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ABSTRACT

The Full Potential Linear Augmented Plane Wave (FPLAPW or FLAPW) method is used for a spin-
polarized band calculation for ordered FezPt. As major purpose, the momentum distributions of the
spin-polarized electrons are calculated and compared with results from a magnetic Compton scattering
measurement. To get related information, the electronic behavior is also analyzed by examining the
partial densities of states and the spatial electron distributions; the role of alloying effects is then

explored by studying the electrons in some related alloys: FezNi, FezPd, NigPt and CozPt.




1 GENERAL INTRODUCTION

Invar has nearly a century old history. Guillaume received the Nobel Prize in 1920 for his discovery
of the first Invar material (Guillaume 1897), FegsNiss. The major feature of Invar materials is a very
small or even negative thermal expansion.coefﬁcient. The exploration for the microscopic origin of Invar
only started to have some success since 1950s. The last two decades have seen resurgent interest in
Invar research, and the associated efforts have brought about many new Invar materials. Advances in
computing technologies have helped for a better understanding of the Invar origin.

The purpose of this theoretical work is primarily to determine if magnetic Compton scattering might
provide some useful information concerning the temperature-dependent magnetic state of a well known
Invar alloy FegPt, by investigating its electronic properties, particularly the momentum distribution of
spin electrons of the alloy. A few other related materials are also studied to get some related information.
The work is presented in a united frame by a thorough exploration of some important aspects related
to the study of Invar.

The next three chapters concern the theoretical foundations. Chapter 2 reviews the electronic band
theory. The group theory is studied for the reduction in various later calculations for electrons. Chap-
ter 3 examines the Local Spin Density Approrimation (LSDA) and also a commonly used calculation
approach, the Full Potential Linear Augmented Plane Wave (FLAPW) method, for electronic bands.
Chapter 4 contains the formalism for Compton scattering calculation under the FLAPW approach for
multi-component systems. The results are used to set up a program for Magnetic Compton Profile
(MCP) calculations.

Chapter 5 reviews experimental and theoretical research of Invar systems to provide a general context
for the study of the Invar material FezPt.

Chapter 6 presents various calculated results and their implications for FesPt as well as for some
other related materials. The calculation results include electronic bands, densities of states, momentum
distributions and spin electron and charge distributions. The discussions are specially focused on the

calculated MCPs by comparing them with the results from a Compton scattering experiment.




2 ELECTRONIC STATES AND SPACE GROUP THEORY

Introduction

An ideal crystal is constructed by the repetition of identical structural units in space. The structure
of all crystals can be described in term of a Bravais lattice composed of mathematical points and with
an identical group of atoms being attached to every lattice point. There are fourteen distinct lattice
types for seven possible lattice systems which are associated with 32 point symmetry groups. Symmetry
studies of a crystal further take into account of the exact detailed arrangement of the atoms within the
unit cell of the crystal. Such studies of crystal symmetries can greatly help to simplify many physical
problems. There are 230 crystal symmetry groups, or space groups. These space groups have been
systematically investigated to some degree (Bell 1954; Kurki-Suonio 1977; Bradley and Cracknell 1972;
Inui, Tanabe and Onodera 1990; Ludwig and Falter 1988; Evarestov and Smirnov 1993). This chapter
will briefly review the space group theory and its applications specifically to the electronic states in

crystals. The study of space groups will be beneficial to the calculations pursued in later chapters.

Irreducible Representations of Space Groups

An operation R = {«|t} of a space group G is defined to have such an effect on a point at r in the
real space that

{a|t}r = ar +t, (2.1)

where o is a rotation matrix and t a translation vector. The same operation transforms a function ¥(r)

in the following way:

{alt}¥(r) ¥({alt}'r)

= ¥(ai(r-t)). (2.2)




For the translation group T, an invariant subgroup of the space group G, its irreducible representation

corresponding to a particular wave-vector k is one dimensional and satisfies

{elt}Tu(r) = Ti(r—t)

= et (r). (2.3)
The Bloch function Uy(r) can be rewritten as
Ti(r) = eFTu(r), | (2.4)
with ug(r) being a function with the lattice periodicity:
ug(r — t) = uk(r). (2.5)

Each wave-vector k has its “symmetry” group as a very important subgroup g(k) of the space group

G. This wave-vector group is defined as

g(k) = {{plt} : Bk =k, {Blt} € G}, (2-6)

where “=” means “equals to when modulo reciprocal lattice vectors”. The space group G can then be

decomposed in terms of g(k):

G = g(k) + {ezlt2}g(k) + - -+ {es[ts }g (k). 2.7
Let {a;[t;} be the unit element {¢]|0}, then

k; = o5k (i=12,---,9) (2.8)

constitute the star, or orbit, of k. There are many linearly independent Bloch wave-functions ¥x(r)
that correspond to one wave-vector k. A basis for any irreducible representation can be constructed by
selecting a subset of these ¥y (r). Let {Ty, (v =1,2,---,d)} be such basis functions for a d-dimension
small representation D* of g(k), with each ¥y, being a basis function for the irreducible representation

k of the translation group T'. Define
Uy = {@jltj} Vs, j=1,2,---,55v/=1,2,---,d. (2.9)

It can be proved that the above sd functions form a basis for an irreducible representation I of the
space group G. As will be shown, this conclusion is very important in studying electronic states in a

crystal.




Group Theory and Electronic States in a Crystal
Electrons moving in a crystal obey a Schrédinger-like equation:
HUy(r) = e(k)Tx(r). (2.10)
The one-electron Hamiltonian H(r) commutes with any symmetry operation R of the space group G:
RH=HR (Req). : (2.11)

It is easy to prove that for any operation R, R¥(r) is also an eigenfunction of H with the same

eigenvalue g(k) as that of Wy (r). If

HYy, = e(k)¥y, (2.12)
then
HYy,, = e(k)¥,, (2.13)
which means
e(k) =e(ks) = --- =¢e(ks). (2.14)

Therefore, the energy band e has the full point-group symmetry in the k space. The eigenfunctions
belonging to a certain eigenvalue of the Hamiltonian can always be chosen in such a way that they form
the basis of an irreducible representation I of the space group. Therefore, the eigenstates of H can be
classified according to the irreducible representations of the symmetry group G. How this can be done
will be shown below.

A consequence of the above conclusion is that each of the sd degenerate states has the same probabil-
ity WIEI) of being occupied. For this reason, the electron density, which is the most important quantity
for the ground state of an electronic system in the density functional theory (see the next chapter), can

be expressed as
p(r) = Z Z WIEI) Z Z I\Ilg’)l,]2 (k € irreducible B.Z.). (2.15)
I k i v

This expression can be simplified by symmetry information of the crystal.

Based on the representation theory of groups, it can be shown that

Sl = 2 Y Al (2.16)

v Ik (pleyea(s)




holds for all the basis eigenfunctions ¥y, (r)(px = 1,---,d) of an irreducible representation. Here, g
is the order of g(k), and d is the dimension of the irreducible representation. Further, it can be

demonstrated that

S o = 2 S Kl (2.17)
j v

9k folerec

If one decomposes G with respect to its invariant subgroup I
G =T+ {y2lt2}T + - + {74]t4} T, (2.18)

then the previous expression for the density can take a more symmetric form:

pr) =D War PP [T (r) %, (2.19)
n k
where
1
Phi== 2.20
) (2:20)
{'Ytltt}

is the effective projection operator for the invariant irreducible representation I'; of the space group
G, and the indices I and v have been jointly denoted as n, the conventional band index. Physically,
this implies that the electron density has the 'y symmetry of the space group G. By using the space
group theory, all the information about the electronic states can be obtained through the eigenfunctions
W, of all those k’s which are inside the irreducible B.Z.. Such a reduction into the considered B.Z.,
based on the symmetry, greatly simplifies the problem of electrons in crystals. Actually, many band
calculation approaches are based on the above equation to extract the electron spatial distributions p(r)
to determine the ground state. In the actual computational calculations, practical approaches should

be used to do the extraction of the invariant components of
pak(r) = PU T () ]2 (2.21)

The next two sections will present two such approaches.

Plane Wave Scheme

Generally, any function having the space group symmetry can be expanded into a series of lattice
functions which have the same symmetries. Normally, this can be done by using some commonly
used functions, as shown below, for a particular quantity p(r) without losing generality. Let K; be a

reciprocal vector; for n‘ota.tiona.l simplicity, k + K; will be denoted as q;.




Eigenfunctions can be always expressed in a series of plane waves:
i
Upk(r Z Cnai ey (2.22)

where N is the number of unit cells of the crystal and V is the volume of a unit cell. Then one gets

:K:r

C"Q: nq;—¥X;
Pak(r Z(Z‘ \/]V_VK )g{z {l J}\/— (2.23)

Y51t}

All the reciprocal vectors can be classified into stars with the s-th star being
{K,,' . K.,,' = ‘)’,,'K.,l (‘i = 1, ey, n,)} (2.24)

A symmetrized plane wave function can be defined as

‘Ku
Ty = 2{7,11 J} \/—
= e’K" 2 O (2.25)
So, the symmetrized plane wave-functions Y,; (¢ = 1, -- -, n;) are not linearly independent of each other,

but one can select one of them, say T,1, to construct a maximal set of independent symmetrized plane
waves as a complete basis of a functional space which has the same invariant symmetry. Using these

independent functions, one gets

puc(®) = 3 {222

s JKI

Cn q;t

nq ;= Ksj eiK,_,-t,j Tsl- (226)

Therefore, pni(r) has already been explicitly expressed in a series of independent functions which have

the space group symmetry.

Lattice Harmonics Scheme

Another important use for applying crystal symmetry is the use of lattice harmonics. First one
constructs those invariant lattice harmonics, which are invariant under the transformation of the space

group, by using the spherical harmonic functions:
Wg; — Z AtmiYim- (2.27)
m

For symmorphic space groups, all the coefficients Ay are independent of r, or, they are just constants.
For non-symmorphic groups, however, these coefficients usually depend on r, making the current scheme

to get pnx(r) impractical. Therefore, only the symmorphic group case will be considered below. It should




be understood that the above equation only holds for certain selected I’s only and the summation is

T1»

over certain selected m’s, for spherical symmetry is broken in the crystal. Projecting |¥nk|? onto W] ;s
leads to
pax(r) = ) By (r) W5 (2.28)
ij
Alternatively, pnk(r) can be expressed in terms of the spherical harmonics:
prx(r) = Y Cim (r)Yim, . (2-29)
Im
where
Cim(r) =, Bij(r) Aum;- (2.30)
J
Applying the spherical Harmonics to |¥,x|?, we get
[%kl* = Dim (r)Yimm, (2.31)
Im
it can be easily shown that
Cim(r) =D Atmj Y, Atmy 5 Dimy (r)- (2.32)
J my

Symmetries of Eigenfunctions in Momentum Space

Symmetry properties are also important in momentum space. An example is an application to the
most fundamental quantity, the wave function. In momentum space, or k-space, wave-functions can be

obtained from a Fourier transformation:

Pn;(q) = / U, (r) f/_zvi; d®r (2.33)
After some algebraic calculations, it is not difficult to find out that
e—iat;
®nx;(q) rmq)nk(afl q)
= +e Py (0f '), (2.34)

where the denominator D3(c;) of the rotation «; is £1, depending on whether or not the rotation a;

is a proper rotation. Therefore, a property is
I(I’nk(Q)lz = l‘I’nk,-(%’)'z- (2.35)

Similar to symmetry properties in the real space, the above symmetry property is crucial to many

calculations in the momentum space as shown in latter calculations.




3 DENSITY FUNCTIONAL THEORY AND THE LOCAL DENSITY
APPROXIMATION

Introduction

A solid state system is a many body system of nuclei and electrons. The nuclei oscillate relatively
slowly around their equilibrium positions, for the mass of the nucleus is greater, by a factor of about
three to four orders of magnitude, than the mass of the electrons around it. At low temperatures, the
many body system can be roughly viewed as two nearly inter-independent systems of electrons and
nuclei. Such thermal effects, and the phonon-electron interactions as they are usually called, are not
to be considered here. In the ground state of this complicated system, the relatively static nuclear
configurations mainly provide some potentials for the electron subsystem to be stabilized. The motions
of the nuclei thus can often be totally ignored. This is just the Born-Oppenheimer approximation which

is to be used throughout this work.

Two Subsystems in a Crystal

For N electrons moving in an “external” (with respect to the electrons) potential Ves; the Hamilto-
nian has the form
BE=T+4 V;zt‘i‘ffee; (3.1)
where 7" is the kinetic operator, and V.. is the electron-electron Coulomb interaction operator. The
external potential operator is a local operator of the form

R N
Vewt = Zvezt(ri)- (3.2)

i=1

The “exact” behavior of the electrons is determined by the many body Schrédinger equation:
1 " N
—EZV;’ + Z:vezt(ri) + Vee — E ‘I"(rlx Tty I‘N) = 0) (3'3)

where E is the total energy of the electron system. Here spin, spin-orbital coupling and other relativistic

effects are omitted.




In a solid, the number of electrons N is too large for computers to solve for the above equation. In
other words, it is technically impossible to take care of too many microscopic details of the electrons
once and for all at this stage of the technique. Alternative approaches have to be found to explain, on
a microscopic level, macroscopically observable quantities in a solid system. Such approaches may have
to introduce some further approximations in which some minor effects are to be ignored in order to get
reliable results without going beyond present computer abilities. As to be shown in this chapter, the
Density Functional Theory (DFT) effectively provides a way to solve the ground state problem of a solid
system. Following the essence of this rigorous functional theory, the Local Spin Density Approrimation

(LSDA) makes practical calculations possible to a great degree.

