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ABSTRACT

The Waste Isolation Pilot Plant (WIPP), a facility located in a bedded salt formation in Carlsbad,
New Mexico, is being used by the U.S. Department of Energy to demonstrate the technology for
safe handling and disposal of transuranic wastes produced by defense activities in the United
States. In support of that demonstration, mechanical tests on salt were conducted in the
laboratory to characterize material behavior at the stresses and temperatures expected for a
nuclear waste repository. Many of those laboratory test programs have been carried out in the
RE/SPEC Inc. rock mechanics laboratory in Rapid City, South Dakota; the first program being
authorized in 1975 followed by additional testing programs that continue to the present. All of
the WIPP laboratory data generated on salt at RE/SPEC Inc. over the last 20 years is presented
in this data report. A variety of test procedures were used in performance of the work including’
quasi-static triaxial compression tests, constant stress (creep) tests, damage recovery tests, and
multiaxial creep tests. The detailed data is presented in individual plots for each specimen tested.
Typically, the controlled test conditions applied to each specimen are presented in a plot followed
by additional plots of the measured specimen response. Extensive tables are included to
summarize the tests that were performed. Both the tables and the plots contain cross-references
to the technical reports where the data were originally reported. Also included are general
descriptions of laboratory facilities, equipment, and procedures used to perform the work.
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1.0 INTRODUCTION

1.1 BACKGROUND

The Waste Isolation Pilot Plant (WIPP) is a facility sited in a bedded salt formation in
southeastern New Mexico. The purpose of the WIPP is to demonstrate the technology for safe
handling and disposal of transuranic (TRU) radioactive wastes produced by defense activities
of the United States. This technology is being developed in support of performance assessment
calculations and activities necessary to demonstrate compliance to the regulatory requirements
promulgated by the Environmental Protection Agency (EPA).

One of the necessary inputs the WIPP Project has used to fulfill its mission is rock
mechanics testing performed in a materials testing laboratory. Much of that laboratory work
was performed by RE/SPEC Inc. in their rock mechanics laboratory located in Rapid City, South
Dakota. The first laboratory testing contract between Sandia National Laboratories (SNL) and
RE/SPEC Inc. was issued in 1975 when the pre-WIPP conceptual repository designs were being
considered by SNL. After that first contract, additional laboratory investigations were
conducted over the years and continue today. The results of those laboratory testing programs
were published in technical reports and a summary listing is presented in Table 1-1.

Throughout many of the reports in Table 1-1 there are references to a set of constitutive _
equations known as the Multimechanism Deformation (M-D) model which is based on the
micromechanisms thought to control the deformation of salt at the stresses and temperatures
expected for a nuclear waste repository (Munson and Dawson, 1979; Munson and Dawson,
1982a; Munson and Dawson, 1982b; Munson and Dawson, 1984; Munson, 1979; Munson et al.,
1989b). Typical test programs were directed at quantifying either elastic or inelastic parameters
appearing in this constitutive model (Fossum et al., 1994), while some other programs were
designed to evaluate or guide the development and refinement of the forms of the constitutive
model. This especially pertains to the testing performed in support of the Multimechanism
Deformation Coupled Fracture (MDCF) model (Chan et al., 1992; Chan et al., 1996) and the
experiments define the form of the flow potential (Munson et al., 1989a; Munson et al., 1989b).
Another specialized testing program was directed at determining the thermomechanical damage
recovery parameters that impacted WIPP sealing systems (Brodsky and Munson, 1994).

The salt creep and mechanical response data which are given in this data report are
fundamentally independent of any constitutive model, as is appropriate. The data were,
however, ultimately analyzed by well established methods to give the parameters specifically
required for the M-D and MDCF models. These methods and the results of the analysis used
for this parameter determination have been presented elsewhere for the determination of
discrete parameter values (Munson et al., 1989a; Munson et al., 1989b) and for the determina-
tion of parameter distribution functions (Pfeifle et al., 1992; Fossum et al., 1994).




1.2 APPROACH AND SCOPE

This report is a summary presentation of laboratory results that have been generated at
RE/SPEC Inc. and documented in the reports listed in Table 1-1. In keeping within the intent
of a data report, there have been no data analyses performed on the data; however, simple
changes in data format have been performed to make the original data sets compatible with
modern personal computer systems. For the oldest data sets, old technology “punch card”
listings of data were transcribed for modern magnetic disk storage. Where plots were generated
for this report, they simply represent data extracted from the reports in Table 1-1 and only the
graphical format may have changed. Some of the older data were originally reported using

English units and those results have been converted to SI units for this report.

Table 1-1. Summary List of WIPP-Related Laboratory Investigations at

RE/SPEC Inc.
Report No. Author(s) Title
Thermomechanical Damage Recovery Parameters
SANDS3-7111 | Brodsky, N. 8. for Rocksalt From the Waste Isolation Pilot Plant
AND Mellegard, K. D. | Creep Tests on Clean and Argillaceous Salt From
8 92-7291 Pfeifle, T. W. the Waste Isolation Pilot Plant
Mellegard, K. D.
SAND91-7083 | Callahan, G. D. | Multiaxial Creep of Natural Rock Salt
Senseny, P. E.
Crack Closure and Healing Studies in WIPP Salt
Using Compressional Wave Velocity and
SAND90-7076 | Brodsky, N. 8. Attenuation Measurements: Test Methods and
Results
Creep of Salt From the ERDA-9 Borehole and the
SANDS89-7098 | Senseny, P. E. WIPP Workings
Triaxial Compression Creep Tests on Salt From the
SAND85-7261 | Senseny, P. E. Waste Isolation Pilot Plant
SANDS0-7114 Hansen, F. D. Further Creep Behavior of Bedded Salt From
) Mellegard, K. D. | Southeastern New Mexico at Elevated Temperature
Hansen, F. D. Creep Behavior of Bedded Salt From Southeastern
SAND79-7030 Mellegard, K. D. | New Mexico at Elevated Temperature
Triaxial Quasi-Static Compression and Creep
SAND79-7045 | Hansen, F. D. Behavior of Bedded Salt From Southeastern New
Mexico




The approach used in this report is to present sufficient background information, in a
general way, to place the material studies into the proper context, followed by the detailed test
results. As part of the background information, the work gives some general history of salt core
acquisition along with information on specimen preparation and handling. General information
is also provided on typical laboratory procedures and equipment. The various types of tests that
were performed are described along with general notes on how the acquired data were reduced
to obtain meaningful test results.

The bulk of the report presents the detailed results from individual tests. These results are
presented only in graphical form because many of the data sets contain hundreds (and in some
cases thousands) of lines of acquired data. Also included are summary tables that are cross-
referenced to the individual plots of data by a test number and/or a specimen identification
number. Each result (either tabular or graphical) is also cross-referenced to the report where
that result originally appeared.

1.3 PERMANENT RECORDS RETENTION

The supporting information for each of the reports in Table 1-1 was collected and organized
in an orderly fashion by following the guidelines presented in the SNL Quality Assurance
Procedure QAP 20-3, entitled Qualification of Existing Data, Rev. 2, 6-28-95 (Scully, 1995).
Specifically, the guidelines for developing a Laboratory Data Notebook presented in Appendix B
of QAP 20-3 were used to assemble a data records package for each report. These individual
data packages followed the format detailed in Appendix B of QAP 20-3 and-those files are in the
Sandia WIPP Central Files (SWCF) for records retention and future reference. These records
packages contain the original complete test objectives, statements of work, calibrations, data,
and all other relevant documents of the tests, including core identification and specimen
identification. These records also include documentation of procedures, including coring, core
identification, calibration, testing, and data reduction.

1.4 TRANSMISSION TO PERFORMANCE ASSESSMENT

As is consistent within the intent of a data report, the data presented reflect only simple
data reduction (e.g., conversion of measured forces and displacements to stresses and strains).
The data presented in this report have not been the subject of any analysis. The complete
analysis of the data has been performed in other work which determines material parameters
for specific constitutive models (Munson et al., 1989a; Munson et al., 1989b) and the statistical
distributions of those parameters (Pfeifle et al., 1992; Fossum et al., 1994). The parameters
resulting from those analyses, performed subsequent to the laboratory testing, are the quantities
transmitted to Performance Assessment for support of numerical studies.




1.5 REPORT ORGANIZATION

The remainder of this report is organized into eight chapters. The next chapter, Chapter
2.0, covers topics related to core acquisition and specimen preparation. Chapters 3.0, 4.0, and
5.0 present general information on typical laboratory facilities, test equipment, and test
procedures, respectively. Chapter 6.0 describes the processes by which test systems were
calibrated and verified. Chapter 7.0 presents all the tabulated test results. Chapter 8.0 is a
brief summary. Chapter 9.0 is a list of cited references followed by appendices that contain the
detailed test results in graphical form. Appendix A holds the plots of the quasi-static triaxial
compression tests. Appendix B contains detailed results from creep testing of specimens from
boreholes drilled in the vicinity of the WIPP facility. Appendix C is also dedicated to creep
testing, but for specimens taken from the WIPP mine workings. The detailed results of the
specialized multiaxial testing are given in Appendix D. Lastly, Appendix E presents the
detailed results obtained from the damage recovery testing program.
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2.0 TEST SPECIMENS

2.1 CORE ACQUISITION

The specific sources of core are generally given in the individual reports listed in Table 1-1.
The bulk of the WIPP-related core came from two sources. The first source was the AEC7 and
ERDA9 deep boreholes drilled from the ground surface and located in the vicinity of the WIPP.
The borehole core was greater than 100 mm (4 inches) in diameter and could be subcored in the
laboratory to provide testable specimens of 50 mm diameter. The second source of core was the
WIPP mine workings. The core obtained directly from the WIPP mine workings was generally
large diameter which required subcoring to 100 mm in diameter. The salt core obtained from
the WIPP mine workings was classified as clean salt or argillaceous salt. The clean salt was
relatively free of impurities while the argillaceous salt had a significant clay content. The salt
core obtained from the AEC7 and ERDA9 boreholes was not classified and has an unknown clay
content. A non-WIPP source of salt core was the International Salt Mine in Avery Island,
Louisiana. The Avery Island core was used in a testing program that was designed solely to
determine the creep flow potential criterion that should be used for salt.

The acquisition of core samples was typically performed by SNL field and contract
personnel. The core was marked to designate its source and depth of recovery. The recovered
core varied in length and each individual piece was given a unique marking. The individual
pieces were packaged in core boxes and shipped in temperature controlled trucks (to prevent
freezing of the specimen) to RE/SPEC Inc. in Rapid City, South Dakota. Upon arrival in Rapid
City, the core was inspected for damage and logged into an inventory for control purposes. The
core was stored in a controlled environment where the core was protected from extremes in
temperature. The core remained in storage protected from extremes in temperature until it was
retrieved for specimen preparation purposes.

A chain of custody was implemented by logging the initial core information into a core
inventory system. As the core moved through the processes of specimen preparation and
laboratory testing, additional core inventory records were generated to document specimen
usage and storage locations.

2.2 SPECIMEN PREPARATION

The preparation and control of testable specimens from the core samples was done by
RE/SPEC using standard RE/SPEC laboratory procedures that have evolved as an integral part
of a corporate quality assurance program (RE/SPEC, 1995). The prepared specimens were
labeled such that they could be traced back to the original core sample which in turn should be
traceable to a recovery site in the field. This specimen labeling scheme often followed the




outline of an SNL procedure designated WIPP-092 that was devised for maintaining traceability
of specimens. The specimen label became a uniqtie identifier for each individual specimen and
was used in the published reports to link the reported test results to specific specimens. In later
sections of this report, those same identifiers will be seen on the plots and in the summary
tables.

The typical specimen preparation procedure comprised a sequence of machining operations
which were conducted at the RE/SPEC laboratory. First, the core sample was sawn to
appropriate lengths in a bandsaw. The sawn pieces were then subcored in a vertical milling
machine to obtain specimens of the appropriate diameter. Typical length-to-diameter (L:D)
ratios were constrained to about L:D = 2. The ends of the cored specimens were then finished
flat and parallel in a milling machine or lathe. The finished specimen represented a right-
circular-cylinder which had dimensions that could be determined using standard dimensional
measurement tools; e.g., micrometers, calipers, V-blocks, height gage, and a granite surface
plate. These specimen dimensions were recorded for each specimen for later use in data
reduction. '

A special specimen preparation procedure was devised for creating large thin-walled hollow
cylinders of salt needed for multiaxial testing. Starting with a large diameter core, the core was
sawn to an appropriate length and then the outside surface was finished in a lathe. A thin-
walled cylinder was then created with a boring tool on a lathe to cut the appropriate inside
diameter. The inner surface and the ends of the hollow cylinder were then finished to produce
the final specimen.

LN e, e



3.0 LABORATORY FACILITIES

When the first laboratory testing contract between RE/SPEC and SNL was placed in 1975,
the RE/SPEC laboratory was housed in facilities located near the present site of the laboratory.
In 1980, the laboratory was moved to a new facility which had a design based on the need for
a laboratory setting that was dedicated to rock mechanics testing. The new facility covered a
total of 30,000 square feet with about 10,000 square feet dedicated to laboratory operations. The
new facility incorporated an earth-sheltered concept that enhanced constant temperature control
within the laboratory portion. The entire facility was equipped with a backup power system
that could support electrical power needs during periods of commercial utility power outages.

A floor plan of the laboratory portion of the current facility is shown in Figure 3-1. The
General Lab Area at the east end is a high bay area used for shipping/receiving and storage of
core. Adjacent to that area is a Specimen Preparation room that is equipped with saws, lathes,
milling machines, and grinders that are available for use in preparing testable specimens.
Machined specimens are taken into the Metrology room where dimensional and mass
measurements can be made. The Metrology room also houses the calibration standards that are
kept on site, such as load cells, dead weight pressure systems, temperature baths, gage blocks,
and electrical standards. The largest area on the floor plan is dedicated to the Rock Lab where
the test systems are located. Those test systems are discussed in Chapter 4.0 of this report.
The remainder of the laboratory space is dedicated to petrographic and thermal studies along
with facility support services; e.g., office space, drafting, mechanical/utility rooms, storage areas,
and a Quality Assurance fireproof storage vault.
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4.0 TEST EQUIPMENT

4.1 TEST FRAMES

The mechanical test results contained in this report were generated using a variety of test
frames available in the RE/SPEC laboratory. The laboratory supports 16 different test frames
including 4 computer-controlled servohydraulic frames built by MTS Systems Inc. of Eden
Prairie, Minnesota, 10 fully automated and computer-controlled static triaxial compression
systems, and 2 manually operated static triaxial compression systems. The 2 manually operated
machines and the 10 automated machines are custom systems. The configuration and use of
any of the available test frames is well documented within the original reports listed in
Table 1-1. The general details of those test frames used for the work in Table 1-1 are presented
here for easy reference.

4.1.1 Static Triaxial Compression Machines

Twelve test frames are equipped with a system of accumulators and dilatometers for
maintaining loads and pressures on the test specimens. These test frames are termed static
systems and are usually used for constant stress (creep) tests on cylindrical specimens, but can
be operated manually to effect a quasi-static, stress-rate controlled, triaxial compression test.

Two of the systems were originally designed and built by Dr. Wolfgang R. Wawersik at the
University of Utah. The operation and capabilities of those two test frames were well
documented (Wawersik, 1975; Dropek, 1976). Additional documentation is contained in the
early reports listed in Table 1-1. These two frames are limited to testing 50-mm-diameter
specimens.

The design for the two small systems served as a basis for Wawersik’s subsequent design
of a larger test frame (Wawersik, 1979). The new design allowed for specimens as large as
100 mm diameter and that design was adopted by RE/SPEC for construction of four similar
machines. Shortly thereafter, six additional frames of the same design were procured as a
custom order from the Instron Corporation of Canton, Massachusetts. Instron also equipped
all ten of the larger systems with computerized data acquisition and process control for
maintaining constant stress as inelastic deformations cause an increase in specimen area. A
schematic drawing of the larger test system is given in Figure 4-1. Specific information on the
ten larger test frames and the two smaller test frames is given in Table 4-1.
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4.1.2 Servohydraulic Test Frames

There are four servohydraulic test frames built by MTS Systems, Inc. All four systems are
similar in that they include (1) a frame and load actuator that provides the reaction and axial
force, respectively, (2) a control console that houses servoloop controllers and transducer signal
conditioning, and (3) a computer that provides software control and data acquisition. Only two
of the four servohydraulic test systems were used and specific information on those two test
frames is given in Table 4-2.

