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Numerical results are presented based on a
rigorous theory of scattering from imperfectly conduct-

ing spheres having positive and negative dielectric

constants.,
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SUMMARY

Numerical data in the form of tables and graphs are presented for the back
and forward scattering cross sections of imperfectly conducting homogeneous
solid spheres, The spheres vary in electrical size over the range 0,001257 < koa
<507, Here ko is the free space wave number and a is the radius of the sphere,
However, the majority of the graphs were prepared for the cases koa = 7/2
and 7,

The relative dielectric constant €. and conductivity o lie in the ranges

-3 7

10 " <e < 10% and 107 <o < 10",

When o >> we € it is shown that the back and forward scattering cross
sections of the obstacle are essentially independent of € and very insensitive to
changes in o; for practical purposes the body behaves as though it were perfectly
conducting. This phenomenon also occurs for certain negative values of €,
provided o is not too large. Since there are large regions in which the scatter-
ing cross sections are very insensitive to both o and €, the writers concur with
a comment made by Wyatt (1965) that "attempts to deduce the composition of

large ionized volumes from radar measurements are of dubious practical utility,

. 1
and indeed may be almost useless."

The problem of radar return from a dust cloud is considered. It is shown
-9 A
that if € <30, @< 3x10  mhos/m and a < 0,01 m the scattering particle be-

haves as though it were a pure dielectric.,

The forward scattering cross section of a sphere increases with increasing

koa when o >> wle . No geometrical resonances are apparent.

3-4
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SCATTERING FROM IMPERFECTLY CONDUCTING SPHERES:
NUMERICAL RESULTS

Introduction

. . . . 2
It is shown in the companion paper by Harrison that the back scattered

and forward scattered electric fields from a homogeneous solid sphere may be

written
-1 @
Eo e JkOR n r r
EI‘ = -327 _k—ﬁ_ . ('1‘) (2n + 1)<an - bn) ’ . (1)
e}
n=1
and
-jk R &
oe ° r r
= =1 +
E = -5 g (2n + 1)(:,1n bn) , (2)
o
n=1

respectively, Here Eo is the amplitude of the incident field, ko is the free space

wave number, and R is the distance from the center of the sphere to the point the

scattercd field Er 1s to be determined. For an assumed (but suppressed) time

dependence exp (jut) the constants a:; and bi have the values



. . ' . . '
Jn(koa)[klajn(kla)} - Jn(kla) [koajn(koa):‘ ‘ @

a = - :
n (2) . r ¥ (2) !
h’ (koa)[klajn(kla):l = jpli @)k ah (koa)]
and
2. | v - '
T kljn(kla) [koajn(koa)J - kan(kOa)[klaJn(kla)} @
n 2, (2), v 2 (2) N
lin(kla) [koahn (koa)] - kohn (koa)[klajn(kla)]

where kl is the propagation constant ot the sphere, and a is its radius. In writ-
ing Equations 3 and 4 it is assumed that the permeability of the sphere is the

same as that of free space. With u= uo and € <0,

z . .
k= B - ja= J-m ule| -jowu = koﬁer“g(p) - jt(p)) . (5)
If € >0,
ky = ko\le—rlf(p) - jelp)l . - (8) -

In addition, if the inequality

o U
= .= . >> . 7
PEaTe] ~ we le I 1 : (7
ol r
is satisfied,
= %..q - 93 8
k, J o1 - ), (8)

kl as given by Equation 8 is valid when € = 0, Also,



f(p) = cosh (% sinh_l p) R (9)
and
. 1 . -1
g(p) = sinh (E sinh p) = p/2f(p) . (10)

Evidently when p >1, f(p)——g(p)——g and when p <1, f(p)—1, g(p)—-—%,

Notice also that
pz ()] = [2,_,(0) - 32, 0o . (11)
n n-1 P "n
‘The scattering cross section of an obstacle is given by the formula

2
2 A
o - limit 47R f:_r (12)
s R-—w E :
¢ o)

f

o—q is the back-scattering cross section; o, is the forward-scattering cross

section,

Discussion of Tables for the Back and Forward Scattering Cross Sections
of Imperfectly Conducting Homogeneous Solid Spheres

