2612   |
| COLLECTION UNIT        | D7-1   | D7-1  | AE-1   | AE-1   | HV3K   | AE-1   |
| ANALYTICAL LABORATORY  | TLW    | TLW   | TLW    | TLW    | TLW    | TLW    |
| GROSS GAMMA (CPM/KSCM) | 1649.2 | 816.4 | 668.8# | 631.6# | 388.3# | 588.5# |
| PC/KSCM                |        |       |        |        |        |        |
| MANGANESE-54           | *      | *     |        |        |        |        |
| IRON-55                | 3640   | 8378  | *      | *      | *      | *      |
| STRONTIUM-89           | 33.6B  | *     | *      | 74.1B  | *      | *      |
| STRONTIUM-90           | 358    | 111   | 54.6A  | 49.1A  | 69.9   | 46.3A  |
| ZIRCONIUM-95           | *      | *     | *      | *      | *      | *      |
| CADMIUM-109            | *      | *     | *      | *      | *      | *      |
| ANTIMONY-125           | 165    | 48.0A |        |        |        |        |
| CESIUM-137             | 499    | 157   |        |        |        |        |
| CERIUM-141             | *      | *     | *      | *      | 260B   | *      |
| CERIUM-144             | 324    | 102   | 41.28  | 50.8A  | 40.2A  | 31.3B  |
| PROMETHIUM-147         | 764    | 237   |        |        |        |        |
| LEAD-210               | *      | *     | *      | *      | *      | *      |
| POLONIUM-210           | 5.92   | 4.08A | 2.94A  | 3.72   | 13.5   | 6.99   |
| PLUTONIUM-238          | 15.0   | 8.78  | 10.7   | 10.3   | 9.89   | 19.1   |
| PLUTONIUM-239          | 6.98   | 2.04A | 1.34A  | 1.14B  | .705B  | *      |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS &gt;20% TO 50% OF COUNT.

B: ONE STANDARD DEVIATION OF COUNTING ERROR IS &gt;50% TO 100% OF COUNT.

\*: STANDARD DEVIATION GREATER THAN DATA VALUE

#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5b (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

BALLOON SAMPLES COLLECTED DURING FEBRUARY 1967  
LATITUDE, 31N SAN ANGELO, TEXAS

|                        |        |
|------------------------|--------|
| ALTITUDE (KM)          | 36     |
| FLIGHT DAY             | 28     |
| HASL NUMBER            | 2613   |
| COLLECTION UNIT        | HV3K   |
| ANALYTICAL LABORATORY  | TLW    |
| GROSS GAMMA (CPM/KSCM) | 642.0# |

PC/KSCM

|               |       |
|---------------|-------|
| IRON-55       | *     |
| STRONTIUM-89  | *     |
| STRONTIUM-90  | 51.9  |
| ZIRCONIUM-95  | *     |
| CADMIUM-109   | *     |
| CERIUM-141    | *     |
| CERIUM-144    | 30.48 |
| LEAD-210      | *     |
| POLONIUM-210  | 11.4  |
| PLUTONIUM-238 | 8.39  |
| PLUTONIUM-239 | .987B |

B: ONE STANDARD DEVIATION OF COUNTING ERROR IS >50% TO 100% OF COUNT.  
\*: STANDARD DEVIATION GREATER THAN DATA VALUE  
#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5b (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS  
 BALLOON SAMPLES COLLECTED DURING MARCH 1967  
 LATITUDE, 31N SAN ANGELO, TEXAS

| ALTITUDE (KM)          | 24    | 27     | 32     | 32     | 32      | 40     |
|------------------------|-------|--------|--------|--------|---------|--------|
| FLIGHT DAY             | 8     | 07     | 22     | 22     | 16      | 17     |
| HASL NUMBER            | 2616  | 2615   | 2642   | 2643   | 2634    | 2640   |
| COLLECTION UNIT        | D7-1  | D7-1   | AE-1   | AE-2   | AE-1    | HV3K   |
| ANALYTICAL LABORATORY  | TLW   | TLW    | TLW    | TLW    | TLW     | TLW    |
| GROSS GAMMA (CPM/KSCM) | 964.9 | 816.2# | 427.9# | 557.5# | 1017.4# | 647.8# |
| PC/KSCM                |       |        |        |        |         |        |
| IRON-55                | 2040A | 573B   | *      | *      | *       | *      |
| STRONTIUM-89           | 106A  | *      | *      | *      | *       | *      |
| STRONTIUM-90           | 198   | 92.5   | 54.6   | 97.1   | 49.7A   | 62.5A  |
| ZIRCONIUM-95           | *     | *      | *      | *      | *       | *      |
| CADMIUM-109            | *     | *      | *      | *      | *       | *      |
| CERIUM-141             | *     | *      | *      | *      | *       | *      |
| CERIUM-144             | 165   | 76.8A  | *      | *      | 26.9B   | *      |
| LEAD-210               | *     | *      | *      | *      | *       | 14.8B  |
| POLONIUM-210           | 5.94  | 2.27   | 5.34A  | 11.2   | 3.29A   | 19.8   |
| PLUTONIUM-238          | 10.7  | 7.59   | 6.78   | 11.6   | 10.1    | 8.75   |
| PLUTONIUM-239          | 3.69  | 2.27   | *      | *      | 1.50A   | .648B  |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.  
 B: ONE STANDARD DEVIATION OF COUNTING ERROR IS >50% TO 100% OF COUNT.  
 \*: STANDARD DEVIATION GREATER THAN DATA VALUE  
 #: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5b (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

BALLOON SAMPLES COLLECTED DURING APRIL 1967  
LATITUDE, 31N SAN ANGELO, TEXAS

|                        |        |        |         |
|------------------------|--------|--------|---------|
| ALTITUDE (KM)          | 24     | 27     | 30      |
| FLIGHT DAY             | 07     | 04     | 22      |
| HASL NUMBER            | 2663   | 2657   | 2683    |
| COLLECTION UNIT        | D7-1   | D7-1   | AE-1    |
| ANALYTICAL LABORATORY  | TLW    | TLW    | TLW     |
| GROSS GAMMA (CPM/KSCM) | 581.8# | 548.3# | 1003.1# |

|               | PC/KSCM |       |       |
|---------------|---------|-------|-------|
| IRON-55       | 949B    | *     | 1480B |
| STRONTIUM-89  | *       | *     | *     |
| STRONTIUM-90  | 164A    | 99.6  | 239   |
| ZIRCONIUM-95  | *       | 83.0B | *     |
| CADMIUM-109   | *       | *     | *     |
| CERIUM-141    | *       | *     | *     |
| CERIUM-144    | 139     | 60.0A | 139A  |
| LEAD-210      | *       | *     | *     |
| POLONIUM-210  | *       | 3.51A | 3.61B |
| PLUTONIUM-238 | 11.3    | 8.77  | 15.6  |
| PLUTONIUM-239 | 2.41    | 1.97A | 1.61A |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.

B: ONE STANDARD DEVIATION OF COUNTING ERROR IS >50% TO 100% OF COUNT.

\*: STANDARD DEVIATION GREATER THAN DATA VALUE

#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5b (Cont'd)

## STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

BALLOON SAMPLES COLLECTED DURING MAY 1967  
LATITUDE, 31N SAN ANGELO, TEXAS

| ALTITUDE (KM)          | 24      | 27      | 31     | 31     | 31     | 41     |
|------------------------|---------|---------|--------|--------|--------|--------|
| FLIGHT DAY             | 8       | 3       | 17     | 17     | 2      | 23     |
| HASL NUMBER            | 2686    | 2685    | 2688   | 2689   | 2684   | 2692   |
| COLLECTION UNIT        | D7-1    | D7-1    | AE-1   | AE-2   | AE-1   | HV3K   |
| ANALYTICAL LABORATORY  | TLW     | TLW     | TLW    | TLW    | TLW    | TLW    |
| GROSS GAMMA (CPM/KSCM) | 1970.8# | 1321.6# | 666.2# | 437.2# | 611.7# | 627.6# |
| PC/KSCM                |         |         |        |        |        |        |
| IRON-55                | 897B    | 641B    | *      | *      | *      | *      |
| STRONTIUM-89           | *       | *       | *      | *      | *      | *      |
| STRONTIUM-90           | 210     | 84.7A   | 149A   | 81.0A  | 58.1   | 50.6B  |
| ZIRCONIUM-95           | *       | *       | *      | *      | *      | *      |
| CADMIUM-109            | *       | *       | *      | *      | *      | *      |
| CERIUM-141             | *       | *       | *      | *      | *      | *      |
| CERIUM-144             | 143     | 57.1A   | 45.6B  | 41.7B  | 30.0B  | 82.7A  |
| LEAD-210               | *       | *       | 18.7B  | *      | 16.7B  | *      |
| POLONIUM-210           | 1.64A   | 4.53A   | 11.7   | 17.8?  | 3.05B  | 11.4   |
| PLUTONIUM-238          | 10.3    | 8.26    | 7.66   | 6.39   | 7.23   | 5.49A  |
| PLUTONIUM-239          | 3.28    | *       | 1.67A  | *      | .834B  | *      |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS &gt;20% TO 50% OF COUNT.

B: ONE STANDARD DEVIATION OF COUNTING ERROR IS &gt;50% TO 100% OF COUNT.

\*: STANDARD DEVIATION GREATER THAN DATA VALUE

?: DATA SUSPECT

#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5b (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS  
BALLOON SAMPLES COLLECTED DURING JUNE 1967  
LATITUDE, 31N SAN ANGELO, TEXAS

|                        |        |        |        |         |
|------------------------|--------|--------|--------|---------|
| ALTITUDE (KM)          | 24     | 27     | 32     | 37      |
| FLIGHT DAY             | 05     | 19     | 6      | 27      |
| HASL NUMBER            | 2702   | 2717   | 2703   | 2722    |
| COLLECTION UNIT        | D7-1   | D7-1   | AE-1   | AE-1    |
| ANALYTICAL LABORATORY  | TLW    | TLW    | TLW    | TLW     |
| GROSS GAMMA (CPM/KSCM) | 523.7# | 746.5# | 658.3# | 6806.9# |

|               | PC/KSCM |       |       |      |
|---------------|---------|-------|-------|------|
| ANTIMONY-125  |         | 63.3A | *     | *    |
| CESIUM-137    | 495     | 162   | 63.7  | 536A |
| CERIUM-144    | 221     | 58.7A | 32.9B | *    |
| PLUTONIUM-238 | 13.0    | 7.66  | 6.58  | 68.1 |
| PLUTONIUM-239 | 5.91    | 1.41A | *     | *    |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.  
B: ONE STANDARD DEVIATION OF COUNTING ERROR IS >50% TO 100% OF COUNT.  
\*: STANDARD DEVIATION GREATER THAN DATA VALUE  
#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

Table 5b (Cont'd)

GROSS GAMMA ACTIVITY MEASUREMENTS OF SUBSEQUENT SAMPLES AT 31°N

San Angelo, Texas

| HASL<br># | Collection |     |                | Gross Gamma<br>cpm/KSCM | Comment                              |
|-----------|------------|-----|----------------|-------------------------|--------------------------------------|
|           | Month      | Day | Altitude<br>Km |                         |                                      |
| 2725      | July 67    | 12  | 24.1           | $1.1 \times 10^3$       |                                      |
| 2731      | "          | 25  | 26.7           | $1.3 \times 10^3$ #     |                                      |
| 2732      | "          | 27  | 31.8           | $1.3 \times 10^3$       |                                      |
| 2727      | "          | 9   | 40             | $1.1 \times 10^5$       |                                      |
| 2735      | Aug. 67    | 9   | 36.1           | $5.6 \times 10^2$       |                                      |
| 2736      | "          | 10  | 41             | $2.6 \times 10^4$ #     |                                      |
| 2766      | Sept. 67   | 18  | 21.7           | $5.8 \times 10^5$ #     |                                      |
| 2764      | "          | 12  | 24.2           | $1.3 \times 10^3$ #     |                                      |
| 2765      | "          | "   | "              | $1.3 \times 10^3$ #     | Standard Paper<br>Light Weight Paper |
| 2762      | "          | 19  | 26.8           | $1.2 \times 10^3$ #     |                                      |
| 2763      | "          | "   | "              | $1.1 \times 10^3$ #     | Standard Paper<br>Light Weight Paper |
| 2756      | "          | 24  | 31.4           | $5.3 \times 10^2$ #     |                                      |
| 2754      | "          | 23  | 41             | $1.9 \times 10^3$ #     |                                      |
| 2767      | Oct. 67    | 4   | 21.7           | $7.2 \times 10^5$       |                                      |
| 2784      | "          | 9   | 24.3           | $6.5 \times 10^3$       |                                      |
| 2773      | "          | 10  | 27.1           | $1.2 \times 10^3$       |                                      |
| 2776      | "          | 11  | 32.4           | $6.4 \times 10^2$       |                                      |

#: Gross Gamma Count more than Two Weeks after Collection

TABLE 5b (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

BALLOON SAMPLES COLLECTED DURING JANUARY 1967  
LATITUDE, 09N ALBROOK AIR FORCE BASE, CANAL ZONE

|                        |         |        |       |
|------------------------|---------|--------|-------|
| ALTITUDE (KM)          | 24      | 27     | 32    |
| FLIGHT DAY             | 23      | 20     | 21    |
| HASL NUMBER            | 2577    | 2573   | 2576  |
| COLLECTION UNIT        | D7-1    | D7-1   | AE-1  |
| ANALYTICAL LABORATORY  | TLW     | TLW    | TLW   |
| GROSS GAMMA (CPM/KSCM) | 2158.9  | 1469.1 | 519.2 |
|                        | PC/KSCM |        |       |
| IRON-55                | 10300   | 5760   | 3270A |
| STRONTIUM-89           | *       | *      | *     |
| STRONTIUM-90           | 973     | 586    | 268   |
| ZIRCONIUM-95           | *       | *      | *     |
| CADMIUM-109            | *       | *      | *     |
| CERIUM-141             | *       | *      | *     |
| CERIUM-144             | 907     | 578    | 254   |
| LEAD-210               | *       | *      | *     |
| POLONIUM-210           | 4.64    | 4.12   | 3.46A |
| PLUTONIUM-238          | 7.47    | 13.7   | 13.1  |
| PLUTONIUM-239          | 19.6    | 10.3   | 5.54  |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.  
\*: STANDARD DEVIATION GREATER THAN DATA VALUE

TABLE 5b (Cont'd)

## STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

BALLOON SAMPLES COLLECTED DURING FEBRUARY 1967  
LATITUDE, 09N ALBROOK AIR FORCE BASE, CANAL ZONE

|                        |         |         |        |
|------------------------|---------|---------|--------|
| ALTITUDE (KM)          | 25      | 27      | 32     |
| FLIGHT DAY             | 12      | 10      | 11     |
| HASL NUMBER            | 2597    | 2593    | 2596   |
| COLLECTION UNIT        | D7-1    | D7-1    | AE-1   |
| ANALYTICAL LABORATORY  | TLW     | TLW     | TLW    |
| GROSS GAMMA (CPM/KSCM) | 2353.9# | 1111.2# | 625.3# |
|                        | PC/KSCM |         |        |
| MANGANESE-54           | *       |         |        |
| IRON-55                | 11800   | 4650    | 3780A  |
| STRONTIUM-89           | 1248    | *       | *      |
| STRONTIUM-90           | 1040    | 451     | 346    |
| ZIRCONIUM-95           | *       | *       | *      |
| CADMIUM-109            | *       | *       | *      |
| ANTIMONY-125           | 463     |         |        |
| CESIUM-137             | 1540    |         |        |
| CERIUM-141             | 329B    | *       | *      |
| CERIUM-144             | 886     | 382     | 278    |
| LEAD-210               | *       | *       | *      |
| POLONIUM-210           | 7.33B   | 5.68    | 7.36   |
| PLUTONIUM-238          | 6.44    | 12.6    | 11.8   |
| PLUTONIUM-239          | 17.8    | 8.89    | 4.78   |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.  
 B: ONE STANDARD DEVIATION OF COUNTING ERROR IS >50% TO 100% OF COUNT.  
 #: STANDARD DEVIATION GREATER THAN DATA VALUE  
 #: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5b (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

BALLOON SAMPLES COLLECTED DURING MARCH 1967  
LATITUDE, 09N ALBROOK AIR FORCE BASE, CANAL ZONE

|                        |         |        |        |
|------------------------|---------|--------|--------|
| ALTITUDE (KM)          | 25      | 27     | 32     |
| FLIGHT DAY             | 16      | 10     | 14     |
| HASL NUMBER            | 2635    | 2620   | 2622   |
| COLLECTION UNIT        | D7-1    | D7-1   | AE-1   |
| ANALYTICAL LABORATORY  | TLW     | TLW    | TLW    |
| GROSS GAMMA (CPM/KSCM) | 1890.2# | 1549.1 | 767.6# |
|                        | PC/KSCM |        |        |
| IRON-55                | 10400   | 7030   | 3870A  |
| STRONTIUM-89           | 120A    | 105A   | 134A   |
| STRONTIUM-90           | 928     | 667    | 325    |
| ZIRCONIUM-95           | *       | *      | *      |
| CADMIUM-109            | *       | *      | *      |
| CERIUM-141             | *       | *      | *      |
| CERIUM-144             | 725     | 530    | 276    |
| LEAD-210               | *       | *      | *      |
| POLONIUM-210           | 6.01    | 5.01   | 9.21   |
| PLUTONIUM-238          | 7.89    | 14.6   | 10.0   |
| PLUTONIUM-239          | 16.0    | 11.2   | 6.44   |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.

\*: STANDARD DEVIATION GREATER THAN DATA VALUE

#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5b (Cont'd)

## STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

BALLOON SAMPLES COLLECTED DURING APRIL 1967  
LATITUDE, 09N ALBROOK AIR FORCE BASE, CANAL ZONE

|                        |         |         |         |        |         |
|------------------------|---------|---------|---------|--------|---------|
| ALTITUDE (KM)          | 23      | 27      | 32      | 36     | 40      |
| FLIGHT DAY             | 07      | 03      | 06      | 05     | 02      |
| HASL NUMBER            | 2661    | 2655    | 2660    | 2659   | 2672    |
| COLLECTION UNIT        | D7-1    | D7-1    | AE-1    | AE-1   | HV3K    |
| ANALYTICAL LABORATORY  | TLW     | TLW     | TLW     | TLW    | TLW     |
| GROSS GAMMA (CPM/KSCM) | 1631.3# | 1061.5# | 4935.9# | 417.7# | 5313.7# |
|                        |         |         | PC/KSCM |        |         |
| IRON-55                | 6940    | 3460A   | 1750B   | *      | *       |
| STRONTIUM-89           | *       | *       | *       | *      | *       |
| STRONTIUM-90           | 729     | 546     | 198     | 68.7A  | 56.8A   |
| ZIRCONIUM-95           | *       | *       | *       | *      | *       |
| CADMIUM-109            | *       | *       | *       | *      | *       |
| CERIUM-141             | *       | *       | 1550B   | *      | *       |
| CERIUM-144             | 507     | 385     | 111A    | *      | *       |
| LEAD-210               | *       | *       | *       | *      | *       |
| POLONIUM-210           | 8.67    | 5.41A   | 11.3A   | 13.3   | *       |
| PLUTONIUM-238          | 7.42    | 4.97    | 7.59A   | 5.31A  | 5.49    |
| PLUTONIUM-239          | 11.6    | 9.31    | 2.65A   | 1.13B  | *       |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS &gt;20% TO 50% OF COUNT.

B: ONE STANDARD DEVIATION OF COUNTING ERROR IS &gt;50% TO 100% OF COUNT.

\*: STANDARD DEVIATION GREATER THAN DATA VALUE

#\*: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

IT-15

Table 5b (Cont'd)

GROSS GAMMA ACTIVITY MEASUREMENTS OF SUBSEQUENT SAMPLES AT 9°N

Albrook AFB, Canal Zone

| <u>HASL</u><br><u>#</u> | Collection   |            |                       | <u>Gross Gamma</u><br><u>cpm/KSCM</u> |
|-------------------------|--------------|------------|-----------------------|---------------------------------------|
|                         | <u>Month</u> | <u>Day</u> | <u>Altitude</u><br>Km |                                       |
| 2760                    | Sept. 67     | 16         | 21.8                  | $1.3 \times 10^3$ #                   |
| 2757                    | "            | 15         | 25.1                  | $8.5 \times 10^2$ #                   |
| 2758                    | "            | 11         | 26.6                  | $7.8 \times 10^2$ #                   |
| 2761                    | "            | 1          | 31.7                  | $5.6 \times 10^2$ #                   |
| 2759                    | "            | 13         | 37.0                  | $8.5 \times 10^2$ #                   |
| 2753                    | "            | 12         | 41.4                  | $3.9 \times 10^2$ #                   |

#: Gross Gamma Count more than Two Weeks after Collection

## STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

BALLOON SAMPLES COLLECTED DURING OCTOBER 1966  
LATITUDE: 06S NATAL, BRAZIL

| ALTITUDE (KM)          | 24     | 25      | 27      | 28      | 32      | 32      |
|------------------------|--------|---------|---------|---------|---------|---------|
| FLIGHT DAY             | 25     | 20      | 24      | 29      | 28      | 22      |
| HASL NUMBER            | 2493   | 2487    | 2491    | 2512    | 2502    | 2485    |
| COLLECTION UNIT        | D7-1   | D7-1    | D7-1    | D7-2    | D7-1    | D7-1    |
| ANALYTICAL LABORATORY  | TLW    | TLW     | TLW     | TLW     | TLW     | TLW     |
| GROSS GAMMA (CPM/KSCM) | 2627.3 | 2287.3# | 1259.5# | 1116.4# | 1159.5# | 1017.3# |
|                        |        |         | PC/KSCM |         |         |         |
| BERYLLIUM-7            | *      |         | *       |         |         |         |
| MANGANESE-54           | *      | *       | *       | *       | *       | *       |
| IRON-55                | 12300  | 11100   | 5600    | 4100    | 1580    | 4710A   |
| STRONTIUM-89           | 1398   | 1878    | *       | *       | *       | *       |
| STRONTIUM-90           | 1130   | 1050    | 484     | 391     | 264     | 378     |
| ZIRCONIUM-95           | 55.3A  | *       | 65.0A   | *       | *       | 88.6I   |
| CADMIUM-109            | *      | *       | *       | *       | *       | *       |
| ANTIMONY-125           | 489    | 489     | 201     | 211A    | 1068    | 1328    |
| CESIUM-137             | 2140   | 1580    | 623     | 599     | 372     | 595     |
| CERIUM-141             |        | *       |         | *       | *       |         |
| CERIUM-144             |        | 1120    |         | 475     | 297     |         |
| PROMETHIUM-147         | 2510   |         | 1190    |         | 973     | 722     |
| LEAD-210               |        | *       |         | *       | *       |         |
| POLONIUM-210           |        | 12.9A   |         | 33.2    | 18.38   |         |
| PLUTONIUM-238          | 14.8   | 14.7    | 18.7    | 20.8    | 13.1    | 14.4    |
| PLUTONIUM-239          | 18.1   | 18.7    | 7.20A   | 9.61    | 4.74A   | 6.5     |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS &gt;20% TO 50% OF COUNT.

B: ONE STANDARD DEVIATION OF COUNTING ERROR IS &gt;50% TO 100% OF COUNT.

\*: STANDARD DEVIATION GREATER THAN DATA VALUE

#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5b (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS  
 BALLOON SAMPLES COLLECTED DURING OCTOBER 1966  
 LATITUDE, 06S NATAL, BRAZIL

|                        |         |        |         |
|------------------------|---------|--------|---------|
| ALTITUDE (KM)          | 37      | 37     | 41      |
| FLIGHT DAY             | 23      | 27     | 30      |
| HASL NUMBER            | 2490    | 2510   | 2522    |
| COLLECTION UNIT        | AE-1    | AE-1   | HV3K    |
| ANALYTICAL LABORATORY  | TLW     | TLW    | TLW     |
| GROSS GAMMA (CPM/KSCM) | 670.9#  | 388.4# | 255.3A# |
|                        | PC/KSCM |        |         |
| MANGANESE-54           | *       | *      | *       |
| IRON-55                | 2060?   | *      | *       |
| STRONTIUM-89           | *       | *      | 171B    |
| STRONTIUM-90           | 88.2    | 55.0B  | 151     |
| ZIRCONIUM-95           | *       | *      | 351A    |
| CADMIUM-109            | *       | 489B   | *       |
| ANTIMONY-125           | *       | *      | *       |
| CESIUM-137             | 103     | 82.3A  | 162     |
| CERIUM-141             |         | *      | 1200B   |
| CERIUM-144             |         | 97.1A  | 221     |
| PROMETHIUM-147         | 102B    |        | 362     |
| LEAD-210               |         | *      |         |
| POLONIUM-210           |         | *      |         |
| PLUTONIUM-238          | 16.9    | 13.8   | 21.7    |
| PLUTONIUM-239          | 1.41B   | 1.41A  | 2.12A   |

•  
 A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.  
 B: ONE STANDARD DEVIATION OF COUNTING ERROR IS >50% TO 100% OF COUNT.  
 #: STANDARD DEVIATION GREATER THAN DATA VALUE  
 ?: DATA SUSPECT  
 #: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

Table 5b (Cont'd)

GROSS GAMMA ACTIVITY MEASUREMENTS OF SUBSEQUENT SAMPLES AT 6° S

Natal, Brazil

| <u>HASL</u><br><u>#</u> | <u>Collections</u> |            |                              | <u>Gross Gamma</u><br><u>cpm/KSCM</u> |
|-------------------------|--------------------|------------|------------------------------|---------------------------------------|
|                         | <u>Month</u>       | <u>Day</u> | <u>Altitude</u><br><u>Km</u> |                                       |
| 2786                    | Oct. 67            | 19         | 24                           | $1.2 \times 10^3$                     |
| 2787                    | "                  | 20         | 27.6                         | $1.4 \times 10^3$                     |
| 2785                    | "                  | 28         | 37.1                         | *                                     |

\*: Standard Deviation Greater than Data Value

TABLE 5b (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS  
BALLOON SAMPLES COLLECTED DURING MARCH 1966  
LATITUDE, 34S MILDURA, AUSTRALIA

|                        |        |
|------------------------|--------|
| ALTITUDE (KM)          | 32     |
| FLIGHT DAY             | 24     |
| HASL NUMBER            | 2254   |
| COLLECTION UNIT        | D7-2   |
| ANALYTICAL LABORATORY  | TLW    |
| GROSS GAMMA (CPM/KSCM) | 1324.1 |

|               | PC/KSCM |
|---------------|---------|
| IRON-55       | 5650A   |
| STRONTIUM-90  | 670     |
| CADMIUM-109   | *       |
| CERIUM-144    | 1280    |
| LEAD-210      | *       |
| PLUTONIUM-238 | 22.6    |
| PLUTONIUM-239 | 13.1    |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.  
\*: STANDARD DEVIATION GREATER THAN DATA VALUE

TABLE 5b (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS  
BALLOON SAMPLES COLLECTED DURING APRIL 1966  
LATITUDE, 34S MILDURA, AUSTRALIA

| ALTITUDE (KM)          | 24      | 27     | 32     | 36      | 36      |
|------------------------|---------|--------|--------|---------|---------|
| FLIGHT DAY             | 14      | 5      | 19     | 27      | 27      |
| HASL NUMBER            | 2285    | 2272   | 2304   | 2311    | 2312    |
| COLLECTION UNIT        | 07-1    | D7-1   | D7-1   | AE-1    | AE-2    |
| ANALYTICAL LABORATORY  | II      | II     | II     | TLW     | TLW     |
| GROSS GAMMA (CPM/KSCM) | 2250.5  | 1932.8 | 985.4# | 3026.6# | 1986.2# |
|                        | PC/KSCM |        |        |         |         |
| IRON-55                | 4690    | 4920   | 1160A  | 6890    | 6350A   |
| STRONTIUM-90           | 561     | 505    | 160    | 693     | 646     |
| CADMIUM-109            | *       | *      |        | *       | *       |
| CERIUM-144             | 962     | 866    | 400    | 1050    | 957     |
| LEAD-210               | 27.3    | 65.3   | 34.9   | 20.2A   | *       |
| PLUTONIUM-238          | 76.3    | 62.4   | 944?   | 61.4    | 60.2    |
| PLUTONIUM-239          | 12.7    | 9.66   | 16.8?  | 12.6    | 8.83    |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.

\*: STANDARD DEVIATION GREATER THAN DATA VALUE

??: DATA SUSPECT

#?: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5b (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

BALLOON SAMPLES COLLECTED DURING MAY 1966  
LATITUDE, 34S MILDURA, AUSTRALIA

|                        |        |        |
|------------------------|--------|--------|
| ALTITUDE (KM)          | 24     | 27     |
| FLIGHT DAY             | 12     | 6      |
| HASL NUMBER            | 2321   | 2314   |
| COLLECTION UNIT        | D7-1   | D7-1   |
| ANALYTICAL LABORATORY  | TLW    | TLW    |
| GROSS GAMMA (CPM/KSCM) | 1873.9 | 1823.4 |

PC/KSCM

|                |       |       |
|----------------|-------|-------|
| MANGANESE-54   | *     | *     |
| IRON-55        | 6580  | 7550  |
| STRONTIUM-90   | 635   | 540   |
| ANTIMONY-125   | 341   | 288   |
| CESIUM-137     | 925   | 819   |
| CERIUM-144     | 916   | 900   |
| PROMETHIUM-147 | 1480  | 5980? |
| LEAD-210       | 3.95A | 3.76A |
| PLUTONIUM-238  | 61.0  | 46.5  |
| PLUTONIUM-239  | 9.46  | 10.7  |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.  
\*: STANDARD DEVIATION GREATER THAN DATA VALUE  
?: DATA SUSPECT

TABLE 5b (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS  
BALLOON SAMPLES COLLECTED DURING JUNE 1966  
LATITUDE, 34S MILDURA, AUSTRALIA

| ALTITUDE (KM)          | 24      | 27     | 31      |
|------------------------|---------|--------|---------|
| FLIGHT DAY             | 17      | 7      | 9       |
| HASL NUMBER            | 2368    | 2351   | 2353    |
| COLLECTION UNIT        | D7-1    | D7-1   | D7-1    |
| ANALYTICAL LABORATORY  | II      | II     | II      |
| GROSS GAMMA (CPM/KSCM) | 2144.5  | 1607.2 | 1177.0# |
|                        | PC/KSCM |        |         |
| BERYLLIUM-7            | 11400   | 8020   | 6550A   |
| IRON-55                |         | 3080   | 1410    |
| STRONTIUM-90           | 548     | 330    | 174     |
| CADMIUM-109            | 31.5A   | *      | *       |
| CERIUM-144             | 698     | 498    | 300     |
| LEAD-210               | 47.3    | 44.3   | 95.8    |
| PLUTONIUM-238          | 141?    | 103?   | 65.5?   |
| PLUTONIUM-239          | 32.7?   | 30.2?  | 8.41?   |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.  
\*: STANDARD DEVIATION GREATER THAN DATA VALUE  
?: DATA SUSPECT  
#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

II-63

TABLE 5b (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS  
 BALLOON SAMPLES COLLECTED DURING JULY 1966  
 LATITUDE, 34S MILDURA, AUSTRALIA

|                        |        |        |
|------------------------|--------|--------|
| ALTITUDE (KM)          | 23     | 27     |
| FLIGHT DAY             | 12     | 28     |
| HASL NUMBER            | 2380   | 2396   |
| COLLECTION UNIT        | D7-1   | D7-1   |
| ANALYTICAL LABORATORY  | TLW    | TLW    |
| GROSS GAMMA (CPM/KSCM) | 2118.5 | 739.0# |

|                | PC/KSCM |        |
|----------------|---------|--------|
| MANGANESE-54   | *       |        |
| IRON-55        | 6410    | 19100? |
| STRONTIUM-89   | *       | *      |
| STRONTIUM-90   | 678     | 189    |
| ZIRCONIUM-95   |         | 53.1A  |
| CADMIUM-109    | 19.4B   | 34.8A  |
| ANTIMONY-125   | 409     |        |
| CESIUM-137     | 939     |        |
| CERIUM-141     | 1248    | *      |
| CERIUM-144     | 827     | 293    |
| PROMETHIUM-147 | 1610    | 641    |
| LEAD-210       | 4.23A   | 3.00B  |
| POLONIUM-210   | 4.23A   | 7.39B  |
| PLUTONIUM-238  | 36.5    | 16.7   |
| PLUTONIUM-239  | 12.5    | 3.83   |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.  
 B: ONE STANDARD DEVIATION OF COUNTING ERROR IS >50% TO 100% OF COUNT.  
 #: STANDARD DEVIATION GREATER THAN DATA VALUE  
 ?: DATA SUSPECT

TABLE 5b (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

BALLOON SAMPLES COLLECTED DURING AUGUST 1966  
LATITUDE, 34S MILDURA, AUSTRALIA

|                        |        |        |
|------------------------|--------|--------|
| ALTITUDE (KM)          | 24     | 27     |
| FLIGHT DAY             | 4      | 28     |
| HASL NUMBER            | 2406   | 2431   |
| COLLECTION UNIT        | D7-1   | D7-1   |
| ANALYTICAL LABORATORY  | TLW    | TLW    |
| GROSS GAMMA (CPM/KSCM) | 1876.4 | 749.0# |

|               | PC/KSCM |       |
|---------------|---------|-------|
| BERYLLIUM-7   | 6710    |       |
| IRON-55       | 6700    | 1660A |
| STRONTIUM-89  | *       | *     |
| STRONTIUM-90  | 595     | 136   |
| ZIRCONIUM-95  | *       | 9.35B |
| CADMIUM-109   | 50.6A   | *     |
| CERIUM-141    | *       | *     |
| CERIUM-144    | 764     | 163   |
| PLUTONIUM-238 | 39.0    | 13.8  |
| PLUTONIUM-239 | 9.08    | 2.94A |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.

B: ONE STANDARD DEVIATION OF COUNTING ERROR IS >50% TO 100% OF COUNT.

