
DUK-aljQo
UC-32, Mathematics

Computers

W*ST UNRESTWCTEf

DISTRIBUTION made mu ’68

FORTRAN PRQGRAMMTWr.

by

* . 1^. uross, Sut)ervT<5^

C°ntr0:l Uni’

January, 1968

DOUGLAS UNITED NUCLEAR
RICHLAND, WASHINGTON

INC.

LUU
t—
Oz
<
oUl

DKT,-»

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

ii DUN-2i*00

FORTRAN PROGRAMMING

PREFACE
This manual has been prepared to familiarize engineers within Douglas

United Nuclear, Inc. with the computer programming language FORTRAN IV.
FORTRAN IV is "basically a "universal" programming language which may be used
on most modern data processing computers. Although FORTRAN is only one of
several such languages, it is particularly applicable to scientific and
engineering applications due to its mathematical-based structure.

The first section of this manual serves to introduce how data are stored
and transferred within the basic elements of the computer (including octal
and binary notation). Although this information usually proves to be useful,
it is not essential to learning the FORTRAN language.

Sections II through VI describe the structure and use of the various
basic elements which make up the FORTRAN language itself. Examples are
included to demonstrate or clarify usage of these elements wherever necessary.

The last section of this manual describes techniques in setting up an
application for programming (flowcharting) and in debugging a program once
it has been written.

Although most of the information contained herein applies directly to
the FORTRAN IV system implemented on the UNIVAC 1107 and UNIVAC 1108 digital
computers, it is, for the most part, also applicable to any other digital
computer capable of utilizing the FORTRAN IV language.

iii DUN-2>+00

TABLE OF CONTENTS

SECTION I INTRODUCTION Page 1
SECTION II ARITHMETIC STATEMENTS, CONSTANTS,

AND VARIABLES
Page 20

SECTION III LOOPING AND TRANSFER OF CONTROL Page 35
SECTION IV INPUT/OUTPUT Page 51
SECTION V FUNCTIONS AND SUBROUTINES Page 81+
SECTION VI SPECIFICATION AND DATA STATEMENTS Page 103
SECTION VII FLOWCHARTING AND PROGRAM DEBUGGING Page 119
INDEX Page 135
DISTRIBUTION Page ll*2

1
DUN-2400

FORTRAN PROGRAMMING - AN INTRODUCTION

INTRODUCTION

A computer is stupid. It doesn't know anything. It can't do anything without
being told exactly what to do. The question that then comes up is why use
it at all? The answer is that it can do what it is told at about the speed

of light, so that a machine like the UNIVAC 1108 can perform as many additions,
multiplications, subtractions, and divisions in one hour as a man could in
150 years working 8 hours per day. Another prime consideration is that the
computer will probably not make a single error in the calculations while the

man will probably make several million. So much for what a computer can do—

now how it does it. A computer program is a sequence of instructions which

tells the computer what to do—read in data, add, subtract, multiply, store

data, write out results, etc. There are two major problem areas concerned
with programming a computer and these are:

1) The computer cannot "understand" English.

2) The computer does exactly what you tell it to and not what you want

it to do.
Let's talk about number 1 first; actually the computer can't "understand"

anything but is wired to perform certain operations under certain circumstances

—that is, when it receives the instructions to perform those particular

operations. The instructions are in the form of binary numbers stored in the

computer's memory. Both instructions and data are stored and operated on as

binary numbers.

2
DUN-240C

A computer looks something like this:

OUTPUT DEVICES
card punches
CRT oscilloscopes
magnetic tapes
paper tapes
on-line printers
typewriters
remote terminals

CONSOLE

CONTROL UNIT

MAIN MEMORY or
STORAGE UNIT

ARITHMETIC UNIT
LOGIC UNIT

drums
discs
magnetic tapes
magnetic cards

AUXILIARY STORAGE

card readers
magnetic , tapes
paper tapes
remote terminals
typewriters

INPUT DEVICES

The input devices (card readers, magnetic tapes, paper tapes, remote

terminals, and/or typewriters) are used to provide the computer with both

its instructions and the data to be operated upon. The control unit keeps

track of what's going on and transfers information to and from different
sections as required. The arithmetic-logic units are the places in which
the actual mathematical and logical operations on the stored data occur.

Storage is where both the program and data are kept during computer operation.

These data and instructions pass from storage to the control unit and from

there to the arithmetic-logic units or to the output devices. The input data

and instructions are received from the input devices, the console, or the
auxiliary storage and are then placed in main memory or storage before being

utilized. The console is where the operator controls the overall operation

of the computer--start, stop, execute the program, etc. Output devices may

3
DUNt.2400

include paper cards (punched), cathode ray tube (CRT) oscilloscopes, magnetic

tape, paper tape, on-line printers, typewriters, and remote terminals.
Main memory usually consists of millions of tiny ferrite rings wired

together to store data by virtue of their being magnetized in one direction
or another(depending upon the direction of flow of current in the wires

connecting the rings). Thus, all information is stored as yes - no, or on -
off since we are dealing with only bistate (flip-flop) devices. All infor­
mation used in a computer is thus represented in a binary (on-off, yes-no,
true-false) mode.*

* Binary means base two (or two-state) much as decimal means base ten. A
binary digit thus may assume either one of two states (0 or l) just as a
decimal digit may assume any one of ten states (0, 1, 2, 3> *+> 6, 7, 8,
or 9). Since binary numbers are limited to 0 or 1 in each digit, they
correspond to decimal numbers in the following manner

DECIMAL NUMBER = BINARY NUMBER
10's I's 32's ig’s 8's U1s 2's I's
0
0
0
0
0
0

0
1
2
3
h
5

0
0
o
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
1
1

0
0
1
1
0
0

0
1
0
1
0
1

0 9
1 0
1 1

0
0
0

0 10 0 1
0 10 10
0 10 11

4
DUN-24-0(

The binary number system only consists of two numbers 0 and 1 to corre­
spond to off and on, true and false, and yes and no. A clockwise magnetic

field in a magnetic core may mean yes, on,true?or 1 and a counterclockwise
field may represent a no, off, false, or 0. Flow of current in a wire could

represent yes, on, true, or 1, and lack of flow of current would then repre­
sent no, off, false, or 0.

The value of a binary number is a function of its position; in other

words, a binary number has "place" value. For example, in decimal notation

the number 532 means five hundred and thirty two. The number 5 is in the

hundreds place or position, the 3 is in the tens place or position, and the

2 is in the units place or position. If the 5 were in the thousands place or

position and the 3 were in the hundreds place or position and the 2 were in
the tens place or position the number no longer would be five hundred and

thirty two, but five thousand three hundred and twenty. Thus the place or

position of the digits of the number determines the value of the number.

Also in the decimal system the number 532 is not equal to 632 even though
they each have digits occupying the hundreds, tens, and units positions..

In the binary system, however, only the place or position determines the

value of the number. For example, 0000 equals 0, 0001 = 1, 0010 = 2,
0013 = 3, 0100 = 4, 0101 = 5, 0110 = 6, 0111 = 7, 1000 = 8, and 1001 = 9;
thus the place values of bits are ... 64, 32, 16, 8, 4, 2, and 1. If a 1

bit is present in a place, the corresponding place value is part of the

number, if a zero or "no" bit is present the place value is not part of the
number. Thus 11101010001 is equal to; starting from the right

1x2° = 1

0 x 21 0

5
DUN-2400

0 x 22

0 x 23

1x2^
0 x 25
1 x 26

0 x 27

1 x 28
1 x 2^

1 x

ss

ss

0

16

0
64

0

256

512

1024

1873

0

Thus, to convert a binary number to a decimal number, the following
technique may be used:

11101010001
x2
2+1

3
x2
T+i

7
x2
TK+o
~T¥

x2
25+1

29
x2
5H+0
“55

x2
116+1

117
x2

“231++0
~23%

x2
468+0
”555

x2
935+0
935
x2

1572+11573

6

To convert a decimal number to a binary number the following technique

DUN-240C

may be used:
Remainder

2) 1873 1
“27935 0

0
2)234 0
2)117 1
2)58 0
2729 1
2717 0 i
277 1 t273 1 1
271 1 READ

0 ANSWER

As you can see. it is not very much fun to convert everything into binary
before putting it on the computer. So, just to confuse the matter a bit more,
let's use octal representation of binary data in the computer. In other words

let's use a system based upon the numbers 0-7 (octal) rather than 0-1
(binary) or 0 - 10 (decimal).

If you look at ,groups of only 3 binary places, it is at once apparent

that their value can be equated exactly to an octal number and only exactly
to an octal number. Three binary places may represent only the following

numbers:

BINARY OCTAL DECIMAL
000 000 0 0
000 001 1 1

000 010 2 2

000 Oil 3 3
000 100 4 4

000 101 5 5
000 110 6 6

7
DUN-2400

DINARY OCTAL DECIMAL
000 111 7 7
001 000 io 8
001 001 11 9
001 010 12 10
001 Oil 13 11
001 100 14 12
001 101 15 13
001 110 16 lh

001 111 17 15
010 000 20 16

There are too many places to represent a base 7 number and too few for

a base 9 number thus the number 110 lOlg equals

6

5 310

(note the subscript 2 to represent a binary number, 8 to represent an octal

number, and 10 to represent a decimal number) and you can see! it’s much

easier to convert binary to octal than to decimal and vice versa. Ibis
really hasn't solved the problem of going from the decimal to binary and

vice versa yet, however, since we still have the problem of converting octal
to decimal and back, but we can attack that similarly to the binary to

decimal conversions.

8
DUN-2400

l873io = 8)1873
B]23%

Remainder
■" T '

2
5
3

f
READ

ANSWER

• 35218

- oil 101 010 0012
^ 3 5 2 18

= 1 8 7 3i0

In a similar manner:
3521q = 3521

x8
2^+5

29
x8
232+2
'~23X

*8
iFflTl
“Wio

If we are dealing with fractions:

0.569210 = .5692
x8

RE/'D ANSWER . 5536
x8

4 71^255
x8

3 7430?
___x8

3 7443?
x8

3 7545^

- .4433+g

= .100 100 on on+2

L.

9

READ
ANSWER

I

DUN-2400

.5692
x2

.1 T13B5
x20 T27SB
x2

0 7553^
x2

1 .1072
x2

0 72144
x2

0 742BB
x20 .8576
x2

1 .7152
x21 7^30^

+
* .100 100 011+2

Or .100 100 Ollg =, starting from the right,

0.5
21370

0.73
21T3"

0.375
2)0.75
0.1875

2)0.375
0.09375

27o.l875
0.546875

2)1.09375

0.2734375
2)0.546875

0.13671875
275.2734375

.5683+.
2)1.13671875

= .5883+10

+ 1. * 1.5

+ 0. = 0.75

+ 0. = 0.375

+ 0. = 0.1875

+ 1. = 1.09375

+0 =0.546875

+ 0 = 0.2734375

+ 1. = 1.13671875

10

If you recall, we stated earlier that all numbers are represented as
binary numbers in a computer. Similarly, all letters in the alphabet as well
as several symbols may also be represented as binary numbers in a computer.

DUN-2400

As seen above each octal number occupies three binary positions. Letters and
symbols, howeveij occupy 6 positions and the following standard representations
are used:

PUNCHED BCD CODE
CHARACTER CARD CODE (MEMORY or STORAGE)

A 12-1 110 001
B 12-2 110 010
C 12-3 no on
D 12-4 no ioo
E 12-5 no ioi
F , 12-6 no no
G 12-7 no in
H 12-8 111 000
I 12-9 111 001

J 11-1 100 001

K 11-2 100 010

L 11-3 100 Oil

M 11-4 100 100

N 11-5 100101

0 11-6 ioo no

P 11-7 100 in

Q 11-8 101 000

R 11-9 101 001

11

CHARACTER
S

PUNCHED
CARD CODE

0-2
BCD CODE
010 010

T 0-3 010 Oil
U 0-k 010 100
V 0-5 010 101
W 0-6 010 110
X 0-7 010 111
Y 0-8 Oil 000
Z 0-9 Oil 001

• 12-3-8 111 Oil

) 12-4-8 111 100

(0-4-8 Oil 100
+ 12 no ooo
- 11 100 000

= 3-8 ooi on
* 11-4-8. 101 100

This is called the BCD or binary coded decimal notation. In this nota-
tion, to be consistent, numbers also use 6 positions but for numbers one
through seven, the uppermost three bits are blank or zero and 0 is represented
as a 10.

CHARACTER
0
1
2
3
k

BCD CODE
001 010

000 001

000 010

000 Oil

000 100

12
DUN-2400

CHARACTER5

6

T
8
9

BCD CODE
000 101
OOO 110
000 111
001 OOO
001 001

In the UNIVAC HOT as well as the UNIVAC 1108 and the IBM 7090, a com­

puter word consists of 36 binary bits. This computer word may thus represent

12 octal numbers or 6 BCD characters: for example,

BCD S I M P L E
BINARY oio [oio in |ooi 100|100 ioo' 111 iooi Oil 1no i ioi
OCTAL 2 | 2 T l 1 4 | 4 4 , 7 ‘‘I 3 6 i 5

The computer does all of its addition, subtraction, multiplication,

division and logical operations in binary. Input and output are usually

converted to BCD so that the machines that punch our output cards and print

outs can take the BCD and print or punch decimal numbers and alphabetic

letters that we can easily understand.

So, as was mentioned earlier, the computer doesn't understand English
only binary or on-off numbers. Every program instruction and every piece

of data is stored in the computer and operated on as either a binary or a

BCD number.

In the earliest computers, if one wanted to add A to B and call the

result C he had to do something like the following:

000 Oil 000 Oil 000 001 000 110 000 010
000 111 001 010 000 001 000 111 000 101
000 010 000 100 000 010 000 110 000 111

13

Where these are each three BCD machine instructions, the first 6 bits

(left) contain the instruction and the remaining 24 contain the address that

the instruction applies to. Thus if 3 means zero out and load the accumu­
lator, 7 means add to the contents of the accumulator (the answer goes back
in the accumulator) and 2 means store the contents of the accumulator; and

if A, B, and C are stored in memory locations 3162, 0175, and 4267 respec­
tively we will get 0 = A + B by the above three machine instructions.

It was rapidly apparent that there must be a faster and simpler way
to program than this. As a result, a machine-oriented or "assembler"
language was soon developed which replaced binary notation with, mnemonics
and let the computer itself do the translation.