Density Functional Formalism

This alternative theory was initiated by Hohenberg and Kohn (1964). To avoid any ambiguity, a
more recent approach by Levy (1979 and 1982) is to be presented here.
For all “N-representable” densities p(r), i.e., for all those electron densities which can be obtained

from some antisymmetric wave function ¥(ry,rs, ...,rn), define a functional
Flp] = min (T[T + Vee|T), (3.4)
T—p(r)

where the minimum is taken over all antisymmetric N-particle wave functions ¥ that produces a density
p(r). Flp]is universal in the sense that it refers neither to a specific system nor to the external potential

V,m of which the mean value is
Veztlp] = / p(r)vezt(r)dr. (3.5)
By combining the above two functionals, the energy functional can be defined:

E[p] = Flp] + Vest[p]- (3.6)

Let Egs, Ugs(r) and py, (r) be the ground state energy, wave-function and density respectively. From
the conventional Rayleigh-Ritz variational principle and the features of the many body Hamiltonian, it

is easy to show the following two basic theorems of the density functional theory:

1. The functional E[p] reaches its minimum value for the exact electron density of the ground state:

Elp] = (UoinlT + Vee + Veat [ Ufin) > Egs- 3.7)

min
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2. The ground state of the electron system is fully determined by the corresponding electron density,

and the total energy is given by:
Elpgs] = (Upan|T + Vee + Ve | 2f7)- (38)

Therefore, of all those antisymmetric functions that yield an electron density p(r), the ground state is
the one that minimizes the functional E[p]. and has a density rhog,

It should be noticed that the new variation is on the electron density p(r). Tn spirit, the new vari-
ational principle is similar to the original Rayleigh-Ritz variational calculation in quantum mechanics
where the variation is on the many body wave-function ¥(ry,rs,...,ry). Basically, the above theorems
imply that there is a one-to-one correspondence between the many body wave-function and the electron
density p(r), which is the real reason why the original Rayleigh-Ritz variational principle can be refor-
mulated to the current one. The most important advantage of DFT over the conventional variational
principle for the many body system is that it depends only on three spatial variables (and one spin
variable if needed), regardless of the number of particles of the physical system.

However, the functional F[p] may be nonlocal and is unknown besides the proof of its existence,
and has to be decided in order for the DFT to be useful. A lot of studies have been made to use
nonlocal density functional (Hu and Langreth 1981; Langreth, D.C., and Mehl 1981; Langreth, D.C,,
and Mehl 1983; Bagno, Jepsen and Gunnarsson 1989). To find more and more accurate functionals has
always been a very challenging work for the past decades. Essentially, all attempts to find any explicit
functional form of F[p] rely on numerical experience and theoretical methods which lie outside of the

formal structure of the DFT methodology.

Kohn-Sham Scheme For the Density Functional Theory

A crucial step to find F[p] is to extract the information about the electron-electron interaction.

Historically the classical Coulomb potential:

Veilpl = % / / drdty PEE) (3.9)

|r |
is perhaps the most frequently used potential form. Separating Vci[p] from the overall electron-electron

potential functional V..[p] leads to:

'Vee[P] = ch[P] + Ve [P], (3'10)
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where V;c[p] is a potential difference term. Then the ground state energy functional can be rewritten

Elp] = Tlp) + Veclo] + Veu[p] + Vezelp]- (3.11)

It still turns out that directly searching for an explicit form of the kinetic energy functional T[p]
and the exchange-correlation functional V;.[p] with high accuracy is very difficult.
An indirect approach to T[p] by Kohn and Sham (1965) transforms the problem into a problem of

a fictitious non-interacting system. First T'[p] is partitioned into two parts:

T[p] = Ts[p] + Te[ol, (3.12)

then the exchange-correlation energy is defined as

Ezclp) = Vzelp] + Te[pl, (3.13)

where T[p] is the kinetic energy of a fictitious non-interacting system and T;[p] is defined to be the
correlation part of T[p]. The above partition is so made that the imaginary non-interacting particles

have orbits which obey the Kohn-Sham equations:

(=377 + 035 0)) o) = e, (3.14)
N
p(r) = fildi(x), (3.15)
i=1
with an effective potential
Ves s (T) = Vest(r) + ‘/dsrllf(Trlx)"[' + vge(T), (3.16)

where the effective exchange-correlation potential is defined as:

0Ezc
dp

(3.17)

Vge(r) =

Let f; be the occupation number of the orbit corresponding to &;, the total energy for the ground state

can be found by using

1 ,p(x)p(x’
E,o = Z Fiei— 3 / / Brd®r !ili)j’—(ﬂl) - / Prp(r)vee(r) + Ese. (3.18)

Here the only two resulting quantities which have a rigorous interpretation are the ground state energy
and the electron density. In principle, both of these quantities can be measured experimentally (i.e.,
they are observable). Therefore, the approach has reduced a many-electron problem, via an intermedi-
ary orbital picture, to a one-electron problem where the many-body interactions among electrons are

represented by an effective single-electron potential vey (r).
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It should be kept in mind that behind the K'S scheme is the equivalent Hohenberg-Kohn variational
principle. According to this variational principle, which itself is equivalent to the original Rayleigh-Ritz

variational principle, the energy functional:

E[P] =T, [p] + Ea:c[ﬂ] + Vo [P] + Vea:t[/’] (319)

reaches its minimum Ey4, under the constraint

/ drp(r) = N. . (3.20)

The corresponding Euler equation states that the chemical potential, as the Lagrange multiplier, is

_ 9E(p)
ép
= ve,f(r)+‘ﬂ:;/§”), (3.21)

which can be solved under specified boundary conditions.

A question to a curious mind naturally is why an alternative to the conventional Euler many-body
problem is taken here. Among other reasons, the introduction of fictitious orbits draws the system
closer to the concept for atoms, where comparisons can lead to clues more intuitive than otherwise.
Probably for this reason, DFT calculations have been applied not only to a solid system, but also to
molecules, nuclei, clusters and many other less aggregated or less condensed systems. As for what the
meaning of these orbits in a solid is, more caution should be taken for a solid system than a simple
atom. In a solid, an electron, especially an outer electron from the atomic constituents, is in more
intense interactions than in an atom since the interactions now are with more than just one nucleus.

In the equation (3.16), except for the exchange-correlation potential vz, the other two terms are real
potentials and can be easily determined. If the explicit form can be found for the universal functional
E.., or, equivalently for v, then all kinds of electronic systems can be solved self-consistently. The
K S scheme basically attempts to extract from the original undecided functional F[p] some major parts
which can be analytically or numerically found, and leave only a relatively small part E. to be decided.

The electronic exchange-correlation interaction is roughly composed of two contributions. Exchange
interaction keeps electrons of the same spin away from each other because of the Pauli exclusion prin-
ciple. Correlation interaction keeps the electrons of both spins away from each other because of the
Coulomb repulsion.

E.. does not have a very clear physical description so far, both for its kinetic part and for its

potential part. However, two good features about E. make it “easy” to evaluate:
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o It is short-ranged.

o Because of the isotropic nature of Coulomb interactions, it is relatively insensitive to non-spherical

features (Jones and Gunnarson 1989).

Even so, in practice, approximations have to be made to find an accurate E,. which is a decreasing

functional with increasing density.

Local Density Approximation

This popular approximation corresponds to the following equation

Eedlp] = [ Prp)ece(p®), (3.22)

where €,.(p(r)) is the exchange-correlation energy per electron. The exchange-correlation potential

then becomes

(pezc(p))
dp

As mentioned previously, E is generally impossible to evaluate because of the complexities involv-

(3.23)

Vze(r) =

ing a solid. Widely used LocalDensityApprozimation (LDA) or LocalSpinDensityApprozimation
(LSDA) functionals include those proposed by Hedin and Lundqvist (1971), von Barth and Hedin
(1972), Gunnarsson and Lundqvist (1976), Rajagopal (1979), Vosko, Wilk and Nusair (1980), and
Perdew and Zunger (1981). The exchange and correlation contributions to this potential are derived
from the homogeneous electron gas.

Even so implemented, LDA or LSDA has explained many systems in their ground states. The
accuracy of LDA possibly lies in the fact that spatial changes are primarily in the valence electron
distribution where the gradients of the density are small.

Obviously this approach has its limitations, because, for example, not all forms of electron correlation
effects maybe present in a solid also occur in a homogeneous electron gas. An effort to deal with such
heterogeneity is by introducing terms containing density gradients into the existing expressions of Eg
(Perdew and Yang 1986; Perdew 1986). Although the attempts have some success on some lighter
elements up to Si, a problem is that for 3d metals the calculation results are even worse than those
without the “correction” (Barbiellini, Moroni and Jarlborg 1990). A few people are still working on
improving the approach (Geldcurt 1995; Perdew 1995).

Many calculations in the past decades have demonstrated that LSDA gives a good description of

ground state properties of many moderately correlated systems. It is really amazing that the exchange-
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correlation potentials extrapolated from uniform electron gases can lead to many reasonable results for
the highly nonuniform solids. LDA has actually been the basic tool for the overwhelming majority of the
first-principles calculations in solid state physics, and has contributed significantly to the understanding
of the macroscopic properties of solids at the microscopic level. As mentioned earlier, LDA often fails
because of deficient understandings of the exchange-correlation interactions. Many people are still

working to make more corrections to the existing implementations of the DFT theory.

DFT for Complex Systems

To this point, discussions have been limited to non-relativistic, one-component and spinless systems.
The Kohn-Sham equations are also generalized to the magnetic systems in which the fundamental quan-
tity p is extended to contain two parts, p; and py, the spin-up and spin-down densities in a spin-polarized
system (Von Barth and Hedin 1972; Rajagopal and Callaway 1973). This generalization gives different
effective one-particle potentials for the two spin states in the self-consistent Kohn-Sham equations. The
driving force producing the magnetism is the Coulomb energy lowering due to exchange interaction.
Actually, the HK theorems and Kohn-Sham scheme were also generalized to multi-component systems
(Sander, Shore and Sham 1973; Kalia and Vashishta 1978), and relativistic systems (Rajagopal and
Callaway 1973; Ramana and Rajagopal 1983; Rajagopal 1978; MacDonald and Vosko 1979). General
reviews about more developments of the density functional theory are included in many other works (Ra-
jagopal 1979; Barth 1982; Kohn and Vashishta 1983; Dreizler and Providéncia 1985; Andersen, Jepsen
and Glétzel 1985; Kohn 1985; Levy 1985; Jones and Gunnarsson 1989; Kryachko and Ludéna 1990;
Mahan and Subbaswamy 1990; Gross and Kurth 1994; Salahub, Castro and Proynov 1994; Geldcurt
1995; Kohn 1995; Levy 1995; Perdew 1995).

Ground State of a Crystal

Only the electronic system is considered so far. The energy functional Efp] does not include the
electrostatic energy between the nuclei. However, in practice, the electrostatic energy is usually calcu-
lated and added to the total energy of the electrons, to get the total energy E;,; of the overall crystal
system composed of both the electrons and the nuclei.

A condensed matter system can be usually described by some state variables: volume, magnetization,
pressure, magnetic field and others that are not closely related to the Invar.

Band calculations can determine the total energy as a function of the volume V' to give the binding
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curve E;q(V) of the system. This total energy dependency on the volume is found from the band
calculations based on some fixed crystal structures, because technically it is still impossible to take into
consideration all feasible geometrical configurations of the constituent atoms. The actual ground state
of the system appears at the energy minimum where the pressure dE/dV = 0, corresponding to an
equilibrium volume Vp. Similarly, whether or not spontaneous magnetization occurs can also be derived
from the band calculations: Spontaneous magnetization occurs only if the equilibrium magnetization is

non-zero. More about this will be discussed later when magnetism is particularly addressed.
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4 COMPTON PROFILE CALCULATION FORMALISM

Introduction

Conventional measurements of the Doppler broadening of inelastically scattered X-radiation and -
radiation, the Compton profile, provide information about the momentum distribution of the scattering
electrons. Electron momentum distributions thus obtained are complementary to what is found about
the spatial electron distribution and also orbital moments from other standard techniques, such as X-ray
and neutron diffraction.

The magnetic scattering of photons was considered from a theoretical standpoint as early as 1954,
and its use in condensed matter research emerged in 1970s with the availability of intense synchrotron
beams. The latter are demanded simply because the involved magnetic interaction, as a relativistic

correction, is considerably smaller than non-magnetic interactions, or, the charge scattering.

Conventional Compton Scattering

Colliding with a stationary free electron, a photon will have its wavelength shifted by
2h
AX = —sin® -, (4.1)

where m is the rest mass of electron, and 8 the scattering angle.

The maximum shift for a stationary electron thus is

2h
(A’\)ma:c = r_n:

= 0.0494, (4.2)

which is independent of the incident photon wavelength Ag. For the wavelength shift AT’\ to be large
enough for detection, X-ray or 4-ray (with A around 1 A) is normally chosen as the incident beam in
a Compton scattering experiment.

Since Compton scattering is an incoherent process, the structures of the study samples are not

important. This means that Compton scattering experiments can be done on solid, amorphous, liquid
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or gaseous materials. Since in the materials there are loosely bound electrons as the scatterers of the
inelastic process (elastic process can happen between the incident photons and tightly bound electrons
or the whole system essentially, causing X-ray diffraction which can be utilized to probe spatial electron
distribution).