Table 4-1. Static Triaxial Compression Test Frames

Capabilities
Test
System Axial Specimen Confining Specimen
Name Force Temperature | Pressure Diameter
(MI:D °C) (MPa) (mm)
Instron 1 1.5 200 70 100
Instron 2 1.5 200 70 100
Instron 3 1.5 200 70 100
Instron 4 15 200 70 100
Instron 5 15 200 70 100
Instron 6 1.5 200 70 100
Instron 7 1.5 200 70 100
Instron 8 1.5 200 70 100
Instron 9 1.5 200 70 100
Instron 10 1.5 200 70 100
WRW 1 0.27 200 70 50
WRW 2 0.54 200 70 50
Table 4-2. Servohydraulic Test Frames
Capabilities
Test MTS P !
System Model Axial Specimen Confining | Pore
Name® Number Force Temperature | Pressure | Pressure
(MN) (°C) (MPa) (MPa)
UTS2 31241 0.5 300 70 70
HCS 315.03 34 200 35 -

(a)

UTS2 = Two-column universal frame with movable crosshead.

HCS = High stiffness frame with fixed crosshead (hollow cylinder configuration).
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The UTS2 machine is used routinely for uniaxial and triaxial compression tests at both room
and elevated temperature. A schematic drawing of this style of machine is given in Figure 4-2.
This machine can be equipped with either a pressure vessel for triaxial compression testing or
an environmental chamber for testing at elevated temperatures.

The HCS machine is a custom designed system equipped with an annular pressure vessel
designed for testing thin-walled cylindrical specimens. The HCS machine has three independent
axes of servocontrol; one for axial load, one for internal pressure, and one for external pressure.
This configuration allows each of the three principal stresses to be uniquely specified.

4.2 INSTRUMENTATION/DATA ACQUISITION

The test systems used to conduct the experiments described in the reports listed in Table 1-1
were instrumented to measure specimen response under controlled test conditions. Typical
physical quantities that were measured during testing were time, force, pressure, displacement,
and temperature. The instrumentation and data acquisition methods that were used varied
depending upon which test system was used and also the state of the art in electronics at the
time the test was run. '

4.2.1 Static Triaxial Compression Machines

The first test systems in use at RE/SPEC were the static loading frames. These frames
were designed primarily to perform creep tests, but they could also be used to perform slow
loading (quasi-static) stress-rate-controlled triaxial compression tests. Their primary instrumen-
tation systems are comprised of two Linear Variable Differential Transformers (LVDTs) for
measuring axial displacement, a dilatometer capable of measuring volume changes at constant
confining pressure, a load cell for measuring total axial force, in-line pressure transducers for
measurements of confining pressure (and sometimes pore pressure), a thermocouple for
temperature measurement, and some type of clocking device to record elapsed time.

The two diametrically opposed LVDTs were mounted so their average signal output
represented the displacement of the axial force generation ram relative to the fixed pressure
vessel containing the specimen. When this relative displacement measurement was corrected
for nonspecimen deformations (e.g., compression of the steel ram and platens), the net change
in displacement represented the axial deformation of the specimen. The dilatometer was a
screw-driven intensifier in which the screw rotation could be measured to determine the volume
of oil that had to be extracted from the test vessel to maintain a constant pressure. This
volumetric measurement was corrected for temperature changes in the oil and intrusion of the
axial force ram to obtain the net volume change of the specimen.

12
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Figure 4-2. Schematic Diagram of a Universal Test System.
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A strain-gage-based load cell was placed between the axial loading ram and test vessel
loading column to measure the total axial force applied to the system. When the forces required
to react against the confining pressure were subtracted from the total force measurement, the
net axial force on the specimen could be determined. Pressure transducers were used in the
lines leading to the test vessel to monitor confining pressure. Embedded in the wall of the test
vessel was a thermocouple used to record system temperature.

During the early years of the laboratory, the transducer signal conditioning was provided
by individual electronic units whose high-level signal outputs were fed to a single master
display. The display module could feed data at predetermined intervals to a paper tape printer
where data values were recorded for later processing. The resolution of the system was limited
to that provided by the 4% digit display meter. With the procurement of new test machines
from the Instron Corporation, new data acquisition electronics became available. The new
system used board-level signal conditioning and the high-level signal outputs were fed to
individual channels on an analog-to-digital (A/D) conversion board. The A/D board was
embedded in a Digital Equipment Corporation (DEC) computer system with an LSI 11/23
microprocessor platform. Custom software purchased with the system allowed 14-bit resolution
of the data signals through the A/D boards and automated scanning of all data channels.

4.2.2 Servohydraulic Test Frames

The two servohydraulic test machines were used for programmable load path testing which
primarily consisted of quasi-static triaxial compression, hydrostatic compression, and multiaxial
creep tests. They both use a DEC microprocessor that allows computer control of both test
conditions and data acquisition. The data acquisition is performed by a 14-bit A/D board that
is fed signal voltages from electronic signal conditioner modules that service individual
transducers.

The specimen deformation measurement techniques are similar on both machines in that
while indirect measurements (like those made on the static machines) are possible, the primary
method of measuring specimen deformations uses direct-contact extensometers. This type of
instrumentation can be placed directly on the specimen, even when the specimen is contained
within a pressurized and heated test vessel. A typical direct-contact extensometer mounting
configuration used on the UTS2 machine is shown in Figure 4-3. The axial extensometer
measures axial specimen deformation over the prescribed gage length; the circumferential
extensometer effectively measures the change in specimen diameter. The circumferential
extensometer is mounted at the ends of a roller-link chain wrapped around the mid-height of
the specimen. In some configurations, the circumferential extensometer is replaced by a
diametral gage. A diametral gage comprises a strain-gaged ring attached to two vertical posts
that hold mounting pins which contact opposite ends of a diameter through the mid-height of
the specimen. The diametral gage thus measures the change in specimen diameter along a
horizontal axis whereas the circumferential gage measures the average change in specimen
diameter.

14
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The specialized test system used for testing hollow cylinders was equipped with a unique
configuration of extensometers that were capable of measuring the changes in inner and outer
diameters of the specimen. This was accomplished by mounting four extensometers at 90°
intervals on a ring that was spring loaded to hold it in place against the specimen. The four
extensometers then provide four measurements of the distance from the specimen wall to the
fixed diameter ring and those four measurements could be averaged. Two such rings were used;
one for the inside of the specimen and one for the outside.

The UTS2 universal test system has a movable crosshead with an attached strain-gaged
load cell that measures the total axial force applied to the test column. This approach is similar
to the static load frames in that the force required to react against the confining pressure within
the test vessel must be subtracted from the load cell measurement to obtain the net axial force
applied to the specimen. The HCS system (used for testing of hollow cylinders) does not have
a load cell at all. Rather, it uses a differential pressure transducer to measure the pressure
difference between the chambers above and below the axial force actuator. This difference is
linearly related to the level of total axial force and can be calibrated to read in units of force.
Again, the reactive force necessary to support the pressures within the annular pressure vessel
must be subtracted from the total to obtain the net axial force on the specimen.

In both systems, standard pressure transducers are connected in the lines leading from the
servohydraulic pressure control intensifiers to the pressure vessel to monitor the confining
pressures applied to the specimen. Again, thermocouples are used to track the system
temperatures and the computer system provides a clocking device to record the elapsed time
during the test.

The acoustic data generated in two of the reports required specialized equipment in addition
to the standard capabilities available with a servohydraulic test frame. The additional
equipment was an ultrasonic velocity measurement system that included two pairs of
compressional wave velocity transducers, a switching box, a pulser/receiver, a preamplifier with
power supply, and a digital oscilloscope. One set of velocity transducers was mounted in the
platens above and below the specimen for measurements parallel to the specimen axis, and a
second set of transducers was held by springs against the sides of the specimen for measure-
ments perpendicular to the axis. During measurement, a main pulse was sent to one of the
pulsing transducers at the same time a trigger pulse was sent to the oscilloscope. The main
pulse traveled through the specimen to the receiving transducer and the oscilloscope recorded
both the pulsing signal waveform and the receiving signal waveform. The two recorded
waveforms were then analyzed to determine arrival times and amplitudes.
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5.0 TEST PROCEDURES

5.1 QUASI-STATIC

One of the common types of mechanical test is the quasi-static triaxial compression test.
Initially, this type of test was run using the static frames to impose a constant stress rate by
manually incrementing the axial load at prescribed intervals of time. Later, with thé‘advent
of servohydraulic test systems, this type of test was usually run as a constant strain rate test
using the axial strain measurement as feedback to the control loop. )

The generalized procedure used for running the quasi-static tests required placing a
cylindrical specimen between two metal platens and then encasing the assembly in an elastomer
protective sleeve (or jacket). This test assembly was placed in a pressure vessel and subjected
to a constant confining pressure. If the test was to be performed at elevated temperatures, the
whole assembly was heated to the desired temperature and allowed to stabilize for several
hours. The heating was applied at a low rate and while the specimen was under pressure to
avoid thermal cracking of the specimen. The axial force was then increased in either of two
modes, constant stress rate or constant strain rate, until the specimen failed or some other
limiting condition was reached. An excursion in the loading was allowed whereby the axial
loading could be reversed and then reapplied to create an unload/reload sequence.

The measured mechanical data generally were recorded as values of force, pressure, and
displacement. Data reduction involved using the recorded data with knowledge of initial
specimen geometry to convert the measurements into values of principal stresses and strains.
The calculation of axial strain was straightforward. The measurement of the net change in
specimen length was used to calculate a true (or logarithmic) axial strain. The measurement
of net change in specimen diameter was used to calculate a true lateral strain under the
assumption that the deformed shape of the specimen remained as a right circular cylinder. The
axial stress was calculated using the measurement of net axial force on the specimen and the
current area of the deformed specimen. This calculation gave a Cauchy stress measure for axial
stress. The radial stress component was simply the value of the measured confining pressure.

5.2 CREEP

The scope of many of the test programs involved performance of the triaxial compression
creep test. This type of test required application of constant stress states over long periods of
time and the static load frames were designed specifically for this purpose.

The generalized procedure used for performing the creep tests required placing a cylindrical
specimen between two metal platens and then encasing the assembly in an elastomer protective
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sleeve (or jacket). This test assembly was placed in a pressure vessel and subjected to a
constant confining pressure. If the test was to be performed at elevated temperatures, the
whole assembly was heated to the desired temperature and allowed to stabilize for several
hours. The heating was applied at a low rate and while the specimen was under pressure to
avoid thermal cracking of the specimen. The axial force was then increased while holding the
confining pressure constant until the desired axial stress difference was imposed. This static
stress state was then maintained over long periods of time while recording the inelastic
deformation of the specimen. The maintenance of a constant axial stress required that the axial
force on the system be periodically adjusted to compensate for measured changes in specimen
diameter. On the ten Instron frames, this adjustment was performed automatically under
computer control.

Most of the creep tests were performed as single-stage tests; that is, the specimen strains
were allowed to accumulate at a fixed stress state for some time and then the stress was
removed and the test was complete. In contrast, some of the creep tests were run using a
multistage load path whereby the stress state or temperature was changed at specified times.
Thus, the stages subsequent to the initial loading stage could be viewed as individual creep
tests; but they each might have a unique strain history depending upon the deformations that
occurred in prior stages. 3

The measured mechanical data generally were recorded as values of force, pressure, and
displacement. Data reduction involved using the recorded data with knowledge of initial
specimen geometry to convert the measurements into values of principal stresses and strains.
The calculation of axial strain was straightforward. The measurement of the net change in
specimen length was used to calculate a true (or logarithmic) axial strain. The measurement
of net change in specimen diameter was used to calculate a true lateral strain under the
assumption that the deformed shape of the specimen remained as a right circular cylinder. The
net change in specimen diameter was deduced from an algorithm that used the volumetric
measurement provided by the dilatometer and the axial displacement measurement
(Dropek, 1976). The axial stress was calculated using the measurement of net axial force on the
specimen and the current area of the deformed specimen. This calculation gave a Cauchy stress
measure for axial stress. The radial stress component was simply the value of the measured
confining pressure.

5.3 MULTIAXIAL (HOLLOW CYLINDER)

The multiaxial tests used thin-walled hollow cylinders of salt that were jacketed with
elastomer tubes both inside and outside. After assembly into an annular pressure vessel, three
independent servocontrol systems were activated to control the pressure applied to the outside
surface of the specimen, the pressure applied to the inside surface of the specimen, and the axial
force imposed on the specimen. The three controlled loads (outer pressure, inner pressure, and
axial force) were ramped up under computer control to a desired hydrostatic stress state. At
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the operator’s command, a computer program would then quickly ramp all three controlled
variables along a proportional stress path to apply the desired shear stresses while maintaining
a constant mean stress and Lode angle. Once the desired level of shear stress was applied, that
level was then maintained constant for long periods of time as prescribed for a creep test.

The measured mechanical data generally were recorded as values of force, pressure, and
displacement. Data reduction involved using the recorded data with knowledge of initial
specimen geometry to convert the measurements into values of principal stresses and strains.
The calculation of axial strain was straightforward. The measurement of the net change in
specimen length was used to calculate a true (or logarithmic) axial strain. The measurements
of net change in the inner and outer specimen diameters were used to calculate the true
circumferential and radial strains. The circumferential strain was calculated using the change
in average specimen diameter. The radial strain was calculated using the change in the
thickness of the thin specimen wall. The axial stress was calculated using the measurement
of net axial force on the specimen and the current annular area of the specimen. The radial and
circumferential principal stresses were calculated from the measurements of internal and
external pressure. The radial stress was assumed to resist changes in wall thickness and was
calculated as the sum of the radial stresses at the middle of the wall required to equilibrate the
inner pressure acting on the inner wall and the outer pressure acting on the outer wall. The
circumferential stress was assumed to resist changes in average specimen diameter and was
calculated as the stress acting over the wall thickness to balance the difference between the
forces of the outer pressure acting on the outer wall and the inner pressure acting on the inner
wall.

5.4 DAMAGE RECOVERY

The intent of the damage recovery tests was to investigate the introduction of damage and
damage recovery in intact WIPP specimens. Damage was introduced during a standard
constant strain rate test performed at low confining pressure. Subsequently, the damaged
specimen was subjected to hydrostatic pressurization at either room or elevated temperatures.
During both the damage and damage recovery phases, the ultrasonic compressional waves were
monitored along with the corresponding axial and lateral specimen strains. During data
analysis, the ultrasonic data was correlated to the levels of specimen strain (damage).
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6.0 CALIBRATION/VERIFICATION PROCESSES

6.1 CALIBRATION

The general approach to calibration followed the guidelines set forth in a national
Performance Test Code on Measurement Uncertainty (ANSI/ASME, 1985). That test code
suggests that insofar as possible, “the calibration process should include a reasonable simulation
of instrument test-like conditions.” Following this guideline, the transducers on the test
systems were calibrated by bringing reference calibration standards to the test system rather
than taking the transducers to a calibration facility.

During a typical calibration, transducers were connected in their normal orientations on the
test system and their outputs were recorded through an analog-to-digital converter at the data
collection computer. A typical calibration consisted of applying 20 known standard inputs to the
transducer and reading the corresponding transducer outputs at the data collection point. The
correlation between the transducer outputs and known standard inputs provided the sensitivity
and offset for that transducer. Standard inputs were provided by standards that were traceable
to the U.S. National Institute for Standards and Technology (formerly National Bureau of
Standards).

The calibration constants determined for each transducer were periodically checked by
verifying them against the standards. This was usually done during the interval available
between the termination of one test and the initiation of the next test. This transducer
verification provided a check on anomalies that could arise in the data acquisition process
(e.g., transducer drift, power supply fluctuations, wire breaks, etc.).