\*: STANDARD DEVIATION GREATER THAN DATA VALUE

#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5b (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

BALLOON SAMPLES COLLECTED DURING SEPTEMBER 1966  
LATITUDE, 34S MILDURA, AUSTRALIA

|                        |         |         |         |
|------------------------|---------|---------|---------|
| ALTITUDE (KM)          | 24      | 32      | 37      |
| FLIGHT DAY             | 7       | 22      | 26      |
| HASL NUMBER            | 2437    | 2443    | 2455    |
| COLLECTION UNIT        | D7-1    | D7-1    | AE-1    |
| ANALYTICAL LABORATORY  | TLW     | TLW     | TLW     |
| GROSS GAMMA (CPM/KSCM) | 1346.8# | 681.4A# | 478.7A# |
| PC/KSCM                |         |         |         |
| IRON-55                | 7250    | 1750B   | *       |
| STRONTIUM-89           | *       | *       | *       |
| STRONTIUM-90           | 614     | 106     | 57.4    |
| ZIRCONIUM-95           | 17.5A   | 81.2A   | *       |
| CADMIUM-109            | *       | *       | *       |
| CERIUM-141             | *       | *       | *       |
| CERIUM-144             | 734     | 96.0B   | *       |
| LEAD-210               | 2.17B   | 8.04B   | 13.1A   |
| POLONIUM-210           | 3.46    | 13.0    | 8.37A   |
| PLUTONIUM-238          | 31.9    | 10.5A   | 13.1    |
| PLUTONIUM-239          | 8.36A   | 3.10B   | 1.20B   |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.  
B: ONE STANDARD DEVIATION OF COUNTING ERROR IS >50% TO 100% OF COUNT.  
#: STANDARD DEVIATION GREATER THAN DATA VALUE  
#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5b (Cont'd)

## STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

BALLOON SAMPLES COLLECTED DURING OCTOBER 1966  
LATITUDE, 34S MILDURA, AUSTRALIA

|                        |         |         |         |        |        |
|------------------------|---------|---------|---------|--------|--------|
| ALTITUDE (KM)          | 25      | 25      | 27      | 28     | 32     |
| FLIGHT DAY             | 4       | 28      | 1       | 27     | 20     |
| HASL NUMBER            | 2471    | 2499    | 2464    | 2497   | 2479   |
| COLLECTION UNIT        | D7-1    | D7-1    | D7-1    | D7-1   | D7-1   |
| ANALYTICAL LABORATORY  | TLW     | TLW     | TLW     | TLW    | TLW    |
| GROSS GAMMA (CPM/KSCM) | 1400.2# | 1258.2# | 1517.5  | 721.7# | 833.2# |
|                        |         |         | PC/KSCM |        |        |
| IRON-55                | 5120    | 3630    | 1980A   | 2660A  | 1040B  |
| STRONTIUM-89           | *       | *       | *       | *      | *      |
| STRONTIUM-90           | 551     | 313     | 120     | 159    | 78.1A  |
| ZIRCONIUM-95           | 69.0A   | 47.3B   | *       | *      | *      |
| CADMIUM-109            | *       | *       | *       | *      | *      |
| CERIUM-141             | *       | *       | *       | *      | *      |
| CERIUM-144             | 652     | 367     | 149     | 214    | 128A   |
| PROMETHIUM-147         | 1230    |         | 272     |        | 140A   |
| LEAD-210               |         | *       |         | *      |        |
| POLONIUM-210           |         | 4.46    |         | 2.58A  |        |
| PLUTONIUM-238          | 25.3    | 20.5    | 20.7    | 15.5   | 13.8   |
| PLUTONIUM-239          | 8.92    | 7.09    | 1.45A   | 3.34   | 1.98   |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.  
 B: ONE STANDARD DEVIATION OF COUNTING ERROR IS >50% TO 100% OF COUNT.  
 #: STANDARD DEVIATION GREATER THAN DATA VALUE  
 #: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5b (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS  
BALLOON SAMPLES COLLECTED DURING DECEMBER 1966  
LATITUDE, 34S MILDURA, AUSTRALIA

|                        |         |
|------------------------|---------|
| ALTITUDE (KM)          | 36      |
| FLIGHT DAY             | 21      |
| HASL NUMBER            | 2552    |
| COLLECTION UNIT        | AE-1    |
| ANALYTICAL LABORATORY  | TLW     |
| GROSS GAMMA (CPM/KSCM) | 1513.3# |

PC/KSCM

|               |       |
|---------------|-------|
| IRON-55       | *     |
| STRONTIUM-89  | *     |
| STRONTIUM-90  | 63.7A |
| ZIRCONIUM-95  | *     |
| CADMIUM-109   | *     |
| CERIUM-141    | *     |
| CERIUM-144    | *     |
| LEAD-210      | *     |
| POLONIUM-210  | 8.20A |
| PLUTONIUM-238 | 10.6A |
| PLUTONIUM-239 | .631B |

11-68

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.  
B: ONE STANDARD DEVIATION OF COUNTING ERROR IS >50% TO 100% OF COUNT.  
\*: STANDARD DEVIATION GREATER THAN DATA VALUE  
#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5b (Cont'd)

## STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

BALLOON SAMPLES COLLECTED DURING JANUARY 1967  
LATITUDE, 34S MILDURA, AUSTRALIA

|                        |        |        |
|------------------------|--------|--------|
| ALTITUDE (KM)          | 24     | 27     |
| FLIGHT DAY             | 20     | 18     |
| HASL NUMBER            | 2571   | 2568   |
| COLLECTION UNIT        | D7-1   | D7-1   |
| ANALYTICAL LABORATORY  | TLW    | TLW    |
| GROSS GAMMA (CPM/KSCM) | 1638.0 | 1048.3 |

|               | PC/KSCM |       |
|---------------|---------|-------|
| IRON-55       | 3210    | 1420A |
| STRONTIUM-89  | *       | *     |
| STRONTIUM-90  | 296     | 156   |
| ZIRCONIUM-95  | *       | *     |
| CADMIUM-109   | *       | *     |
| CERIUM-141    | *       | *     |
| CERIUM-144    | 269     | 156   |
| LEAD-210      | *       | *     |
| POLONIUM-210  | 2.37A   | 3.85  |
| PLUTONIUM-238 | 26.2    | 16.0  |
| PLUTONIUM-239 | 5.10    | 2.48A |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.  
 #: STANDARD DEVIATION GREATER THAN DATA VALUE

TABLE 5b (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS  
 BALLOON SAMPLES COLLECTED DURING FEBRUARY 1967  
 LATITUDE, 34S MILDURA, AUSTRALIA

|                        |         |         |        |
|------------------------|---------|---------|--------|
| ALTITUDE (KM)          | 25      | 27      | 32     |
| FLIGHT DAY             | 20      | 15      | 12     |
| HASL NUMBER            | 2605    | 2590    | 2588   |
| COLLECTION UNIT        | D7-1    | D7-1    | D7-1   |
| ANALYTICAL LABORATORY  | TLW     | TLW     | TLW    |
| GROSS GAMMA (CPM/KSCM) | 1219.7# | 1207.9# | 971.0# |
| PC/KSCM                |         |         |        |
| MANGANESE-54           | 109008  |         |        |
| IRON-55                | 3480    | 1470A   | *      |
| STRONTIUM-89           | *       | 121A    | *      |
| STRONTIUM-90           | 300     | 168     | 95.8   |
| ZIRCONIUM-95           | *       | *       | *      |
| CADMIUM-109            | *       | *       | *      |
| ANTIMONY-125           | 133     |         |        |
| CESIUM-137             | 469     |         |        |
| CERIUM-141             | *       | *       | *      |
| CERIUM-144             | 274     | 158     | 97.5A  |
| LEAD-210               | *       | *       | *      |
| POLONIUM-210           | 5.78A   | 3.48A   | 6.62A  |
| PLUTONIUM-238          | 28.4    | 21.7    | 8.83   |
| PLUTONIUM-239          | 5.14    | 3.48    | 1.31A  |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.  
 B: ONE STANDARD DEVIATION OF COUNTING ERROR IS >50% TO 100% OF COUNT.  
 #: STANDARD DEVIATION GREATER THAN DATA VALUE  
 #: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5b (Cont'd)

## STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

BALLOON SAMPLES COLLECTED DURING MARCH 1967  
LATITUDE, 34S MILDURA, AUSTRALIA

|                        |       |         |                 |        |
|------------------------|-------|---------|-----------------|--------|
| ALTITUDE (KM)          | 24    | 27      | 32 <sup>a</sup> | 37     |
| FLIGHT DAY             | 22    | 10      | 17              | 29     |
| HASL NUMBER            | 2632  | 2618    | 2630            | 2644   |
| COLLECTION UNIT        | D7-1  | D7-1    | D7-1            | AE-1   |
| ANALYTICAL LABORATORY  | TLW   | TLW     | TLW             | TLW    |
| GROSS GAMMA (CPM/KSCM) | 388.2 | 1451.0  | 894.5#          | 747.0# |
|                        |       | PC/KSCM |                 |        |
| IRON-55                | 3600  | 2500A   | *               | *      |
| STRONTIUM-89           | 179   | *       | *               | *      |
| STRONTIUM-90           | 367   | 117A    | 55.9A           | 78.8   |
| ZIRCONIUM-95           | *     | *       | *               | *      |
| CADMIUM-109            | *     | *       | *               | *      |
| CERIUM-141             | *     | *       | *               | *      |
| CERIUM-144             | 268   | 70.6A   | 62.18           | *      |
| LEAD-210               | *     | *       | *               | *      |
| POLONIUM-210           | 3.72  |         | 5.17A           | 21.0A  |
| PLUTONIUM-238          | 28.0  | 11.5    | 7.05A           | 2.03B  |
| PLUTONIUM-239          | 6.19  | 2.42A   | *               | .6788  |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS &gt;20% TO 50% OF COUNT.

B: ONE STANDARD DEVIATION OF COUNTING ERROR IS &gt;50% TO 100% OF COUNT.

\*: STANDARD DEVIATION GREATER THAN DATA VALUE

a: VOLUME ESTIMATED

#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5b (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

BALLOON SAMPLES COLLECTED DURING APRIL 1967  
LATITUDE, 34S MILDURA, AUSTRALIA

|                        |         |         |         |
|------------------------|---------|---------|---------|
| ALTITUDE (KM)          | 24      | 27      | 32      |
| FLIGHT DAY             | 13      | 06      | 11      |
| HASL NUMBER            | 2667    | 2650    | 2665    |
| COLLECTION UNIT        | D7-1    | D7-1    | D7-1    |
| ANALYTICAL LABORATORY  | TLW     | TLW     | TLW     |
| GROSS GAMMA (CPM/KSCM) | 1805.7# | 1091.7# | 2247.0# |
|                        | PC/KSCM |         |         |
| IRON-55                | 1770A   | 1410A   | *       |
| STRONTIUM-89           | *       | *       | *       |
| STRONTIUM-90           | 235     | 213     | 47.7    |
| ZIRCONIUM-95           | *       | *       | *       |
| CADMIUM-109            | *       | *       | *       |
| CERIUM-141             | *       | *       | *       |
| CERIUM-144             | 195     | 132     | *       |
| LEAD-210               | *       | *       | *       |
| POLONIUM-210           | 3.80A   | 3.94A   | 9.17A   |
| PLUTONIUM-238          | 24.7    | 17.1    | 6.87    |
| PLUTONIUM-239          | 4.41    | 4.41    | *       |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.  
\*: STANDARD DEVIATION GREATER THAN DATA VALUE  
#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5b (Cont'd)

## STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

BALLOON SAMPLES COLLECTED DURING MAY 1967  
LATITUDE, 34S MILDURA, AUSTRALIA

|                        |         |        |         |
|------------------------|---------|--------|---------|
| ALTITUDE (KM)          | 24      | 27     | 32      |
| FLIGHT DAY             | 09      | 02     | 04      |
| HASL NUMBER            | 2681    | 2674   | 2677    |
| COLLECTION UNIT        | D7-1    | D7-1   | D7-1    |
| ANALYTICAL LABORATORY  | TLW     | TLW    | TLW     |
| GROSS GAMMA (CPM/KSCM) | 842.6   | 1776.8 | 3119.1* |
|                        | PC/KSCM |        |         |
| IRON-55                | 1520A   | 1450A  | *       |
| STRONTIUM-89           | *       | *      | *       |
| STRONTIUM-90           | 166     | 109A   | 78.3A   |
| ZIRCONIUM-95           | *       | *      | *       |
| CADMIUM-109            | *       | *      | *       |
| CERIUM-141             | *       | *      | *       |
| CERIUM-144             | 95.9    | 76.98  | 53.6B   |
| LEAD-210               | *       | *      | *       |
| POLONIUM-210           | 2.81A   | *      | 10.0A   |
| PLUTONIUM-238          | 16.3    | 20.4A  | 8.83A   |
| PLUTONIUM-239          | 2.00A   | 9.00B  | *       |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS &gt;20% TO 50% OF COUNT.

B: ONE STANDARD DEVIATION OF COUNTING ERROR IS &gt;50% TO 100% OF COUNT.

\*: STANDARD DEVIATION GREATER THAN DATA VALUE

#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5b (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS  
BALLOON SAMPLES COLLECTED DURING JUNE 1967  
LATITUDE, 34S MILDURA, AUSTRALIA

|                        |        |
|------------------------|--------|
| ALTITUDE (KM)          | 27     |
| FLIGHT DAY             | 15     |
| HASL NUMBER            | 2712   |
| COLLECTION UNIT        | D7-1   |
| ANALYTICAL LABORATORY  | TLW    |
| GROSS GAMMA (CPM/KSCM) | 518.1# |

PC/KSCM

|               |       |
|---------------|-------|
| ANTIMONY-125  | 62.2A |
| CESIUM-137    | 233   |
| CERIUM-144    | 96.1  |
| PLUTONIUM-238 | 12.9  |
| PLUTONIUM-239 | 2.88  |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.  
#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

Table 5b (Cont'd)

GROSS GAMMA ACTIVITY MEASUREMENTS OF SUBSEQUENT SAMPLES AT 34°S

Milldura, Australia

| HASL<br># | Collection |     |                | Gross Gamma<br>cpm/KSCM |
|-----------|------------|-----|----------------|-------------------------|
|           | Month      | Day | Altitude<br>Km |                         |
| 2718      | July 67    | 2   | 32.1           | $2.8 \times 10^2$       |
| 2751      | Sept. 67   | 25  | 21.8           | $8.7 \times 10^2$ #     |
| 2740      | "          | 5   | 24.3           | $8.9 \times 10^2$ #     |
| 2744      | "          | 7   | 26.9           | $8.7 \times 10^2$       |
| 2750      | "          | 22  | 37.3           | $7.3 \times 10^2$ #     |
| 2772      | "          | 28  | 41.5           | $5.9 \times 10^2$ #     |

#: Gross Gamma Count more than Two Weeks after Collection

TABLE 5c

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS  
AIRCRAFT SAMPLES COLLECTED DURING FEBRUARY 1966

| LATITUDE               | 64N     | 64N     | 34N     | 10N     | 10N     |
|------------------------|---------|---------|---------|---------|---------|
| ALTITUDE (KM)          | 18      | 18      | 20      | 20      | 20      |
| FLIGHT DAY             | 27      | 27      | 28      | 28      | 28      |
| HASL NUMBER            | 2292A   | 2292B   | 2293A   | 2295A   | 2295B   |
| COLLECTION UNIT        | AC-1    | AC-1    | AC-1    | AC-1    | AC-1    |
| ANALYTICAL LABORATORY  | TLW     | TLW     | II      | TLW     | II      |
| GROSS GAMMA (CPM/KSCM) | 3129.3# | 3155.3# | 4217.7# | 2783.3# | 2783.3# |
| PC/KSCM                |         |         |         |         |         |
| MANGANESE-54           | 3880?   |         | *       | 10600   | *       |
| IRON-55                | 16700   | 7760    | 17000   | 15700   |         |
| STRONTIUM-90           | 1230    | 1620    | 2160    | 1350    | 1450    |
| CADMIUM-109            | 54.7    | *       | *       | *       | 88.2A   |
| CADMIUM-113M           | 22.8A   |         | *       | *       | 20.9A   |
| ANTIMONY-125           | 928     |         | 1270    | 739     | 1170    |
| CESIUM-137             | 1710    |         | 3050    | 2030    | 4320?   |
| CERIUM-144             | 2120    | 2550    | 4060    | 2320    | 3220    |
| PROMETHIUM-147         |         |         | 4020    | 15100?  | 8480    |
| LEAD-210               | 3.858   | *       | 31.0    | 7.69    |         |
| POLONIUM-210           |         | .7518   |         |         |         |
| PLUTONIUM-238          | 15.8    | 16.1    | 43.4    | .831A   | 3.32?   |
| PLUTONIUM-239          | 17.9    | 19.6    | 65.6?   | 22.0    | 88.2?   |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS &gt;20% TO 50% OF COUNT.

B: ONE STANDARD DEVIATION OF COUNTING ERROR IS &gt;50% TO 100% OF COUNT.

\*: STANDARD DEVIATION GREATER THAN DATA VALUE

?: DATA SUSPECT

#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5c (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS  
AIRCRAFT SAMPLES COLLECTED DURING MARCH 1966

| LATITUDE               | 65N     | 65N     | 34N     | 34N     | 11N     |
|------------------------|---------|---------|---------|---------|---------|
| ALTITUDE (KM)          | 18      | 18      | 19      | 19      | 20      |
| FLIGHT DAY             | 29      | 29      | 29      | 29      | 28      |
| HASL NUMBER            | 2299A   | 2299B   | 2300A   | 2300B   | 2302A   |
| COLLECTION UNIT        | AC-1    | AC-1    | AC-1    | AC-1    | AC-1    |
| ANALYTICAL LABORATORY  | TLW     | TLW     | TLW     | TLW     | TLW     |
| GROSS GAMMA (CPM/KSCM) | 3760.7# | 3732.0# | 4676.9# | 4699.5# | 3531.1# |
|                        |         |         | PC/KSCM |         |         |
| IRON-55                | 16700   | 17500   | 21100   | 24500   | 15500   |
| STRONTIUM-89           |         | *       |         |         |         |
| STRONTIUM-90           | 1490    | 1650    | 1950    | 2160    | 1300    |
| ZIRCONIUM-95           |         | 84.4B   |         |         |         |
| CADMIUM-109            | *       | *       | 41.4A   | 52.8A   | 25.1B   |
| CERIUM-141             |         | *       |         |         |         |
| CERIUM-144             | 2610    | 3090    | 3380    | 3610    | 2320    |
| LEAD-210               | 7.17A   | 9.18A   | *       | *       | 11.3    |
| POLONIUM-210           |         | 2.30A   |         |         |         |
| PLUTONIUM-238          | 14.8    | 13.8    | 14.3    | 15.5    | 2.92A   |
| PLUTONIUM-239          | 24.7    | 27.6    | 34.0    | 33.5    | 21.9    |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.

B: ONE STANDARD DEVIATION OF COUNTING ERROR IS >50% TO 100% OF COUNT.

\*: STANDARD DEVIATION GREATER THAN DATA VALUE

#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5c (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

AIRCRAFT SAMPLES COLLECTED DURING APRIL 1966

| LATITUDE               | 60N     | 60N     | 34N     | 34N     | 07N     | 07N     |
|------------------------|---------|---------|---------|---------|---------|---------|
| ALTITUDE (KM)          | 20      | 20      | 20      | 20      | 20      | 20      |
| FLIGHT DAY             | 28      | 28      | 25      | 25      | 27      | 27      |
| HASL NUMBER            | 2411A   | 2411B   | 2409A   | 2409B   | 2413A   | 2413B   |
| COLLECTION UNIT        | AC-1    | AC-1    | AC-1    | AC-1    | AC-1    | AC-1    |
| ANALYTICAL LABORATORY  | TLW     | TLW     | TLW     | TLW     | TLW     | TLW     |
| GROSS GAMMA (CPM/KSCM) | 3395.3# | 3389.8# | 4026.7# | 4035.5# | 2097.7# | 2094.7# |
| PC/KSCM                |         |         |         |         |         |         |
| IRON-55                | 16800   | 14300   | 15900   | 17300   | 14300   | 12100   |
| STRONTIUM-90           | 1620    | 1530    | 1850    | 2100    | 1360    | 1310    |
| CADMIUM-109            | *       | *       | *       | *       | *       | *       |
| CERIUM-144             | 2690    | 2400    | 2820    | 3340    | 1970    | 1860    |
| PLUTONIUM-238          | 14.5    | 15.0    | 8.04    | 10.8    | 2.80A   | 2.38A   |
| PLUTONIUM-239          | 24.4    | 22.6    | 27.3    | 31.2    | 23.1    | 15.3    |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.

#: STANDARD DEVIATION GREATER THAN DATA VALUE

#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5c (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS  
AIRCRAFT SAMPLES COLLECTED DURING MAY 1966

| LATITUDE               | 60N     | 38N     | 38N     | 10N     | 30S     |
|------------------------|---------|---------|---------|---------|---------|
| ALTITUDE (KM)          | 18      | 18      | 18      | 18      | 18      |
| FLIGHT DAY             | 30      | 30      | 30      | 28      | 27      |
| HASL NUMBER            | 2415A   | 2414A   | 2414B   | 2417A   | 2416A   |
| COLLECTION UNIT        | AC-1    | AC-1    | AC-2    | AC-1    | AC-1    |
| ANALYTICAL LABORATORY  | TLW     | TLW     | TLW     | TLW     | TLW     |
| GROSS GAMMA (CPM/KSCM) | 3423.9# | 2615.5# | 2615.5# | 1060.8# | 1895.9# |
|                        |         |         | PC/KSCM |         |         |
| IRON-55                | 17700   | 10400   | 12300   | 5050    | 9190    |
| STRONTIUM-89           | *       | *       | *       | 118A    | *       |
| STRONTIUM-90           | 1660    | 1310    | 1230    | 471     | 901     |
| ZIRCONIUM-95           | *       | *       | 29.5B   | *       | 51.4A   |
| CADMIUM-109            | 53.1A   | 68.0    | 27.5A   | 18.3B   | 65.6A   |
| CERIUM-141             | *       | *       | *       | *       | *       |
| CERIUM-144             | 2250    | 1730    | 1570    | 634     | 1140    |
| PROMETHIUM-147         | 4000    | 2910    | 2770    | 1150    | 1980    |
| PLUTONIUM-238          | 9.84    | 7.18    | 5.67A   | 1.67    | 37.0    |
| PLUTONIUM-239          | 27.4    | 19.7    | 21.8    | 7.11    | 9.24    |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.  
 B: ONE STANDARD DEVIATION OF COUNTING ERROR IS >50% TO 100% OF COUNT.  
 #: STANDARD DEVIATION GREATER THAN DATA VALUE  
 #: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5c (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS  
AIRCRAFT SAMPLES COLLECTED DURING JUNE 1966

| LATITUDE               | 34N     | 34N     | 30N     | 06N    |
|------------------------|---------|---------|---------|--------|
| ALTITUDE (KM)          | 20      | 20      | 18      | 18     |
| FLIGHT DAY             | 22      | 22      | 14      | 17     |
| HASL NUMBER            | 2524A   | 2524B   | 2528A   | 2527A  |
| COLLECTION UNIT        | AC-1    | AC-2    | AC-1    | AC-1   |
| ANALYTICAL LABORATORY  | TLW     | TLW     | TLW     | TLW    |
| GROSS GAMMA (CPM/KSCM) | 3276.3# | 3275.8# | 1569.3# | 871.6# |
|                        |         | PC/KSCM |         |        |
| IRON-55                | 16300   | 22900   | 7930    | 4240   |
| STRONTIUM-90           | 1760    | 2430    | 827     | 472    |
| CADMIUM-109            | 1110A   | *       | *       | *      |
| CERIUM-144             | 2480    | 3590    | 1130    | 606    |
| LEAD-210               |         | *       |         |        |
| POLONIUM-210           |         | 8.08    |         |        |
| PLUTONIUM-238          | 17.5    | 28.9    | 58.3?   | 1.03A  |
| PLUTONIUM-239          | 27.3    | 42.1    | 10.8    | 6.65   |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.  
\*: STANDARD DEVIATION GREATER THAN DATA VALUE  
?: DATA SUSPECT  
#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 3C (Cont'd)

STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS  
AIRCRAFT SAMPLES COLLECTED DURING JULY 1966

| LATITUDE               | 62N     | 62N     | 34N     | 34N     | 10N     | 32S     |
|------------------------|---------|---------|---------|---------|---------|---------|
| ALTITUDE (KM)          | 20      | 20      | 20      | 20      | 20      | 20      |
| FLIGHT DAY             | 17      | 17      | 20      | 20      | 18      | 19      |
| HASL NUMBER            | 2529A   | 2529B   | 2531A   | 2531B   | 2533A   | 2535A   |
| COLLECTION UNIT        | AC-1    | AC-2    | AC-1    | AC-1    | AC-1    | AC-1    |
| ANALYTICAL LABORATORY  | TLW     | TLW     | TLW     | TLW     | TLW     | TLW     |
| GROSS GAMMA (CPM/KSCM) | 2604.8# | 2634.3# | 1943.6# | 1954.0# | 1607.8# | 3607.7# |
| PC/KSCM                |         |         |         |         |         |         |
| IRON-55                | 12000   | 9900    | 9210    |         | 13100   | 15100   |
| STRONTIUM-89           | *       |         | 12108   |         | *       | *       |
| STRONTIUM-90           | 1230    | 1070    | 960     |         | 944     | 1860    |
| ZIRCONIUM-95           | *       |         | *       |         | *       | *       |
| CADMUM-109             | *       | *       | *       |         | *       | *       |
| ANTIMONY-125           |         |         |         | 485     |         |         |
| CESIUM-137             |         |         |         | 1610    |         |         |
| CERIUM-141             | *       |         | *       |         | *       | *       |
| CERIUM-144             | 1600    | 1620    | 1290    | 1430    | 1280    | 2620    |
| PROMETHIUM-147         | 2760    |         | 2270    |         | 2360    |         |
| LEAD-210               | *       | *       | *       |         | *       | *       |
| POLONIUM-210           | 3.47A   | 1.68B   | 3.89A   |         | 6.61    | 6.91    |
| PLUTONIUM-238          | 16.8    | 17.4    | 8.75    | 11.2    | 2.84A   | 93.6    |
| PLUTONIUM-239          | 18.4    | 21.3    | 16.8    | 16.1    | 15.0    | 30.7    |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT.  
 B: ONE STANDARD DEVIATION OF COUNTING ERROR IS >50% TO 100% OF COUNT.  
 #: STANDARD DEVIATION GREATER THAN DATA VALUE  
 #: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

TABLE 5c (Cont'd)

## STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

## AIRCRAFT SAMPLES COLLECTED DURING AUGUST 1966

| LATITUDE               | 63N     | 34N     | 34N     | 07N     | 32S     |
|------------------------|---------|---------|---------|---------|---------|
| ALTITUDE (KM)          | 20      | 20      | 20      | 20      | 20      |
| FLIGHT DAY             | 14      | 15      | 15      | 19      | 17      |
| HASL NUMBER            | 2537A   | 2539A   | 2539B   | 2541A   | 2543A   |
| COLLECTION UNIT        | AC-1    | AC-1    | AC-2    | AC-1    | AC-1    |
| ANALYTICAL LABORATORY  | TLW     | TLW     | TLW     | TLW     | TLW     |
| GROSS GAMMA (CPM/KSCM) | 3244.8# | 4647.7# | 4602.9# | 2326.6# | 2301.1# |
|                        |         |         | PC/KSCM |         |         |
| IRON-55                | 9890    | 24200   | 24100   | 16900   | 10600   |
| STRONTIUM-89           | *       | *       | 14000B  | *       | *       |
| STRONTIUM-90           | 1250    | 2620    | 2750    | 1520    | 1080    |
| ZIRCONIUM-95           | *       | *       | *       | *       | *       |
| CADMIUM-109            | *       | *       | *       | *       | *       |
| CERIUM-141             | *       | *       | *       | *       | *       |
| CERIUM-144             | 1530    | 3340    | 3500    | 1890    | 1390    |
| LEAD-210               |         |         | *       |         |         |
| POLONIUM-210           |         |         | 7.25A   |         |         |
| PLUTONIUM-238          | 23.9    | 18.4    | 22.3    | 3.83    | 53.5    |
| PLUTONIUM-239          | 18.1    | 37.7    | 43.4    | 22.3    | 17.9    |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS &gt;20% TO 50% OF COUNT.

B: ONE STANDARD DEVIATION OF COUNTING ERROR IS &gt;50% TO 100% OF COUNT.

\*: STANDARD DEVIATION GREATER THAN DATA VALUE

#: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

Table 5d

## ANALYSES OF CODED BLANK SAMPLES

| Anal.<br>Lab.    | Sample # | Report<br>Date | dpm/Sample |       |       |       |       |        |         |        |        |        |        |        |        |        |        |        |
|------------------|----------|----------------|------------|-------|-------|-------|-------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                  |          |                | Mn-54      | Fe-55 | Sr-89 | Sr-90 | Zr-95 | Cd-109 | Cd-113m | Sb-125 | Cs-137 | Ce-141 | Ce-144 | Pm-147 | Pb-210 | Po-210 | Pu-238 | Pu-239 |
| Tracerlab - West |          |                |            |       |       |       |       |        |         |        |        |        |        |        |        |        |        |        |
|                  | 2206     | 2/1/66         | *          | *     |       | 0.78  |       | *      |         | *      | *      |        | *      | *      |        | 0.05B  | *      |        |
|                  | 2207     | 3/2/66         |            | *     |       | 2.97  |       | *      |         |        |        |        | *      |        | 0.46A  | 0.17A  | *      |        |
|                  | 2281     | 4/15/66        | *          | *     |       | 0.21B |       | *      | 3.07    | 1.04A  | 1.24   |        | 0.43B  |        | 0.16B  | *      | 0.04A  |        |
|                  | 2323     | 5/1/66         | *          | 89.1  | *     | *     |       | *      |         | *      | 0.59A  |        | *      | 1.75B  | *      | 0.18A  | 0.08A  |        |
|                  | 2376     | 7/1/66         | *          | *     | 0.30B |       |       | *      |         |        |        | *      | *      | *      | *      | 0.08B  | 0.03B  |        |
|                  | 2384     | 7/1/66         | *          | *     | 1.62  |       |       | 2.32B  |         |        |        | *      | *      |        |        | 0.13A  | 0.04A  |        |
|                  | 2466     | 9/1/66         | *          |       | 0.87A | *     | *     |        |         |        |        | *      | *      |        | 0.29B  | *      | *      |        |
| 10/83            | 2463     | 10/3/66        | *          | *     | *     | *     | *     | *      |         |        |        | *      | *      | *      |        | *      | *      |        |
|                  | 2495     | 11/1/66        | *          | *     | 0.92B | *     | *     |        |         |        |        | *      | 2.35   |        | *      | 0.16A  | 0.09B  | 0.05B  |
|                  | 2549     | 12/15/66       | *          | *     | 0.96B | *     | *     |        |         |        |        | *      | *      |        |        | *      | 0.03B  |        |
|                  | 2582     | 2/2/67         | *          | *     | *     | *     | *     | *      | 2.07A   | *      | *      | 2.95B  |        |        | *      | 0.31B? | 0.54?  | 0.15?  |
|                  | 2626     | 3/1/67         | *          | *     | *     | *     | *     | *      |         |        |        | *      | *      |        | *      | 0.23A  | *      | 0.15A  |
|                  | 2669     | 4/1/67         |            | *     | *     | *     |       |        |         |        |        | *      | *      |        | *      | 0.29B? | *      | *      |
|                  | 2699     | 6/1/67         |            |       |       |       |       |        |         | *      | *      |        | *      |        |        | *      | *      |        |
|                  | 2710     | 4/14/67        |            | *     | *     | 2.80A | *     | *      |         |        |        | *      | *      |        | *      | 0.71A  | *      | *      |

A: One standard deviation of the counting error is between 20 - 50%

B: " " " " " " " " 51 - 100%

\*: Not detectable

?: Data Suspect

Table 5e

RECENT STANDARD DEVIATION OF ANALYSIS BY TRACERLAB OF  
CODED DUPLICATE SAMPLES

| <u>Nuclide</u> | <u>% Standard Deviation</u> | <u># of Duplicates</u> |
|----------------|-----------------------------|------------------------|
| Fe-55          | 8.6                         | 6                      |
| Sr-90          | 8.8                         | 8                      |
| Ce-144         | 9.7                         | 9                      |
| Pm-147         | 4.5                         | 1                      |
| Pu-238         | 11                          | 7                      |
| Pu-239         | 10                          | 9                      |

## ANALYSES OF CODED STANDARD SAMPLES

dpm

| Sample # | Report Date | Mn-54                         | Fe-55                    | Sr-89                 | Sr-90                | Zr-95                | Cd-109 | Sb-123             | Ca-137             | Ce-141               | Ce-144                | Pm-147                | Pb-210               | Po-210               | Pu-238               | Pu-239                |                      |
|----------|-------------|-------------------------------|--------------------------|-----------------------|----------------------|----------------------|--------|--------------------|--------------------|----------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|-----------------------|----------------------|
| 2248     | 2/15/66     | Added<br>Found<br>% Deviation | 36400<br>33100<br>-9.1   | 9660<br>9570<br>-0.9  |                      | 172<br>169<br>-1.7   |        | 371<br>361<br>-2.7 | 868<br>685<br>-21  | 241<br>247<br>+2.5   |                       | 157<br>154<br>-1.9    | 1710<br>2040<br>+19  |                      | 0<br>0.13A<br>+3.5   | 5.95<br>6.16<br>+3.5  |                      |
| 2279     | 3/2/66      | Added<br>Found<br>% Deviation |                          | 5800<br>5750<br>-0.9  |                      | 106<br>101<br>-4.7   |        | 405<br>427<br>+5.4 |                    |                      |                       | 160<br>154<br>-3.8    |                      | 0<br>0.16A<br>-6.1   | 6.06<br>5.69<br>-6.1 |                       |                      |
| 2332     | 4/1/66      | Added<br>Found<br>% Deviation | 24800<br>26000<br>+4.8   | 8090<br>8180<br>+1.1  |                      | 213<br>202<br>-5.2   |        | 678<br>707<br>+4.3 | 0<br>8.73<br>+6.3  | 413<br>439<br>+6.3   |                       | 406<br>424<br>+4.4    | 0<br>7.6A<br>+4.4    | 47.1<br>42.6<br>-9.6 | 0<br>0.12A<br>-2.5   | 23.6<br>23.0<br>-2.5  |                      |
| 2373     | 5/2/66      | Added<br>Found<br>% Deviation | 37900<br>41500<br>+9.5   | 7000<br>6190<br>-12   |                      | 202<br>191<br>-5.4   |        | 375<br>321<br>-14  | 1030<br>895<br>-13 | 393<br>405<br>+3.1   |                       | 436<br>442<br>+1.4    | 662<br>638<br>-3.6   | 38.2<br>34.7<br>-9.2 | 0<br>0.12B<br>+7.1   | 7.71<br>8.26<br>+7.1  |                      |
| 2395     | 6/1/66      | Added<br>Found<br>% Deviation | 164000<br>175000<br>+6.7 | 5290<br>5240<br>-0.9  | 553<br>503<br>-7.8   | 48.9<br>51.4<br>+5.1 |        | 759<br>677<br>-11  | 360<br>742<br>-14  | 70.8<br>72.4<br>+2.2 | 640<br>702A<br>+9.7   | 552<br>546<br>-1.1    | 777<br>876<br>+13    | 20.6<br>19.9<br>-3.3 | 0<br>0.08B<br>+0.38  | 2.63<br>2.64<br>+0.38 |                      |
| 2429     | 8/1/66      | Added<br>Found<br>% Deviation |                          | 8840<br>9040<br>+2.3  | 270<br>280<br>+3.7   | 46.4<br>51.6<br>+11  |        | 638<br>610<br>-4.4 | 221<br>142<br>-36  |                      | 155<br>335B<br>?      | 361<br>489<br>+35     |                      | 6.89<br>5.51<br>-20  | 0<br>0.09A<br>-5.4   | 2.95<br>2.79<br>-5.4  |                      |
| 2474     | 9/1/66      | Added<br>Found<br>% Deviation |                          | 4280<br>3830<br>-11   | 240<br>231<br>-3.8   | 55.1<br>51.2<br>-7.1 |        | 890<br>741<br>-17  | 682<br>614<br>-10  |                      | 173<br>*<br>+6.4      | 435<br>482<br>+6.4    | 22.8<br>21.3<br>-6.6 | 5.88<br>27.5<br>+370 | 7.25<br>6.52<br>-10  | 3.45<br>3.0<br>-13    |                      |
| 2519     | 11/1/66     | Added<br>Found<br>% Deviation | 117000<br>105000<br>-10  | 9870<br>10100<br>+2.3 | 71.9<br>73.9<br>+2.8 | 44.7<br>43.3<br>-3.1 |        | 374<br>337<br>-9.9 | 523<br>480<br>-8.3 | 684<br>631<br>-7.7   | 29.6<br>30.9<br>+4.4  | 23.4<br>30B<br>+29    | 323<br>29B<br>-6.8   | 1370<br>1280<br>-6.8 | 4.70<br>4.59<br>-2.3 | 3.19<br>2.61<br>-18   |                      |
| 2550     | 11/1/66     | Added<br>Found<br>% Deviation |                          | 8670<br>8380<br>-3.3  | 204<br>194<br>-4.9   | 75.5<br>70.9<br>-6.1 |        | 253<br>269<br>-21  | 701<br>-11         |                      | 106<br>120A<br>+11    | 46.7<br>51.0<br>+9.2  | 33.2<br>22.9<br>-31  | 3.20<br>30.2<br>+840 | 5.17<br>4.70<br>-9.1 | 2.92<br>2.92<br>±0    |                      |
| 2587     | 12/1/66     | Added<br>Found<br>% Deviation |                          |                       | 89.2<br>76.9<br>-14  | 62.0<br>59.4<br>-4.2 |        | 210<br>170<br>-19  |                    |                      | 61.9<br>170B<br>-0.7A | 53.8<br>53.4<br>-0.7A |                      |                      | 6.76<br>6.47<br>-4.3 | 2.26<br>2.01<br>-11   |                      |
| 2646     | 1/1/67      | Added<br>Found<br>% Deviation | 112000<br>102000<br>-8.9 | 8830<br>9470<br>+7.2  | 332<br>301<br>-9.3   | 19.3<br>15.9<br>-18  |        | 418<br>364<br>-13  | 759<br>478<br>-37  | 500<br>456<br>-8.8   | 25.1<br>25.9<br>+3.2  | 0<br>260B<br>+4.5     | 62.0<br>64.9<br>+4.5 | 3.86<br>2.89A<br>-25 | 7.61<br>3.54<br>-53  | 6.59<br>6.70<br>+1.6  | 3.65<br>3.37<br>-7.7 |
| 2647     | 3/8/67      | Added<br>Found<br>% Deviation |                          | 5080<br>5520<br>+8.7  | 180<br>180<br>0      | 29.5<br>246<br>+1.4  |        | 274<br>712<br>-10  | 932<br>-24         |                      | 0<br>*<br>+11         | 39.0<br>43.4<br>+11   | 5.61<br>4.32A<br>-23 | 8.36<br>5.26<br>-37  | 7.15<br>6.59<br>-7.8 | 2.81<br>2.56<br>-8.9  |                      |

\*: Not Detectable

A: Counting Error is 20 - 50%

B: Counting Errors is 51 - 100%

?: Data Suspect

Table 5f (Cont'd)

ANALYSES OF CODED STANDARD SAMPLES  
dpm

TRACERLAB - WEST

| <u>Sample #</u>     | <u>Report Date</u> | <u>Mn-54</u> | <u>Fe-55</u> | <u>Sr-89</u> | <u>Sr-90</u> | <u>Zr-95</u> | <u>Cd-109</u> | <u>Sb-125</u> | <u>Cs-137</u> | <u>Ce-141</u> | <u>Ce-144</u> | <u>Pm-147</u> | <u>Pb-210</u> | <u>Po-210</u> | <u>Pu-238</u> | <u>Pu-239</u> |
|---------------------|--------------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| 2691                | 4/17/67            | Added        | 7210         | 79.0         | 34.1         | 200          | 512           |               |               | 344           | 39.5          |               | 5.23          | 7.40          | 4.98          | 3.80          |
|                     |                    | Found        | 6800         | 74.9         | 32.6         | 183          | 392           |               |               | 294           | 43.5          |               | *?            | 4.51          | 4.53          | 3.28          |
|                     |                    | % Deviation  | -5.7         | -5.2         | -4.4         | -8.5         | -23           |               |               | -14           | +10           |               | -39           | -9.0          | -13.7         |               |
| 2624                | 7/20/67            | Added        |              |              | 60.7         |              |               |               |               |               |               |               | 3.72          |               |               |               |
|                     |                    | Found        |              |              | 58.3         |              |               |               |               |               |               |               | 2.85A         |               |               |               |
|                     |                    | % Deviation  |              |              | -4.0         |              |               |               |               |               |               |               | -23           |               |               |               |
| 2720                | 5/5 /67            | Added        | 6760         | 78.5         | 35.9         | 141          | 704           |               |               | 233           | 33.2          |               | 5.35          | 7.41          | 6.25          | 2.90          |
|                     |                    | Found        | 6250         | 60.7B        | 36.3         | 100          | 557           |               |               | 160B          | 37.9          |               | 5.33          | 4.21          | 6.27          | 2.61          |
|                     |                    | % Deviation  | -7.5         | -23          | +1.1         | -29          | -21           |               |               | -31           | +14           |               | -0.4          | -43           | +0.3          | -10           |
| 2746                | 6/1 /67            | Added        |              |              |              |              |               | 852           | 36.5          |               | 18.5          |               |               | 9.40          | 3.77          |               |
|                     |                    | Found        |              |              |              |              |               | 703           | 34.9          |               | 19.2          |               |               | 8.60          | 3.30          |               |
|                     |                    | % Deviation  |              |              |              |              |               | -17           | -4.4          |               | +3.8          |               |               | -8.1          | -12           |               |
| Average % Deviation |                    | -1.2         | -1.6         | -6.2         | -3.0         | -15          | -14           | -14           | +2.5          | -14           | +6.6          | +5.6          | -10           | -30           | -5.4          | -6.5          |

\*: Not Detectable

A: Counting Error is 20 - 50%

B: Counting Error is 51 - 100%

?: Data Suspect

### Part III

#### DATA FROM SOURCES OTHER THAN HASL

Numerous fallout studies are conducted by other organizations in the United States and abroad. Some of these are sent to the editors for dissemination in these HASL Quarterly reports. Submitted data are reproduced essentially as received and no interpretation by HASL is attempted.

|                                                                                                                                                                                                                                                                               | <u>Page</u> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1. Isotopes, Inc., Westwood, N. J.<br>The Twentieth Progress Report on Project Stardust:<br>"Flight Data and Results of Radiochemical Analysis of<br>Filter Samples Collected During April-June 1967<br>worked performed under contract to the Defense Atomic Support Agency. | III-2       |
| 2. National Radiation Laboratory, Department of Health<br>Christchurch, New Zealand<br>Environmental Radioactivity in New Zealand<br>Quarterly Report for April-June 1967; NRL F.25                                                                                           | III-22      |
| 3. Division of Biological and Medical Research<br>Argonne National Laboratory<br>"Cs-137 in Various Chicago Foods (Collection Month October 1967)"<br>by S. S. Brar and D. M. Nelson                                                                                          | III-54      |
| 4. EURATOM Joint Nuclear Research Centre<br>Ispra Establishment: Protection Service<br>Site Survey and Meteorology Section Quarterly Report                                                                                                                                   | III-59      |

1.