'The three above statements could then be written as something like this:
ZLA 3162
ADD 0175

STA 4267
The next step in the evolution of programming techniques was to formulate

a language which had "macro" instructions composed of many of the above

machine-oriented language instructions. The most common example of these

currently in use in the United States are FORTRAN (FORmula TRANslation) and

COBOL (COmmon Business Oriented Language). In FORTRAN, a scientifically

oriented language, the above instructions may be written as

C = A + B

while in COBOL one might say

ADD A, B GIVING C.
In this example we have replaced three machine instructions with a single

"macro” instruction. When the FORTRAN or COBOL program is "compiled" by the

DUN-2400

14

computer, these macro instructions are broken down into the basic machine-

oriented language instructions (SLEUTH for the UNIVAC 1108, FAP or MAP for
the IBM 7090) and are then "assembled" to form the actual machine program
using the binary instructions. The "assembler" also assigns the necessary
storage locations for the program as well as for data.

FORTRAN then is not "machine-oriented" but is a "problem-oriented"

language. The FORTRAN language statements are written on special FORTRAN

coding forms which are then copied onto 80 column punched cards by keypunch

operators. These cards containing the program instructions together with
cards containing data to be operated upon are fed into the computer by

inserting them into an on-line card reader or transferring the information
from cards to magnetic tape which is then read into the computer.

DUN-2400

PmGE of

FORTRAN CODING FORM 2 -

CODER DATE PROBLEM NO.

c+ ro"
COMMENT

CO
N

TI
N

- 1
U

A
TI

O
N

 |
FORT

Z4c
.

S T A T E M ENT identification

STATEMENT
NUM 3ER

1 2 13 |4 |5 6 7 l 8 i9 1,0 11:12113,14,15 16 |l 7 ,18 j!9 20 21,22,23 24.25 26 (27; 28,29 (30 31 132,33134 135 36j37(38!39 j40 4I|42 (43[44 (45 46|47(48j49 |50 51 (52[53 [54[55 56 57 58 j59 60 61 [62.63 [64(65 66 ,67;68 [69 [70 71 72 73 .74 [75 [76 (77 78 [75 [80

I i > ill' ■ i 1 i ___1- 1 1 ' i___|— 1__ , , , . ___111. | i 1 ' ‘ 1 I'll-- 1 1

2 III. • 1 __l___i___L- i . 1 1 1 ili. I«i1 1 1 1 1 1 1 < 1 1

3 1 , i < i It'- 1 1 1 ■ 1 if 1 1 i 1 1 1 1 1 1 | ■

4
i i i 1 1 1 f till 1 1 1 ■ 1 S 1 1 ■ I 1 1 1 1 t 1 , 1 1___ !___ ■ lit ill! __ 1___|___ 1___ 1___ 1 1 1

5 . • , i l * 1 till . , 1 : 1 1 1 1 1 1
-

l ! 1 l - 1 1___ 1___ 1— , . , . II., ___1 | !___!___ 1 1 1 ■ ■ ii 1 1

6 1 , , , i 1 • 1 1 t i 1 1 1 1 ! i ! t 11(1 1 1 / 1 , , , , .iii1 . 1 ' . 1 1 t I 1

7
i---------

fir1 i . f r i 11.1 ,
1 t 1 ■ ■ fill) i 1 (1 1

8
. N.,. i i i i l.li 1 1 | -L 1 I 1 1 ■ . > 1 1 1 . 1 ..<1 . 1 1 1

9

-----------1 | j

. . ■ i , i • t 1 ! 1 i l i 1 1 I 1 1 1 1 1 , , , 1 . , 1 1 11,1 1 l 1 1 till 1

10 i , 1 t t 1 III* 1 1 1 1 < 1 ■ . 1- 1 1 1 i 1 III. «

11 n
.III 1 . 1 1 <lll 111' tlii . 1 1 1 111! 1 1 1 1 l lit1 1

12 i . i i t 1 f 1 III. 1 1 l 1 1 ■ it'

13 I.., 1 . i ! (ill . 1 1 1 ' 1 , 1 ■ 1 1 i< > 1 —1 1 ±.J___ ll.i 1

. M ! : 1 ' 1 * till 1 1 1 1 , i 1 i 1 < 1 i.l. .
__ 1___1___J___ 1___ __ I__ 1---- 1-----1___ —J_______ 1___ 1___

15
-----------------r-r

1 1 1 . I t 1 i . 1 1 , , , , 1 1 1 1 1 1 1 < i 1

16 . i ! . . . 1 : 1 ! • i : : | 1 1 _J___L 1 l - 1 1 > l —I___ 1___1___1___ _J___ 1___ l___I___ _ __ t__ l___ 1___1___ itii 1 1 1 1 t

17
!

1111 t 1 1 1 1 1 , __ 1___L, 1 J till | I) 1 l 1 1 | l 1 ' ' ■ t

18 “ ■ ■ i i' :
l.l! 1 . ' ' I 1 1 lilt ill: 1 < 1 1 . . 1 i ___l__ till

19 , . ! i < 1 t i lit' ___i- i . , , i'ii <11! t 1 , | 1 . ! 1 i

20 , : 1 , . i . . I . i * i i ! 1 1 till i'ii 1.1' 1 1 l 1 1 1 1 III: 1

2! ;
; 1 ■ : 1 . i 1 i 1 t 1 i

i . . , , i . .

22 t ■ i .1 1 1 '
, , , 1 .. 1 1__ * J 1___i_ , . j ,

23 : l i 1 1 . 1 ' 1 ill' ' 1 f * , .[.I , ! 1
1 r

1_ 1 * 1 I I 1 I J_ t ' ' ... ' .. .• 1 ! 1 .

24 i
> r , . ,

1 1 l 1 ’ 1 i__ L J 2

25
‘

- . i , . ----- ----- 1---- ------1---- , , - i , 1 ,
54-3000-S60 { 6-66) *cc «t

H

o

DUN-:

16 L1UN-2U00

Notice that the coding form, reproduced on the preceding page, also has

80 columns (like the punched cards) and is broken up into h major fields or

areas. The first field is in columns 1-5 and it contains "statement" numbers

which may be used to reference the FORTRAN statement appearing in the rest of
the card. It is not necessary to have a number in the columns 1-5 unless you

want to reference or go to that statement from somewhere else in the program.

Statements may have any number from 1 to 3276?. (One never includes comma's
in FORTRAN numbers.) Column 6 is the "continuation" column and is used to

tell the computer that the card contains a FORTRAN statement continued from

the previous card (this is done by placing any non-zero characters in column

6). Usually the first continuation card is punched with a 1 in column 6, the
second continuation card with a 2, etc. A maximum of 19 continuation cards
is permitted per statement on the UNIVAC 1108.

Columns 7-72 contain the FORTRAN statement itself (which, as indicated

above, may be continued to additional cards if necessary). It is usually

good practice to use several short FORTRAN statements rather than one long one,

to avoid mistakes. The computer ignores blank spaces in columns 7-72 except

when they appear within a number (and then they may be considered to be zero,
depending upon the computer).

Thus, as was mentioned earlier, the computer doesn't understand English,

but FORTRAN comes rather close to the "language" of mathematics once you learn

a few basic rules. At that time it was also mentioned that the computer does

exactly what you tell it to do and not what you want it to do. This may seem

facetious but it is very unfortunately true.

If, for example, you are trying to find the volume of a sphere of a known

diameter and you write that

17
DUN-2^00

VOLUME = 3.14159 (DIAM)3875
TT~ ? 3Every volime calculated will be— D* rather than ~£~ D as it should

be. The program is definately not supplying the correct answer, but it
certainly is doing what is "correct" in that it is doing exactly what you
told it to do.

If, in averaging 23 numbers, you calculate only 22 of the numbers and
divide their sum by 23, your answer is wrong but you are getting the "correct"

solution to the problem that you have specified even though that is not the
problem you want to solve.

Thus in writing your program your first step is to define exactly what
it is you are attempting to do. This definition must include every equation
and relationship involved in the correct sequence of their execution. You

can't write a program to try one approach to a solution and then, if it

doesn't look like you are getting the correct answer, have it try adding,

subtracting, multiplying, or dividing by other numbers to get the "right"

answer. You have to know exactly what it is that you want to do. This leads

to the question "what should one put on the computer?"

A payroll may be calculated in a rather simple fashion:

GROSS = hours worked (dollars/hour) + overtime + shift differential + holiday
pay, etc.

DEDUCTIONS = withholding + social security + insurance + savings plan +
United Crusade + credit union + U. S. Savings Bonds, etc.

NET = GROSS - DEDUCTIONS

This calculation is really quite simple but it lends itself to the com­
puter quite nicely since it must be repeated many hundreds or thousands of

times per week. Thus a problem which has many sets of data to be processed

18
DUN-2400

is a good computer application.

Take a different type of calculation; in a very simple analysis, a

nuclear reactor loading may be described in terms of the "buckling" of the

materials present. The buckling is really the rate of change of the flux
in that material. It is also known that the slope of the flux = 0 at the

center of the reactor and that the flux = 0 at the outer edge of the reactor
that is just critical. Thus to determine how far from critical a reactor
loading is, one could "guess" a change in material buckling for each zone

and from that calculate a flux distribution and see if it has zero slope

at the center of the reactor and if it goes to zero at the outer edge. If
it did, your problem is solved. But unless you are one heck of a good

guesser it didn't and you will have to try new sets of ducklings. An

iterative problem like this lends itself quite well to computer applications

since if you start out with a zero slope at the center, and the flux is

negative at the outer edge, the zone ducklings are too high and must be

reduced. If you start with a zero slope at the center and flux at the outer

edge is positive, you must increase the buckling in each zone to reduce flux

at the edge. You keep changing the buckling and finally the flux is close

enough to satisfy your error criteria. This may take 5> 50> or 500 iterations,

but the equation will still be solved much more rapidly on the computer than

by hand. Oddly enough, the real problem in this application is not to set

up the mathematical model of the problem but to define for the computer how

much to change the ducklings, to iterate to the "correct" solution as rapidly

as possible. Thus problems 'which require many iterations to achieve a

solution or problems containing many sets of data or many large and complex

relationships are all quite applicable for computer usage. An additional

19

class of problems that have wide computer applications are those that require

taking very small time, distance or temperature steps to achieve the correct
solution. These are usually combined simultaneously with iterative problems,
For instance, calculations of transient temperatures during a reactor startup
or scram requires consideration of many iterations and many short time steps

as well as small physical volumes to achieve the correct results--there is
also much feedback between power change and temperature from the standpoint

of associated reactivity effects of change in fuel and moderator temperature.

Solutions of problems of this type could not be attempted on a fine scale

without the aid of a computer.

On the other hand, some calculations are best left off the computer.

These are the simple single solutions with few complications.

Daily calculations of plant throughputs, for instance, might require

more time to punch the input data on cards than for the user to solve the

problem by hand. If all 365 sets of data were to be calculated at one time,

and used as the basis for further calculations it might be reasonable for

the computer to be used--particiilarly since no errors would be expected from
the computer results (providing the program is correct and all the input data
are transcribed correctly) while several dozen errors would probably occur

in the hand calculations. However, a daily calculation of this type is

probably not applicable.

DUN-2400

20

DUN-2400

SECTION II - ARITHMETIC STATEMENTS, CONSTANTS, AND VARIABLES

As mentioned in the previous section, FORTRAN stands for FORmula TRANs-

lation and is a "problem-oriented" language—that is, it much more closely

resembles the language of mathematics than the language of computers. FORTRAN

is also a "machine-independent" language. In other words, a FORTRAN program,
once written, may be run on virtually any computer having a FORTRAN "compiler".

The main problem in running FORTRAN programs on different computers is that,
even though the FORTRAN program says the same thing to both computers, the

"compiler" (or translator to machine language) will probably not produce

exactly the same machine language program for each computer. The reasons for

this are severalfold. In the first place, there are many versions of FORTRAN

—II, IV, V, etc. as well as different "versions" of each version, and a

FORTRAN II program may not work out too well on a FORTRAN V compiler. Also,

the compiler is really only a program itself which was designed by the com­

puter manufacturer or a software firm to translate the FORTRAN program into

an efficient machine language program for use on that particular model of

computer. This sounds great, until you realize that different computers do

things differently so that even adding 1+1 may be done quite differently--

not only by computers built by different manufacturers, but even by different
computer models of the seme manufacturers. The second hooker mentioned above

is the phrase "efficient machine language program". Compilers tend to move

parts of your program around during translation to machine language to make

it as efficient to run on the computer as possible. Thus, a really

"sophisticated" compiler may do things very differently than

21

DUN-2400

a somewhat less sophisticated compiler, and the results, even when run on the
exact same computer, could be startlingly different.

Thus anyone who does very much FORTRAN programming gets to learn a little
about how "his" compiler works--or at least he gets to know someone else
who knows this. Before we worry about compilers, however, let's get a little
FORTRAN under our belt.

A FORTRAN program is merely a deck of cards (called a "symbolic" deck)

which, when loaded into the computer with the appropriate FORTRAN compiler,

will result in an "object" or machine language deck that can be operated on

by the computer. The FORTRAN program can vary in length from a few FORTRAN

"statements" to many thousands of FORTRAN "statements", where the FORTRAN

"statement" is usually the equivalent of many machine language instructions.

Since FORTRAN is mathematically oriented, the simplest statements con­

cern everyday addition, subtraction, multiplication, division, and exponenti­
ation.

Each one of these five operations is represented in FORTRAN by a special

symbol as follows:

+ means
- means

* means

/ means
** means

Thus if one wanted to write

"add"
"subtract"

"multiply"

"divide"
"raise to the power"

the following expression

y3 • 6 + z9 • 72

s + q
x

22

DUN-2400

in FORTRAN it would be as follows:

X = (Y**3.6 + Z**9.72) / (S + Q * R**(7./3.))

Note that only capital letters are used since FORTRAN has no provisions for
lower case letters.

Notice also that parentheses were used to separate parts of the expres­

sion. It is allowable to use as many sets of parentheses as is necessary
to define the equation and it is usually better to have too many parentheses

than too few. Extra sets of parentheses will be ignored, but missing ones

can't be put in by the computer since it won't know where they go. The com­
puter does assign a "weight" to each of the five above operators and it is

>llows:

OPERATOR FUNCTION WEIGHT
** Exponentiation 3
* Multiplication 2

/ Division 2
+ Addition 1

Subtraction 1

If statements contain no parentheses, the computer will evaluate the

expression from left to right in the order the terms appear unless the

operation to the right of the one being examined has a higher weight than

the one being examined--in that case,.the adjacent operation with the higher

weight is performed first. For example:

X=Y - Z*R**3.2
is x = y - z(r3*2)

whereas X=Y- (Z*R)**3.2
x = y - (zr)^*2is '

23
DUN-2400

and

is

and
is

and

is

and

is

whereas

is

Note that inclusion of parentheses will overide the "built-in" weighting

factors assigned to the operators.