To make the Compton scattering effect sufficiently visible, the energy transfer, hv = h(vo—v), greatly
should exceed the outer-electron binding energy, as if the interaction between scattering photons and
scattered electrons takes place in such a short duration that the scattering interaction is approximately
over before the electron has had a chance to move in the potential well and change its potential energy.
This is just called impulse approximation, which is equivalently stating that electrons can be treated

as free electrons when the scattering occurs.

Magnetic Compton Scattering

Conventional Compton scattering studies did not involve magnetic quantities of the scatterers. A
term depending on the electron spin in scattering cross section for free electrons was first derived by
Lipps and Tolhoek (1954). An extension to electrons in molecules and solids was done by Platzman and
Tzoar (1970). Many theoretical studies have been done ever since (Wakoh and Kubo 1977; Williams
1977; Landau and Lifshitz 1982; Sakai, Tersahima and Sekizawa 1984; Mills 1987; Sakai, Shiotani,
Ito, Itoh, Kawata, Amemiya, Ando, Yamamoto and Kitamura 1989; Balcar and Lovesey 1989; Kubo
and Asano 1990; Collins, Cooper, Lovesey and Laundy 1990; Cooper, Zukowski, Collins, Timms, Itoh
and Sakurai 1992; Tanaka, Skai, Kubo and Kawata 1993; Zukowski, Collins, Cooper, Timms, Saku-
rai, Kawata, Tanaka and Malinowski 1993; Cooper, Zukowski, Timms, Armstrong, Itoh, Tanaka, Ito,
Kawata and Bateson 1993; Timms, Zukowski, Cooper, Laundy, Collins, Itoh, Sakurai, Iwazumi, Kawata,
Ito, Sakai and Tanaka 1993).

Let the angle 8 be the scattering angle of the photon, ¥ the angle between the direction of the
incident photon ko and that of the electron spin oq, ¢ the angle between the (ko, oo)-plane and the
(ko, k)-plane, P; is the linear polarization, and P, is the circular polarization, p and p, the electron
momentum and its component along the scattering vector ¢ = k —ko, Eo and E the energies of the
incident and outgoing photons respectively, and mc? is the rest mass energy of the electron. Under the

impulse approximation, the Compton cross section can be written as

d%c 2 [ E\?
04 = 50(?0) {(@o + P1®1) X

/ / [2"(p) + ny(p)] dp=dpy +
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Pi®pin / / (v} () — ny(®)] dp dpy), (4.3)

where
Ey—-E
By = 14cos’+ :ncz (1 — cos§), (4.4)
&, = sin?4, (4.5)
(4.6)
and
Dpin = —(1—cosf) x

{ — 3 cosfcosp + Wsmﬂsm‘:[)cosqb} . (4.7)

Since only the third function ®,pin changes its sign when the direction of the electron spin is reversed,

the following expression is obtained,

dzo') <d20'> Z(E)z
- —\ S50 = = | Pe®spindmag, 4.8
(deE o \UE) 4 °\Eo pinsmag (48)

where
Jmag(pz) = // {nT(p) - nl(p)} dps dpy- (4'9)

This expression indicates that the difference between the two momentum spectra, one measured with
the scatterers magnetized in one direction and the other with the same scatterers magnetized in the
opposite direction, gives the magnetic Compton profile Jimag-

This magnetic contribution is smaller than pure charge scattering by a factor of Eg/mc®. For X-rays
of about 50 kev, it is about 10% of the total intensity. At normal X-ray energies the magnetic scattering
is therefore weak. The effect is observable when circularly polarized photon beams are utilized, and it
can only be used to study ferromagnets or ferrimagnets. It is the advent of synchrotron radiation sources,
which provide monochromatic beams with 102° photons/s, that make it feasible to exploit magnetic
photon scattering as a technique in condensed matter research (Platzman and Tzoar 1970; Blume 1985;
Cooper, Laundy, Cardwell, Timms, Holt and Clark 1986; Cooper, Collins, Timms, Brahmia, KaneHolt
and Laundy 1988; der Bergevin and Brunel 1986). The experiments are being realized by the application
of an external magnetic field where the spin dependent component is isolated by reversing the direction
of the magnetization and subtracting the spin-up and spin-down signals.

Therefore, the above theoretical results based on the impulse approximation, which ignores the
motion of electrons during the scattering, is valid for the theoretical comparisons of the experimental

data.
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Compton Profile Calculation Using FLAPW Method

Let r be a position in a unit cell centered at Ry, and p, be the position of the a-th atom relative

to the center, then r o = r — R, — po is the relative position of r to the atom. Denote the radius of

the muffin-tin sphere surrounding the a-th atom as rf,‘ft) , and k + K; as q;, the eigenfunction can then

be expressed as

el o
Tox(r) = Zcqi{\/N_VHHa(r‘,a_ (&) +

K;
e“ll (Rl-l +Pa)

P e T
Zza( mi I‘Ol) \/W

Rp Po
Z Rimeaq;(Tpe)Yim (Fua)}s (4.10)
Im

or ,
eiqf'(R#'l'pcr)

Tk (r) Z Cq,{ \/W + Z Z o) _ r )—\/W

(Z Rimaq; (r#oz)yim (Pua) — €% Tr)} (4.11)

Im

Electronic waves do not behave like plane waves near the atomic cores, hence it is more efficient
to use near-atomic waves inside an atomic muffin-tin (MT) in the solid. For the mostly localized d
electrons with both atomic-like character and extended plane-wave-like character, as well as for almost
totally localized f electrons, this is really important.

For the LAPW method (Afagada 1972; Koelling and Arbman 1975; Koelling and Harmon 1977;
MacDonald, Pickett and Koelling 1980; Weinert 1981; Weinert, Wimmer and Freeman 1982; Jansen
and Freeman 1984; Mattheiss and Hamann 1986; Blaha, Schwarz, Sorantin and Trickey 1990),

leaq,- (rpa) = Almaq;ula(rua) + Blmaq;illa(r;zoz): (412)

where o (7pa) is the energy derivative of uj (7o) with respect to a certain chosen energy value. At
MT boundaries, the continuity of ¥,k (r) and the radial derivatives can lead us to solve for the Ajmaq;’s

and Bimagq;’s. Since

95T = 4 3 1 (057 ) Vi (85) Vi (i), (4.13)
Im
it is easy to get
A (o J,(q: Tmt )ula(r(a)) — Ji(giTm ) £ )Ua(r (a))
Atmaq; = 4mi Yy, (@) - (4.14)

i1 (DYt (r82) — wia (rl) i, (7 $D)
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and

. . () () y (@) ()
- Jl(‘Jx )Ul (7' i) — .71(‘1: )ula(r )
Bimaq; = 4715 (63) - o (4.15)
i " e ()il (r5D) = wa (r Vi ()

where j; is the spherical Bessel function. The momentum wavefunction, the Fourier transform of the

real space wave function ¥,x(r), is then
1 K- :
(I)nk(q) = V Z quq{Voutqu,- + Z e_’KJ Pex [4ﬂ' Z(—l)l
K; Pa im ’

/Z qu,- eKiPe leaq,- (Tpa)jl (qrpa)rlzm dr/mYlm(q) -

_ (<)
Wa > Cegeirre MK = Kslrme )y (4.16)

K:#K; IKi - K | (a)

where q; denotes k + K;. Therefore,
1 4 Y n —iK;-p
uxe(25) = 57 VoutCna; + 77 D (—1) Yim(85) D J e~ 55
Im P

Z Crq; €50 / Rimaq; (Tue) 3t (957 pe) Tha rue -
1(K.—K_,) Po ]’(IK —Kj Ir(a))

Ty |r(“) (4.17)

3 Va ». C

Ta K;#ZK;
where §; is a unit vector along qj, Vou: is the volume outside the MT’s in a unit cell, and V, is the

volume for the a-th MT. The result here is the extension of a one-atom system (Wakoh and Kubo 1977)

to a multiple-atom system.

PN
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5 ON INVAR AND INVAR STUDY

Introduction

Invar systems and their current research are briefly reviewed and discussed in this chapter, with a

focus on the typical Invar Fe-X (X = Ni, Pd and Pt) systems to be studied here.

Invar Anomalies and Invar Materials

Invar is associated with the thermal expansion property originating from the anharmonic vibrations
of the crystal lattice. The linear thermal expansion coefficient of a common metal or alloy is of the
order of 10~5K~1. However, in 1897, Ch. E. Guillaume found that ferromagnetic (FM) fcc Fe;Nij_,
alloys, around Fe atom concentration £ = 65% and in a wide thermal range around room temperature,
shows an extremely low thermal expansion coefficient which is an order of magnitude smaller than in
ordinary materials. Such a sample first shrinks when the temperature is raised from zero temperature,
the thermal expansion then remains small until around and above the Curie temperature T¢c where the
thermal expansion become larger.

Since 1897, many more Invar materials have been found. Invar anomalies are observed in many other
ferromagnetic (FM) as well as in anti-ferromagnetic (AF) binary, ternary and also multi-component
transition metal alloys and inter-metallic compounds with large spontaneous volume magnetostriction.
Moreover, Invar anomalies are observed in rare earth RE-transition metal compounds with Lavesphase
structure (e.g. RECo;, REMny) or compounds like the hard ferromagnet FejsNd2B. The lattice
structure is of no influence to the occurrences of Invar, since there are Invar systems having fec, bec,
hexagonal and other structures like fct or even amorphous forms. There are no pure 4f, 5f nor insulating
Invar alloys or compounds, and the Invar systems are rich in at least one 3d-transition element, which
may imply that the Invar effect is a phenomena associated with 3d magnetic electrons.

An Invar material gives rise to a small or even negative thermal expansion coefficient over a wide

temperature range below the Curie or Néel temperature. There are also other anomalies accompanying
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the thermal anomaly: large forced volume magnetostriction dV/dH, large negative pressure effect on
magnetization dM/dP, large negative pressure effect on Curie temperature dT¢/dP, spontaneous volume
magnetostriction for both low and high temperatures, thermal variation of high field susceptibility
and of elastic constants, as well as of Young’s and bulk moduli. Another characteristic property of
Invar alloys is their unusual temperature dependence of the magnetization in comparison to “ordinary”
ferromagnets: the magnetization decreases with temperature more abruptly in Invar materials. More
details can be found in some general reviews on the study of Invar (Wassermann 1989; Wassermann

1990; Wijn 1994; Shiga 1994).

Magnetic Fluctuations from Thermal Effects

Since Invar appears only in magnetic materials , the relationship between magnetic and thermal
effects is very important. A paramagnetic neutron scattering experiment using polarized neutrons and
polarization analysis to obtain an unambiguous measure of the magnetic scattering above the Curie
point (Ziebeck et al 1983) for FezPt shows considerable magnetic scattering, which is peaked in the
forward direction and implies the presence of spatial correlations which are ferromagnetic in nature
extending over 12-16 A. The correlations persist to at least 2.65 T¢. The iron moment falls from 2.18
pp at 1.33 T¢ to 1.73 up at 2.65 T. This suggests that the local “band” splitting does not collapse

at Tc. Yet the importance of such spatial fluctuations to Invar characteristics has still to be explored.

Theoretical Studies of Invar Origins at the Microscopic Level

Efforts to fully understand the microscopic origin of the Invar effect have lasted for decades by
now. Many early theories focused on inhomogeneity and the deviations of magnetic moments from the
Slater-Pauling curve which seemed to show up in the old Invar materials. However, with the detection
of the Invar effect on ordered FesPt, a system which is a relatively strong itinerant ferromagnet and
shows no deviation of the average moment from the Slater-Pauling curve, many of those models put

forward before the late 1970s are being questioned.

Magnetostriction Effect

To understand the Invar effect and magnetoelastic properties, electronic and phononic contributions
are both important. Typically for an itinerant ferromagnet, there are short-ranged magnetic correla-

tions, longitudinal or transverse spin fluctuations in the temperature range around and above T¢. The

.
<
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questions are: what is the reason for all the differences observed between the physical behavior of Invar
and ordinary ferromagnets? How lattice vibrations and spin disorder will change the total energy with
the temperature? Furthermore, anti-ferromagnetism related to Invar should also be equally understood.
Understanding these problems is the key to solving the Invar problem.

Since Invar only appears in magnetic (both anti-ferromagnetic and ferromagnetic) materials, nat-
urally one approach to look into the Invar is by studying the relationship of the magnetism and the
volume. In 3d metals, spin magnetism accounts for most of the magnetism, so it is possible that the
Invar systems are mainly related to spin magnetism when they are chemically dominated by their 3d
constituents. Magnetization in itinerant magnets incurs a kinetic-energy price because the electrons
must be transferred from minority spin states to majority spin states of higher kinetic energy. Invar
systems are itinerant magnetic materials, therefore they expand in the ground state to minimize the
kinetic-energy cost of the magnetization (Janak 1976; Andersen, Madsen, Poulsen, Jepsen and Kellar
1977). Comparing the thermal expansion behavior of Invar materials with those of normal metals,
which is caused by anharmonic lattice vibrations, it may be true that the volume of the sample expands
with the occurrence of spontaneous magnetization. This expansion of volume is called spontaneous vol-
ume magnetostriction. Since the spontaneous magnetization decreases with temperature, an Invar alloy
obviously has a spontaneous volume magnetostriction large enough to compensate the normal thermal
expansion caused by lattice vibrations. The linear thermal expansion coefficient curves for ferromag-
netic alloys always show positive magneto-volume effects, regardless of the temperature; ferromagnetic
alloys also have substantial magneto-volume effects above their Curie temperatures in the paramagnetic
range which vanish gradually at very high temperatures. Anti-ferromagnetic Invar alloys, in principle,
show the same behavior, although less in absolute values as compared to FM Invar materials below
and around 7. In the case of the cancellation of the anharmonic effect by the spontaneous volume

magnetostriction, the thermal expansion coefficient can become very small or even negative.