The Twentieth Progress Report on  
Project Stardust

X FLIGHT DATA AND RESULTS OF  
RADIOCHEMICAL ANALYSES OF FILTER  
SAMPLES COLLECTED DURING APRIL-JUNE 1967  
4/10/67 1967

by

Herbert W. Feely  
David Katzman  
Stephen Kaminsky

A report on work performed under contract DA-49-146-XZ-079  
prepared for the Defense Atomic Support Agency  
Washington, D. C. 20305

October 31, 1967

Isotopes, Inc.  
Westwood Laboratories  
50 Van Buren Ave.  
Westwood, New Jersey

The following data and explanatory material have been cleared  
by the Department of Defense for open publication.

This is the tenth of a series of reports of flight data and of results of radiochemical analyses of stratospheric and tropospheric air filter samples collected during Project Stardust. The previous reports have been published by the U.S. Atomic Energy Commission, Health and Safety Laboratory. The periods during which the samples were collected and the reports containing the data are as follows:

|                           |                                                                               |
|---------------------------|-------------------------------------------------------------------------------|
| June 1961 - December 1962 | HASL-153                                                                      |
| January - December 1963   | HASL-168                                                                      |
| January - December 1964   | HASL-169                                                                      |
| January - December 1965   | HASL-176                                                                      |
| January - March 1966      | HASL-173, pp III-2 to III-25                                                  |
| April - June 1966         | HASL-174, pp III-2 to III-27                                                  |
| July - September 1966     | HASL-181, pp III-2 to III-23                                                  |
| October - December 1966   | HASL-182, pp III-2 to III-29<br>(Corrections:<br>HASL-183, pp III-2 to III-5) |
| January - March 1967      | HASL-183, pp III-6 to III-30                                                  |

The present report contains data for all air filter samples collected during April to June 1967 for Project Stardust. This is the final report in this series, because the collection of samples for analyses during Project Stardust was terminated in June 1967.

#### The Stardust Sampling and Analytical Program

From early 1965 to mid-1967, the General Dynamics' RB-57F aircraft was the primary sampling vehicle used during Project Stardust. To obtain maximum performance from this aircraft, it was employed primarily at altitudes of about fifteen kilometers and higher. Other aircraft, including the RB-57C, were

employed for sampling the troposphere and the lower regions of the polar stratosphere. The 58th Reconnaissance Squadron of the 9th Weather Reconnaissance Wing (MAC) of the U.S. Air Force had prime responsibility for the collection of samples.

Stratospheric sampling was begun in Project Stardust in June 1961. By January 1967 the regular sampling corridor extended from 75°N, 143°W to 52°S, 68°W. Between 75°N or 65°N and 31°N sampling missions were flown at 39, 43, 50, 55, 60, and about 65 thousand feet (at about 12, 13, 15, 17, 18, and 20 kilometers). Between 31°N and 52°S they were flown only at 50, 55, 60, and about 65 thousand feet.

The program of radiochemical analysis of filter samples evolved into a system which, by the time the program ended, consisted of three basic groups. Samples included in the first of these, designated the "SF" group, were analyzed for fission products such as strontium-90 and strontium-89. The long-lived, potentially hazardous nuclide, plutonium-239, and the tracer nuclide, plutonium-238, injected into the atmosphere in April 1964 by burn-up of a SNAP-9A power source, were measured in the second group, the "SQ" samples. Cadmium-109, which was produced by a high altitude event in the 1962 series of nuclear weapon tests performed at Johnston Island and Christmas Island, was measured in the third group, the "SX" samples, together with plutonium-238 and plutonium-239. Strontium-90 and sometimes strontium-89 were also measured in the "SQ" and "SX" samples.

#### Flight Data for Air Filter Samples

Flight data for all usable air filter samples collected for Project Stardust during the interval April to June 1967 are listed in Table 1. The data reported include an identification of the sampling vehicle, the date, time,

latitude, longitude and altitude of sample collection, the volume of air sampled, the total beta activity of the filter sample, and the identification of the samples for radiochemical analysis in which the filter was included.

The data in Table 1 have been arranged chronologically according to sampling date. The sampling date, the aircraft type, and when known, the serial number of the aircraft are listed above the data for samples collected by that aircraft. The only aircraft used during 1967 were the RB-57F and the RB-57C. The first column of the table contains the filter sample numbers which were assigned to the filters upon their receipt at Isotopes, Inc. A letter designating the filter type has been added to each filter sample number. The following filter types are distinguished:

| <u>Filter Designation</u> | <u>Aircraft Type</u> | <u>Sampler Type</u> | <u>Exposed Area (cm<sup>2</sup>)</u> |
|---------------------------|----------------------|---------------------|--------------------------------------|
| U                         | RB-57F               | U-1                 | 1288                                 |
| F                         | RB-57C               | F-57                | 1626                                 |

The times at which the collection of each filter sample was begun and completed are given in the second column of Table 1. Greenwich mean time is used, and the day, hour, and minute are included in each time listing.

The latitudes, longitudes and altitudes at which sampling was begun and completed are given for each filter in the third, fourth, and fifth columns. Degrees and minutes are listed for each latitude and longitude. Only one longitude is given for filters collected along a north-south oriented flight track. Only a single altitude is given, since the sampling vehicle was generally kept at one altitude during the collection of each filter. On normal Stardust missions it was only when the vehicle was attempting to attain its maximum

altitude that a change in altitude during filter collection was deliberately planned. The mean altitude is given for such samples. Generally, the reported altitudes should be accurate to within about 0.3 kilometer.

The volume of air sampled by each filter, in hundreds of cubic meters at standard temperature and pressure, is given in the sixth column of Table 1, and the total beta activity of each, in picocuries per standard cubic meter, is given in the seventh column. The quantity of air sampled per unit time by a filter depended mainly on the sampler design, the altitude of collection, and the aircraft speed, but also to a lesser extent upon the ambient temperature. The total beta activities were measured using a disk of approximately one inch diameter cut from each filter.

In the eighth column of Table 1 the samples which were prepared for radiochemical analysis are listed. The aliquot of the filter included within each sample is given in parentheses following the sample number.

#### Results of Radiochemical Analyses

The results of radiochemical analyses of Stardust filter samples collected during April to June 1967 are summarized in Table 2. The nuclides listed in Table 2 are the fission products strontium-90 and strontium-89, the activation product - cadmium-109, the nuclear weapon component - plutonium-239, and the tracer for the April 1964 SNAP-9A power source burn-up - plutonium 238.

In Table 2 the samples are arranged chronologically according to sample collection date. The latitude and longitude ranges over which the samples were collected and the mean altitudes of collection are listed. The volume of air (in units of one hundred cubic meters, STP) represented by the sample and the total beta activity (in picocuries per cubic meter, STP) are given. These two

parameters have been calculated from the volumes and total beta activities of the filters which constitute the sample.

The activities of the various radionuclides are given in units of picocuries per 100 cubic meters, STP. Each nuclide activity reported has a letter following it to indicate the potential error in the measurement, based on counting statistics. The errors indicated by the various letters are:

|              |             |
|--------------|-------------|
| A: $\leq$ 5% | D: 20-50%   |
| B: 5-10%     | E: 50-100%  |
| C: 10-20%    | F: $>$ 100% |

When activities were below the limit of detection, the activity corresponding to that lower limit is given, preceded by an "L". Results which are considered to be of questionable validity are included in the table but are preceded by a "Q".

The nuclide activities, with the exception of cadmium-109 activities, are corrected for decay to 12:00Z on collection date. The cadmium-109 activities are corrected for decay to 9 July 1962. The plutonium-239 activities which are given in Table 2 actually represent the sum of the activities of plutonium-239 and plutonium-240, which are not distinguished by the alpha spectrometer used to count the samples.

## ISOTOPES, INCORPORATED

TABLE 1 FLIGHT DATA FOR STARDUST FILTERS COLLECTED DURING 1967

| FILTER NUMBER | TIME (Z)                  | LATITUDE      | LONGITUDE       | ALTITUDE (KM) | VOLUME (100 SCM) | BETA (PC/SCM) | SAMPLES AND ALIQUOTS       |
|---------------|---------------------------|---------------|-----------------|---------------|------------------|---------------|----------------------------|
| 01 APR 1967   | AIRCRAFT = RB-57F A/C 292 |               |                 |               |                  |               |                            |
| 23921U        | 012115/012155             | 10-00 /14-00N | 80-12 / 82-25W  | 18.2          | 4.9              | 6.8           |                            |
| 23922U        | 012155/012235             | 14-00 /18-00N | 82-25 / 84-25W  | 18.3          | 4.8              | 7.8           | SF-8392(2/4)               |
| 23923U        | 012235/012317             | 18-00 /22-00N | 84-25 / 87-00W  | 18.3          | 5.0              | 8.7           | SF-8392(2/4)               |
| 23924U        | 012317/012358             | 22-00 /25-30N | 87-00 / 90-45W  | 19.4          | 3.9              | 9.5           | SQ-8384(2/4)               |
| 23925U        | 012358/020039             | 25-30 /29-00N | 90-45 / 94-45W  | 19.8          | 3.5              | 13.2          | SQ-8384(2/4)               |
| 23926U        | 020039/020124             | 29-00 /32-00N | 94-45 / 99-50W  | 19.9          | 3.6              | 11.4          | SQ-8384(2/4)               |
| 23927U        | 020124/020215             | 32-00 /35-00N | 99-50 /105-45W  | 20.1          | 3.9              | 13.5          | SQ-8384(2/4)               |
| 01 APR 1967   | AIRCRAFT = RB-57F A/C 301 |               |                 |               |                  |               |                            |
| 23912U        | 011317/011400             | 31-00 /27-00S | 68-50 / 70-51W  | 16.8          | 6.7              | 2.7           | SF-8405(1/4)               |
| 23913U        | 011400/011445             | 27-00 /23-00S | 70-51 / 72-35W  | 16.8          | 7.2              | 3.0           | SF-8405(1/4)               |
| 23914U        | 011445/011518             | 23-00 /19-00S | 72-35 / 73-55W  | 16.8          | 5.4              | 1.7           | SF-8405(1/4)               |
| 23915U        | 011518/011553             | 19-00 /15-00S | 73-55 / 75-14W  | 16.8          | 5.6              | 1.1           | SF-8405(1/4)               |
| 23916U        | 011553/011628             | 15-00 /11-00S | 75-14 / 76-25W  | 16.8          | 5.6              | 1.7           | SF-8405(1/4)               |
| 23917U        | 011643/011722             | 09-00 /05-00S | 76-58 / 78-05W  | 19.2          | 3.5              | 9.2           | SF-8406(3/4)               |
| 11 APR 1967   | AIRCRAFT = RB-57C A/C 851 |               |                 |               |                  |               |                            |
| 23986F        | 1200C5/120058             | 55-00 /60-00N | 133-30 /140-40W | 11.9          | 33.8             | 8.4           | SQ-8413(2/4)               |
| 23987F        | 120058/120143             | 60-00 /64-00N | 140-40 /145-40W | 11.9          | 29.7             | 9.2           | SQ-8413(2/4)               |
| 11 APR 1967   | AIRCRAFT = RB-57C A/C 842 |               |                 |               |                  |               |                            |
| 23992F        | 112355/120053             | 55-00 /59-52N | 133-30 /140-25W | 13.1          | 28.0             | 6.8           | SQ-8414(2/4)               |
| 23993F        | 120053/120143             | 59-52 /64-00N | 140-25 /145-43W | 13.1          | 24.2             | 6.3           | SQ-8414(2/4)               |
| 11 APR 1967   | AIRCRAFT = RB-57C A/C 851 |               |                 |               |                  |               |                            |
| 23998F        | 111740/111818             | 41-13 /44-17N | 112-06 /117-09W | 11.9          | 24.7             | 6.1           | SQ-8415(2/4), SF-8517(1/4) |
| 23999F        | 111818/111857             | 44-17 /47-26N | 117-09 /122-18W | 11.9          | 24.9             | 7.9           | SQ-8415(2/4), SF-8517(1/4) |
| 11 APR 1967   | AIRCRAFT = RB-57C A/C 842 |               |                 |               |                  |               |                            |
| 24004F        | 111735/111816             | 41-13 /44-17N | 112-06 /117-09W | 13.1          | 19.2             | 7.6           | SQ-8416(2/4)               |
| 24003F        | 111816/111858             | 44-17 /47-26N | 117-09 /122-19W | 13.1          | 21.0             | 4.0           | SQ-8416(2/4)               |
| 12 APR 1967   | AIRCRAFT = RB-57C A/C 842 |               |                 |               |                  |               |                            |
| 24009F        | 121845/121937             | 55-00 /50-32N | 133-30 /127-00W | 11.9          | 32.6             | 6.0           | SF-8421(1/4), SF-8518(2/4) |
| 24010F        | 121937/122010             | 50-32 /47-26N | 127-00 /122-18W | 11.9          | 20.7             | 0.3           | SF-8422(2/4)               |
| 12 APR 1967   | AIRCRAFT = RB-57C A/C 837 |               |                 |               |                  |               |                            |
| 24015F        | 122028/122131             | 55-00 /50-32N | 133-30 /127-00W | 13.1          | 27.3             | 6.1           | SF-8423(1/4)               |
| 24016F        | 122131/122206             | 50-32 /47-25N | 127-00 /122-45W | 13.1          | 17.5             | 5.1           | SF-8423(1/4)               |
| 12 APR 1967   | AIRCRAFT = RB-57C A/C 851 |               |                 |               |                  |               |                            |
| 24020F        | 130118/130140             | 41-13 /39-00N | 112-06 /110-40W | 13.1          | 11.5             | 3.0           | SF-8424(1/4)               |
| 24021F        | 130140/130221             | 39-00 /35-03N | 110-40 /106-49W | 13.1          | 21.4             | 3.5           | SF-8424(1/4)               |
| 13 APR 1967   | AIRCRAFT = RB-57C A/C 842 |               |                 |               |                  |               |                            |
| 24024F        | 132316/132345             | 41-13 /39-03N | 112-06 /108-47W | 11.9          | 17.8             | 3.9           | SF-8425(2/4)               |
| 24025F        | 132345/140022             | 39-03 /35-00N | 108-47 /106-30W | 11.9          | 22.7             | 7.0           | SF-8426(1/4)               |

TABLE 1 FLIGHT DATA FOR STARDUST FILTERS COLLECTED DURING 1967

| FILTER NUMBER | TIME (Z)                  | LATITUDE      | LONGITUDE       | ALTITUDE (KM) | VOLUME (100 SCM) | BETA (PC/SCM) | SAMPLES AND ALIQUOTS       |
|---------------|---------------------------|---------------|-----------------|---------------|------------------|---------------|----------------------------|
| 23 APR 1967   | AIRCRAFT = RB-57F A/C 298 |               |                 |               |                  |               |                            |
| 24049U        | 231751/231828             | 35-00 /32-00N | 101-15 / 97-45W | 15.2          | 7.7              | 0.9           | SF-8427(2/4)               |
| 24050U        | 231828/231901             | 32-00 /28-00N | 97-45 / 93-20W  | 15.2          | 7.0              | 1.3           | SF-8427(2/4)               |
| 24051U        | 231901/231942             | 28-00 /25-30N | 93-20 / 90-45W  | 15.2          | 9.0              | 0.9           | SF-8427(2/4)               |
| 24052U        | 231942/232020             | 25-30 /22-00N | 90-45 / 87-00W  | 15.2          | 8.4              | 0.2           | SF-8427(2/4)               |
| 24053U        | 232026/232106             | 22-00 /18-00N | 87-00 / 84-20W  | 18.3          | 4.7              | 4.1           | SF-8429(1/4)               |
| 24054U        | 232106/232145             | 18-00 /14-00N | 84-20 / 82-20W  | 18.3          | 4.9              | 7.8           | SF-8429(1/4)               |
| 24055U        | 232145/232225             | 14-00 /10-00N | 82-20 / 80-10W  | 18.3          | 4.7              | 8.5           | SF-8429(1/4)               |
| 24056U        | 232225/232238             | 10-00 /09-00N | 80-10 / 79-30W  | 18.3          | 1.6              | 17.6          | SF-8429(1/4)               |
| 23 APR 1967   | AIRCRAFT = RB-57F A/C 293 |               |                 |               |                  |               |                            |
| 24031U        | 231824/231901             | 35-00 /32-00N | 101-15 / 97-40W | 16.8          | 5.7              | 3.2           | SF-8428(1/4)               |
| 24032U        | 231901/231933             | 32-00 /29-00N | 97-40 / 94-35W  | 16.8          | 4.8              | 2.7           | SF-8428(1/4)               |
| 24033U        | 231933/232019             | 29-00 /25-30N | 94-35 / 90-30W  | 16.8          | 6.8              | 3.6           | SF-8428(1/4)               |
| 24034U        | 232019/232050             | 25-30 /23-00N | 90-30 / 88-00W  | 16.8          | 4.8              | 2.2           | SF-8428(1/4)               |
| 24035U        | 232100/232141             | 22-00 /18-00N | 87-00 / 84-20W  | 19.2          | 3.5              | 18.3          | SQ-8417(2/4)               |
| 24036U        | 232141/232222             | 18-00 /14-00N | 84-20 / 82-20W  | 19.4          | 3.3              | 15.9          | SQ-8417(2/4)               |
| 24037U        | 232222/232256             | 14-00 /10-00N | 82-20 / 80-10W  | 19.7          | 2.7              | 16.2          | SQ-8417(2/4)               |
| 24 APR 1967   | AIRCRAFT = RB-57F A/C 294 |               |                 |               |                  |               |                            |
| 24113U        | 241945/242018             | 36-45 /4C-00N | 108-06 /110-10W | 16.8          | 4.8              | 13.4          | SQ-8438(1/4), SF-8519(1/4) |
| 24114U        | 242018/242109             | 40-00 /43-30N | 110-10 /116-00W | 16.8          | 7.3              | 10.9          | SQ-8438(1/4), SF-8519(1/4) |
| 24115U        | 242109/242150             | 43-30 /47-00N | 116-00 /121-25W | 16.8          | 6.0              | 17.3          | SQ-8438(1/4), SF-8519(1/4) |
| 24116U        | 242150/242221             | 47-00 /50-00N | 121-25 /125-10W | 16.8          | 4.6              | 15.6          | SQ-8438(1/4), SF-8519(1/4) |
| 24117U        | 242221/242258             | 50-00 /54-00N | 125-10 /129-00W | 16.8          | 5.4              | 12.8          | SQ-8438(1/4), SF-8519(1/4) |
| 24118U        | 242258/242338             | 54-00 /58-00N | 129-00 /133-43W | 16.8          | 5.9              | 11.5          | SQ-8438(1/4), SF-8519(1/4) |
| 24119U        | 242338/24001C             | 58-00 /61-00N | 133-43 /138-20W | 16.8          | 4.7              | 11.2          | SQ-8438(1/4), SF-8519(1/4) |
| 24120U        | 240010/240046             | 61-00 /64-00N | 138-20 /145-45W | 16.8          | 5.2              | 13.6          | SQ-8438(1/4), SF-8519(1/4) |
| 25 APR 1967   | AIRCRAFT = RB-57F A/C 294 |               |                 |               |                  |               |                            |
| 24124U        | 252031/252107             | 62-00 /59-00N | 150-45 /156-02W | 18.3          | 3.7              | 14.2          | SQ-8439(2/4), SF-8521(1/4) |
| 24125U        | 252107/252143             | 59-00 /56-00N | 156-02 /161-30W | 18.3          | 3.9              | 7.6           | SQ-8439(2/4), SF-8521(1/4) |
| 24126U        | 252143/252218             | 56-00 /53-00N | 161-30 /166-07W | 18.3          | 3.9              | 12.8          | SQ-8439(2/4), SF-8521(1/4) |
| 24127U        | 252218/252250             | 53-00 /50-00N | 166-07 /170-00W | 18.3          | 3.4              | 12.8          | SQ-8439(2/4), SF-8521(1/4) |
| 24128U        | 252255/252325             | 50-00 /53-00N | 170-00 /166-07W | 19.1          | 2.7              | 11.4          | SQ-8441(2/4), SF-8522(1/4) |
| 24129U        | 252325/252357             | 53-00 /56-00N | 166-07 /161-30W | 19.3          | 2.6              | 16.8          | SQ-8441(2/4), SF-8522(1/4) |
| 24131U        | 260029/260102             | 59-00 /62-00N | 156-02 /150-45W | 19.4          | 2.7              | 17.1          | SQ-8441(2/4), SF-8522(1/4) |
| 24132U        | 2601C2/26012C             | 62-00 /63-22N | 150-45 /148-30W | 19.4          | 1.5              | 14.5          | SQ-8441(2/4), SF-8522(1/4) |
| 25 APR 1967   | AIRCRAFT = RB-57F A/C 298 |               |                 |               |                  |               |                            |
| 24068U        | 251550/251626             | 08-00 /03-00N | 79-30W          | 15.2          | 7.4              | 1.0           | SF-8451(2/4)               |
| 24069U        | 251626/251703             | 03-00N/01-00S | 79-30 / 79-10W  | 15.2          | 8.2              | 0.5           | SF-8451(2/4)               |
| 24070U        | 251703/251740             | 01-00 /05-00S | 79-10 / 78-05W  | 15.2          | 8.4              | 0.5           | SF-8451(2/4)               |
| 24071U        | 251740/251817             | 05-00 /09-00S | 78-05 / 77-00W  | 15.2          | 8.4              | 0.3           | SF-8451(2/4)               |
| 24072U        | 251817/251857             | 09-00 /13-00S | 77-00 / 75-45W  | 15.2          | 9.1              | 0.8           | SF-8451(2/4)               |
| 24073U        | 251905/251953             | 14-00 /19-00S | 75-30 / 73-50W  | 18.3          | 5.7              | 10.1          | SF-8448(1/4)               |
| 24074U        | 251953/252030             | 19-00 /23-00S | 73-50 / 72-40W  | 18.3          | 4.3              | 14.3          | SF-8448(1/4)               |
| 24075U        | 252030/252109             | 23-00 /27-00S | 72-40 / 71-00W  | 18.3          | 4.4              | 14.3          | SF-8448(1/4)               |
| 24076U        | 252109/252155             | 27-00 /32-00S | 71-00 / 68-40W  | 18.3          | 5.1              | 10.3          | SF-8448(1/4)               |

## ISOTOPES, INCORPORATED

TABLE 1 FLIGHT DATA FOR STARDUST FILTERS COLLECTED DURING 1967

| FILTER<br>NUMBER | TIME (Z)                  | LATITUDE       | LONGITUDE        | ALTITUDE<br>( KM ) | VOLUME<br>( 100 SCM ) | BETA<br>( PC/SCM ) | SAMPLES AND ALIQUOTS       |
|------------------|---------------------------|----------------|------------------|--------------------|-----------------------|--------------------|----------------------------|
| 26 APR 1967      | AIRCRAFT = RB-57F A/C 293 |                |                  |                    |                       |                    |                            |
| 24155U           | 261546/261622             | 07-00 / 03-00N | 79-35W           | 16.8               | 5.9                   | 1.0                | SF-8452(2/4)               |
| 24156U           | 261622/261700             | 03-00N/01-00S  | 79-35 / 79-10W   | 16.8               | 6.3                   | 1.4                | SF-8452(2/4)               |
| 24157U           | 261700/261737             | 01-00 / 05-00S | 79-10 / 78-05W   | 16.8               | 5.9                   | 1.4                | SF-8452(2/4)               |
| 24158U           | 261737/261814             | 05-00 / 09-00S | 78-05 / 77-00W   | 16.8               | 5.9                   | 1.3                | SF-8452(2/4)               |
| 24159U           | 261814/261858             | 09-00 / 12-20S | 77-00 / 76-00W   | 16.8               | 6.9                   | 1.2                | SF-8452(2/4)               |
| 24160U           | 261910/261951             | 14-00 / 19-00S | 75-30 / 73-50W   | 19.1               | 3.6                   | 13.5               | SQ-8444(2/4), SF-8523(1/4) |
| 24161U           | 261951/262030             | 19-00 / 23-00S | 73-50 / 72-25W   | 19.4               | 3.4                   | 15.1               | SQ-8444(2/4), SF-8523(1/4) |
| 24162U           | 262030/262107             | 23-00 / 27-00S | 72-25 / 70-50W   | 19.7               | 2.9                   | 10.6               | SQ-8444(2/4), SF-8523(1/4) |
| 24163U           | 262107/262151             | 27-00 / 31-35S | 70-50 / 68-35W   | 19.9               | 3.2                   | 17.6               | SQ-8444(2/4), SF-8523(1/4) |
| 26 APR 1967      | AIRCRAFT = RB-57F A/C 298 |                |                  |                    |                       |                    |                            |
| 24167U           | 261427/261508             | 35-00 / 39-00S | 68-23 / 68-15W   | 15.2               | 8.4                   | 1.7                | SQ-8445(2/4), SF-8524(1/4) |
| 24168U           | 261508/261546             | 39-00 / 43-00S | 68-15 / 68-05W   | 15.2               | 7.9                   | 2.1                | SQ-8445(2/4), SF-8524(1/4) |
| 24169U           | 261546/261619             | 43-00 / 47-00S | 68-05 / 67-50W   | 15.2               | 6.6                   | 3.5                | SQ-8445(2/4), SF-8524(1/4) |
| 24170U           | 261619/261646             | 47-00 / 50-00S | 67-50 / 67-45W   | 15.2               | 5.3                   | 4.1                | SQ-8445(2/4), SF-8524(1/4) |
| 24171U           | 261646/261703             | 50-00 / 52-00S | 67-45W           | 15.2               | 3.4                   | 6.0                | SQ-8445(2/4), SF-8524(1/4) |
| 24172U           | 261703/261722             | 52-00 / 50-00S | 67-45W           | 16.8               | 2.3                   | 16.2               | SQ-8446(2/4), SF-8525(1/4) |
| 24173U           | 261722/261748             | 50-00 / 47-00S | 67-45 / 67-50W   | 16.8               | 3.8                   | 10.1               | SQ-8446(2/4), SF-8525(1/4) |
| 24174U           | 261748/261822             | 47-00 / 43-00S | 67-50 / 68-05W   | 16.8               | 4.9                   | 8.6                | SQ-8446(2/4), SF-8525(1/4) |
| 24175U           | 261822/261857             | 43-00 / 39-00S | 68-05 / 68-15W   | 16.8               | 5.4                   | 9.7                | SQ-8446(2/4), SF-8525(1/4) |
| 24176U           | 261857/261942             | 39-00 / 34-00S | 68-15 / 68-45W   | 16.8               | 7.1                   | 4.9                | SQ-8446(2/4), SF-8525(1/4) |
| 27 APR 1967      | AIRCRAFT = RB-57F A/C 294 |                |                  |                    |                       |                    |                            |
| 24136U           | 271804/271841             | 64-00 / 68-00N | 145-45 / 144-45W | 15.2               | 7.1                   | 14.8               | SF-8453(1/4)               |
| 24137U           | 271841/271916             | 68-00 / 72-00N | 144-45 / 143-25W | 15.2               | 6.8                   | 14.7               | SF-8453(1/4)               |
| 24138U           | 271916/271942             | 72-00 / 75-00N | 143-25 / 143-00W | 15.2               | 5.1                   | 13.1               | SF-8453(1/4)               |
| 24139U           | 271942/271947             | 75-00N         | 143-00W          | 16.0               | 0.8                   | 17.6               |                            |
| 24140U           | 271947/272015             | 75-00 / 72-00N | 143-00 / 143-25W | 16.8               | 4.0                   | 19.9               | SF-8454(1/4)               |
| 24141U           | 272015/272048             | 72-00 / 68-00N | 143-25 / 144-45W | 16.8               | 4.7                   | 18.8               | SF-8454(1/4)               |
| 24142U           | 272048/272122             | 68-00 / 64-00N | 144-45 / 145-45W | 16.8               | 4.9                   | 14.1               | SF-8454(1/4)               |
| 24146U           | 270221/270256             | 64-00 / 68-00N | 145-45 / 144-45W | 18.3               | 3.4                   | 9.0                | SF-8455(1/4), SF-8526(1/4) |
| 24147U           | 270256/270329             | 68-00 / 72-00N | 144-45 / 143-25W | 18.3               | 3.4                   | 15.8               | SF-8455(1/4), SF-8526(1/4) |
| 24148U           | 270329/270357             | 72-00 / 75-00N | 143-25 / 143-00W | 18.3               | 2.9                   | 12.8               | SF-8455(1/4), SF-8526(1/4) |
| 24149U           | 270357/270425             | 75-00 / 72-00N | 143-00 / 143-25W | 19.1               | 2.5                   | 13.8               | SQ-8434(2/4), SF-8527(1/4) |
| 24150U           | 270425/270455             | 72-00 / 68-00N | 143-25 / 144-45W | 19.1               | 2.5                   | 10.3               | SQ-8434(2/4), SF-8527(1/4) |
| 24151U           | 270455/270533             | 68-00 / 64-00N | 144-45 / 145-45W | 19.2               | 3.2                   | 8.4                | SQ-8434(2/4), SF-8527(1/4) |
| 27 APR 1967      | AIRCRAFT = RB-57F A/C 296 |                |                  |                    |                       |                    |                            |
| 24202U           | 271758/271835             | 36-50 / 41-00N | 108-00W          | 18.3               | 4.0                   | 16.0               | SF-8456(1/4), SF-8528(1/4) |
| 24203U           | 271835/271900             | 41-00 / 44-00N | 108-00W          | 18.3               | 2.6                   | 22.2               | SF-8456(1/4), SF-8528(1/4) |
| 24204U           | 271900/271921             | 44-00 / 47-00N | 108-00W          | 18.3               | 2.1                   | 24.4               | SF-8456(1/4), SF-8528(1/4) |
| 24205U           | 271921/271950             | 47-00 / 50-00N | 108-00 / 107-40W | 18.3               | 2.9                   | 19.9               | SF-8456(1/4), SF-8528(1/4) |
| 24206U           | 272000/272034             | 50-00 / 47-00N | 107-40 / 108-00W | 18.7               | 3.0                   | 16.2               | SQ-8435(2/4), SF-8529(1/4) |
| 24207U           | 272034/272100             | 47-00 / 44-00N | 108-00W          | 19.1               | 2.1                   | 12.8               | SQ-8435(2/4), SF-8529(1/4) |
| 24208U           | 272100/272126             | 44-00 / 41-00N | 108-00W          | 19.4               | 2.0                   | 20.5               | SQ-8435(2/4), SF-8529(1/4) |
| 24209U           | 272126/272205             | 41-00 / 36-50N | 108-00W          | 19.7               | 2.8                   | 17.4               | SQ-8435(2/4), SF-8529(1/4) |

## ISOTCPS, INCORPORATED

TABLE 1 FLIGHT DATA FOR STARDUST FILTERS COLLECTED DURING 1967

| FILTER NUMBER | TIME (Z)                  | LATITUDE      | LONGITUDE       | ALTITUDE (KM) | VOLUME (100 SCM) | BETA (PC/SCM) | SAMPLES AND ALIQUOTS       |
|---------------|---------------------------|---------------|-----------------|---------------|------------------|---------------|----------------------------|
| 27 APR 1967   | AIRCRAFT = RB-57F A/C 298 |               |                 |               |                  |               |                            |
| 24079U        | 271504/271535             | 35-00 /39-00S | 68-35 / 68-15W  | 18.3          | 3.5              | 9.2           | SQ-8442(2/4), SF-8531(1/4) |
| 24080U        | 271535/271608             | 39-00 /43-00S | 68-15 / 68-00W  | 18.3          | 3.5              | 15.0          | SQ-8442(2/4), SF-8531(1/4) |
| 24081U        | 271608/271644             | 43-00 /47-00S | 68-00W          | 18.3          | 3.8              | 10.8          | SQ-8442(2/4), SF-8531(1/4) |
| 24082U        | 271644/271708             | 47-00 /50-00S | 68-00 / 67-45W  | 18.3          | 2.6              | 12.3          | SQ-8442(2/4), SF-8531(1/4) |
| 24083U        | 271708/271728             | 50-00 /52-00S | 67-45W          | 18.3          | 2.1              | 11.0          | SQ-8442(2/4), SF-8531(1/4) |
| 24084U        | 271728/271745             | 52-00 /55-00S | 67-45W          | 19.1          | 1.6              | 12.0          | SQ-8443(2/4), SF-8532(1/4) |
| 24085U        | 271745/271808             | 50-00 /47-00S | 67-45 / 68-00W  | 19.3          | 2.0              | 18.6          | SQ-8443(2/4), SF-8532(1/4) |
| 24086U        | 271808/271842             | 47-00 /43-00S | 63-00W          | 19.5          | 2.8              | 11.4          | SQ-8443(2/4), SF-8532(1/4) |
| 24087U        | 271842/271917             | 43-00 /39-00S | 68-00 / 68-15W  | 19.6          | 2.8              | 12.8          | F 8532 1                   |
| 24088U        | 271917/272000             | 39-00 /34-00S | 68-15 / 68-35W  | 19.6          | 3.5              | 11.7          | SQ-8443(2/4), SF-8532(1/4) |
| 28 APR 1967   | AIRCRAFT = RB-57F A/C 294 |               |                 |               |                  |               |                            |
| 24212U        | 280112/280153             | 64-00 /61-00N | 145-45 /138-20W | 15.2          | 8.2              | 11.6          | SQ-8447(1/4)               |
| 24213U        | 280153/280225             | 61-00 /58-00N | 138-20 /133-45W | 15.2          | 6.4              | 13.6          | SQ-8447(1/4)               |
| 24214U        | 280225/280305             | 58-00 /54-00N | 133-45 /129-00W | 15.2          | 7.5              | 17.1          | SQ-8447(1/4)               |
| 24215U        | 280305/280345             | 54-00 /50-00N | 129-00 /125-00W | 15.2          | 7.6              | 22.1          | SQ-8447(1/4)               |
| 24216U        | 280345/280420             | 50-00 /47-00N | 125-00 /121-15W | 15.2          | 6.6              | 15.0          | SQ-8447(1/4)               |
| 24217U        | 280420/280504             | 47-00 /43-30N | 121-15 /116-15W | 15.2          | 8.4              | 16.9          | SQ-8447(1/4)               |
| 24218U        | 280504/280555             | 43-30 /40-00N | 116-15 /110-10W | 15.2          | 10.1             | 11.2          | SQ-8447(1/4)               |
| 24219U        | 280555/280627             | 40-00 /36-45N | 110-10 /108-05W | 15.2          | 6.3              | 11.6          | SQ-8447(1/4)               |
| 24220U        | 280627/280643             | 36-45 /35-00N | 108-05 /106-50W | 15.2          | 3.2              | 8.9           | SQ-8447(1/4)               |
| 28 APR 1967   | AIRCRAFT = RB-57F A/C 293 |               |                 |               |                  |               |                            |
| 24180U        | 281540/281622             | 31-00 /27-00S | 69-50 / 70-50W  | 15.2          | 8.8              | 1.9           | SF-8457(2/4), SF-8533(1/4) |
| 24181U        | 281622/281654             | 27-00 /23-00S | 70-50 / 72-30W  | 15.2          | 6.8              | 1.3           | SF-8457(2/4), SF-8533(1/4) |
| 24182U        | 281654/281732             | 23-00 /19-00S | 72-30 / 73-55W  | 15.2          | 7.9              | 0.5           | SF-8457(2/4), SF-8533(1/4) |
| 24183U        | 281732/281813             | 19-00 /15-00S | 73-55 / 75-10W  | 15.2          | 8.9              | 0.3           | SF-8457(2/4), SF-8533(1/4) |
| 24184U        | 281813/281852             | 15-00 /11-00S | 75-10 / 76-20W  | 15.2          | 8.4              | 0.4           | SF-8457(2/4), SF-8533(1/4) |
| 24185U        | 281907/281945             | 09-00 /05-00S | 77-00 / 78-10W  | 18.3          | 4.5              | 12.0          | SF-8449(1/4)               |
| 24186U        | 281945/282022             | 05-00 /01-00S | 78-10 / 79-10W  | 18.3          | 4.2              | 10.4          | SF-8449(1/4)               |
| 24187U        | 282022/282100             | 01-00S/03-00N | 79-10 / 79-35W  | 18.3          | 4.5              | 9.7           | SF-8449(1/4)               |
| 24188U        | 282100/282137             | 03-00 /07-30N | 79-35W          | 18.3          | 4.4              | 9.9           | SF-8449(1/4)               |
| 29 APR 1967   | AIRCRAFT = RB-57F A/C 298 |               |                 |               |                  |               |                            |
| 24091U        | 291528/291608             | 31-00 /27-00S | 69-00 / 71-00W  | 16.8          | 6.2              | 4.1           | SF-8458(1/4)               |
| 24092U        | 291608/291646             | 27-00 /23-00S | 71-00 / 72-30W  | 16.8          | 6.1              | 2.7           | SF-8458(1/4)               |
| 24093U        | 291646/291724             | 23-00 /19-00S | 72-30 / 74-00W  | 16.8          | 6.1              | 2.5           | SF-8458(1/4)               |
| 24094U        | 291724/291753             | 19-00 /16-00S | 74-00 / 75-00W  | 16.8          | 4.4              | 2.2           | SF-8458(1/4)               |
| 24095U        | 291810/291855             | 14-00 /09-00S | 75-30 / 77-00W  | 19.1          | 4.3              | 14.9          | SQ-8436(2/4), SF-8534(1/4) |
| 24096U        | 291855/291930             | 09-00 /05-00S | 77-00 / 78-00W  | 19.4          | 3.1              | 14.5          | SQ-8436(2/4), SF-8534(1/4) |
| 24097U        | 291930/292007             | 05-00 /01-00S | 78-00 / 79-25W  | 19.4          | 3.2              | 22.8          | SQ-8436(2/4), SF-8534(1/4) |
| 24098U        | 292007/292039             | 01-00S/03-00N | 79-25 / 79-34W  | 19.6          | 2.7              | 3.9           | SQ-8436(2/4), SF-8534(1/4) |
| 24099U        | 292039/292125             | 03-00 /08-00N | 79-34W          | 19.7          | 3.9              | 9.5           | SQ-8436(2/4), SF-8534(1/4) |