In addition to the transducer calibrations, system calibrations were also performed. System
calibrations are those correction factors used to account for changes in the transducer output
that are unrelated to specimen behavior. For example, when axial specimen deformation is
measured with extensometers that are connected between a loading ram and a fixed point on
a test vessel, a portion of the displacement reading represents deformation of the test system
and not deformation of the specimen. This is often referred to as the “machine softness”
component of the reading. Calibration factors that account for machine softness were
determined and used when reducing axial deformation data. Other typical system calibration
factors that were determined to account for such biases included (1) the temperature gradient
between the thermocouple location and the midpoint of the specimen, (2) temperature
corrections on dilatometer volume measurements, (3) pressure and temperature effects on
transducers subjected to hostile environments, (4) delay times for acoustic transducers, and (5)
the influence of the protective jackets used when performing triaxial compression tests. The
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specific details of these types of system calibrations are too extensive to be presented here, but
they are contained in the individual reports listed in Table 1-1.

6.2 VERIFICATION

After all calibration constants have been determined, there is still a need to verify (or
validate) that the test system is responding as expected. A typical verification technique
involved testing a specimen fabricated from material with known properties, like steel and
aluminum, and checking the test result to verify that the expected response was observed. This
common technique of verification was often carried out just prior to starting production testing
on the rock samples and was reported in the final results, if appropriate.

Another method of verifying proper system operation was to test a specimen of rock that had
been previously characterized, either by RE/SPEC or perhaps some other agency. The test
results could be compared to the previously published results to gain confidence that the test
system was operating properly. Again, such comparative verification exercises were reported
in the final results, if appropriate.
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7.0 DATA

This chapter comprises the bulk of this report and holds the compilation of data from the
various sources listed in the introduction. This chapter is organized into four sections, each of
which presents data for a particular type of test. The four test types are (1) quasi-static triaxial
compression, (2) constant stress (creep), (3) multiaxial, and (4) damage recovery. Moreover, the
section on creep data is further organized as to source of specimens. The creep data results are
presented separately for specimens that came from boreholes in the vicinity of the WIPP and
specimens that came directly from the WIPP mine workings.

7.1 QUASI-STATIC TRIAXIAL COMPRESSION

Within this subsection, two tables have been included that summarize the complete work
performed and documented in the reports for borehole specimens. The first table represents the
matrix of tests that were perforxhed and the second table presents a summéry of the test results.
All of the specimens used for quasi-static triaxial compression tests came from the boreholes
AEC7 and ERDA9 drilled in the vicinity of the WIPP.

A text matrix is given in Table 7-1. The source where the data were originally reported is
indicated in the table. The first column in the table is the specimen identification label that was
assigned in the original report. The next two columns are the original nominal diameter of the
specimen and the specimen’s length-to-diameter ratio. The nominal test conditions are given
in columns four through six as specimen temperature, confining pressure, and axial stress
difference loading rate, respectively.

Each test listed in a test matrix produced a result generated from an analysis of the data.
The various test results are summarized for borehole specimens in Table 7-2 along with
comments on the tests.

Plots have been created to present the salient features of each test listed in Table 7-1 to
demonstrate control of desired test conditions and observations of the resulting specimen
behavior. Thus, data plots consist of curves tracing the control variables as a function of time
and also plots of stress versus strain. These plots can be found in Appendix A.

7.2 CONSTANT STRESS (CREEP)

Within each of the following two subsections (one for borehole specimens and one for
specimens from the mine workings), two tables have been included that summarize the complete
work performed and documented in the reports. The first table represents the matrix of tests
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that were performed, and the second table presents a summary of the test results. In all the
tables, the source references are given in subheadings to indicate where the data were originally
reported. The sign convention in the tables is that compression is positive.

Table 7-1. Quasi-Static Test Matrix for Borehole Specimens

Nominal

Dimensions® Specimen s Load Rate
i 3
Specimen I.D. D . Teml(’fé‘;lture 2 "
(mm) : (MPa/min)
Following Data From SAND79-7045
AEC7-1953
(Test RQ-1) 50 2 28 3.45 0.21
AEC7-1954 (B)
(Test RQ-2) 50 2 100 13.8 0.14
AEC7-2721.5 (A)
(Test RQ.3) 50 2 28 3.45 0.14
AEC7-2721.5 (B)
(Test RQ-4) 50 2 28 13.8 0.12

(@@ D = diameter
L:D = length-to-diameter ratio.

Table 7-2. Quasi-Static Test Results for Borehole Specimens

Specimen ACpar g max E v Comments
1LD. (MPa) ! (GPa)

Following Data From SAND79-7045

AEC7-1953

(Test RQ-1) The maxzimum stress and strain
values are not ultimate values.
AECT7-1954 (B) 26 0.0769 2.0 0.37 | Loading was terminated at machine

39 0.0644 3.0 0.46

(Test RQ-2) limits. The elastic parameters were
not determined from an un-
?I‘E(fi?gz;).s A4) 36 0.0619 14 0.26 | load/reload cycle. They are an
es a integrated modulus calculated over
AEC7-2721.5 (B) the initial 1 percent of axial strain.
(Test RQ-4) 40 0.0765 2.5 0.29
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7.2.1 Boreholes

A composite text matrix for the tests on specimens from boreholes is given in Table 7-3. The
first column in the table identifies the specimen as it was identified in the original report. The
second column is the stage of loading for that specimen. The next column designates the load
path for that portion of the test where the designation “A” means application of the load and
“C” means the constant stress portion of the test. The nominal test conditions are given in
columns four through six and column seven is the test duration. The durations are given in
units of seconds (s), minutes (m), or days (d).

The test results for the specimens listed in the test matrix are summarized in Table 7-4.
Included as a test result in Table 7-4 are the increments of strain induced in the specimen
during the application of an axial stress difference to initiate the creep test and during the creep
portion of the test. The sign convention on the strain values is that compression is positive.
Also included in Table 7-4 are test comments that may reflect unusual specimen behavior,
aberrations in test control, or some other special characteristic of that test that deserves
consideration.

Plots have been created to present the salient features of each test to demonstrate control
of desired test conditions and observations of the resulting specimen behavior. Thus, typical
plots consist of curves tracing the control variables as a function of time and also plots of strain
versus time. Most of the tests were initiated by applying the axial stress difference at a
relatively slow rate. For these tests, plots are included that present the test conditions as a
function of time during the load application. Also included are plots of the stress versus strain
response for the load application. All plots can be found in Appendix B where the sign
convention is that compression is positive.

7.2.2 WIPP Mine Workings

A composite text matrix for the tests on specimens from the WIPP mine workings is given
in Table 7-5. The first column in the table identifies the specimen as it was identified in the
original report. "The second column is the stage of loading for that specimen. The next column
designates the load path for that portion of the test where the designation “A” means application
of the load and “C” means the constant stress portion of the test. The nominal test conditions
are given in columns four through six and column seven is the test duration. The durations are
given in units of seconds (s), minutes (m), or days (d).

The test results for the specimens listed in the test matrix are summarized in Table 7-6.
Included as a test result in Table 7-6 are the increments of strain induced in the specimen
during the initial application of an axial stress difference to initiate the creep test and during
the creep portion of the test. The sign convention on the strain values is that compression is
positive. Also included in Table 7-6 are test comments that may reflect unusual specimen
behavior, aberrations in test control, or some other special characteristic of that test that
deserves consideration.
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Plots have been created to present the salient features of each test to demonstrate control
of desired test conditions and observations of the resulting specimen behavior. Thus, data plots
consist of curves tracing the control variables as a function of time and also plots of strain
versus time. These creep tests were initiated by applying the desired axial stress difference
very quickly (<30s) and no data were collected during that time. Thus, there are no stress
application plots as were produced for the borehole specimens. All creep data plots can be found
in Appendix C where the sign convention is that compression is positive. For those specimens
classified as argillaceous salt, a notation is included in the figure caption.

7.3 MULTIAXIAL STRESS

This section presents the data obtained from a highly specialized type of test that required
the use of large, thin walled, hollow cylinders of salt. For this work, the relatively uniform and
pure dome salt from Avery Island, Louisiana, was used. The use of a non-WIPP salt type was
acceptable because these tests were designed to investigate the role of the intermediate principal
stress on the creep potential of salt and no site specific material properties were sought. Two
tables have been included to summarize the work performed. The first table represents the
matrix of tests that were performed and the second table présents a summary of the test results.

The text matrix that was followed is given in Table 7-7. The first column in the table is the
test identification label that was given in the original report. The remaining columns give the
test conditions in three equivalent forms; first as stress invariants, then as principal stresses,
and finally as the values of the controlled variables. All of the tests were performed on
specimens with the same nominal dimensions; a length of 610 mm, an outer diameter of
305 mm, and a wall thickness of 25 mm. All tests were conducted at laboratory room
temperature (20°C) and were performed on a single special purpose test system.

The numerical test results are summarized in Table 7-8. For this analysis, the test results
were represented by the Lode angle for stress calculated from the measured stresses and the
principal strain rates observed at the end of the test. The principal strain rate values were used
to calculate Lode angles for strain rates which were then plotted against Lode angles for
stresses. Each test provided a single data point on the Lode angle plot and they appear as
shown in Figure 7-1. There are two theoretical curves in Figure 7-1; one represents the
theoretical response if the creep potential of salt is governed by a Mises criterion and the other
represents the theoretical response if the creep potential of salt is governed by a Tresca
criterion. A comparison of the two theoretical curves with the experimental data led to the
conclusion that the creep potential of salt was best represented by a Tresca criterion.

Plots have been created to present the salient features of each test to demonstrate control
of desired test conditions and observations of the resulting specimen behavior and those plots
can be found in Appendix D. The figures in Appendix D are plots of curves that trace the
control variables as a function of time and also plots of all three principal strains versus time.
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The control variables are presented in terms of two stress invariants and the Lode angle for
stresses because they are common measures used when dealing with multiaxial states of stress.
In the strain versus time plots, the strain values include the elastic and inelastic strains
induced during the loading to initiate the creep tests. The multiaxial tests were originally
reported using a positive sign for tension and that convention has been retained in this section
and in Appendix D.

Table 7-8. Multiaxial Test Results for Avery Island Salt

Specim;; Stress Lode Principal Strain Rates at End of Test (s™)
LD. Angle, y° 5 tan .
A1/82/C'1 0.78° 0 6.83 x 107 -5.64 x 107
A1/86/C'3/1 10.23° 0 6.73 x 107 -6.63 x 107%°
AT/86/A'1/1 10.21° 0 0.59 x 1071 -0.59 x 107
A1/86/C'4/1 19.85° 0 3.36 x 107 -4.35 x 107
AT1/86/A'12/1 20.65° 0 0.89 x 107 -3.17 x 107
A1/82/C'7 29.59° 1.88 x 107 1.88 x 107%° -3.17 x 107
AT/86/A'10/1 - 20.52° 0 1.94 x 107 -2.07 x 107%°

7.4 DAMAGE RECOVERY

This section presents the data obtained from a specialized testing program devised to assess
the effects of time, temperature, hydrostatic stress, and damage level on crack closure and
healing of salt specimens retrieved from the WIPP mine workings. Table 7-9 has been included
to summarize the work performed and it represents the matrix of tests that were performed.

The tests listed in Table 7-9 were used to generate data that could be used to address
questions in two separate experiments. In the first experiment, three specimens that had been
subjected to a controlled level of damage (1 percent axial strain) in a strain rate controlled
triaxial compression test, were healed at one of three different pressures (5, 10, and 15 MPa).
Crack closure and healing, as indicated by changes in ultrasonic compressional wave amplitudes
and velocities, were observed as a function of time by recording the recoveries of the amplitudes
and velocities. In the second experiment, the effect of different damage levels was investigated.
Specimens that had been subjected to one of three controlled levels of damage (0.5, 1.0, or 1.5
percent axial strain) were all healed at a pressure of 15 MPa. Again, the recoveries of the wave
amplitudes and velocities were measured as a function of time to assess the effect of initial
damage level on the healing process.
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The results of the testing are graphical in nature, so there is no tabulation of test results
contained within this section. Plots have been created to present the data measured during
each test. Included are plots of strain versus time and plots of wave amplitude and velocity
versus time. These plots can be found in Appendix E. The sign convention for the damage
recovery work was that compression is positive.

Table 7-9. Damage Recovery Test Matrix for WIPP Mine Workings Salt

Test Specimen Temperature | Pressure Damage Level
1I.D. (&) (MPa) (Axial Strain, %)
The Following Data From SAND93-7111
LCHO015 C1X01-02/1-4/2-2® 21 15 1.5
LDRO001 MCE36-1/2-1/2-7/2 70 15 1.5
LDRO002 MCE36-1/2-1/2-6/2 70 15 1.5
LDRO005 MCE36-1/2-1/2-1/2 46 15 1.5
LDRO006 MCE36-1/1-1/2-7/2 46 15 1.5
The Following Data From SAND90-7076
1 C1X01-04/1-4/2-2 21 10 1.0
2 C1X01-03/1-4/4-2 21 5 1.0
3 C1X01-04/1-2/4-2 21 15 1.0
4 C1X01-04/1-2/3-2 21 15 0.5
5 C1X01-02/1-4/4-2 21 15 1.0
6 C1X01-02/1-4/2-2® 21 15 1.5
7 C1X01-04/1-4/4-2 21 15 0.5

(@ This test was originally reported in SAND90-7076 (Brodsky, 1990) and
then referenced again in SAND93-7111 (Brodsky, 1993).
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8.0 SUMMARY

Twenty-one years of laboratory testing performed by RE/SPEC Inc. in support of the WIPP
has been summarized and compiled into this single document. The types of tests performed
over that period and included here represent quasi-static triaxial compression, constant stress
(creep), multiaxial creep, and damage recovery. All tests performed over that period and
included here have been previously reported.

The data contained herein are essentially only a reproduction of previously published
results. There has been no new data reduction performed in preparation of this report. A
substantial part of the current effort involved retrieval of archived information for the given
reports from the RE/SPEC file system. This information was reformatted for incorporation into
the standard Laboratory Notebook System format now in use at the WIPP and described in
Appendix B of SNL Quality Assurance Procedure QAP 20-03 entitled Qualification of Existing
Data (Scully, 1995). Those Laboratory Notebooks provide all the supporting information for the
data presented in this summary report and they will be transferred to Sandia WIPP Central
Filing for future reference and records retention.
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APPENDIX A

QUASI-STATIC TRIAXIAL COMPRESSION TESTS
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Quasi-Static Triaxial Compression Test
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Figure A-1. Test Conditions Versus Time for a Quasi-Static Triaxial Compression Test:
Specimen AEC7-1953.
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Quasi-Static Triaxial Compression Test
(Stress vs. Strain)
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Figure A-2. Axial Stress Difference Versus Axial and Lateral Strain for a Quasi-Static
Triaxial Compression Test: Specimen AEC7-1953.

A-6




RSI-386-96-003

Quasi-Static Triaxial Compression Test
(Test Conditions vs. Time)
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Figure A-3. Test Conditions Versus Time for a Quasi-Static Triaxial Compression Test:
Specimen AEC7-1954 (B).
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(Stress vs. Strain)
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Quasi-Static Triaxial Compression Test
(Test Conditions vs. Time)
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Figure A-5. Test Conditions Versus Time for a Quasi-Static Triaxial Compression Test:
Specimen AEC7-2721.5 (A).
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Quasi-Static Triaxial Compression Test
(Stress vs. Strain)
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Figure A-7. Test Conditions Versus Time for a Quasi-Static Triaxial Compression Test:
Specimen AEC7-2721.5-(B).

A-11




RSI-386-96-008

Quasi-Static Triaxial Compression Test
(Stress vs. Strain)

AA © o
AA o o
Al Olo
AA ° o
AD 0 o
hA olo
AA LX)
30 A o BV,
© AA oo
a A %o o Axial
= M 0o
o 25 2 ob - A Lateral
e 8 00
% A 00
= A o]
o 20 A ©
a a ®
g a ©
D 15 A—@
% ae RQ-4
< 4 AEC 7-2721.5(B
\ © - ® ( )
10 © SAND79-7045
o3 = 13.8 MPa
A'c =0.12 MPa/min
5 T=28°C
0 }
4 -2 0 2 4 6 8

Strain, percent

Figure A-8. Axial Stress Difference Versus Axial and Lateral Strain for a Quasi-Static
Triaxial Compression Test: Specimen AEC7-2721.5 (B).

