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A Ceneral Formula for Rayleigh-Schridinger Perturbation Energy Utilizing a

Power Series Expansion of the Quantum Mechanical Hamiltonian
by

John M. Herbert

ABSTRACT

Perturbation theory has long been utilized by quantum chemists as a method for approximating
solutions to the Schrédinger equation. Perturbation treatments represent a system’s energy as a power
series in which each additional term further corrects the total energy; it is therefore c;)nvenient to have an
explicit formula for the nth-order energy correction term. If all perturbations are collected into a single
Hamiltonian operator, such a closed-form expression for the nth-order energy correction is well known;
however, use of a single perturbed Hamiltonian often leads to divergent energy series, while superior
convergence behavior is obtained by expanding the perturbed Hamiltonian in a power series. This report
presents a closed-form expression for the nth-order energy correction obtained using Rayleigh-Schrodinger

perturbation theory and a power series expansion of the Hamiltonian.

I. INTRODUCTION
Since the inception of quantum mechanics, perturbation theory has been an important tool
for analyzing certain molecular systems whose Schrdinger equations are too complicated to be
exactly soluble [1), proving especially useful in the study of nuclear motion about or near a
molecule’s equilibrium geometry [2, 3]. Syétems suitable for perturbation treatment can be
formulated as arising via the continuous disturbance or deformation of an “ideal” system whose
Schrédinger equation can be solved exactly [4].

Standard perturbation-theoretical approaches separate the full quantum mechanical

Hamiltonian operator H into two parts:




H=H"+8, (1)
where H represents the Hamiltonian operator for an unperturbed system whose Schrodinger
equation can be .solved exactly and H comprises the Hamiltonian operator for all deviations
from ideality. The perturbation parameter A is arbitrary and may take on values in the interval
0 £A <1, with A = 0 corresponding to the unperturbed system. For certain problems, A has an
obvious physical interpretation [1]; otherwise, it is simply set equal to unity.

Incorporating the Hamiltonian operator (1), the Schrédinger equation for the perturbed

system becomes
(FI(O) +I§')Wm = Emvjm ? (2)
where E,, and Y, are, respectively, the system’s energy and state function in non-degenerate

quantum state m.! Since A = H(A), the eigenfunctions V¥, and eigenvalues E,, of H both depend

upon 4, and we may expand both quantities as Maclaurin series in A:

v, =vQ+Ay® + 22y @+ ... (3)
E,=E®+AE® + PE® + ..., (4)

(k)
m

where, for convenience, the symbols y,’ and E ,‘,f ) (the kth-order corrections to V.. and E,) are

introduced to represent the proper Maclaurin series coefficients of AL k=0,1,2,... 5. When
all state functions and energies refer to the same quantum state, the subscripted quantum number

m is often omitted.

II. EXPANSION OF THE HAMILTONIAN
While the perturbation expansion (1) of the Hamiltonian is of the form most frequently

encountered in perturbation theory research, this simplistic formulation quite often causes the




enefgy series (4) to diverge [3]. Instead of constructing the perturbed Hamiltonian as in (1), H
itself can be expanded as a Maclaurin series [4,6] and written in the form

A=A 280+ 20® + - 5)
where once again H® is the Hamiltonian operator for the unperturbed system. Rather than
grouping together all perturbations into a single term H', an expansion such as (5) represents
each individual perturbation with its own Hamiltonian operator.
Note that a necessary condition for convergence of tﬁe energy series (4)? is

|E<'°+'> < |E<">| | (6)

for all k. Using a Hamiltonian of the form in (5), Sprandel and Kern 3] have demonstrated that
the perturbation energy corrections E® for the pure vibration of H, decrease asymptotically to at
least 50th order (the highest order examined) for each of the nine quantum states investigated.
Furthermore, when the expanded Hamiltonian (5) is used, the difference between theoretical
calculations and experimental values decreased smoothly with increasing order of approximation.
In contrast, when a perturbed Hamiltonian such as (1) was used, the same nine energy series

clearly diverged after 30 to 50 terms.

III. PERTURBATION ENERGY
Although the power series formulation (5) of the Hamiltonian has several clear advantages

over the form in (1), it has not been widely adopted, presumably because the numerous terms in

! For degenerate states, the notation becomes slightly more complicated. For details see references [4] and [5].
? For the rigorous conditions under which (4) converges for a power series expansion of the Hamiltonian, see
reference [1].