## ISOTCPS, INCORPORATED

TABLE 1 FLIGHT DATA FOR STARDUST FILTERS COLLECTED DURING 1967

| FILTER<br>NUMBER | TIME (Z)                  | LATITUDE      | LONGITUDE       | ALTITUDE<br>( KM ) | VOLUME<br>( 100 SCM ) | BETA<br>( PC/SCM ) | SAMPLES AND ALIQUOTS       |
|------------------|---------------------------|---------------|-----------------|--------------------|-----------------------|--------------------|----------------------------|
| 30 APR 1967      | AIRCRAFT = RB-57F A/C 263 |               |                 |                    |                       |                    |                            |
| 24059U           | 301422/301506             | 10-00 /14-00N | 80-10 / 82-20W  | 16.8               | 6.9                   | 0.7                | SF-8459(2/4)               |
| 24060U           | 301506/301548             | 14-00 /18-00N | 82-20 / 84-20W  | 16.8               | 6.8                   | 1.5                | SF-8459(2/4)               |
| 24061U           | 301548/301622             | 18-00 /21-00N | 84-20 / 86-30W  | 16.8               | 5.7                   | 1.5                | SF-8459(2/4)               |
| 24062U           | 301632/301715             | 22-00 /25-30N | 87-00 / 90-30W  | 18.8               | 4.3                   | 6.9                | SQ-8437(2/4)               |
| 24063U           | 301715/301800             | 25-30 /29-00N | 90-30 / 94-40W  | 19.1               | 4.0                   | 12.8               | SQ-8437(2/4)               |
| 24064U           | 301800/301847             | 29-00 /32-00N | 94-40 / 99-45W  | 19.1               | 4.0                   | 12.2               | SQ-8437(2/4)               |
| 24065U           | 301847/301943             | 32-00 /35-00N | 99-45 /105-40W  | 19.4               | 4.5                   | 9.7                | SQ-8437(2/4)               |
| 01 MAY 1967      | AIRCRAFT = RB-57F A/C 298 |               |                 |                    |                       |                    |                            |
| 24104U           | 011425/011510             | 10-00 /14-00N | 80-10 / 82-20W  | 15.2               | 10.0                  | 1.0                | SF-8461(2/4)               |
| 24105U           | 011510/011554             | 14-00 /18-00N | 82-20 / 84-30W  | 15.2               | 10.0                  | 0.5                | SF-8461(2/4)               |
| 24106U           | 011554/011638             | 18-00 /22-00N | 84-30 / 87-00W  | 15.2               | 9.8                   | 0.6                | SF-8461(2/4)               |
| 24107U           | 011644/011722             | 22-30 /25-30N | 87-30 / 90-50W  | 18.3               | 4.4                   | 16.0               | SF-8462(1/4), SF-8535(1/4) |
| 24108U           | 011722/011806             | 25-30 /29-00N | 90-50 / 94-30W  | 18.3               | 4.5                   | 16.2               | SF-8462(1/4), SF-8535(1/4) |
| 24109U           | 011806/011841             | 29-00 /32-00N | 94-30 / 98-00W  | 18.3               | 3.9                   | 13.2               | SF-8462(1/4), SF-8535(1/4) |
| 08 MAY 1967      | AIRCRAFT = RB-57F A/C 299 |               |                 |                    |                       |                    |                            |
| 24222U           | 08224C/050017             | 36-00 /42-00N | 107-30 /113-25W | 11.9               | 28.1                  | 0.8                | SF-8465(2/4)               |
| 24223U           | 090017/090130             | 42-00 /47-00N | 113-25 /117-30W | 11.9               | 21.0                  | 1.0                | SF-8465(2/4)               |
| 09 MAY 1967      | AIRCRAFT = RB-57F A/C 299 |               |                 |                    |                       |                    |                            |
| 24227U           | 091725/091838             | 48-00 /51-00N | 119-00 /127-55W | 11.9               | 19.4                  | 9.4                | SQ-8463(2/4)               |
| 24228U           | 091838/091940             | 51-00 /55-00N | 127-55 /133-30W | 11.9               | 18.0                  | 10.4               | SQ-8463(2/4)               |
| 24229U           | 091940/092041             | 55-00 /59-00N | 133-30 /138-50W | 11.9               | 17.3                  | 4.7                | SQ-8463(2/4)               |
| 24230U           | 092041/092156             | 59-00 /64-00N | 138-50 /145-50W | 11.9               | 21.3                  | 5.5                | SQ-8463(2/4)               |
| 11 MAY 1967      | AIRCRAFT = RB-57F A/C 299 |               |                 |                    |                       |                    |                            |
| 24233U           | 111938/112052             | 64-00 /58-00N | 145-50 /137-15W | 13.1               | 17.8                  | 8.2                | SQ-8464(1/4)               |
| 24234U           | 112052/112205             | 58-00 /52-00N | 137-15 /129-40W | 13.1               | 17.9                  | 5.0                | SQ-8464(1/4)               |
| 24235U           | 112205/112315             | 52-00 /47-00N | 129-40 /120-00W | 13.1               | 17.4                  | 13.2               | SQ-8464(1/4)               |
| 24236U           | 112315/120030             | 47-00 /42-00N | 120-00 /113-20W | 13.1               | 18.7                  | 12.3               | SQ-8464(1/4)               |
| 24237U           | 120030/120148             | 42-00 /36-00N | 113-20 /107-35W | 13.1               | 19.8                  | 5.5                | SQ-8464(1/4)               |
| 25 MAY 1967      | AIRCRAFT = RB-57F A/C 291 |               |                 |                    |                       |                    |                            |
| 24263U           | 2517C5/251737             | 36-45 /40-00N | 108-05 /110-00W | 16.7               | 5.2                   | 6.4                | SX-8466(1/4)               |
| 24264U           | 251737/251821             | 40-00 /43-30N | 110-00 /115-00W | 16.8               | 6.6                   | 7.6                | SX-8466(1/4)               |
| 24265U           | 251821/25191C             | 43-30 /47-00N | 115-00 /121-25W | 16.8               | 7.1                   | 7.0                | SX-8466(1/4)               |
| 24266U           | 251910/251945             | 47-00 /50-00N | 121-25 /125-05W | 16.8               | 4.9                   | 9.7                | SX-8466(1/4)               |
| 24267U           | 251945/252025             | 50-00 /54-00N | 125-05 /129-00W | 16.8               | 5.6                   | 14.4               | SX-8466(1/4)               |
| 24268U           | 252025/252105             | 54-00 /58-00N | 129-00 /133-45W | 16.8               | 5.5                   | 9.6                | SX-8466(1/4)               |
| 24269U           | 252105/252137             | 58-00 /61-00N | 133-45 /138-20W | 16.8               | 4.4                   | 16.6               | SX-8466(1/4)               |
| 24270U           | 252137/252215             | 61-00 /64-00N | 138-20 /145-45W | 16.8               | 5.3                   | 14.3               | SX-8466(1/4)               |

## ISOTOPES, INCORPORATED

TABLE 1 FLIGHT DATA FOR STARDUST FILTERS COLLECTED DURING 1967

| FILTER NUMBER                         | TIME (Z)      | LATITUDE      | LONGITUDE       | ALTITUDE (KM) | VOLUME (100 SCM) | BETA (PC/SCM) | SAMPLES AND ALIQUOTS |
|---------------------------------------|---------------|---------------|-----------------|---------------|------------------|---------------|----------------------|
| 26 MAY 1967 AIRCRAFT = RB-57F A/C 291 |               |               |                 |               |                  |               |                      |
| 24273U                                | 261956/262030 | 64-00 /68-00N | 145-40 /144-00W | 15.2          | 6.4              | 9.6           | SX-8467(2/4)         |
| 24274U                                | 262030/262104 | 68-00 /72-00N | 144-00 /143-00W | 15.2          | 6.3              | 10.6          | SX-8467(2/4)         |
| 24275U                                | 262104/262130 | 72-00 /75-00N | 143-00W         | 15.2          | 4.7              | 10.1          | SX-8467(2/4)         |
| 24276U                                | 262139/262204 | 75-00 /72-CCN | 143-00W         | 16.8          | 3.3              | 15.2          | SX-8468(2/4)         |
| 24277U                                | 262204/262240 | 72-00 /68-00N | 143-00 /144-00W | 16.8          | 4.8              | 13.1          | SX-8468(2/4)         |
| 24278U                                | 262240/262314 | 68-00 /64-00N | 144-00 /145-40W | 16.8          | 4.6              | 18.7          | SX-8468(2/4)         |
| 26 MAY 1967 AIRCRAFT = RB-57F A/C 293 |               |               |                 |               |                  |               |                      |
| 24281U                                | 261637/261708 | 37-00 /40-00N | 108-10 /110-00W | 18.3          | 3.4              | 12.8          | SX-8471(2/4)         |
| 24282U                                | 261708/261750 | 40-00 /43-30N | 110-00 /115-05W | 18.3          | 4.5              | 6.8           | SX-8471(2/4)         |
| 24283U                                | 261750/261838 | 43-30 /47-CCN | 115-05 /121-15W | 18.3          | 5.1              | 15.8          | SX-8471(2/4)         |
| 24284U                                | 261838/261913 | 47-00 /50-00N | 121-15 /125-05W | 18.3          | 3.7              | 17.3          | SX-8471(2/4)         |
| 24285U                                | 261923/261955 | 51-00 /54-CCN | 126-00 /130-00W | 19.2          | 2.7              | 12.4          | SX-8469(2/4)         |
| 24286U                                | 261955/262034 | 54-00 /58-00N | 130-00 /133-50W | 19.4          | 3.0              | 11.5          | SX-8469(2/4)         |
| 24287U                                | 262034/262104 | 58-00 /61-00N | 133-50 /138-30W | 19.6          | 2.2              | 13.4          | SX-8469(2/4)         |
| 26 MAY 1967 AIRCRAFT = RB-57F A/C 295 |               |               |                 |               |                  |               |                      |
| 24320U                                | 261353/261453 | 35-10 /32-CCN | 104-00 / 92-45W | 15.2          | 11.6             | 0.11          | SF-8495(1/4)         |
| 24321U                                | 261453/261528 | 32-00 /29-00N | 92-45 / 94-40W  | 15.2          | 6.8              | 0.02          | SF-8495(1/4)         |
| 24322U                                | 261528/261614 | 29-00 /25-30N | 94-40 / 90-40W  | 15.2          | 9.1              | 0.10          | SF-8495(1/4)         |
| 24323U                                | 261614/261658 | 25-30 /22-00N | 90-40 / 87-00W  | 15.2          | 8.8              | 0.6           | SF-8495(1/4)         |
| 24324U                                | 261658/261740 | 22-00 /18-CCN | 87-00 / 84-20W  | 15.2          | 8.4              | 0.8           | SF-8495(1/4)         |
| 24325U                                | 261740/261820 | 18-00 /14-00N | 84-20 / 82-20W  | 15.2          | 8.0              | 1.4           | SF-8495(1/4)         |
| 24326U                                | 261820/261902 | 14-00 /10-00N | 82-20 / 80-10W  | 15.2          | 6.4              | 0.6           | SF-8495(1/4)         |
| 26 MAY 1967 AIRCRAFT = RB-57F A/C 296 |               |               |                 |               |                  |               |                      |
| 24329U                                | 261512/261548 | 35-00 /32-00N | 101-15 / 97-10W | 18.3          | 3.7              | 11.8          | SX-8472(1/4)         |
| 24330U                                | 261548/261623 | 32-00 /29-00N | 97-10 / 94-30W  | 18.3          | 3.6              | 12.8          | SX-8472(1/4)         |
| 24331U                                | 261623/261707 | 29-00 /25-30N | 94-30 / 90-30W  | 18.3          | 4.5              | 13.1          | SX-8472(1/4)         |
| 24332U                                | 261707/261747 | 25-30 /22-00N | 90-30 / 87-00W  | 18.3          | 4.3              | 10.7          | SX-8472(1/4)         |
| 24333U                                | 261747/261827 | 22-00 /18-CCN | 87-00 / 84-20W  | 18.3          | 4.3              | 11.9          | SX-8472(1/4)         |
| 24334U                                | 261827/261902 | 18-00 /14-00N | 84-20 / 82-20W  | 18.3          | 3.6              | 9.3           | SX-8472(1/4)         |
| 24335U                                | 261902/261948 | 14-00 /09-50N | 82-20 / 80-10W  | 18.3          | 5.1              | 10.8          | SX-8472(1/4)         |
| 27 MAY 1967 AIRCRAFT = RB-57F A/C 293 |               |               |                 |               |                  |               |                      |
| 24290U                                | 271935/272009 | 64-00 /68-00N | 145-45 /144-35W | 18.3          | 3.4              | 9.8           | SX-8473(2/4)         |
| 24291U                                | 272009/272041 | 68-00 /72-00N | 144-35 /143-15W | 18.3          | 3.2              | 12.8          | SX-8473(2/4)         |
| 24292U                                | 272041/272106 | 72-00 /75-00N | 143-15 /143-00W | 18.3          | 2.5              | 11.3          | SX-8473(2/4)         |
| 24293U                                | 272115/272139 | 75-00 /72-00N | 143-00 /143-15W | 18.8          | 2.1              | 12.2          | SX-8474(2/4)         |
| 24294U                                | 272139/272213 | 72-00 /68-00N | 143-15 /144-35W | 19.0          | 2.8              | 11.0          | SX-8474(2/4)         |
| 24295U                                | 272213/272250 | 68-00 /64-00N | 144-35 /145-45W | 19.1          | 3.0              | 7.7           | SX-8474(2/4)         |

## ISOTOPES, INCORPORATED

TABLE 1 FLIGHT DATA FOR STARDUST FILTERS COLLECTED DURING 1967

| FILTER<br>NUMBER                             | TIME (Z)      | LATITUDE      | LONGITUDE       | ALTITUDE<br>( KM ) | VOLUME<br>( 100 SCM ) | BETA<br>( PC/SCM ) | SAMPLES AND ALIQUOTS |
|----------------------------------------------|---------------|---------------|-----------------|--------------------|-----------------------|--------------------|----------------------|
| <b>27 MAY 1967 AIRCRAFT = RB-57F A/C 291</b> |               |               |                 |                    |                       |                    |                      |
| 24240U                                       | 271955/272022 | 64-00 /61-00N | 145-45 /138-20W | 15.2               | 5.2                   | 9.1                | SX-8475(1/4)         |
| 24241U                                       | 272022/272054 | 61-00 /58-00N | 138-20 /133-45W | 15.2               | 6.2                   | 9.1                | SX-8475(1/4)         |
| 24242U                                       | 272054/272136 | 58-00 /54-00N | 133-45 /129-00W | 15.2               | 8.2                   | 9.5                | SX-8475(1/4)         |
| 24243U                                       | 272136/272216 | 54-00 /50-00N | 129-00 /125-05W | 15.2               | 7.8                   | 4.0                | SX-8475(1/4)         |
| 24244U                                       | 272216/272249 | 50-00 /47-00N | 125-05 /121-20W | 15.2               | 6.6                   | 7.6                | SX-8475(1/4)         |
| 24245U                                       | 272249/272337 | 47-00 /43-30N | 121-20 /115-05W | 15.2               | 9.6                   | 7.1                | SX-8475(1/4)         |
| 24246U                                       | 272337/280018 | 43-30 /40-00N | 115-05 /110-00W | 15.2               | 8.2                   | 5.6                | SX-8475(1/4)         |
| 24247U                                       | 280018/280050 | 40-00 /36-45N | 110-00 /108-05W | 15.2               | 6.4                   | 3.4                | SF-8496(1/4)         |
| 24248U                                       | 280050/280108 | 36-45 /35-00N | 108-05 /106-50W | 15.2               | 3.6                   | 2.8                | SF-8496(1/4)         |
| <b>27 MAY 1967 AIRCRAFT = RB-57F A/C 298</b> |               |               |                 |                    |                       |                    |                      |
| 24339U                                       | 271459/271536 | 35-00 /32-00N | 102-10 / 97-45W | 16.8               | 3.8                   | 7.4                | SX-8476(2/4)         |
| 24340U                                       | 271536/271609 | 32-00 /29-00N | 97-45 / 94-35W  | 16.8               | 5.1                   | 2.8                | SX-8476(2/4)         |
| 24341U                                       | 271609/271652 | 29-00 /25-30N | 94-35 / 90-35W  | 16.8               | 6.7                   | 3.4                | SX-8476(2/4)         |
| 24342U                                       | 271652/271735 | 25-30 /22-00N | 90-35 / 87-00W  | 16.8               | 6.9                   | 2.2                | SX-8476(2/4)         |
| 24343U                                       | 271735/271815 | 22-00 /18-00N | 87-00 / 84-20W  | 16.8               | 6.6                   | 1.8                | SF-8497(1/4)         |
| 24344U                                       | 271815/271854 | 18-00 /14-00N | 84-20 / 82-20W  | 16.8               | 6.4                   | 0.8                | SF-8497(1/4)         |
| 24345U                                       | 271854/271934 | 14-00 /10-00N | 82-20 / 80-15W  | 16.8               | 6.5                   | 1.2                | SF-8497(1/4)         |
| 24346U                                       | 271934/271949 | 10-00 /08-50N | 80-15 / 79-30W  | 16.8               | 2.4                   | 1.1                | SF-8497(1/4)         |
| <b>28 MAY 1967 AIRCRAFT = RB-57 A/C 293</b>  |               |               |                 |                    |                       |                    |                      |
| 24252U                                       | 281932/282003 | 63-30 /61-00N | 144-00 /138-30W | 18.3               | 3.0                   | 9.8                | SX-8477(2/4)         |
| 24253U                                       | 282003/282036 | 61-00 /58-00N | 138-30 /133-50W | 18.3               | 3.2                   | 12.0               | SX-8477(2/4)         |
| 24254U                                       | 282036/282116 | 58-00 /54-00N | 133-50 /129-00W | 18.3               | 4.0                   | 15.1               | SX-8477(2/4)         |
| 24255U                                       | 282116/282158 | 54-00 /50-00N | 129-00 /125-05W | 18.3               | 4.3                   | 16.4               | SX-8477(2/4)         |
| 24256U                                       | 2822C8/282230 | 49-00 /47-00N | 124-00 /121-20W | 19.2               | 1.8                   | 12.8               | SX-8478(2/4)         |
| 24257U                                       | 282230/282319 | 47-00 /43-30N | 121-20 /115-15W | 19.6               | 3.9                   | 8.9                | SX-8478(2/4)         |
| 24258U                                       | 282319/290002 | 43-30 /40-00N | 115-15 /110-00W | 20.0               | 3.2                   | 10.0               | SX-8478(2/4)         |
| 24259U                                       | 290002/29004C | 40-00 /36-00N | 110-00 /107-30W | 20.3               | 2.7                   | 10.4               | SX-8478(2/4)         |
| <b>28 MAY 1967 AIRCRAFT = RB-57F A/C 290</b> |               |               |                 |                    |                       |                    |                      |
| 24298U                                       | 281343/28142C | 07-00 /03-00N | 79-40W          | 16.8               | 5.8                   | 3.8                | SF-8498(1/4)         |
| 24299U                                       | 281420/281456 | 03-00N/C1-00S | 79-40 / 79-10W  | 16.8               | 5.8                   | 1.8                | SF-8498(1/4)         |
| 24300U                                       | 281456/281534 | 01-00 /05-00S | 79-10 / 78-05W  | 16.8               | 6.1                   | 1.5                | SF-8498(1/4)         |
| 24301U                                       | 281534/281611 | 05-00 /09-00S | 78-05 / 77-00W  | 16.8               | 6.0                   | 0.9                | SF-8498(1/4)         |
| 24302U                                       | 281611/281652 | 09-00 /14-00S | 77-00 / 75-10W  | 16.8               | 6.7                   | 0.8                | SF-8498(1/4)         |
| 24303U                                       | 281652/281734 | 14-00 /19-00S | 75-10 / 74-00W  | 16.8               | 6.3                   | 4.3                | SX-8479(2/4)         |
| 24304U                                       | 281734/281812 | 19-00 /23-00S | 74-00 / 72-30W  | 16.8               | 5.7                   | 3.4                | SX-8479(2/4)         |
| 24305U                                       | 281812/281846 | 23-00 /27-00S | 72-30 / 70-50W  | 16.8               | 5.1                   | 4.0                | SX-8479(2/4)         |
| 24306U                                       | 281846/281926 | 27-00 /32-00S | 70-50 / 68-40W  | 16.8               | 6.1                   | 8.2                | SX-8479(2/4)         |

## ISOTCFES, INCORPORATED

TABLE 1 FLIGHT DATA FOR STARDUST FILTERS COLLECTED DURING 1967

| FILTER<br>NUMBER | TIME (Z)                  | LATITUDE      | LONGITUDE      | ALTITUDE<br>( KM ) | VOLUME<br>(100 SCM) | BETA<br>(PC/SCM) | SAMPLES AND ALIQUOTS |
|------------------|---------------------------|---------------|----------------|--------------------|---------------------|------------------|----------------------|
| 28 MAY 1967      | AIRCRAFT = RB-57F A/C 259 |               |                |                    |                     |                  |                      |
| 24350U           | 281506/281543             | 03-CON/01-00S | 79-39 / 79-10W | 18.3               | 4.2                 | 9.5              | SX-8481(1/4)         |
| 24351U           | 281543/281619             | 01-CO /05-00S | 79-10 / 78-05W | 18.3               | 4.1                 | 18.1             | SX-8481(1/4)         |
| 24352U           | 281619/281700             | 05-00 /09-00S | 78-05 / 76-55W | 18.3               | 4.8                 | 11.9             | SX-8481(1/4)         |
| 24353U           | 281700/281738             | 09-00 /13-00S | 76-55 / 75-45W | 18.3               | 4.5                 | 14.6             | SX-8481(1/4)         |
| 24354U           | 281738/281831             | 13-0C /19-00S | 75-45 / 73-55W | 18.3               | 6.2                 | 6.0              | SX-8481(1/4)         |
| 24355U           | 281831/281902             | 19-00 /23-00S | 73-55 / 72-30W | 18.3               | 3.6                 | 18.2             | SX-8481(1/4)         |
| 24356U           | 281902/281940             | 23-00 /27-00S | 72-30 / 70-55W | 18.3               | 4.0                 | 12.8             | SX-8481(1/4)         |
| 29 MAY 1967      | AIRCRAFT = RB-57F A/C 258 |               |                |                    |                     |                  |                      |
| 24371U           | 291439/291518             | 07-00 /03-00N | 79-35 / 79-40W | 15.2               | 8.5                 | 0.8              | SF-8499(1/4)         |
| 24372U           | 291518/291554             | C3-CUN/C1-00S | 79-40 / 79-10W | 15.2               | 7.7                 | 0.7              | SF-8499(1/4)         |
| 24373U           | 291554/291631             | 01-CO /05-00S | 79-10 / 78-05W | 15.2               | 7.8                 | 0.6              | SF-8499(1/4)         |
| 24374U           | 291631/291706             | 05-CO /09-00S | 78-05 / 77-00W | 15.2               | 7.2                 | 0.7              | SF-8499(1/4)         |
| 24375U           | 291706/291743             | 09-00 /13-00S | 77-00 / 75-50W | 15.2               | 7.9                 | 1.0              | SF-8499(1/4)         |
| 24376U           | 291752/291838             | 14-0C /19-00S | 75-35 / 73-55W | 19.1               | 4.0                 | 16.7             | SX-8482(2/4)         |
| 24377U           | 291838/291912             | 19-00 /23-00S | 73-55 / 72-25W | 18.9               | 3.4                 | 17.6             | SX-8482(2/4)         |
| 24378U           | 291912/291946             | 23-00 /27-00S | 72-25 / 70-50W | 19.1               | 3.2                 | 9.8              | SX-8482(2/4)         |
| 24379U           | 291946/292030             | 27-00 /32-00S | 70-50 / 68-40W | 19.2               | 3.9                 | 10.2             | SX-8482(2/4)         |
| 30 MAY 1967      | AIRCRAFT = RB-57F A/C 250 |               |                |                    |                     |                  |                      |
| 24360U           | 3016C2/301640             | 30-20 /27-00S | 69-05 / 70-55W | 15.2               | 7.6                 | 4.9              | SX-8483(2/4)         |
| 24361U           | 301640/301730             | 27-00 /23-00S | 70-55 / 72-30W | 15.2               | 10.0                | 1.5              | SX-8483(2/4)         |
| 24362U           | 301730/301800             | 23-00 /19-00S | 72-30 / 73-55W | 15.2               | 6.4                 | 0.3              | SX-8483(2/4)         |
| 24363U           | 301800/301844             | 19-00 /15-00S | 73-55 / 75-15W | 15.2               | 9.6                 | 1.6              | SX-8483(2/4)         |
| 24364U           | 301844/301935             | 15-00 /11-00S | 75-15 / 76-25W | 18.1               | 6.9                 | 4.3              | SX-8484(2/4)         |
| 24365U           | 302000/302032             | 09-00 /05-00S | 77-00 / 78-05W | 18.7               | 3.3                 | 19.0             | SX-8484(2/4)         |
| 24366U           | 302032/302115             | 05-CO /01-00S | 78-05 / 79-15W | 19.1               | 4.1                 | 15.0             | SX-8484(2/4)         |
| 24367U           | 302115/302150             | 01-00S/03-00N | 79-15 / 79-40W | 19.4               | 3.1                 | 6.2              | SX-8484(2/4)         |
| 30 MAY 1967      | AIRCRAFT = RB-57F A/C 258 |               |                |                    |                     |                  |                      |
| 24383U           | 301425/301459             | 35-00 /39-00S | 68-25 / 68-15W | 15.2               | 7.0                 | 3.3              | SX-8485(2/4)         |
| 24384U           | 301459/301533             | 39-00 /43-00S | 68-15 / 68-05W | 15.2               | 7.0                 | 4.8              | SX-8485(2/4)         |
| 24385U           | 301533/301608             | 43-CO /47-00S | 68-05 / 67-50W | 15.2               | 7.4                 | 6.2              | SX-8485(2/4)         |
| 24386U           | 301608/301633             | 47-00 /50-00S | 67-50W         | 15.2               | 5.3                 | 3.9              | SX-8485(2/4)         |
| 24387U           | 301633/301651             | 50-00 /52-00S | 67-50 / 67-45W | 15.2               | 3.8                 | 3.4              | SX-8485(2/4)         |
| 24388U           | 301655/301712             | 52-00 /50-00S | 67-45 / 67-50W | 16.8               | 2.5                 | 12.8             | SX-8486(2/4)         |
| 24389U           | 301712/301734             | 50-00 /47-00S | 67-50W         | 16.8               | 3.3                 | 2.6              | SX-8486(2/4)         |
| 24390U           | 301734/301809             | 47-00 /43-00S | 67-50 / 68-05W | 16.8               | 5.2                 | 9.4              | SX-8486(2/4)         |
| 24391U           | 301809/301843             | 43-00 /39-00S | 68-05 / 68-15W | 16.8               | 5.0                 | 11.3             | SX-8486(2/4)         |
| 24392U           | 301843/301930             | 39-00 /34-00S | 68-15 / 68-25W | 16.8               | 7.2                 | 15.0             | SX-8486(2/4)         |

## ISOTCFES, INCORPORATED

TABLE 1 FLIGHT DATA FOR STARDUST FILTERS COLLECTED DURING 1967

| FILTER<br>NUMBER | TIME (Z)                  | LATITUDE       | LONGITUDE        | ALTITUDE<br>( KM ) | VOLUME<br>( 100 SCM ) | BETA<br>( PC/SCM ) | SAMPLES AND ALIQUOTS |
|------------------|---------------------------|----------------|------------------|--------------------|-----------------------|--------------------|----------------------|
| 31 MAY 1967      | AIRCRAFT = RB-57F A/C 299 |                |                  |                    |                       |                    |                      |
| 24396U           | 311415/311452             | 34-30 / 39-00S | 68-30 / 68-15W   | 18.3               | 4.0                   | 11.4               | SX-8487(2/4)         |
| 24397U           | 311452/311528             | 39-00 / 43-00S | 68-15 / 68-00W   | 18.3               | 3.9                   | 14.6               | SX-8487(2/4)         |
| 24398U           | 311528/311602             | 43-00 / 47-00S | 68-00 / 67-55W   | 18.3               | 3.6                   | 15.8               | SX-8487(2/4)         |
| 24399U           | 311602/311629             | 47-00 / 50-00S | 67-55 / 67-45W   | 18.3               | 2.9                   | 14.7               | SX-8487(2/4)         |
| 24400U           | 311629/311647             | 50-00 / 52-00S | 67-45W           | 18.3               | 2.0                   | 11.4               | SX-8487(2/4)         |
| 24401U           | 311649/311705             | 52-00 / 50-00S | 67-45W           | 19.1               | 1.4                   | 22.4               | SX-8488(2/4)         |
| 24402U           | 311705/311728             | 50-00 / 47-00S | 67-45 / 67-55W   | 19.3               | 2.0                   | 20.0               | SX-8488(2/4)         |
| 24403U           | 311728/311800             | 47-00 / 43-00S | 67-55 / 68-00W   | 19.4               | 2.6                   | 16.4               | SX-8488(2/4)         |
| 24404U           | 311800/311836             | 43-00 / 39-00S | 68-00 / 68-15W   | 19.6               | 2.8                   | 16.3               | SX-8488(2/4)         |
| 24405U           | 311836/311920             | 39-00 / 34-00S | 68-15 / 68-40W   | 19.8               | 3.3                   | 14.7               | SX-8488(2/4)         |
| 01 JUN 1967      | AIRCRAFT = RB-57F A/C 290 |                |                  |                    |                       |                    |                      |
| 24312U           | 011452/011519             | 10-00 / 14-00N | 80-10 / 83-20W   | 18.4               | 3.1                   | 16.5               | SX-8489(1/4)         |
| 24313U           | 011517/011600             | 14-00 / 18-00N | 83-20 / 84-30W   | 18.7               | 4.4                   | 12.3               | SX-8489(1/4)         |
| 24314U           | 011600/011630             | 18-00 / 22-00N | 84-30 / 87-00W   | 19.0               | 2.7                   | 14.8               | SX-8489(1/4)         |
| 24315U           | 011630/011727             | 22-00 / 25-30N | 87-00 / 90-45W   | 19.1               | 5.2                   | 15.3               | SX-8489(1/4)         |
| 24316U           | 011727/011813             | 25-30 / 29-00N | 90-45 / 94-40W   | 19.2               | 4.1                   | 15.3               | SX-8489(1/4)         |
| 24317U           | 011813/011901             | 29-00 / 32-00N | 94-40 / 100-00W  | 19.3               | 4.0                   | 27.8               | SX-8489(1/4)         |
| 24318U           | 011901/011950             | 32-00 / 35-10N | 100-00 / 106-40W | 19.4               | 3.9                   | 19.0               | SX-8489(1/4)         |
| 06 JUN 1967      | AIRCRAFT = RB-57C A/C 944 |                |                  |                    |                       |                    |                      |
| 24432F           | 062221/062318             | 55-00 / 60-CON | 133-30 / 140-40W | 11.9               | 33.8                  | 1.2                | SX-8491(2/4)         |
| 24433F           | 062318/070005             | 60-00 / 64-00N | 140-40 / 145-40W | 11.9               | 27.9                  | 1.6                | SX-8491(2/4)         |
| 06 JUN 1967      | AIRCRAFT = RB-57C A/C 839 |                |                  |                    |                       |                    |                      |
| 244C8F           | 062258/062350             | 55-00 / 59-52N | 131-30 / 137-15W | 13.1               | 27.1                  | 5.8                | SX-8492(2/4)         |
| 24409F           | 062350/070042             | 59-52 / 64-00N | 137-15 / 145-43W | 13.1               | 27.1                  | 3.6                | SX-8492(2/4)         |
| 06 JUN 1967      | AIRCRAFT = RB-57C A/C 944 |                |                  |                    |                       |                    |                      |
| 24438F           | 061641/061722             | 41-13 / 44-17N | 112-06 / 117-09W | 11.9               | 25.2                  | 5.4                | SX-8493(2/4)         |
| 24439F           | 061722/061805             | 44-17 / 47-26N | 117-09 / 122-18W | 11.9               | 26.4                  | 3.1                | SX-8493(2/4)         |
| 06 JUN 1967      | AIRCRAFT = RB-57C A/C 839 |                |                  |                    |                       |                    |                      |
| 24414F           | 061755/061835             | 41-13 / 44-17N | 112-06 / 117-09W | 13.1               | 20.8                  | 10.2               | SX-8494(2/4)         |
| 24415F           | 061835/061908             | 44-17 / 47-33N | 117-09 / 117-40W | 13.1               | 17.2                  | 8.4                | SX-8494(2/4)         |
| 07 JUN 1967      | AIRCRAFT = RB-57C A/C 839 |                |                  |                    |                       |                    |                      |
| 24420F           | 0719C8/071950             | 55-00 / 50-32N | 131-30 / 126-50W | 11.9               | 25.8                  | 4.0                | SF-8501(1/4)         |
| 24421F           | 071950/072025             | 50-32 / 47-26N | 126-50 / 122-15W | 11.9               | 21.5                  | 6.3                | SF-8501(1/4)         |
| 07 JUN 1967      | AIRCRAFT = RB-57C A/C 944 |                |                  |                    |                       |                    |                      |
| 24444F           | 071946/072006             | 55-00 / 50-32N | 133-30 / 127-00W | 13.1               | 10.4                  | 1.5                | SF-8502(1/4)         |
| 24445F           | 072006/072111             | 50-32 / 47-26N | 127-00 / 122-19W | 13.1               | 33.9                  | 0.9                | SF-8502(1/4)         |
| 07 JUN 1967      | AIRCRAFT = RB-57C A/C 839 |                |                  |                    |                       |                    |                      |
| 24426F           | 072324/072350             | 41-13 / 39-03N | 112-06 / 108-47W | 11.9               | 16.0                  | 10.3               | SF-8503(1/4)         |
| 24427F           | 072350/080023             | 39-03 / 35-02N | 108-47 / 106-48W | 11.9               | 20.3                  | 2.1                | SF-8503(1/4)         |

## ISOTCFES, INCORPORATED

TABLE 1 FLIGHT DATA FOR STARCLST FILTERS COLLECTED DURING 1967

| FILTER<br>NUMBER | TIME (Z)                  | LATITUDE       | LONGITUDE        | ALTITUDE<br>( KM ) | VOLUME<br>(100 SCM) | BETA<br>(PC/SCM) | SAMPLES AND ALIQUOTS |
|------------------|---------------------------|----------------|------------------|--------------------|---------------------|------------------|----------------------|
| 09 JUN 1967      | AIRCRAFT = RB-57C A/C 944 |                |                  |                    |                     |                  |                      |
| 24447F           | 091717/091745             | 41-13 / 39-04N | 112-06 / 108-48W | 13.1               | 14.0                | 2.2              | SF-8504(1/4)         |
| 24448F           | 091745/091822             | 39-04 / 35-03N | 108-48 / 106-49W | 13.1               | 18.5                | 0.3              | SF-8504(1/4)         |
| 25 JUN 1967      | AIRCRAFT = RB-57F A/C 298 |                |                  |                    |                     |                  |                      |
| 24451U           | 251430/251500             | 35-00 / 39-00S | 68-25 / 68-15W   | 18.3               | 3.2                 | 8.8              |                      |
| 24452U           | 251500/251531             | 39-00 / 43-00S | 68-15 / 68-00W   | 18.3               | 3.3                 | 5.4              |                      |
| 24453U           | 251531/251605             | 43-00 / 47-00S | 68-00 / 67-50W   | 18.3               | 3.6                 | 3.9              |                      |
| 24454U           | 251605/251630             | 47-00 / 50-00S | 67-50 / 67-45W   | 18.3               | 2.6                 | 5.4              |                      |
| 24455U           | 251630/251644             | 50-00 / 52-00S | 67-45W           | 18.3               | 1.5                 | 7.4              |                      |
| 24456U           | 251646/251704             | 52-00 / 50-00S | 67-45W           | 18.7               | 1.7                 | 9.0              |                      |
| 24457U           | 251704/251732             | 50-00 / 47-00S | 67-45 / 67-50W   | 19.1               | 2.6                 | 6.9              |                      |
| 24458U           | 251732/251809             | 47-00 / 43-00S | 67-50 / 68-00W   | 19.2               | 3.3                 | 7.0              |                      |
| 24459U           | 251809/251845             | 43-00 / 39-00S | 68-00 / 68-15W   | 19.4               | 3.2                 | 9.6              |                      |
| 24460U           | 251845/251930             | 39-00 / 34-00S | 68-15 / 68-45W   | 19.5               | 4.1                 | 4.1              |                      |
| 26 JUN 1967      | AIRCRAFT = RB-57F A/C 298 |                |                  |                    |                     |                  |                      |
| 24468U           | 261618/261658             | 31-00 / 27-00S | 68-50 / 70-55W   | 18.2               | 4.5                 | 5.7              |                      |
| 24469U           | 261658/261737             | 27-00 / 23-00S | 70-55 / 73-00W   | 18.3               | 4.4                 | 5.2              |                      |
| 24470U           | 261737/261815             | 23-00 / 19-00S | 73-00 / 74-50W   | 18.3               | 4.4                 | 4.4              |                      |
| 24471U           | 261815/261846             | 19-00 / 15-30S | 74-50 / 76-30W   | 18.3               | 3.7                 | 5.9              |                      |
| 24472U           | 261848/261925             | 15-30 / 19-00S | 76-30 / 74-50W   | 19.4               | 3.4                 | 6.0              |                      |
| 24473U           | 261925/262000             | 19-00 / 23-00S | 74-50 / 73-00W   | 19.8               | 2.9                 | 7.1              |                      |
| 24474U           | 262000/262035             | 23-00 / 27-00S | 73-00 / 70-55W   | 19.9               | 2.7                 | 7.6              |                      |
| 24475U           | 262035/262119             | 27-00 / 32-00S | 70-55 / 68-40W   | 20.1               | 3.2                 | 7.6              |                      |
| 26 JUN 1967      | AIRCRAFT = RB-57F A/C 294 |                |                  |                    |                     |                  |                      |
| 24479U           | 261733/261805             | 35-00 / 39-00S | 68-25 / 68-15W   | 15.2               | 6.1                 | 5.3              |                      |
| 24480U           | 261805/261838             | 39-00 / 43-00S | 68-15 / 68-00W   | 15.2               | 6.3                 | 3.9              |                      |
| 24481U           | 261838/261905             | 43-00 / 47-00S | 68-00 / 67-50W   | 15.2               | 5.7                 | 3.6              |                      |
| 24482U           | 261905/261934             | 47-00 / 50-00S | 67-50 / 67-45W   | 15.2               | 4.7                 | 5.5              |                      |
| 24483U           | 261934/261957             | 50-00 / 52-00S | 67-45W           | 15.2               | 4.1                 | 0.2              |                      |
| 27 JUN 1967      | AIRCRAFT = RB-57F A/C 294 |                |                  |                    |                     |                  |                      |
| 24464U           | 271431/271503             | 30-00 / 27-10S | 69-25 / 70-50W   | 15.2               | 6.6                 | 3.5              |                      |