A-12

- ol RN




APPENDIX B

CREEP TESTS ON BOREHOLE SPECIMENS

B-1

e 4
~

~
3)
nes
5.4
Ot
Dt




a5



FIGURE

B-1

B-2

B-3

B-10

B-11

B-12

B-13

B-14

B-15

B-16

B-17

B-18

FIGURES

PAGE

Test Conditions Versus Time for a Creep Test: Specimen ERDA9/88/2127-0/1;

Stage Lof 1 ...ttt i i it it e B-15
Axial Strain and Lateral Strain Versus Time for a Creep Test:

Specimen ERDA9/88/2127-0/1; Stage 1 of 1 . ..., B-16
Test Conditions Versus Time for a Creep Test: Specimen ERDA9/88/2124-0/1;

S 17 =S o i B-17
Axial Strain and Lateral Strain Versus Time for a Creep Test:

Specimen ERDA9/88/2124-0/1; Stage 1of 1 .......... ... ..., B-18
Test Conditions Versus Time for a Creep Test: Specimen ERDA9/88/2126-0/1;

Stage 1of1 ........... e ettt e e e e e B-19
Axial Strain and Lateral Strain Versus Time for a Creep Test:

Specimen ERDA9/88/2126-0/1; Stage 1of 1 ........ ... ... .o, B-20
Test Conditions Versus Time for Stress Application to Initiate a Creep

Test: Specimen SLA/79/1/2; Stage 1 of 1 ... ... ... i, B-21
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen SLA/79/1/2; Stage 1of 1 ............... B-22
Test Conditions Versus Time for a Creep Test: Specimen SLA/79/1/2;

Stage Lof 1l ...vueiiniiiniintitiieieeaneanteneeaneaanaanaennns B-23

Axial Strain and Lateral Strain Versus Time for a Creep Test:
Specimen SLA/79/1/2; Stage 1 of 1 (Data Acquisition Failure at 9 Days.

Data Before 9 Daysis Valid) ..........iiiiiiiiinineiiiiiiinnnnnns B-24
Test Conditions Versus Time for Stress Application to Initiate a Creep

Test: Specimen SLA/79/4A/2; Stage 1 of 2 ........ ... . i, B-25
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen SLA/79/4A/2; Stagelon2 ............. B-26
Test Conditions Versus Time for a Creep Test: Specimen SLA/79/4A/2;

Stage L of 2 ..iitiiitii it ittt i it e e i e B-27
Axial Strain and Lateral Strain Versus Time for a Creep Test:

Specimen SLA/79/4A/2; Stage 1 of 2 . ... ... i B-28
Test Conditions Versus Time for Temperature Application to Initiate a Creep

Test: Specimen SLA/79/4A/2; Stage 20f2 ....... ... ... i, B-29
Test Conditions Versus Time for a Creep Test: Specimen SLA/79/4A/2;

Stage 20f 2 ... et e e B-30
Axial Strain and Lateral Strain Versus Time for a Creep Test:

Specimen SLA/79/4A/2; Stage 20f2 ... ... ... ... ... i, .. B31
Test Conditions Versus Time for Stress Application to Initiate a Creep

Test: Specimen SLA/79/18C/1;Stage Lof 1 ......... ... i, B-32

B-3




FIGURE

B-19

B-20

B-21

B-22

B-23

B-24

B-25

B-26

B-27

B-28

B-29

B-30

B-31

B-32

B-33

B-34

B-35

FIGURES (Continued)

PAGE

Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen SLA/79/18C/1; Stage 1of 1 ............. B-33
Test Conditions Versus Time for a Creep Test: Specimen SLA/79/18C/1;

Stage L of 1 ...t i i e e e e e e B-34
Axial Strain and Lateral Strain Versus Time for a Creep Test:

Specimen SLA/79/18C/1;Stage 1of 1 .. ... . ittt B-35
Test Conditions Versus Time for Stress Application to Initiate a Creep

Test: Specimen SLA/79/19A/2; Stage 1of 1 ......... ... ... i, B-36
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen SLA/79/19A/2; Stage 1of 1 ............. B-37
Test Conditions Versus Time for a Creep Test: Specimen SLA/79/19A/2;

S 17 T= I I P B-38
Axial Strain and Lateral Strain Versus Time for a Creep Test:

Specimen SLA/7T9/19A/2; Stage 1of 1 . ... ... ittt iinnnnnns B-39
Test Conditions Versus Time for Stress Application to Initiate a Creep

Test: Specimen SLA/79/11/2; Stage 1 of 1 ........ ... .o iiinan. B-40
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen SLA/79/11/2; Stage 1 of 1 .............. B-41
Test Conditions Versus Time for a Creep Test: Specimen SLA/79/11/2;

Stage 10f 1 ... ittt ittt ettt ettt e B-42

Axial Strain and Lateral Strain Versus Time for a Creep Test:
Specimen SLA/79/11/2; Stage 1 of 1 (Data Acquisition Failure at 9 Days.
Data Before 9 Days is Valid. Poor Lateral Data Caused by Dilatometer Leak) B-43

Test Conditions Versus Time for Stress Application to Initiate a Creep

Test: Specimen SLA/79/1/1; Stage 1 of 2 . .. ... ittt B-44
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen SLA/79/1/1; Stage 10of2 .............. . B-45
Test Conditions Versus Time for a Creep Test: Specimen SLA/79/1/1;

Stage 1 0f 2 ... i i i ittt e e e e e e e e B-46
Axial Strain and Lateral Strain Versus Time for a Creep Test:

Specimen SLA/79/1/1; Stage 1of 2 ... . ... . ittt B-47
Test Conditions Versus Time for Temperature Application to Initiate a Creep

Test: Specimen SLA/79/1/1; Stage 20f 2 . .. .. ... i iiiinnnnn. B-48
Test Conditions Versus Time for a Creep Test: Specimen SLA/79/1/1;

Stage 20f 2 . ... i i i et e e e B-49

B4




FIGURE

B-36

B-37

B-38

B-39

B-40

B-41

B-42

B-43

B-44

B-45

B-46

B-47

B-48

B-49

B-50

B-51

B-52

B-53

FIGURES (Continued)

PAGE
Axial Strain and Lateral Strain Versus Time for a Creep Test:
Specimen SLA/79/1/1; Stage 20f2 ...... ..o i B-50
Test Conditions Versus Time for Stress Application to Initiate a Creep
Test: Specimen SLA/79/15A/2;Stage Lof L .......covviiiniiiiennnen B-51
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen SLA/79/15A/2; Stage 1of 1 ............. B-52
Test Conditions Versus Time for a Creep Test: Specimen SLA/79/15A/2;
Stage Lof 1 o ouvennit e it B-53
Axial Strain and Lateral Strain Versus Time for a Creep Test:
Specimen SLA/79/15A/2; Stage 1of 1 . ...t B-54
Test Conditions Versus Time for Stress Application to Initiate a Creep
Test: Specimen SLA/79/19A/1; Stage 1of L ... ..ovvviiiinieiennnn, B-55
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen SLA/79/19A/1; Stage 1 of 1 .. ... feeeeees B-56
Test Conditions Versus Time for a Creep Test: Specimen SLA/79/19A/1;
T3 A i A R B-57
Axial Strain and Lateral Strain Versus Time for a Creep Test:
Specimen SLA/79/19A/1; Stage Tof 1 ... B-58
Test Conditions Versus Time for Stress Application to Initiate a Creep
Test: Specimen SLA/79/15A/1; Stage Lof 1 .......covvnneeeiiiinnnnnnn B-59
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen SLA/79/15A/1; Stage 1of 1 ............. B-60
Test Conditions Versus Time for a Creep Test: Specimen SLA/79/15A/1;
Y A i A R EEEE R R B-61
Axial Strain and Lateral Strain Versus Time for a Creep Test:
Specimen SLA/79/15A/1; Stage 1of 1 .. ... ooiiiiiiiiiinnniernnnnnnn. B-62
Test Conditions Versus Time for Stress Application to Initiate a Creep
Test: Specimen SLA/79/18B/2; Stage L1of 1...........ccvntniiinnennnn. B-63
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen SLA/79/18B/2; Stage 1 of1 ............. B-64
Test Conditions Versus Time for a Creep Test: Specimen SLA/79/18B/2;
Stage 1of1 . ..vvierrereeeenernionnnnneeeens et eeeeaaaea B-65
Axial Strain and Lateral Strain Versus Time for a Creep Test:
Specimen SLA/79/18B/2; Stage 1 of 1 .. ... ..ooiieiiiiennneeetnnnnn B-66
Test Conditions Versus Time for Stress Application to Initiate a Creep
Test: Specimen SLA/79/18C/2; Stage L of 1 ...........ocvivinnnnnnnn, B-67

B-5




FIGURE

B-54
B-55
B-56
B-57
B-58
B-59
B-60
| B-61
B-62
B-63
B-64
B-65
B-66
B-67
B-68
B-69
B-70

B-71

FIGURES (Continued)

Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen SLA/79/18C/2; Stage 1of 1 .............

Test Conditions Versus Time for a Creep Test: Specimen SLA/79/18C/2;
Stage 1 of 1 ...t

Axial Strain and Lateral Strain Versus Time for a Creep Test:
Specimen SLA/79/18C/2; Stage 1 of 1 . ..o vt vii e,

Test Conditions Versus Time for Stress Application to Initiate a Creep
Test: Specimen SLA/79/20/2; Stage 1 of 1 ... ..o v e,

Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen SLA/79/20/2; Stage 1 of 1 ..............

Test Conditions Versus Time for a Creep Test: Specimen SLA/79/20/2;
Stage 1of 1 ..ottt ettt e et

Axial Strain and Lateral Strain Versus Time for a Creep Test:
Specimen SLA/79/20/2; Stage 1 of 1 ... ..ottt et e,

Test Conditions Versus Time for Stress Application to Initiate a Creep
Test: Specimen SLA/79/20/1;Stage 1 of 1 ....... ...t iunnnn...

Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen SLA/79/20/1; Stage 1of 1 ..............

Test Conditions Versus Time for a Creep Test: Specimen SLA/79/20/1;
Stage 1 of 1 ...t i e

Axial Strain and Lateral Strain Versus Time for a Creep Test:
Specimen SLA/79/20/1; Stage 1 of 1 . ... ....v ittt

Test Conditions Versus Time for Stress Application to Initiate a Creep
Test: Specimen SLA/79/18B/1;Stage 1of 1 .. ... oo i,

Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen SLA/79/18B/1; Stage 1 of1 .............

Test Conditions Versus Time for a Creep Test: Specimen SLA/79/18B/1;
Stage 1 of L ..ottt it it e e e

Axial Strain and Lateral Strain Versus Time for a Creep Test:
Specimen SLA/79/18B/1; Stage 1 of 1 ...ttt iinennnnnn.

Test Conditions Versus Time for Stress Application to Initiate a Creep
Test: Specimen SLA/79/14B/1; Stage Lof 1 ... ..o ie e e,

Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen SLA/79/14B/1; Stage 1 of 1 .............

Test Conditions Versus Time for a Creep Test: Specimen SLA/79/14B/1;
Stage L of 1 ...t i e

B-6

PAGE



FIGURE

B-72

B-73

B-74

B-75

B-76

B-77

B-78

B-79

B-80

B-81

B-82

B-83

B-84

B-85

B-86

B-87

B-88

B-89

FIGURES (Continued)

PAGE
Axial Strain and Lateral Strain Versus Time for a Creep Test:
Specimen SLA/79/14B/1; Stage 1of 1 ... ... o it iiiiene., B-86
Test Conditions Versus Time for Stress Application to Initiate a Creep
Test: Specimen ERDA9-2668.5 (A); Stage 1of 1 .......... ... .o, B-87
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2668.5 (A); Stage Lof1 ......... B-88

Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2668.5 (A);
Stage 1 of 1 (System Malfunction at 5.1 Days. Test was Restarted After
Repair) . ....oovviieinnenennn PP B-89

Axial Strain and Lateral Strain Versus Time for a Creep Test:
Specimen ERDA9-2668.5 (A); Stage 1 of 1 (System Malfunction at 5.1 Days.

Test was Restarted After Repair) ....... ..., B-90
Test Conditions Versus Time for Stress Application to Initiate a Creep

Test: Specimen ERDA9-2668.5 (B); Stage 1of 1 ......... ... ..ottt B-91
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen ERDA9-2668.5 (B); Stage 1of 1 ......... B-92
Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2668.5 (B);

Stage Lof L ... vt ittt ittt ittt i et B-93
Axial Strain and Lateral Strain Versus Time for a Creep Test:

Specimen ERDA9-2668.5 (B); Stage 1of 1 ..............coiiiiiiinnnn. B-94
Test Conditions Versus Time for Stress Application to Initiate a Creep

Test: Specimen ERDA9-2622.0; Stage Lof 1 ........... ..., B-95
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen ERDA9-2622.0; Stage 1 of 1 ............ B-96
Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2622.0;

Stage 1 of L ...ttt ieiteneeeennateaaeecesonnanns B-97
Axial Strain and Lateral Strain Versus Time for a Creep Test:

Specimen ERDA9-2622.0; Stage 1of 1 ........ ... .o i, B-98
Test Conditions Versus Time for Stress Application to Initiate a Creep

Test: Specimen ERDA9-2678.0 (A); Stage Lof 1 ....... ... ... .. ..ot B-99
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen ERDA9-2678.0 (A); Stage 1 of 1 ....... .. B-100
Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2678.0 (A);

Stage 1 of 1 (Specimen Rupture Terminated Test) ..................... B-101
Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2678.0 (A); Stage 1 of 1 (Specimen Rupture Terminated Test) ..... - B-102
Test Conditions Versus Time for Stress Application to Initiate a Creep

Test: Specimen ERDA9-2674.5 (A); Stage 1of 1 .............ooviiant, B-103

B-7

S i




FIGURE

B-90

B-91

B-92

B-93

B-94

B-95

B-96

B-97

B-98

B-99

B-100

B-101

B-102

B-103

B-104

B-105

B-106

B-107

FIGURES (Continued)

PAGE
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2674.5 (A); Stage 1 of 1 ........ B-104
Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2674.5 (A);
Stage 1 of 1 ... B-105
Axial Strain and Lateral Strain Versus Time for a Creep Test:
Specimen ERDA9-2674.5 (A); Stage 1of 1 .........couurunrrnnnnnnn.. B-106
Test Conditions Versus Time for Stress Application to Initiate a Creep
Test: Specimen ERDA9-2674.5 (B); Stage 1of 1 . .........covvuunnnn... B-107
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2674.5 (B); Stage L of 1 ........ B-108
Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2674.5 (B);
Stage 1 of 1 (Specimen Contacted Vessel Wall at 150 Hours) ............. B-109
Axial Strain and Lateral Strain Versus Time for a Creep Test:
Specimen ERDA9-2674.5 (B); Stage 1 of 1 (Specimen Contacted Vessel Wall at
150 Hours) . ..ottt ittt ittt e et B-110
Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2679.0 (B); Stage 1of 1 .............ciiiivnnunn.. B-111
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2679.0 (B); Stage 1 of 1 ........ B-112
Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2679.0 (B);
Stage 1 of 1 (Specimen Contacted Vessel Wall at Endof Test) ............ B-113
Axial Strain and Lateral Strain Versus Time for a Creep Test:
Specimen ERDA9-2679.0 (B); Stage 1 of 1 (Specimen Contacted Vessel Wall at
B3 T T G =T ) B-114
Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2605.0 (B); Stage 1 of 1 ........0iiiiiiiiiiinnnnnn. B-115
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2605.0 (B); Stage 1 of 1 ........ ‘B-116
Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2605.0 (B);
Stage L1 of 1 ...ttt i i i i e e e e B-117
Axial Strain and Lateral Strain Versus Time for a Creep Test:
Specimen ERDA9-2605.0 (B); Stage Lof 1 ............ccciiuerennn.. B-118
Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2678.0 (B); Stage 1 of 2 ..........cviiiiiiiieneenn. B-119
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2678.0 (B); Stage 1 of2 ........ B-120
Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2678.0 (B);
Stage 10f 2 . ... i it ittt ittt ittt ettt ittt B-121