Theoretical approaches in Magnetism Study

For the description of the nature of the magnetic moments in ferromagnetic metals and alloys,
especially for those containing elements from the late 3d series, several models have been proposed.
These models are based on either of the two rival pictures, namely the Heisenberg localized spin model
and the Stoner model for the description of itinerant or band magnetism.

In the localized model each electron is assumed to remain localized on an atom and, in this way, well

localized moments result owing to large intra-atomic electron correlations. The inter-atomic exchange
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interactions are much smaller and compete with thermal fluctuations to maintain long range order. The
magnetic interactions can be described by the familiar Heisenberg spin Hamiltonian.

In the Stoner or band model the carriers, either electrons or holes responsible for magnetism, are
itinerant and the interactions between the carriers are described in the mean-field approximation. The
electron densities can be viewed as the thermally averaged values if a Fermi distribution function is
introduced to describe the electron behaviors at finite temperature. The exchange splitting of spin-up
and spin-down bands leads to the ferromagnetic properties.

Both approaches have their own limitations. In the Stoner model no easy description can be given
of the temperature dependent magnetic properties. For an example, the highest temperature for which
the self-consistent solution for the total magnetization to be nonvanishing is about a few times higher
than the Curie temperature. For Fe3Pt, the Curie temperature is found to be about 2580K (Kashyap,
Solanki, Nautiyal and Auluck 1995), in contrast with its experimental value is just about 450K. Above
the vanishing temperature, there is no exchange splitting, and there should be no magnetic moments; but
this can not correspond to the Curie temperature T¢ since polarized photo-emission experiments shows
that there is exchange splitting above T (Moriya and Kawabata 1973), and paramagnetic experiments
exhibit spin-wave like behavior in Ni though there is no long range magnetic order (Uemura, Sirane,
Steinsvoll and Wicksted 1983; Shirane, Born and Wicksted 1986). A major problem of the Heisenberg
model is not possible to take into account the dependence of the magnitude of the magnetic moment on
temperature, chemical environment, and magnetic ordering. Likewise the coupling parameters between

spins should have a temperature dependence which does not appear in the Heisenberg model.

2y State Model

Important within the group of local models is a historically, widely debated phenomenological “2y-
state model” by Weiss (1963). Weiss claimed that y-Fe (the fcc phase) can exist in two different
magnetic states, the AF low-spin (LS) state v; with a small magnetic moment (¢ = 0.515) and small
volume (a = 3.57A), and the FM high-spin (HS) state v, with large moment (z = 2.871p) and large
volume (a = 3.64A). The Invar effect is driven by a thermal depopulation of the HS state and the
subsequent population of the LS state. The energy difference between the HS state and the LS state is
in the thermal range. This model has a great influence on many later studies, and its validity will be

addressed more later.




25

Band Calculations Related to Invar

All transition metals have E(V, M) curves with stable solutions of M = 0 for low volumes, and with
stable solutions of finite M values at larger volumes. Thus, all transition metals are non-magnetic at
sufficiently small volumes. This general result is not surprising when it is considered that, at low volumes
the transition-metal d bands are spread over a large energy range and are incapable of supporting
magnetic behavior, while at large volumes or the free-atom limit moments are consistent with Hund’s
rule and the atomic ground-state configuration must be approached. .

Band calculations within the local spin density approximation (LSDA) since 1970s predicted the
existence of two ferromagnetic states for fcc Fe and its crystal alloys, a high-spin state with large
moment and large volume and a low-spin state with low moment and volume. The idea is essentially
parallel to the 2y state model. The ab initio band calculations can explain many of the essential features
of the ground-state properties of Invar alloys.

It has never been clear why the stabilization of competing magnetic states should happen at the
magic occupation number of 8.6 electrons per atom in ferromagnetic and at 7.7 electrons per atom in
anti-ferromagnetic Invar alloys (Wassermann 1990 and 1991; Moruzzi 1989). In a series of fece 3d alloys,
Wassermann (Wassermann 1990 and 1991; Moruzzi 1989) showed that the calculated energy difference
between HS and LS becomes very small at the threshold values 7.7 and 8.6 in their band-structure
calculations (Krasko 1987; Moruzzi 1989; Moruzzi, Marcus and Kiibler 1989). For most calculations,
the HS state is normally ferromagnetic state with magnetic moments around 2.8 pp per Fe atom, while
the LS can be either paramagnetic or antiferromagnetic.

The origin of Invar effects has been debated for a couple of decades, and there is still a lot to be
explored about this problem. The difficulty in solving this problem may be ascribed to the difficulty
of understanding the magnetism of transition metals. The valence electrons in the solid have a strong
tendency to hop from atom to atom because this process will lower the kinetic energy due to the
decreased spatial localization of the wave function. These kind of itinerant states are well described
by the band picture. However, the Coulomb repulsion between electrons will oppose the hoping of the
electrons between atoms. When the cost in potential energy arising from hopping outweighs the saving

in kinetic energy, the electron becomes localized.




26

Experimental Studies of Invar Origins at the Microscopic Level

Corresponding to the theoretical studies, parallel attempts have been made in experiments to explore

magnetism generally and Invar theories particularly.

Experimental Aspects in Studies of Magnetism

Although the two extreme models are oversimplifications of the real situation and the d valence
electrons have both features, the interpretations of the data from experiments have been purely in
terms of localized or itinerant models in the past. As a result, the type of behavior that is obtained
is strongly dependent on how the experiment performed is explained conveniently. Experiments that
probe the regions close to the nucleus such as nuclear magnetic resonance, neutron scattering, etc. are
sensitive to the more local, atomic-like character of the electrons while other techniques, measuring
more macroscopic properties such as the specific heat, transport properties, de Hass-van Alphen effect
that probe mainly more global or extended aspects of the wavefunctions, are sensitive to the nonlocal or
itinerant character. Neutron scattering techniques allowed the measurements of the form factors, mag-
netization distributions, and the magnon relations. The development of angle-resolved photoemission
spectroscopy allowed the direct measurement of the excited-state exchange splitting and band mapping

studies.

Explaining the HS and LS States

A photoemission experiment has provided the evidence of the existence of HS and LS states when
the calculated densities of states for fcc Fe is fitted qualitatively well with the experimental data for
FesPt (Kisker, Wassermann and Carbone 1987). However, the occurrence of two competing magnetic
states (with different volumes) at finite temperatures has not yet been experimentally confirmed. What
has been observed by Mossbauer measurements on Fegg sNiz; 5 and FezaPtog is a gradual transition
from the HM to the LM state at low temperatures under high enough pressure (Abd-Elmeguid 1989).
The high temperature specific heats of FeqsNiss and FezaPtog Invar alloys have been measured from
room temperature up to &L)OK. Besides the peak due to spin disordering, no evidence of other excess
effects such as a Schottky-type anomaly has been found neither for the Fe-Ni alloy nor for the Fe-Pt
alloy. These results thus do not support the 2vy-states type models proposed for Invar (Hausch 1990).
There might be some magnetic states between the two special magnetic states which have a total energy
very close to both. The reasoning is that the closeness of the HS state to the LS state may just imply

that the total energy of an Invar system is insensitive to the spin orientations, implying a high degree
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of spin fluctuations are excitable within a thermal energy range. This will be further discussed in the

next chapter.
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6 ELECTRONIC BEHAVIOR IN Fe;Pt AND SOME RELATED ALLOYS

Introduction

The concentration of this chapter is to center around the Invar FegPt alloy. Since Fe is its dominant
constituent, we will first explore some experimental and theoretical aspects of bec Fe, which is the
ground state of Fe from low temperature to a very high temperature, and then fcc «-Fe, which is the
structural and compositional reference to the alloy. After some of the experimental results related to
FezPt are looked into, the results from our electronic band calculation based on the FLAPW method are
investigated concerning the following electronic features in Fe3Pt: energy band structures, the densities
of states, atomic basis functions, spatial distributions for charges and spins, momentum distributions
for charges and spins (or Compton profiles). Chemically and structurally related materials FesNi and
FezPd from the Fe-Ni and Fe-Pt Invar systems, CozPt and NizPt are also to be probed for comparisons

with FesPt.

On Fe

In the periodic table, Fe is followed immediately by Co and Ni which both normally have close-
packed fcc phases. Although Fe usually has the bee structure, a fcc structure is favorable under certain

conditions.

~+-Fe

At normal pressure, between 1183K and 1663K Fe has a fcc structure called 4-Fe, and the structure
has no long range magnetic order; at higher temperatures but below the melting point of 1807K Fe
is in the bce phase which is a ferromagnet below its Curie temperature 1043K. The high temperature
fcc structure has a paramagnetic susceptibility following the Curie-Weiss law with a negative Curie
temperature, indicating anti-ferromagnetic coupling (Gradmann 1993).

Unstable at low temperature, a fcc y-Fe structure can be stabilized either as coherent precipitates
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in other fcc metal matrices or as ultra-thin epitaxial films on Cu, as shown by antiferromagnetic vy-Fe
precipitates in Cu and Cu-Al (Keune 1989) and by +-Fe thin films on CuzAu (Carbone 1988). Experi-
mentally both antiferromagnetic and ferromagnetic orderings are found on precipitates in Cu (Kaufman,
Coulgherty and Weiss 1961; Abrahams, Guttman and Kasper 1962; Wright 1971; Gradmann 1976; Ke-
une, Halbauer, Gonser, Lauer and Williamson 1977; Gradmann and Isbert 1980), and ferromagnetic
order in Cu-Au alloys (Berghout 1961; Window 1972; Williamson, Bukshpan and Ingalls 1972; Gonser,
Krischel and Nasu 1980) by techniques such as Mdssbauer measurement and susceptibility measure-
ment. Furthermore, neutron diffraction measurements for v Fe alloy precipitates with a small amount
of Co showed that the fcc Fe precipitates have a spiral-spin-density-wave (SSDW) structure (Tsunoda
1988; Onodera, Tsunoda, Kunitomi, Pringle, Nicklow, and Moon 1994). These results seem to indicate
that y-Fe has very subtle energy differences between its various magnetic states to allow the presence
of the complex electronic magnetism. The close-packed fcc structure over the bee one (with nearly the
same volume) through the alloying manipulations at low temperatures might also suggest a relative
energy insensitivity of the crystal to volume.

The interest, in the nature of 3d metallic magnetism and in fcc Fe based Invar alloys, has made the

fcc Fe a traditional subject in theoretical studies as well.

About Band Calculations of Fe

A major difficulty with band calculations for Fe is to deal with the rather small energy associated
with magnetic ordering which is of the order of kg T¢ per electron. This amount of energy is comparable
to the presently achievable precision of electronic band theories. Computationally, numerical noises can
also be a very serious problem as noticed a long time ago by Wigner and Seitz (1934) when they found
out that compensating errors could even produce better results. Consequently calculations for Fe, bce or
fce, have not always been in agreement. The results are dependent on methods applied to some degree
(Jansen, Hathaway and Freeman 1979; Wang, Klein and Krakauer 1985; Hathaway, Jansen and Freeman
1985; Moruzzi and Marcus 1988; Moruzzi, Marcus and Pattnaik 1988; Moruzzi and Marcus 1993). For
some of the calculations, Fe can be in any of various paramagnetic, ferromagnetic and antiferromagnetic
ground states in a limited lattice constant range, and the states can also coexist (as an example, see
Morruzi 1989), while other calculations give more or less different results concerning the existence and
conditions of the magnetic or nonmagnetic states. Furthermore, in many of the calculations, even the
ground state is not found to be bcc ferromagnetic (for a very detailed review see Morruzi 1993). This

difficult situation can be resolved by introducing some additional exchange-correlation potential term
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as mentioned in chapter 3 (Leung, Chan and Harmon 1991). However, the latter approach generally
gets poorer results for some metals beyond the 3d transitional elements, and further investigations are

apparently needed.

Invar Fe-Pt System and FezPt

The first Invar Fe-Pt alloy was found by Kussman (1937). Many intensive investigations about the
magnetic and structural properties of the Fe-Pt system have a more recent h.istory (Ito, Sasaki and
Mizoguchi 1974; Hausch 1974; Nakamura, Sumiyama and Shiga 1978; Sumiyama, Shiga, Kobayashi,
Nishi, and Nakamura 1978; Caporaletti, Graham, and Sumiyama 1979; Sumiyama, Viard and Gavoille
1979; Shiga, Morioka and Nakamura 1979; Caporaletti, 1980; Sumiyama, Emoto, Shiga, and Nakamura
1980; Sumiyama, Emoto, Shiga and Nakamura 1981; Oomi and Araki 1995). The Fe-Pt alloys show
Invar properties not only in their chemically disordered states but also in their ordered ferromagnetic
state; on approach to the y-a transition typical for Fe-rich alloys, there is no deviation of the Fe mo-
ment from the Slater-Pauling curve (Kussman and Von Rittberg 1950). For a long time, the above
features gave the system an unique position in discussions about the origin of the Invar effect. It is
thus believed that possibly as a consequence of the moment-volume instability, both structural disorder
and magnetic inhomogeneity are not necessarily the reasons for the Invar. Investigations show that
ordered FezPt materials can be remarkably different from disordered ones magnetically. For ordered
alloys around composition FezPt, the Curie temperature is about 435K but only 280K for the disor-
dered alloys, in contrast with 500K for the most traditional Invar FegsNigs (Suzuki, Miyajima, Kido,
Miura and Chikazumi 1981; Ishikawa, Onodera and Tajima 1979) which is disordered. Moreover, the
disordered Fe-Pt alloys are magnetically more unstable, with their Curie temperatures being about
150K lower systematically, while they have more pronounced anomalies than their correspondingly or-
dered counterparts; specific heat from electrons is larger for ordered material than the disordered one
(Sumiyama, Shiga and Nakamura 1976). The above properties are typical for electrons in a disordered
phase (Callaway 1991): the more an alloy is ordered, the less its resistivity is, and the larger its elec-
tronic specific heat is. However, it is not quite clear why the disordered material has a more pronounced
Invar property than the ordered one.