III  
1  
17

## ISOTCPS, INCORPORATED

TABLE 2 RADIONUCLIDES IN STARCLST SAMPLES

| SAMPLE NUMBER | LATITUDE (DEG.) | LONGITUDE (DEG.) | ALTITUDE (KM) | VOLUME (100 SCM) | TOTAL BETA (PC/SCM) | ACTIVITIES (PC/100 SCM) |       |        |        |        |
|---------------|-----------------|------------------|---------------|------------------|---------------------|-------------------------|-------|--------|--------|--------|
|               |                 |                  |               |                  |                     | SR 90                   | SR 89 | PU 238 | PU 239 | CD 109 |
| 01 APR 1967   |                 |                  |               |                  |                     |                         |       |        |        |        |
| SC-8384       | 35 / 22N        | 106/ 87W         | 19.8          | 7.4              | 11.9                | 66. B                   | -     | C.938  | 1.378  | -      |
| SC-8392       | 22 / 14N        | 87/ 82W          | 18.3          | 4.9              | 9.2                 | 56. B                   | -     | C.598  | 1.048  | -      |
| SF-8406       | 05 / 09S        | 78/ 77W          | 19.2          | 2.6              | 9.2                 | 66. B                   | -     | -      | -      | -      |
| SF-8405       | 11 / 31S        | 76/ 69W          | 16.8          | 7.6              | 2.1                 | 8.2C                    | -     | -      | -      | -      |
| 11 APR 1967   |                 |                  |               |                  |                     |                         |       |        |        |        |
| SC-8413       | 64 / 55N        | 146/134W         | 11.9          | 31.8             | 8.8                 | 41. B                   | L 3.  | C.458  | 0.68A  | -      |
| SC-8414       | 64 / 55N        | 146/134W         | 13.1          | 26.1             | 6.6                 | 38. B                   | L 7.  | 0.468  | 0.648  | -      |
| SC-8415       | 47 / 41N        | 122/112W         | 11.9          | 24.8             | 7.0                 | C 0.6C                  | L C.9 | C.62A  | 0.36A  | -      |
| SF-8517       | 47 / 41N        | 122/112W         | 11.9          | 12.4             | 7.0                 | 26. B                   | -     | -      | -      | -      |
| SC-8416       | 47 / 41N        | 122/112W         | 13.1          | 20.1             | 5.7                 | 29. B                   | L 5.  | C.278  | 0.52A  | -      |
| 12 APR 1967   |                 |                  |               |                  |                     |                         |       |        |        |        |
| III           |                 |                  |               |                  |                     |                         |       |        |        |        |
| SF-8421       | 55 / 51N        | 134/127W         | 11.9          | 8.2              | 6.0                 | C 56. B                 | -     | -      | -      | -      |
| SF-8518       | 55 / 51N        | 134/127W         | 11.9          | 16.3             | 6.0                 | C 14. B                 | -     | -      | -      | -      |
| SF-8422       | 51 / 47N        | 127/122W         | 11.9          | 10.4             | 0.3                 | 1.5C                    | -     | -      | -      | -      |
| SF-8423       | 55 / 47N        | 134/123W         | 13.1          | 11.2             | 5.7                 | 34. B                   | -     | -      | -      | -      |
| SF-8424       | 41 / 35N        | 112/107W         | 13.1          | 8.2              | 3.3                 | 18. B                   | -     | -      | -      | -      |
| 18            |                 |                  |               |                  |                     |                         |       |        |        |        |
| 13 APR 1967   |                 |                  |               |                  |                     |                         |       |        |        |        |
| SF-8425       | 41 / 35N        | 112/109W         | 11.9          | 8.9              | 3.9                 | 13. B                   | -     | -      | -      | -      |
| SF-8426       | 39 / 35N        | 109/106W         | 11.9          | 5.7              | 7.0                 | 27. B                   | -     | -      | -      | -      |
| 23 APR 1967   |                 |                  |               |                  |                     |                         |       |        |        |        |
| II            |                 |                  |               |                  |                     |                         |       |        |        |        |
| SF-8427       | 35 / 22N        | 101/ 87W         | 15.2          | 16.0             | 0.8                 | 1.8C                    | -     | -      | -      | -      |
| SF-8428       | 35 / 23N        | 101/ 88W         | 16.8          | 5.5              | 3.0                 | 11. C                   | -     | -      | -      | -      |
| SF-8429       | 22 / 09N        | 87/ 80W          | 18.3          | 4.0              | 7.9                 | 33. B                   | -     | -      | -      | -      |
| SC-8417       | 22 / 10N        | 87/ 80W          | 19.4          | 4.8              | 16.9                | 61. B                   | -     | 1.038  | 1.338  | -      |
| 24 APR 1967   |                 |                  |               |                  |                     |                         |       |        |        |        |
| III           |                 |                  |               |                  |                     |                         |       |        |        |        |
| SC-8438       | 64 / 37N        | 146/108W         | 16.8          | 11.0             | 13.2                | C 30. C                 | -     | C.95A  | 0.87A  | -      |
| SF-8519       | 64 / 37N        | 146/108W         | 16.8          | 11.0             | 13.2                | 56. B                   | -     | -      | -      | -      |
| 25 APR 1967   |                 |                  |               |                  |                     |                         |       |        |        |        |
| IV            |                 |                  |               |                  |                     |                         |       |        |        |        |
| SC-8439       | 62 / 50N        | 151/17CW         | 18.3          | 7.4              | 11.8                | 33. B                   | -     | 1.18B  | 0.75B  | -      |
| SF-8521       | 62 / 50N        | 151/17CW         | 18.3          | 3.7              | 11.8                | 36. C                   | -     | -      | -      | -      |
| SC-8441       | 63 / 50N        | 148/17CW         | 19.3          | 6.2              | 14.3                | 36. B                   | -     | 1.66B  | 0.88B  | -      |
| SF-8522       | 63 / 50N        | 148/17CW         | 19.3          | 3.1              | 14.3                | 36. C                   | -     | -      | -      | -      |
| SF-8451       | 08N/13S         | 80/ 76W          | 15.2          | 20.8             | 0.6                 | 0.6C                    | -     | -      | -      | -      |
| SF-8448       | 14 / 32S        | 76/ 69W          | 18.3          | 4.9              | 12.0                | 48. B                   | L 28. | -      | -      | -      |

## ISOTOPES, INCORPORATED

TABLE 2 RADIONUCLIDES IN STARCLST SAMPLES

| SAMPLE<br>NUMBER   | LATITUDE<br>(DEG.) | LONGITUDE<br>(DEG.) | ALTITUDE<br>(KM) | VOLUME<br>(100 SCM) | TOTAL BETA<br>(PC/SCM) | ACTIVITIES (PC/100 SCM) |       |        |        |        |
|--------------------|--------------------|---------------------|------------------|---------------------|------------------------|-------------------------|-------|--------|--------|--------|
|                    |                    |                     |                  |                     |                        | SR 90                   | SR 89 | PL 238 | PU 239 | CD 109 |
| <b>26 APR 1967</b> |                    |                     |                  |                     |                        |                         |       |        |        |        |
| SF-8452            | 07N/12S            | 80/ 76W             | 16.8             | 15.4                | 1.3                    | 3.18                    | -     | -      | -      | -      |
| SC-8444            | 14 /32S            | 76/ 69W             | 19.5             | 6.6                 | 14.3                   | 36. 8                   | 21.0  | 2.41B  | 0.83B  | -      |
| SF-8523            | 14 /32S            | 76/ 69W             | 19.5             | 3.3                 | 14.3                   | 47. C                   | -     | -      | -      | -      |
| SC-8445            | 35 /52S            | 68W                 | 15.2             | 15.8                | 3.0                    | 2.8C                    | L 12. | 0.40B  | 0.13B  | -      |
| SF-8524            | 35 /52S            | 68W                 | 15.2             | 7.9                 | 3.0                    | 9.1C                    | -     | -      | -      | -      |
| SC-8446            | 34 /52S            | 69/ 68W             | 16.8             | 11.8                | 8.7                    | 23. B                   | L 2.  | 1.29B  | 0.51B  | -      |
| SF-8525            | 34 /52S            | 69/ 68W             | 16.8             | 5.9                 | 0.7                    | 26. C                   | -     | -      | -      | -      |
| <b>27 APR 1967</b> |                    |                     |                  |                     |                        |                         |       |        |        |        |
| SF-8453            | 75 /64N            | 143/146W            | 15.2             | 4.8                 | 14.3                   | 55. B                   | -     | -      | -      | -      |
| SF-8454            | 75 /64N            | 143/146W            | 16.8             | 3.4                 | 17.4                   | 60. B                   | -     | -      | -      | -      |
| SF-8455            | 75 /64N            | 143/146W            | 18.3             | 2.4                 | 12.5                   | 33. C                   | -     | -      | -      | -      |
| SF-8526            | 75 /64N            | 143/146W            | 18.3             | 2.4                 | 12.5                   | 35. B                   | -     | -      | -      | -      |
| SC-8434            | 75 /64N            | 143/146W            | 19.1             | 4.1                 | 10.6                   | C 24. 8                 | -     | 1.25B  | 0.59A  | -      |
| SF-8527            | 75 /64N            | 143/146W            | 19.1             | 2.0                 | 10.6                   | 34. C                   | -     | -      | -      | -      |
| SF-8456            | 50 /37N            | 108W                | 18.3             | 2.9                 | 19.9                   | C 14. C                 | -     | -      | -      | -      |
| SF-8528            | 50 /37N            | 108W                | 18.3             | 2.9                 | 19.9                   | 78. B                   | -     | -      | -      | -      |
| SC-8435            | 50 /37N            | 108W                | 19.2             | 5.0                 | 16.7                   | 46. B                   | -     | 1.22A  | 1.18A  | -      |
| SF-8529            | 50 /37N            | 108W                | 19.2             | 2.5                 | 16.7                   | 50. C                   | -     | -      | -      | -      |
| SC-8442            | 35 /52S            | 69/ 68W             | 18.3             | 7.8                 | 11.7                   | C 27. B                 | -     | 2.44B  | 0.72B  | -      |
| SF-8531            | 35 /52S            | 69/ 68W             | 18.3             | 3.9                 | 11.7                   | 48. B                   | -     | -      | -      | -      |
| SC-8443            | 34 /52S            | 69/ 68W             | 19.4             | 5.0                 | 13.0                   | C 23. C                 | -     | 3.09A  | 0.83A  | -      |
| SF-8532            | 34 /52S            | 69/ 68W             | 19.4             | 3.2                 | 13.0                   | 58. B                   | -     | -      | -      | -      |
| <b>28 APR 1967</b> |                    |                     |                  |                     |                        |                         |       |        |        |        |
| SC-8447            | 64 /35N            | 146/107W            | 15.2             | 16.1                | 14.5                   | 28. B                   | L 3.  | C.74A  | 0.82A  | -      |
| SF-8449            | 08N/09S            | 80/ 77W             | 18.3             | 4.4                 | 10.5                   | 40. B                   | L 31. | -      | -      | -      |
| SF-8457            | 11 /31S            | 76/ 70W             | 15.2             | 20.4                | 0.8                    | 1.9C                    | -     | -      | -      | -      |
| SF-8533            | 11 /31S            | 76/ 70W             | 15.2             | 10.2                | 0.8                    | 1.8C                    | -     | -      | -      | -      |
| <b>29 APR 1967</b> |                    |                     |                  |                     |                        |                         |       |        |        |        |
| SC-8436            | 08N/14S            | 80/ 76W             | 19.4             | 8.6                 | 13.4                   | 39. B                   | -     | 1.32A  | 1.06A  | -      |
| SF-8534            | 08N/14S            | 80/ 76W             | 19.4             | 4.3                 | 13.4                   | 64. B                   | -     | -      | -      | -      |
| SF-8458            | 16 /31S            | 75/ 69W             | 16.8             | 5.7                 | 3.0                    | 9.6B                    | -     | -      | -      | -      |
| <b>30 APR 1967</b> |                    |                     |                  |                     |                        |                         |       |        |        |        |
| SC-8437            | 35 /22N            | 106/ 87W            | 19.1             | 8.4                 | 10.3                   | 59. B                   | -     | C.77B  | 1.01B  | -      |
| SF-8459            | 21 /10N            | 86/ 80W             | 16.8             | 9.7                 | 1.2                    | 4.9B                    | -     | -      | -      | -      |
| <b>01 MAY 1967</b> |                    |                     |                  |                     |                        |                         |       |        |        |        |
| SF-8462            | 35 /22N            | 102/ 88W            | 18.3             | 3.3                 | 15.2                   | 47. B                   | -     | -      | -      | -      |
| SF-8535            | 35 /22N            | 102/ 88W            | 18.3             | 3.3                 | 15.2                   | 48. B                   | -     | -      | -      | -      |
| SF-8461            | 22 /10N            | 87/ 80W             | 15.2             | 14.9                | 0.7                    | 1.2C                    | -     | -      | -      | -      |
| <b>08 MAY 1967</b> |                    |                     |                  |                     |                        |                         |       |        |        |        |
| SF-8465            | 47 /36N            | 118/108W            | 11.9             | 24.6                | 0.9                    | 3.2B                    | -     | -      | -      | -      |

## ISOTOPES, INCORPORATED

TABLE 2 RADIONUCLIDES IN STARDUST SAMPLES

| SAMPLE NUMBER          | LATITUDE (DEG.) | LONGITUDE (DEG.) | ALTITUDE (KM) | VOLUME (100 SCM) | TOTAL BETA (PC/SCM) | ACTIVITIES (PC/100 SCM) |       |        |        |        |
|------------------------|-----------------|------------------|---------------|------------------|---------------------|-------------------------|-------|--------|--------|--------|
|                        |                 |                  |               |                  |                     | SR 90                   | SR 89 | PL 238 | PU 239 | CD 109 |
| 09 MAY 1967<br>SC-8463 | 64 / 48N        | 146/119W         | 11.9          | 38.0             | 7.5                 | 28. 8                   | -     | LCST   | LOST   | -      |
| 11 MAY 1967<br>SC-8464 | 64 / 36N        | 146/108W         | 13.1          | 22.9             | 8.8                 | 25. 8                   | -     | 0.51A  | 0.65A  | -      |
| 25 MAY 1967<br>SX-8466 | 64 / 37N        | 146/108W         | 16.8          | 11.2             | 10.4                | 46. 8                   | -     | 0.99B  | 1.00B  | 2.4C   |
| 26 MAY 1967<br>SX-8467 | 75 / 64N        | 143/146W         | 15.2          | 8.7              | 10.1                | 35. 8                   | -     | 0.83B  | 0.75B  | 2.0C   |
|                        | 75 / 64N        | 143/146W         | 16.8          | 6.4              | 15.6                | 59. B                   | -     | 0.88B  | 1.20B  | 3.9C   |
|                        | 61 / 51N        | 138/126W         | 19.4          | 4.0              | 12.3                | 58. B                   | -     | 1.56B  | 1.63B  | 4.5C   |
|                        | 50 / 37N        | 125/108W         | 18.3          | 8.4              | 13.1                | 57. B                   | -     | 1.16A  | 1.21A  | 3.3B   |
|                        | 35 / 10N        | 104/ 80W         | 15.2          | 15.3             | 0.5                 | 0.8C                    | -     | -      | -      | -      |
|                        | 35 / 10N        | 101/ 80W         | 18.3          | 7.3              | 11.5                | 50. B                   | -     | 1.06B  | 1.14B  | 2.9C   |
| 27 MAY 1967<br>III 20  | 75 / 64N        | 143/146W         | 18.3          | 4.6              | 11.3                | C 21. C                 | -     | 1.97B  | 1.34B  | 2.7C   |
|                        | 75 / 64N        | 143/146W         | 19.0          | 4.0              | 10.1                | 49. C                   | -     | 1.37A  | 0.88B  | 3.2D   |
|                        | 64 / 40N        | 146/110W         | 15.2          | 13.0             | 7.3                 | 40. B                   | -     | 0.60A  | 0.72A  | 2.0C   |
|                        | 40 / 35N        | 110/107W         | 15.2          | 2.5              | 3.2                 | 19. C                   | -     | -      | -      | -      |
|                        | 35 / 22N        | 102/ 87W         | 16.8          | 11.2             | 3.0                 | 18. C                   | -     | 0.28B  | 0.38B  | 0.4D   |
|                        | 22 / 09N        | 87/ 80W          | 16.8          | 5.5              | 1.2                 | 8.7C                    | -     | -      | -      | -      |
| 28 MAY 1967            | 64 / 50N        | 144/125W         | 18.3          | 7.2              | 13.7                | C 24. C                 | -     | 1.11B  | 1.21B  | 3.2B   |
|                        | 49 / 36N        | 124/108W         | 19.8          | 5.8              | 10.2                | 33. C                   | -     | 1.36B  | 0.83B  | L 0.6  |
|                        | 07N/14S         | 80/ 75W          | 16.8          | 7.6              | 1.7                 | 6.0C                    | -     | -      | -      | -      |
|                        | 03N/27S         | 80/ 71W          | 18.3          | 7.8              | 12.4                | C 24C                   | -     | 0.143B | 0.241B | 3.7C   |
|                        | 14 / 32S        | 75/ 69W          | 16.8          | 11.6             | 5.0                 | 24. B                   | -     | 1.02A  | 0.46B  | 1.3B   |
| 29 MAY 1967            | 07N/13S         | 80/ 76W          | 15.2          | 9.8              | 0.8                 | 0.5C                    | -     | -      | -      | -      |
|                        | 14 / 32S        | 76/ 69W          | 19.1          | 7.6              | 13.8                | 32. C                   | -     | 1.12A  | 0.45A  | 1.8C   |
| 30 MAY 1967            | 03N/15S         | 80/ 75W          | 18.8          | 8.7              | 10.0                | 49. B                   | -     | 0.89A  | 1.02A  | Q 9.4A |
|                        | 15 / 30S        | 75/ 69W          | 15.2          | 16.8             | 2.1                 | 11. B                   | -     | 0.44B  | 0.19B  | 0.5C   |
|                        | 35 / 52S        | 68W              | 15.2          | 15.2             | 4.5                 | 23. B                   | -     | 1.21C  | 0.61C  | 1.5C   |
|                        | 34 / 52S        | 68W              | 16.8          | 11.6             | 10.9                | 38. B                   | -     | 2.12A  | 0.63A  | 3.0B   |
| 31 MAY 1967            | 34 / 52S        | 68W              | 18.3          | 8.2              | 13.7                | 33. B                   | -     | LCST   | LOST   | 2.6C   |
|                        | 34 / 52S        | 69/ 68W          | 19.4          | 6.0              | 17.2                | 33. B                   | -     | 2.78A  | 0.61B  | 3.2C   |
| 01 JUN 1967            | 35 / 10N        | 107/ 80W         | 19.0          | 6.8              | 17.3                | 41. B                   | -     | 0.64B  | 0.68B  | 2.0C   |

## ISOTCPEs, INCORPORATED

TABLE 2 RADIONUCLIDES IN STARDUST SAMPLES

| SAMPLE<br>NUMBER   | LATITUDE<br>(DEG.) | LONGITUDE<br>(DEG.) | ALTITUDE<br>(KM) | VOLUME<br>(100 SCM) | TOTAL BETA<br>(PC/SCM) | ACTIVITIES (PC/100 SCM) |       |        |        |        |
|--------------------|--------------------|---------------------|------------------|---------------------|------------------------|-------------------------|-------|--------|--------|--------|
|                    |                    |                     |                  |                     |                        | SR 90                   | SR 89 | PL 238 | PU 239 | CD 109 |
| <b>06 JUN 1967</b> |                    |                     |                  |                     |                        |                         |       |        |        |        |
| SX-8491            | 64 / 55N           | 146/134W            | 11.9             | 30.8                | 1.4                    | 15. B                   | -     | C.18B  | 0.26B  | 0.5C   |
| SX-8492            | 64 / 55N           | 146/132W            | 13.1             | 27.1                | 6.7                    | 22. B                   | -     | C.38B  | C.5CA  | 1.2C   |
| SX-8493            | 47 / 41N           | 122/112W            | 11.9             | 25.8                | 4.2                    | 17. B                   | -     | C.21A  | 0.31A  | 0.6C   |
| SX-8494            | 48 / 41N           | 118/112W            | 13.1             | 19.0                | 9.4                    | 24. B                   | -     | C.30B  | 0.44B  | 1.0B   |
| <b>07 JUN 1967</b> |                    |                     |                  |                     |                        |                         |       |        |        |        |
| SF-8501            | 55 / 47N           | 132/122W            | 11.9             | 11.8                | 5.1                    | 30. C                   | -     | -      | -      | -      |
| SF-8502            | 55 / 47N           | 134/122W            | 13.1             | 11.1                | 1.0                    | 12. B                   | -     | -      | -      | -      |
| SF-8503            | 41 / 35N           | 112/107W            | 11.9             | 9.1                 | 5.7                    | 16. B                   | -     | -      | -      | -      |
| <b>09 JUN 1967</b> |                    |                     |                  |                     |                        |                         |       |        |        |        |
| SF-8504            | 41 / 35N           | 112/107W            | 13.1             | 8.1                 | 1.1                    | 7.38                    | -     | -      | -      | -      |

REPORT No.  
N. R. L. F. 25.

DEPARTMENT OF HEALTH

2.



QUARTERLY REPORT  
APRIL-JUNE 1967

# ENVIRONMENTAL RADIOACTIVITY IN NEW ZEALAND

AND

RESULTS OF EXTENDED MONITORING OF FALLOUT  
FROM FRENCH NUCLEAR TESTS IN THE PACIFIC

NATIONAL RADIATION LABORATORY  
P.O. BOX 1456, CHRISTCHURCH, NEW ZEALAND

SYMBOLS UNITS AND EQUIVALENTS

UNITS OF RADIOACTIVITY

Ci ... Curie ... ... ... ...  $3.7 \times 10^{10}$  disintegrations per second  
mCi ... millicurie ...  $10^{-3}$  Curies  
pCi ... picocurie ...  $10^{-12}$  Curies ... 2.22 disintegrations per minute

UNITS OF LENGTH, AREA, VOLUME AND MASS  
AND THEIR EQUIVALENTS IN THE IMPERIAL SYSTEM

|                 |                 |                            |                    |
|-----------------|-----------------|----------------------------|--------------------|
| cm              | ... ... ... ... | centimetre ... ... ... ... | 0.394 inches       |
| km <sup>2</sup> | ... ... ... ... | square kilometre ... ...   | 0.386 square miles |
| m <sup>3</sup>  | ... ... ... ... | cubic metre ... ... ...    | 35.31 cubic feet   |
| litre           | ... ... ... ... | litre ... ... ... ...      | 0.880 quart        |
| g               | ... ... ... ... | gram ... ... ... ...       | 0.0353 ounce       |

NOTES

1. Unless otherwise noted, all times given in this report are New Zealand Standard time i.e. G.M.T. + 12 hours.
2. Radioactive fallout in rain is expressed as:
  - (a) Deposition - milliouries per square kilometre ( $\text{mCi}/\text{km}^2$ )
  - (b) Concentration - picocuries per litre ( $\text{pCi}/\text{litre}$ ).
$$\text{Concentration } (\text{pCi/litre}) = \frac{\text{deposition } (\text{mCi}/\text{km}^2)}{\text{rainfall } (\text{cm})} \times 100$$

Multiply  $\text{mCi}/\text{km}^2$  by 2.59 to obtain  $\text{mCi}/\text{sq. mile}$ .
3. The levels of strontium-90 contamination in food and bone are given in "Strontium Units" i.e. picocuries strontium-90 per gram of calcium .....  $\text{pCi Sr}^{90}/\text{g Ca.}$

Similarly caesium-137 results are given as picocuries of caesium-137 per gram of potassium .....  $\text{pCi Cs}^{137}/\text{g K.}$

One litre of whole milk contains approximately:

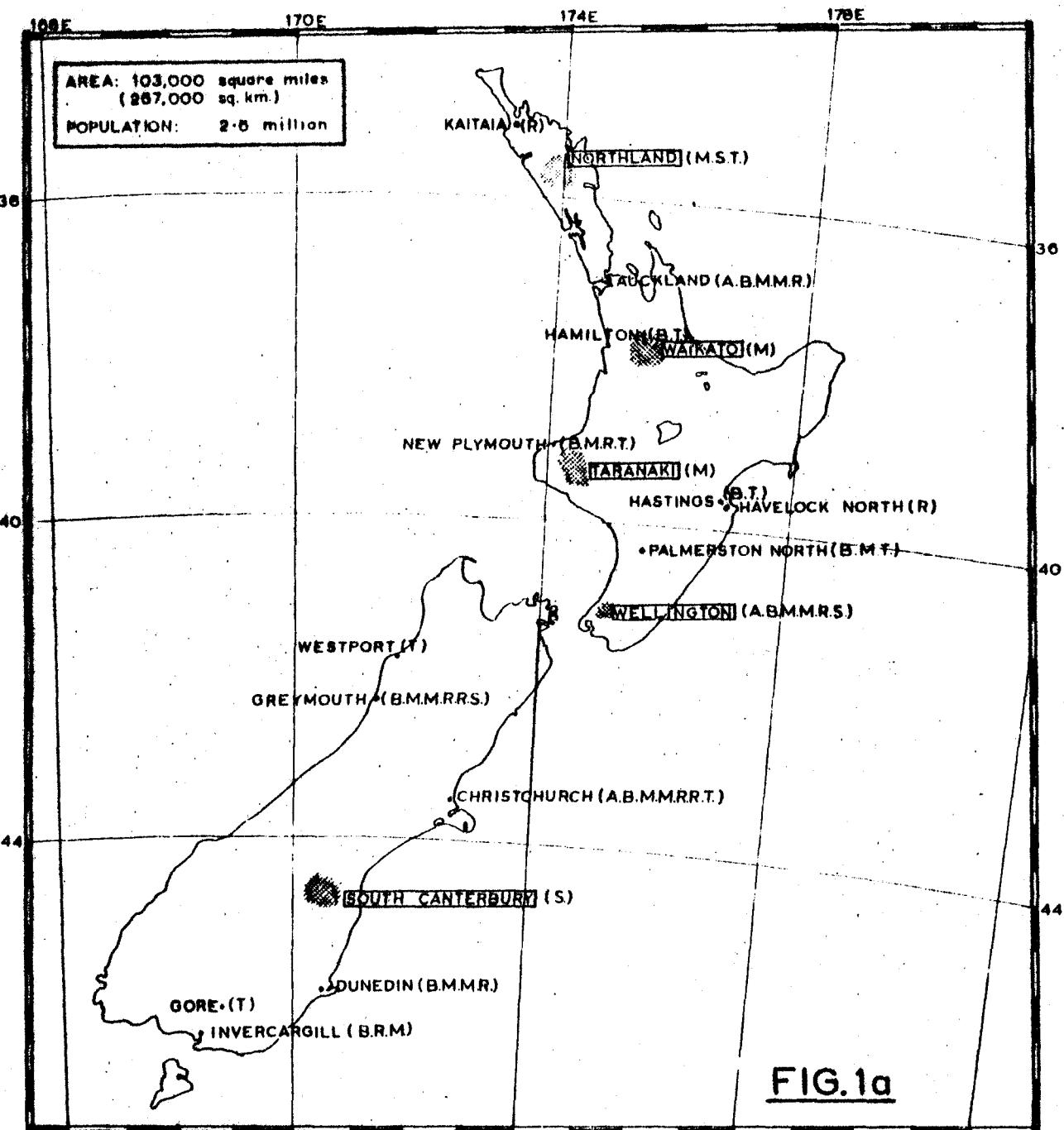
1.2 g of calcium

1.4 g of potassium.

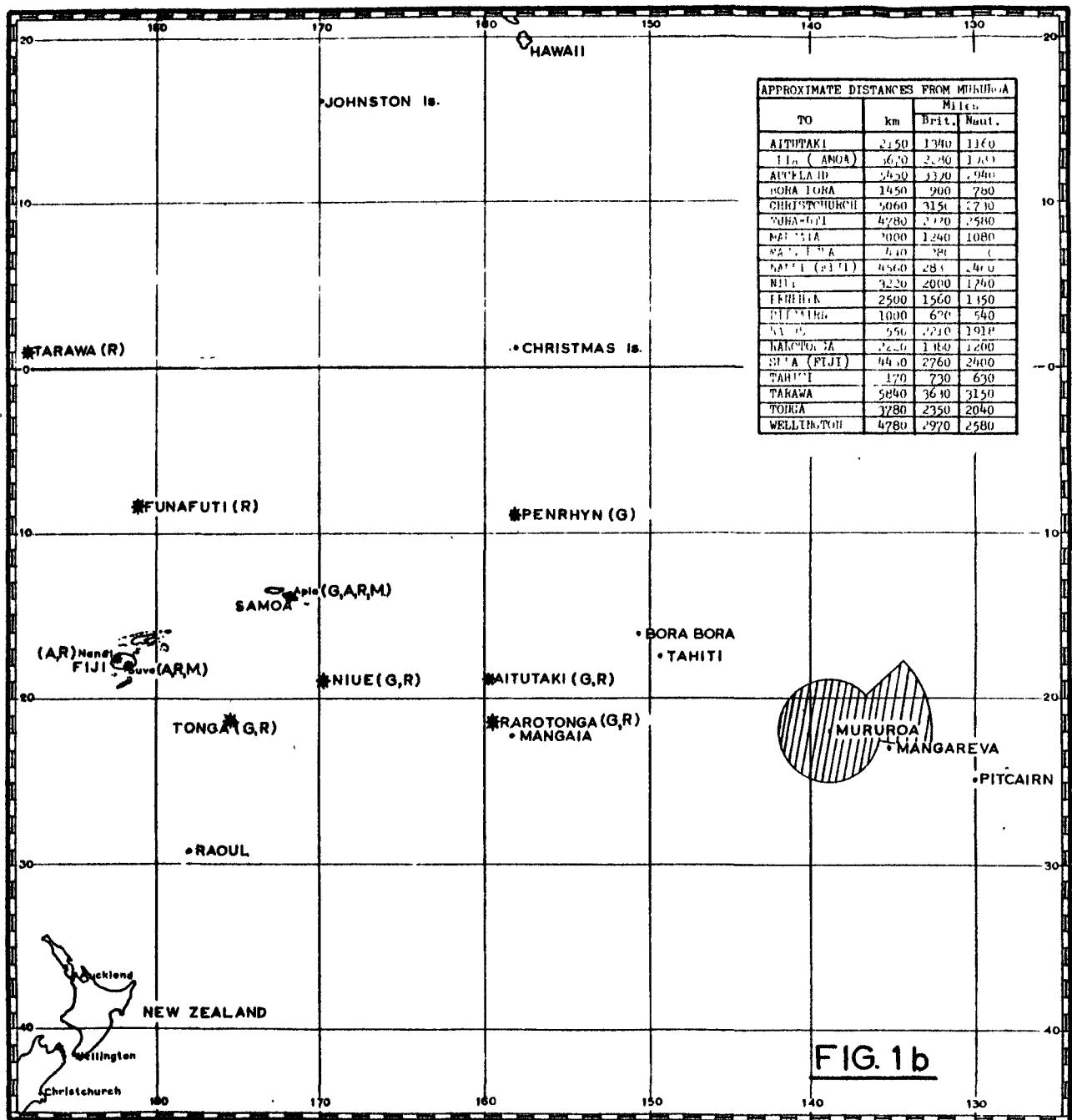
## CONTENTS

|                                                                       |                |
|-----------------------------------------------------------------------|----------------|
| LOCATION OF COLLECTING STATIONS IN NEW ZEALAND, FIG. 1a . . . . .     | PAGE<br>III-25 |
| LOCATION OF MONITORING AND COLLECTING STATIONS IN THE PACIFIC, FIG 1b | PAGE<br>III-26 |

## SUMMARY


|     |                                                                                                      |        |
|-----|------------------------------------------------------------------------------------------------------|--------|
| (A) | GRAPHICAL SUMMARY OF LONG TERM MEASUREMENTS FIG. 2 .. .. .. ..                                       | III-27 |
| (A) | RESULTS OF ROUTINE MONITORING OF FALLOUT DURING<br>SECOND QUARTER 1967 .. .. .. .. ..                | III-28 |
| (B) | RESULTS OF EXTENDED MONITORING OF FALLOUT FROM<br>FRENCH NUCLEAR TESTS IN THE PACIFIC .. .. .. .. .. | III-30 |
| (C) | HAZARD ASSESSMENT .. .. .. .. ..                                                                     | III-32 |

SECTION A - RESULTS OF ROUTINE MONITORING OF FALLOUT DURING  
SECOND QUARTER 1967


|                                                                    |        |
|--------------------------------------------------------------------|--------|
| Total Beta Activity of Air Samples, Table 1 .. .. .. .. .. .. ..   | III-35 |
| Total Beta Activity of Weekly Rainwater Collections, Table 2 .. .. | III-36 |
| Strontium-90 in Rain, Table 3 .. .. .. .. .. .. .. .. .. .. ..     | III-37 |
| Strontium-89 in Rain, Table 4 .. .. .. .. .. .. .. .. .. .. ..     | III-38 |
| Strontium-90, Strontium-89 and Caesium-137 in Milk, Table 5 .. ..  | III-39 |

SECTION B - RESULTS OF EXTENDED MONITORING OF FALLOUT FROM  
FRENCH NUCLEAR TESTS IN THE PACIFIC

|                                                                |        |
|----------------------------------------------------------------|--------|
| Total Beta Activity of Daily Air Filter Samples, Table 1 .. .. | III-40 |
| Total Beta Activity of Daily Air Filter Samples, Fig. 1 .. ..  | III-43 |
| Total Beta Activity of Weekly Rainwater Samples, Table 2 .. .. | III-44 |
| Average Daily Deposition of Fission Products, Fig. 2 .. ..     | III-49 |
| Iodine-131 in Milk, Table 3 .. .. .. .. .. .. .. .. ..         | III-50 |
| Iodine-131 in Cattle Thyroids, Table 4 .. .. .. .. .. .. ..    | III-52 |
| Iodine-131 in Cattle Thyroids, Fig. 3 .. .. .. .. .. .. ..     | III-53 |



LOCATION OF COLLECTING STATIONS ESTABLISHED BY THE NATIONAL RADIATION LABORATORY FOR AIR(A), BONE(B), MILK(M), RAINWATER(R), SOIL(S), AND THYROIDS(T) SAMPLES IN NEW ZEALAND. Where more than one type of collection is performed (e.g. weekly and monthly rainwater collection) the appropriate symbol is shown twice. Collection areas not confined to a single location but extending over part of a province or district are shown thus



LOCATION OF MONITORING AND COLLECTING STATIONS ESTABLISHED BY THE NATIONAL RADIATION LABORATORY ON PACIFIC ISLANDS. GAMMA RADIATION MONITORING STATIONS (G), AND COLLECTING STATIONS FOR AIR (A), AND RAINWATER (R), AND MILK (M) SAMPLES ARE MARKED THUS \* Officially proclaimed danger zone shown thus

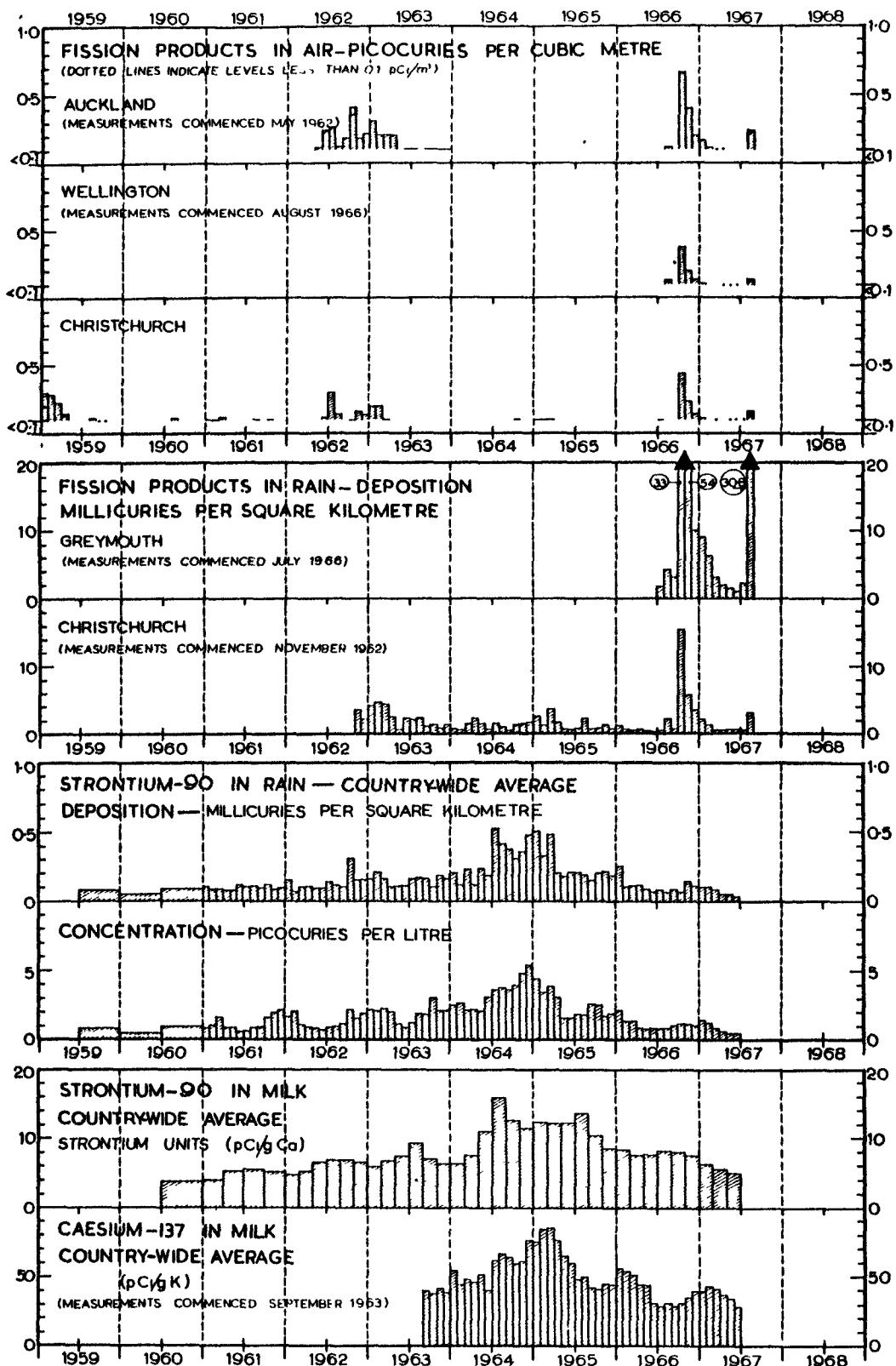



FIG. 2

SUMMARY OF LONG TERM MEASUREMENTS

## SUMMARY

### GENERAL

This report which is divided into two sections, gives in SECTION A, the results of routine monitoring of fallout during the second quarter 1967.