FIGURE

B-108

B-109

B-110

B-111

B-112

B-113

B-114

B-115

B-116

B-117

B-118

B-119

B-120

B-121

B-122

B-123

B-124

B-125

FIGURES (Continued)

PAGE
Axial Strain and Lateral Strain Versus Time for a Creep Test:
Specimen ERDA9-2678.0 (B); Stage 1 0of2 .......... ..ot B-122
Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2678.0 (B); Stage 20f2 ............coiiiiiiiin.. B-123
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2678.0 (B); Stage 20f2 ........ B-124
Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2678.0 (B);
Stage 2 of 2 (Specimen Rupture Terminated Test) ..................... B-125
Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2678.0 (B); Stage 2 of 2 (Specimen Rupture Terminated Test) ...... B-126
Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2606.0 (B); Stage 10f2 ...........c.covvennninnnnnn B-127
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2606.0 (B); Stage 1of2 ........ B-128
Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2606.0 (B);
Stage 1 0f2 o oveeiii it ittt B-129
Axial Strain and Lateral Strain Versus Time for a Creep Test:
Specimen ERDA9-2606.0 (B); Stage 1 Of 2 i i ettt B-130
Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2606.0 (B); Stage 20f2 ............covvennninnn B-131
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2606.0 (B); Stage 20f2 ........ B-132
Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2606.0 (B);
Stage 2 0f2 .. ieiiii i it B-133
Axial Strain and Lateral Strain Versus Time for a Creep Test:
Specimen ERDA9-2606.0 (B); Stage 20f2 ............ovvvviininnnnns B-134
Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2679.0 (A); Stage 10of2 .......cooviieiinnnnennnn B-135
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2679.0 (A); Stage 1 of2 ........ B-136
Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2679.0 (A);
Stage 10f2 . ovtei e ittt B-137
Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2679.0 (A); Stage 1 0f2 .. ... ittt B-138
Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2679.0 (A); Stage 2 of 2 (Speclmen Contacted Vessel Wall.
NOCreep Stage) . .o oo vvieveeecnentneeearenatataeensssaencennns B-139




FIGURE

B-126

B-127

B-128

B-129

B-130

B-131

B-132

B-133

B-134

B-135

B-136

B-137

B-138

B-139

B-140

B-141

B-142

B-143

FIGURES (Continued)

PAGE

Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2679.0 (A); Stage 2 of 2 '

(Specimen Contacted Vessel Wall. No Creep Stage) .................... B-140
Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2678.3 (B); Stage 10f 2 ............co0 oo, B-141
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen ERDA9-2678.3 (B); Stage 1of2 ........ B-142
Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2678.3 (B);

Stage Lof 2 ... B-143
Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2678.3 (B); Stage 1 0f2 . ...t i, B-144
Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2678.3 (B); Stage 20f2 ... ..o ev oo, B-145
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen ERDA9-2678.3 (B); Stage 20f2 ........ B-146
Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2678.3 (B);

Stage 2 0f 2 ... B-147
Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2678.3 (B); Stage 20f2 . ... ..ottt B-148
Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2605.5 (B); Stage 1of 1 ..............0vuununnn... B-149
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen ERDA9-2605.5 (B); Stage 1 of 1 ........ B-150
Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2605.5 (B);

Stage 1 of 1 ...t B-151
Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2605.5 (B); Stage 1 of 1 ......... e et .. B-152
Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2678.7 (B); Stage 1 of 1 .. .......cuuuunnnnnnnn... B-153
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen ERDA9-2678.7 (B); Stage 1 of 1 ........ B-154
Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2678.7 B);

Stage 1of 1 ..... e e e e e e e ettt e e B-155
Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2678.7 (B); Stage 1of 1 .. ..ottt B-156
Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2729; Stage 1 of 8 .. ... .ot iii ettt ire e, B-157

B-10

e e I Hrt




FIGURE

B-144

B-145

B-146

B-147

B-148

B-149

B-150

B-151

B-152

B-153

B-154

B-155

B-156

B-157

B-158

B-159

B-160

B-161

FIGURES (Continued)

PAGE
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2729; Stage 1 of 3 .............. B-158
Test Conditions Versus Time for a Creep Test: Specimen AEC7-2729; Stage 1
0 J B-159
Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AECT-2729;Stage 1 0f 3 . . ... oottt i i i i ittt B-160
Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2729; Stage 20f3 . ...... ... .. i, B-161
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2729; Stage 20f3 .............. B-162
Test Conditions Versus Time for a Creep Test: Specimen AEC7-2729; Stage 2
10 U B-163
Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AECT-2729; Stage 20f 8 . . ..ottt ittt it et B-164
Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2729; Stage 3of 8 ........ ... ... i, B-165
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2729; Stage830f3 .............. B-166
Test Conditions Versus Time for a Creep Test: Specimen AEC7-2729; Stage 3
P J AU P B-167
Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ABCT-2729; Stage 30f 8 .. ..o ottt ittt it iiena i aanaans B-168
Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2715 (B); Stage 1of 2 . ...... ... ..ot B-169
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2715 (B); Stage 1of 2 ........... B-170
Test Conditions Versus Time for a Creep Test: Specimen AEC7-2715 (B);
Stage 1 of 2 .. uueeniiii ittt it it it et et B-171
Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AECT7-2715(B);Stage 1 of 2 . ..o ii ittt ittt ittt i B-172
Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2715 (B); Stage 20f2 ... ... ..cviieiiieniiiinen B-173
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2715 (B); Stage20f2 ........... B-174
Test Conditions Versus Time for a Creep Test: Specimen AEC7-2715 (B);
T B-175

B-11

vl




FIGURES (Continued)

FIGURE PAGE
B-162 Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AECT7-2715 (B); Stage 20f 2 . .. ..ot ittt e B-176
B-163 Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2715 (A); Stage Lof 8 . ......... o, B-177
B-164 Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
. to Initiate a Creep Test: Specimen AEC7-2715 (A); Stage 1 of 3 ........... B-178
B-165 Test Conditions Versus Time for a Creep Test: Specimen AEC7-2715 (A);
Stage 1of3 ... ... .. e e B-179
B-166 Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AECT-2715 (A); Stage 1 0f 8 . ..ottt it et et e e e B-180
B-167 Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2715 (A); Stage 20f8 . ... ..., B-181
B-168 Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2715 (A); Stage 20f3 ........... B-182
B-169 Test Conditions Versus Time for a Creep Test: Specimen AEC7-2715 (A);
Stage 2 0f B .. e B-183
B-170 Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AECT-2715 (A); Stage 2 0f 3 . .o oottt e e B-184
B-171 Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2715 (A); Stage 3of 3. . ... .. ..ottt B-185
B-172 Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2715 (A); Stage 3of 3 ........... B-186
B-173 Test Conditions Versus Time for a Creep Test: Specimen AEC7-27 15 (A);
_Stage.30f3 . ... e S e T ST Y e T e T A arSUO S B-187
B-174 Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AECT-2715 (A); Stage 3 0f 8 . ..ottt ittt ettt et e e e e e B-188
B-175 Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2711 (A); Stage 1 0f 2 . ...t i ittt et e e eeean B-189
B-176 Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2711 (A); Stage 1 of 2 ........... B-190
B-177 Test Conditions Versus Time for a Creep Test: Specimen AEC7-2711 (A);
Stage 1 0f 2 ... e e B-191
B-178 Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ABECT7-2711(A); Stage 10f 2 ... ..ot it ittt et e B-192
B-179 Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2711 (A); Stage 20f2 ... ... oiiin i, B-193

B-12




FIGURE

B-180

B-181

B-182

B-183

B-184

B-185

B-186

B-187

B-188

B-189

B-190

B-191

B-192

B-193

B-194

FIGURES (Continued)

PAGE

Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen AEC7-2711 (A); Stage 20f2 ........... B-194
Test Conditions Versus Time for a Creep Test: Specimen AEC7-2711 (A);

Stage 20f 2 ..o ittt it B-195
Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ABCT-2711 (A); Stage 202 . ..o vttt B-196
Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2711 (B); Stage 1of2 .. .....coiiiiiiennnieiennnn. B-197
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2711 (B); Stage 1of 2 ........... B-198
Test Conditions Versus Time for a Creep Test: Specimen AEC7-2711 (B);

Stage 10f2 . .vvviviiinnenennianinanaaens P B-199
Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AECT7-2711 (B); Stage 102 ..o iiv it inieineeeieiennnaaaanannns B-200
Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2711 (B); Stage 20f2 ..........ccvnniinininnnenen. B-201
Axdial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen AEC7-2711 (B); Stage 20f2 ........... B-202
Test Conditions Versus Time for a Creep Test: Specimen AEC7-2711 (B);

Stage 20f2 . oveiiii ittt B-203
Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ABECT7-2711 (B); Stage 202 ... v viineien i iiteenraneoesecnnnns B-204
Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2715.5; Stage 1of 1 .........oconienniinennncnnne. B-205
Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen AEC7-2715.5; Stage Lof1 ............ B-206
Test Conditions Versus Time for a Creep Test: Specimen AEC7-2715.5;

Stage Lof 1 ..o vvureiirnnneeeeeeoneeenesaseeassctnenanenaens B-207
Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AECT7-27155;Stage 1of 1 ... vvniiii ittt B-208

B-13







RSI-386-96-111

Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-1. Test Conditions Versus Time for a Creep Test: Specimen ERDA9/88/2127-0/1;

Stage 1 of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-2. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9/88/2127-0/1; Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-3. Test Conditions Versus Time for a Creep Test: Specimen ERDA9/88/2124-0/1;
Stage 1 of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-4. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen

ERDA9/88/2124-0/1; Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-5. Test Conditions Versus Time for a Creep Test: Specimen ERDA9/88/2126-0/1;

Stage 1 of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-6. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9/88/2126-0/1; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)

12 30
=] (1]
10 o ] [ ] [ o o o [+ < ? [ © 8 o o 25
Temperature a
a
8 20
[m]
o
o 3
S . TEST #1 3
= ¢ SLA79/1/2 15 §
@ ' o SAND80-7114 5
2 o [As] |Ac=10.3MPa 3
@ o3 =0 MPa
4 o A’s = 0.7 MPa/min 10
o T=24°C
o
2 o 5
a
4 [os]
0 +—= x x x A—A— A —A—A—B—A—— DA 0

0 100 200 300 400 500 600 700 800 900
Time, seconds

Figure B-7. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen SLA/79/1/2; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-8. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen SLA/79/1/2; Stage 1 of 1.
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Constant Stress (Creep) Test

(Test Conditions vs. Time)
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-10. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen

SLA/79/1/2; Stage 1 of 1 (Data Acquisition Failure at 9 Days. Data Before 9
Days is Valid).
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-11. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen SLA/79/4A/2; Stage 1 of 2.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)

to Initiate a Creep Test: Specimen SLA/79/4A/2; Stage 1 on 2.
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Figure B-12.  Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-18.  Test Conditions Versus Time for a Creep Test: Specimen SLA/79/4A/2; Stage
1 of 2.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-14. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
SLA/79/4A/2; Stage 1 of 2.
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Temperature Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-15. Test Conditions Versus Time for Temperature Application to Initiate a Creep
Test: Specimen SLA/79/4A/2; Stage 2 of 2.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)

12 . 80

mﬁlh::mmmmm .

= WO ﬁ m
1 31v_, dieleesns—, 75
K @ W '® . co 00 030 4 Coa0 DO €Y

Temperature

©
3

>
S TEST 1R2, Stage 2 -g
= 6 SLA/79/4A/2 65 §
g,i‘ SAND80-7114 s
2 Ac =10.3 MPa L
@ o3 =0 MPa o
4 T=70°C 60
2 55

a3
0 wmmammi—- 50

0.0E+0 2.0E+5 4.0E+5 6.0E+5 B8.0E+5 1.0E+6 1.2E+6 1.4E+6
Time, seconds

Figure B-16. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/4A/2; Stage
2 of 2.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-17.  Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
SLA/79/4A/2; Stage 2 of 2.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-18. - Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen SLA/79/18C/1; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-19.  Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen SLA/79/18C/1; Stage 1 of 1.

B-33




RS1-386-96-130

Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-20. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/18C/1; Stage
1of 1.
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Constant Stress (Creep) Test _
(Strain vs. Time)
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Figure B-21.  Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
SLA/79/18C/1; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-22. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen SLA/79/19A/2; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-23.  Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen SLA/79/19A/2; Stage 1of1.
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Figure B-24. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/19A/2; Stage

1of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-25. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
SLA/79/19A/2; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-26. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen SLA/79/11/2; Stage 1 of 1.
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Stress Application to Initiate a Creep Test

(Stress vs. Strain)
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Figure B-27.  Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen SLA/79/11/2; Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-28. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/11/2; Stage
1of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-29. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
SLA/79/11/2; Stage 1 of 1 (Data Acquisition Failure at 9 Days. Data Before 9
Days is Valid. Poor Lateral Data Caused by Dilatometer Leak).
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-30. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen SLA/79/1/1; Stage 1 of 2.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-81. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen SLA/79/1/1; Stage 1 of 2.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-32. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/ 1/1; Stage 1
of 2.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-33. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
SLA/79/1/1; Stage 1 of 2.
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Temperature Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-84. Test Conditions Versus Time for Temperature Application to Initiate a Creep
Test: Specimen SLA/79/1/1; Stage 2 of 2.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-35. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/1/1; Stage 2
of 2.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-36.  Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
SL.A/79/1/1; Stage 2 of 2.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-87. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen SLA/79/15A/2; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-38.  Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen SLA/79/15A/2; Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-89. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/16A/2; Stage

1of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-40. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
SLA/79/15A/2; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-41.  Test Conditions Versus Time for Stress Application to Initiate a Creep Test:

Specimen SLA/79/19A/1; Stage 1 of 1.
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Stress Application to Initiate a Creep Test

(Stress vs. Strain)
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Figure B-42.  Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen SLA/79/19A/1; Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)

30 110
Temperature
25 mii—_ﬁﬁ—-—lmnm 105
20-M |§|H WA aPaing aw'é‘!éﬁ L
TEST #6 s | ~
SLA/79/19AN [=] S
g SAND80-7114 S
= 15 Ac =10.3 MPa 95
& o3 = 20.7 MPa 5
= - o *
& T=100°C &
10 - 90
5 85
0 80
0.0E+0 5.0E+5 1.0E+6 1.5E+6 2.0E+6
Time, seconds

Figure B-43.  Test Conditions Versus Time for a Creep Test: Specimen SLA/79/19A/1; Stage
1of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure. B-44. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
SLA/79/19A/1; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-456. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen SLA/79/15A/1; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-46.  Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen SLA/79/16A/1; Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-47. Test Conditions Versus Time for a Creep Test: Specimeﬁ SLA/79/15A/1; Stage
1of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-48. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
SLA/79/15A/1; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-49. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:

Specimen SLA/79/18B/2; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-50. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen SLA/79/18B/2; Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)

5 215

o
4 210 3
[0 €
% . | o
5 T =
@ TEST#8 emperature g
o
g 3 SLA/79/18B/2 205 <
) SAND80-7114 0
Ac =5.5 MPa
2 o3 =0 MPa 200
T =200°C
] 195
0 - 190
0.0E+0 2.0E+5 4.0E+5 6.0E+5 8.0E+5 1.0E+6

Time, seconds

Figure B-51. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/18B/2; Stage
1of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-52. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
SLA/79/18B/2; Stage 1 of 1.