In the Invar region, the thermal expansion coefficient of the Fe-Pt system can be as low as —0.3 -
10-%/ K, showing a strong anomaly (Miodownik 1979; Nakamura, Sumiyama and Shiga 1979; Chikazumi
1980). Like other Invar materials, the Fe-Pt Invar materials have their thermal expansion anomaly

depending not only on the composition but also on mechanical and thermal treatments. The strongest
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thermal anomaly occurs most around 23 at% Pt, and around this composition there are martensitic
transformations similar to ¥ — « transformation in Fe-Ni Invar alloys, whereas the shear and the bulk
moduli display a dramatic softening (Hausch 1974; Kawald 1989). The martensensitic transformation
takes place for ordered alloys with less than 25% Pt, but for the disordered with 28% Pt. The martensitic
temperature decreases with increasing degree of order. Above 32% Pt the Fe-Pt alloy has its cubic
structure tetragonally distorted, where a martensitic transition takes place.

For the ordered alloys around the above concentration regions and at low temperatures, the magnetic
moment per atom is about 2.1pp, with the local moment at the Fe site being around 2.7up and at the Pt
site about 0.4pp (Hesse, Niille and Korner 1983). A recent magnetic circular X-ray dichroism (MCXD)
experiment estimates (Maruyama, Matsuoka, Kobayashi and Yamazaki 1995) the orbital moment my,
is about 0.07pp for Pt in FezPt. Since for the 3d electrons the orbital moment in metals and alloys
usually is even smaller, their orbital magnetism normally can be ignored.

The Invar Fe-Pt system has a more pronounced thermal expansion anomaly than the Fe-Ni system
even in its ordered state (Sumiyama, Shiga and Nakamura 1976). Traditionally, the Fe-Ni system
had been a focus theoretically and experimentally because of the long history of the Fe-Ni system as a
noted Invar system. Yet the Fe-Ni system is chemically disordered, structurally mixed and magnetically
inhomogeneous, and since there are no easy ways to theoretically dealt with the complexities so involved,
most theoretical calculations of its ground state and thermal properties assume an ordered structure (for
examples: Williams 1983; Podgdrny 1989; Moroni, E. G. and Jarlborg 1990; Moruzzi 1990; Podgérny,
Thon and Wagner 1992; Entel, Hoffmann, Mohn, Schwarz and Moruzzi 1993). So, the Fe-Pt system
should be a better subject of Invar study, and can be better deal with ( Hasegawa 1985; Podgdrny 1992;
Podgérny, Thon and Wagner 1992). If there is no fundamental difference in the origin of the Invar
effects in typical Invar Fe-Ni, Fe-Pd and Fe-Pt systems, then such a study may provide insights for the
Invar phenomenon.

Among three simple kinds of ordered Fe-Pt structures, FesPt, Fe-Pt and FePts, only FezPt shows
the Invar thermal expansion anomaly: the replacement of an Fe atom in a simple cubic unit cell of y-Fe
with a Pt atom makes Invar observable. Naturally FesPt makes a very good sample for the Invar Fe-Pt

system. The thermal expansion coefficients of the FezPt alloy are negative around Tc¢.

Method of Calculation for FezPt

We use the FLAPW method to do a self-consistent, spin-polarized, scalar relativistic band calcu-

lation. The method eliminates the spin-orbit interaction term from the Hamiltonian, so that the spin
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remains a good quantum number and double group theory treatments are not needed. The exchange
and correlation interaction potential being used is by Janak (1976).

Ordered ferromagnetic FezPt has a simple cubic lattice. Its space group is Oi. The average magne-
tization per atom is 1.94up at 4.2K, and the lattice constant at 290 K is 7.06 a.u. (Sumiyama 1981).
In its unit cell, a Pt atom occupies the corners of the cube while three equivalent Fe atoms occupy the
face centers. The two kinds of atomic muffin-tin spheres are so chosen that the nearest neighboring
muffin-tin spheres nearly contact but do not overlap; the ratio of the two kinds of atomic spheres is
taken to be 1.09, which is close to the ratio of their corresponding atomic radii. Thus, the muffin-tin
radii are 2.62 a.u. and 2.39 a.u. for Pt and Fe, respectively. The MT spheres account for 69.6% of the
volume, comparable to 74%, the maximum possible value of the ideal close-packed structures (hcp or
fcc). The replacement of a Fe atom by a Pt atom increases the lattice constant, and with the presence of
different sized atoms there is more fractional space between the atomic spheres. To do radial integrals
inside the Pt and Fe muffin-tins, logarithmic radial meshes of 381 divisions each are used, and the
nearest mesh points to the origin are taken to be 8.12 x 10~° a.u. and 5.35 x 105 a.u. respectively for
Pt and Fe, the same order of magnitude as their corresponding nuclei radii; the largest mesh points are
taken to be the muffin-tin sphere radii. All these parameters are also fixed throughout our calculations.

Noticing the sensitivity of the magnetic Compton profile calculations to the band occupation of
electrons, along each dimension we cut the first reciprocal B.Z. into 32 divisions to generate two fine
meshes, an odd mesh of 120 inequivalent points and an even mesh of 165 inequivalent k. An odd mesh
point can form an irreducible cube with its eight nearest neighbors. We cut each of the 120 irreducible
cubes into twelve tetrahedra of equal volumes to calculate the density of electronic states and, thereafter,
the Fermi level. To do other k integrals, the 120 odd mesh points are assigned weights proportional to
the electron occupations of their cubes and their symmetric equivalents. We are not using a Gaussian
filling of the energy bands around the Fermi level which can both compensate numerical noise and
prevent a discontinuous jump in the assigned weight for an irreducible point when a tentative Fermi
energy level crosses the energy value of this point. For each of the irreducible k mesh points, a set of 256
to 280 basis plane waves are used for the interstitial region. The 120 basis function sets are collectively
chosen for all the 120 irreducible k points to take into account all plane waves giving a significant
contribution for the band calculations in order to guarantee valid calculational convergence. In the
selection two conditions are satisfied: a plane wave and all its symmetrically related plane waves are
taken or not taken all at the same time; the range of the number of plane waves for the 120 irreducible

k points is taken to be the smallest. The basis functions inside the muffin-tins are expanded up to




33

1 = 6. Self-consistency of the band calculation is assumed when the differences in the muffin-tin and
interstitial partial charges between the input and the output are lowered to the order of 10~2 electrons
per unit cell.

Once the self consistent potential is obtained, to avoid increasing the costs of other calculations,
separate programs are written for determining spatial electron distributions and also for the MCP
calculation. For the latter, the above meshes are extended to the “whole space” of a radius whose
product with the muffin-tin radius of Fe is 15. Since the calculation demands €ither a lot of computer
memory or a lot of disk space or both, a balance is carefully sought to make the calculation possible

for our available computer facility.

Electronic States in Fe;Pt

When atoms form condensed materials, their atomic energy levels are broadened into bands because
of the overlap of the atomic orbitals. The outer electrons of the atoms are now shared by the nuclei
in the materials, so hybridization effects become important. The more condensed the materials are, or
the less localized the valent electrons in the materials are, the wider the common bands of the electrons
are. Atomic configurations for the two constituents of FegPt are Fe (3d® 4s%) and Pt (5d° 6s'). At low
temperature the replacement of a Fe atom by a Pt atom in the fcc Fe unit cell stabilizes the otherwise
unstable close-packed fcc structure, and the material becomes ferromagnetic but not anti-ferromagnetic
as in fcc Fe. The larger lattice constant, due to the introduction of the larger Pt atoms, has the
magnetic Fe atoms more separated from each other, thus ferromagnetism becomes more favorable than
antiferromagnetism. On one hand, we expect some electronic behavior in the less close-packed FesPt
crystal different from those in the fcc Fe crystal. On the other hand, the Fe dominant crystal should
still bear some features close to those in fcc Fe, such as the weak dependence of total energy on the

magnetic states.

Energy Band Structures

The band structures are close to earlier calculations (Hasegawa 1985; Podgdrny 1991). Electronic
spin-polarized energy band structures along various symmetry axes are shown in Figure 6.1. The
correspondences between the energy bands of both spins are quite noticeable, especially for the lowest
bands which clearly resemble each other. The majority spin bands have a general downward shift
relative to their corresponding minority spin bands by some amount at each point in the reciprocal

space. Around the Fermi level, most of the majority spin bands are occupied while nearly all of the
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minority spin bands are all partly occupied. Therefore, the system is strongly polarized, leading to a

ferromagnetic ground state.

Densities of States and Hybridization

From Figure 6.2 to Figure 6.4, the total density of states (DOS), the partial DOS (orbital decom-
posed), and the interstitial region DOS contributions are shown. To see the hybridization of atomic
electron states of the constituent atoms, the orbital decomposed probability amplitudes of the Bloch
states at the 120 representative irreducible k points, which are used for various k-space integrations in
our FLAPW calculations, are also plotted in the same graphs for the partial densities of states.

Almost all the majority bands crossing the Fermi level (Er = 0.782 Ryd) are nearly totally occupied.
The Fermi level is thus situated just outside the first sharp peak at Ep of the majority spin DOS. The
minority spin bands around the Fermi level are all partly filled with the Fermi level being at the middle
of the minority band range which is wider than the majority bands. As a result, the density of states
for the minority spin bands at Ef is much larger. Our calculated 4 coefficient for the electronic specific
heat is about 11.5 mJ/K2/mole, while the experimental one is 9.6 mJ/K?/mole (Sumiyama, Shiga and
Nakamura 1976). The discrepancy between them may be attributed to some of the following factors
beside some other theoretical inaccuracies: the chemical compositions for the experimental samples are
not exactly the same as FezPt; the experimental samples were not completely ordered.

Naturally the dominant contributions to the total density of states are from the d states of both
Pt and Fe atoms. The majority spin bands mostly with d character are lower in energy than their
corresponding minority spin bands. The degrees of the ferromagnetic polarization are different for Fe
and Pt atoms though. The Fe spin bands are strongly polarized when the majority bands are almost
totally occupied and a large portion of the minority bands are not; the Pt bands are nearly all filled but
there are still a noticeable part of the minority bands unoccupied, hence the Pt sites also have significant
but smaller spin moments. In addition to the fact that Fe crystals are spontaneously magnetic while
Pt crystals are not, it can be concluded that the large exchange splitting of the 3d levels at Fe sites is
spontaneous and the relatively small splitting of the 5d levels at Pt sites is of an induced nature. The
Fe d states in the minority spin bands make the largest contribution to the total density of states at the
Fermi energy, Er, which approximately lies in the middle of the Fe d bands in the minority spin state
and consequently a Pt muffin-tin sphere has nearly twice as many minority spin d electrons in it as an
Fe muffin-tin sphere has, as shown in Table 6.1 where some information about the spin polarization

and magnetic moments is listed (a few other alloys listed in the same table will be discussed at a later
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Figure 6.1 Spin-polarized band structures for ferromagnetic FegPt along some
symmetry lines. The Fermi level is shown at 0.726 Ryd. (A) Upper

curves for majority spin electrons; (B) lower curves for minority

spin electrons.
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Figure 6.4 Partial densities for states from the interstitial region of FesPt.

time).

The range of bands mainly with Pt d character is considerably more narrow and lower than the
range of bands mostly with Fe d character. If the d states were well distributed inside the muffin-tin
spheres, each sphere would account for a 25% weight of the mixed states. But such a scenario is not the
actual case here: in each of the above two ranges, the partial composition percentages mostly reach to
more than 45% for the Pt sites in the first range and in the second range to more than 75% for the three
Fe sites of the unit cell. Therefore, the d states of a Fe site tend to mix with the d states of another Fe
site more than the d states of a Pt site, in other words, the electrons at the Pt sites are more localized
than the electrons at the Fe sites, which lead to a more sharply peaked and narrow structure for the
majority spin and at a slightly higher energy for the minority spin. This is understandable for the Pt
atoms have a stronger electro-negativeness or stronger binding ability, which draws more electrons to
Pt sites. It is obvious that the Pt d and Fe d ranges just meet and slightly overlap on their ends. As
a consequence of the meeting and overlapping of the two energy ranges hybridizations occur at each
atomic site, which is demonstrated by the DOS tails outside the two ranges. Because of the smaller
chemical composition of Pt in the crystal, the tail at the Fe sites induced by Pt atoms is considerably
smaller than the tail at the Pt sites induced by Fe atoms. The probability amplitudes of d electrons, at
the 120 representative irreducible points, mostly add up to 85% or even about 95% if there is little s or
p components involved. The high percentages for the atomic sites simply indicate that the d states in
the alloys tend to be more confined to their own kind of muffin-tin sites. One effect of introducing the

more binding Pt atoms into the crystal is that the Fe minority spin bands are less occupied. Therefore,




39

each pair is the majority electron count.