Table I preseiils o-s/)\i and o /7732 as a funclion of o for several frequen-’
cies when kOa = mw/2. For these data o > w|6| and k = C'—JZLO-(I - ). Evidently
the results are very insensitive to changes in 0. For all practical purposes the
scattering obstacle behaves as though it were perfectly conducting and O‘S/’ITa
may be obtained for a particular value of koa from Figure 1, Table Il is simi-

lar to Table I except that several frequencies and values of koa are used, It is



TABLE I

Imperfectly Conducting Homogeneous Sphere
(Backward Scatter)

koa= w/2, f=8,78 MHz

koas= /2, f= 50 MHz k.a = /2, f=10 MHz
9
o /)\.2 o [ra” o /7\2 o /7ra2 o /?t2 o /7ra2
o S0 S ___ o S _O S o S _o S
-1 0 -1
10 0.0914  0,4657 100 0,1013  0,5159 10 0.0889 0,4527
0 1 0
10 0.,1210 0.6163 10° 0,1248  0,6355 10 0.1200 0,6111
1 2 1
10 0,1318 0,6711 10° 0.1330 0,6775 10 0.1314 0,6693
) 3
10 0.1353  0,6091 10°  0.1357  0,6912 10 0,1352 0.6886
3 ! 3 i
10 0,1364  0,6949 10" 0,1366 0. 6956 10 0.1364 0,6947
4 5 ‘ 4
10 0.1368 0,6968 10° 0.1369  0,.6970 10 0.1368 0,6967
5 6 5
10 0.1369  0.6973 100 0,1369  0,6974 10 0.1369 0,6973
N 7 6
10 0.1370 0.6975 100 0.1370  0.6976 10 0.1370 0,6975
0" U, 1370 N, 6076 107

0.1370 0,6976



koa =0,5, f=2,795 MHz

TABLE

II

Imperfectly Conducting Homogeneous Sphere
(Backward Scatter)

k_a=3.0, f= 2,795 MHz

k a= 57, f=200 MHz

2

2

101 0.0099  0.4952
10 0.0103  0.5185
101 0.0105  0.5260
102 0.0105  0.5285
105 0.0105  0.5292
10 0.0105 0.5295
10> 0.0105  0.5295
10%  0.0105  0.52096
107 0.0105  0.52097

k,a= 1.0, f=2,795 MHz

(o

107?
10°

10
10
10
10
10
10

10

N OO W NN =

O'S/Ki O'S/Tra
0,2752 3.458
0.2850 3.582
0.2881 3.620
0.2890 3.632
0,2893 3.636
0,2894 3.63%
0.289A7 3.637
0,2895 3.638
0.2895 3.638

g OPS/KO GS/Wa a O-S/AO O-S/Wa
107! 0.3273  0.4570. 10! 18,87 0.9612
10°  0.3565 0.4978 10° 20.31 1.034
10! 0.3676 0.5132  10° 20.75 1.057
102 0.3712 o0.5184 10% 20.89 1,064
10°  0.3724 0.5200 10° 20.94 1.066
10*  0.3728 0.5205 10° 20,85  1.067
10°  0.3729 0.5207 10 20.96 1.067
10°  0.3730 0.5207
107 0.3730 0.5208
ka=m, f= 200 Milz k_a= 507, f= 200 MHz

s ol agm® ol g fm
10 0.5759 0.7333 10> 1786.5  0.9100
10°  0.5875 0.7480 10° 1905.5  0.9705
10 0.5919 0.7536  10° 1944.9  0.9905
10*  0.5934 0.7555 10° 1957.5  0.9970
10> 0.5939 0.7561  10° 1961.5  0,9990
108 0.5040 0.7563 10° 1962.8  0.9997
107 0.5941 0.7564 10 1963.2  0.9999

11



important to note that koa 2 o, o—s/vra2 —-+1,0, This is in evidence both from
Figure 1 and Table II., Tables IIl and IV complement Tables I and II, respec-
tively, except that o-f/)\‘i and O'f/7ra2 as a function of o are presented. As long
as o > w|€|one must expect the forward scattering cross section--and more
generally the bistatic scattering cross section--to be essentially independent of