In SECTION B, the results of extended monitoring of fallout from the French nuclear tests in the Pacific are given. Three nuclear devices were exploded at Mururoa in the Tuamotu Archipelago during this year's test series. The reported dates of these tests were 6 June, 28 June and 3 July (New Zealand Standard Time). Our extended monitoring programme commenced on 1 June and results are given in this report for all samples which had been received and measured up to about the end of August. This covers the period of greatest interest. Subsequent results up to the end of September, when this extended monitoring programme will terminate, will be given in the next issue of this report, although it is not expected that these results will be of significant interest. The locations of collecting and monitoring stations and types of samples collected are shown in Fig. 1a for New Zealand, and Fig. 1b for the Pacific Area.

In this summary a distinction is made between the levels of radioactivity due to long-lived radionuclides (which are of major significance in assessing health hazards) and short-lived radionuclides from the recent nuclear tests in the Pacific which, although showing increased levels of radioactivity during limited periods, are of less significance in assessing health hazards. The measurement of Strontium-89 in routine rain and milk samples has been continued since July 1966. Although these measurements are part of the extended monitoring programme, the results are included in Section A where comparisons are made with Strontium-90 levels.

### (A) RESULTS OF ROUTINE MONITORING OF FALLOUT DURING SECOND QUARTER 1967

#### TOTAL BETA ACTIVITY

Fission products in air and rainwater, which showed significant increases during the fourth quarter 1966, had fallen steadily during the first quarter 1967 and have remained at pre-test levels during the second quarter 1967.

#### STRONTIUM-89

Strontium-89 levels in rain samples have remained at the minimum detectable level during the second quarter 1967. The levels in milk samples have fallen steadily from 12 pCi/g Ca for Jan. - Feb. to 5 pCi/g Ca for Mar. - Apr. and 1 pCi/g Ca for May - June 1967.

#### STRONTIUM-90 AND CAESIUM-137

The levels of these long lived fallout products have decreased during this quarter.

## SUMMARY Cont.

The country-wide average deposition of Strontium-90 in rain has decreased from 0.30 mCi/km<sup>2</sup> during the first quarter to 0.13 mCi/km<sup>2</sup> during the second quarter. This level is about one tenth of the highest level previously recorded during the first quarter 1965.

The country-wide average level of Strontium-90 in milk has decreased slightly from 6.1 Strontium Units during Jan. - Feb. to 5.5 Strontium Units during Mar. - Apr. and 5.0 Strontium Units during May - June. The May - June level is less than one third of the highest level previously recorded which was 15.9 Strontium Units during July - August 1964.

The country-wide average level of Caesium-137 in milk has decreased from 42 pCi/gK during the first quarter to 32 pCi/gK during the second quarter. This level is less than one half of the highest level previously recorded which was 81 pCi/gK during the first quarter 1965.

The following table compares values obtained for this period with values for the previous period:

| FISSION PRODUCTS IN AIR         |                     | MEASUREMENTS AT SELECTED STATIONS |                  |
|---------------------------------|---------------------|-----------------------------------|------------------|
| Total Beta                      | Auckland            | 1st Quarter 1967                  | 2nd Quarter 1967 |
| Activity                        | Wellington          | 0.11                              | 0.03             |
| pCi/m <sup>3</sup>              | Christchurch        | 0.08                              | 0.02             |
| FISSION PRODUCTS IN RAIN        |                     | MEASUREMENTS AT SELECTED STATIONS |                  |
| Total Beta                      | Greymouth           | 1st Quarter 1967                  | 2nd Quarter 1967 |
| Activity                        | Christchurch        | 18.5                              | 4.7              |
| mCi/km <sup>2</sup>             |                     | 4.5                               | 1.7              |
| STRONTIUM RADIOISOTOPES IN RAIN |                     | COUNTRY-WIDE AVERAGE              | - 9 STATIONS     |
| Strontium-90*, Deposition       | mCi/km <sup>2</sup> | 1st Quarter 1967                  | 2nd Quarter 1967 |
| Strontium-90, Concentration     | pCi/litre           | 0.30                              | 0.13             |
| Strontium-89*, Deposition       | mCi/km <sup>2</sup> | 1.2                               | 0.6              |
| Ratio Strontium-89/Strontium-90 |                     | 1.1                               | <0.1             |
|                                 |                     | 4                                 | 1                |
| STRONTIUM RADIOISOTOPES IN MILK |                     | COUNTRY-WIDE AVERAGE              | - 9 STATIONS     |
| Strontium-90                    | pCi/g Ca            | Jan.-Feb.                         | Mar.-Apr.        |
| Strontium-89                    | pCi/g Ca            | 12                                | 5                |
| Ratio Strontium-89/Strontium-90 |                     | 2                                 | 1                |
|                                 |                     | May-Jun.                          | <1               |
| CAESIUM-137 IN MILK             |                     | COUNTRY-WIDE AVERAGE              | - 9 STATIONS     |
| Caesium-137                     | pCi/g K             | 1st Quarter 1967                  | 2nd Quarter 1967 |
|                                 |                     | 42                                | 32               |

\* These values are the sum of the monthly depositions during the quarter.

## SUMMARY Cont.

### (B) RESULTS OF EXTENDED MONITORING OF FALLOUT FROM FRENCH NUCLEAR TESTS IN THE PACIFIC

#### GAMMA RAY RADIATION MONITORING

No gamma ray radiation readings exceeding 0.3 mR/hr (the lowest reporting level set for this monitoring service) were reported from any of the six Pacific Island stations where these measurements were made.

#### TOTAL BETA ACTIVITY OF DAILY AIR FILTER SAMPLES

The results of measurements on daily air filter samples are tabled and graphed in Section B. Transient increases in air radioactivity have been detected at all stations during the monitoring period. The daily results have been averaged over each calendar month for each station and are summarized here:

| AIR FILTERS  | 1967 |      |        |
|--------------|------|------|--------|
|              | June | July | August |
| Nandi, Fiji  | 0.06 | 0.73 | 0.54   |
| Suva, Fiji   | 0.06 | 0.65 | 0.53   |
| Apia, Samoa  | 1.40 | 2.49 | 0.45   |
| Auckland     | 0.03 | 0.07 | 0.24   |
| Wellington   | 0.02 | 0.05 | 0.14   |
| Christchurch | 0.05 | 0.06 | 0.16   |

The highest monthly averages recorded during the 1966 monitoring programme were; 4.40 pCi/m<sup>3</sup> at Nandi during September 1966  
0.66 " " " Auckland " " October 1966  
0.38 " " " Wellington " " " 1966  
0.44 " " " Christchurch " " " 1966

Suva, Fiji and Apia, Samoa were included in the 1967 air monitoring programme for the first time. Comparisons cannot therefore be made for these two stations. The results show that fission product levels in air filter samples have been significantly lower this year. The highest daily level recorded this year was 30 pCi/m<sup>3</sup> at Apia Samoa on 14 July after the second and third nuclear explosions of 28 June and 3 July respectively. The levels of fission products in air are discussed further under "Hazard Assessment" in this Summary.

#### TOTAL BETA ACTIVITY OF WEEKLY RAINWATER SAMPLES

The results of measurements of weekly rainwater samples for fission product deposition are tabled and graphed in Section B. Increased levels have been detected at most stations during the extended monitoring period. The highest levels recorded are given in the following table:

## SUMMARY Cont.

| STATION  | COLLECTION PERIOD | AVERAGE DAILY DEPOSITION<br>DURING THE COLLECTION PERIOD<br>mCi/km <sup>2</sup> |
|----------|-------------------|---------------------------------------------------------------------------------|
| Tarawa   | 15 July - 22 July | 19.8                                                                            |
| Funafuti | 8 July - 14 July  | 15.6                                                                            |
| "        | 14 July - 17 July | 105.9                                                                           |
| Aitutaki | 9 July - 14 July  | 21.9                                                                            |

The concentration of fission products in rain (which is used for hazard assessment, based on maximum permissible levels in drinking water) is calculated from the total deposition and total rainfall for each month for each station. These values are also given in Section B, Table 2. For the three stations of greatest interest the values of fission product concentration in rainwater are given in the following table (a) for the month or period of highest concentration and (b) for the entire monitoring period to date.

| STATION  | PERIOD OF HIGHEST CONCENTRATION | CONCENTRATION<br>pCi/litre | ENTIRE MONITORING PERIOD TO DATE | CONCENTRATION<br>pCi/litre |
|----------|---------------------------------|----------------------------|----------------------------------|----------------------------|
| Tarawa   | 1 July - 29 July                | 1,830                      | 1 June - 27 Aug.                 | 679                        |
| Funafuti | 1 July - 29 July                | 1,528                      | 1 June - 30 Aug.                 | 596                        |
| Aitutaki | 30 June - 21 July               | 2,185                      | 2 June - 21 July                 | 602                        |

When the extended monitoring operation is terminated at the end of September, it is expected that the final evaluation of average concentration over the entire monitoring period will give lower values than the values listed in this table. The levels of fission products in rainwater are further discussed under "Hazard Assessment" in this Summary.

### IODINE-131 IN MILK

The levels of iodine-131 in milk from seven New Zealand Collecting Stations and from Suva, Fiji and Apia, Samoa are listed in Section B, Table 3.

The levels in New Zealand milk have been significantly lower during the 1967 monitoring period, compared with the levels during the 1966 monitoring period. The highest level for an individual sample this year was 14 pCi/litre compared with 36 pCi/litre last year. The country-wide average over the period June-August 1967 inclusive was less than 5 pCi/litre, which is the minimum recording level. In 1966 the country-wide average over the period July-December inclusive was 7 pCi/litre.

In Suva, Fiji iodine-131 was first detected in milk on 29 June. A peak level of 151 pCi/litre was recorded on 27 July. Levels subsequently dropped to less than 5 pCi/litre at the end of August. The average level over the period 5 June - 8 September was 26 pCi/litre.

## SUMMARY Cont.

In Apia, Samoa iodine-131 was first detected in milk on 16 June with a significant rise to 161 pCi/litre. Levels then decreased until 21 July when there was another significant rise to 346 pCi/litre. A peak level occurred on 25 July at 708 pCi/litre. Levels had dropped to less than 5 pCi/litre by 8 September. The average level over the period 2 June - 8 September was 85 pCi/litre

The levels of iodine-131 in milk are further discussed under "Hazard Assessment" in this Summary.

### IODINE-131 IN CATTLE THYROIDS

Because of the enhanced sensitivity of detection of iodine-131 in animal thyroids, these samples have been used as an indicator of the arrival of iodine-131 in New Zealand during the present monitoring operations. Iodine-131 has been detected in cattle thyroids from all of the eight collecting stations within New Zealand. The results are tabled and graphed in Section B. The first indications of iodine-131 occurred in cattle slaughtered on 19 June. The highest individual station level, 169 pCi/g, occurred in cattle slaughtered at Westport on 14 August. The highest level recorded last year was 726 pCi/g at Gore on 31 October. The country-wide average level reached a maximum of 55 pCi/g on 14 August and values have been falling steadily since then reaching an average level of 19 pCi/g on 4 September.

(c)

### HAZARD ASSESSMENT

#### STRONTIUM-90

The derivation of potential health hazard from fallout results is a complex problem. However, the significance of observed levels of strontium-90 can be readily understood by comparing these levels with the recommendations made by the British Medical Research Council on the "permissible levels" for the concentration of strontium-90 in human bone. A "cautionary level" was set at one half of the "permissible level" and the Council stated that this "cautionary level" would not be exceeded if the following levels were maintained indefinitely in the diet;

400 Strontium Units for individuals in the general population,  
or 130 Strontium Units as averaged for the population as a whole.

Because the strontium-90 level in the total diet (expressed in Strontium Units) differs relatively little from that in milk, some guidance on the general situation in New Zealand may be provided by comparing the levels in New Zealand milk with the "cautionary level" set by the Council. In doing this, however, it must be emphasized that the "cautionary level" refers to continuous lifetime exposure. Average levels over an extended period, such as one year, are therefore more meaningful than individual results. The all station average for New Zealand milk for the 12 months ending June 1967 (6.7 Strontium Units) is thus less than:

6% of the "cautionary level" for the whole population, or  
3% of the "permissible level" for the whole population.

## SUMMARY Cont.

### CAESIUM-137

The British Research Council has not provided a permissible level for caesium-137 in milk. For the general population it is possible to derive such a "permissible level" by applying a number of conversion factors to the permissible level in drinking water accepted for radiation workers. It has been assumed that one third of the daily intake of caesium-137 comes from milk, that the average consumption is 0.5 litres per day and that the permissible level for the general population is 1/30 of that for a radiation worker. The figure so derived is 7,000 pCi/g K.

The all station average for New Zealand milk for the 12 months ending June 1967, (35 pCi/g K) is thus 0.5% of the above "permissible level" for the whole population.

### TOTAL BETA ACTIVITY

The permissible levels of total beta activities in air and water, due to mixed fission products, have not been set by international agreement but are based on published evaluations of the health hazards of mixed fission products of various ages.<sup>(1, 2)</sup> For the purpose of assessing the hazards of environmental contamination resulting from the current Pacific testing we have adopted the most cautious values listed for bomb debris between 10 and 80 days old.

These adopted values are:

|           |                        |                                    |
|-----------|------------------------|------------------------------------|
| For air   | 300 pCi/m <sup>3</sup> | ) for <u>continuous</u> use by the |
| For water | 6,000 pCi/litre)       | general public                     |

### In Air

Apia, Samoa was the station with the highest levels of fission products in air during the current extended monitoring programme. The average levels for June, July and August 1967 were 1.40, 2.49 and 0.45 pCi/m<sup>3</sup> respectively, giving a three monthly average level of 1.45 pCi/m<sup>3</sup> during the period June to August inclusive. This level is less than 0.5% of the "permissible" level for continuous breathing by the entire population.

### In Rainwater

Tarawa was the station with the highest concentration of fission products in rainwater during the current extended monitoring programme. During the period 1 June - 27 August 1967 the average concentration was 679 pCi/litre. This level is approximately 11% of the maximum permissible concentration for continuous consumption. Over the entire year 1967 the average concentration would be expected to be about one quarter of this value or approximately 3% of the permissible concentration.

## SUMMARY Cont.

### IODINE-131

In October 1961 the British Medical Research Council specified that an acceptable dose would not be exceeded in any age group of the population unless an average concentration of iodine-131 of 130 pCi/litre in milk was exceeded over a period of one year, or higher concentrations were maintained for correspondingly shorter times.

The British Medical Research Council now states, however, that further information has become available which indicates that the original figure of 130 pCi/litre was unduly cautious, and that a more appropriate "acceptable level" of iodine-131 now appears to be 200 pCi/litre as an average intake over a period of one year.

The country-wide average level of iodine-131 in New Zealand milk during the monitoring period was below the minimum recording level i.e. less than 5 pCi/litre. For the entire year 1967 the average level would be less than 0.5% of the "acceptable level" for any age group.

In Suva, Fiji and Apia, Samoa the average levels of iodine-131 in milk during the three monthly period June - August inclusive were 26 and 85 pCi/litre respectively. For the entire year 1967 the average values will be about one quarter of these values:

i.e. For Suva, Fiji      approximately 3% )      of the "acceptable level"  
                                For Apia, Samoa      approximately 11% )      for any age group.

1. A.H. Booth, "Guide Levels in Radiation Protection Programs", Data from Radiation Protection Programs, Vol. 4, No. 2, February 1966. Department of National Health and Welfare, Ottawa, Canada.
2. D.L. Summers and M.C. Gaske, "Maximum Permissible Activity (MPA) for Fission Products in Air and Water", Health Physics, Vol. 4, pp. 289-292 (1961).

SECTION A  
RESULTS OF ROUTINE MONITORING OF FALLOUT  
DURING SECOND QUARTER 1967

TABLE 1

TOTAL BETA ACTIVITY OF AIR SAMPLES

In Picocuries per Cubic Metre Four Days after Collection.  
 Continuous Air Filter Sampling - Filters Changed 3 times each week.

| AUCKLAND            |                                        | WELLINGTON          |                                        | CHRISTCHURCH        |                                        |
|---------------------|----------------------------------------|---------------------|----------------------------------------|---------------------|----------------------------------------|
| Date Filter Removed | Total Beta Activity pCi/m <sup>3</sup> | Date Filter Removed | Total Beta Activity pCi/m <sup>3</sup> | Date Filter Removed | Total Beta Activity pCi/m <sup>3</sup> |
| 3.4.67              | 0.02                                   | 3.4.67              | 0.02                                   | 3.4.67              | 0.02                                   |
| 5.4.67              | 0.03                                   | 5.4.67              | 0.02                                   | 5.4.67              | 0.02                                   |
| 7.4.67              | 0.04                                   | 7.4.67              | 0.04                                   | 7.4.67              | 0.04                                   |
| 10.4.67             | 0.02                                   | 10.4.67             | <0.01                                  | 10.4.67             | <0.01                                  |
| 12.4.67             | 0.02                                   | 12.4.67             | 0.01                                   | 12.4.67             | 0.02                                   |
| 14.4.67             | 0.01                                   | 14.4.67             | 0.02                                   | 14.4.67             | 0.04                                   |
| 17.4.67             | 0.02                                   | 17.4.67             | 0.02                                   | 17.4.67             | 0.02                                   |
| 19.4.67             | 0.04                                   | 19.4.67             | 0.05                                   | 19.4.67             | 0.03                                   |
| 21.4.67             | 0.03                                   | 21.4.67             | 0.03                                   | 21.4.67             | 0.02                                   |
| 24.4.67             | 0.05                                   | 24.4.67             | 0.04                                   | 24.4.67             | 0.02                                   |
| 26.4.67             | 0.04                                   | 26.4.67             | 0.02                                   | 26.4.67             | <0.01                                  |
| 28.4.67             | 0.04                                   | 28.4.67             | 0.01                                   | 28.4.67             | 0.02                                   |
| 1.5.67              | 0.03                                   | 1.5.67              | 0.03                                   | 1.5.67              | 0.03                                   |
| Average             | 0.03                                   | Average             | 0.02                                   | Average             | 0.02                                   |
| 3.5.67              | 0.04                                   | 3.5.67              | 0.01                                   | 3.5.67              | 0.02                                   |
| 5.5.67              | 0.01                                   | 5.5.67              | 0.01                                   | 5.5.67              | 0.02                                   |
| 8.5.67              | 0.04                                   | 8.5.67              | 0.03                                   | 8.5.67              | 0.03                                   |
| 10.5.67             | 0.03                                   | 10.5.67             | 0.03                                   | 10.5.67             | 0.03                                   |
| 12.5.67             | 0.02                                   | 12.5.67             | 0.01                                   | 12.5.67             | <0.01                                  |
| 15.5.67             | 0.03                                   | 15.5.67             | 0.02                                   | 15.5.67             | 0.01                                   |
| 17.5.67             | 0.02                                   | 17.5.67             | 0.01                                   | 17.5.67             | 0.01                                   |
| 19.5.67             | 0.01                                   | 19.5.67             | 0.01                                   | 19.5.67             | 0.01                                   |
| 21.5.67             | 0.02                                   | 22.5.67             | 0.02                                   | 22.5.67             | 0.01                                   |
| 24.5.67             | 0.03                                   | 24.5.67             | 0.01                                   | 24.5.67             | 0.02                                   |
| 26.5.67             | 0.02                                   | 26.5.67             | 0.01                                   | 26.5.67             | 0.02                                   |
| 29.5.67             | 0.02                                   | 29.5.67             | <0.01                                  | 29.5.67             | 0.01                                   |
| 31.5.67             | 0.02                                   | 31.5.67             | 0.01                                   | 1.6.67              | 0.01                                   |
| Average             | 0.02                                   | Average             | 0.01                                   | Average             | 0.02                                   |
| Average for June *  | 0.03                                   | Average for June *  | 0.02                                   | Average for June *  | 0.05                                   |
| Quarterly Average   | 0.03                                   | Quarterly Average   | 0.02                                   | Quarterly Average   | 0.03                                   |

\* From 1 June 1967, air filters were changed daily. Individual results for these collecting stations for June are given in Section B, Table 1, together with results for Nandi (Fiji), Suva (Fiji), and Apia (Samoa).

TABLE 2                    TOTAL BETA ACTIVITY OF WEEKLY RAINWATER COLLECTIONS  
FOUR DAYS AFTER COLLECTION

| AT               | DATE OF COLLECTION |           | DEPOSITION<br>mCi/km <sup>2</sup> | RAINFALL<br>cm | CONCENTRATION<br>pCi/litre |
|------------------|--------------------|-----------|-----------------------------------|----------------|----------------------------|
|                  | FROM               | TO        |                                   |                |                            |
| GREENBOURNE      | 1.4.67             | 7.4.67    | 0.6                               | 13.18          |                            |
|                  | 7.4.67             | 15.4.67   | 0.2                               | 3.10           |                            |
|                  | 15.4.67            | 22.4.67   | 0.6                               | 1.83           |                            |
|                  | 22.4.67            | 29.4.67   | (0.6)*                            | 11.30          |                            |
|                  | 1.4.67             | 29.4.67   | 2.0                               | 29.41          | 7                          |
|                  | 29.4.67            | 6.5.67    | 0.5                               | 4.83           |                            |
|                  | 6.5.67             | 13.5.67   | 0.5                               | 7.16           |                            |
|                  | 13.5.67            | 20.5.67   | 0.3                               | 2.72           |                            |
|                  | 20.5.67            | 27.5.67   | 0.3                               | 5.22           |                            |
|                  | 27.5.67            | 3.6.67    | 0.1                               | 1.52           |                            |
| CHRISTCHURCH     | 29.4.67            | 3.6.67    | 1.7                               | 21.45          | 8                          |
|                  | 3.6.67             | 1.7.67**  | 1.0                               | 5.99           | 17                         |
|                  | 2nd QUARTER 1967   |           | 4.7                               | 56.85          | 8                          |
|                  | 30.3.67            | 7.4.67    | 0.1                               | 0.08           |                            |
|                  | 7.4.67             | 14.4.67   | 0.2                               | 0.81           |                            |
|                  | 14.4.67            | 21.4.67   | <0.1                              | N I L          |                            |
|                  | 21.4.67            | 28.4.67   | 0.2                               | 1.80           |                            |
|                  | 30.3.67            | 28.4.67   | 0.5                               | 2.69           | 19                         |
|                  | 28.4.67            | 8.5.67    | 0.2                               | 0.13           |                            |
|                  | 8.5.67             | 12.5.67   | 0.2                               | 4.24           |                            |
|                  | 12.5.67            | 19.5.67   | 0.1                               | 0.99           |                            |
|                  | 19.5.67            | 26.5.67   | <0.1                              | 1.88           |                            |
|                  | 26.5.67            | 1.6.67    | 0.1                               | 0.46           |                            |
|                  | 28.4.67            | 1.6.67    | 0.6                               | 7.70           | 8                          |
|                  | 1.6.67             | 30.6.67** | 0.6                               | 1.90           | 32                         |
| 2nd QUARTER 1967 |                    |           | 1.7                               | 12.29          | 14                         |

\* No Sample - estimated result required for averaging purposes.

\*\* Individual results for June 1967 are given in Section B, Table 2 together with results from the Pacific Area monitoring programme which commenced on 1 June.

TABLE 3

## STRONTIUM-90 IN RAIN SECOND QUARTER 1967

| COLLECTING STATIONS          | DEPOSITION mCi/km <sup>2</sup> |        |      | RAINFALL cm |      |      | CONCENTRATION pCi/litre |     |      |
|------------------------------|--------------------------------|--------|------|-------------|------|------|-------------------------|-----|------|
|                              | Apr.                           | May    | Jun. | Apr.        | May  | Jun. | Apr.                    | May | Jun. |
| <u>New Zealand</u>           |                                |        |      |             |      |      |                         |     |      |
| Kaitaia                      | 0.08                           | 0.03   | 0.03 | 4.3         | 7.3  | 5.7  | 1.8                     | 0.4 | 0.5  |
| Auckland                     | 0.03                           | 0.03   | 0.02 | 3.7         | 4.3  | 6.8  | 0.7                     | 0.7 | 0.4  |
| New Plymouth                 | 0.05                           | 0.06   | 0.05 | 7.5         | 14.9 | 13.9 | 0.7                     | 0.4 | 0.4  |
| Havelock North               | 0.03                           | 0.01   | 0.03 | 6.0         | 2.4  | 7.3  | 0.5                     | 0.4 | 0.4  |
| Wellington                   | 0.07                           | 0.07   | 0.04 | 9.5         | 9.4  | 6.4  | 0.7                     | 0.7 | 0.6  |
| Greymouth                    | 0.08                           | 0.07   | 0.04 | 33.1        | 18.2 | 7.1  | 0.2                     | 0.4 | 0.5  |
| Christchurch                 | 0.02                           | 0.04   | 0.01 | 3.0         | 7.7  | 1.9  | 0.8                     | 0.5 | 0.7  |
| Dunedin                      | 0.04                           | 0.04   | 0.01 | 5.0         | 7.5  | 2.3  | 0.7                     | 0.5 | 0.6  |
| Invercargill                 | 0.09                           | 0.11   | 0.02 | 14.9        | 12.7 | 5.0  | 0.6                     | 0.9 | 0.4  |
| <u>Country-wide Averages</u> |                                |        |      |             |      |      |                         |     |      |
| Monthly                      | 0.05                           | 0.05   | 0.03 | 9.7         | 9.4  | 6.3  | 0.7                     | 0.5 | 0.5  |
| Quarterly                    |                                | 0.13** |      |             |      |      |                         | 0.6 |      |
| <u>Pacific Islands</u>       |                                |        |      |             |      |      |                         |     |      |
| Suva, Fiji                   | 0.07                           | 0.04   | 0.09 | 44.2        | 20.0 | 5.4  | 0.1                     | 0.2 | 1.7  |
| Rarotonga                    | *                              | 0.13   | 0.03 | *           | 69.2 | 7.3  | *                       | 0.2 | 0.4  |

\* No Sample

\*\* This value is the sum of the monthly depositions during the quarter.

TABLE 4

STRONTIUM-89 IN RAIN SECOND QUARTER 1967

| COLLECTING STATIONS          | DEPOSITION<br>mCi/km <sup>2</sup> (at mid-month) |      |        | RATIO<br>Strontium-89/Strontium-90 |     |      |
|------------------------------|--------------------------------------------------|------|--------|------------------------------------|-----|------|
|                              | Apr.                                             | May  | Jun.   | Apr.                               | May | Jun. |
| <u>New Zealand</u>           |                                                  |      |        |                                    |     |      |
| Kaitaia                      | <0.1                                             | <0.1 | 0.1    | <1                                 | <1  | 4    |
| Auckland                     | <0.1                                             | <0.1 | <0.1   | 2                                  | <1  | 2    |
| New Plymouth                 | <0.1                                             | <0.1 | <0.1   | 1                                  | <1  | 2    |
| Havelock North               | <0.1                                             | <0.1 | <0.1   | 1                                  | 2   | 1    |
| Wellington                   | <0.1                                             | <0.1 | <0.1   | 1                                  | <1  | 2    |
| Greymouth                    | 0.1                                              | <0.1 | <0.1   | 1                                  | 1   | 3    |
| Christchurch                 | <0.1                                             | <0.1 | <0.1   | 1                                  | 1   | 5    |
| Dunedin                      | <0.1                                             | <0.1 | <0.1   | 2                                  | <1  | 4    |
| Invercargill                 | 0.1                                              | <0.1 | <0.1   | 1                                  | <1  | 3    |
| <u>Country-wide Averages</u> |                                                  |      |        |                                    |     |      |
| Monthly                      | <0.1                                             | <0.1 | <0.1   | 1                                  | <1  | 3    |
| Quarterly                    |                                                  |      | <0.1** |                                    | 1   |      |
| <u>Pacific Islands</u>       |                                                  |      |        |                                    |     |      |
| Suva, Fiji                   | <0.1                                             | <0.1 | 0.6    | 1                                  | <1  | 7    |
|                              | *                                                | <0.1 | 0.1    | *                                  | <1  | 5    |

\* No Sample

\*\* This value is the sum of the monthly depositions during the quarter.

TABLE 5

## STRONTIUM-90, STRONTIUM-89 AND CAESIUM-137 IN MILK

1967

| COLLECTING STATIONS                               | STRONTIUM-90<br>pCi/g Ca |          | STRONTIUM-89*<br>pCi/g Ca |          | CAESIUM-137<br>pCi/g K |     |      | Average<br>Apr.-Jun. |
|---------------------------------------------------|--------------------------|----------|---------------------------|----------|------------------------|-----|------|----------------------|
|                                                   | Mar.-Apr.                | May-Jun. | Mar.-Apr.                 | May-Jun. | Apr.                   | May | Jun. |                      |
| Northland                                         | 4.3                      | 4.5      | 3                         | <1       | 30                     | 30  | 24   | 28                   |
| Auckland                                          | 4.2                      | 4.4      | 2                         | 2        | 29                     | 24  | 19   | 24                   |
| Waikato                                           | 3.1                      | 4.4      | 5                         | 2        | 60                     | 53  | 43   | 52                   |
| Taranaki                                          | 8.9                      | 9.4      | 5                         | 4        | 143                    | 144 | 103  | 130                  |
| Palmerston North                                  | 2.6                      | 3.6**    | 3                         | 1**      | 11                     | 4   | N.S. | 8                    |
| Wellington                                        | 4.0                      | 6.4      | 2                         | <1       | 12                     | 10  | 12   | 11                   |
| Greymouth                                         | 17.7                     | 16.4     | 16                        | <1       | 38                     | 33  | 16   | 29                   |
| Christchurch                                      | 1.9                      | 2.0      | 2                         | <1       | 2                      | 2   | 3    | 2                    |
| Dunedin                                           | 2.5                      | 2.9      | 7                         | <1       | 7                      | 6   | 2    | 5                    |
| <u>Country-wide Averages<br/>of these results</u> | 5.5                      | 5.0      | 5                         | 1        | 37                     | 34  | 28   | 32                   |
| For 12 months ending                              | June 1967, 6.7           |          | June 1967, 35             |          |                        |     |      |                      |

\* At mid sampling time.

\*\* May sample only.

N.S. No Sample.

## SECTION B

RESULTS OF EXTENDED MONITORING OF FALLOUT  
FROM FRENCH NUCLEAR TESTS IN THE PACIFIC

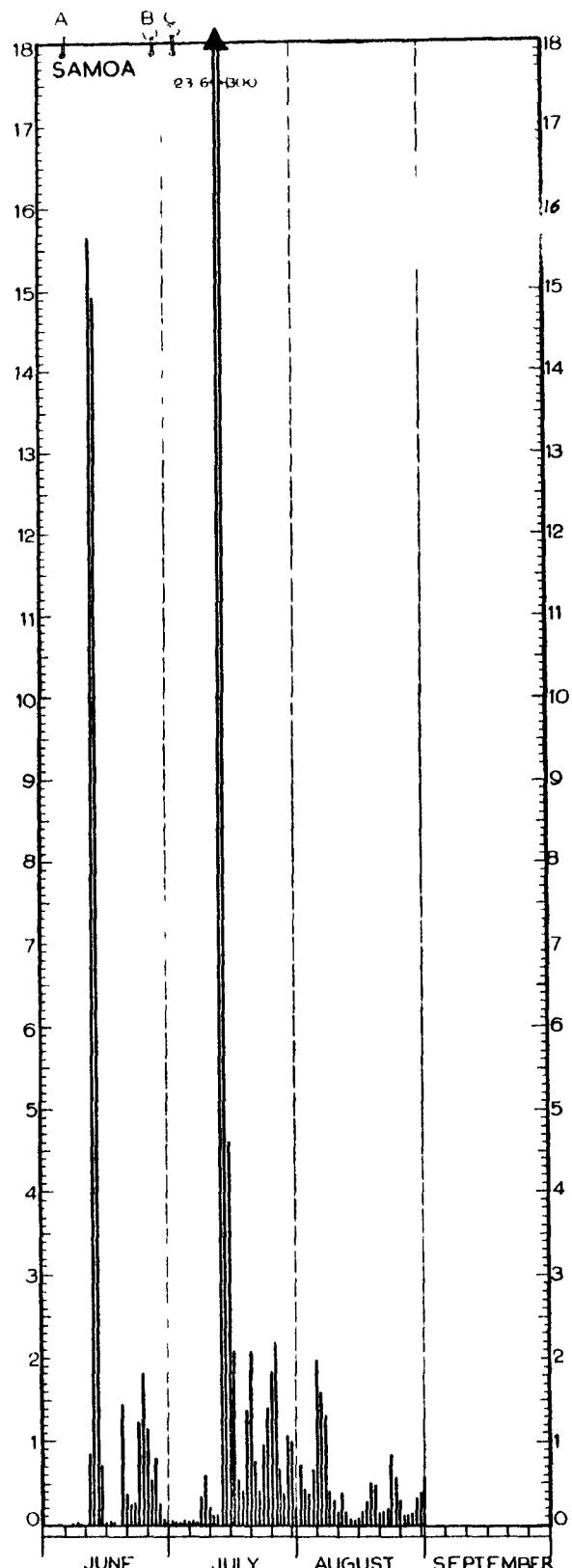
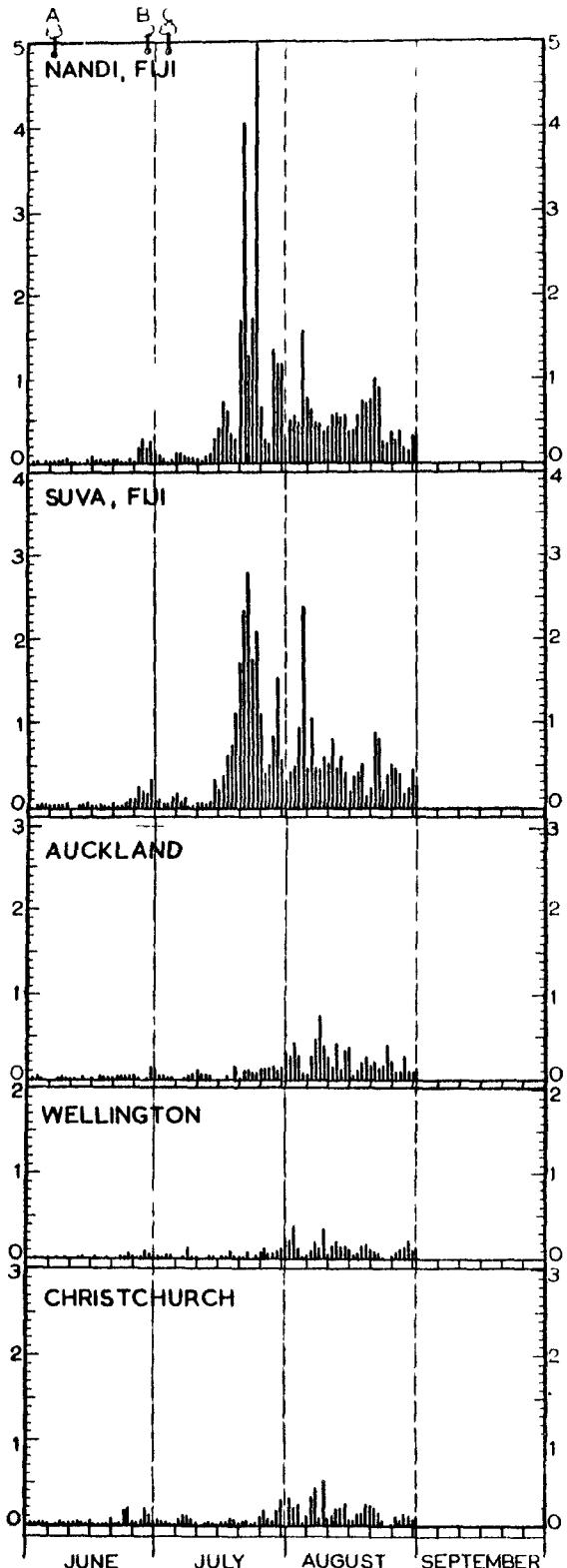
TABLE 1: TOTAL BETA ACTIVITY OF DAILY AIR FILTER SAMPLES  
STATED IN PICOCURIES PER CUBIC METRE ON DAY OF MEASUREMENT

COLLECTION: From 9.00 am on the date shown to 9.00 am on the following day. Stated in New Zealand Standard Time, i.e. G.M.T. + 12 hours.