Table 6.1 Spin moments in FegPt and some related alloys. First number of

FesNi 20.89-13.12
Interstitial 1.28-1.32
totalpsp s p d f
Ni 5.07-4.51 | 0.26-0.29 | 0.22-0.27 | 4.57-3.93 | 0.02-0.01
Fe 4.85-2.44 | 0.22-0.23 | 0.20-0.21 | 4.41-1.98 | 0.02-0.01
FegPd 21.19-12.81
Interstitial 1.40-1.45
totalprr s P d f
Pd 4.88-4.62 | 0.24-0.28 { 0.19-0.23 | 4.42-4.09 | 0.02-0.02
Fe 4.98-2.26 | 0.22-0.23 | 0.17-0.18 | 4.56-1.83 | 0.02-0.01
FegPt 21.11-12.89
Interstitial 1.59-1.63
totalpsr ] P d f
Pt 4.79-4.44 | 0.33-0.36 | 0.20-0.25 | 4.22-3.80 | 0.03-0.02
Fe 4.92-2.29 | 0.21-0.21 | 0.18-0.19 | 4.51-1.87 | 70.02-0.01
CozPt 21.11-15.89
Interstitial 1.60-1.69
totalprp s P d f
Pt 4.75-4.37 | 0.32-0.34 | 0.20-0.24 | 4.19-3.76 | 0.03-0.03
Co 4.93-3.29 | 0.21-0.21 | 0.17-0.19 | 4.53-2.87 | 0.02-0.01
NizPt 20.883-19.117
Interstitial 1.603-1.645
totalasr S ) d f
Pt 4.71-4.45 | 0.33-0.33 | 0.21-0.22 | 4.14-3.86 | 0.03-0.03
Ni 4.86-4.35 | 0.20-0.20 | 0.16-0.17 | 4.48-3.96 { 0.01-0.01
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the spin moments at the Fe sites are increased to have a value of about 2.63pp greater than the 2.2up
experimental estimation for fcc Fe at a lattice constant of 6.83 a.u. in Cu (Kittel 1996). Even so, our
later calculation for Fe will show that the average magnetic moment per atom essentially has not been
decreased in FezPt when compared to the ground state of a magnetic fcc Fe at 6.73 a.u.. The small spin
moment of about 0.35xp on Pt, on the other hand, is mainly a magnetic polarization of Pt d states
induced by the Fe spin through the hybridization.

Usually s and p electrons do not get much attention for they make almost no direct contribution
to spontaneous magnetism. However, these electrons help to sustain the mechanical equilibrium inside
the crystal in a most important way. With the condensation of the atoms into crystal, the atomic s and
p electrons are the most affected. The resulting s- and p-like electrons may also be the most sensitive
electrons in the crystal to external mechanical and thermal disturbances, which deserves significant
considerations in Invar study.

The lowest bands for both spin states consist preponderantly of the Pt s and Fe s states. Similar
to the d electrons, the s electrons are slightly more localized at the Pt sites than the s electrons at
the Fe sites. These electrons interact most strongly with each other, hence the hybridization between
them is significant and the compositional percentages reach around 25%, the referential value, for the
lowest energies with a value less than 0.35 Ryd. The p states, which are not occupied in atoms, now are
lowered to be of comparable occupations as the s electrons. In the higher energy ranges with dominant d
character, the s states hybridize with the d states, the generally energetically higher p states have mixed
almost completely with the d electrons. Therefore, both s and p states have lost much of their identities
in these ranges. Near the Fermi level, the partial densities of minority spin p states, especially at the Pt
sites, are much larger than those of other s and p states; the minority electrons of p character are the
most populous among the most unlocalized electrons. These p electrons could play some significant role
when the crystal is subjected to external influences, and might contribute to some physical properties of
the alloy. While there are almost equal number of s or p electrons of opposite spins inside each muffin-
tin sphere, a Pt muffin-tin sphere noticeably has more conduction s and p electrons inside themselves
than a Fe muffin-tin sphere, and the net spin polarization points opposite to the spins of the majority
electrons.

In general, the band states of Fe and Pt are much intermingled, so the generally mixed bands can
not, be simply identified as either Fe or Pt states. But in some energy ranges the distinct features of
the atomic-like states can still be observed, when the Pt characteristic bands generally are lower than

those of Fe ones. The peaks of the partial densities of states at the two different kinds of muffin-tin
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sites have a very strong tendency to occur at the same energies for all the different kinds of s, p and
d electrons with the same polarization. The cause for this is the strong hybridization, typical for an
alloy, between Fe and Pt states of the same polarizations in the whole occupied energy range. With
the hybridization of the Fe states with the Pt states, the electronic bands get wider; also DOS plots are
higher peaked around some energy ranges because of the hybridization. The higher peaks around Ep
could mean more remarkable instabilities for electrons at Er, the Fermi level, are responsive to external

disturbances.

Spatial Distributions of Charges and Spins

For the hybridizations to occur in the real space, the atomic-like electron states, required to be
energetically close to each other, must be spatially overlapped. Figure 6.5 shows the normalized basis
radial wavefunctions at the two muffin-tin sites at 0.546 Ryd, an energy dividing the 34 valence electrons
into two equal parts according to their energies. Understandably, the wavefunctions at the Pt sites are
extended considerably more outward than their corresponding wavefunctions at the Fe sites, with the
differences being the most remarkable between the Fe 3d states and the Pt 5 d states. The p states are
the most extended, the d states are the most localized but they still have a tendency to be itinerant,
and the s states are similar to the p states as for their localization degree. The s electrons are lower in
energy than the p electrons overall, because they are closer to the positive nucleus.

It is generally believed that when free atoms form condensed matter, the forms of atomic wavefunc-
tions change little near the nuclei, so the most affected parts of the wavefunctions inside the muffin-tin
spheres are near the interstitial region. The effects of hybridizations from the condensation are displayed
around the interstitial region where the most sensitive outer electrons lie. From the spatial distribution
patterns, it can be imagined that the s and p electrons must be considerably more exposed to external
influences, such as thermal or mechanical ones, than the d electrons. A consequence of the condensation
is that the angular momentum becomes an almost meaningless quantum number for individual states
because the spherical symmetry of atoms have been broken severely. Around the muffin-tin boundaries,
Fe 4p and Pt 6p states have the largest amplitudes of all the radial wavefunctions, while Fe 4s and Pt 6s
states have amplitudes comparable to the p states. Only the Fe 3d states are spin polarized remarkably
as reflected by the majority spin d wavefunction has a amplitude of 2.5 times smaller than the minority
spin d states at the muffin-tin sphere boundary. It means that the majority spin d-like electrons at the
Fe sites are considerably more localized than the minority spin d-like electrons. For the Pt d states,

the amplitudes for both spins are almost the same except for some noticeable difference around the
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Figure 6.5 Spin-polarized basis radial wavefunctions inside the muffin-tin
spheres of FegPt at E = 0.546 Ryd. The dots are for the majority
spin, while the lines are for the minority spin.
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muffin-tin sphere boundary, hence they are not much polarized though more extended overall than the
Fe d states.

We have plotted charge and spin distributions in Figure 6.6, Figure 6.7 and Figure 6.8. While
the charge densities are much extended, the spin densities are mostly localized. Inside the muffin-tin
spheres, the angularly averaged charge and spin densities mostly have the features of the d-like electrons
except near the MT boundaries where they bear the influences of the s- and p-like electrons and become
relatively smooth. The spin distribution is much more localized at the Fe sites than at the Pt sites.
Near and inside the Fe muffin-tin spheres, the spin densities are consistently positive, while near the Pt
muffin-tin spheres the electrons are all polarized in the opposite direction to the majority spin although
the net Pt magnetic moment is parallel to the majority spin. The regional dominance of the minority
spin electrons has actually been partly suggested by the larger amplitudes of their radial wavefunction
near the Pt muffin-tin boundary shown in the Figure 6.6. Both s-like and p-like states do not contribute
significantly to such a slight antiferromagnetic pattern in the this region. Charge densities are generally
anisotropic when looked from both atomic sites, and they change very abruptly near and outside of both
muffin-tin sphere boundaries. Middle way between the nuclei are the most negatively spin-polarized
regions, which is a further indication that the minority spin electrons are more extended. Near the Fermi
level, these minority electrons account for a large portion of the occupying electrons which, as we recall,
have larger weights over the majority spin electrons in the interstitial region. These highest energetic
electrons in the interstitial region are very likely the most sensitive to outside disturbances. Therefore,
the minority spin electrons can play a more important role for some Invar complexities of the alloy
than the majority electrons. On the other hand, since the spin magnetism of the transitional element
dominated materials is mostly of localized nature, external disturbances like thermal effects may be
indirectly disruptive to long range static magnetic order but local magnetic moments may still manage
to be kept; thus at low temperatures long range spin fluctuations are expected, and at temperatures

much higher than Curie or Néel temperatures short range magnetic order can still be observed.

Effects of Inaccurate Information about Exchange-Correlation Interaction on

Magnetism of FezPt

It is known for quite a while that there is inaccuracy in describing the exchange-correlation inter-
action. In an effort to see how the possible approximation might affect our results for the electronic

behavior and magnetism, we have proportionally reduced our exchange-correlation by a factor of from
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Figure 6.7 Interstitial charge distributions for FegPt. (A) On a middle plane
between the two sides of the unit cell; (B) on a plane between the
middle plane and a side of the unit cell; (C) on a side of the unit
cell.
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Table 6.2 Majority electrons in the MT spheres.

7
per Pt Fe
cell s p d d-eg d-tyg | s P d d-e; d-tgq
1.22 | 0.363 0.272 3.857 1.612 2.245| .212 0.207 3.318 1.430 1.888
1.62 | 0.352 0.270 3.866 1.617 2.248 | .212 0.206 3.386 1.470 1.916
3.12 |1 0.349 0.264 3.903 1.638 2.265 | .211 0.205 3.630 1.597 2.033
3.41 [ 0.348 0.262 3.913 1.643 2.270 | .211 0.204 3.679 1.618 2.061
3.95  0.347 0.269 3.929 1.650 2.279 | .211 0.202 3.769 1.652 2.116
5.78 1 0.342 0.243 4.006 1.676 2.331 | .208 0.194 4.086 1.743 2.343
6.22 | 0.341 0.240 4.032 1.684 2.348 | .208 0.192 4.156 1.758 2.397
7.39 10339 0.231 4.109 1.702 2.407 | .208 0.189 4.342 1.795 2.547
Table 6.3 Minority electrons in the MT spheres.
i
per Pt Fe
cell s P d d-eg d-ty | s p d d-e; d-ty
1.22 | 0.358 0.283 3.841 1.594 2.247| .213 0.209 2.906 1.182 1.724
1.62 | 0.358 0.283 3.841 1.592 2.249| .212 0.208 2.842 1.138 1.704
3.12 [ 0.361 0.286 3.823 1.571 2.252 | .212 0.209 2.600 0.962 1.638
3.41 ) 0.361 0.286 3.822 1.569 2.253 [ .212 0.208 2.555 0.930 1.625
3.95 1 0.362 0.286 3.820 1.564 2.2565 | .212 0.207 2.471 0.872 1.599
5.78 1 0.365 0.282 3.819 1.550 2.269 | .211 0.201 2.191 0.715 1.476
6.22 | 0.366 0.280 3.811 1.543 2.268 | .211 0.199 2.128 0.685 1.443
7.39 1 0.368 0.275 3.784 1.528 2.256  .211 0.196 1.957 0.623 1.334

e -
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9% to 15%. The calculated results are listed in the Table 6.2 and Table 6.3. It is clear that the ar-
tificially introduced change in the exchange-correlation potential affects s and p electrons very little,
but it causes great changes in the distributions of d-like electrons of both spins at the Fe sites as well
as some evident alteration of the majority spin electrons at the Pt sites. It is probably true that an
inaccurate exchange-correlation potential form is very likely to affect these d electrons at the Fe sites
much more than the other electrons. Consequently, the information we get so far for the s, p and
minority Pt d electrons should be more reliable than for the others. But we should cautiously add that
this conclusion stems from our specific choice for the change in the potential form, and lacking a solid

physical interpretation, it may not be a very precise evaluation of the real situation.

Compton Profiles of Fe; Pt

To investigate the momentum distributions of electrons in FezPt theoretically, we show the calculated
Compton profiles for the majority spin electrons and minority spin electrons respectively in Figure 6.9
and Figure 6.10. The solid lines for the total Compton profile in both figures are normalized to the
total charge per unit cell for each spin. Since we have ignored the spin-orbit coupling between the two
different kinds of spins, the discussion about both spins can be done separately. We decompose the
Compton profiles into three parts: one is from all the orbitally decomposed contributions inside the
muffin-tin spheres, another from the interstitial region; and the rest from the coupling or the interference
between the two kinds of contributions through their wave behavior. To get first two parts, we take the
Fourier transform of the real-space wave function by restricting the integration to over the muffin-tin
sphere and to over the interstitial region respectively; the “interference” term arises from cross terms in
the square of the above two parts of the total momentum wave function (the momentum wavefunctions
squared to obtain the momentum density whose Fourier transform yields the Compton profile). It can
be easily shown that such an interference makes no net contribution to the total integral of the overall
profile: its negative part and its positive part cancel. The partial contributions from the s, p and d
electrons inside the muffin-tin spheres are also shown in the figures. Correspondingly, the two figures
show similar patterns. A general rule for the momentum distribution is: the closer an electrons is to
a nucleus, the lower its potential becomes, or the larger its kinetic energy gets. Therefore, electrons
further away from the cores are moving slower generally. This rule should generally be able to explain

the shapes of the curves in both figures, but we will only elaborate on a few. Compared to the d

electrons, the s and p electrons are more likely away from the cores, so they are lower in momentum.