(5) lead to complicated expressions wherever H is involved. Consequently, an explicit formula
for the nth-order perturbation energy, E, has not been published.?
A logical point of origin for an energy formula is the Schrddinger equation,
Ay=Ey. @
In this case, H, v, and E are represented by the series (3-5). Substituting these series into
Equation (7) and collecting powers of A, one obtains

(fI‘°’y/(°’ _E(O)W(O))_,_Mg(mw(l) +fI“’W(°’ —E‘°’yf“) -E(I)V/(o))'*'
‘*'3'"(1'}(0)‘#(") +I§’“’l/f‘"'° oeee +I§("’l;/(°’ —E‘°)l//"” _E(Dw(n-l) e E‘"’l//“”) (8)
4 oeee +An+n(f{(0)w(n+a) 4 e _*_ﬁ(n-l-n)w(o) __E(O)W(nwl) — e __’E(nd-n)w(O)) =0 .

Assuming that this series converges, Equation (8) will be true if and only if each of the
coefficients of A%, k=0, 1, 2, ..., is separately zero [5). Applying this condition to the first n+1

coefficients, one obtains [7] the following perturbation equations:

l;}(O)W(O) = E‘o’w‘o’ 9)

z(ﬁm —~ED =0 . (10)

i=0
Notice that the zero-order perturbation equation (9) is simply the Schrédinger equation for the
unperturbed system. The remaining perturbation equations serve to relate the separate terms of
H, ¥, and E, and need not have any independent physical significance [8].
Multiplying the n™-order perturbation equation (10) by w‘@* and integrating over all

configuration space 7, one obtains

(W(O) Ig(o)|w<n)>+ '*'(‘/’(0) |IEI(") l)t,(0)>=_ E‘O)(yf‘o) I‘/’(n)>+ ‘*‘E(")(W(O)IW(O)) , (11)

where

3 When the perturbation is written as a single term I-7', such a formula is known; see reference [1].
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(W(i) Iﬁ(i)lw(k)>ij(i>'ﬁ(i’y/“’dr (12)
and
(‘/fﬁ) I'I’U)>'='I‘/’(D‘V’U)dr X (13)

Since the unperturbed Schrédinger equation (9) is soluble (by hypothesis), the complete

(0)

set of wave functions {‘Ifm (©

} is fully known. Moreover, each v, is an eigenfunction of the

Hermitian operator H®, so {1//(0’} is an orthogonal set [5]. Finally, one may assume that the

m

unperturbed wave functions are normalized to integration, so that
.(0) (.0) - 8 i (14)
ll’t W; 0Lj?
where &, ; is the Kronecker delta function. Applying Condition (14) to Equation (11), one finds

that the nth-order energy correction is given by the recursive relation

E® =<‘V(°) I I;T(O)lllf(")> + o +(‘l/(°) I ™ l//“”)
—E‘°’<l//(°)|l//("’)— _E(n-l)(y,w)lwm) .

(15)

IV. RAYLEIGH-SCHRODINGER PERTURBATION THEORY
Equation (15) can be simplified considerably by resorting to the Rayleigh-Schrédinger

form of perturbation theory. If the system of interest is roughly modeled by an unperturbed

system with Hamiltonian operator H?, it is reasonable to assume that the complete set {l;/,‘,,‘”

of unperturbed wave functions forms a basis for the Hilbert space of the Hermitian operator H

corresponding to the perturbed system [9]; this assumption is the foundation of Rayleigh-




Schrddinger perturbation theory.* In light of this assumption, one may express all perturbed wave

functions w as linear combinations of the basis functions belonging to {t//,‘,f” :

Vo =Sy a9
i

where are ¢§?, ¢, ¢, ... are constants.

The linear expansion (16) precipitates an important result that greatly simplifies
perturbation theory calculations. It can be shown [5, 8] that the coefﬁéient ¢ in (16) does not
affect any of the perturbation energy corrections, so this coefficient will be assigned a value of

zero. Thus,

v =2 ey (17)

j#m
and
WOlwe)= 2w ws)
jem

—_ (n)
- z Cj 6m.i

j#m

(18)

by (17) and (14). Note that the summation in (18) precludes j = m, so that O, ;=0. Hence, one

obtains the condition

(WO ly®)=8,, (19)

for all n.

