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ABSTRACT

The efficient utilization of the motion capabilities of mobile manipulators, i.e., manipulators
mounted on mobile platforms, requires the resolution of the kinematically redundant system formed by
the addition of the degrees of freedom (d.o.f.) of the platform to those of the manipulator. At the
velocity level, the linearized Jacobian equation for such a redundant system represents an
underspecified system of algebraic equations, which can be subject to a set of constraints such as
obstacles in the workspace and various limits on the joint motions. A method, which we named the
FSP (Full Space Parameterization), has recently been developed to resolve such underspecified
systems with constraints that may vary in time and in number during a single trajectory. The
application of the method to motion planning problems with obstacle and joint limit avoidance was
discussed in some of our previous work. In this paper, we present the treatment in the FSP of a
non-holonomic constraint on the platform motion, and give corresponding analytical solutions for
resolving the redundancy with a general optimization criterion. Comparative trajectories involving a
10 d.o.f. mobile manipulator testbed moving with and without a non-holonomic constraint for the
platform motion, are presented to illustrate the use and efficiency of the FSP approach in motion
planning problems for highly kinematically redundant and constrained systems.

Keywords: Mobile Manipulator, Redundancy Resolution, Non-Holonomic Constraint, Car-Like
Robots, Full Space Parameterization, Motion Planning, Constrained Optimization

SUMMARY

Practical, outdoor mobile manipulators typically include a mobile platform which has car-like
kinematics. Very few authors have addressed the problem of motion planning for mobile manipulators,
and even fewer have considered this problem while including the non-holonomic constraint on the
platform motion resulting from the car-like kinematic. This paper presents a method which
analytically calculates motion solutions for the highly kinematically redundant mobile manipulators.
The method is applicable either to systems with omnidirectional holonomic platforms or to systems
including car-like platforms which exhibit a non-holonomic constraint. Example of trajectories are
presented, some showing the typical “cusp points” (where velocity reversal occurs) of car-like motion.
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ABSTRACT

The efficient utilization of the motion capabilities of
mobile manipulators, i.e., manipujators mounted on
mobile platforms, requires the resolution of the
kinematically redundant system formed by the addition of
the degrees of freedom (d.o.f.) of the platform to those of
the manipulator. At the velocity level, the linearized
Jacobian equation for such a redundant system represents
an underspecified system of algebraic equations, which can
be subject to a set of constraints such as obstacles in the
workspace and various limits on the joint motions. A
method, which we named the FSP (Full Space
Parameterization), has recently been developed to resolve
such underspecified systems with constraints that may
vary in time and in number during a single trajectory.
The application of the method to motion planning
problems with obstacle and joint limit avoidance was
discussed in some of our previous work. In this paper,
we present the treatment in the FSP of a non-holonomic
constraint on the platform motion, and give corresponding
analytical solutions for resolving the redundancy with a
general optimization criterion. Comparative trajectories
involving a 10 d.o.f. mobile manipulator testbed moving
with and without a non-holonomic constraint for the
platform motion, are presented to illustrate the use and
efficiency of the FSP approach in motion planning
problems for highly kinematically redundant and
constrained systems.

INTRODUCTION

With the combined use of their mobility and
manipulation capabilities, and their typically high degree
of kinematic redundancy created by the addition of the
platform d.o.f. to those of the manipulator, mobile
manipulators can accomplish a great variety of tasks.
Each one of these tasks is typically associated with a
particular motion mode (platform only, manipulator only,
combined motion), particular task requirements or
optimization objectives (e.g., minimum time motion,

optimal strength configuration, minimum spent energy,
maximum dexterity, etc.) and particular constraints
(e.g., obstacles, joint limits, non-holonomic constraint
during platform motion, etc.) which may vary during a
single trajectory. This great diversity of operational
modes introduces additional complexity for mobile
manipulator motion planning and control compared to
fixed base manipulators and/or mobile robots without
manipulators, in particular with respect to (1) the need to
forecast specific configurations that are suitable for the
system to switch from one operational mode to another,
in a sequence of varied tasks, and (2)the need for a
redundancy resolution method for planning the motion of
the system between these “commutation” configurations.