€ and very insensitive to changes in o,

On the Radar Cross Section of Small Earth Particles

The radar cross section of homogeneous spheres of several small radii
consisting of dry earth (er =7, o= 10_3 mhos/m), damp earth (cr =15,
o=12 x 10_3 mhos/m), and wet earth (er = 30, o= 30 x 10—3 mhos/m) was
determined so that the radar return from a dust cloud could be calculated,
These data are presented in Table V. (It should be mentioned that in all of the
computations reported in this paper the computer program was not modified

regardless of sphere size,) The average croes section of the dust cloud is

n
(T = o-- .
Z i

i=1

If the particles are the same size and’ possess the same electrical properties,
evidently a= no_, where n is the number of particles. In these relations the

interaction of the spheres upon one another is neglected. It should be noticed
that when the dust particles are small, for example, a = 0,01 m, o-s/na2 is

independent of o to the accuracy reported in the table. In other words, the dus!

cloud is just another rain drop cloud of changed dielectric constant, However,

12

for this size particle when f = 2 x 109 Hz and o > 0,5 mhos/m, the conductivity
‘ 2

becomes important, Specifically, when o = 1 mho/m, crs/na = 0,0907, 0,0853

and 0,0662 for er =7,0, 15,0, and 30,0, respectively. For the circumstances

2
described above, o-s/rra = 0.2605 whenever o >> wl€.

1



Imperfectly Conducting Homogeneous Sphere

TABLE III

(Forward Scatter)

k a= 7/2, £ = 50 MHz

koa = 7m/2, f=10 MHz

koa= n/2, f= 8,78 MHz

5
o /A

o ¢ty oyl
-1

10 0.7752  3.948
0

10 0.6565  3.343
1

10 0.6189  3.152
2

10 0.6071  3.092
3

10 0.6034  3.073
4

10 0.6022  3.067
5

10 0.6018  3.065
6

10 0.6017  3.064
7

10 0.6016  3.064

2 2 2
A A
- crf/ 5 O'f/ﬂa o O'f/ o Uf/ﬂa
0 -1
10 0,7327 3,732 10 0.7867 4,007
1 0
10 0.6430 3.275 10 0.6602 3,362
2 1 .
10 0.6147 3.131 10 0.6201 3.158
3 . 2
10 0.6058 3.085 10 0.6075 3.094
4 3 .
10 0.6029 3,071 10 0.6035 3,073
5 4
10 0,.6020 3.066 10 0.6022 3,067
6 5
10 0.6018 3.065 10 0,6018 3.0065
7 ‘ 6
10 0,6017 3.064 10 0.6017 3,064
7
10 0.6016 3,064

13 -



vI

koa =0.5, f=2,795 MH=

, T /I\2 o ) Ta
o f o S
107} 2,750 2 107" 0.1383
10° 2,211 x 10°° 0.1111
10t 2,053 x 107° 0.1032
102 2,005 k 167 0.1008
10° 1,990 x 107° 0.1000
10* 1.985 x 10°° 0.0998
10° 1.983x 107° 0.0997
10% 1,983 x 107° 0.0997
107 1.983x 107 0.0997
k2= 1.0, £= 2,785 MHz

o (Tf/)ti a'f/>7ra,2
107 0.1619 2.034
10° 0.1430 1.797
10t 0.1271 1,722
102 0.1352 1.698
10° 0.1346 1.691
10* 0.1344 1.689
10° 0.1343 1.688
108 0.1343 1.688
10" C.1343 1.688

Imperfec:ly Corducting Homogeneous Sphere
(Forward Scatter)