Equation (19)— which implies that each perturbed wave function is orthogonal to the
unperturbed basis function corresponding to the same state— is often misquoted as the
fundamental assumption of Rayleigh-Schrodinger perturbation theory. As shown in (18), this

orthogonality condition is actually a consequence of the Rayleigh-Schrddinger condition (16).

4 Note that the Rayleigh-Schrédinger assumption is most likely to be valid when the perturbation from ideality is
small; thus, Rayleigh-Schrddinger perturbation theory is not suited for the study of highly excited quantum states.
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V. REDUCED FORMULAE
As a consequence of orthogonality condition (19), all overlap integrals in the energy

expression (15) disappear, leaving

E®™ = i (llf(o) l (=D

Jj=0

W(j)> . (20)

This expression for the nth-order energy correction involves n+1 different wave functions, while
in general it is possible to express the (2p+1)st perturbation energy in terms of only the wave
functions ¥,y ®, ... ,w® [8]. Thus, the challenge is to reduce (20) to an expression
involving the minimum possible number of wave functions.

To accomplish this reduction, first consider the case where n is odd; that is, n = 2k+1 for
k=0,1,2,.... From (20),

E kD =<‘lf(°) I ﬁ<2k+l)|w(0>> +(I//(°) I e ‘I’“’) e +<W(°) I ﬁml‘l’(zk)> , ' 21)

since

(W(O) II:‘I(O)lw(zkﬂ) ) =0 (22)

by (9) and (19). Substitution for H®y @, ¥y @ FYy® from the first k perturbation
equations® and use of (19) provides

E@D = (W(O) |fl(zk+l)|w(0)>+ +<W(0) |fl(k+1)|w(k)>+<w(1) |E(k—l) _I’__}(k—nlw(km)
_*_(y,(z) IE(k-Z) _Ifl(k-z) W(k+l)>+ (w(k)lE(O) _ﬁ(O)Iw(kﬂ)) 23)
+ e +<‘!’(I)IE(°) __I_}(mlw(zk)> ’

which still contains wave functions of order higher than k. To eliminate these, substitute for
(EQ —FOyy* (EQ -y ®> | (E®-H )y from the next k perturbation

equations. This step yields




E@kD (W(O) lﬁ(zkﬂ)lw(m)_*_ _*_(w(O) Iﬁ(kﬂ)lw(k))
_,_(,,,(1) | E&%-D _ ﬁ"‘“’ly/"‘*">+ +(W(H) I EM ;‘Imlw(km)
+(W(k) I B _ E(k+1)|w(0)>+ '*‘('l/(k) I M- E“’lw"") (24)

M| FHEH _ e, 0 W | Fm D], 261
+{y @A ~ EORly @)+ oo + (@ |AO - EOy )
All matrix elements in (24) containing w P,y **? | . ,w®® cancel out of this expression,

affording’

E@k+D =<W(O) IH(2k+l)lW(0))+ ‘*‘(‘/’(0) Iﬁ(kﬂ)lw(k))
+<‘I/(k) | J2 (. E"“‘"Il/f“”) T e +(!;/"" l gm_ Emlw"")
’*‘(W(k—l) I B _ E“‘*Z)Il;r‘°))+ +<1;/"‘”” I ® - E(2)|w(k)>

+ (W(l) I HeO _ peo ‘I/(.°)> 25)

- (w(m l P"I(2k+l)lw(0)> _*_i (W(i) ‘ﬁ(2k+l—2i) — E(2k+1-20) W(i))

ll,(i)) .

i=]
k

+2i2<w(i—l) II:‘I(Zk—i—HZ) — [ @k-i=it2)

j=1i=j

Since n = 2k+1, application of (19) to Equation (25) provides

L(n-1) Han-1) (n-1)

EW = Z(wu) |I_‘I(n—z:') ll,(i)) "‘2-2 ’Z(W(j—n lﬁ(n—i-jn)lw(i))
i=0 j=1 i=j (26)
-1 -1 3(n-1)
_ N g2 [0 [, 0\ _o E im0 (1 G0y ()
SE(Oly©)-2 3, SEC )

for odd n. While Equation (25) perhaps has a simpler form, Equation (26) separates the nth-order
perturbation energy into its separate contributors: Hamiltonian matrix elements, overlap
integrals, and lower-order perturbation energies.