B-66




RSI-386-96-164

Stress Application to Initiate a Creep Test

(Test Conditions vs. Time)
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Figure B-53. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen SLA/79/18C/2; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-54. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen SLA/79/18C/2; Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-55. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/18C/2; Stage

1of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-56. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
SLA/79/18C/2; Stage 1 of 1.
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Figure B-57. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:

Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)

Specimen SLA/79/20/2; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)

6
A
5 A o Axial c
A Lateral
g A (o)
= 4
g
c a o
o
3 TEST #10
= 3 SLA/79/20/2
@ a ° SAND80-7114
£ Ac =5.5 MPa
@ A o o3 = 20.7 MPa
[ .
* 2 A'c = 0.7 MPa/min
< T = 200°C
A (o]
1
&0
0 A

-0.03 -0.02 -0.01 0 0.00 0.02 003 0.04 0.5
Strain, percent

Figure B-58.  Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen SLA/79/20/2; Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-69. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/20/2; Stage
1of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-60. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen

SLA/79/20/2; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-61. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen SLA/79/20/1; Stage 1 of 1.
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Stress Application to Initiate a Creep Test

(Stress vs. Strain)
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Figure B-62.  Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen SLA/79/20/1; Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-63. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/20/1; Stage
1of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-64.  Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
SLA/79/20/1; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-65. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen SLA/79/18B/1; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-66.  Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen SLA/79/18B/1; Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-67. Test Conditions Versus Time for a Creep Test: Specimen SL.A/79/18B/1; Stage
1of 1.
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Constant Stress (Creep) Test

(Strain vs. Time)
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Figure B-68. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen

SLA/79/18B/1; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-69. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen SLA/79/14B/1; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-70. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen SLA/79/14B/1; Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)

25 80
Temperature
20 75
a3
15 W—- 70 5"
3
g TEST #12R g
= SLA/79/14B/1 8
a SANDS80-7114 £
£ | |Ac=5.5MPa o5 2
@ o3 = 20.7 MPa S
T=70°C
Ac
5 60
0 55
00E+0 S5.0E+5 1.0E+6 15E+6 2.0E+6 25E+6 3.0E+6 3.5E+6
Time, seconds

Figure B-71.  Test Conditions Versus Time for a Creep Test: Specimen SLA/79/14B/1; Stage
lofl.
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Constant Stress (Creep) Test

(Strain vs. Time)
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Figure B-72. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
SL.A/79/14B/1; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-73. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2668.5 (A); Stage 1 of 1.
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Stress Application to Initiate a Creep Test

(Stress vs. Strain)
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Figure B-74. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen ERDA9-2668.5 (A); Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-75. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2668.5 (A);

Stage 1 of 1 (System Malfunction at 5.1 Days. Test was Restarted After

Repair).
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-76. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2668.5 (A); Stage 1 of 1 (System Malfunction at 5.1 Days. Test was
Restarted After Repair).
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-77. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:

Specimen ERDA9-2668.5 (B); Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-78.  Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2668.5 (B); Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-79. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2668.5 (B);
Stage 1 of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-80. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2668.5 (B); Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-81. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2622.0; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-82.  Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2622.0; Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)

12 150
Ao
10 125
8- ;Temperature_F: 100
o
3
© T
o ]
= 6 75 8
g g
o o
sbnd o
n O
4 TEST 3 50
ERDA9-2622.0
SAND79-7030
Ac =10.3 MPa
2 O3 = 0 MPa 25
T =100°C
0 0
0.0E+0 5.0E+5 1.0E+6 1.5E+6 2.0E+6

Time, seconds

Figure B-83. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2622.0;
Stage 1 of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-84. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2622.0; Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-85. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2678.0 (A); Stage 1 of 1.

B-99




RS!-386-96-201

Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-86. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2678.0 (A); Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-87. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2678.0 (A);
Stage 1 of 1 (Specimen Rupture Terminated Test).
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-88. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2678.0 (A); Stage 1 of 1 (Specimen Rupture Terminated Test).
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-89. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2674.5 (A); Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-90. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen ERDA9-2674.5 (A); Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-91. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2674.5 (A);
Stage 1 of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-92. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2674.5 (A); Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-93. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:

Specimen ERDA9-2674.5 (B); Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-94. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2674.5 (B); Stage 1 of 1.
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Constant Stress (Creep) Test

(Test Conditions vs. Time)
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Figure B-95. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2674.5 (B);
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Stage 1 of 1 (Specimen Contacted Vessel Wall at 150 Hours).
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-96. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2674.5 (B); Stage 1 of 1 (Specimen Contacted Vessel Wall at 150
Hours).
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-97. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2679.0 (B); Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-98.  Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen ERDA9-2679.0 (B); Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-99. Test Conditions Versus Time for a Creep Test: wSpecimen ERDA9-2679.0 (B);
Stage 1 of 1 (Specimen Contacted Vessel Wall at End of Test).
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Figure B-100. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen

ERDA9-2679.0 (B); Stage 1 of 1 (Specimen Contacted Vessel Wall at End of
Test).
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-101. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:

Specimen ERDA9-2605.0 (B); Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-102. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2605.0 (B); Stage 1 of 1.

B-116




RSI-386-96-218

Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-103. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2605.0 (B);
Stage 1 of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-104. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2605.0 (B); Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-105. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2678.0 (B); Stage 1 of 2.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-106. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2678.0 (B); Stage 1 of 2.
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Figure B-107.

Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2678.0 (B);

Stage 1 of 2.

B-1

21




RS1-386-96-223

Constant Stress (Creep) Test
4.0E-3 (Strain vs. Time)

3.5E-3 /A A

20: A~ J |
/\/ ! \/ /

£
S 20E3
2]
1.5E-3 Ay TEST 9, Stage 1
' ERDA9-2678.0(B)
SAND79-7030
1.0E-3 Ac =10.3 MPa
o3 =0 MPa
T=24°C
5.0E-4 '
0.0E+0
0.0E+0 10E+5 2.0E+5 3.0E+6 4.0E+5 S50E+5 6.0E+5  7.0E+5
Time, seconds

Figure B-108. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2678.0 (B); Stage 1 of 2.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-109. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2678.0 (B); Stage 2 of 2.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-110. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2678.0 (B); Stage 2 of 2.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-111. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2678.0 (B);
Stage 2 of 2 (Specimen Rupture Terminated Test).

B-125




RS!-386-96-227

Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-112. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2678.0 (B); Stage 2 of 2 (Specimen Rupture Terminated Test).
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-113. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2606.0 (B); Stage 1 of 2.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-114. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2606.0 (B); Stage 1 of 2.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-116. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2606.0 (B);
Stage 1 of 2.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-116. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2606.0 (B); Stage 1 of 2.
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Stress Application to Initiate a Creep Test

(Test Conditions vs. Time)
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Figure B-117. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2606.0 (B); Stage 2 of 2.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-118. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application

to Initiate a Creep Test: Specimen ERDA9-2606.0 (B); Stage 2 of 2.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-119. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2606.0 (B);
Stage 2 of 2.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-120. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2606.0 (B); Stage 2 of 2.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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i"igure B-121. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2679.0 (A); Stage 1 of 2.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-122. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2679.0 (A); Stage 1 of 2.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-123. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2679.0 (A);
Stage 1 of 2.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-124. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2679.0 (A); Stage 1 of 2.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-125. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2679.0 (A); Stage 2 of 2 (Specimen Contacted Vessel Wall.
_ No Creep Stage).
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-126. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2679.0 (A); Stage 2 of 2 (Specimen
Contacted Vessel Wall. No Creep Stage).
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Figure B-127. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2678.3 (B); Stage 1 of 2.
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Stress Application to Initiate a Creep Test

(Stress vs. Strain)
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Figure B-128. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2678.3 (B); Stage 1 of 2.
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Stress, MPa

Figure B-129.

Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2678.3 (B);
Stage 1 of 2.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-180. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2678.3 (B); Stage 1 of 2.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-131. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2678.3 (B); Stage 2 of 2.

B-145

Y
L Nk
AR




RSI-386-96-249

Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-132. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2678.3 (B); Stage 2 of 2.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-183. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2678.3 (B);
Stage 2 of 2.

B-147




RSI-386-96-251

Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-184. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2678.3 (B); Stage 2 of 2.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time) '
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Figure B-185. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2605.5 (B); Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-136. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2605.5 (B); Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-187. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2605.5 (B);
Stage 1 of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-138. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
ERDA9-2605.5 (B); Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)

45 36
40 FF 32
[Temperature | _nﬂnuau
35 i = - = 28
AAAAAA IR0 IOOOOONRK No:.:’%ooooooow
30 9] —-O0— 24
:Fl
-]

" Jp"nu TEST 14 o 3
& B ERDA9-2678.7(B) S
= o SAND79-7030 S
2 i Ac=41.4MPa || 45 §
o -
£ o o3 = 10.3 MPa s
@ - A’c = 0.7 MPa/min

15 s T =24°C T 12

- AMMlM__
10 4 g LMMMAMMA ¥:3

L =

&

o

oo 0

0 500 1000 1500 2000 2500 3000 3500 4000
Time, seconds

Figure B-139. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen ERDA9-2678.7 (B); Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-140. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen ERDA9-2678.7 (B); Stage 1 of 1.
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Constant Stress (Creep) Test

(Test Conditions vs. Time)
40 40

:
i) o
35 m %@ﬂ! _ 35
30 30
SR AR Cemgy, fm,
25 =, 25
-
TEST 14, Stage 1 [Temperature g
& ERDA9-2678.7(B) B
= 20 SAND79-7030 208
@ Ac = 41.4 MPa E
& | 0'_—3 =10.3 MPa . 5 S
1A o = 0.7 MPa/min
T =24°C
10 - 10
5 5
0 0
0.0E+0 8.0E+4 1.6E+5 2.4E+5 3.2E+5

Time, seconds

Figure B-141. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2678.7 (B);
Stage 1 of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-142. Axial Strain and Latersl Strain Versus Time for a Creep Test: Specimen
ERDA9-2678.7 (B); Stage 1 of 1.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-143. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
' Specimen AEC7-2729; Stage 1 of 3.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-144. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2729; Stage 1 of 3.

B-158




RS|-386-96-262

Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-145. Test Conditions Versus Time for a Creep Test: Specimen AEC7-2729; Stage
1 of 3.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-146. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AECT7-2729; Stage 1 of 3.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-147. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:

Specimen AEC7-2729; Stage 2 of 3.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-148. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2729; Stage 2 of 3.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-149. Test Conditions Versus Time for a Creep Test: Specimen AECT7-2729; Stage
2 of 3.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-150. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AEC7-2729; Stage 2 of 3.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-151. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2729; Stage 3 of 3.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-152. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2729; Stage 3 of 3.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-168. Test Conditions Versus Time for a Creep Test: Specimen AEC7-2729; Stage
3 of 3.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-1564. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AECT7-2729; Stage 3 of 3. '
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Stress Application to Initiate a Creep Test
(Test Conditions vs. )Time
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Figure B-155. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2715 (B); Stage 1 of 2.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-156. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2715 (B); Stage 1 of 2.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-167. Test Conditions Versus Time for a Creep Test: Specimen AEC7-2715 (B);
Stage 1 of 2.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-158. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AECT7-2715 (B); Stage 1 of 2.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-159. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2715 (B); Stage 2 of 2.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-160. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2715 (B); Stage 2 of 2.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-161. Test Conditions Versus Time for a Creep Test: Specimen AEC7-2715 (B);
Stage 2 of 2.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-162. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AECT7-2715 (B); Stage 2 of 2.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-163. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:

Time, seconds

Specimen AEC7-2715 (A); Stage 1 of 3.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-164. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2715 (A); Stage 1 of 3.

B-178




RSI-386-96-282

Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-165. Test Conditions Versus Time for a Creep Test: Specimen AEC7-2715 (A);
Stage 1 of 3.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-166. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AEC7-2715 (A); Stage 1 of 3.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-167. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2715 (A); Stage 2 of 3.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-168. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2715 (A); Stage 2 of 3.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-169. Test Conditions Versus Time for a Creep Test: Specimen AEC7-2715 (A);
Stage 2 of 3.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-170. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AECT7-2715 (A); Stage 2 of 3.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-171. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2715 (A); Stage 3 of 3.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-172. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2715 (A); Stage 3 of 3.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-1738. Test Conditions Versus Time for a Creep Test: -Specimen AECT7-2715 (A);
Stage 3 of 3.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-174. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AECT7-2715 (A); Stage 3 of 3.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-175. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2711 (A); Stage 1 of 2.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-176. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2711 (A); Stage 1 of 2.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-177. Test Conditions Versus Time for a Creep Test: Specimen AEC7-2711 (A);
Stage 1 of 2.
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. Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-178. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AECT7-2711 (A); Stage 1 of 2.
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Stress Application to Initiate a Creep Test
(Test Conditions vs. Time)
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Figure B-179. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2711 (A); Stage 2 of 2.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)

35
A o]
30
A A o] lo]

25 - K
8 o Axial
§ Ao a Lateral
o £
S 20
]
E
o RC-4, Stage 2
§ 15 AEC 7-2711(A)
g SAND79-7045
= Ac =31 MPa
E o3 = 13.8 MPa

10 A’c = 2.07 MPa /min

’ T=29°C
5
0
-0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Strain, percent

Figure B-180. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2711 (A); Stage 2 of 2.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-181. Test Conditions Versus Time for a Creep Test: Specimen AEC7-2711 (A);
Stage 2 of 2.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-182. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AECT7-2711 (A); Stage 2 of 2.
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Figure B-183. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2711 (B); Stage 1 of 2.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-184. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2711 (B); Stage 1 of 2.
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Figure B-185. Test Conditions Versus Time for a Creep Test: Specimen AEC7-2711 (B);

Stage 1 of 2.
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Figure B-186. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AEC7-2711 (B); Stage 1 of 2.
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Figure B-187. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:

Specimen AEC7-2711 (B); Stage 2 of 2.
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Stress Application to Initiate a Creep Test
(Stress vs. Strain)
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Figure B-188. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2711 (B); Stage 2 of 2.
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Figure B-189. Test Conditions Versus Time for a Creep Test: Specimen AEC7-2711 (B);
Stage 2 of 2.
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~ Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-190. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AECT7-2711 (B); Stage 2 of 2.

B-204




RSI-386-96-308

Stress Application to Initiate a Creep Test
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Figure B-191. Test Conditions Versus Time for Stress Application to Initiate a Creep Test:
Specimen AEC7-2715.5; Stage 1 of 1.
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Figure B-192. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application
to Initiate a Creep Test: Specimen AEC7-2715.5; Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure B-193. Test Conditions Versus Time for a Creep Test: Specimen AEC7-2715.5; Stage
1of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure B-194. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
AEC7-2715.5; Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure C-1. Test Conditions Versus Time for a Creep Test: Specimen C1X01-1/3-3/7-1;
Stage 1 of 1.
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Constant Stress (Creep) Test
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Figure C-2. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
C1X01-1/3-3/7-1; Stage 1 of 1.
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Figure C-3. Test Conditions Versus Time for a Creep Test: Specimen C1X01-1/3-3/1-1;
Stage 1 of 1.
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Figure C-4.  Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
C1X01-1/3-3/1-1; Stage 1 of 1.

C-12




RS|-386-96-013

Constant Stress (Creep) Test
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Figure C-5. Test Conditions Versus Time for a Creep Test: Specimen C1X01-1/3-3/4-1;
Stage 1 of 1.
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Constant Stress (Creep) Test
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Figure C-6. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen

C1X01-1/3-3/4-1; Stage 1 of 1.
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Constant Stress (Creep) Test
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Figure C-7. Test Conditions Versus Time for a Creep Test: Specimen C1X01-1/3-3/2-1;
Stage 1 of 1. .
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Figure C-8. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen

C1X01-1/3-8/2-1; Stage 1 of 1.
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Constant Stress (Creep) Test
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Figure C-9. Test Conditions Versus Time for a Creep Test: Specimen C1X01-1/3-3/6-1;
Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure C-10. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
C1X01-1/3-8/6-1; Stage 1 of 1.

C-18




RSI-386-96-019

Constant Stress (Creep) Test
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Figure C-11. Test Conditions Versus Time for a Creep Test: Specimen C1X01-1/3-2/7-1;
Stage 1 of 1.
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Figure C-12. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
C1X01-1/3-2/7-1; Stage 1 of 1.
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Figure C-18. Test Conditions Versus Time for a Creep Test: Specimen MCE36-1/1-1/2-2/2;
Stage 1 of 1.
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Constant Stress (Creep) Test
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Figure C-14. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
MCE36-1/1-1/2-2/2; Stage 1 of 1.
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Figure C-15. Test Conditions Versus Time for a Creep Test: Specimen L4X01-6/1-2/1-2/1;

Stage 1 of 1 (Argillaceous Salt).