TAELE IV

kca = 3,0, £=2,795 MHz

o Uflxi crf/”a2
107! 8.763 12,24
10° 8. 060 11.25
10° 7.€36 10. 94
19 7,765 10, 84
103 7.743 10. 81
10% 7.736 10. 80
10° 7.734 10. 80
10° 7.1733 10. 80
167 7.733 10. 80

koa =m, =200 MHz
10 10.25 13.05
10° 9.5€5 12,18
10° 9,348 11. 90
10* 9. 280 11,82
10° 9,258 11.79
108 ¢.231 11.78
10 ¢, 249 11.78

k a=57 f=200 MHz

3 3
A

o O—f/ [o) o-f/ﬁa
10t 5.356 x 10° 2,728 x 10°
102 5.145 x 10° 2.620 x 102
10° 5.077 x 10° 2.586 x 10°
10? 5.056 x 10° 2,575 x 10°
10° 5.050 x 10° 2.572 x 10°
108 5.047 x 10° 2.571 x 102
10" 5.047 x 10° 2.570 x 102

k_a = 507, f= 200 MHz

5 3

- 7/, o/ ma
10t 5.005 x 10" 2,549 x 10%
102 4.915x 10" 2,503 x 10*
10° 4.886 x 10" 2,488 x 10*
104 4.876 x 10" 2,484 x 107
10° 4.873 x 10" 2,482 x 107
108 4.873 x 10" 2,482 x 104
10 4.872 x 10 2,481 x 10%



It is of interest to compare these results with those obtained from an

expression derived by Siegert (1947).3 His formula for a dielectric sphere

(Rayleigh scattering region, koa < 2mx 10-1) is

e -1
2 _ 4f r
o-s/na = 4(koa) <€ n 2> .

r

2 -2
From this one obtainsg o-s/na = 5,4742 x 10

-2 -1
, 8.3534 x 10 , 1.0116 x 10 ~,
-1 -
and 1,1443 x 10  for €. 7.0, 15,0, 30,0, and 81,0, respectively. Comparing
these results with those presented in Table V for a = 0,01 m shows that agree-

ment is not good when €. is large,

It is worthy of meantion that Table V shows, for example, that when o = .0
(a condition that is not physically realizable) and a = 0,035 m, o~S/77a2 is much
larger for € = 15 than for € = 81, This result is not surprising when it is
remembered that multiple reflections within the dielectric sphere may give rise

to a larger bistatic cross section thanmono-static cross section,

Some Speci-fic Comments on Scattering from I[Tomogeneous Plasma Spheres
Having Negative Dielectric Constants

Figure 2 was reproduced from a paper by Wyatt (1965)1 exceptthat N is
mecasured in electrons/cu m. This curve was computed for a collisionless
homogeneous plasma sphere when koa = 40,0 andf =1,27236 kMHz. Under
these conditions the relative dielectric constant is given by €. = 1 -0.49796
X 10—'16 N. Of great significance is the fact that in the region 8 x 101 <N
<2x ].018 corresponding to -2,9837 > €. > -98.592 sharp oscillations in the
radar cross section occur, In the regions -2,9837 < €.< 0 and er< -98.592
the sphere behaves as though it were perfectly conducting., From Figures 1 and
2 for koa = 40, crﬂ/na2 ~1,0., This striking effect has been explained by Wyatt

: (1966)4 in terms of destructive and constructive interference of surface waves



g1

TABLE V

Imperfectly Conducting Homogeneous Spaere
(Backward Scatter)