In Refs. | and 2, we addressed the former need and
introduced the concept of “commutation configurations”
with a variety of approaches to calculate them.

With respect to the second need, several authors have
previously addressed the problem of redundancy
resolution, and Ref. 3 provides a good review of several
approaches for applications to fixed based manipulators.
In particular, the constrained problem has been
investigated by several authors (e.g., see Refs. 4-7 for
applications to obstacle and joint limit avoidance). All of
these approaches use one of the two main techniques for
resolution of underspecified systems of equation:
constrained generalized inverse-based approaches or
augmented task space methods with “extended
Jacobians”.® In Ref. 9 we pointed out some of the
shortcomings encountered when using either of these two
general resolution approaches for application to real-time
systems where constraints and/or task requirements may
change widely and rapidly (e.g., at loop-rate and/or on a
sensor-based basis) during a single trajectory. Among
these shortcomings are the implicit task priority
requirement of generalized inverse-based techniques, and
the “artificial” algorithmic singularities that may be
encountered with extended Jacobian and augmented task
space approaches. More importantly, the variety of
algorithms corresponding to each specific application of
these techniques with a particular set of task requirements,
optimization objectives and constraints would require a




“library” of codes to be stored on-board the robot, which
would be frequently switched to and from, to handle the
expected diversity of operation modes of mobile
manipulators.

In recent papers, we introduced a novel
approach to the resolution of underspecified systems of
algebraic equations subject to a variety of constraints and
objective criteria. For robot control, the method can
therefore be used for resolution of the velocity equation
when constraints and task requirements vary rapidly and
unpredictably with time during a single trajectory. The
next section of this paper reviews the principles of this
new approach, which we have named the Full Space
Parameterization (FSP) approach, and recalis some of the
analytical solutions developed for fixed based manipulator
control,” including those for obstacle and joint limit
constraints.”  For applications to realistic mobile
manipulators, a particular constraint which often restricts
the motion of the platform must be considered. This
constraint is of the non-holonomic type (e.g., see Refs.
13, 14, or 15), and very few authors have addressed its
inclusion in the motion planning problem for mobile
manipulators.“s’”’ls In the remainder of the article, we
present the treatment within the FSP framework of a
non-holonomic constraint on the platform motion of
mobile manipulators. Analytical solutions are derived
and sample trajectories for a representative mobile
manipulator system are presented to illustrate the
analytical developments. The last section presents our
conclusions and directions for future work.

9,10,11,12

OVERVIEW OF THE FSP APPROACH

For any mobile manipulator system, the forward
kinematics can be reduced to the equation

x=X%,+F(qy) M

where x and J?p are the 6x1 vectors of location and

orientation of the mobile manipulator end-effector and of
the platform reference frame with respect to the world
coordinate system (task space), g,, is the px1 vector of
joint coordinates of the manipulator, and F(} is the
manipulator kinematic transformation function. For
loop-rate control, the desired end-effector motions in the
task space are broken up into finite displacements of
length Ax. The relationship between the task space
steps Ax and the mobile manipulator’s configuration

steps Ag T = (4,,, A%, ), where the upper T sign denotes

a transpose, is found by differentiating and linearizing
Eq. (1):
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where J is the linearized Jacobian for the entire mobile
manipulator system over the current time step Ar.

For a redundant system, J will have fewer rows (n)
than columns (m = p+6), and the number of vectors A7
which satisfy Eq. (2) will typically be infinite. The FSP
method has been specifically designed to optimally solve
the inverse kinematics problem for redundant systems in
the presence of applied constraints and behavioral
criterion. In a previous paper,” we showed that the entire
space of solutions, S, of the unconstrained Eq. (2) could
be parameterized as:

_ _ m=n+1 _ m—n+]
S= AqESRm, Aq(tl""’tm—n+l)= Z ti &> Ztk =1
i=1 k=1

€))

where each of the linearly independent vectors g; includes
m — n zero components and can be easily calculated from
inversion of square (nx n) submatrices of J. The proof of
existence and algorithms for the determination of these
m—n+1 linearly independent solution vectors g; can be
found in Refs. 9, 11, and 12. In Ref. 9, it was also
shown that the null space .4"of the mapping J can be

parameterized using the same g; vectors as:

m=n+] m-n+l
./V‘={A§€9§m,A-q.(t],...,tm_,,,ﬂ): Z tigi’ Ztk=0}
i=1 k=1
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At each time step therefore, a calculation of the
vectors g; for Eq. (2) provides a parameterization of the
entire spaces of solutions of the unconstrained system, be
it for an end-effector motion or a motion in the null space.
This phase of the FSP which is the most computational
time consuming phase of the method, as shown in
Refs. 11 and 12, is therefore common to all time steps
independently of their particular constraints and criteria.
Then, with the entire spaces of solutions of Eq. (2) now
parameterized, the calculation of the specific solution
satisfying the particular task requirement and all the
constraints of a time step is only the matter of a few code
statements embodying the analytical expression of the
corresponding solution parameters ¢, ,k=1,m—n+1.
Practically, therefore, a wide variety of these parameter
solutions, each corresponding to particular types of
requirements and constraints, can be included in the code
and selected as appropriate at each time step.

As shown in Refs. 9 and 10, analytical solutions for
the parameters can be obtained from a Lagrangian-type
constrained optimization. For example, consider
optimization in the space defined by Eq. (3) of a general
criterion
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0=4z(, 4~ AZ, ®)

where AZ is an operational vector function of the
system’s configuration and displacements expressed as:

AZ = B(7)A7 ©)
and AZ, represents a given reference operational vector
characterizing the state to be achieved by the system.

Assume that, at the time step considered, the system is
subject to a set of 7 general constraints expressed as:

B i=1; j=1r Q)

a form to which many kinematic constraints (e.g., joint
limits, obstacle avoidance,etc.) can be reduced, as
discussed in detail in Ref. 10. Then the solution for the

parameter set 77 = (4, by, ., Ly_pa1) iS:
1=-G (e +8v +H) ®)
where @ i$ a matrix whose columns are Bi, and
H,H, =AZ Bg,;k=1,m-n+1 ©)

G.G,=% B'Bg,;ij=1,m-n+1 (10)

e,e=li=l,m—-—n+1 an
a=8'Ge (12)
f=e'G'H (13)

5,.6,=2"G B =B Glg;i=1,r (14
d,d=1+B"G'H;i=1,r (15)

e I AP
A’Alj=blbj_aﬁ G Bj’l_lar’j_lyr (16)
V=AY ad-b0+ f)) amn

pu=-~@'b+1+f)/a 18)

In a very similar manner, if a constrained solution in
the null space of Eq. (4) is desired, the solution for 7 is
also given by Eqs. (8)~(18) except for the factor 1+ f in
Eqgs. (17) and (18) replaced by f.

The approach for calculating the coefficient vectors B !
expressing the various constraints has been described in

detail in Ref. 10. In particular, the cases of joint limit
and obstacle avoidance, and bounded joint accelerations
were presented in Refs. 10 and 19, respectively.
Essentially, the scheme which we used in Ref 10 to
implement obstacle avoidance considers that the mobile
manipulator system is surrounded by a “safety envelop”
or “danger zone” of thickness D. Whenever intersection
of this zone with an obstacle occurs (the detection can be
sensor-based), then a constraint is set, specifying that the
closest point X, of the mobile manipulator to the
obstacle must move away from the obstacle by a distance
L (the “intrusion” or “push away” distance). The
expression for the vector B representing this constraint
was derived in Ref. 10 as:

(i g,m)/ Lik=1,m=n+1 (19)

J
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where J¥ is the 3xm Jacobian matrix for the position
displacement of the point X, and g, and »n, represent
J

the components of the vector g, and of the normal 7 to
the obstacle surface toward X ;, respectively.

In a similar fashion, if any joint, i, of the
manipulator is approaching one of its limits, and requires
an angle displacement, 4, to return outside of its “danger

zone” (angles within a 6,,,, range of the limit), the B

vector corresponding to this constraint can be expressed
as:

B.Bi=g /d;k=1,m—n+1 (20)

The reader is referred to Ref. 10 for the details of these
derivations.