C-23




_RSI-386-96-024

Constant Stress (Creep) Test
(Strain vs. Time)
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Figure C-16. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
L4X01-6/1-2/1-2/1; Stage 1 of 1 (Argillaceous Salt).
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure C-17. Test Conditions Versus Time for a Creep Test: Specimen 14X01-6/1-2/1-4/1;

Stage 1 of 1 (Argillaceous Salt).
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure C-18. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
14X01-6/1-2/1-4/1; Stage 1 of 1 (Argillaceous Salt).
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Figure C-19. Test Conditions Versus Time for a Creep Test: Specimen L4X01-6/1-1/1-1{1;

Stage 1 of 1 (Argillaceous Salt).
C-27

S
SR




RS!-386-86-028

Constant Stress (Creep) Test
(Strain vs. Time)
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Figure C-20. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
L4X01-6/1-1/1-1/1; Stage 1 of 1 (Argillaceous Sait).
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Figure C-21. Test Conditions Versus Time for a Creep Test: Specimen L4X01-6/1-1/1-2/1;

Stage 1 of 1 (Argillaceous Salt).

C-29




RSI-386-96-030

Constant Stress (Creep) Test
(Strain vs. Time)

0.020
/
/.
] E(lal
0.015 A
/ —
/ L4X01-6/1-1/1-2/1
0.010 A
/ SAND92-7291
Ac =15 MPa
- o3 =15 MPa
® 0.005 T=25°C
7
0.000
-0.005 \"'shm Lateral
-
-0.010

0.0E+0 2.0E+5 4.0E+5 6.0E+5 8.0E+5 1.0E+6 1.2E+6 1.4E+6 1.6E+6 1.8E+6 2.0E+6
Time, seconds

Figure C-22. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
14X01-6/1-1/1-2/1; Stage 1 of 1 (Argillaceous Salt). :
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Figure C-23. Test Conditions Versus Time for a Creep Test: Specimen L4X01-5/1-1/1-7/1;

Stage 1 of 1 (Argillaceous Salt).
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Constant Stress (Creep) Test
(Strain vs. Time)

0.160
[l
0.120 //
0.080 e
/ L4X01-5/1-1/1-7/1
/ SAND92-7291
% ool Ac =15 MPa
& o3 =15 MPa
T=25°C
0.000 \
-0.040 e —— Lateral
\\
\\
-0.080

0.0E+0 1.0E+6 2.0E+6 3.0E+6 4.0E+6 5.0E+8 6.0E+6 7.0E+6 8.0E+6 9.0E+6
Time, seconds

Figure C-24. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
14X01-5/1-1/1-7/1; Stage 1 of 1 (Argillaceous Salt).
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Constant Stress (Creep) Test
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Figure C-25. Test Conditions Versus Time for a Creep Test: Specimen L4X01-6/1-1/1-3/1;
Stage 1 of 1 (Argillaceous Salt).
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Figure C-26. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
14X01-6/1-1/1-3/1; Stage 1 of 1 (Argillaceous Salt).
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure C-27. Test Conditions Versus Time for a Creep Test: Specimen L4X01-6/1-2/1-7/1;

Stage 1 of 1 (Argillaceous Salt).
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure C-28. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen

L4X01-6/1-2/1-7/1; Stage 1 of 1 (Argillaceous Salt).
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Figure C-29.

Test Conditions Versus Time for a Creep Test: Specimen L4X01-7/1-2/1-4/1;
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Stage 1 of 1 (Argillaceous Salt).
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure C-30.

Time, seconds

Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
L4X01-7/1-2/1-4/1; Stage 1 of 1 (Argillaceous Salt).
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Figure C-31. Test Conditions Versus Time for a Creep Test: Specimen C1X01-04/1-3/1-2;
Stage 1 of 1.
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Figure C-32. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
C1X01-04/1-3/1-2; Stage 1 of 1. .
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Figure C-33. Test Conditions Versus Time for a Creep Test: Specimen C1X01-04/1-3/2-2;
Stage 1 of 1.
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Figure C-34. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
C1X01-04/1-3/2-2; Stage 1 of 1.
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Constant Stress (Creep) Test
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Figure C-85. Test Conditions Versus Time for a Creep Test: Specimen C1X01-02/1-3/1-2;
Stage 1 of 1.
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Figure C-36. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
C1X01-02/1-3/1-2; Stage 1 of 1.
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Figure C-37. Test Conditions Versus Time for a Creep Test: Specimen P4X18-4/4-1-2; Stage
1 of 1 (Argillaceous Salt).

C-45




RSI-386-96-046

Constant Stress (Creep) Test
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Figure C-38. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen

P4X18-4/4-1-2; Stage 1 of 1 (Argillaceous Salt).
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure C-39. Test Conditions Versus Time for a Creep Test: Specimen P4X18-1/5-1-2; Stage
1 of 1 (Argillaceous Salt).
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Figure C-40. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
P4X18-1/5-1-2; Stage 1 of 1 (Argillaceous Salt).
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure C-41. Test Conditions Versus Time for a Creep Test: Specimen P4X18-1/3-1-2; Stage
1 of 1 (Argillaceous Salt).
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure C-42. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
P4X18-1/3-1-2; Stage 1 of 1 (Argillaceous Salt. Anomalous Test Result.
Localized Deformation Along Clay Seams).
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure C-48. Test Conditions Versus Time for a Creep Test: Specimen P4X18-4/2-1-2; Stage
1 of 1 (Argillaceous Salt).
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure C-44. Axial.Strain and Lateral Strain Versus Time for a Creep Test: Specimen
P4X18-4/2-1-2; Stage 1 of 1 (Argillaceous Salt).
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure C-46. Test Conditions Versus Time for a Creep Test: Specimen P4X18-1/6-1-2; Stage
1 of 1 (Argillaceous Salt).
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Figure C-46. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
P4X18-1/6-1-2; Stage 1 of 1 (Argillaceous Salt).
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure C-47. Test Conditions Versus Time for a Creep Test: Specimen P4X18-4/1-1-2; Stage
1 of 1 (Argillaceous Salt).
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Figure C-48. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen

P4X18-4/1-1-2; Stage L of 1 (Argillaceous Salt).
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Constant Stress (Creep) Test
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Figure C-49. Test Conditions Versus Time for a Creep Test: Specimen P4X18-2/3-1-2; Stage

1 of 1 (Argillaceous Salt).
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Figure C-50. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
P4X18-2/3-1-2; Stage 1 of 1 (Argillaceous Salt. Anomalous Test Result. Possible
Moisture Effects).
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Test Conditions Versus Time for a Creep Test: Specimen P4X18-4/5-1-2; Stage

Figure C-51.
B 1 of 1 (Argillaceous Salt).
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure C-52. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen

P4X18-4/5-1-2; Stage 1 of 1 (Argillaceous Salt).
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Figlire C-58. Test Conditions Versus Time for a Creep Test: Specimen P4X18-2/4-1-2; Stage

Constant Stress (Creep) Test
(Test Conditions vs. Time)
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1 of 1 (Argillaceous Salt).
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Constant Stress (Creep) Test
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Figure C-54. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specirpen
P4X18-2/4-1-2; Stage 1 of 1 (Argillaceous Salt. Anomalous Test Result. Possible

Moisture Effects).
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Figure C-55. Test Conditions Versus Time for a Creep Test: Specimen DX16-2/7-1-2; Stage
1of 1. ’
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Figure C-56. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
DX16-2/7-1-2; Stage 1 of 1.
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Test Conditions Versus Time for a Creep Test: Specimen DX19-5/7-1-2; Stage
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Figure C-58. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
DX19-5/7-1-2; Stage 1 of 1.
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Figure C-59. Test Conditions Versus Time for a Creep Test: Specimen DX19-5/5-1-2; Stage

Constant Stress (Creep) Test

1of 1.
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Figure C-60. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
DX19-5/5-1-2; Stage 1 of 1.
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Figure C-61. Test Conditions Versus Time for a Creep Test: Specimen DX16-2/1-1-2; Stage
1of1.

C-69




RSI-386-96-070

Constant Stress (Creep) Test
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Figure C-62. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
DX16-2/1-1-2; Stage 1 of 1.

C-70




RSI-386-96-071

Constant Stress (Creep) Test
(Test Conditions vs. Time)

30 - I 30
/ I Temperature
T I_.' PREDN P YW S
M I I hainbd | T
25 25
(4]
20 20
}
- ol - ! - 3
g 3
= 15 | 15 §
g g
h -
@ DX16-2/4-1-2 ()
10 SAND85-7261 10
Ac =17 MPa
c3=15 MPa
T=25°C
5 5
0 0
0.0E+0 5.0E+6 1.0E+7 1.5E+7 2.0E+7 2.5E+7
Time, seconds
Figure C-63. Test Conditions Versus Time for a Creep Test: Specimen DX16-2/4-1-2; Stage

1of 1.
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Figure C-64. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
DX16-2/4-1-2; Stage 1 of 1 (Anomalous Test Result. Possible Machine

Malfunction).
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Figure C-65. Test Conditions Versus Time for a Creep Test: Specimen DX16-2/8-1-2; Stage
1of 1.
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Figure C-66. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
DX16-2/8-1-2; Stage 1 of 1.
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Figure C-67. Test Conditions Versus Time for a Creep Test: Specimen DX19-5/6-1-2; Stage
1of 1.
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Figure C-68. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
DX19-5/6-1-2; Stage 1 of 1.

C-76




RSI-386-96-077

Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure C-69. 'fesg: Conditions Versus Time for a Creep Test: Specimen DX16-2/6-1-2; Stage
of 1. ’
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Constant Stress (Creep) Test
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Figure C-70. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
DX16-2/6-1-2; Stage 1 of 1 (Possible Jacket Leak Near End of Test).
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure C-71.  Test Conditions Versus Time for a Creep Test: Specimen DX19-5/1-1-2; Stage

1of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure C-72. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
DX19-5/1-1-2; Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure C-78. '{‘es; Conditions Versus Time for a Creep Test: Specimen DX19-5/2-1-2; Stage
of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure C-74. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
DX19-5/2-1-2; Stage 1 of 1.
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RSI-386-96-083

Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure C-75. Test Conditions Versus Time for a Creep Test: Specimen DX19-5/3-1-2; Stage
1of 1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure C-76. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
DX19-5/3-1-2; Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure C-77. Test Conditions Versus Time for a Creep Test: Specimen DX16-2/3-1-2; Stage
1of1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure C-78. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
DX16-2/3-1-2; Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure C-79. Test Conditions Versus Time for a Creep Test: Specimen DX19-4/4-1-2; Stage

1of1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure C-80. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
DX19-4/4-1-2; Stage 1 of 1 (Anomalous Test Result. Unknown Cause).
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Constant Stress (Creep) Test
(Test Conditions vs. Time)

30 110
Temperature
25 + e BAS AL LS L L A LRSS Al - 105
20 100
Ac
J g
o ‘ ) -§
a. : ®
= 15 95 §
y c
& (o] 5
& o
DX19-5/4-1-2
10 SAND85-7261 90
Ac =17 MPa
o3 =15 MPa
T=100°C
5 85
0 80
0.0E+0 8.0E+4 1.6E+5 24E+5 3.2E+5
Time, seconds
Figure C-81. Test Conditions Versus Time for a Creep Test: Specimen DX19-5/4-1-2; Stage

1of1.

C-89




RSI1-386-96-090

Constant Stress (Creep) Test
(Strain vs. Time)
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Figure C-82. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
DX19-5/4-1-2; Stage 1 of 1.
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure C-83. Test Conditions Versus Time for a Creep Test: Specimen DX16-2/2-1-2; Stage

1of1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure C-84. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
DX16-2/2-1-2; Stage 1 of 1 (Anomalous Test Result. Unknown Cause).
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure C-85. Test Conditions Versus Time for a Creep Test: Specimen DX16-2/5-1-2; Stage

1of1.
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Constant Stress (Creep) Test
(Strain vs. Time)
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Figure C-86. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
DX16-2/5-1-2; Stage 1 of 1 (Anomalous Test Result. Unknown Cause).
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Constant Stress (Creep) Test
(Test Conditions vs. Time)
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Figure C-87. Test Conditions Versus Time for a Creep Test: Specimen DX19-4/3-1-2; Stage
1of1.
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Figure C-88. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen
DX19-4/3-1-2; Stage 1 of 1.
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RSI-386-96-097

Test Conditions as a Function of Time
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Figure D-1. Test Conditions Versus Time for a Multiaxial Creep Test: Specimen AI/82/C'1.
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Multiaxial Creep Test
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Figure D-2. Principal Strains Versus Time for a Multiaxial Creep Test: Specimen AI/82/C'1.

D-6




RSI-386-96-099

Test Conditions as a Function of Time
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Figure D-3.  Test Conditions Versus Time for a Multiaxial Creep Test: Specimen A1/86/C'3/1.
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Multiaxial Creep Test
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Figure D-4. Principal Strains Versus Time for a Multiaxial Creep Test: Specimen
A1/86/C'3/1.
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Test Conditions as a Function of Time
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Figure D-5. Test Conditions Versus Time for a Multiaxial Creep Test: Specimen AI/86/A’1/1.
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Multiaxial Creep Test
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Figure D-6. Principal Strains Versus Time for a Multiaxial Creep Test: Specimen
A1/86/A'1/1.
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Test Conditions as a Function of Time
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Figure D-7.  Test Conditions Versus Time for a Multiaxial Creep Test: Specimen AI/86/C'4/1.
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Muitiaxial Creep Test
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Figure D-8. Principal Strains Versus Time for a Multiaxial Creep Test: Specimen
A1/86/C'4/1. .
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Muitiaxial Creep Test
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Figure D-10. Principal Strains Versus Time for a Multiaxial Creep Test: Specimen
Al/86/A'12/1.
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Test Conditions as a Function of Time
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Figure D-11. Test Conditions Versus Time for a Multiaxial Creep Test: Specimen AI/82/C'7.
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Figure D-12. Principal Strains Versus Time for a Multiaxial Creep Test: Specimen A1/82/C'7.
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Figure D-18. Test Conditions Versus Time for a Multiaxial Creep Test: Specimen
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Figure E-1. Test Conditions as a Function of Time During the Quasi-Static Loading to
Induce Damage in Specimen MCE36-1/2-1/2-7/2.
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Figure E-2. Axial and Lateral Strain as a Function of Time During the Quasi-Static
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Figure E-5. Normalized Perpendicular Velocity as a Function of Axial Strain Duringv the
Quasi-Static Loading to Induce Damage in Specimen MCE36-1/2-1/2-7/2.
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Figure E-6. Normalized Parallel Velocity as a Function of Axial Strain During the Quasi-
Static Loading to Induce Damage in Specimen MCE36-1/2-1/2-7/2.
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Figure E-7. Test Conditions as a Function of Time During the Quasi-Static Loading to
Induce Damage in Specimen MCE36-1/2-1/2-6/2.
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Figure E-8. Axial and Lateral Strain as a Function of Time During the Quasi-Static
Loading to Induce Damage in Specimen MCE36-1/2-1/2-6/2.
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Figure E-10. - Normalized Perpendicular Velocity as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen MCE36-1/2-1/2-6/2.
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Figure E-11. Normalized Parallel Velocity as a Function of Axial Strain During the Quasi-
g Static Loading to Induce Damage in Specimen MCE36-1/2-1/2-6/2.
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Figure E-12. Test Conditions as a Function of Time During the Hydrostatic Loading to
Recover Damage in Specimen MCE36-1/2-1/2-6/2.
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Figure E-13. Axial and Lateral Strain as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen MCE36-1/2-1/2-6/2.
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Figure E-14. Normalized Perpendicular Amplitude as a Function of Time During the
Hydrostatic Loading to Recover Damage in Specimen MCE36-1/2-1/2-6/2.
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Figure E-17. Test Conditions as a Function of Time During the Quasi-Static Loading to

Induce Damage in Specimen MCE36-1/2-1/2-1/2.