The variables X, Y, Z„ and R; above are representations used by the

programmer; however the machine considers them merely as "storage locations".

In other words, X is some location in memory, say 0967^ and Y, Z, and R are

also, as far as the computer is concerned, merely memory or storage locations.

A FORTRAN arithmetic relationship thus differs from mathematical equations

in that FORTRAN statements may have only one variable or constant on the left

side of the equal sign. Thus

X •= Y + Z
is permitted but

Y + Z = X
is not allowed.

X = Y + Z means "add the contents of the storage location assigned to

X=y-Z**R*3.2

x = y - 3.2zr

X = Y ** Z - R * 3.2

x = yz - 3.2r

X = (Y - Z) ** R / 3.2

x = (y - z)r
3.2

X = Y / Z / R / 3.2

x ~ y
3.2zr

X = (Y / Z) / (R / 3.2)

x = 3.2y
rz

24

Y, to the contents of storage location assigned to 2, and place the result
in the storage location assigned to X".

Thus

X = X + 4.

is a valid FORTRAN expression even though it does not look "correct" mathe­

matically speaking. In essence it says--"add 4. to X and store the answer
in X".

Now that the mathematical operators are defined., let's spend a minute
or two on defining variables and constants.

Since variables and constants are really only "storage locations" (to
the computer) to which we have assigned "names" for our convenience of

representation, we must adhere to certain "naming rules" so that the compiler
knows how to handle such data.

The first rule is that the names used to represent variables or constants

may not contain more than six characters (although they may have less--in

fact a single alphabetic character may be a valid name.) The name is not

permitted to start with anything except an alphabetic character. The name

may contain alphabetic characters and numbers in any desired sequence provided

they start only with an alphabetic character. Names may not include any symbol

such as +, -,*)/, ,, ., (,), =, etc. since the compiler is not smart

enough to realize you meant the single variable WA-RP and not the variable

WA minus the variable RP.

Another rule is that any name starting with either an I, J, K, L, M, or

N is considered to represent an integer variable whereas those names starting

with alphabetic characters other than I, J, K, L, M, or N are considered to

DUN-2400

be real variables.

25
DUN-2400

Integers are represented in memory as just that--integers. For example,

if IX = 483io (or ^Sg) a 12 character octal representation of the 36 bit
binary "word" in memory would appear as this

I
IX in Memory Dump (octal)

Real numbers are not stored as integers in memory—mainly because they
are not integers and, since they may have values in the range of 10*38 ^.0
10+38J they could hardly fit in a 12 character octal integer "word". Instead,

real numbers are stored as shown below

S CHAR. MANTISSA

where S, the left-most binary bit in the 36 bit binary (12 character octal)
word represents the sign of the number (+ or -), the next 8 bits represent

the characteristic, and the remaining 27 bits represent the mantissa. The

mantissa is of the form .XXXXXXXXX3 whereas the characteristic would be n0

+ 200g if the number is represented as (. X X X X X X X X X) 2n. Thus, to

represent the number Iiq in the computer we would get I^q = lg = I2 = (.lx
2^-)g or the word in binary would have a characteristic of 200 + 1 = 10 000

001 and a mantissa of .100 000 000

0 100000011000000000 0 0000000
/sign \characteristic 1Mantissa

Since we can group three binary bits to form each octal character, the

above word would appear as shown below in octal (for example in an octal

memory dump) realizing that .1002 = .4q

201400000000 8

DUN-21+00

Similarly the number k could be represented as 4^q = 4g = IOO2 = (.1 x 23)2.

or 2034-00000000gin octal. The number 10 could be represented

as 10-j_q = 12g = 001 OlOg = (.1010 x 2^)2 and since .lOlg = .5q "the word would
look like 2O450OOOOOOOQin octal.

This now raises the question of how one would represent a number like

7.4692 x 101T in FORTRAN. It is obvious that you can't keypunch XI0^ since
you can't shift up half a line on a FORTRAN card. Instead you merely replace

x lO1? by El? or "exponent of 17" thus one could write x = 7.4692 X 10-1-7 in
FORTRAN as

X = 7.4692E17
or

X = 7.4692E+17
The + in the exponent as well as a + for the number is "understood" if

it is not included. However, all - signs must be included, as
Y = -9.2436E-4

to represent y = -0,00092436.

Since a - is a mathematical operator as well as a "minus sign", one must
be somewhat more careful in using it than might be expected (since two opera­

tors are not permitted to be adjacent). Thus to multiply -X by -17.6(y) one

must write it as (-X)*(-17.6)*Y using the parentheses to "attach" the sign
to the variable X or the constant 17.6 and not mix it up with the operator*.

Real numbers are represented by their having a decimal point, whereas

integers are conspicuous by the absence of a decimal point. Thus, even though

you "know" that 7. is an integer, the FORTRAN compiler calls it a real number

because it has a decimal. If one were to write

INK = 4.

the computer would first have to change the real number 203 400000000

to the integer 000000000004g before it stored it in the location
representing the variable INK. Thus the following are valid FORTRAN integers

IP = 9
J = -17394
MRS = 2741

KP194 = 2
N47B6R = -19

and the following are valid real numbers

ZETA = 1.9467322E-27
P = 1.0

UR = 1743.99
QM = -1.6E06
A = 99.32 / 7.6E-4

As mentioned above, real numbers must be in the range 10“38 io+3®. Notice

that no commas are permitted in numbers represented in FORTRAN.

If one has integral powers in an expression it is much more efficient

to use the integer than a real number for the exponent. In other words,

X = Y**9
is preferred to

X = Y**9.
of course if the exponent is a real number like 7.63 you don't want to use

an 8 or a 7.
When real numbers are multiplied, added, divided, subtracted, or raised

to a power, a real number is the result of the calculation. Likewise integer

arithmetic will result in integer answers. The computer always truncates the

28 DUIJ-2400

results of integer division so that if one had IX = 7/2 the result would be

IX * 3 likewise MRK1+ = 1-1000*(99/100) would yield MHKfc = 1 since 99/100

truncates to 0; however MRK1+ = 1-1000*99/100 would result in MRK^ = -989 since
* and / have the same weight and 1000 * 99 would be performed before /100.

If you were to divide a real number by an integer or vice versa you

would have problems called a "mixed expression" on the IBM 7090, but the
UNIVAC 1108 FORTRAN compiler is clever enough to convert the integer to a real
number before performing the operation. Even though the UJilVAC 1108 FCRTRAil

compiler will "look after you" it is best not to mix expressions when possible

just to be safe (you might run the program on some other computer some day).
Another example of mixing integers and real numbers, but one that is

commonly done, is the use of different modes on different sides of an equal

sign, thus

A = 19/k + 5/1*

= 1* + 1

= 5.

AND IR = 19.A. + 5.A.

= it. 75 + 1-25

= 6

are both valid—the computer evaluates the expression in the appropriate mode

and then converts the solution to the mode required for storage as the answer.

If you recall, any variable whose name starts with I, J, K, L, M, or ii

was defined to be an integer variable (or constant). There is a means of

overriding this definition and that is to use a TYPE statement at the start of

your program. For instance you may specify IMAX, J, KAY and MQ to be real

29 DUN-21+00

variables by saying
REAL IMAX, J, KAY, MO

Note the line through the 0 in MO to differentiate the letter 0 from the
number 0 as in the name MO.

Similarly, X, YY, SEL, and P may be specified to be integer variables by
INTEGER X, YY, SEL, P

If a name is not found in a TYPE statement, the I-N ruled for integers will
still apply.

Besides the INTEGER and REAL Type statements there are four other Type

statements. One of these is COMPLEX to define complex numbers of the type

7* + 9.^i (represented as (7., 9.^) in FORTRAN).

For instance the names Cl, C2, 3K, Q, and RP may be set up as complex
variables by

C6MPLEX Cl, C2, ZK, Q, RP

and one could then set zk = 9-642 + l.li by
ZK = (9-642, 1.1)

or

ZK = (0.9642E1,11.E-01)
Each complex variable uses two consecutive storage locations—the first

for the real part (9.642 above) and the second for the imaginary part (l.l

above). Integers are not permitted as complex variables. All complex numbers

must be defined by a COMPLEX Type statement.

There is another kind of number stored in the computer and defined by a

Type statement—that is the DOUBLE PRECISION number. It may appear that 8 or 9
significant figures are a lot and that they give plenty of accuracy, but you

can never please everybody, so to permit calculations having 16-18 significant

30 DUl'1-2^00

figures, a double precision number is used. Every double precision number

must be defined by a DOUBLE PRECISION Type statement as for Dl, R3, IV, NK
below

DOUBLE PRECISION Dl, R2, IV, NK,

Each double precision number is stored in two consecutive storage locations
in memory with the most significant figures in the first storage location and
the least significant figures in the next location. The characteristic of
the first location is as normally calculated, that of the second location is
the first -27 (since the first 27 binary bits went into the first word and

bits 28-54 will go in the second word). All double precision numbers are
represented with a D rather than E to signify the exponent so

Dl = 9.3D+6

RS = 1.446392117138D+0

IV = 6.333333333312D-4

UK = 1.2D+1

are all double precision numbers (note that they had to be defined in the

DOUBLE PRECISION Type statement as well as have the D in the number).

Another Type statement is the LOGICAL Type statement to define logical

variables. A logical variable is a variable which may assume the value true

or false (represented by a 1 or 0 respectively in memory). Thus to make LI,

JK, R7, M39, PIN36 logical variables we must use the following statement:

LOGICAL LI, JK, R7, M39, PIN36

and we may then set

LI = .TRUE.

JK = .TRUE.

31 DUW-2^00

RT = .FALSE,
etc.

Logical variables may not assume the values of numbers—only .TRUE, or
.FALSE. Note the periods necessary on each side of the .TRUE, or .FALSE,
datum.

There are three logical operators, .0R., .AND. , and .N0T. (which must
also be set off by periods) as well as six logical relational operators, .EQ.
(equal to), .NE. (not equal to), .GE. (greater than or equal to), .GT. (greater

than), .LE. (less than or equal to), and .LT. (less than), again all set off

by periods; which are used in logical manipulations just as the **, *,/,+,
and - are used in arithmetic manipulations.

Now that you know all about numbers in FORTRAN, consider the problem you

have if you want to operate on say 500 numbers, you certainly don't want to

dream up 500 FORTRAN names, one for each number—you would then have to write

500 sets of all arithmetic expressions to operate on each name (or number).
Thus you say, O.K., let's have 500 X's and we will call the first x-X(l), the

23rd x-X(23), and the 500th x-X(500). X is called a "subscripted variable"
or an "array" and one merely decides which "X" he wants to use and that number
(say the ith) is the subscript used.

A variable may have from 1 to 7 subscripts on the UNIVAC 1108. Tims one
might have stated X(2,5,5,10) just as well as X(500) and still achieved the

same result—500 X's all stored in sequence from X(l) or X(l,1,1,1) to X(500)

or X(2,5,5,10) in memory. They would be stored in the sequence X(l), X(2),

X(3), X(L)...X(500), or X(l,1,1,1), X(2,1,1,1), X(l,2,1,1), X(2,2,1,1)...

X(2,5,5 ,10).

32 DUIJ-2400

The subscript must be an integer and may not itself be subscripted. It

may also be a product, sum, or difference of integers. The following subscripts
are valid:

X(I)

R(K+93)

MIIK(LL+91)
B3K92(6*M+9)
F6MIX(3+L, U*N-2, K, IR)

but

rlp(m(71))
is not valid since the subscript itself is subscripted. Subscripts should

not be zero or negative even though such subscripts are permitted (X(0) would

be stored next to X(l) backwards in memory, X(-0) next to X(0), X(-l) next to

X(-0), etc.). Each subscript is separated from the adjacent subscript by a

comma. The group of subscripts are enclosed in a single set of parentheses.

Integer, Real, Double Precision, Complex, and Logical Variables may all

be subscripted. The maximum size of each array must be defined. This may be
done in a DIMENSION statement as follows:

DIMENSION X(9,3,210), Y(lO), IX(2)

The dimensions of an array may also be specified in a TYPE statement if the

variable name itself appears in a TYPE statement, for example,

DOUBLE PRECISION VM(7,32), R(6,2,ll)

If a variable is dimensioned in a TYPE statement it must not appear in a

DIMENSION statement; similarly if a variable is dimensioned in a DIMENSION

statement, it may not appear with dimensions in a TYPE statement but it may

appear in a TYPE statement without dimensions, for example:

33 mw-si+oo

DIMENSION X(73) , Ky(9), R(2), I4M(9)
INTEGER X, P(93), V, W7
REAL KY, IB72, MM, MN(6U3,2)

are all valid statements.

Whenever a subscripted variable (dimensioned) is used, it may not be used

within the program without a subscript to denote which element within the array
is referenced. For example:

REAL IXK, MV(72), LK39(3,7,96M, II, IJ, IK

DIMENSION KK(2), ILR(9), PPT(77)
IXK = 9.6i+

R = 6.91+2E-30

LK39(1,7,32) = -99.^
IL = 17

KK(l) = 19

PPT(3) = 2.7EU
are all valid statements but

f4V = 6.2
and

ILR = 10
are not since these variables represent arrays and it is not stated which

element of the array is referenced. (The compiler will assume that ir. these

instances the first element is referenced so it will set MV(l) = 6.2 arid
ILR(l) = 10.)

To determine the location of a particular element within an array, the

following formula may be used:

DUN-21+003^

Location of X(ll, 12, 13, ...T7) within array X(D1, D2, D3....L7) =
location of X(l, 1, 1, 1, 1, 1, 1) + (ll-l) + (12-1) * Dl + (13-1) * LI *

D2 + (lU-l) * Dl * D2 * D3 + ... + (17-1) * Dl * D2 * D3 * ... * j6. For
example, the location of RL7(2,1,1+,3,M within the array RL7(5,5,5,10,10)
may be calculated as the storage location of RL7(l,l,1,1,1) + (2-1) + (l-l)

*5 + (4-1) *5*5+ (3-1) *5*5*5+ (4-1) *5*5*5* io= location
of RL7(l,l,l,l,l) + 1 + 0 + 75 + 250 + 3750 = location of RL7(l,l,l,l,l) +
4076.