NON-HOLONOMIC CONSTRAINT ON
THE PLATFORM MOTION

Figure 1 shows an example of a mobile platform with
a non-holonomic constraint. In what follows, we will
assume that the platform reference frame is moving in a
plane and that the World reference frame is chosen such
that only three components of Ax p are non-zero (i.e., tilt,
roll, and elevation of the platform remain constant). The
point denoted P represents the reference frame of the
platform with coordinate x, and y, with respect to the

world coordinate frame (O,7,]) and with its first axis
vector, i’, oriented a_long the centerline of the vehicle at
an angle 6, with 7. Points M and N respectively

represent the middle of the rear axle with non-steerable
wheels and the middle of the front axle with steerable
wheel(s). L and W denote the distance between points A




and P, and points M and N, respectively. The
non-holonomic constraint can be derived by expressing

that the velocity ¥, (x> ¥p) of point M is always along
the main axis of the vehicle:

—Xp, siné, + y, cosf, =0 21

. Fig. 1. Schematic of a non-holonomic platform.

Since the velocity ¥, (x,, yp) of the platform point of
reference P is

f;}’ = I;;M +Lép.7’ s (22)
or

X, =%, ~L@sing,
@3

Vp=Vm +L9c056p

then the constraint of Eq. (23) can be written in terms of
the platform configuration variables as:

-%,sin6,+y,c0s0, - L8, =0 (4)
or, in linearized form over the discretized time step Az:
—4x,sin@, + Ay, cosf, - LA6, =0 (25)

Note that this constraint is intrinsically due to the motion
characteristics of wheels and is valid for platforms with
two axles (one with steerable wheels) such as cars or carts
similar to the one sketched in Fig. 1 (e.g., see Refs. 13,
14, or 15 and references therein), as well as for platforms
with directional control provided through independent
driving of the two parallel wheels, with casters on the
other axles for stability.

The constraint of Eq. (21) or Eq. (24) is of the form
C(g,q) =0 which binds the configuration variables and
their derivatives. It is not integrable and therefore is
properly a non-holonomic constraint which constrains the
space of achievable velocities without constraining the
space of achievable configurations.

As mentioned previously, the displacement vector
Ag for the mobile manipulator has been constructed such
that its first m components refer to the manipulator. We
can select its next three components to refer to the
non-zero displacement components for the platform,

ie., Aqm+l = Axp’ Aqm+2 = Ayp’ and Aqm+3 = Aep'
Equation (25) can thus be written as:

—AG 41 510G s13) + AG 2 €05(Gpi3) = AG i3 L =0 (26)

and since

m—n+1
AF= 3 13 @7

i=1

the non-holonomic constraint can be written in terms of
the parameters ¢, i=1, m—n+1, as:

m—n+1 _
Y at,=0=a'7 (28)

i=l )

where & is an ((m—n+1)x1) vector with components
a; given by:

a; =—sin(G,43)g;,,, +05(qms3)8,., ~ L&, (29)

and g, represents the kth component of the vector g,.
With the non-holonomic constraint expressed in

terms of the sought parameters ¢, i=1,m—n+1, it can

be added to the constrained optimization procedure which,

with the same framework and definitions used in Egs. (3)
through (18), leads to the following Lagrangian:

m—n+1 r )
LG, 1V, m=00)+ ﬂ[ Zti“1]+ v,CI(t)
I=]‘ J=1 (30)
+77( zaitiJ

i=1

The optimality conditions (-37[' =0;i=1,m—n+1;
—a£=0;9—L=0;j=I,r;-a—-L-=O become:
du v; an .
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and the solution to the system is:
f=-G N (H + e + 8V +nd) (32)
pu=—(1+f+v'b+n/a (33)

n=[ak— 1+ f)— V' (£b - @)} (¢* - sa) (34)
V= A"[(ek — 51+ )b —(ak - €1+ [)E — (£ - sa)Z]
.(35)

where a, f, the vectors b, d, e, and H, and the
matrices G and @ have been previously defined, and

k=a’G'H (36)
t='¢ @ = ETG“E 37
s=a'c'a (38)
Z,c,=B" Gl@=alG B’ (39)

A, 4;; = b(sb; —Lc;)+c;(ac; - b))+ - sa)B’T G'l[_ij
(40)

When considering motion in the null space of
Eq. (4), the expression of the solution is exactly as
written in Eqs. (32) through (40), except for the factor
(1+ f) being written as fin Egs. (33) to (35).