E-27




RSI-386-96-330

Loading to Induce Damage
(Strain vs. Time)

2
TEST LDR005
15 MCE36-1/2-1/2-1/2
~ '|SAND93-7111 N
Damage Level =1.5 % :
Recovery Pressure = 15 MPa @@
Recovery Temperature = 46°C
| — / <
* /
c
s 05 —
7]
0 \\
[L_at_eral
-0.5
M
1
0.0E+00 4.0E+03 8.0E+03 1.2E+04 1.6E+04 2.0E+04

Time, seconds

Figure E-18. Axial and Lateral Strain as a Function of Time During the Quasi-Static
Loading to Induce Damage in Specimen MCE36-1/2-1/2-1/2.
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Figure E-19. Normalized Perp endicular Amplitude as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen MCE36-1/2-1/2-1/2.
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Figure E-20. Normalized Parallel Amplitude as a Functioﬁ of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen MCE36-1/2-1/2-1/2.
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Figure E-21. Normalized Perpendicular Velocity as a Function of Axial Strain Duringlthe
Quasi-Static Loading to Induce Damage in Specimen MCE36-1/2-1/2-1/2.
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Figure E-22. Normalized Parallel Velocity as a Function of Axial Strain During the Quasi-
Static Loading to Induce Damage in Specimen MCE36-1/2-1/2-1/2.
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Figure E-23. Test Conditions as a Function of Time During the Hydrostatic Loading to
’ Recover Damage in Specimen MCE36-1/2-1/2-1/2.
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Figure E-24. Axial and Lateral Strain as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen MCE36-1/2-1/2-1/2.
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Figure E-25. Normalized Perpendicular Amplitude as a Function of Time During ‘the
Hydrostatic Loading to Recover Damage in Specimen MCE36-1/2-1/2-1/2.
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Figure E-26. Normalized Parallel Amplitude as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen MCE36-1/2-1/2-1/2.
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Normalized Perpendicular Velocity as a Function of Time During the
Hydrostatic Loading to Recover Damage in Specimen MCE36-1/2-1/2-1/2.
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Figure E-28. Normalized Parallel Velocity as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen MCE36-1/2-1/2-1/2.
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Figure E-29. Test Conditions as a Function of Time During the Quasi-Static Loading to
Induce Damage in Specimen MCE36-1/1-1/2-7/2,
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Figure E-30. Axial and Lateral Strain as a Function of Time During the Quasi-Static
Loading to Induce Damage in Specimen MCE36-1/1-1/2-7/2.
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Figure E-31. Normalized Perpendicular Amplitude as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen MCE36-1/1-1/2-7/2.
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Figure E-32. Normalized Parallel Amplitude as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen MCE36-1/1-1/2-7/2.
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Figure E-33. Normalized Perpendicular Velocity as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen MCE36-1/1-1/2-7/2.
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Figure E-34. Normalized Parallel Velocity as a Function of Axial Strain During the Quasi-
Static Loading to Induce Damage in Specimen MCE36-1/1-1/2-7/2.
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Figure E-35. Test Conditions as a Function of Time During the Quasi-Static Loading to
Induce Damage in Specimen C1X01-04/1-4/2-2.
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Figure E-36. Axial and Lateral Strain as a Function of Time During the Quasi-Static
Loading to Induce Damage in Specimen C1X01-04/1-4/2-2.
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Figure E-37. Normalized Perpendicular Amplitude as a Function of Axial Strain During‘the
Quasi-Static Loading to Induce Damage in Specimen C1X01-04/1-4/2-2.
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Figure E-38. Normalized Parallel Amplitude as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen C1X01-04/1-4/2-2.
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Figure E-39. Normalized Perpendicular Velocity as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen C1X01-04/1-4/2-2.
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Figure E-40. Normalized Parallel Velocity as a Function of Axial Strain During the Quasi-
Static Loading to Induce Damage in Specimen C1X01-04/1-4/2-2.
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Figure E-41. Test Conditions as a Function of Time During the Hydrostatic Loading to
Recover Damage in Specimen C1X01-04/1-4/2-2.
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Figure E-42. Axial and Lateral Strain as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen C1X01-04/1-4/2-2,
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Figure E-43. Normalized Perpendicular Amplitude as a Function of Time During the
Hydrostatic Loading to Recover Damage in Specimen C1X01-04/1-4/2-2.
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Figure E-44. Normalized Parallel Amplitude as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen C1X01-04/1-4/2-2.
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Figure E-45. Normalized Perpendicular Velocity as a Function of Time During the
Hydrostatic Loading to Recover Damage in Specimen C1X01-04/1-4/2-2.
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Normalized Parallel Velocity as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen C1X01-04/1-4/2-2.
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Figure E-48. Axial and Lateral Strain as a Function of Time During the Quasi-Static
Loading to Induce Damage in Specimen C1X01-03/1-4/4-2.
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Figure E-49. Normalized Perpendicular Amplitude as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen C1X01-03/1-4/4-2.
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Figure E-50. Normalized Parallel Amplitude as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen C1X01-03/1-4/4-2.
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Figure E-561. Normalized Perpendicular Velocity as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen C1X01-03/1-4/4-2.
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Figure E-52. Normalized Parallel Velocity as a Function of Axial Strain During the Quasi-
Static Loading to Induce Damage in Specimen C1X01-03/1-4/4-2.
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Figure E-63. Test Conditions as a Function of Time During the Hydrostatic Loading to
Recover Damage in Specimen C1X01-03/1-4/4-2.
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Fig‘ure E-54. Axial and Lateral Strain as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen C1X01-03/1-4/4-2.
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Figure E-55. Normalized Perpendicular Amplitude as a Function of Time During the
Hydrostatic Loading to Recover Damage in Specimen C1X01-03/1-4/4-2.
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Figure E-56. Normalized Parallel Amplitude as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen C1X01-03/1-4/4-2.
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Figure E-58. Normalized Parallel Velocity as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen C1X01-03/1-4/4-2.
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Figure E-59. Test Conditions as a Function of Time During the Quasi-Static Loading to
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Figure E-60. Axial and Lateral Strain as a Function of Time During the Quasi-Static
Loading to Induce Damage in Specimen C1X01-04/1-2/4-2.

E-70




RSI-386-96-373

Normalized Perpendicular Amplitude
vs. Axial Strain
(Damage Induction Phase)

1.0E+00
9.0E-01
TEST# 3
8.0E-01
C1X01-04/1-2/4-2
SAND90-7076
7.0E-01 Damage Level =1 %
L) Pressure = 15 MPa
2 6.0E-01 Temperature = 21°C
-
&
o 50E-01 \
Q
N
£ 4.0E-01 \
2 \\ -
3.0E-01 ~
\\
\
2.0E-01 \\
\\
1.0E-01
0.0E+00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Axial Strain, percent

Figure E-61. Normalized Perpendicular Amplitude as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen C1X01-04/1-2/4-2.
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Figure E-62. Normalized Parallel Amplitude as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen C1X01-04/1-2/4-2.
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Figure E-63. Normalized Perpendicular Velocity as a Function of Axial Strain During the
' Quasi-Static Loading to Induce Damage in Specimen C1X01-04/1-2/4-2.
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Figure E-64. Normalized Parallel Velocity as a Function of Axial Strain During the Quasi-
Static Loading to Induce Damage in Specimen C1X01-04/1-2/4-2.
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Figure E-65. Test Conditions as a Function of Time During the Hydrostatic Loading to
Recover Damage in Specimen C1X01-04/1-2/4-2.
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Figure E-66. Axial and Lateral Strain as a Function of Time During the Hydrostatic
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Loading to Recover Damage in Specimen C1X01-04/1-2/4-2.

E-76

ureqs [e1oie

%



RS!1-386-96-379

Normalized Perpendicular Amplitude vs. Time

(Damage Healing Phase)
1
0.8
D
s
= 0.6
's.
E
< —
o
ks -
E /
g 0.4 —
= TEST#3
C1X01-04/1-2/4-2
SAND90-7076
Damage Level =1 %
0.2 Pressure =15 MPa
Temperature = 21°C
0
0.0E+00 1.0E+05 2.0E+05 3.0E+05 4.0E+05

Time, seconds

Figure E-67. Normalized Perpendicular Amplitude as a Function of Time During the
Hydrostatic Loading to Recover Damage in Specimen C1X01-04/1-2/4-2.
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Figure E-68. Normalized Parallel Amplitude as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen C1X01-04/1-2/4-2.

E-78




RSI-386-96-381

Normalized Perpendicular Velocity vs. Time
(Damage Healing Phase)

1.00E+00 4
9.95E-01
/ B
g
2 /
‘S 9.90E-01
o
C
-
Q
N
g . » TEST# 3
5 9.85E-01 C1X01-04/1-2/43-2
= SAND90-7076
Damage Level =1 %
Pressure = 15 MPa
Temperature = 21°C
9.80E-01 -
9.75E-01
0.0E+00 1.0E+05 2.0E+05 3.0E+05 4.0E+05 5.0E+05

Time, seconds

Figure E-69. Normalized Perpendicular Velocity as a Function of Time During the
Hydrostatic Loading to Recover Damage in Specimen 2C1X01-04/1-2/4-2.
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Figure E-70. Normalized Parallel Velocity as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen C1X01-04/1-2/4-2.
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Figure E-71. Test Conditions as a Function of Time During the Quasi-Static Loading to
Induce Damage in Specimen C1X01-04/1-2/3-2.
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Figure E-72. Axial and Lateral Strain as a Function of Time During the Quasi-Static
Loading to Induce Damage in Specimen C1X01-04/1-2/3-2.
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Figure E-73. Normalized Perpendicular Amplitude as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen C1X01-04/1-2/3-2.
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Figure E-74. Normalized Parallel Amplitude as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen C1X01-04/1-2/3-2.
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Figure E-76. Normalized Perpendicular Velocity as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen C1X01-04/1-2/3-2.
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Figure E-77. Test Conditions as a Function of Time During the Hydrostatic Loading to
Recover Damage in Specimen C1X01-04/1-2/3-2.
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Figure E-78. Axial and Lateral Strain as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen C1X01-04/1-2/3-2.
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Figure E-79. Normalized Perpendicular Amplitude as a Function of Time During the
Hydrostatic Loading to Recover Damage in Specimen C1X01-04/1-2/3-2.
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Figure E-80. Normalized Parallel Amplitude as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen C1X01-04/1-2/3-2.
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Figure E-81. Normalized Perpendicular Velocity as a Function of Time During the
Hydrostatic Loading to Recover Damage in Specimen C1X01-04/1-2/3-2.
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Figure E-82. Normalized Parallel Velocity as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen C1X01-04/1-2/3-2.
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Figure E-83. Test Conditions as a Function of Time During the Quasi-Static Loading to
Induce Damage in Specimen C1X01-02/1-4/4-2.
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Figure E-84. Axial and Lateral Strain as a Function of Time During the Quasi-Static
Loading to Induce Damage in Specimen C1X01-02/1-4/4-2.
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Figure E-85. Normalized Perpendicular Amplitude as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen C1X01-02/1-4/4-2.
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Figure E-86. Normalized Parallel Amplitude as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen C1X01-02/1-4/4-2.
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Figure E-87. Normalized Perpendicular Velocity as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen C1X01-02/1-4/4-2.
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Figure E-88. Normalized Parallel Velocity as a Function of Axial Strain During the Quasi-
Static Loading to Induce Damage in Specimen C1X01-02/1-4/4-2,
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Figure E-89. Test Conditions as a Function of Time During the Hydrostatic Loading to
Recover Damage in Specimen C1X01-02/1-4/4-2.
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Figure E-90. Axial and Lateral Strain as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen C1X01-02/1-4/4-2.
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Figure E-91. Normalized Perpendicular Amplitude as a Function of Time During the
Hydrostatic Loading to Recover Damage in Specimen C1X01-02/1-4/4-2.
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Figure E-92. Normalized Parallel Amplitude as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen C1X01-02/1-4/4-2.
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Figure E-93. Normalized Perpendicular Velocity as a Function of Time During the
Hydrostatic Loading to Recover Damage in Specimen C1X01-02/1-4/4-2.
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Figure E-94. Normalized Parallel Velocity as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen C1X01-02/1-4/4-2.
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Figure E-96. Axial and Lateral Strain as a Function of Time During the Quasi-Static
Loading to Induce Damage in Specimen C1X01-02/1-4/2-2.
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Figure E-97. Normalized Perpendicular Amplitude as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen C1X01-02/1-4/2-2, -
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Figure E-98. Normalized Parallel Amplitude as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen C1X01-02/1-4/2-2.
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Figure E-99. Normalized Perpendicular Velocity as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen C1X01-02/1-4/2-2.
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Figure E-100. Normalized Parallel Velocity as a Function of Axial Strain During the Quasi-
Static Loading to Induce Damage in Specimen C1X01-02/1-4/2-2.
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Figure E-101. Test Conditions as a Function of Time During the Hydrostatic Loading to
Recover Damage in Specimen C1X01-02/1-4/2-2.
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Figure E-102. Axial and Lateral Strain as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen C1X01-02/1-4/2-2.
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Figure E-103. Normalized Perpendicular Amplitude as a Function of Time During the
Hydrostatic Loading to Recover Damage in Specimen C1X01-02/1-4/2-2,
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Figure E-104. -Normalized Parallel Amplitude as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen C1X01-02/1-4/2-2,
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Figure E-105. Normalized Perpendicular Velocity as a Function of Time During the

Hydrostatic Loading to Recover Damage in Specimen C1X01-02/1-4/2-2.
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Figure E-106. Normalized Parallel Velocity as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen C1X01-02/1-4/2-2.
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Figure E-107. Test Conditions as a Function of Time During the Quasi-Static Loading to
Induce Damage in Specimen C1X01-04/1-4/4-2.
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Figure E-108. Axial and Lateral Strain as a Function of Time During the Quasi-Static
Loading to Induce Damage in Specimen C1X01-04/1-4/4-2.
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Figure E-109. Normalized Perpendicular Amplitude as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen C1X01-04/1-4/4-2.
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Figure E-110. Normalized Parallel] Amplitude as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen C1X01-04/1-4/4-2.

E-120




RS1-386-96-423

Normalized Perpendicular Velocity vs. Axial Strain
(Damage Induction Phase)

1.00E+00 g
\\ TEST#7
9.90E-01 C1X01-04/1-4/4-2 |
SANDS0-7076
Damage Level = 0.5 %
9.80E-01 \ Pressure = 15 MPa o
\ Temperature = 21°C
> 9.70E-01
'S
()
@
>
Y 9.60E-01 \
N
©
E ' \
S 9.50E-01

9.40E-01 \
9.30E-01 \

9.20E-01

\\

0 005 01 015 02 025 03 035 04 045 05
Axial Strain, percent

Figure E-111. Normalized Perpendicular Velocity as a Function of Axial Strain During the
Quasi-Static Loading to Induce Damage in Specimen C1X01-04/1-4/4-2.
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Figure E-112. Normalized Parallel Velocity as a Function of Axial Strain During the Quasi-
Static Loading to Induce Damage in Specimen C1X01-04/1-4/4-2.
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Figure E-113. Test Conditions as a Function of Time During the Hydrostatic Loading to
Recover Damage in Specimen C1X01-04/1-4/4-2.
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Figure E-114. Axial and Lateral Strain as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen C1X01-04/1-4/4-2.
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Figure E-115. Normalized Perpendicular Amplitude as a Function of Time During the
Hydrostatic Loading to Recover Damage in Specimen C1X01-04/1-4/4-2.
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Figure E-116. Normalized Parallel Amplitude as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen C1X01-04/1-4/4-2.
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Figure E-117. Normalized Perpendicular Velocity as a Function of Time During the
Hydrostatic Loading to Recover Damage in Specimen C1X01-04/1-4/4-2.
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Figure E-118. Normalized Parallel Velocity as a Function of Time During the Hydrostatic
Loading to Recover Damage in Specimen C1X01-04/1-4/4-2.
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