The s electron are moving slower than the p electrons. Since some d electrons can also penetrate
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into the interstitial region, the interstitial contribution shows some similarity to the overall profile at
large Pz. Proportionally, more of the 6.86 minority spin electrons inside the Fe muffin-tin spheres have
smaller momenta than the 4.44 minority spin electrons in the Pt muffin-tins have. So, electrons inside
the Pt muffin-tin have more intermediate momenta compared to electrons in the Fe muffin-tins. The
contribution in the interstitial region is much associated with the s and p electrons which are rather
extended in real space from the muffin-tins into the interstitial region by slowing down to posses small
momenta.

Figure 6.11 shows the subtractions of the above two figures to give the magnetic Compton profile
(MCP). For comparison, experimental data at 305K from Yahnke (1995) is also shown in the figure.
Both calculated and experimental Compton profiles show a dip around Pz = 0. Our previous atomic
calculations did not produce such a dip by assuming negative polarized s and p electrons of the amounts
from the calculation here for the crystal. The contributions to the magnetic Compton profiles from the
s and p electrons are too small to explain the large dip seen experimentally. Although the interstitial
region is about 30% of the total volume, its contribution to the total magnetic Compton profile is
also too minute to significantly account for the dip. This is because, as we saw before, the interstitial
electrons are mainly of s- and p-like characters, and just contribute within a narrow range Pz < 1(a.u.).
The interference contribution to MCP has an oscillatory character extending to Pz values of about 4.0
a.u., and produces a rise above the d-orbital MCP curve between Pz values of about 0.7 a.u. and 1.8
a.u.. The interference contribution thus accounts for much of the dip. The negatively polarized s- and
p-like electrons, possessing small momenta generally, also yield some comparable contributions to the
dip. Since the dip appears at the very small momentum region, it is likely that it is due to those electrons
with large probability to be in the the interstitial region that are negatively polarized. Accordingly,
it can be concluded that the dip near Pz = 0 is partly due to the negative spin distribution from the
unpaired s and p electrons at Pt sites and from those negatively polarized conduction electrons in the
interstitial regions (a similar explanation to what was given for bec Fe by Wakoh and Kubo 1977). The

interference effect also contributes and demands further explanation.

A Study of Antiferromagnetism

Thermal effects introduce magnetic fluctuations that can not be well taken care of by LSD theories.
Associated with the fluctuations in FezPt are various magnetic states approachable through thermal
excitation from the ferromagnetic ground state. We thus have examined some magnetic structures to

get a hint of how the antiferromagnetic tendency might influence the electronic behaviors in FesPt.
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Three Magnetic States of Cubic FesFe

As a reference to the study of the fcc Fe based FegPt, a FegFe structure of a nonprimitive simple
cubic unit cell, with one Fe atom of one kind at its corner and three others of the other kind at its face
centers, is to be first investigated. We consider the two kinds of Fe atoms to be inequivalent to each
other, or the structure would just be a primitive fcc structure otherwise. The lattice constant is chosen
to be 6.73 a.u., approximately a value for its ground state in our calculation. The muffin-tin spheres
are contacting each other and their radii are chosen to be the same. Since the two kinds of iron atoms
are identical, we use a mixing factor of less than 4% between the old and new charges, to avoid too

much random flowing of electrons from one atom to the other.

Table 6.4 Spin electron distributions in FesFe for some magnetic states. The
first number in each pair is for the majority electrons.

Total 20.08-11.92
Interstitial 1.33-1.37
totalpsr s p d f
Fe 4.69-2.66 | 0.23-0.24 | 0.21-0.22 | 4.22-2.18 | 0.020-0.01
Fes 4.70-2.64 |} 0.23-0.24 | 0.21-0.22 | 4.24-2.17 | 0.020-0.01
Total 16.81-15.19
Interstitial 1.35-1.37
totalpsp s P d f
Fe 2.73-4.58 | 0.22-0.25 | 0.20-0.24 | 2.28-4.07 | 0.02-0.02
Feg 4.25-3.09 | 0.23-0.23 | 0.22-0.21 | 3.78-2.63 | 0.02-0.02
Total 16.26-15.74
Interstitial 1.36-1.36
totalasr s P d f
Fe 3.656-3.69 | 0.23-0.23 | 0.21-0.21 | 3.18-3.22 | 0.02-0.02
Feg 3.76-3.57 | 0.23-0.23 | 0.21-0.21 | 3.29-3.11 | 0.02-0.02

Since the energy of the structure is relatively insensitive to its magnetic state, we have obtained
three converged magnetic states, with moments being 8.16 pup, 1.62 up and 0.52 pp respectively, as
shown in Table 6.4 by trying different starting potentials. The first state is nearly a ferromagnetic state
for fcc Fe with a magnetic moment of 8.16up, comparable to the value of 8.21up for the ground state
of Fe3Pt. Its densities of states and of partial states are plotted from Figure 6.12 to Figure 6.14. The
magnetic moments inside the muffin-tin spheres are about 2.05xp, in contrast to 2.63up at Fe.sites
in FegPt. The s-like and p-like electrons in the muffin-tin spheres and the interstitial electrons have

negative polarizations as in FegPt. From the DOS figures for this state, we can see that the atomic-
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Figure 6.14 Partial densities for states from the interstitial region of FezFe
with a total moment of 8.16 ug.

like d states from the Fe sites are nearly uniform with a 25% mixing typical for ferromagnetic fcc Fe.
Nevertheless, the corner Fe atom shows some noticeable deviation from the mixing percentage though
its net charge and net spin are nearly identical to those of other Fe atoms. Such a distinction of the
corner Fe atom is similar to what we have seen for the Pt atom in FezPt. Like in FezPt the upper
bands are nearly full but with a larger value of DOS at the Fermi level. An observation is that the
introduction of Pt atom in FesPt leads to higher DOS values for s, p and interstitial electrons around
Ep.

The second state is a ferrimagnetic state of a magnetization of 1.62up per unit cell. Its densities of
states and of partial states are plotted from Figure 6.15 to Figure 6.17. In this state, the corner atom in
the unit cell has a moment of 1.864p which is antiparallel to the moments (with a value of 1.16up each)
of the other three Fe atoms in the unit cell. It is interesting that s and p electrons now are parallel to
the local moments while the interstitial electrons still have a net magnetic moment 0.02i:p antiparallel
to the total magnetization. There are some changes relative to the above ferromagnetic state: the net
negative spin polarization in the interstitial region is decreased from about 0.04p5 to about 0.02zp; the
net spin polarizations of s- and p-like electrons inside muffin-tin spheres, however, are now parallel to
their total local moments, while their absolute values for the corner Fe atoms are increased from about
0.01pp to about 0.03up. These values suggest that the negative spin regions around the interstitial
region get smaller with the presence of the antiferromagnetic tendency. For the corner Fe atom, both

kinds of spin electrons at the Fermi level have bands that bring about two DOS peaks higher than in
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with a total moment of 1.62 yp.

the first state; both DOS peaks are well separated from each other, with a very small portion of the
spin up electron peak at Er being occupied, and with the other peak, well below the Fermi level, being
all occupied. Therefore, the electrons in this state are generally more localized because of the reversal
of the spin at the corner Fe atom sites. Although the spin up d electrons of the corner Fe atom have
a much smaller population than the electrons of the other kind spin, they contribute tremendously to
the DOS at Ep. Comparing with the first state, near and above the Fermi level, a smaller population
of s, p and interstitial electrons are unoccupied.

The third state is a ferrimagnetic state with a smaller total magnetization of 0.52up per unit cell,
and the state has only a very small antiferromagnetic effect: the corner atom has a negative magnetic
moment of 0.04x 5, while other three atoms at the face centers each have a magnetic moment of 0.19u 5.
Its densities of states and of partial DOSs are plotted from Figure 6.18 to Figure.6.20. The moments
of s, p and interstitial electrons are too small to be perceived for our calculation precision. Again, the

antiferromagnetic atom has electrons more localized as in the second state.

A Ferrimagnetic State of Fe,FePt

Stmilar to the previous calculation for FezFe, we have approximately reversed the magnetic moment
of a Fe atom at a face center of the otherwise FegPt cubic structure to find a converged ferrimagnetic
state at the same lattice constant of FezPt. The structure has the symmetry of Dyj. The figures from

Figure 6.21 to Figure 6.24 show the corresponding densities of states for this ferrimagnetic state.
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Table 6.5 Spin electron distributions in Fe,FePt for some magnetic states.

Total 18.12-15.88
Interstitial 1.60-1.63
totalpsp s p d f
Pt 4.64-4.55 | 0.34-0.35 | 0.23-0.25 | 4.04-3.92 | 0.03-0.03
Fe 2.38-4.76 | 0.19-0.22 | 0.16-0.20 | 2.01-4.31 | 0.02-0.01
Feq 4.77-2.48 | 0.22-0.21 | 0.20-0.19 | 4.33-2.07 | 0.02-0.02

Table 6.5 shows some information about the spin distribution. The Fe atoms still have their net
magnetic moments of s and p-like electrons parallel to the direction of their respective total local
moments, as in the above antiferromagnetic state for FegFe. Comparing to the ferromagnetic ground
state of FesPt, there are some significant changes. The interstitial electrons and the s and p electron
at the Pt atom sites now have smaller negative spin moments. The local moment at the Pt site is
decreased from 0.35up to 0.09up. The net negative polarizations are more extended. The two kinds
of Fe atoms have nearly equal local magnetic moments, though opposite to each other, that are about
10% smaller than the corresponding ones in the ferromagnetic FezPt. As some electrons transfer from
the corner Fe atoms to the other three Fe atoms when antiferromagnetic order occurs in the FezFe, the
reversal of the local total magnetic moment at the minority Fe site leads to a small amount of electron
transfer (0.08 electron per unit cell) from the Fe atom and the Pt atom to the major Fe sites. The bands

become narrower, and the DOS peaks are thus higher. The moment-reversed Fe atom has electrons
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around that are more localized than those in FeszPt.

Magnetic Compton Profiles

Magnetic Compton profiles of all the above states have been calculated and shown in Figure 6.25.
Experimental data for ordered FezPt from Yhanke (1995) are also shown for comparison. Our theoretical
curves are all normalized to their corresponding calculated moments within 0.01 electrons per unit cell.
The major discrepancies between the experimental data and theoretical ones are for the momentum Pz
smaller than 2 a.u.. A major reason is that the experimental profiles have larger oscillating tails for Pz
extending beyond 6 a.u. (not shown), which account for some significant weight of the profiles, while
our calculated results have little weight beyond Pz = 6 a.u.. This kind of large tails are not found in
other MCP measurements. More precise measurements seem needed.

Let us first compare the profile of FezPt with that of the FesFe ferromagnetic state. Their generally
subtle differences are difficult to observe with the precision of current measurements. For small mo-
menta, particularly those Pz smaller than 1.5 a.u., the theoretical distributions have shown considerable
differences that Pt atoms have made in the fcc Fe based structures, but unfortunately its corresponding
experimental data have the largest errors. For larger Pz roughly between 1.5 a.u. and 3.5 a.u., the dis-
tributions change abruptly while the corresponding experimental errors are generally smaller; because
of the poor fitting for the small momentum region, this part of MCP decreases with Pz much faster
than the experimental data do. The position for the highest MCP peak of FezPt is decreased by 0.1
a.u. relative to that of FesFe, and the MCP of Fe3Pt in the small momenta region is noticeably higher
than that of FezFe. The MCPs are not very sensitive to the chemical changes from the fcc Fe, thus
demanding more precision on MCP experiments for meaningful comparisons.

The discrepancies of the dip between theories and the experiments are not well explained so far,
despite the speculation that the negative s- and p-like spin moments are underestimated (Wakoh and
Kubo 1977). Further examination of the differences need to be made.

We have calculated a MCP by reducing our exchange-correlation potential by about 8% to study
the possible effect of inaccurate descriptions of the interaction on our result. The MCP so derived is
almost proportional to the original MCP reduced by the same 8% reduction, while the total magnetic
moment is reduced by about 9%. Such a systematic theoretical deviation obviously fails to explain the
larger dip around small momentum that experiments imply.

We have also calculated the MCP for the ferrimagnetic states in FesFe as well as in FepFePt, to

examine if the antiferromagnetic ordering can contribute to the dip. The profile of Fe,FePt shows
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that the dip is larger than that of FegPt, if both profiles are scaled to give the same total area for
their comparison. A similar scaling is made for the first two fcc Fe magnetic states, and a similarly
enlarged dip is found for the ferrimagnetic state relative to the nearly ferromagnetic state. For our
second ferrimagnetic state in FesFe with a very small net spin moment at the minority Fe sites, the
dip is almost gone. From this observation, it seems that the dip may have something to do with
antiferromagnetic tendency, or even, spin fluctuations which likely show up at the room temperature

where nearly all of the MCPs have been measured so far.

Electronic Behavior of Some Related Alloys

Ni, Pd and Pt have the same valent electron occupations. The introductions of a Ni, Pd or Pt atom
in a fcc Fe unit cell helps to establish stable Invar materials. How such alloying affects the electrons
will be studied here for Fe dominant Invar materials FezX (X = Ni and Pd). As a reference for FezPt,

Co or Ni dominant alloys X3Pt (X = Co and Ni) are also to be studied.