MEASUREMENT: Routinely 4 days after the end of collection. Where this is not possible due to delays in transit, the number of days elapsed between the end of collection and measurement is given in brackets after the measurement.

| June 1967 | Nandi, Fiji | Suva, Fiji | Apia, Samoa | Auckland | Wellington | Christchurch |
|-----------|-------------|------------|-------------|----------|------------|--------------|
| 1         | 0.03        | <0.01      | N.S.        | 0.03     | <0.01      | 0.02         |
| 2         | 0.03        | 0.02       | <0.01(9)    | 0.04     | 0.01       | 0.02         |
| 3         | <0.01       | 0.04       | <0.01(8)    | 0.02     | <0.01      | 0.02         |
| 4         | 0.03        | 0.04       | <0.01(7)    | <0.01    | <0.01      | 0.03         |
| 5         | 0.02        | 0.03       | <0.01(6)    | <0.01    | 0.01       | 0.02         |
| 6         | 0.03        | 0.03       | <0.01       | <0.01    | <0.01      | <0.01        |
| 7         | 0.03        | 0.03       | 0.02        | 0.02     | 0.02       | 0.01         |
| 8         | 0.04        | 0.03       | 0.02        | 0.04     | <0.01      | 0.03         |
| 9         | 0.06        | 0.04       | 0.01        | 0.03     | 0.02       | 0.02         |
| 10        | 0.02        | <0.01      | <0.01(8)    | 0.02     | <0.01      | 0.02         |
| 11        | <0.01       | <0.01      | 0.85(7)     | 0.02     | <0.01      | 0.02         |
| 12        | 0.01        | 0.02       | 15.65(6)    | 0.01     | 0.01       | 0.04         |
| 13        | N.S.        | 0.03       | 14.92(5)    | 0.03     | 0.02       | 0.02         |
| 14        | 0.04        | 0.04       | 0.72        | <0.01    | <0.01      | 0.01         |
| 15        | 0.07        | 0.03       | 0.03        | 0.02     | <0.01      | 0.05         |
| 16        | 0.03        | 0.02       | 0.04        | <0.01    | 0.03       | 0.02         |
| 17        | 0.04        | 0.03       | 0.03        | 0.05     | 0.02       | 0.02         |
| 18        | 0.02        | 0.02       | <0.01       | 0.04     | <0.01      | 0.02         |
| 19        | 0.03        | 0.01       | 1.45        | 0.03     | 0.02       | 0.02         |
| 20        | 0.04        | 0.05       | 0.37        | 0.03     | <0.01      | 0.07         |
| 21        | 0.04        | 0.02       | 0.25(6)     | 0.04     | <0.01      | 0.02         |
| 22        | 0.02        | 0.03       | 0.27        | 0.04     | 0.04       | 0.03         |
| 23        | 0.02        | 0.06       | 1.25        | 0.04     | 0.02       | 0.17         |
| 24        | 0.06        | 0.09       | 1.82(5)     | 0.04     | 0.07       | 0.19         |
| 25        | 0.02        | 0.09       | 1.16        | 0.05     | 0.04       | 0.03         |
| 26        | 0.19        | 0.25       | 0.54        | 0.02     | 0.01       | 0.03         |
| 27        | 0.28        | 0.19       | 0.81        | <0.01    | 0.03       | 0.05         |
| 28        | 0.17        | 0.17       | 0.26        | 0.02     | 0.12       | 0.19         |
| 29        | 0.27        | 0.32       | 0.06        | 0.15     | 0.07       | 0.13         |
| 30        | 0.16        | 0.07       | 0.03        | 0.12     | 0.04       | 0.04         |
| Average   | 0.06        | 0.06       | 1.40        | 0.03     | 0.02       | 0.05         |

N.S. No Sample



TABLE 1. (continued)

| July<br>1967 | Nandi,<br>Fiji | Suva,<br>Fiji | Apia,<br>Samoa | Auckland | Wellington | Christchurch |
|--------------|----------------|---------------|----------------|----------|------------|--------------|
| 1            | 0.10           | 0.09          | 0.04(5)        | 0.05     | 0.03       | 0.06         |
| 2            | 0.05           | 0.04          | 0.03           | 0.05     | 0.02       | 0.04         |
| 3            | 0.01           | 0.04          | 0.03           | 0.03     | 0.05       | 0.03         |
| 4            | 0.04           | 0.12          | 0.05           | 0.03     | 0.04       | 0.02         |
| 5            | 0.13           | 0.16          | 0.04           | <0.01    | <0.01      | 0.02         |
| 6            | 0.13           | 0.06          | 0.05           | <0.01    | 0.01       | 0.06         |
| 7            | 0.08           | 0.12          | 0.03           | 0.02(9)  | 0.03       | 0.12         |
| 8            | 0.06           | 0.02          | 0.34(5)        | 0.04(8)  | 0.14       | 0.11         |
| 9            | 0.06           | 0.03          | 0.60           | 0.06(7)  | 0.03       | 0.07         |
| 10           | 0.05           | 0.05          | 0.21           | 0.11     | 0.02       | 0.03         |
| 11           | 0.03           | 0.05(6)       | 0.11           | 0.06     | <0.01      | <0.01        |
| 12           | 0.09           | 0.04          | 0.11           | 0.06     | 0.01       | 0.02         |
| 13           | 0.11           | 0.06          | 23.6 (5)       | 0.05     | 0.03       | 0.03         |
| 14           | 0.28           | 0.32          | 30.0           | <0.01    | 0.02       | 0.02         |
| 15           | 0.41           | 0.21          | 4.60(5)        | <0.01    | <0.01      | 0.01         |
| 16           | 0.73           | 0.37          | 2.09           | <0.01    | 0.03       | 0.03         |
| 17           | 0.62           | 0.62          | 0.56           | 0.04     | 0.02       | 0.03         |
| 18           | 0.35           | 0.74          | 0.42           | <0.01    | 0.08       | 0.07         |
| 19           | 0.29           | 1.11          | 1.39(5)        | 0.15     | 0.03       | 0.07         |
| 20           | 1.69           | 1.70          | 2.08           | 0.02     | 0.02       | 0.02         |
| 21           | 4.04           | 2.34          | 0.76           | 0.11     | 0.02       | 0.04         |
| 22           | 1.29           | 2.78          | 0.42(5)        | 0.11     | 0.08       | 0.04         |
| 23           | 1.73           | 1.76          | 0.95           | 0.08(7)  | <0.01      | 0.02         |
| 24           | 4.98           | 2.08(6)       | 1.41           | 0.08(7)  | 0.04       | 0.03         |
| 25           | 0.67           | 1.10          | 1.85(5)        | 0.13     | 0.08       | 0.10         |
| 26           | 0.28           | 0.42          | 2.19(6)        | 0.13     | 0.14       | 0.17         |
| 27           | 0.23           | 0.50          | 0.68(5)        | 0.14     | 0.06       | 0.06         |
| 28           | 1.36           | 0.84          | 0.39           | 0.15     | 0.06       | 0.05         |
| 29           | 1.18           | 1.54          | 1.06(5)        | 0.10     | 0.10       | 0.17         |
| 30           | 1.18           | 0.57          | 1.00           | 0.14     | 0.14       | 0.31         |
| 31           | 0.30           | 0.32          | 0.21           | 0.34     | 0.24       | N.S.         |
| Average      | 0.73           | 0.65          | 2.49           | 0.07     | 0.05       | 0.06         |

N.S. No Sample.

TABLE 1 (continued)

| August<br>1967 | Nandi,<br>Fiji | Suva,<br>Fiji | Apia,<br>Samoa | Auckland | Wellington | Christchurch |
|----------------|----------------|---------------|----------------|----------|------------|--------------|
| 1              | 0.51           | 0.43          | 0.73(5)        | 0.28     | 0.24       | 0.33         |
| 2              | 0.57           | 0.49          | 0.44(6)        | 0.43(7)  | 0.41       | 0.22         |
| 3              | 0.48           | 0.95(6)       | 0.38(5)        | 0.28(6)  | 0.14       | 0.25         |
| 4              | 1.57           | 2.38(5)       | 0.67           | 0.07     | 0.02       | 0.03         |
| 5              | 0.79           | 0.46          | 1.98(5)        | 0.05     | 0.04       | 0.11         |
| 6              | 0.65           | 1.05          | 1.59           | 0.28     | 0.11       | 0.34         |
| 7              | 0.49           | 0.47          | 1.31(3)        | 0.48(6)  | 0.21       | 0.44         |
| 8              | 0.47           | 0.45          | 0.42           | 0.75     | 0.15       | 0.08         |
| 9              | 0.38           | 0.58          | 0.30           | 0.40     | 0.36       | 0.54         |
| 10             | 0.44           | 0.51          | 0.16           | 0.27     | 0.07       | 0.09         |
| 11             | 0.57           | 0.80          | 0.39           | 0.15     | 0.17       | 0.13         |
| 12             | 0.59           | 0.47          | 0.16(8)        | 0.42     | 0.21       | 0.20         |
| 13             | 0.55           | 0.59          | 0.07(7)        | 0.13     | 0.16       | 0.20         |
| 14             | 0.57           | 0.41          | 0.06(6)        | 0.34(6)  | 0.16       | 0.26         |
| 15             | 0.39           | 0.19          | 0.08(5)        | 0.37     | 0.13       | 0.06         |
| 16             | 0.40           | 0.36          | 0.16           | 0.05(6)  | 0.04       | 0.05         |
| 17             | 0.57           | 0.42          | 0.28           | 0.12     | 0.08       | 0.13         |
| 18             | 0.75           | 0.50          | 0.50           | 0.19     | 0.16       | 0.13         |
| 19             | 0.72           | 0.13          | 0.49           | 0.26     | 0.19       | 0.26         |
| 20             | 0.76           | 0.21          | 0.15(7)        | 0.16     | 0.11       | 0.24         |
| 21             | 1.10           | 0.88(6)       | 0.17(6)        | 0.21     | 0.10       | 0.22         |
| 22             | 0.90           | 0.80(5)       | 0.21(5)        | 0.10     | 0.08       | 0.15         |
| 23             | 0.25           | 0.21          | 0.84           | 0.16     | 0.01       | 0.05         |
| 24             | 0.24           | 0.38          | 0.58           | 0.41     | <0.01      | <0.01        |
| 25             | 0.37           | 0.51          | 0.30(6)        | 0.21     | 0.04       | 0.01         |
| 26             | 0.26           | 0.45          | 0.12(5)        | 0.09     | 0.09       | 0.10         |
| 27             | 0.39           | 0.38          | 0.12           | 0.09     | 0.13       | 0.06         |
| 28             | 0.19           | 0.16          | 0.14(6)        | 0.27(6)  | 0.16(6)    | 0.13(6)      |
| 29             | 0.15(6)        | 0.24          | 0.33(5)        | 0.09     | 0.23       | 0.10         |
| 30             | 0.32(5)        | 0.44          | 0.39(6)        | 0.09     | 0.12       | 0.06         |
| 31             | 0.29(5)        | 0.25          | 0.56(5)        | 0.13     | 0.13       | 0.08         |
| Average        | 0.54           | 0.53          | 0.45           | 0.24     | 0.14       | 0.16         |



TOTAL BETA ACTIVITIES OF DAILY AIR FILTER SAMPLES

Stated in  $\mu\text{Ci}/\text{m}^3$  on 4th day after collection unless otherwise noted in table 1

FIG 1

TABLE 2 TOTAL BETA ACTIVITY OF WEEKLY RAINWATER SAMPLES  
STATED IN MILLICURIES PER SQUARE KILOMETRE AT TIME OF MEASUREMENT

NOTE: The normal collection period for each rainwater sample is 7 days. For some collections, however, the period may be longer or shorter than 7 days due to heavy rainfall or sample transport requirements. An additional column has been introduced in Table 2, therefore, giving the average daily deposition over the collection period. The graphical presentation of these results shows the average daily deposition over the collection period.

| AT       | Date of Collection<br>From To | Date of Measurement | Rainfall<br>cm | Total Beta Activity<br>mCi/km <sup>2</sup> | Average Daily Deposition<br>mCi/km <sup>2</sup> | Concentration<br>pCi/litre |
|----------|-------------------------------|---------------------|----------------|--------------------------------------------|-------------------------------------------------|----------------------------|
| TARAWA   | 1 June - 3 June               | 8 June              | TRACE          | 0.1                                        | 0.05                                            |                            |
|          | 3 " - 10 "                    | 19 "                | 3.86           | 0.3                                        | 0.04                                            |                            |
|          | 10 " - 17 "                   | 22 "                | TRACE          | 0.3                                        | 0.04                                            |                            |
|          | 17 " - 24 "                   | 28 "                | 1.39           | 21.9                                       | 3.12                                            |                            |
|          | 24 " - 1 July                 | 6 July              | 3.32           | 5.2                                        | 0.74                                            |                            |
|          | 1 June - 1 July               |                     | 8.57           | 27.8                                       |                                                 | 324                        |
|          | 1 July - 8 July               | 12 July             | 0.10           | 0.2                                        | 0.03                                            |                            |
|          | 8 " - 15 "                    | 20 "                | 2.89           | 1.5                                        | 0.22                                            |                            |
|          | 15 " - 22 "                   | 28 "                | 4.80           | 138.4                                      | 19.8                                            |                            |
|          | 22 " - 29 "                   | 3 Aug.              | 0.03           | 3.0                                        | 0.43                                            |                            |
|          | 1 July - 29 July              |                     | 7.82           | 143.1                                      |                                                 | 1,830                      |
|          | 29 July - 5 Aug.              | 15 Aug.             | 4.67           | 9.7                                        | 1.39                                            |                            |
|          | 5 Aug. - 12 "                 | 22 "                | 4.70           | <0.1                                       | <0.01                                           |                            |
|          | 12 " - 19 "                   | 25 "                | 0.18           | 0.6                                        | 0.09                                            |                            |
|          | 19 " - 27 "                   | 1 Sept.             | 0.86           | 0.7                                        | 0.08                                            |                            |
|          | 29 July - 27 Aug.             |                     | 10.41          | 11.0                                       |                                                 | 106                        |
| FUNAFUTI | 1 June - 10 June              | 19 June             | 7.16           | 0.3                                        | 0.03                                            |                            |
|          | 10 " - 16 "                   | 22 "                | 11.99          | 0.4                                        | 0.06                                            |                            |
|          | 16 " - 23 "                   | 29 "                | 7.14           | 42.7                                       | 6.11                                            |                            |
|          | 23 " - 1 July                 | 6 July              | 2.62           | 3.1                                        | 0.39                                            |                            |
|          | 1 June - 1 July               |                     | 28.91          | 46.5                                       |                                                 | 161                        |
|          | 1 July - 8 July               | 14 July             | 1.96           | 0.9                                        | 0.12                                            |                            |
|          | 8 " - 14 "                    | 20 "                | 6.35           | 93.9                                       | 15.6                                            |                            |
|          | 14 " - 17 "                   | 21 "                | 8.79           | 317.7                                      | 105.9                                           |                            |
|          | 17 " - 22 "                   | 28 "                | 5.92           | 18.0                                       | 3.6                                             |                            |
|          | 22 " - 29 "                   | 3 Aug.              | 5.92           | 11.8                                       | 1.68                                            |                            |
|          | 1 July - 29 July              |                     | 28.94          | 442.3                                      |                                                 | 1,528                      |
|          | 29 July - 5 Aug.              | 15 Aug.             | 9.87           | 6.4                                        | 0.91                                            |                            |
|          | 5 Aug. - 10 "                 | 22 "                | 5.54           | 1.4                                        | 0.29                                            |                            |
|          | 10 " - 19 "                   | 25 "                | 1.68           | 2.0                                        | 0.22                                            |                            |
|          | 19 " - 26 "                   | 1 Sept.             | 3.07           | 1.6                                        | 0.22                                            |                            |
|          | 26 " - 30 "                   | 6 "                 | 6.27           | 1.8                                        | 0.45                                            |                            |
|          | 29 July - 30 Aug.             |                     | 26.43          | 13.2                                       |                                                 | 50                         |

TABLE 2 (Continued)

| AT          | Date of Collection<br>From To | Date of Measurement | Rainfall<br>cm | Total Beta Activity<br>mCi/km <sup>2</sup> | Average Daily Deposition<br>mCi/km <sup>2</sup> | Concentration<br>pCi/litre |
|-------------|-------------------------------|---------------------|----------------|--------------------------------------------|-------------------------------------------------|----------------------------|
| NANDI, FIJI | 1 June - 5 June               | 9 June              | NIL            | <0.1                                       | <0.01                                           |                            |
|             | 5 " - 12 "                    | 20 "                | TRACE          | <0.1                                       | <0.01                                           |                            |
|             | 12 " - 19 "                   | 23 "                | TRACE          | <0.1                                       | <0.01                                           |                            |
|             | 19 " - 26 "                   | 12 July             | NIL            | 0.3                                        | 0.04                                            |                            |
|             | 26 " - 3 July                 | 7 "                 | NIL            | 0.1                                        | 0.02                                            |                            |
|             | 1 June - 3 July               |                     | TRACE          | 0.5                                        |                                                 | -                          |
|             | 3 July - 10 July              | 14 July             | 0.25           | 0.2                                        | 0.02                                            |                            |
|             | 10 " - 17 "                   | 21 "                | 0.69           | 0.3                                        | 0.04                                            |                            |
|             | 17 " - 24 "                   | 28 "                | 0.05           | 0.6                                        | 0.09                                            |                            |
|             | 24 " - 31 "                   | 4 Aug.              | 0.15           | 0.3                                        | 0.04                                            |                            |
|             | 3 July - 31 July              |                     | 1.14           | 1.4                                        |                                                 | 123                        |
|             | 31 July - 7 Aug.              | 15 Aug.             | NIL            | 0.2                                        | 0.03                                            |                            |
|             | 7 Aug. - 14 "                 | 22 "                | TRACE          | 1.5                                        | 0.22                                            |                            |
|             | 14 " - 21 "                   | 29 "                | 0.15           | 0.5                                        | 0.07                                            |                            |
|             | 21 " - 28 "                   | 1 Sept.             | NIL            | 0.2                                        | 0.03                                            |                            |
|             | 31 July - 28 Aug.             |                     | 0.15           | 2.4                                        |                                                 | -                          |
| SUVA, FIJI  | 1 June - 8 June               | 14 June             | 0.03           | 0.1                                        | 0.01                                            |                            |
|             | 8 " - 15 "                    | 20 "                | 0.68           | 0.3                                        | 0.04                                            |                            |
|             | 15 " - 22 "                   | 27 "                | 0.38           | 0.2                                        | 0.02                                            |                            |
|             | 22 " - 29 "                   | 4 July              | 3.92           | 2.4                                        | 0.35                                            |                            |
|             | 1 June - 29 June              |                     | 5.01           | 3.0                                        |                                                 | 60                         |
|             | 29 June - 6 July              | 12 July             | 1.04           | 0.9                                        | 0.13                                            |                            |
|             | 6 July - 13 "                 | 21 "                | 1.04           | 0.8                                        | 0.11                                            |                            |
|             | 13 " - 20 "                   | 26 "                | 0.51           | 1.5                                        | 0.21                                            |                            |
|             | 20 " - 27 "                   | 3 Aug.              | 4.72           | 15.3                                       | 2.19                                            |                            |
|             | 27 " - 3 Aug.                 | 8 "                 | 1.45           | 7.1                                        | 1.01                                            |                            |
|             | 29 June - 3 Aug.              |                     | 8.76           | 25.6                                       |                                                 | 292                        |
|             | 3 Aug. - 10 Aug.              | 15 Aug.             | 0.66           | 4.0                                        | 0.58                                            |                            |
|             | 10 " - 17 "                   | 25 "                | 2.13           | 6.9                                        | 0.98                                            |                            |
|             | 17 " - 24 "                   | 29 "                | 0.23           | 0.7                                        | 0.10                                            |                            |
|             | 24 " - 31 "                   | 6 Sept.             | 1.12           | 2.6                                        | 0.37                                            |                            |
|             | 3 Aug. - 31 Aug.              |                     | 4.14           | 14.2                                       |                                                 | 343                        |

TABLE 2 (Continued)

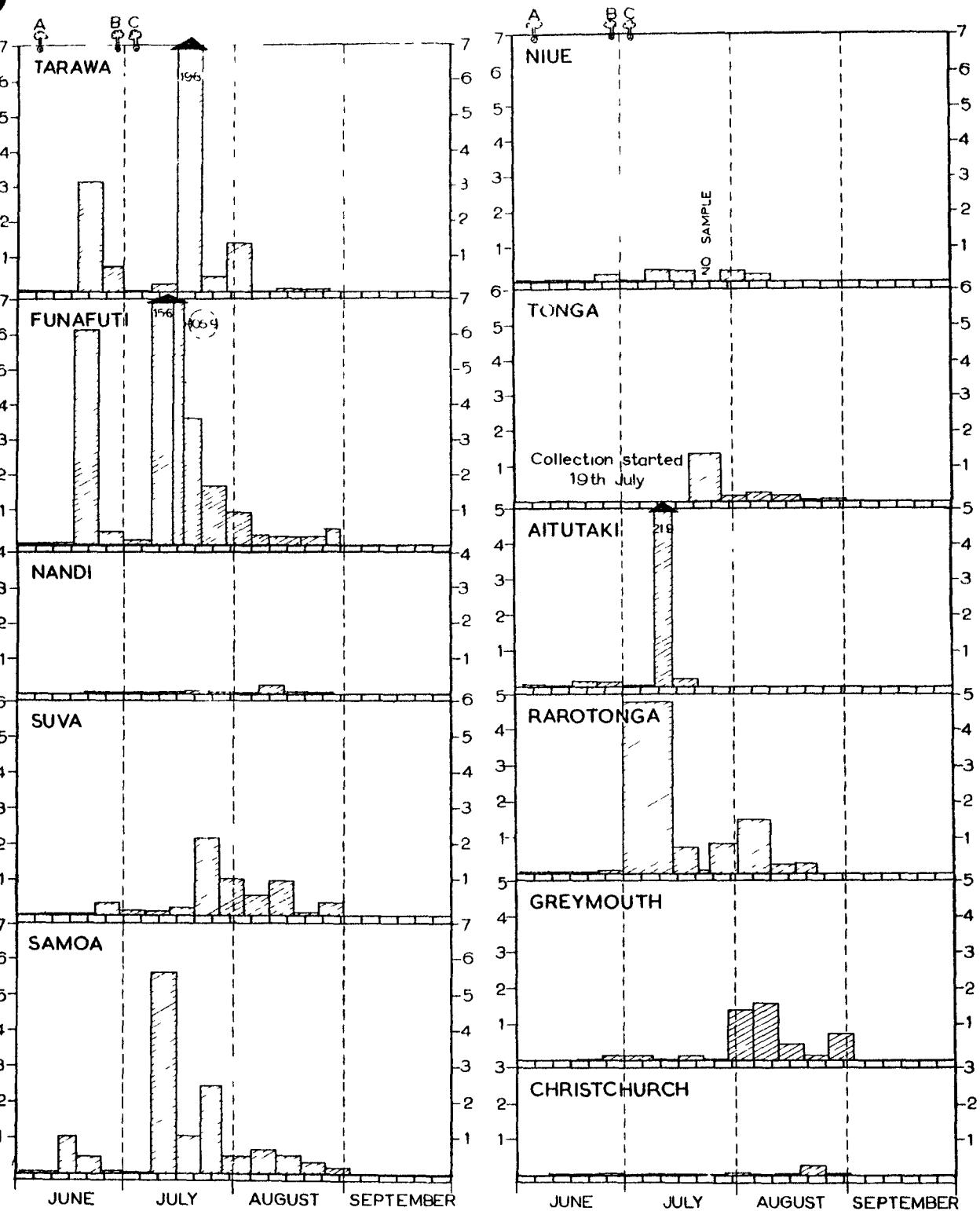

| AT    | Date of Collection<br>From To | Date of Measurement | Rainfall<br>cm | Total Beta Activity<br>mCi/km <sup>2</sup> | Average Daily Deposition<br>mCi/km <sup>2</sup> | Concentration<br>pCi/litre |
|-------|-------------------------------|---------------------|----------------|--------------------------------------------|-------------------------------------------------|----------------------------|
| SAMOA | 2 June - 12 June              | 22 June             | 11.05          | 0.4                                        | 0.04                                            |                            |
|       | 12 " - 17 "                   | 22 "                | 0.56           | 5.0                                        | 1.01                                            |                            |
|       | 17 " - 24 "                   | 30 "                | 4.34           | 3.2                                        | 0.45                                            |                            |
|       | 24 " - 1 July                 | 6 July              | 4.55           | 0.4                                        | 0.06                                            |                            |
|       | 2 June - 1 July               |                     | 20.50          | 9.0                                        |                                                 | 44                         |
|       | 1 July - 8 July               | 11 July             | 2.06           | 0.2                                        | 0.02                                            |                            |
|       | 8 " - 15 "                    | 19 "                | 6.05           | 39.2                                       | 5.60                                            |                            |
|       | 15 " - 22 "                   | 1 Aug.              | 2.01           | 7.3                                        | 1.04                                            |                            |
|       | 22 " - 28 "                   | 1 "                 | 6.63           | 14.7                                       | 2.46                                            |                            |
|       | 1 July - 28 July              |                     | 16.75          | 61.4                                       |                                                 | 367                        |
|       | 28 July - 5 Aug.              | 14 Aug.             | 2.56           | 3.9                                        | 0.49                                            |                            |
|       | 5 Aug. - 12 "                 | 17 "                | 10.31          | 4.5                                        | 0.65                                            |                            |
|       | 12 " - 19 "                   | 29 "                | 9.96           | 3.5                                        | 0.50                                            |                            |
|       | 19 " - 26 "                   | 6 Sept.             | 4.31           | 2.1                                        | 0.30                                            |                            |
| TONGA | 26 " - 2 Sept.                | 11 "                | 2.72           | 1.2                                        | 0.17                                            |                            |
|       | 28 July - 2 Sept.             |                     | 29.86          | 15.2                                       |                                                 | 51                         |
|       | 2 June - 9 June               | 10 July             | 2.01           | 0.1                                        | 0.02                                            |                            |
|       | 9 " - 16 "                    | 11 "                | 3.14           | 0.2                                        | 0.03                                            |                            |
|       | 16 " - 23 "                   | 11 "                | 1.09           | 0.1                                        | 0.02                                            |                            |
|       | 23 " - 30 "                   | 7 Aug.              | 5.72           | 1.6                                        | 0.22                                            |                            |
|       | 2 June - 30 June              |                     | 11.96          | 2.0                                        |                                                 | 17                         |
| NIUE  | 30 June - 7 July              | 3 Aug.              | TRACE          | 0.2                                        | 0.03                                            |                            |
|       | 7 July - 14 "                 | 8 "                 | 7.16           | 2.5                                        | 0.36                                            |                            |
|       | 14 " - 21 "                   | 3 "                 | TRACE          | 2.3                                        | 0.33                                            |                            |
|       | 21 " - 28 "                   | "                   | (4.98)         | Sample Lost                                |                                                 |                            |
|       | 30 June - 21 July             |                     | 7.16           | 5.0                                        |                                                 | 70                         |
|       | 28 July - 4 Aug.              | 6 Sept.             | 1.60           | 2.3                                        | 0.33                                            |                            |
|       | 4 Aug. - 11 "                 | 6 "                 | 0.53           | 1.7                                        | 0.24                                            |                            |
|       | 28 July - 11 Aug.             |                     | 2.13           | 4.0                                        |                                                 | 188                        |

TABLE 2 (continued)

| AT                | Date of Collection<br>From To | Date of Measurement | Rainfall<br>cm | Total Beta Activity<br>mCi/km <sup>2</sup> | Average Daily Deposition<br>mCi/km <sup>2</sup> | Concentration<br>pCi/litre |
|-------------------|-------------------------------|---------------------|----------------|--------------------------------------------|-------------------------------------------------|----------------------------|
| TONGA             | Collection Started 19 July    |                     |                |                                            |                                                 |                            |
|                   | 19 July - 28 July             | 9 Aug.              | 5.00           | 12.1                                       | 1.35                                            |                            |
|                   | 28 July - 4 Aug.              | 15 Aug.             | 0.28           | 1.0                                        | 0.15                                            |                            |
|                   | 4 Aug. - 11 "                 | 30 "                | 0.36           | 1.5                                        | 0.21                                            |                            |
|                   | 11 " - 19 "                   | 29 "                | 2.59           | 1.5                                        | 0.18                                            |                            |
|                   | 19 " - 25 "                   | 6 Sept.             | 0.08           | 0.2                                        | 0.03                                            |                            |
|                   | 25 " - 1 Sept.                | 11 "                | 0.15           | 0.5                                        | 0.07                                            |                            |
| 28 July - 1 Sept. |                               |                     | 3.46           | 4.7                                        |                                                 | 136                        |
| AITUTAKI          | 2 June - 8 June               | 8 Aug.              | 2.82           | 0.5                                        | 0.09                                            |                            |
|                   | 8 " - 16 "                    | 8 "                 | 5.06           | 0.3                                        | 0.04                                            |                            |
|                   | 16 " - 23 "                   | 8 "                 | 5.36           | 1.2                                        | 0.17                                            |                            |
|                   | 23 " - 30 "                   | 8 "                 | 2.18           | 1.0                                        | 0.14                                            |                            |
|                   | 2 June - 30 June              |                     | 15.42          | 3.0                                        |                                                 | 20                         |
|                   | 30 June - 9 July              | 8 Aug.              | 3.05           | 0.4                                        | 0.04                                            |                            |
|                   | 9 July - 14 "                 | 8 "                 | 1.65           | 109.3                                      | 21.9                                            |                            |
| 14 " - 21 "       |                               | 8 "                 | 0.97           | 14.2                                       | 2.02                                            |                            |
| 30 June - 21 July |                               |                     | 5.67           | 123.9                                      |                                                 | 2,185                      |
| RAROTONGA         | 2 June - 9 June               | 28 June             | 1.40           | 0.3                                        | 0.04                                            |                            |
|                   | 9 " - 16 "                    | 28 "                | 2.26           | 0.3                                        | 0.04                                            |                            |
|                   | 16 " - 23 "                   | 12 July             | 2.21           | 0.3                                        | 0.04                                            |                            |
|                   | 23 " - 30 "                   | 12 "                | 1.19           | 0.7                                        | 0.10                                            |                            |
|                   | 2 June - 30 June              |                     | 7.06           | 1.6                                        |                                                 | 23                         |
|                   | 30 June - 14 July             | 26 July             | 11.48          | 67.0                                       | 4.79                                            |                            |
|                   | 14 July - 21 "                | 8 Aug.              | 0.13           | 5.0                                        | 0.72                                            |                            |
|                   | 21 " - 24 "                   | 8 "                 | TRACE          | 0.3                                        | 0.10                                            |                            |
|                   | 24 " - 1 Aug.                 | 13 Sept.            | 4.11           | 5.8                                        | 0.83                                            |                            |
|                   | 30 June - 1 Aug.              |                     | 15.72          | 78.1                                       |                                                 | 497                        |
|                   | 1 Aug. - 10 Aug.              | 13 Sept.            | 8.61           | 15.0                                       | 1.50                                            |                            |
| 10 " - 17 "       |                               | 13 "                | 0.41           | 1.8                                        | 0.26                                            |                            |
| 17 " - 23 "       |                               | 13 "                | 0.15           | 2.0                                        | 0.29                                            |                            |
| 1 Aug. - 23 Aug.  |                               |                     | 9.17           | 18.8                                       |                                                 | 205                        |

TABLE 2 (Continued)

| AT           | Date of Collection<br>From To | Date of Measurement | Rainfall<br>cm | Total Beta Activity<br>mCi/km <sup>2</sup> | Average Daily Deposition<br>mCi/km <sup>2</sup> | Concentration<br>pCi/litre |
|--------------|-------------------------------|---------------------|----------------|--------------------------------------------|-------------------------------------------------|----------------------------|
| GREYMOUTH    | 3 June - 10 June              | 14 June             | NIL            | <0.1                                       | <0.01                                           |                            |
|              | 10 " - 17 "                   | 21 "                | NIL            | <0.1                                       | <0.01                                           |                            |
|              | 17 " - 24 "                   | 28 "                | 1.14           | 0.1                                        | 0.01                                            |                            |
|              | 24 " - 1 July                 | 5 July              | 4.85           | 0.9                                        | 0.13                                            |                            |
|              | 3 June - 1 July               |                     | 5.99           | 1.0                                        |                                                 | 17                         |
|              | 1 July - 8 July               | 13 July             | 4.74           | 0.9                                        | 0.13                                            |                            |
|              | 8 " - 15 "                    | 19 "                | 0.08           | 0.2                                        | 0.02                                            |                            |
|              | 15 " - 22 "                   | 26 "                | 3.18           | 0.9                                        | 0.13                                            |                            |
|              | 22 " - 29 "                   | 2 Aug.              | 0.05           | 0.1                                        | 0.02                                            |                            |
|              | 1 July - 29 July              |                     | 8.05           | 2.1                                        |                                                 | 25                         |
|              | 29 July - 5 Aug.              | 14 Aug.             | 10.21          | 9.9                                        | 1.41                                            |                            |
|              | 5 Aug. - 12 "                 | 17 "                | 10.90          | 11.2                                       | 1.60                                            |                            |
|              | 12 " - 19 "                   | 29 "                | 5.46           | 3.3                                        | 0.47                                            |                            |
|              | 19 " - 26 "                   | 30 "                | 0.33           | 1.1                                        | 0.15                                            |                            |
| CHRISTCHURCH | 26 " - 2 Sept.                | 11 Sept.            | 11.51          | 5.3                                        | 0.76                                            |                            |
|              | 29 July - 2 Sept.             |                     | 38.41          | 30.8                                       |                                                 | 80                         |
|              | 1 June - 9 June               | 13 June             | 0.05           | <0.1                                       | <0.01                                           |                            |
|              | 9 " - 16 "                    | 20 "                | 0.48           | 0.1                                        | 0.02                                            |                            |
|              | 16 " - 23 "                   | 27 "                | 0.53           | 0.2                                        | 0.03                                            |                            |
|              | 23 " - 30 "                   | 4 July              | 0.84           | 0.3                                        | 0.05                                            |                            |
|              | 1 June - 30 June              |                     | 1.90           | 0.6                                        |                                                 | 32                         |
|              | 30 June - 7 July              | 11 July             | 0.25           | 0.1                                        | 0.01                                            |                            |
|              | 7 July - 14 "                 | 18 "                | NIL            | 0.2                                        | 0.02                                            |                            |
|              | 14 " - 21 "                   | 25 "                | 0.08           | 0.2                                        | 0.02                                            |                            |
|              | 21 " - 28 "                   | 1 Aug.              | 0.15           | 0.1                                        | 0.02                                            |                            |
|              | 30 June - 28 July             |                     | 0.48           | 0.6                                        |                                                 | 130                        |
|              | 28 July - 4 Aug.              | 8 Aug.              | 0.76           | 0.5                                        | 0.07                                            |                            |
|              | 4 Aug. - 11 "                 | 15 "                | 0.33           | 0.1                                        | 0.01                                            |                            |
|              | 11 " - 18 "                   | 28 "                | 1.07           | 0.2                                        | 0.03                                            |                            |
|              | 18 " - 25 "                   | 29 "                | 5.33           | 2.0                                        | 0.29                                            |                            |
|              | 25 " - 1 Sept.                | 6 Sept.             | 0.20           | 0.3                                        | 0.04                                            |                            |
|              | 28 July - 1 Sept.             |                     | 7.69           | 3.1                                        |                                                 | 40                         |



AVERAGE DAILY DEPOSITION OF FISSION PRODUCTS DURING THE COLLECTION PERIODS SHOWN  
Stated in  $\text{mC}/\text{km}^2$  on day of measurement as given in table 2

TABLE 3: IODINE-131 IN MILK, STATED IN PICOCURIES

PER LITRE AT NOON ON DAY OF COLLECTION

| DATE    | AUCKLAND | NEW PLYMOUTH | WELLINGTON | GREYMOUTH | CHRISTCHURCH | DUNEDIN | INVERCARGILL |
|---------|----------|--------------|------------|-----------|--------------|---------|--------------|
| June 5  | -        | -            | -          | -         | -            | -       | N.S.         |
| " 7     | -        | -            | -          | -         | -            | -       | -            |
| " 9     | -        | -            | -          | -         | -            | -       | -            |
| " 12    | -        | -            | -          | -         | -            | -       | -            |
| " 14    | -        | -            | -          | -         | -            | -       | -            |
| " 16    | -        | -            | -          | -         | -            | -       | -            |
| " 19    | -        | -            | -          | -         | -            | -       | -            |
| " 21    | -        | -            | -          | -         | -            | -       | -            |
| " 23    | -        | 6            | -          | <5        | -            | -       | -            |
| " 26    | <5       | <5           | -          | <5        | <5           | -       | -            |
| " 28    | <5       | <5           | -          | 6         | <5           | -       | -            |
| " 30    | <5       | -            | -          | <5        | -            | -       | -            |
| July 3  | <5       | <5           | <5         | <5        | -            | <5      | -            |
| " 5     | <5       | <5           | <5         | <5        | -            | -       | -            |
| " 7     | <5       | -            | -          | <5        | -            | -       | -            |
| " 10    | <5       | <5           | <5         | <5        | -            | <5      | <5           |
| " 12    | <5       | -            | -          | <5        | <5           | -       | <5           |
| " 14    | -        | -            | -          | <5        | -            | -       | <5           |
| " 17    | -        | -            | -          | -         | -            | -       | -            |
| " 19    | -        | <5           | -          | <5        | <5           | -       | <5           |
| " 21    | <5       | <5           | <5         | <5        | <5           | <5      | <5           |
| " 24    | <5       | 6            | 8          | 7         | <5           | N.S.    | <5           |
| " 26    | 5        | 7            | <5         | 6         | -            | -       | <5           |
| " 28    | <5       | <5           | <5         | <5        | -            | <5      | <5           |
| " 31    | -        | <5           | <5         | <5        | <5           | -       | -            |
| Aug. 2  | <5       | <5           | -          | 10        | -            | -       | -            |
| " 4     | 11       | 9            | 12         | 14        | <5           | <5      | <5           |
| " 7     | 8        | <5           | 13         | 14        | <5           | -       | <5           |
| " 9     | 9        | 10           | 11         | 11        | <5           | <5      | <5           |
| " 11    | <5       | <5           | 7          | 8         | -            | -       | -            |
| " 14    | 6        | 9            | 10         | 10        | <5           | -       | -            |
| " 16    | 7        | 7            | 10         | 7         | <5           | <5      | <5           |
| " 18    | 7        | <5           | <5         | 6         | <5           | -       | -            |
| " 21    | <5       | 7            | <5         | 5         | -            | <5      | -            |
| " 23    | 6        | -            | -          | 6         | -            | -       | -            |
| " 25    | 7        | 6            | 9          | <5        | -            | -       | -            |
| " 28    | <5       | 9            | N.S.       | -         | <5           | -       | -            |
| " 30    | -        | -            | N.S.       | -         | -            | -       | -            |
| Sept. 1 | -        | -            | 8          | <5        | -            | -       | 5            |