The above rule applies for all arrays except those of complex or double
precision numbers. In the latter case, two adjacent storage locations are
required for each number. Thus for double precision or complex numbers, the

location of X(ll, 12, 13 ... 17) within array X(D1, D2, D3, ... D7) is the
loaction of X(l,l,1,1,1,1,1) + 2 * (ll-l) + 2 * (l2-l) * Dl + 2 * (13-1) *
Dl * D2 + 2 * (I1+-1) * Dl * D2 * D3 + ... + 2 * (17-1) * Dl * D2 * D3 * ... * nC.

35
DUN-2400

SECTION III LOOPING AND TRANSFER OF CONTROL
LOOPING

Now we know all about how to store many sets of data in large arrays„

This leads to the next question--what good is the use of such an array (or
arrays)?

It’s true that if you had ten numbers stored in X(l) to X(lO) and
wanted to find y = ^3c(i) you still have to add all ten numbers up whether

57
they are called X(l), X(2), X(3), ... X(lO), or XI, X2, X3, ...X10. The
advantage of the former notation lies in the use of "indexing" or selecting

the particular variable of interest in the array.

Thus, although

Y = XI + X2 + X3 + X4 + X5 + X6 + XT + x8 + X9 + xio
as well as

Y = X(l) + X(2) + x(3) + x(4) + X(5) + x(6) + X(T) + x(8) + X(9)
+ X(10)

one has no choice but to calculate Y as above using XI, X2, etc. but there

is a much more efficient method of adding in the latter case. That is

Y ■= X(I) + Y

provided Y = 0.0 before we startj and the index I assumes all values from 1

through 10 inclusive. The real, question is how we do the latter--and the

answer, strangely enough, is to DG it - using a "D© loop". A DG loop says
"do what follows as many times as necessary to satisfy the index requirements".

The DG statement is of the form

DG N I = J, K, L

where the integer N tells the computer just what statement^ it is to "DG",

36 DUN-2^00

the integer I is the index, the integer J is the first value the index is to

assume, the integer K is the last value the index is to assume, and the integer

L is the increment of the index. If L is left out it is assumed to be equal
to the integer 1.

The D6 statement in effect says "do everything from here to statement
N one time for each value of the index I specified by J, K, and L".

Thus to add the ten values of X above we would do it as follows

DIMENSI0N X(10)
Y = 0.0
D© 20 I = 1, 10

20 Y = Y + X(I)
This may not seem like a tremendous savings, and in this instance it probably

is not, but imagine if we had say 5000 different values of X to add--the
exact same three instructions will accomplish the 5000 additions as it did
for the 10 (provided we index I from 1 through 5000 rather than 10).

Note that the statement N (20 above) is executed for each value of I.

After the statement numbered N is executed, control returns to the D6 state­

ment, the index I is incremented by L, and if I exceeds K, control is then

sent to the statement following statement N.

As many statements as are desired may be placed in the "loop" (between

D© N I = J, K, L and statement number N). It is most efficient, however, to

place within the "loop" only those statements which must be executed for each
value of the index I.

Statement N may be virtually any statement (arithmetic, logic, or input/

output) except that it cannot be another D0 statement or a transfer or test

statement (more about these later).

37

One special statement is commonly used to end a D9 loop and that is the

CGNTINUE statement. The CONTINUE statement says just that--continue or
"ignore me". It doesn't cause anything to happen except control to he trans­
ferred to the next statement (or back to the D9 statement if it is the end
of a D9 loo^i The above problem could have thus also been written as

DIMENSI6N X(10)

Y = 0.0

DG 20 I = 1, 10

Y = Y + X(l)

20 CGNTINUE

Within the loop from DG N I = J, K, L to statement N, neither I, J, K, nor L
may be redefined. That is, one may not have any one of these integers on

the left side of an arithmetic statement within the loop.

In DG N I = J, K, L it is normally assumed that L is positive, that

is K > J; however, it is permitted that J > K and L < 0. If J > K, L must
be set equal to -1, -2, etc.

Thus, the above problem could have been written

DIMENSION X(10)

Y = 0.0
DG 20 I = 10, 1, -1

Y = Y + X(l)
20 CGNTINUE

and X(10) would have been added to X(9) to X(8) to X(7) ... X(l) to achieve

the same answer as before.
The most common limits of DG's are from 1 to K (where the limits of a

DUN-2400

38
DUN-2400

D© are the numbers J and K in D6 N I = J, K, L). The "range" of a D6 is the
set of statements between the D© statement and statement N.

The integers I, J, K, and L may be integer constants such as 1, 10, 1000,

325, etc. or they may be integer variables provided they are not subscripted
variables.

One is not permitted to transfer into the middle of a D© loop but must
enter through the D© statement itself. It is permitted, however to transfer

out of a D© loop (provided it is not at statement N, the end of the loop).
The reason for this is that one must set up all the index limits and the index

itself (l, J, K, and L) before entering the loop, and the only way to do this

is by passing through the D© statement. Once the index and limits are set

up, it is permitted to transfer out of the loop before the loop has calcu­
lated all of the range for the limits of the index (provided one does not
return to that point of exit from the loop but back to the D© statement if
the loop must be used again).

D© loops may follow one another in a program or they may be "nested"

within one another. Nested D©'s must be entirely within each other.

For instance, say you wanted to calculate
10

where

To calculate this, we must "nest" a D9 loop for calculating z within the loop
for calculating x as follows

50
100

DIMENSION £(10), P(10,15) Q(10,15), Y(l0)
X = 0.0
D© 100 I = 1, 10

a(i) = 0.0
D© 50 J = 1, 15

*(l) = «(I) + P(I, J)*Q(I,J)
X = X + Y(l)**2 + 17.3*2(1)

Note that the inner loop on J lies entirely within the outer loop on I.

Although details of transferring will be covered in the next section,

the following example will show valid transfers from nested D© loops.

DUN-2400
40

VALID TRANSFERS
NESTED LOOPS

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

Vertical arrows indicate that transfer to anyplace in that direction

is permitted except to within the range of a DO not containing the DO loop
being left.

Note that the same Indices may not be used on loops within loops, but

that the limits of an inner DO may be the same as the index of an outer DO

(i.e. DO 50 M = 1, K where K is the index of an outer loop).

ill
DUN-2U00

Note also that the nested DG's had to lie entirely within their outer

loops. Note that the index K was used twice within the loop DG 90 but it
was not permitted to be used in the loop DG 65 unless the loop DO 60 had
already ended (as it did).

Several nested DO loops may end on the same statement. This may be

illustrated in calculating the product of two 15 by 15 matrices.
Given

IF

a-i^h ?j ~ ••• 15
A* 1

DIMENSION 0(15,15)> A(15A5)> B(l5A5)
DO 10 I = 1, 15

DG 10 J = 1, 15

C(I,J) = 0.0

DG 10 K = 1, 15

10 C(I,J) = C(I,J) + A(I,K) * B(K,J)

TRANSFER OF CONTROL
Now that you know that you are not permitted to transfer to within the

range of a DG loop but must enter through the DG statement itself, and that

you are permitted to transfer out of a DG loop, let's get into the mechanics
of how to transfer. Let's say that you have just reached a point in your

program at which you wish to go to statement number 105 to continue the cal­

culation. One way of doing this is to use an "unconditional GG TG" which

says merely
GG TG 105

1*2
DUN-2^00

or whatever statement number you wish to go to. When the above statement

is encountered within your program, control will be transferred to statement
number 105 and all statements between 105 and the "G© TO 105" statement will

be skipped. Unconditional G© TO's may be transfers either forward or backward
within a program.

A second type of transfer statement is the "conditional G© TO" of the
form

G© TO IMY3
where the value of IMT3 has previously been specified by an ASSIGN statement
which could say

ASSIGN 105 TO IMY3
and the net result would be to transfer to statement number 105 from the
"G© TO IMy3Mstatement.

A third form of transfer is to use the "assigned G© TO" which requires

a previously defined ASSIGN statement as did the "conditional G© T©"; the

difference being that in the "assigned G0 TO", the statement numbers per­
mitted for transfers are defined by the G0 TO statement as well as assigned

by an ASSIGN statement.

GO TO IMY3, (105, 1020, 2350, 5003)
is an example of an assigned G0 TO. The number of statements one may trans­

fer to in a conditional G© TO is virtually unlimited while that for the

assigned G© T© is quite limited, even though both the assigned and the con­

ditional G© TO require ASSIGN statements to specify the actual statement

number to be transferred to.

The conditional G© TO should not be used unless it is essential, since

DUN-2400
43

the FORTRAN compiler cannot efficiently optimize the program if a conditional

GG TG appears in the program. A further, although minor, reason for not

using the conditional GG TG is that one may inadvertantly assign a statement
number which does not exist in the program. The assigned GG TG would realize
this since that statement number would not appear on the right side of the

GG TG M, (ll, 12, 13, ..., IN) statement (as II, 12, 13, ... or Ir) and

execution would be stopped; the conditional GG TG, however, would not catch
the error and control would be tranferrred to somewhere (probably outside

your program) and likely very bad things will occur (such as looping and

not being able to get out, destroying your data or program, or destroying

the resident which controls the computer's overall operation). In any event
it is not a happy occurence and should be avoided at almost all costs.

Note that the statement

ASSIGN 10 TO JX

is not the same as the statement

JX =10

since the ASSIGN statement is used only to assign statement numbers to

variables which will later be used by control statements. The execution of

the ASSIGN statement in this ease presets to 10 the destination of all control

statements pertaining to JX.

There is one last type of GG TG statement, probably the most frequently
used (with the exception of the unconditional GO TG -- eg. GO TG 20) and that

is the "computed GG TG" which says
GG TG (11, 12, 13, . . .), N

where N is a positive non-subscripted integer variable and II, 12, ... are

DUN-21+00
1+1+

statement numbers to which the transfer is to be made. If N = 1, control

is transferred to statement number Jl, etc.
For example,

G6 T9 (100, 405, 160, 130, 190, 225), KX3
if KX3 = 1, control is transferred to statement 100; if KX3 = 6, control is
transferred to statement 225; if KX3 = T you are in trouble (as with the
conditional G9 T9 KY where you may have said ASSIGN 109 to KY and there is
no 109 in the program) since you can only transfer to one of six locations
in G9 T9 (100, 405, 160, 130, 190, 225), -KX3 and you picked the seventh.

The most commonly used transfer statements are the computed G9 T9 and

the unconditional G9 T9.

We can now reexamine permitted transfers in nested DG loops using the
transfer statements described above.

33
35
40
U5

53
55
60
66
67
68
48
50
55
65
70

90
92

93
94
95
98

100
110
* '

45
DUN-2400

PERMITTED TRANSFERS WITHIN NESTED DO LOOPS

CONTINUE
*
0

D© 100 I = 1, 50

G© T© (30, 40, 92, 93, 98, 100, 110), IKY
0

D© 90 J = 1, 10
e
0

G© T© (30, 35, 53, 66, 70, 90, 92, 93, 98, 100, 110), ILY
0

D© 60 K = 1, 11P
0

G© T© (30, 35, ^5, 60, 66, 70, 90, 92, 93, 98, 100, 110), imy?
C©NTINUEt
D© 65 K = 1, LP

»

*G© T© INY, (30, 35, 45, 53, 68, 55, 65, 70, 90, 92, 93, 98, 100, no)
D© 50 M = 1, K

09 T© (30, 35, 45, 53, 67, 50, 55, 65, 70, 90, 92, 93, 98, 100, no), 1
CONTINUE

p

*G0 TO IPY, (30, 35, 45, 53, 66, 67, 65, 70, 90, 92, 93, 98, 100, no)*t
CONTINUE

*G© T© IQY, (30, 35, 45, 53, 66, 90, 92, 93, 98, 100, 110)
0

CONTINUE
t
e

G© T© (30, 35, 40, 93, 98, 100, 110), IRY
t
0

D© 95 M = 3, LL, 4
9
r

G© T© (30, 35, 40, 92, 93, 100, 110), ISY
e
*

CONTINUEI
9

G© T© (30, 35, 40, 92, 93, 100, 110), ITY
P

CONTINUE

STATEMENTS MUST BE PRECEEDED BY APPROPRIATE ASSIGN STATEMENT

kG DUN-2400

There is another type of transfer statement which is usually associated

with a test; that is the "arithmetic IF" statement. The arithmetic IF state­

ment, used to test the value of an arithmetic expression, is of the form

IF (EXPRESSION) J, K, L

where J, K, and L are FORTRAN statement numbers. If the value of EXPRESSION
is negative control is transferred to statement J, if EXPRESSION is zero to
statement K, and if EXPRESSION is positive to statement L. J, K, and L may be

numbers corresponding to statement numbers, or names which have been previously
defined as specific statement numbers by ASSIGN statements. The arithmetic
EXPRESSION may be any expression involving arithmetic operators (+, -, *, /,

and **), arithmetic built in or library functions (to be discussed later),

and arithmetic variables or constants (complex numbers are not permitted, but
integer, real, and double precision expressions are permitted). An example
would be

IF (X**2 - 4.3*B/C) 101, 111, 140
If the value of x^ - 4.3b is less than zero control will be transferred

c
to statement number 101, if it is equal to zero control will be transferred

to statement number 111, and if it is greater than zero control will be trans­

ferred to statement 140. Another way of looking at the above statement is

that if 4.3b > x^ control will be transferred to statement number 101, if c

x2 = 4.3b control will be transferred to statement number 111, and if x2 >
c

4.3b control will be transferred to statement number l40.
c

Another example would be to calculate the sum of all positive numbers

(called SUM)in an array of 20 numbers (called A). If a zero or negative

number is encountered it must not be a part of the sum. All negative A's

DUN-24 00
hi

must be printed out with their location in the array (eg first, fifth,

seventeenth, etc. number in the array). Assume the 20 values of A are

already stored in memory. One program which would accomplish this task is

DIMENSION A(20)

SUM =0.0

D9 100 I = 1, 20

IF (A(I)) 10, 100, 20

10 PRINT OUT THE VALUES OF I AND A(l)*

GO TG 100

20 SUM = SUM + A(I)

100 CONTINUE

Note in this example that the CONTINUE statement was required since if

A is zero we do not want to print it out or add it to SUM but go to the end

of the loop and calculate the next A. Note also that if A is negative we

must go to statement 10 where -we print out I, the position of that A in the

array, and the value of A. After printing this information we must use the

statement GO TO 100 so we do not add the negative A's to SUM.