Invar FezX (X = Ni, Pd and Pt) Systems

Various phases for Fe-Ni, Fe-Pd and Fe-Pt systems have been studied (Madleung 1995). Among
the three Invar systems, Fe-Ni can have Invar anomaly over the largest range while Fe-Pt can have the
anomaly over the smallest range. On the other hand, the Fe-Ni system can sustain its fcc structure for
the largest Fe concentration, while Fe-Pt the smallest.

The existence of antiparallel spins, as well as of the frustrated magnetic moment of Fe atoms in Fe-Ni
Invar alloys, are shown by the special experimental method of M&ssbauer spectroscopy with polarized
y-radiation in the study by Ullrich and Hesse (1984). But a long range antiferromagnetic order has not
been found in Fe-Ni alloys so far.

Polarized Neutron diffraction measurements carried out on Ni and Fe have revealed that the mag-
netization density localized around each atomic site is greater than the atomic moments given by the
magnetization measurements, and in the region between atoms the spin density is essentially opposite
to the total magnetization (Brown, Jassim, Neumann and Ziebeck 1989). Measurements for FegsNiss
at 300K and 77K indicate that the avenge local moment associated with Ni atoms exhibits little tem-
perature dependence below the room temperature (Ito, Akimitsu, Matsui and Chikazumi 1979).

For FezPd the Curie temperature is 500K, and the local moments for the atoms are 2.7up and
0.36up for Fe atom and Pd atom respectively (Fujimori and Saito 1964; Kimura, Katsuki and Shimizu
1966; Matsui, Shimizu, Yamada and Adachi 1980; Matsui, Shimizu and Adachi 1983). The Fe-Pd has
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similar properties as the Fe-Pt system, particularly a minimum thermal expansion around z = 0.3 for
its high-temperature y phase, and there is no ordered FesPd phase at low temperatures when a y-o
transition takes place. FezPd is metastable (Buschow, van Engen and Jongebreur 1983), alloys with
28-33% Pd transform to fct phase from the fcc phase at low temperature (Sugiyama, Oshima and Fujita
1984 and 1986). In the concentration range between 34.4% and 39.5% Pd a martensitic transformation
occurs, it is a mixture of bee and fct and is very close to fec (Sohmura, Oshima and Fujita 1980; Matsui,
Adachi and Asanol 1981; Predel 1995). The lattice constant of FesNi is taken as 6.75 a.u. from an
experiment at about 200 K (Bonnenberg, Hempel and Wijn 1986). The lattice constant of FezPd is
taken as 7.21 a.u. from an experiment (Madelung 1995).

The 4-a transition occurs for the Fe intermetallic alloys always when the fcc structure is no more able
to support the ferromagnetic state. The fcc phase can be sustained for the highest Fe concentrations
for Fe-Ni, and Invar concentrations are very close to the y-a transition line. Further, Pt-Fe confines its
Invar anomalies to a very narrow concentration range (22-32% Pt), while the Invar anomalies for Fe-Ni
alloy are present in a relatively broad concentration range (25-45% Ni).

For Fe-Pt, its Curie temperature for 50%-75% Fe decreases with increasing iron content. This means
that the magnetic contribution to the crystal free energy falls (Menshikov 1989). The concentration
dependence of the average magnetic moment for Fe,Pd;_, and Fe,Pt;_, alloys varies linearly with z,
while in the Fe;Ni;_. alloys this mixing law exists only up to £ = 0.5 and then decreases rapidly up to
0.75.

Figure 6.26 to Figure 6.33 show some results from band calculations for FesNi and FesPd. Comparing
to elemental Fe, the Ni, Pd and Pt dominated bands have more narrow and sharper DOS peaks, similarly
the bands dominated by Fe atoms in the alloys. Elemental Ni, Pd, and Pt have the same number of
valent electrons and their electro-negativeness increases in the same order. This trend is reflected in
their corresponding alloys. For FegNi, Ni d electron dominated majority bands of FesNi prove to be
enclosed by the majority bands of Fe; for FezPd, some of the d electrons of Fe are drawn into the Pd
dominated bands and lose their original features, but others get more narrow and form sharper DOS
peaks. Contrastly, for Fez3Pt, Pt dominated bands are isolated from Fe bands but the Fe bands become
broadened by hybridization and less peaked than in FegPd. The s states hybridize very well and mostly
appear in the states of the lowest energies, s- and p-like states, where Ni, Pd or Pt dominates. The
interesting consequence of the above is that the occupied energy range of FegPd is the smallest among
the three alloys. For p electrons in the alloys, the DOS of the minority electrons of Fe at Ep is increased

by a few times when comparing to FegFe. The increase may be attributed to the hybridization between
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the p electrons from the various atoms. As for the interstitial contributions, FezPd shows the largest

peaks and has the largest DOS value at Ep.

X3Pt (X = Fe, Co or Ni) Alloys

Co3Pt can be in chemically ordered states (Inden 1983; Sanchez, Mordn-Ldpez, Leroux, and Cadev-
ille 1989; Harp, Weller, Rabedeau, Farrow and Toney 1993). The crystal structure of CozPt is described
by the space group Pm3m O} (No. 221 in the international tables). The local moment at the Co site is
about 1.7pp, and at the Pt site is about 0.3pup (Cadeville, Dahmani and Kern 1986; Sanchez, Mordn-
Lopez, Leroux and Cadeville 1989). The lattice constant of CozPt is taken as 6.92 a.u. from an
experiment (Kootte, Haas and Groot 1990). The lattice constant of NizPt is taken as 6.90 a.u. from
an experiment (Eckerlin, Kandler and Stegherr 1986).

Nickel and Platinum can be mixed in any proportions to form fecc structures (Cadeville, Dahmani
and Kern 1986). NizPt is a stable CugAu L1, structure, with a temperature of formation 540°C, and
it can be relatively homogeneous (Matveeva 1995). The magnetic moment per atom is about 0.49up,
while the moment at the Ni site being 0.57up and at the Pt site 0.25up, and some slightly negative
magnetization in the interstitial region, the negative contribution from the orbital momentum is about
0.056up (Fischer and Besnus 1969; Nakai, Tomenu, Akimitsu and Ito 1979; Parra and Cable 1980;
Cadeville and Mordn-Lépez 1987).

Figure 6.34 to Figure 6.41 show some results from band calculations for CogPt and NizPt. Comparing

with FesPt, there are some differences. The lowest energies change little, while the higher energies are
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generally changed more and more with the increase in energy. Therefore, DOS changes little of their
shapes at the lowest energies, but at the higher energies they change more considerably. The minority
bands tend to shift downwards to get more occupied. An interesting fact is that although the total
DOS or the PDOSs of the d electrons are increased, the PDOSs from s, p and interstitial regions are
increased tremendously. This seems to imply a larger degree of hybridization of d electrons with s and p
electrons in FegPt. This is understandable, for Fe is less localized than Co which in turn is less localized
than Ni, so their atomic-like tendencies increase in the same order.

The calculations for the alloys show that the introduction of nonmagnetic but highly polarizable Pd
or Pt atoms does not decrease the magnetism very much when the polarizing magnetic Fe atoms have

larger moments in the alloys than in fcc Fe.

Partial Pressures and Invar

Electronic pressures have been the subject of some early studies (Janak and Williams 1976; Pettifor
1977; Moruzzi, Janak and Williams 1978) for the 3d, 4d and 5d series, and also to noble metals (Chris-
tensen and Heine 1985). There are two kinds of coexisting electronic contributions to the electronic
pressures: always existing kinetic energy which yields repulsive pressures; and either antibonding con-
tributions to repulsive pressures or bonding contributions to attractive pressures. Since antibonding
bands are generally higher energetically than bonding ones, majority magnetic electrons in ferromag-
netic materials are contributing to both positive pressures and negative pressures, unlike the mostly
binding minority magnetic electrons which only contribute negative pressures. There are no general
signs for the partial electron pressures for s, p and d-like electrons in solids. The s and p electrons
are nearly free and less bonding or less antibonding than other electrons, so they usually contribute
positive pressures to counterbalance pressures from magnetic electrons if any, or, as predominantly
bonding electrons (with hybridizations between all kinds of electrons), they contribute small negative
pressures as in noble metals or their nonmagnetic neighbors like Pd or Pt. Podgérny applied the above
extended theory to the Fe-Pt ferromagnetic system (1991). The systems are bound together dominantly
by the minority d electrons, while the s and p electrons contribute the most to the positive pressure.
The majority d electrons compensate each other, for their counterbalancing bonding and anti-bonding
tendencies, to give a much smaller net partial pressure. The combination of Pt s and p pressures, both
positive, actually is roughly twice as large as that of Fe s and p pressures, also both positive.

A similar study was conducted also by Podgérny (1990) for the ferromagnetic Fe-Ni system. Because

Fe and Ni are neighbors in the periodic table, their differences are much more subtle than the difference
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between Fe and Pt. Around the Invar region (represented by FesNis, not as roughly by FesNi here),
the partial pressures are comparable to those of FezPt, but the changes with composition are much
less dramatic. Yet it should be emphasized that s and p partial pressure counterbalance the minority d
electron pressure with their great magnitudes in a compositional range much wider than in FesPt. Both
Invar systems have considerably large combined positive s and p pressures, counterbalancing negative
pressures from the minority d electrons.

As we have seen before, both Invar FesPt, FegPd and FesNi systems distinguish themselves from the
other chemically close alloys by the fact that they have great DOS densities for s and p electrons around
the Fermi level. These electrons and the interstitial electrons, are the most sensitive to disturbances to
the ground states for they are most extended in real space, and are likely transformed into d electrons
upon thermal excitations, leading to the contraction of the system due to the above mentioned differences
between the s and p pressure and d pressure. The high positive pressures from s-like and p-like electrons
may be just due to the fact that s- and p-like electrons, which have highest Fermi kinetic energies, have
relatively high densities near the Fermi level. More investigations should be made regarding this feature,

though.

Conclusions and Perspectives

This work was undertaken mainly to determine if magnetic Compton scattering might provide some

useful information concerning the temperature-dependent magnetic state of a well known Invar alloy,

"
o
,
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FesPt, by analyzing its electronic properties at T = 0 K, especially the momentum distribution of spin
electrons. Some other related materials are also studied to get some related information. The rather
dramatic change in shape of the MCP between 305 K and 490 K where the ”Invar mechanism” is
presumably active, is qualitatively confirmed by the calculations, and needs a more systematic study
of the progression of the MCPs starting at very low temperatures and extending into the paramagnetic
region..

To get some referential information about FegPt, we have calculated band structures for Invar
associated FezNi and FezPd, and then CogPt and NigPt, which all have structurally the same crystal
symmetry and are chemically related to FesPt. By comparison with the latter two materials, we found
that all the three fcc Fe based alloys have significantly more s, p or interstitial electrons with energies
just below Ep. Since it is the pressure from these electrons that primarily counterbalance the pressure
from the binding d electrons, it would be interesting to learn how these most extended and sensitive
electrons behave under thermal disturbances.

Naturally the theoretical MCP is dominated by the polarizing Fe d-orbitals. The dip of the MCP
profiles at Pz = 0 is contributed significantly by the negatively polarized s-, p-like electrons all located
near the Pt MT sphere boundaries, and by the negatively polarized interstitial electronic density found
away from the Fe MT spheres. The contribution from the interstitial region between the muffin-tin
spheres has a similar profile to that of the rather extended s- and p- like states. When obtaining the
momentum density, the multiplication, of the smaller s and p and interstitial parts of the momentum
wavefunction with the larger d parts gives an ”interference” cross term, an oscillatory and rather ex-
tended contribution to the total MCP which differs from the dominant d-like contribution. While small,
the s and p orbitals extend beyond a single site and ”sample” the environment (short-range order) of
the surrounding d-moments, so the s, p, and interference MCPs could be useful for investigating the
changes of the magnetic state with temperature. The fcc Fe, and thus the fcc Fe based Invar FezPt,
have complex magnetic states at finite temperatures because of the inherent insensitivity of their total
energy to magnetic order. Therefore, we have further calculated the MCPs for FezFe and FeyFePt to
search for the consequences of antiferromagnetic occurrences. A conclusion is that antiferromagnetism
can enlarge the dip of the MCP. The discrepancy, between the experimental MCPs which are for finite
temperatures and the calculated MCP which is for T = 0, hence can be partly due to local magnetic dis-
ordering. The antiferromagnetic studies show that the electrons become slightly more localized with the
antiferromagnetism. More sophisticated methods should better deal with complex magnetic orderings,

such as noncollinear spin orientations (Uhl, Sandratskii and Kiibler 1994). To include temperature and
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noncollinear magnetic moment directions into calculations for such models necessitates dealing with the
loss of periodicity (very large supercells with hundreds of atoms are required, see Antropov, Katsnelson,
Schilfgaarde and Harmon 1995). The new theoretical method, proposed to deal with such complex mag-
netic systems, has been implemented on parallel computers obtained some meaningful results (Harmon
1996). The method should permit calculations of temperature-dependent MCP in the future.

In conclusion, self-consistent band-structure calculations, using a spin-polarized, scalar, relativistic
version of the FLAPW method, are used to analyze the results of a temperature-dependent MCS
experiment on an ordered FezPt Invar alloy. The calculations have confirmed the presence of the dip
at P, = 0 and that the shape of the profile is sensitive to the magnetic state. Future experiments
are planned in which the counting statistics and the energy/momentum resolution will be substantially

increased, and the temperature range will be extended.
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