SAMPLE RESULTS

The solution of Eq. (29) and Egs. (32) through (40)
was implemented and tested using several of our mobile
manipulator testbeds that incorporate non-holonomic
constraints. With our HERMIES-III robot,” some
comparative experiments could be performed, and Figs. 2
and 3 illustrate the significant differences between the
motion of the system with and without the
non-holonomic constraint on the platform motion. All

motions shown in these two figures are for AZ = 0 and

with B as the identity matrix (see Egs. (5) and (6)). In
both figures, the view is taken from above the system to
better visualize the motion of the platform. The
configuration of the system is displayed every 20 time
steps only, to ease the visualization of the trajectory. In
all cases, the 3-D end-effector trajectory is specified in
both position and orientation (n=6), leaving the
10 d.o.f. system with 4 degrees of redundancy (d.o.r.).

I ~ ) ®) .

Fig. 2.  Sample trajectory #1 with (a) an
omnidirectional platform, and (b) a non-holonomic
constraint on the platform motion.

(a)

o LI

Fig. 3. Sample trajectory #2 with (a) an
omnidirectional platform, and (b) a non-holonomic
constraint on the platform motion.

In each figure, the two motions of the system are for
the same end-effector trajectory with (a) no constraint on
the platform motion, i.e., utilizing the omnidirectionality
of the HERMIES-III platform,Zo and (b) a non-holonomic
constraint on the platform motion, corresponding to the
cart-like wheel kinematic illustrated in each figure by the




little sketch showing the initial configuration of the
system. In Fig. 2, the motion is from the left to the right
of the figure with the platform moving “forward” (the axle
with the non-steerable wheels is assumed to be the “rear”
of the vehicle). In Fig.2(a), the rear corners of the
platform clearly illustrate omnidirectional motion with
“sideways” displacement. In Fig. 2(b) the rear of the
platform clearly “follows” the front of the vehicle in a
“car-like” fashion.

In Fig. 3, the motion is from the right to the left of
the figure, with the platform initially moving “backward.”
The end-effector is requested to follow a straight line
trajectory passing above the initial location of the
platform, while also yawing a total of 180° over the entire
trajectory. In Fig. 3(a) the omnidirectionality of the
platform is clearly apparent through the “sideways”
motion of the rear comers of the vehicle (e.g., see the
lefi-hand side of the trajectory). In Fig. 3(b), while the
non-holonomic platform initially moves “backward,” the
front of the vehicle, where the base of the manipulator is
connected, is steering left (toward the top of the page) to
try to accommodate for the displacement and yawing of
the end-effector. This progressively makes the rear of the
vehicle turn right (toward the bottom of the page) until a
“cusp point” is reached where the platform reverses its
overall motion direction, thereby moving “forward” to
finish the trajectory.

The non-holonomic “car-like” motion is clearly
illustrated in this figure through the motion of the rear of
the platform, with no “sideways slippage” including at,
and in the neighborhood of, the cusp point. Inspection of
the detailed data file for this trajectory shows smooth and
continuous variations of all the variables in the system,
including at and in the neighborhood of the cusp point.
Inspection of the data files for these and all other
trajectories for all other systems experimented with, also
shows that the non-holonomic constraint of Eq. (27) is
always verified at each time step, with the absolute value
for the lefi-hand side of the equation always less then

5x10~° (maximum value encountered), a value which is
well within the expected errors due to numerical
truncation and the linearization over the discretized time
steps.

CONCLUSION

An approach to the motion planning of mobile
manipulators including a non-holonomic constraint on the
platform motion has been presented. This approach is
based on the use of the FSP method to resolve the
underspecified system of velocity equations with
constraints. Analytical solutions have been derived and
sample trajectories for holonomic and non-holonomic
motions of one of our mobile manipulator testbeds have
been presented to illustrate the use of the FSP approach
and provide comparative results in these particular cases.
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