A second type of ?lF statement is a "logical IF" which is of the form

IF (EXPRESSION) STATEMENT

where EXPRESSION is a "logical" expression and STATEMENT is any FORTRAN

statement except another logical IF statement or a DO statement.

If the logical EXPRESSION is .TRUE., the STATEMENT will be executed

and control will then pass to the next statement. If the logical EXPRESSION

is .FALSE., the STATEMENT will not be executed but control will pass directly

* more about how to do tnis later

48
DUN-2400

to the next statement as is indicated below

IF (EXPRESSION)---TRUE.------STATEMENT
I.FALSE.
YNEXT STATEMENT

An example would be: if you have an array, A, of 100 numbers ranging
in value from more than 0. to less than 5000. and you wanted the actual

minimum value of A, AMIN, and the actual maximum value of A, AMAX, it could
be done as follows:

DIMENSI9N A(100)
AMAX = 0.0
AMIN = 5000.

D© 10 I = 1, 100

IF (A(l) .LT. AMIN) AMIN = A(I)
IF (A(I) .GT. AMAX) AMAX = A(l)

10 CONTINUE

Note, first AMAX and AMIN are initialized respectively to the smallest

and largest "potential” values of A in the array. Then a DG loop is set up

to test all values of A in the array. The first logical IF statement tests

to see if the current value of A(l) is less than the minimum value thus far
calculated. If it is true that the current value of A is less than the

smallest value yet examined, the IF statement is .TRUE, and the arithmetic

statement AMIN = A(l) is executed (which stored the value of A(l) in AMIN).

Control then goes to the next logical IF statement which tests for the

maximum value of A in the same manner (When will both logical IF statements

be .TRUE.?, when will both be .FALSE.?). After both IF statements are com­

DUN-2400

pleted (and either, both, or neither of the arithmetic statements are executed)

control goes to the CONTINUE statement which passes back to the DG loop

starting point, increments the index by 1, and goes through the loop again.

Notice that one may compare arithmetic variables in a logical IF provided

that logical operators are used. One may NOT say

1) A(l) .EQ. B(I) this should be A(l) = B(l)

2) IF(A(I) .EQ. B(I)) 100, 110, 120 this should be IF(A(l) - B(l))

100, 110, 120
3) IF(A(I) = B(I)) XI = XI + 1 this should be IF(A(l) .EQ. B(l))

XI = XI + 1

4) IF(A(I) - B(I)) XI = XI + 1 this should be IF(A(l) .LT. B(l))

XI = XI + 1

since in the first instance you are trying to perform an arithmetic calcula­

tion with a logical operator, in the second case you are trying to perform

an arithmetic test using a logical operator, in the third case you are trying

to peform a logical test using an arithmetic operator, and in the fourth

case you are again performing an arithmetic operation in a logical test but

the answer is a number and not .TRUE, or .FALSE..

The following logical IF _is permitted

IF (X*Y**2 .GT. 3?.*Y-9.*X) X = Y**2

since the result _is either .TRUE, or .FALSE, depending upon the value of
pxy^ compared to 37y-9X.

Examining arithmetic and logical operators, the order in which the com­

puter will evaluate expressions containing these operators is as follows:

50
DUN-2400

EVALUATED FIRST

7EVALUATED LAST

** arithmetic exponentiation
* or / arithmetic multiplication-

or division
+ or - arithmetic addition or

subtraction
.LT.f .,LE., .EQ., .NE., .GT., or .GE

relational operators
.NOT. logical operator
.AND; logical operator
.OR. logical operator

Inclusion of parentheses within an expression will override the "built-in"
order given above. Thus the following IF statement

IF (IX .GT. 9 .AND. IY .LE. l) G© T6 90

80 IX = IX + 3
G© T© 100

90 IX = IX - 3
100 CONTINUE

will go to 90 if and only if ix > 9 and iy < 1, otherwise control will pass
to statement number 80.

The statement

IF (IX**2 .GT. 2*K .AND. MI .LE. M2 .©R. .NOT. (IX .LT. Ml)) G© T© 37
is a valid expression which will result in transfer to 37 if ix > m i or if

'2(lx) > 2(k) and mi<mz . The expression will be evaluated as if it were „

written as

IF (((IX**2 .GT. 2*K) .AND. (MI .LE.Jfi)) .OR. (.NOT. (IX .LT. Ml))) G© T© 37

51 BUTJ-SUOO

StlCTIOK XV INPUT/OUTPUT

The previous sections have covered data, representation, arithmetic
statements, variables and arrays, looping, transfers, and arithmetic and
logical tests. All of this is fine, and it is all an essential part of

K9RTRAN programming, but once the computer has solved the desired problem
it doesn't help you to know that the computer knows the answer — you want

the answer yourself. Obviously, to obtain the answer you will have to have

the computer tell it to you. This is normally done with a "formatted WRITl"

statement. What is a "formatted WRITE" statement? This might best be

answered by first telling you what a "non-formatted" or "binary WRITE" state­

ment is. If you recall, a computer "word" is a collection of 36 binary bits
which represent a number, alphabetic characters, or symbols. To WRITE sue!;

a word out on magnetic tape one merely says

WRITE (N) WORD

where N represents the number of the "logical unit" on which the word is to
be written. On the UNIVAC 1108 this could be any number from zero through

about 29 (where 0 represents the typewriter at the console, 5 is the card
reader where most input is received, 6 is the printer where most output is

written, and the remaining numbers represent magnetic tape units A - H or

magnetic drum storage - see the table on the next page for specific logical

unit assignments on the UNIVAC 1108). 'What the above binary WRITE statement

does is copy on logical unit N the binary word (or bits) stored in the iccctior

in memory assigned to WORD.
The binary WRITE is the most commonly used one (and the fastest) for input

and output to and from the computer—for libraries, programs, records, etc.,

but it is not normally used to communicate with people since people

UNIVAC 1108
52 DUN-2I4OO

FORTRAN I/O TABLE ASSIGNMENTS - NTAB$

Logical Unit

©ooooooooooooo oooooooo
oooocooooooo

Oooooooooooooooooo
COOOOOOaOOOOOOOOOOOOOOOO

oooooooooooooo

0 O 0

loooooooocooo

2 0 0

3
k

5oooooooooooo
6
7
8
9oooooooooooo

10 000000000000

11
12 0O0000000000

13o 00000000000

Ik

15 000000000000

16

000000000
OOGOOOOOOO

oooooooooooooooooocooo

000000000000000000000000

0000000000000000000000

oooooooooo
000000000000

ooocoooooooooooooocooooo

000000000

oooooocooooo

oooooooooooooooooooooo

00000000
000000000000000000000000

17 through 2k are the same as 9 through 16

Assignment
KTYPE$ (Typewriter)
Tape A
Tape E
Tape B
Tape F

0 c Card Reader
e oPrinter

Tape D
0 0 Tape H
0 oTape A

Tape E
Tape B
Tape F
Tape C
Tape G
Tape D
Tape H

000

OOOOCOOOOOOO

oooooooooooooooocoy 00000

25 000060000000

26

27 000000000000

28 0
29

Drum File 2SU00*000
" " 1+00,000

OOOOOGOOOGGO

OOOOOOOOOOOOOOGOOOOOOCrO

" 2,1+00,000

3,1+00,000 -
OQOOOOOOOOQOQOOOCiOOOCOOO l+,l+00,000

(5,000,000-1)
(2,1+00,000-1)
(3,1+00,000-1)
1+,1+00,000-1
5,000,000-1

53
DUN-2400

seem to dislike translating to and from binary. However_, this method is

used for all records that the program generates and uses as well as for
temporary storage of data during the program execution.

For output records that are going to be used by people, the above-men­

tioned "formatted WRITE" would be used. This statement is of the form

WRITE (N, NF) WORD
Where N, as before, represents the logical unit on which the output

will be written and NF is the number corresponding to the FGRMAT under which
the data (stored in the memory location assigned to W9RD) will be written.

In a formatted write, the data stored in W6RD is not merely spewed forth and

placed on tape, drum, or the printer as in a binary WRITE, but it is first

"converted" to the mode specified by the FGRMAT. There are about eight dif­

ferent modes or FGRMAT types possible--they are: integer, real, exponential,

double precisionjG (a choice of real or exponential), octal, logical, and

alphameric. Each of these modes is represented in a FGRMAT as follows:

TYPE REPRESENTATION EXAMPLE

INTEGER Iw Il4

REAL - FIXED POINT Fw.d F10.2

REAL - EXPONENTIAL-FLOATING POINT Ew.d Ell. h

DOUBLE PRECISION Dw.d D19.8

E or F = G Gw.d G17.3
OCTAL Gw G13

LOGICAL Lw L6

ALPHAMERIC Aw Ah

DUN-2400

In each of the above examples, w represents the "field" width or the

number of characters or consecutive output locations assigned to the word.

Those F0RMATS having a w.d say there are w locations for that word and of

them d are to the right of the decimal point. The decimal point itself is
considered one of the locations. Thus the F10.2 could be a number like 6.23,
2100000.00, 1.03, 0.07, etc.

Since integers, octal, logical, and alphameric output have no decimal

point as part of the word, none is provided for in the corresponding format
type and they have only a w signifying the output field length.

The E, D, and G formats produce output of the type 0.12763E-19 where 0.
and E+ are provided by the computer and all numbers are represented as
factors with an exponent. If a number is to be written as E10.4 the last
four positions of the word will be used for the exponent designation E+XX,

the first two for 0., and the remaining four positions will contain the number.
Thus one requires ten positions to write four significant figures in E, D,

and (sometimes) G formats, (also, if the number is negative, there will be

no room for the - sign). On some computers the E or D is not printed but

nevertheless a space is still provided for it. It is thus impossible to write

E10.5 since one needs 11 positions for such a number (12 if the number itself

is negative) and the output field width is only 10 characters long.

The G format is one in which the number is written as a fixed point

number (without the exponent) if it will fit within the given field; if it

won't fit as a fixed point number it will be written as an exponential. For
example, the number 913762.4 would appear as 913762.4 in a G10.1 format but

as 0.9138E+06 in a G10.4 format. Note that the number was rounded in the

54

DUN-2401

last significant place. Recall that in the computer integers are truncated ,
but for output all numbers are rounded.

Octal words are normally each 12 characters long '^recall that a word

is 36 binary bits, with each octal character equivalent to 3 binary bits)
and an 013 or 0l4 will result in one or two blank spaces preceeding rhe 12
character octal number.

Logical words are represented as a T or an F in the right--laost posion
in the field on the UNIVAC HOT. On some computers , the entire word TF’JE or
FALSE is printed out.

Alphameric words are alphabetic characters, symbols, or numbers. Each

"computer word" (36 bits of binary information) could represent up to 6

alphameric characters (see the table on Page l4 of the first section). Thus

the largest alphameric format usually is A6.

The way that the above formats are used is in a FORMAT statement. Recall

how in the "formatted WRITE"

WRITE (N, NF) WORD
we said NF was the number corresponding to the format under which the data

will be written. Using one of the newly learned formats we can now construct

a FORMAT statement for the above WRITE statement as follows

NF FORMAT (FS)
where NF is the same number used as NF in the WRITE statement and FS is the

format specification (one or more of the format types discussed above). If

we wanted to write out WORD as an octal number FS could be 012, If WORD is

a logical word we could have FS he L8. Likewise if WORD was merely a number

FS could be F6.2, E10.3, G9.1, etc. A typical example would, be

56 DUN-2400

WRITE (6, 45) IX, M, ZILCH
45 FORMAT (110, 14, F6.2)

in which we write on logical unit 6 (the printer--where most output is written

on the UNTVAC 1107) according to FORMAT number 45 the two integers IX and M
and the real number ZILCH as a fixed point number. FORMAT number 45 says
that the first word written (IX) will be an integer number of up to ten char­

acters, the second word (m) will also be an integer but it will have a maxi­
mum of 4 characters and the third word (ZILCH) will be a fixed point number

of up to six characters with two of them to the right of the decimal point
and up to three characters to the left of the decimal point (the decimal
point itself took the sixth position). Note that each word specification in

the FGRMAT statement is separated from its neighbor by commas. If fewer

significant characters exist than the format calls for, the left side of the
word will be filled in with blanks, for example, if IX was 136 it would appear
as

1tI!r1t!36
on the output page where 1 represents a blank space. If, on the other hand,

ZILCH was a number like 3924.13 it is too big for an f6„2 format, so in the

place of the number ZILCH, six *'s (on the UNIVAC 1108) would appear on the

output page to signify that the word size exceeded the format specification.

The exact same FGRMAT as above could be used for many different WRITE

statements, for instance one could also say

WRITE (6, 45) NV, L

WRITE (6, 45) I, II, PER3, M, ML, PER4, N
using the exact same FGRMAT (number 45). Impossible you say! The format

calls for three words and the above examples are writing out two and seven

57

words respectively. Well, that's true, but output (and input) is determined
by both the FGRMAT and the call list (NV and L or I, II, PER3, M, Ml., PER4,

and N in the examples above) and if the call list specified fewer words than
the format list contains, only the words specified by the WRITE statement
will be written. Likewise, if there are more words in the call list of the
WRITE statement than the FGRMAT specified, the FGRMAT is started over again

after it is finished until all words have been written. Thus in the last

example, I is written as 110, II as l4, PER3 as F6.3, and now we are oat of
format but there are more words in the list so the format is restarted and

M is written as 110, Ml as l4, PERU as F6.3 and once again we must restart

the format so that N is an 110.

On the 1108 all formatted output is written in blocks of 132 characters

(22 words) since that is how many characters fit on a printed line. What

actually happens is that everything to be printed out except binary output

is placed in an output buffer in octal representation (regardless of whether

you specified an integer, logical, alphameric, etc. word). The following

table shows the octal code corresponding to each character (and the code
punched on cards) for the UNIVAC 1108.