= 0.035 m; k a= 1.466; f= 2 x 10° Hz a = 0.00003; < a = 0.001257; = 2 x 10" He 8= 0,001k a=0.0419 1= 2x 10" Hz
2 2 - 2 2 ; 2 3
A Y
l [ o-S/A'O OE/ﬂa E_!' [ O-S/ [o] Us/‘"a E_r o c,S/ [o] O-S/‘”a
1073 © o 0.4770 £.783 7 1073 5,574 x 10°Y° 4,436 x 10712 7 1078 7.646 x 1070 5,476 x 107°
0.0 0.1798 Z.805 7 0.9 5.574 x 10 19 4,436 x 10742 7 0.0 7.646 x 100 5,476 x 1076
1.2x1072 0.7857 £.5% 15 l.2xic?  8.503x10°'%  6.767x 10712 15 1.2x107%  1.166x107%  8.329x10°8
0.0 2,349 16.656 15 0.0 8.502x107%°  6.766 x 10712 15 0.0 1166 x 107 8.349x 1078
3.0 x 10”2 0.3122 0.0711 30 3.0x1072  1.030x10®  g193x107'2 30 3.0x1072  1.408x10°°  1.008x107°
0.0 0.0219 0.1279 30 0.0 1.030x1071%  g.193x 10712 30 0.0 ' 1.409 x 1072 1.009 x 1070
0.0 0.3448 2.016 81 0.0 1.164x 1078 9,266 x 10'12v 81 0.0 1.585 x 107° 1.135 x 107°
a=0,003; koa =0,1257, f=2x 109Hz a=0,01m; Z(c_a =0,4189; f= 2 x 109 Hz a=0,0001; koa =0,0042;f=2x 109 Hz
2 2 2 2 2 2
‘ 1y
r g 6s/)‘ta oglma €r c LA (’s/"a e_r I . c's/ o Uslﬂa
- 5 - - - -2 - - -
7 1078 5.564% 107" 4.458x 10 % 7 1078 7.436 21077 5.325x10 7 107° 7.647x 10718 5.477x 10710
-7 - - -2 - -
7 0.0 5.564x 167 4.4:8x 107 7 0.0 7.436z10°% 5,325 x 1072 7 0.0 7.647 x10°°% 5,477 x 10710
- - - : - - - -2 - -
1.2x1072  8.448x 107 6,723 x 104 15 :.2x10°2  1,035=107°  7.408x 1072 15 1.2x10 1.167x 1072 8,355 x 10710
0.0 8.446x 107"  6.723x10 % 15 0.0 10352 160°° - 7.410 x 1072 15 0.0 1.167x10° 2 §.355 x 10710
- - - -z . - - ) - -
3.0x107%  1.006x10°  s.c21x10°t 30 3.0x:07°  7.059x10°%  5.085 x 1072 30 3.0 x 10 1.412x10°°  1.012x107°
0.0 1.006 x 107" 8.021x10 % 30 0.0 7.062 x 1074 5.058 x 10 2 30 0.0 1.412 x 10710 1.012 x 1079
0.0 1,069 x 107> 8.579 x 1074 81 2.0 6.555 x 107° 4.694x 107" 81 0.0 1.597x10° "% 1.144x107°

a=0.0003; k a=0.0125T; f = 2 x 1 He

o e

3 3
»
g OS/ [e] J-S/Ta
1073 5.574x 1071% 4,436 » 1078
0.0 5.574x 10 0 4,236z 1070
1.2x 1072 8.502x 10712  §.766z10°° Dry Earth: €,=7,0= 10" mhos/m
0.0 8.502x30 % 6766 x107° "
3.0x10°2  1.0z9x10'?  g.i91x1078 Damp Earta: ¢ =15, o= 12x 10~ mhos/m
T e -8 )
0.0 1.029x 10 1 8.-91x10 . Wet Earth: ¢_= 30, o = 30 x 10 % nhos/m

0.0 1.1€4 % 10 9.260 x 10



with the backscattered ray. He furnishes a simple method for calculating €. in
the region where the anomalous oscillations occur. The fact that this phenom-

enon exists was verified by the writers, using the CDC-6600 computer program

on which all numerical data presented in this paper is based, For koa = 40,

f=1,27236 kMHz, and o = 10_10, the following results were obtained:

€ U'S/7Ta2
0.95 4,409 x 107*
-1.00 1.001
-3.79 0.6604
-10,10 0,4107
-15, 44 2,572

| A calculation was also made to determine if oscillations are generated by
changing o on the peak values of crs/rra2 predicted by Wyatt (1965). 1 For exam-
~ple, if €. 7 -15,44, then crs/7ra2 =2,572, 2,572, 2.572,72.571, 2.5%3, 2.481,
1,858, and 0,7813, as o increases by decades from 10 = through 10, respec-
tively. Thus no oscillations are indicated in this range of o. (Nine values of
back scattering cross section were computed between each listing entered above.)
In general, in making the calculations presented in this paper er, koa and f were
fixed and the back or forward scatter cross seclions determined for a mesh size
in o of one decade. Whether or not anomalous behavior in the results is possible
for smaller incremental values in o was not investigated either theoretically or
by use of the computer. No investigation was made to insure that oscillations
are absent when er< -98.59, From numerous curves presented subsequently in
this paper it is evident that oscillations exist even when & \ 0. Plots of O‘S/na“'
against €. for fixed o, f and koa are oscillatory in character, This follows from
the faé‘g that for fixed f and koa curves of o-S/7Ta2 against o with €.as parameter