- Not Detectable

N.S. No Sample

TABLE 3: (Continued) IODINE-131 IN MILK, STATED IN PICOCURIES PER  
LITRE AT NOON ON DAY OF COLLECTION

| DATE    | SUVA, FIJI | DATE    | APIA, SAMOA |
|---------|------------|---------|-------------|
| June 1  | -          | June 2  | -           |
| " 8     | -          | " 9     | -           |
| " 15    | -          | " 16    | 161         |
| " 22    | -          | " 23    | 96          |
| " 29    | 10         | " 30    | 25          |
| July 6  | 8          | July 7  | 11          |
| " 13    | <5         | " 14    | 11          |
| " 20    | 59         | " 21    | 346         |
| " 27    | 151        | " 25    | 708         |
| Aug. 3  | 56         | " 28    | 79          |
| " 10    | 50         | Aug. 1  | 219         |
| " 17    | 40         | " 4     | 74          |
| " 24    | 9          | " 8     | 51          |
| " 31    | -          | " 11    | 16          |
| Sept. 8 | <5         | " 15    | 17          |
|         |            | " 18    | 32          |
|         |            | " 22    | 10          |
|         |            | " 24    | -           |
|         |            | " 29    | -           |
|         |            | Sept. 2 | 5           |
|         |            | " 5     | 7           |
|         |            | " 8     | <5          |
| Average | 26         | Average | 85          |

Not Detectable

TABLE 4: IODINE-131 IN CATTLE THYROIDS, STATED IN PICOCURIES  
PER GRAM WET WEIGHT, AT TIME OF SLAUGHTER

| DATE  | NORTHLAND<br>(MOEREWĀ) | HAMILTON<br>(HOROTIU) | NEW PLYMOUTH<br>(WAITARA) | HASTINGS<br>(TOMOANA) | PALMERSTON<br>NORTH<br>(LONGBURN) | WESTPORT | CHRISTCHURCH<br>(ISLINGTON) | GORE |
|-------|------------------------|-----------------------|---------------------------|-----------------------|-----------------------------------|----------|-----------------------------|------|
| JUNE  |                        |                       |                           |                       |                                   |          |                             |      |
| 6     | -                      | -                     | -                         | -                     | N.S.                              | N.S.     | -                           | N.S. |
| 12    | -                      | -                     | N.S.                      | -                     | -                                 | -        | -                           | -    |
| 19    | 2.0                    | -                     | 1.4                       | -                     | 1.5                               | -        | 0.6                         | -    |
| 26    | 26.7                   | 13.3                  | 10.3                      | 25.7                  | 10.5                              | 6.2      | 2.1                         | 0.9  |
| JULY  |                        |                       |                           |                       |                                   |          |                             |      |
| 3     | 19.8                   | 6.8                   | 27.6                      | 15.7                  | 26.1                              | 14.6     | 9.0                         | 4.1  |
| 10    | 33.0                   | 10.0                  | 11.2                      | 26.5                  | N.S.                              | 20.7     | 25.3                        | 1.2  |
| 17    | 12.2                   | 15.8                  | 8.3                       | 18.9                  | N.S.                              | 12.7     | 3.6                         | 2.6  |
| 24    | 22.1                   | 18.1                  | 27.0                      | 23.9                  | N.S.                              | 23.8     | 7.9                         | 4.1  |
| 31    | 50.2                   | 13.3                  | 30.3                      | 14.5                  | 16.0                              | 21.8     | 4.6                         | 3.4  |
| AUG.  |                        |                       |                           |                       |                                   |          |                             |      |
| 7     | 80.4                   | 64.5                  | 55.6                      | 28.8                  | 52.1                              | 115.6    | 0.8                         | 26.2 |
| 14    | 48.6                   | 20.9                  | 56.2                      | 52.4                  | N.S.                              | 169.3    | 9.5                         | 27.6 |
| 21    | 94.1                   | 23.6                  | 47.0                      | 34.6                  | 48.4                              | 71.8     | 18.9                        | 17.1 |
| 28    | 44.7                   | 32.6                  | 46.5                      | 35.4                  | 31.6                              | 64.7     | 6.2                         | 29.1 |
| SEPT. |                        |                       |                           |                       |                                   |          |                             |      |
| 4     | 13.7                   | 24.5                  | 27.0                      | 17.9                  | 28.5                              | 32.9     | <0.1                        | 5.4  |

- Not Detectable

N.S. No Sample

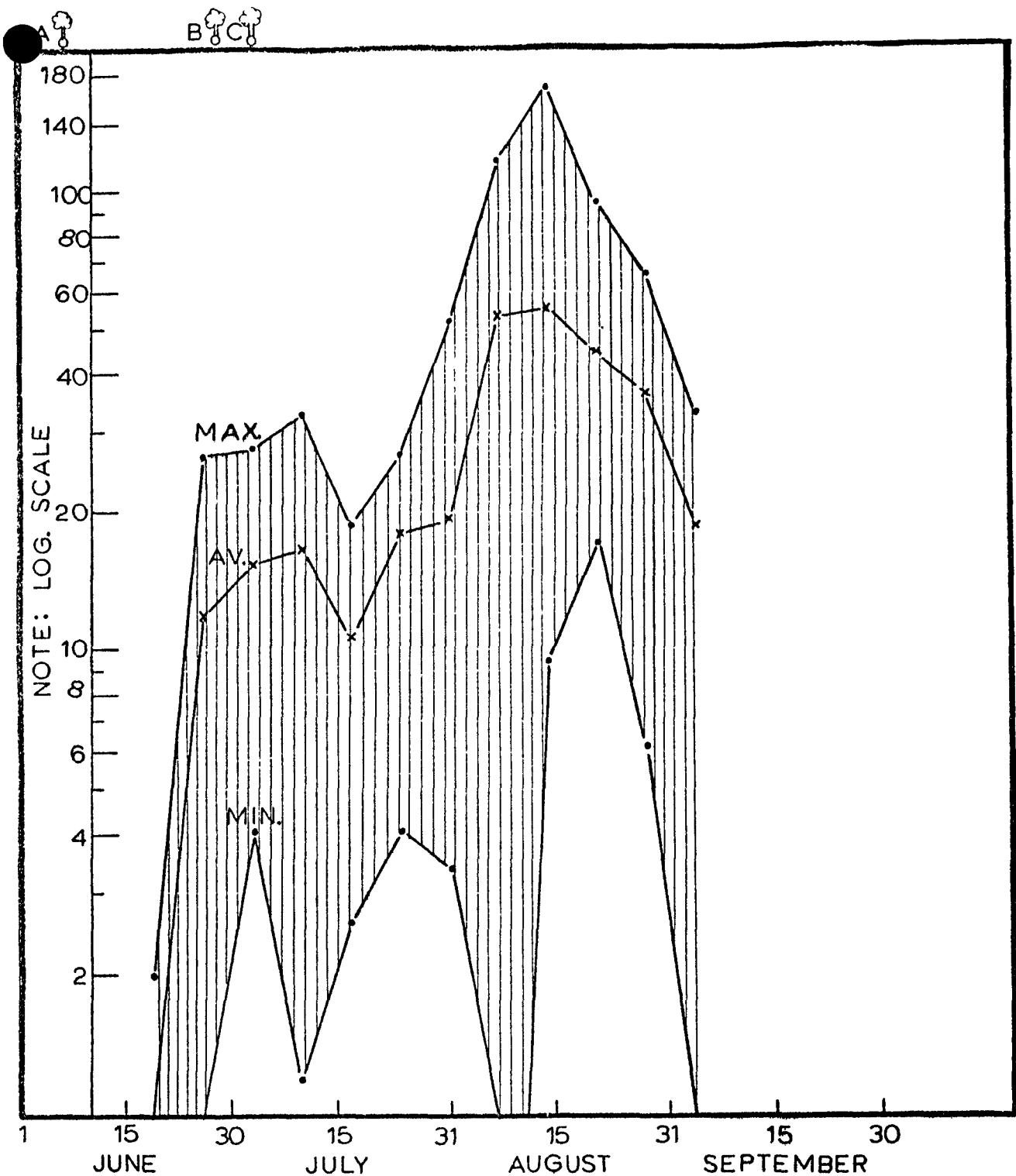



FIG. 3 I-131 IN CATTLE THYROIDS.

Activity in pCi/gram (wet weight) at time of slaughter.  
Results for eight stations.

3.

**Cs-137 in Various Chicago Foods**

(Collection Month Oct., 1967)

S. S. Brar and D. M. Nelson

Division of Biological and Medical Research

Argonne National Laboratory

Argonne, Illinois

Since April, 1961, the Cs-137 and potassium content of the Chicago portion of the Tri-City Diet Sampling program has been determined<sup>1,2,3,4,5</sup> in bulk food samples by gamma-ray spectrometry.

The results of Oct., 1967 quarter are tabulated below in Tables I, II, and III.

Table I

| Item                     | Potassium<br>g/kg | Cesium-137<br>pCi/kg |
|--------------------------|-------------------|----------------------|
| White Bread (Dry)        | 2.4               | 44                   |
| Whole Wheat Bread (Dry)  | 4.2               | 49                   |
| Eggs                     | 1.6               | 9                    |
| Fresh Vegetables:        |                   |                      |
| Cabbage                  | 2.7               | T                    |
| Lettuce                  | 2.3               | T                    |
| Spinach                  | 7.6               | T                    |
| Peas                     | 1.6               | 10                   |
| Stringbeans              | 2.1               | 9                    |
| Tomatoes                 | 2.3               | T                    |
| Root Vegetables (Fresh): |                   |                      |
| Turnips                  | 3.4               | T                    |
| Carrots                  | 3.5               | T                    |
| Onions                   | 2.0               | T                    |
| Milk (Fresh)             | 1.5               | 8                    |
| Poultry Muscle           | 2.4               | 15                   |
| Fresh Fish (Frozen):     |                   |                      |
| Lake Fillet              | 3.6               | 1416                 |
| Ocean Fillet             | 3.3               | 32                   |
| Halibut                  | 3.6               | 39                   |

| Item               | Potassium<br>g/kg | Cesium-137<br>pCi/kg |
|--------------------|-------------------|----------------------|
| Flour (White)      | 1.1               | 13                   |
| Macaroni           | 2.1               | 44                   |
| Rice               | .7                | T                    |
| Meat Muscle:       |                   |                      |
| Beef               | 2.7               | 17                   |
| Pork               | 2.9               | 31                   |
| Shellfish:         |                   |                      |
| Oysters            | 1.2               | 12                   |
| Shrimps            | 1.3               | 8                    |
| Dried Beans        | 13.5              | 17                   |
| Fresh Fruits:      |                   |                      |
| Melons             | 3.3               | T                    |
| Apples             | 1.3               | 9                    |
| Bananas            | 4.1               | T                    |
| Berries            | 1.2               | 21                   |
| Oranges            | 1.7               | 17                   |
| Potatoes           | 3.9               | 12                   |
| Canned Fruits:     |                   |                      |
| Apple Sauce        | .9                | 10                   |
| Peaches            | 1.1               | T                    |
| Pears              | .6                | T                    |
| Pineapple          | 1.5               | 21                   |
| Canned Juices:     |                   |                      |
| Grapefruit         | 2.0               | 13                   |
| Orange             | 2.2               | 24                   |
| Pineapple          | 1.6               | 11                   |
| Tomato             | 2.7               | T                    |
| Canned Vegetables: |                   |                      |
| Peas               | 1.1               | T                    |
| Stringbeans        | .8                | T                    |
| Tomatoes           | 2.2               | T                    |
| Baby Foods:        |                   |                      |
| Canned Milk        | 3.1               | 29                   |
| Formula Milk       | 2.1               | 27                   |
| Cereals            | 10.2              | 38                   |
| Fruits             | 1.2               | T                    |
| Meats              | 2.1               | 19                   |
| Vegetables         | 1.7               | 5                    |

T < 5 pCi/kg

Table II  
 Cs-137 in Chicago Diets  
 (Adults)  
Oct., 1967

|                   | Potassium<br>kg/yr | Cs-137<br>pCi/kg | Potassium<br>g/yr | Cs-137<br>pCi/yr |
|-------------------|--------------------|------------------|-------------------|------------------|
| White Bread       | 37                 | 1.9              | 55                | 70               |
| Whole Wheat Bread | 11                 | 3.4              | 39                | 37               |
| Eggs              | 16                 | 1.6              | 9                 | 26               |
| Fresh Vegetables  | 43                 | 3.1              | T                 | 133              |
| Root Vegetables   | 17                 | 3.0              | T                 | 51               |
| Milk              | 221                | 1.5              | 8                 | 332              |
| Poultry           | 17                 | 2.4              | 15                | 41               |
| Fresh Fish        | 8                  | 3.4              | 171               | 27               |
| Flour             | 43                 | 1.1              | 13                | 47               |
| Macaroni          | 3                  | 2.1              | 44                | 6                |
| Rice              | 3                  | .7               | T                 | 2                |
| Meat              | 73                 | 2.8              | 24                | 204              |
| Shellfish         | 1                  | 1.2              | 10                | 1                |
| Dried Beans       | 3                  | 13.5             | 17                | 41               |
| Fresh Fruit       | 68                 | 2.3              | 10                | 156              |
| Potatoes          | 45                 | 3.9              | 12                | 176              |
| Canned Fruit      | 26                 | 1.0              | 8                 | 26               |
| Fruit Juices      | 19                 | 2.1              | 22                | 40               |
| Canned Vegetables | 20                 | 1.4              | T                 | 28               |
| <br>Total/yr      |                    |                  | <u>1444</u>       | <u>9608</u>      |
| <br>Total/day     |                    |                  | 4.0               | 26               |

Table III

## Cs-137 in Chicago Diets

(Infants)

Oct., 1967

|                  | Potassium<br>kg/yr | Potassium<br>g/kg | Cs-137<br>pCi/kg | Potassium<br>g/yr | Cs-137<br>pCi/yr |
|------------------|--------------------|-------------------|------------------|-------------------|------------------|
| Evaporated Milk  | 137                | 3.1               | 29               | 425               | 3973             |
| Formula Milk     | 37                 | 2.1               | 27               | 78                | 999              |
| Cereals          | 8                  | 10.2              | 38               | 82                | 304              |
| Fruits           | 23                 | 1.2               | T                | 28                | 323              |
| Meats            | 17                 | 2.1               | 19               | 36                | 115              |
| Vegetables       | 23                 | 1.7               | 5                | 39                |                  |
| <b>Total/yr</b>  |                    |                   |                  | <b>688</b>        | <b>5714</b>      |
| <b>Total/day</b> |                    |                   |                  | <b>1.9</b>        | <b>16</b>        |

REFERENCES:

- (1) S. S. Brar et al., USAEC Report No. Hasl-146, Cs-137 in Various Chicago Diets, pp. 225-232, July 1, 1964.
- (2) J. Rivera and J. J. Kelly, USAEC Report No. Hasl-144, Cs-137 in Tri-City Diets, p. 228, April 1, 1964.
- (3) J. Rivera and J. H. Harley, USAEC Report No. Hasl-147 Contributions to the Study of Fallout in Food Chains, pp 31,23,33,34, and 35 July, 1964.
- (4) S. S. Brar and D. M. Nelson, USAEC Report No. Hasl-182 Cs-137 in Various Chicago Foods, pp. III-56 to III-60 July 1, 1967.
- (5) S. S. Brar and D. M. Nelson, USAEC Report No. Hasl-183, Cs-137 in Various Chicago Foods, pp. III-48 to III-52 October 1, 1967.

4.

**EURATOM JOINT NUCLEAR RESEARCH CENTRE**

**ISPRA ESTABLISHMENT**

-----

**Protection Service**

**Site Survey and Meteorology Section**

**QUARTERLY REPORT**

The Euratom Ispra Establishment is located in Northern Italy 58 Km NW away from Milan and 14 Km W from Varese.

The activity levels shown in this report represent weapons-test fallout, and do not reflect any contamination from the site.

### SAMPLE COLLECTION

a. Air

Air is drawn by pumps through paper filters at the rate of, at least,  $250 \text{ m}^3/\text{day}$ , measured by gas meter.

The single daily filters are measured for gross beta radioactivity and then pooled to give monthly samples, for gamma spectrometry and radiochemical analyses.

b. Wet and dry deposition

These samples are collected monthly by means of  $1 \text{ m}^2$  stainless steel funnels (one in Milan and four at Ispra), having the bottom always covered with deionized water. The collected water is evaporated and the dry residue analysed.

c. Milk

Milk is collected twice a week in four small local dairies and daily at the milk supply station of Milan to give 8 to 15 liters / month. About six liters dry matter are submitted to gamma spectrometry and two liters ashed for radiochemical determination of strontium-90.

## CHEMICAL PROCEDURES AND COUNTING TECHNIQUES

- a. Strontium-90 is separated by the fuming nitric acid precipitation and then purified through hydroxides and chromates precipitations. The activity of the final strontium carbonate and yttrium oxalate precipitates is measured in low level anticoincidence beta counters.
- b. Cesium-137 is measured by direct gamma spectrometry on the unprocessed or dried samples and, whenever it is necessary, by gamma spectrometry after chemical separation. This is performed by filtration of the solution, obtained dissolving the sample, through a thin AMP (ammonium molybdate) layer, by which cesium is retained. Details of this procedure may be found in the paper by E. Van der Stricht issued on "Radiochemical Acta" 3, 193-199 (1964).
- c. Gamma emitting nuclides are measured by direct gamma spectrometry, using, also the spectrum stripping technique.
- d. Plutonium-239+240 is separated by anion exchange and electrodeposition; details of the procedure may be found in the paper by M.C. de Bortoli: "Radiochemical determination of plutonium in soil and other environmental samples", Anal. Chem. 39, 375 (March 1967).  
The activity is measured in a Frisch grid ionisation chamber connected to a multichannel analyser.

## EXTRAPOLATION OF THE DATA

Except when otherwise stated, the data presented in this report are extrapolated to the last day of the collecting period.

SITE : I S P R A

LAT.  $45^{\circ} 49' N$

LONG.  $8^{\circ} 37' E$

ALT. 250 m

AIR RADIOACTIVITY

1967

| Month     | Gross beta<br>pCi/m <sup>3</sup> | <sup>90</sup> Sr<br>$10^{-3}$ pCi/m <sup>3</sup> | <sup>137</sup> Cs<br>$10^{-3}$ pCi/m <sup>3</sup> |
|-----------|----------------------------------|--------------------------------------------------|---------------------------------------------------|
| July      | 0.06                             | 2.2                                              | 3.5                                               |
| August    | 0.05                             | 1.4                                              | 2.2                                               |
| September | 0.06                             | 1.4                                              | 2.2                                               |

MONTHLY FALLOUT DEPOSITION

1967

SITE : I S P R A

LAT.  $45^{\circ} 49' N$

LONG.  $8^{\circ} 37' E$

ALT. 250 m

| Month     | Gross beta (1)      |       | Strontium-90        |       | $^{89}Sr$<br>mCi/Km <sup>2</sup> | Cesium-137          |       | Precipitation<br>mm |
|-----------|---------------------|-------|---------------------|-------|----------------------------------|---------------------|-------|---------------------|
|           | mCi/Km <sup>2</sup> | pCi/1 | mCi/Km <sup>2</sup> | pCi/1 |                                  | mCi/Km <sup>2</sup> | pCi/1 |                     |
| July      | 1.9                 | 13.2  | 0.19                | 1.3   | 0.040                            | 0.28                | 1.9   | 143.8               |
| August    | 1.5                 | 10.0  | 0.17                | 1.1   | 0.048                            | 0.33                | 2.2   | 150.0               |
| September | 3.1                 | 16.7  | 0.18                | 1.0   | 0.086                            | 0.28                | 1.5   | 186.0               |

SITE : M I L A N O

LAT.  $45^{\circ} 28' N$

LONG.  $9^{\circ} 12' E$

ALT. 131 m

| Month     | Gross beta (1)      |       | Strontium-90        |       | $^{89}Sr$<br>mCi/Km <sup>2</sup> | Cesium-137          |       | Precipitation<br>mm |
|-----------|---------------------|-------|---------------------|-------|----------------------------------|---------------------|-------|---------------------|
|           | mCi/Km <sup>2</sup> | pCi/1 | mCi/Km <sup>2</sup> | pCi/1 |                                  | mCi/Km <sup>2</sup> | pCi/1 |                     |
| July      | 1.3                 | 18.9  | 0.070               | 1.0   | 0.024                            | 0.21                | 3.1   | 68.6                |
| August    | 1.7                 | 11.9  | 0.15                | 1.1   | b                                | 0.30                | 2.1   | 142.4               |
| September | 0.18                | 4.9   | s                   | -     | s                                | s                   | -     | 37.0                |

(I) Potassium-40 equivalent (40 mg / cm<sup>2</sup>) ; b below detection limit ; s sample lost



PART IV

RECENT PUBLICATIONS RELATED TO RADIONUCLIDE STUDIES

Recent Publications Related to Radionuclide Studies

Aarkrog, A. and Lippert, J.  
Europium-155 in Debris from Nuclear Weapons  
Science, 157, No. 3787, July 28, 1967

Adams, P. and Jowsey, J.  
Bone and Mineral Metabolism in Hyperthyroidism: An Experimental Study  
Endocrinology, 81, No. 4, October 1967

Aldaz, L.  
Surface Air Radioactivity and Ozone at Amundsen-Scott Station (90°S),  
Antarctica  
Nature, 215, No. 5102, August 12, 1967

Alsop, R. J. L., Bonnyman, J. and Duggleby, J. C.  
Concentration of Caesium-137 in Australian Rainwater during 1964 and 1965  
Australian Jour. of Science, 28, No. 11, May 1966

Annual Report for the year 1966  
NRL-AR/17  
NRL  
Dept. of Health  
Christchurch, New Zealand

Application of Atomic Energy in Agriculture  
Annual Report 1966  
EUR 3606 e  
EURATOM

Bachurin, A. A., Kulebakina, L. G. and Polikarpov, G. G.  
Accumulation Coefficients of Ca, Sr, and Sr-90 in Several Sea Hydrobiota  
Acad. Sci. USSR, Radiobiology, 7, No. 3, Moscow, 1967

Bakacs-Polgar, E. and Kurcz-Csiky, I.  
On the Determination of Fission Products Deposited on the Ground  
Atompraxis, 13, No. 7, July 1967

Bartlett, B. O.  
Reliability of Predictions of Contamination of Milk with Fission Products  
in the United Kingdom  
Nature 216, No. 5113, October 28, 1967

Benson, P. A., Nathans, M. W., Amos, A. and Leventhal, L.  
The Density of Fallout Particles from Airbursts  
Health Physics, 13, No. 12, December 1967

Recent Publications Related to Radionuclide Studies - cont'd

Bengtsson, L. G.

Time Variation of Cesium-137 and Potassium in Humans from Southern Sweden  
Acta Radiologica 6, No. 4, August 1967

Bhat, I. S., Khan, A. A., Nair, K. A. R., Chowdhari, C. A. and Kamath, P. R.  
Progress Report 1966  
Preoperational Environmental Survey for Tarapur  
Atomic Power Project  
B.A.R.C.-289, Bhabha Atomic Research Centre, Bombay, India

Bogen, D. C. and Kleinman, M. T.

Improved Determination of Microgram Amounts of Lead in Food with a Radioactive  
Tracer

The Analyst, 92, No. 1099, October 1967

Bonnyman, J.

Determination of Strontium-90 and Cesium-137 in Drinking Water  
Technical Report CXRL/3, Commonwealth of Australia, Department of Health,  
30 Lonsdale Street, Melbourne C.1 Victoria

Bonnyman, J.

Radio-assay of Strontium-89, Strontium-90, Cesium-137 and Radium-D in Fallout  
Ion Exchange Collectors

Technical Report CXRL/6, Commonwealth X-Ray and Radium Laboratory,  
30 Lonsdale Street, Melbourne C.1 Victoria

Bonnyman, J., Duggleby, J. C., Molina-Ramos, J. and Sewell, D. K. B.  
Concentration of Cesium-137 in Australian Milk during 1965  
Aust. Jour. of Sci., 28, No. 11, May 1966, page 411

Bulletin of the Atmospheric Radioactivity

July-September 1966

Japan Meteorological Agency, Tokyo, No. 46, July 1967

Burton, J. D., Love, R. M. and Mercer, E. R.

The Use of 8-Dydroxyquinoline for the Separation of Yttrium-90 in the Determination  
of Sr-90 in Biological Materials

The Analyst, 91, No. 1088, November 1966, pages 739-741

Conard, R. A.

Chromosome Studies on Marshall Islanders Exposed to Fallout Radiation  
Science, 157, No. 3787, July 28, 1967

Creger, C. R. and Colvin, L. B.

The Effect of Various Dietary Calcium Levels in the Elimination of Strontium-89  
Health Physics, 13, April 1967

Recent Publications Related to Radionuclide Studies - cont'd

Dennis, W. L.

Deposition of Inhaled Particles in Human Lungs  
Nature, 214, No. 5901, May 27, 1967

Deshpande, A. S. and Vohra, K. G.

Gamma Activity of the Food Samples in India during the Period 1963-1965  
AEET 273, Atomic Energy Establishment, Bombay, India

Dongen, R. van, Moonen, H. P. M. and Wolf, H. J.

Gross Radioactivity of Airborne Dust. Results of Measurements during 1965  
REPORT RA-29, National Institute of Public Health, Utrecht/Bilthoven

Edgington, D. N.

The Estimation of Thorium and Uranium at the Submicrogram Level in Bone by  
Neutron Activation

The International Jour. of Applied Radiation & Isotopes, 18, January 1967

Ferri, E. S. and Christiansen

Lead-210 in Tobacco and Cigarette Smoke  
Public Health Reports, 82, No. 9, September 1967

Fountain, E. L. and Seal, M. S.

Strontium-90 in the Bones of Big Game in the Western United States  
Health Physics, 13, No. 11, November 1967

Fry, P. C., Leverton, R. M. and Goksu, S.

Growth of Hong Kong Children on Diets Containing Rice or Rice and Wheat with  
and without Nutrient Supplements

The American Jour. of Clinical Nutrition, 20, No. 9, September 1967

Goldhaber, P.

The Inhibition of Bone Resorption in Tissue Culture by Nontoxic Concentrations  
of Sodium Fluoride

Israel Journal of Medical Sciences, 3, No. 5, September-October 1967

Goldwater, L. J. and Hoover, A. W.

An International Study of "Normal" Levels of Lead in Blood and Urine  
Archives of Environmental Health, 15, No. 1, July 1967

Hankin, J. H., Reynolds, W. E. and Margen, S.

A Short Dietary Method for Epidemiologic Studies. II. Variability of Measured  
Nutrient Intakes

The American Jour. of Clinical Nutrition, 20, No. 9, September 1967

Recent Publications Related to Radionuclide Studies - cont'd

Hannisdahl, B. and Stromme, A.  
Radioactivity in Civilian Norwegian Pilots  
Aerospace Medicine, 38, No. 5, May 1967

Hanson, W. C.  
Cs-137 in Alaskan Lichens, Caribou and Eskimos  
Health Physics, 13, April 1967

Haque, A. K. M. M. and Collinson, A. J. L.  
Radiation Dose to the Respiratory System Due to Radon and its Daughter  
Products  
Health Physics, 13, May 1967

Haug, A. and Smidsrod, O.  
Strontium, Calcium, and Magnesium in Brown Algae  
Nature, 215, No. 5106, September 9, 1967

Havlik, B.  
Cumulation of Radioactive Substances by Organisms of Natural Biocenosis of  
Surface Waters and its Significance for Determination of Radioactive Load  
Jour. of Hygiene, Epidemiology, Microbiology and Immunology, 11, 229, 1967

Hicks, B. B.  
Concentrations of Beryllium-7 over Australia during 1965  
Nature, 216, No. 5112, October 21, 1967

Honstead, J. J. and Brady, D. N.  
The Uptake and Retention of  $^{32}\text{P}$  and  $^{65}\text{Zn}$  from the Consumption of Columiba  
River Fish  
Health Physics, 13, May 1967

Hopkins, B. J.  
The Retention of Strontium-90 Transferred through Milk (and placenta) in Rat  
Offspring  
Health Physics, 13, No. 9, September 1967

Ibbett, R. D.  
The Determination of Strontium-90 in Environmental Materials by Ion-Exchange  
and Preferential Chelation Techniques  
The Analyst, 92, No. 1096, July 1967

Iida, C. and Fuwa, K.  
Studies with a Multichannel Flame Spectrometer: II. The Simultaneous Determin-  
ation of Magnesium, Calcium, Copper, Manganese, and Chromium  
Analytical Biochemistry, 21, No. 1, October 1967

Recent Publications Related to Radionuclide Studies - cont'd

Iida, C. and Fuwa, K.

Studies with a Multichannel Flame Spectrometer. III. Simultaneous Analysis of Magnesium, Calcium, Copper, Manganese, and Chromium: A Method Devoid of Cation and Anion Interferences

Analytical Biochemistry, 21, No. 1, October 1967

Jaworowski, Z. and Bilkiewicz, J.

Determination of Lead-210 by Internal Electrolysis of its Bismuth-210 Daughter

Nukleonika, 12, No. 3, 1967

Joselow, M. M., Goldwater, L. J. and Weinberg, S. B.

Absorption and Excretion of Mercury in Man. XI. Mercury Content of "Normal" Human Tissues

Archives of Environmental Health, 15, No. 1, July 1967

Kauranen, P., Kulmala, A. and Mattsson, R.

Fission Products of Unusual Composition in Finland

Nature, 216, No. 5112, October 21, 1967

Krey, P. W.

Atmospheric Burnup of a Plutonium-238 Generator

Science, 158, No. 3802, November 10, 1967

Krey, P. W.

Strontium<sup>90</sup> Concentrations and Stratospheric Transport

Jour. of Geophysical Research, 72, No. 12, June 15, 1967

Lengemann, F. W.

Predicting the Total Projected Intake of Radioiodine from Milk by Man: Modification of the Original Equation

Health Physics, 13, May 1967

Magno, P. J., Kauffman, P. E. and Shleien, B.

Plutonium in Environmental and Biological Media

Health Physics, 13, No. 12, December 1967

Mahmoud, K. A., Mbloukhia, M. K., Abde-Latif, S. A. and Abdel-Sayed, F. H.

Fallout and Radioactive Content of Food Chain in U.A.R. during the Year 1966

U.A.R.S.C.E.A.R., 9-1, June 1967

Maletskos, C. J., Dean, P. N., Lough, S. A. and Miller, C. E.

Intercomparison of the Reliability of Body Cesium-137 Measurements on Human Beings

Health Physics, 13, No. 12, December 1967

Recent Publications Related to Radionuclide Studies - cont'd

Merten, D. and Wortley, G.

The Reliability of World-Wide Monitoring, in the Light of Accuracy in Low Level Radiochemical Analysis

Interim Report for the period 1962-1966, Vienna, June 30, 1967

Mishra, U. C., Deshpande, A. S., Kerala Varma, R. and Kamath, P. G.

Cesium-137 and Potassium in Milk

Bhabha Atomic Research Centre, Bombay, India, BARC 278

Morgan, D. J. and Morgan, A.

Studies on the Retention and Metabolism of Inhaled Methyliodide--I. Retention of Inhaled Methyliodide

Health Physics, 13, No. 10, October 1967

Morgan, A., Morgan, D. J., Evans, J. C. and Lister, B. J.

Studies on the Retention Metabolism of Inhaled Methyliodide--II. Metabolism of Methyl iodide

Health Physics, 13, No. 10, October 1967

Martin, A.

A Comparison of some Bone Ashing Techniques

Health Physics, 13, No. 12, December 1967

Mattern, F. C. M., Drost, R. and Strackee, L.

<sup>90</sup>Sr and <sup>137</sup>Cs in the Human Diet in the Netherlands during 1966

Report RA-30, September 1967

McMillan, J. C.

Radioactive Tracer Methods in Inorganic Trace Analysis: Recent Advances

The Analyst, 92, No. 1098, September 1967

Murthy, G. K.

Effect of Ion Exchange Resins on Composition of Milk and its Fractions

Jour. of Dairy Science, 50, No. 6, pages 809-813

Murthy, G. K.

Rubidium-87 Concentration in Market Milk

Jour. of Dairy Science, 50, No. 6, pages 818-819

Murthy, G. K.

Rubidium and Lead Content of Market Milk

Jour. of Dairy Science, 50, No. 5, pages 651-654

Recent Publications Ralated to Radionuclide Studies - cont'd

Palmer, H. E. and Beasley, T. M.  
Iron-55 in Man and the Biosphere  
Health Physics, 13, No. 8, August 1967

Paltridge, G. W.  
The Retention of Atmospheric Radioactivity by Fibrous Filters  
Jour. of Geophysical Research 72, No. 4, February 15, 1967

Parchevskii, V. P., Sakolova, I. A. and Zaburunnova, I. S.  
Sr-90 in Fish of the Atlantic and Indian Oceans  
Acad. Sci. USSR, Radiobiology, 7, No. 3, Moscow, 1967

Pellerin, P., Remy, M. L., Ervet, P. and Moroni, J. P.  
First Statement of Seven Years of Research about the Levels of Environmental  
and Food Chain Contamination by Radioactive Fallout on French Territory  
Rapport SCPRI No. 115

Porter, C. R., Kahn, B., Carter, M. W., Rehnberg, G. L. and Pepper, E. W.  
Determination of Radiostrontium in Food and Other Environmental Samples  
Environmental Science & Technology 1, No. 9, September 1967

Qureshi, I. H., Shahd, M. S. and Hasany, S. M.  
Radiochemical Separation of Strontium by Isotopic Exchange  
Talanta, 14, No. 8, August 1967

Radioactivity Survey Data in Japan  
No. 14, February 1967  
National Institute of Radiological Sciences, Chiba, Japan

Radioactivity Survey Data in Japan  
No. 15, May 1967  
National Institute of Radiological Sciences, Chiba, Japan

Rapport D'Activite, August 1967  
Service Central De Protection Contre Les Rayonnements Ionisants, B.P. n<sup>9</sup> 35  
78 Le Vesinet, France

Radioactive Contamination Levels in the Environment and the Food Chain  
Annual Report 1966  
EUR 3553 f  
Brussels, October 1967

Recent Publications Related to Radionuclide Studies - cont'd

Data from Radiation Protection Programs  
Vol. 5, No. 7, July 1967  
Dept. of National Health & Welfare, Ottawa, Canada

Data from Radiation Protection Programs  
Vol. 5, No. 8, August 1967  
Dept. of National Health & Welfare, Ottawa, Canada

Data from Radiation Protection Programs  
Vol. 5, No. 9, September 1967  
Dept. of National Health & Welfare, Ottawa, Canada

Remmenga, E. E. and Whicker, F. W.  
Sampling Variability in Radionuclide Concentrations in Plants Native to the  
Colorado Front Range  
Health Physics, 13, No. 9, September 1967

Rodan, G. A. and Anbar, M.  
The Turnover of Bone  
Israel Jour. of Medical Sciences, 3, No. 5, September-October 1967

Rosen, J. C., Laurer, G. R. and Eisenbud, M.  
Carbon-14 and Tritium Measurements by Means of Bremsstrahlung Emissions  
Science, 157, No. 3784, July 7, 1967

Samachson, J. and Spencer, H.  
Strontium-90 Metabolism in Man  
Israel Jour. of Medical Sciences, 3, No. 5, September-October 1967

Schubert, J., Brodsky, A. and Tyler, S.  
The Log-Normal Function as a Stochastic Model of the Distribution of Strontium-90  
and other Fission Products in Humans  
Health Physics, 13, No. 11, November 1967

Semiannual Progress Report (on Agricultural Research)  
July 1 - December 31, 1966  
ORO-657 Biology and Medicine (TID-4500)

Shannon, L. V. and Cherry, R. C.  
Polonium-210 in Marine Plankton  
Nature, 216, No. 5112, October 21, 1967

Recent Publications Related to Radionuclide Studies - cont'd

Shleien, B., Friend, A. G. and Thomas, H. S.  
A Method for the Estimation of the Respiratory Deposition of Airborne  
Materials  
Health Physics, 13, May 1967

Spencer, H., Lewin, I. and Friedland, J. S.  
Changes in Calcium Metabolism in Metastatic Bone Disease  
Israel Jour. of Medical Sciences, 3, No. 5, September-October 1967

Spencer, H., Lewin, I. and Samachson, J.  
Effect of Magnesium on Radiostrontium Excretion in Man  
The International Jour. of Applied Radiation & Isotopes, 18, June 1967

Spencer, H., Samachson, J., Hardy, E. P. and Rivera, J.  
Effect of Low and High Calcium Intake on Sr-90 Metabolism in Adult Man  
The International Jour. of Applied Radiation & Isotopes, 18, August 1967

Szabo, B. J.  
Radium Content in Plankton and Sea Water in the Bahamas  
Geochimica et Cosmochimica Acta, 31, No. 8, August 1967

Thein, M. and Kuroda, P. K.  
Global Circulation of Radiocerium Isotopes from the May 14, 1965 Nuclear Ex-  
plosion  
Jour. of Geophysical Research, 72, No. 6, March 15, 1967

Thompson, Jr., J. C.  
Reconsideration of the <sup>131</sup>Iodine Contribution from Fruits and Vegetables  
Health Physics, 13, 1967, pages 883-887

Umweltradioaktivität und Strahlenbelastung  
2. Vierteljahr 1967  
Bundesminister für Wissenschaftliche Forschung, September 1967

Welford, G. A. and Baird, R.  
Uranium Levels in Human Diet and Biological Materials  
Health Physics, 13, No. 12, December 1967

Wilson, A. R. and Spiers, F. W.  
Fallout Caesium-137 and Potassium in New-Born Infants  
Nature, 215, No. 5100, July 29, 1967

Recent Publications Related to Radionuclide Studies - cont'd

Witkamp, M. and Frank, M. L.

Retention and Loss of Cesium-137 by Components of the Groundcover in a Pine  
(*Pinus Virginiana* L.) Stand  
Health Physics, 13, No. 9, September 1967

Wolfe, D. A.

Seasonal Variation of Caesium-137 from Fallout in a Clam, *Rangia cuneata* Gray  
Nature, 215, No. 5107, September 16, 1967

Wrenn, M. E. and Cohen, N.

Iron-55 from Nuclear Fallout in the Blood of Adults: Dosimetric Implications  
and Development of a Model to Predict Levels in Blood  
Health Physics, 13, No. 10, October 1967

Yamagata, N. and Iwashima, K.

Terrestrial Background Radiation in Japan  
Health Physics, 13, No. 10, October 1967

Yoshikawa, K., Rao, M. N., Palmer, B. D. and Thein, M.

Time Interval Between Nuclear Detonation and Formation of Single Fallout  
Particles

Jour. of Geophysical Research, 72, No. 6, March 15, 1967