DUN-2400

58 DUN-2U00

mracter Octal Code Card Code Character Octal Code Card Code
e 00 7-8 K . 20 11-2

[01 12-5-8 L 21 n-3

] 02 11-5-8 M 22 11-1+

03 12-7-8 N 23 11-5

A Q4 11-7-8 9 21+ 11-6

Space 05 Blank P 25 11-7

A 06 12-1 Q 26 11-8

li 07 12-2 R 27 11-9

C 10 12-3 S 30
l

0-2
D 11 12-1+ T 31 0-3
t: 12 12-5 u 32 0-1+

F 13 12-6 V 33 0-5
G lU 12-7 w 31+ 0-6

H 15 12-8 X 35 0-7

I 16 12-9 Y 36 0-8

J 17 11-1 Z 37 0-9

59

racter Octal Code Card. Code Character Octal Code Car.! rc h

0 60 0) 00 12-4-f.

1 6l 1 - 4l li

2 62 2 + 02 12
3 63 3 < 43 12-6-8

1* 6U k hh 3-6

5 65 5 > 45 6-8

6 66 6 Sc 46 2-8

7 67 7 ^7 11-3-8

8 70 8 # 60 11-4-8

9 71 9 (51 0-4-8
f 72 4-8 Of

/* 52 0-5-8

5 73 11-6-8 : 53 5-8

/ 71* 0-1 ? 54 12-0

. 75 12-3-8 ! 55 1.1-0

X 76 0-7-8 9 56 0-3-6

Idle 77 0-2-8 \ 57 0-6-8

6o DUN-21+00

Thus if we had

IX = 632

IY = 7
FMIX = 119.96

WRITE (6, 10) IX, IY, FMIX
10 FORMAT (16, 16, E10.1+)

the output buffer would contain in octal

IX = 632 IY » 7 FMIX = 0.1200E+03

'05050566636^05050505056T)S7561626060121+2606305050505...

since, from the above table, 05q is a blank, 66g is a 610, 63g is a 310,
62q is a 2^q etc. and 119.96 is rounded to 120.0 if only four significant
figures are used; the above output would appear as

,,,632,,,,,70.1200E+03,
Note that if FMIX were -119.96 we would have gotten

,,,632,,,,,70.1200E+03,
since if a - sign overrides the field specification the number will be printed

in the specified field without the - sign. For this reason it is advisable to
always be sure that a - sign is provided for. Thus, for instance, a F20.1

format is much preferred over a 15X F5.1 format to insure adequate room for

all significant figures (the numbers will appear the same on the output page.

There are 22 six character words set up in the output buffer for each
formatted line of output.

In the above example, instead of writing

10 FORMAT (16, 16, E10.1+)

we could have written
10 FORMAT (216, E10.1+)

which would have accomplished the same thing. 216 says there are two consecutive

6l DUN-2400
integer words, each of six characters.

It is also permitted to have repetition of groups of words such as

18 F9RMAT (14, 2F10.6, 3(f4.2, 219, A3), l6)
This F6RMAT says there is one l4, two F10.6, three sets of (one F4.2, two
19, and one A3) followed by an l6. It could have been written as

18 FGRMAT (14, F10.6, F10.6, F4.2, 19, 19, A3, F4.2, 19, 19,

1A3, F4.2, 19, 19, A3, 16)
but this is obviously much less convenient.

Recall that earlier we said when a FGRMAT is used up and more words

appear in the WRITE call list the FGRMAT is repeated--well that is not strictly

true, what really happens is that control goes back to the next open left

parenthesis and repeats the format from there. For example,

WRITE (6, 25) B, ALE, IM, IX, 12, MM, MN, MZ

25 FGRMAT (F10.6, E12.4, 2(ll, 13))
the words IM, IX, 12, and MM complete the FGRMAT so that it must start again

for MN and MZ but it goes back to and starts at the (inner) parenthesis

labeled with an arrow.
Reading is exactly the same as writing; except that instead of trans­

ferring the data from the computer memory to tape^ cards, or the printer, it
is transferred from tape or cards to memory; a binary read is as follows

READ (N) LIST
where, again, N is the logical tape unit from which reading is to take place

and LIST in this case is where the data to be read is stored in memory (in

the location assigned to LIST).
A formatted READ is as follows

READ (N, NF) WGRD

NF FGRMAT (FS)

62
DUN-2400

where we read from logical unit N according to format number NF the variable

WORD. The variable appears on logical unit N as a word of format specifica­
tion FS.

For example, if the first six locations of a card contain the integer
196 (right adjusted so that the 1 is in column 4, the 9 in column 5* and the

6 in column 6 of the card) it could be read in and stored in the location
assigned to IB2 by

READ (5, 20) IB2

20 FGRMAT (l6)
Note that the integer 196 had to be right adjusted; if it had appeared I

on the card as ,,1961 the number stored in IB2 would have been i960 and not
196 since the computer "assumes" that all blanks encountered in reading are
really zero's. (Actually minus 0 on the UNIVAC 1107 but the result would
still have been i960 and not 196 as desired.)

Input E and F fields also may appear as input but here the decimal may

be considered to be "built-in". If you recall, 196.2 could not have been

written under an F4.1 format since this provides for one character to the

right of the decimal and only two to the left (the fourth character belonging

to the decimal itself). However 196.2 could have been read from a card as

1962 under an F4.1 format since this format says one character is to the

right of the decimal (the 2) and there are three other characters in the field

(196). Thus there is a "built-in" decimal between the 6 and the 2. Believe

it or not, the number 0.031 could also be read in by the F4.1 by writing on

the card .031 where, in this case, by including your own decimal you "override"

the built-in decimal.

63

You could not read, however, an A8 word since, as you recall, A says
alphameric and each alphameric character requires 6 binary bits; in a 36 bit
word you can only fit 36/6 or 6 alphameric characters so A6 is the largest

A format permitted for input,, One word of caution here--all data read in
as alphameric (A format) should be stored as integer numbers or constants
to prevent loss of significant digits in any testing of these data.

An input data card contains 80 columns so each input FORMAT and corre­

sponding READ statement can read up to 80 columns per card. If you were to

READ (5, .10) A, B, C

READ (5, 20) K, ZM
10 FORMAT (3F10.6)

20 FORMAT (ll, F9.2)

what would happen is that the first card in the card reader (logical unit 5)

will have its first ten characters "transferred" to the memory location

assigned to A, the next ten characters (column 11-20 of the card) "trans­

ferred" to the memory location assigned to B, and the characters in columns

21-30 will be "transferred" to the memory location assigned to the word C.

(The data is not really "transferred" since it still remains on the cards
but it is converted to the proper mode (integer, real., alphameric, logical,
etc.) and stored.)

When the next READ statement is encountered, the NEXT CARD is used and

the contents of column 1 of the second card are "transferred" to the memory

location corresponding to the word K. The contents of columns 2-10 of the

second card are then stored in the memory location assigned to ZM,

Note that when a new READ is encountered, it automatically starts with

DUN-24CK

64

the next card in the card reader (or next record on tape, but more about
records later). Had the first format been

10 FGRMAT (2F10.6)

after B was read in and the format restarted, the next card would have been
read in columns 1-10 for C. Thus when reading in data, if a format is

restarted the next card is read even though only one READ statement may be
involved.

Now that we have seen how to read and write single variables at a time,

the next thing we must discuss is input and output of entire arrays. One
way to write out an array is as follows

/

DIMENSIGN A(5)
WRITE (6, 10) A(l), A(2), A(3), A(4), A(5)

10 FGRMAT (5F10.3)
As you can see if this method is used and if you have several thousand or

even several hundred elements to write, you will have to write a rather large

WRITE statement. Therefore a simpler technique has been made available and

that is to use an "implied DG" loop as follows

WRITE (6, 10) (A(I), I = 1, 5)

This WRITE statement says, in effect, "write out on logical unit 6, using

FGRMAT 10, the array A(l) where I takes on the values 1-5 successively. This

technique may be used to write out arrays having more than one subscript as

well as portions of arrays.

An even greater .simplification is possible; writing out the above array

could also have been accomplished as follows

DUN-2400

WRITE (6, 10) A

65

In this instance the computer "knows" that A is a subscripted variable since

it appears in a DIMENSIGN statement. Thus, since the computer was not told
which A to write out it is clever enough to write out all five A's.

An example of a perfectly legitimate albeit somewhat complicated WRITE
statement appears below

DIMENSIGN A(100), B(2, 3, 4), C(50, 10), D(50)
WRITE (6, 20) (A(I), I = 11, 30), B, ((0(1, j), J = 1, 10),

1 D(I), 1=1, 10)

20 FGRMAT (20F5.0/24F5.1/ (11F10.2/))

Notice in the above WRITE statement that each array that is not written out

as a complete array is written out using an index. An array and its index

must contain parenthesis to set off that particular output grouping of the

array. What happens in the above write statement is that elements 11-30 of

the array A are first written out, then the entire array B is written out.

The order in which B is written out is B(l,l,l), B(2,l,l), B(l,2,l);1 B(2,2,l),

B(1,3A)*...|B(2,3j10. Whenever a multi-subscripted array is written out,

the left-most subscript is varied most frequently. This is also the order

in which the array is stored in memory. Note also that the arrays C and D

are written out together. The order in which these are written out is C(l|l)j

CM), C(1,3),...,C(1,10), D(l), 0(2,1), 0(2,2), 0(2,3),,., ,E>(2), 0(3,1),,,,

,D(3), 0(4 ,1),.,•,0(10,10), D(10), Note here that by including the index

spicifieatiena in the WRIT1 statement you automatically override the order

in which the computer naturally would have printed out the array 5. Note

also that by judicious use of subscripting it possible to intermingle several

different arrays,

DUN-240C

66

Something new has suddenly appeared in the FGRMAT, that is the / (or

slash). The purpose of the slash is to tell the computer to start a new

line of output. The use of n successive slashes will result in n-1 blank
(skipped) lines appearing on your output page. Thus elements 11-30 of the
array A were written out on the first line, each element having an F5.0

format. The array B was written out on the next line, each element having
an F5.1 format. The arrays C and D were written out on the following 10
lines, each line corresponding to a different value of the subscript I.
Note that since the (11F10.2/) appeared within an inner set of parentheses,

only this format group was repeated for each line containing the arrays C
~ /

and D. The output generated by the above WRITE and FGRMAT statements would
appear as follows

DUN-2400

A(H) A(12) A(13) A(l4) A(15) ... A(30)

B(l,l,l) B(2,l,l) B(l,2,l) B(2,2,1) B(l,3,l) ... B(2,3,4)

C(l,l) C(l,2) 0(1,3) C(l,4) 0(1,5) • .. C(1,1C) D(l)

C(2,l) C(2,2) C(2,3) C(2,U) 0(2,5) . .. C(2,10) D(2)

C(10,1) C(10,2) C(10,3) 0(10,4) C(10,5) . .. c(io,io) D(1C)

Before we get into any more specific examples, recall that an E1C.4

format has the form O.XXXXE+YY. If we desire to replace the 0. by a number

we could accomplish this by using a'"scale factor". For instance if
Y = 6239.1 and we had

WRITE (6, 2?) Y

27 FGRMAT (E10.4)

67
DUN-2400

0.6239E+04

However, we could have placed a IP scale factor in the format as follows:

27 FGRMAT (lPKLO.4)
and in this case we would have gotten

6.2391E+03
The nP scale factor in effect says "for all formats following, take the

number stored in memory and multiply its mantissa by 10n and subtract n from
its exponent before writing it out" (or, for input, take the number being

read in and multiply its mantissa by 10-n and add n to its exponent before

storing it in memory). In effect what you are doing is shifting the decimal

n places (to the right on output and to the left on input). Thus the external

representations of the number (on cards, tape, printer, etc.) equals the
internal representation in memory times 10n.

Several facts must be stated about use of the scale factor before we
use it indiscriminantly. One of these is that it affects numbers written in

F formats as well as those in E formats. The problem here is that F formats

have no exponent to adjust so if we have

ZE = -3.429600

WRITE (6, 6) ZZ

6 FGRMAT (2PF10.4)

we would get
-342.9600

psince the 2P scale factor adjusted ZZ by multiplying the mantissa by 10 ,

we "see" ZZ as 100 times what it was when stored in memory. Negative scale

factors are permitted, thus if we had

we would get

6 FGRMAT (-2PF10.4)

68 DUN-2400

recalling that we round numbers on output rather than truncate them.

The other thing associated with use of scale factors is that they apply
to all number formats following the one in which they first appear.
Thus if we had

we would get FQR ZZ -0.0343

XI = 10.658

X2 * 132.94000

X3 = 6.44970
WRITE (6, 10) XI, X2, X3

10 FORMAT (1PE16.4, 2F10.4)
we would get

I.O658E+OI 1329.4000 64.4970
even though the 2F10.4 format did not have a scale factor associated with

it. To prevent such an occurrence, when we no longer want a scale factor
we must "turn it off" or zero it out as follows

10 FORMAT (1PE16.4, 0P2F10.4)
to get

I.O658E+OI 132.9400 6.4497

Scale factors are commonly used to convert from "units" in the real

world to "programmed" units. For instance, if data in the form of electrical

readings in millivolts are input to a program requiring volts in the calcula­

tions it performs, they could easily be read in under a 3PF10.5 format which

would take the input number in millivolts and store it as volts in memory.

Likewise if microvolts were inputted to the same program they could be read

as 6PFIO.5 to automatically make the correct conversions. When these numbers

are then written back out, the same format would convert the answer back to

69
DUN-2^00

the input units by making the correct scale factor conversion.

There are several format fields we have not yet mentioned. One of these
is a "blank field". To skip say n spaces, the format nX may be used. Thus
if we have

X = 1.0
Y = 2.0

a = 3-0
WRITE (6, 10) X, Y, Z

10 FORMAT (10X, 2F5.l///)
the output would appear as

i i i i i i i 1111 tl.Oii2.0
-------- >-

f r r i t t r t f r r i 3 • 0

where ■ represents a blank space and -------->■ represents a skipped line.

The 10X skipped the first 10 spaces and, since there was only one sig­

nificant figure to the left of the decimal point for each number, only 3

characters were needed for each F5.1 field so that 2 additional blank spaces

were filled in on the left side of each of the F5.1 fields. The first slash
in effect said "go to the end of the line", the second slash said "go to the

end of the next line", while the third slash skipped the second line or "went

to the end of the third line". By then the format is used up, so control goes
back to the next open left parenthesis and starts again with 10 blank spaces

and writes out Z as an F5.1.

Another very valuable format field is the "Hollerith" or "Alphameric"

field nH which in effect says "print out the next n characters just as they

appear".

TO
DUN-2400

An example is

lOHXXXXXXXXXX
which would result in ten X's being printed out.