A similar derivation for even » yields

5 The k™ perturbation equation is equation (10) with n = k.
8




2n-1 1n-14n-1

E™ = 2(1!,(:) IHo-—’:) (.)) +22 2( (-0 IH("—'—JH)IW(O)

j=1 i=j
1n-1 tn-1tn-1

+Z( D) IH(-Ln-r) (ln)> 22 ZE(n—l—J-H)( (;-1)|W(:)> @7

j=2 i=j
dn-y 2n-1

_ ZE(n—ZO( (:)Iw(:)> ZE(zn ,)< (.)IW( ,,)>

f

The sole difference between (26) and (27) is the coefficients of the overlap integrals and
Hamiltonian matrix elements when i = n.

For some applications, it is useful to possess a formula that is valid for all #n. As above, let

k=1n forevennand k=4(n~1) foroddn. Then {y®,y®, ... y®} s the smallest set

of wave functions spanning {E © g® E ("’}. Incorporating k and the Kronecker delta

function, one may combine Equations (26) and (27) into a single perturbation energy formula:

k k

E™ = zz{( ﬂ"')( (j-l)Iﬁ(n—i-jﬂ)lw(i))]_l_i(w(i)lﬁ(n—zi)

j=li=j i=0

Wm>
k

_ ZZ [( n ” ) En=i=j+) (W( i) lw(i)>] _ § E-20) (W(i) Iw(i)> (28)

"7 t"‘ i=1

[ A ) - By - 8,0

forn>0.

The generalized energy formula (28) is recursive, since the nth-order energy is a function
of lower-order energies. Elimination of these lower-order energies from (28) is tedious, but in
principle it is possible to express E™solely in terms of overlap integrals and Hamiltonian matrix
elements. This procedure, however, results in an energy formula involving an infinite number of
separate summations (only finitely many of which are non-zero for a given n). Thus, only as a
recursive relation can the nth-order perturbation energy be expressed in a compact, closed form.

Ultimately, the recursive nature of (28) poses no additional burden, since the entire sequence of




perturbations energies E®, E?, ..., E should be calculated in order to investigate the

convergence behavior of the energy series (4).
. Note also that Equations (26-28) contain overlap integrals of the form (l[/ @ Il,l/"’) .

When i = 0, such integrals are equal to unity, since the unperturbed wave functions are assumed

to be normalized. Imposing the restriction that the total wave function y,, be normalized and

substituting for y,, from (3) provides

YO +AYP + e+ XYY =1 (29)

(W + 2+ e + 2D

Expanding (29), collecting powers of 4, and applying (19), one obtains [1] the following set of

equations:

n

2 (v

i=0

yr) =0 . (30)

These equations demonstrate that in general (1//“’ ll//“)> # 1 for i > 0, so normalization of the total
wave function ,, precludes normalization of the perturbed wave functions. Since V¥, is the

wave function of an actual physical system, its normalization condition will be retained.*

VI. CONCLUSION
The energy expression (28) is extremely general, for its derivation involved few

assumptions. The first assumption— that the total wave function and the unperturbed wave

functions are normalized— is trivial, and the assumption that H may be expanded as a power
series is the foundation of this particular approach to perturbation theory. While the Rayleigh-

Schrédinger condition (16) is certainly not trivial, it was used in this context only to derive the

6 Recall that the perturbed wave functions, when taken individually, need not correspond to an actual physical
system.
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orthé)gonality condition (19). In the absence of Conditions (16) and (19), Equation (25)— along

with an analogous expression for even n— is still valid.

Beyond these assumptions, however, the form of the expansion (3) of y,, requires that
quantum state m of the unperturbed system be non-degenerate, since lim,_,, ¥,, = ¥ only for

non-degenerate states m [5]. While Equation (28) is therefore valid only when the unperturbed
system is non-degenerate, modifications can be made to accommodate degeneracy [4, 5].

In light of the superior convergence behavior of perturbation energies when a power series
Hamiltonian is used, a general formula such as (28) is extremely important. In subsequent work,

the Rayleigh-SchrESdinger condition (16) will be used to express all wave functions in (28) as

linear combinations of the state functions in the complete set {1;/‘0’} . Since the wave functions

m

of this set are fully known (by hypothesis), the perturbation energy can thus be calculated (to
arbitrarily high order) without knowledge of any perturbed wave functions. Furthermore, since
empirical data [3] suggest that use of Equation (28) will lead to asymptotically decreasing
perturbation energies, one simply increases » until the energy corrections fall below an

appropriate tolerance. The system’s total energy is then given by (4).
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