are not in numerical sequence insofar as €. is concerned,
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Discussion of Curves for the Back and Forward Scattering Cross Sections
of Imperfectly Conducting Homogeneous Solid Spheres

In obtaining data for the preparation of the graphs, Figures 3-20, the
writers wish to emphasize that an exhaustive search for anomalies in the back
and forward scattering cross sections of an imperfectly conducting homogeneous
sphere was not undertaken. In the case of each graph what the authors deemed to
be a reasonablc number of points were computed and plotted, For example, in
the preparation of Figures 17-20 200 points equally spaced in €, were computed
for each graph., So it is possible (but not likely) that some sharp oscillations in
the cross sections were overlooked. Of course, the anomalies, if they exist,
could be found for slightly lossy plasmas by the means suggested by Wyatt
(19 66).4 One might expect such oscillations to be of decreasing amplitude as o

is increased,

Iigures 3-20 are largely self-explanatory. In the interest of brevity only
a few comments will be made relating to the graphs, Notice that Figures 10-15
for O'f/7ra2 againsf k_a complement Figures 4-9 for u-s/ﬂ-a2 against k a. Remem-
ber that scaling of these data is possible, When o > w|e| the sphere behaves as
though it were perfectly conducting, 'T'his is shiown by Figure 3 (complemented
.by Figure 1 as well as by Figures 4-9), This same phenomenon, to lesser
degree, was observed by Taylor, et al (196’7)5 for the backscattering cross sec-
tion of a resistive cylinder of finite length, Figure 16 is of special interest in
that it shows that o-f/v.-a2 can be progressively increased with increasing
koa‘(o > w|€|), This is in céntrast to the limit of 1.0 approached by ch/TraL2 as
koa—' v (IMigurce 1), Comparing Figure 17 with Figure 18 and Figure 19 with
Figure 20, it is evident that as @ is increased the amplitudes of the oscillations

. 2 2
in o-s/rra and crf/na are decreased,
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Conclusions

Assuming that koa is constanf, an examination of Equations 3 and 4 reveals

that if one can prove k_a relatively constant with changes in er, o, or both taken

1

in concert, the scattering cross sections computed from Equation 12 must be

insensitive to these changes, It has been demonstrated in this and in the com~
' 2. . .

panion paper (Harrison, 1968) in various ways that this is true whenever

o > w|e|, But even if k a is markedly dependent on €. and o, it is still possible

1
for.the scattering cross sections to be essentially constant in value, This is
" because of the complicated nature of Equations 3 and 4 and it would seem impos-

sible for anyone to have a mental grasp of what might happen.

Referring to the curves it appears that when I€r| > 1 the scattering cross
sections are very insensitive to o regardless of the value of o, The spheres
behave as though they were perfectly conducting, But when o lies in the range
10_7 o< 10O and IEI‘I is fairly small the curves for o—s/rra2 and (ff/n-az spread
out, For example, in this region a sphere might have a larger scattering cross
section for €. = 7.0 than for er = 30, Evidently a considerable amount of work
remains to be done to obtain and interpret data relating to scattering from
slightly lossy dielectric spheres and from over dense plasma spheres when the

medium is only slightly lossy.

"The determination of o and er hy radar measuréements on the simplest
three dimensional object--the sphere--even when assumed to be homogeneous
appears to be impossible, It is the opinion of the writers that radar observa-
tions on the plumes of missiles, ionized wakes of re-entry vehicles, and fire-
balls associated with nuclear explosions are of no value for obtaining an estimate
of the physical size of the ionized volume or for deducing the values of the con-

stitutive parameters of the scattering obstacle o and €.
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