If we had

Til = 7.35
WRITE (6, 23) Til

23 FORMAT (5X, 4HT11=,F5.2)
we would get

11111Til—17.3 5
If we instead said

WRITE (6, 23)
with no list (Til in this case) we would get

iiti»Tll=

so you see that X and H fields are output list independent.

One last thing before we start going into more examples--the first

(left-most) column on each page is the "carriage control" column to tell the

printer what to do with what follows. If a 1 appears in the carriage control

column, a new page will be started, a 0 will cause a line to be skipped

(like 2 slashes), a blank space will cause a new line to be started, (like

one slash) and a + will result in retarding the skipping of a line. Formats

that start with X, I, E, F, G, etc. fields which leave the first column blank

will thus result in the format printing on the next line.

As a typical example, if we wanted to read an array of 100 numbers (10

numbers on each of 10 cards with an F8.2 format) square each of them, and

write out each number and its square, one per line with 40 lines per page

71
DUN-2400

DIMENSION A(100)
READ (5, 10) A

10 FORMAT (10F8.2)

NPAGE = 1
WRITE (6, 20) NPAGE

20 FORMAT (1H1, 20X , 16HSQUARINGiPROGRAM, 40X, 5HPAGE» 3

l 13 /// 14X, 6HNUMBER,. l4x, 6HSQUARE)
NPAGE = NPAGE + 1

DO 50 I = 1, 100

ASQ = A(I)*A(I)

WRITE (6, 30) A(l), ASQ
30 FORMAT (2F20,4)

IF ((I .NE. 40) ,AND, (I ,NE. 80)) GO TO 50
WRITE {6, 20) NPAGE

NPAGE = NPAGE + 1
50 CONTINUE

STOP

END

Before we explain in too much detail what is happening in this program

we should note that there are two new FORTRAN statements never before encoun­
tered. One, the last one, says END; the END statement tells the compiler

we could do it as follows:

that the program it is now compiling has ended and what follows may be a new

program, a new subroutine, or data. An END statement is required to be the
last card of every subroutine or main program to be compiled.

72
DUN-2400

The STOP statement preceeding the END statement tells the computer that

the program is finished when it reaches this point in executing the program
and its execution should be terminated.

The above program is a complete FORTRAN program and if it is fed into
a computer with a FORTRAN IV compiler and is followed by 10 cards containing

data it should produce the square of the data and write them out.
We will now examine the program in more detail.

First we have our DIMENSION statement which sets up the size of the
array A as 100. Then we READ in the 100 values of A from logical unit 5
(the card reader) under FORMAT number 10. FORMAT 10 says there are 10 numbers

per card, each F8.2 so that ten numbers per card are read and stored in the
real array A for each of the 10 cards.

An alternate and valid approach would have been to read in ten numbers
(one card) at a time, square them, and write them out before reading the next
ten.

After the 100 values of A are read in and stored, an integer variable
called NPAGE (for the page number of the output) is initialized to 1. Then

a heading line is written out by FORMAT 20 which says "1H1 or go to a new

page (by putting a 1 in the carriage control column), skip 21 spaces (l for

the carriage control column + 20 for the 20X), write out a 16 Hollerith

field giving the name of tie program, skip 40 spaces, write out PAGE and the

page number, skip two lines (3 slashes) and write out NUMBER in columns•15-20

and SQUARE in columns 35~40.

This is what would appear on the first page:

ii* tiii;itiiiiiiiiiiSQUARING PROGRAMi»..t tiiPAGE ti11
iiiiiiitiiiiiNUMBERiiiitiiiiiiiit SQUARE

73
DUN-2400

Note that we. do not see the 1H.1. since the first column is used for carriage
control only and is not printed.

After we write out the heading, we add 1 to NPAGE so that the next time
it is used it will say PAGE* *i2.

We then set up a D9 loop to process the .100 values of A. First we cal­

culate A squared (ASQ) and then we write out both the current A and A squared

(ASQ) under FORMAT number 30. We then test to see if we are at the end of

a page or not. If not we go to the end of the loop and calculate and write

out the next A and A square. If we have processed exactly kC or 80 values

of A, we must go to a new page so we write out the heading again (FORMAT
number 20) and increment the page counter by one.

When we have calculated and written out all 100 values of A we STOP.

If we wanted to write the same program but have it read in only one

card at a time and stop when it encountered a zero value of A} we could do

it as follows■

C SQUARING PROGRAM
DIMENSION A(10)
NPAGE = 1

C WRITE PAGE HEADING
WRITE (6, 20) NPAGE

20 FORMAT (1H1, 20X, 16HSQUARING.PROGRAM., 40X, 5HPAGEE.., 13///

1 14X, 6HNUMBER, l4x, 6HSQUARE)

NPAGE = NPAGE + 1

5 INDEX = 0

C READ INPUT DATA CARD

8 READ (5j 10) A

74
DUN-2400

10 FORMAT (10F8.2)

DO 50 I = 1, 10

IF((A(I) .LT. 0.001) .AND. (-A(l) .LT. O.OOl)) STOP
C CALCULATE SQUARE AND WRITE OUT RESULTS

ASQ = A(I)*A(I)
50 WRITE (6, 30) A(I), ASQ
30 FORMAT (2F20.4)

INDEX = INDEX + 1

IF(INDEX .LT. 4) GO TO 8
C PREPARE NEW HEADING PAGE

WRITE (6, 20) NPAGE

NPAGE = NPAGE + 1

GO TO 5
END

Here again we have encountered a new card--the "COMMENT" card--with the

alphabetic character C in column one and alphameric information in the remaining
columns. This card is ignored by the computer (as are all cards with a C in
column l) and may be used to provide information to the programmer. The

above program differs in several other ways from the previous one but it will

still read in the 100 numbers and square them and write them out with their

square. This program is more flexible than the previous one in that it will

read in as many numbers as there are and square them whether there are 100,

10, 1, 1000, etc. they will all be processed until a zero is encountered^

whereas the first program will only read in 10 cards of 10 numbers each.

Note that in this program the page initialization (NPAGE = l) and the

DUN-2^0C

heading WRITE statement must be placed first (after the DIMENSI9N statement)

since we loop back to the beginning tu I read a rev card after every tenth

number and we do not want to reinitialize the page number and go to a new
page with a new heading after reading every card (each 10 values of A).

Note also that we have a new in'-’ger variable here, 1/JDEX, which is
used to signal when Uo lines have been printed on a page and a new page

should be started.
We now have a D9 loop for only the 10 values of A currently in memory

and we first test A to see if it is "zerd' or not. If A is "zero" we stop;
if not, we calculate A squared and print them out. Note that we don't

really test to see if A = 0.000000000 since A is net an integer and roundoff

errors may not say this is true even if a "zero" A were read in. Only integers

should be tested for equality in logical tests. However, we do the same thing

with

IF((A(I)) .LT. 0.001) .AND. (-A(l) .LT. 0.001)) ST9P
since A was read in as an F8.2 so all values of A that are not zero will be

read in and stored as greater than or equal to 0.01 or less than or equal

to -0.01 since that is the minimum size number that is consistent without

built-in format. (It is true that one could override our built-in format

by placing a positive number as small as .0000001 or a negative number as
large as -.000001 in the F8.2 field by punching in the decimal point, but it

was assumed that the F8.2 would be adhered to. If this assumption is not

valid, one could test for ((A .LT. 0.0000001) .AND. (-A .LT. 0.000001)) to
assure stopping for zero's and only zero's assuming only a 1 character maxi­

mum roundoff error.)

76
DUN-2400

If A is not "zero" we proceed as before and square it and write it out.

After we have processed each ten A's we test for the end of the page (INDEX

=4). If we have 30 or fewer A's on a page we read a new card (G© T9 8).
If we have 40 A's on a page, we put a heading on a new page and reinitilize
our page counter (G8 T9 5)-

If in the above program, we started the data pack with a card containing
a case title which we wished reproduced as part of the page heading, and if

the title was found in columns 1 - 60 of the first card we read, our program
could start as follows

DIMENSION A(10), NTITLE(lO)
NPAGE * 1
READ (5, 1) NTITLE

1 F9RMAT (10A6)

WRITE (6, 20) NTITLE, NPAGE

20 F9RMAT (1H1, 5X, 16HSQUARING>PROGRAM, 10X, 10A6, 10X, 5HPAGE>I3///

1 14X, 6HNUMHER, l4x, 6HSQUARE)

Now whenever we write out under FORMAT 20 we must include in the WRITE

list not only the page number (NPAGE) but also the 10 word case title (NTITLE).
Note that the maximum alphameric word size, A6, was used. We could also have

written 12A5 and dimensioned NTITLE (12) but this required two more words of

storage (NTITLE (ll) and NTITLE (12))„ If we did use the latter approach

we would have to both READ and WRITE the title as 12A5. If we READ the title
as 12A5, the right-most character of each word (the sixth position) will

77

contain a blank (A formats are left-adjusted whereas F, E, G, I, L, or G
formats are right-adjusted) so that if we then write out TITLE as 12A6 or

10A6 we would get an extra blank space printed out every sixth character and,
in the latter case, only 10/l2 of the title.

It is important to remember that for A formats, the unfilled portion
of the field is placed on the right (the word is left-justified) whereas the
reverse is true for other formats.

In the above example, we stored the case title in an array called NTITLE

and this information was available in memory for use at any time. There is

a second way of reading and storing alphameric data in memory and that is

with the Hollerith field.

Although this approach is not commonly used, an example would be:

READ (5, 20) X

20 F9RMAT (10HAAABBBCCC=F10.2)

X = X + 3.6
30 WRITE (6, 20) X

where the card being read looks like

,,DELTA-X=,,,,103.62
the portion ,,DELTA-X= will be stored in 10HAAABBBCCC= and 103.62 will be

stored in the memory location corresponding to the variable X. As long as

nothing further is read in under FORMAT 20, 10HAAABBBCCC= will contain the

information ,,DELTA-X= and when statement 30 (WRITE (6, 20) x) is executed
the output will appear as

,,DELTA-X=.,..107.22

However, if after we said X = X + 3.6 we had also included

DUN-2400

READ (5, 20) Y

78
DUN-2400

where it read

zilch/x+y=,,,,439.16

and then wrote statement 30 we would have gotten out

ZILCH/X+Y=,,,,107.22
Thus} although this technique is available, the usual method for reading,

storing, and writing alphameric information is with A formats and by storing
data in arrays rather than in Hollerith fields.

One can WRITE or READ to or from, magnetic tapes, discs, and drums as
well as the printer, card reader, and console typewriter by merely inserting
the correct logical unit designation in the WRITE or READ statement. It is

usually also possible to WRITE or READ formatted information to and from
main memory and to "re-read" something using the software package available

at your computer installation.
For instance, the 1108 operating system "knows" when a WRITE or READ

referencing logical unit -4 is encountered, the user is talking about main
memory or the l/9 buffer (the intermediate storage "buffer" through which all

input and output passes between memory and the l/© device). Thus if you read

in a card and desire to reread that particular card under some other format,

it may be done as follows:

DIMENSION X(13), IMY(l4), XMY(7)
10 F9RMAT (12, 13A6)

20 FORMAT (.12, 8X, 7F10.0)

30 FORMAT (12, 8X, l4l4)
KY = -4

90 READ (5, 10) IX, X

79
DUN-2400

G9 T0 (IOC, 110), IX

100 HEAD (KY, 20) IX, XMY
GG TG 120

110 HEAD (KY, 30) IX, IMY
.120

Here the card is first read and the integer in columns I and 2 is tested

to see if it - I ^meaning the card contains 7 real variables and should be
read by statement 100) or if it -• 2 (meaning the card contains 1.4 i.nteger

variables and should be read by statement liO)„ The card is then "reread"

by the proper statement utilizing the appropriate FORMAT.
Another technique available, is that of storing the FORMAT itself in an

array in a DATA statement (more about DATA statements later) or reading it

in just before you need it.

If you are not certain what format, will be used to read in data, the

format itself may be read in lust before the data is. For example

DIMENSION IX (12)

READ (5, 10) IX

READ (5, IX) X, Y
10 FORMAT (12A6)

Here we first read in the format (under which we will then read X and
Y) and store the format in the array called IX. The corresponding data cards

(F10.6, F5.0)

,,933216-1385

could appear as follows

80
DUN-2400

and X would contain 0.933216, Y = 1385.

This permits the user to choose his own format specifications each time

he runs the program.

Before we leave the subject of input and output we should spend a little
time talking about how the data is represented on the output medium. We

already saw how input records on cards contain 80 characters for 80 columns
as a maximum and how output for the printer contains a maximum of 132
columns or 22 words (each 6 characters). We also mentioned how all infor­

mation is transferred as either binary or field data (Hollerith or alpha­
meric) in the l/© buffer.

Magnetic tape usually contains seven "tracks" or channels. Six of these

are used to record the BCD code (see the table on page 14 in section l) or the
binary number and the seventh contains the "parity check" bit. For example

E E E 9 G E E

I I I

One Frame or Character

Where there is a 1-bit to represent the presence of a 1 in the table

in section I. The parity channel contains a 1-bit if the tape is even parity

and the number of 1-bit's in the other 6 channels is odd (eg. for =, 1, J,

and 2) it contains a 1-bit if the tape is odd parity and the number of 1. bits

in the other six channels is even (eg. for X, 3> and 6). A tape is either

EVEN or ODD parity but not both. Thus for even parity, only the E's would

81

contain a 1-bit (the 9's would be blank) and for odd parity the 0's would

contain 1-bits and the E's would be blank.
Each character or number is a FRAME on the tape and each FRAME is checked

for correct parity upon reading to catch transmission errors.

A "logical record" is that which is read or written by one READ or
WRITE statement. A logical record may contain many frames or characters.
It may also contain many lines (at 22 words of output per line) of data or

many cards but it is classed a "logical" record if it is read or written

by a single statement (even if the statement contains many implied DQ's).

A "physical" record is the way a record is grouped on tape or on the

printer. Binary records are written out in blocks of 253 words (plus 2

control words and a checksum word) or less. There is a 3A inch gap of
blank tape between each physical record. BCD or alphameric physical records

are written out in blocks of 22 words since there are 22 words per line of output.

Thus if you write out logical records of several hundred, or thousand words

each, the physical record(s) of which they consist are limited to 22 (if

BCD or Binary Coded Decimal) or 253 (if binary) words, with each physical

record separated from its neighbor by a 3A inch end of record gap (blank

space) on tape.
There are two control words per binary physical record (256 words total

maximum per block) as mentioned before. One control word is at the start

of the block and the other is at the end of the block. The left half of the

control word tells how many words are in the block and the right half of the

control word contains the block number and a flag for the last block of the

logical record.

DTtN-2400

82

The checksum says how many 1 bits were punched in that physical record.

A FILE is a group of one or more logical records concerning a particular

subject on one or more tapes.

To complete the discussion of input-output, there are three more FORTRAN
statements that should be discussed. These all deal with tapes, drums, or

discs. They are REWIND, BACKSPACE, and END FILE.
REWIND means "position the tape at the load point or start". When your

computer encounters the statement

REWIND N
it will rewind the tape on logical unit N to the starting point (marked by
a piece of reflecting tape on the magnetic tape),

BACKSPACE N
means rewind logical unit N back one logical record (where a logical record
was a record generated by one read or one write statement and could be composed

of one or more physical records). Thus after you read or write a record,

you may BACKSPACE and read or write the record again.

END FILE N
causes a logical END OF FILE to be placed on the tape- -on logical unit N; an

END OF FILE is a gap that is about 3 inches long and it signals the end of
a file. Every output tape must have an END FILE placed on it or a sentinel

signalling that the file continues on another tape, so that upon reading or

printing it you stop at the end of your data records and don’t attempt to

read or print whatever is on the tape following your data.

The usual procedure followed when using output tapes or input tapes is

to first REWIND them to get them at the starting point. When output tapes

DUN-2400

83
DUE-2U00

are finished they are marked with an END FILE and then all tapes are rewound

again so they may be removed by the computer operator„
If one is using a preselected area of disc or drum memory the REWIED

instruction will usually position you at the start of that area. BACKSPACE

does the same thing on drums or discs as it does on tape--it positions you
at the start of the last logical record you have read or written.

814
DUN-2400

SECTION V FUNCTIONS AND SUBROUTINES

One of the most important features available in FORTRAN programming is

that of being able to utilize previously written programs and routines with­
out having to completely rewrite each one whenever it is needed in your
particular program.

Many often-used mathematical functions already exist and are provided

by the FORTRAN compiler (or processor) or exist in a library. Other functions
may be constructed by the programmer himself..

The simplest type of function is the BUILT-IN or INTRINSIC function
which is part of the FORTRAN processor and is automatically coded (in line)

in your program by the compiler during the compilation process. There are
about thirty such functions usually available in the FORTRAN IV language. A

table of the typical BUILT-IN functions appears on the next page (these are

all available in the UNIVAC 1108 EXEC II FORTRAN Processor).

Note first that the FORTRAN function name obeys the same rules as a

FORTRAN variable name--it is limited to six characters, it must start with

an alphabetic character; I, J, K, L, M, or N means the result is in the

integer mode. Note also that functions are quite specialized with regard

to input and output modes--special functions exist for real, integer, double
precision, and complex numbers.

A typical example of the use of such an internal function is to recall

an example in the last section in which we wished to test a variable, A(l),

to see if it's absolute value was less than 0.001. To do this we used the

logical IF statement

IF((A(I) .LT. 0.001) .AND. (-A(l) .LT. O.OOl)) STOP

35
DUN-2^00

UNIVAC 110 8 FORTRAN

FORTRAN
Name

No. of
Args. Function

Mode?
Argument

-Of
function

ABS
IABS
DABS

1 Determine the absolute value of
the argument.

Real

Integer
D-P

Real

Integer
D-P

AINT

INT
DINT

1 Truncate: eliminate the frac­
tional portion of the
argument.

Real

Real
D-P

Real

Integer
D-P

AM0D

M0D

2 The expression X-(x/y)*Y is com­
puted where X is the first and Y
the second argument, (z) denotes
the integral part of Z.

Real

Integer

Real

Integer
AMAXO
AMAX1
MAXO
MAXI
DMAX1

> 2 Select the largest value. Integer
Real
Integer
Real
D-P

Real
Real
Integer
Integer
D-P

AMINO
AMIN1
MINO
MINI
DMIN1

> 2 Select the smallest value. Integer
Real
Integer
Real
D-P

Real
Real
Integer
Integer
D-P

FL0AT 1 Convert from integer to real. Integer Real
IFIX 1 Convert from real to integer. Real Integer
DBLE 1 Convert from real to double-

precision.
Real D-P

CMPLX 2 Convert two real arguments to one
complex number.

Real Complex

SIGN

ISIGN
DSIGN

2 Replace the algebraic sign of the
first argument by that of the
second.

Real

Integer
D-P

Real

Integer
D-P

DIM 2 Positive difference: subtract the Real Real
smallest of the two arguments from
the first argument.

IDIM Integer Integer
SNGL 1 Obtain the most significant part of

a double-precision argument. D-P Real

86
DUN-2400

FORTRANName No. of
Args. function

Mode
Argument

of
Function

REAL 1 Obtain the real part of a
plex argument.

com- Complex Real

AIMAG 1 Obtain the imaginary part
complex argument.

of a
Complex Real

C0NJG 1 Obtain the conjugate of a
plex argument.

com- Complex Complex

which in effect says if A(l) is less than 0.001 (all negative numbers, 0.0,

and positive numbers smaller than 0.001 AND -A(l) is less than 0.001 (all
positive numbers, 0.0, and negative numbers larger than 0.001) then STOP.

Had we known about BUILT-IN functions at that time we could have used

the ABS function (which calculates the absolute value of its argument) and

written the test as

IF(ABS(A(l)) .LT. 0.001) STOP

In this example, the FUNCTIGN is ABS and the ARGUMENT is A(l). Both

are in the real mode. The argument of BUILT-IN functions may be a variable

name (as above), a constant, or any arithmetic expression (involving +, -,

I) *} ** operating on arithmetic variables or constants).

For example,

IS = IFIX(A**C/D+7.43*(C+D)**3)-2
is a valid use of the IFIX function which converts its real argument

(A**C/IH-7.43*(C+D)**3) into integer form.
The FUNCTIGN is normally used as part of an arithmetic expression and

it supplies a single valued solution to the argument(s) it is provided.

The BUILT-IN function names may not be used for variable or constant

names in the same program in which they are referenced as functions; they

DUN-2400

87

may be used as variables or constants provided they are mentioned in a TYPE
statement (see section II page 32) and are not used as functions. For
example; the variable ABS could not be used in the program above which used
the function ABS, but it would be perfectly valid to say

REAL AINT

AINT = ABS(A(I))

in the program where ABS is a BUILT-IN function and, although AINT is also

on the list of BUILT-IN functions, AINT is a real variable defined by the

REAL type statement (which tells the compiler AINT is not being used as a

function but as a variable this instance). It is then NOT permitted to use

the function AINT at any place in the above program.
A second type of function commonly used is the EXTERNAL or EXTRINSIC

function. There are two types of EXTERNAL functions—those found in a library
provided by the installation and those programmed by the programmer himself.

The table on the next page lists the EXTERNAL library functions available

in the UNIVAC 1108 EXEC II FORTRAN library.
Note again that names are limited to 6 alphameric characters and must

start with an alphabetic character as for FORTRAN variable names. Also,
again, the evaluation or result of the function is a single answer provided

in the place of the function name in an arithmetic statement.

EXTERNAL functions are not coded in-line (as are BUILT-IN functions)

but are transferred to at the time of execution when control passes to them

in a statement. As a result, execution of EXTERNAL functions is not as fast

as execution of BUILT-IN functions.

UNIVAC 1108 FORTRAN

No. of
Args. Function Reference

Type
Argument

of
Function

1 Trigonometric Sine: SIN (X) Real Real
DSIN (X) D-P *D-P
CSIN (X) Complex *Complex

1 Trigonometric Cosine: COS (x) Real Real
DCOS (X) D-P *D-P
CCOS (X) Complex *Complex

1 Trigonometric Tangent: TAN (X) Real Real
DTAN (X) D-P *D-P
CTAN (X) Complex ^Complex

1 Trigonometric Arcsine: ASIN (X) Real Real
DA3IN (X) D-P *D-P

1 Trigonometric Arccosine: ACOS (X) Real Real
DACOS (X) D-P *D-P

1 Trigonometric Arctangent: ATAN (X) Real Real
1 DATAN (X) D-P *D-P
2 ATAN2 (Xi,Xp) Real Real
2 DATAN2 (X^Xg) D-P *D-P
1 Hyperbolic Sine: SINH (X) Real Real

DSINH (X) D-P *D-P
CSINH (X) Complex ■^Complex

1 Hyperbolic Cosine: COSH (X) Real Real
DCOSH (X) D-P *D-P
CCOSH (X) Complex *Complex

1 Hyperbolic Tangent TANH (X) Real Real
DTANH (X) D-P *D-P
CTANH (X) Complex *Complex

1 Exponential (ex): EXP (X) Real Real
DEXP (X) D-P *D-P
CEXP (X) Complex *Complex

1 Natural Logarithm (LOGex): ALOG (X) Real Real
DLOG (X) D-P *D-P
CLOG (X) Complex *Complex

NOTE: If the result of the function is double precision or complex the
function name must he declared in a type statement.

No. of
Args. Function Reference

-‘-J S-/

Argument
w j.

Function
1 Common Logarithm (LOGj_ox): AL0G10 (X)

DL0G10 (X)
Real
D-P

Real
*D-P

1 Square Root SQRT (X)
DSQRT (X)
CSQRT (X)

Real
D-P
Complex

Real
*D-P
*Complex

1 Cube Root (X)1/3 CBRT (X)
DCBRT (X)
CCBRT (X)

Real
D-P
Complex

Real
*D-P
*Complex

1 Absolute value of a
complex number

CABS (X) Complex Real

2 The expression Xq-CX^/Xp)*
Xg is computed, where(Z;
denotes the integral part
of Z.

dmod(x1x2) D-P *D-P

* NOTE: If the result of the function is double precision or complex the
function name must be declared in a type statement.

90

Since the F0RTRAN compiler itself does not provide the EXTERNAL function

during compilation but provides only a transfer address to where the function

will be located during execution, the compiler DOES NOT KNOW whether the

function is COMPLEX, D0UBLE PRECISI9N, or REAL so it assumes that it is REAL
and provides for only one answer after the function is evaluated. Therefore,
to avoid getting only half of the answer, EVERY TIME A DOUBLE PRECISION OR

COMPLEX EXTERNAL FUNCTION IS USED, THE NAME OF Kffi FUNCTION MUST BE INCLUDED
IN THE APPROPRIATE TYPE STATEMENT so that the compiler will provide for a
two-word answer.

For example,

C6MPLEX A, B

A = csqroXb)
will result in only the real part of B being placed in A even though BOTH

A and B are defined as complex. To work properly, you must have

COMPLEX A, B, CSQRT

•

A = CSQRT(B)
As for BUILT-IN functions, the argument of functions may be variables,

constants, or arithmetic expressions (including other functions).

The following statement is perfectly valid:

A = SQRT(AL©0(SIN(AB3(x))+C0S(REAL(B))))

where B was defined in a C0MPLEX type statement. (Note, for BUILT-IN or

INTRINSIC functions, the name of the function need not be stated in a TYPE

DUN-2400

statement if it is complex or double precision since the compiler is

91

providing the function and it knows whether the answer requires two words

or not. It is only functions that are provided EXTERNAL to the compiler that
must be defined in TYPE statements.)

The above statement will cause the cosine of the real part of B to be
added to the sine of the absolute value of Xj the square root of the loge of
this sum will be stored in A.

A third type of function^ the STATEMENT FUNCTION^ is one constructed by
the programmer as a part of his program.

As before, the F6RTRAN name of the STATEMENT FUNCTI6N must be limited

to six alphameric characters, beginning with an alphabetic character. The
function name may not be the same as any constant or variable name in the

same program. A STATEMENT FUNCTI6N is limited to a single arithmetic or

logical statement and only a single answer is provided. All logical STATE­

MENT FUNCTIGN names must appear in LGGICAL type statements.
The STATEMENT FUNCTIGN precedes the first executable statement of the

program and it can reference any previously defined STATEMENT FUNCTIGN or a

BUILT-IN or EXTERNAL function.

Examples of STATEMENT FUNCTIONS are:

FXY(X,Y) = X**2 + EXP(Y*X)
R(s) = 6.48*S + 3.2E-5*S*S + 1.9E-11*S*S*S

BYK3(P,Q,B) = P*B*R(Q)**3

Note that the last STATEMENT FUNCTIGN (BYK3) referenced the second (R).
We could also have the following logical STATEMENT FUNCTIONS:

LGGICAL LFI2, A, B, C, D, LFI3, L3

INTEGER E, F, G

DUN-2400

92

DUN-2400

LFI2(A, B, C, D) = ((.NOT. A .AND. C) .OR. (B .AND. D))

LFI3(A, B, E, F) = ((A .AND. B) .OR. (E .GT. P))

L3(E, F, G) = ((E .GT. F) .OR. (E .LE. G))
The arguments of the functions IN THE FUNCTION STATEMENT may not be

subscripted variables even though the actual arguments used in the reference
may be subscripted. Thus

AB(X, Y) = A**X + B*Y**2 + X*Y
may be referenced by

W73 = E*AB(F(3)t G(I))*SQRT(G(1+1))
During execution, the value of F(3) is used for the dummy variable X

and G(l) is used for the dummy variable Y in the FUNCTI0N STATEMENT for the
evaluation of AB. However, use of

AS(S(l), X(2)) = A*S(l) + B*X(2)**2 + S(l)*X(2)
as a FUNCTION STATEMENT is not permitted.

There is one last function, and that is the FUNCTION SUBPROGRAM which
is compiled exclusively of your main or referencing program. It is not a

part of the referencing program like STATEMENT FUNCTIONS, and it likewise

is not supplied by the compiler (like BUILT-IN functions) or the allocator

(like EXTERNAL functions). It is referenced in the referencing program

exactly like EXTERNAL functions (if COMPLEX, DOUBLE PRECISION, or LOGICAL,

it's name must be placed in the corresponding TYPE statement in the referencing

program). It differs from previously mentioned functions in that it's

arguments may be any arithmetic or logical expression, array names, statement

numbers preceeded by the character $, or nH....- a Holleritn (or alphameric)

field.

93
PUN-2^00

The FUNCTIGN SUBPROGRAM itself must nave its first statement say

TYPE FUNCTIGN F(A)
wnere TYPE is REAL, INTEGER, LGGICAL, DOUBLE PRECISION, or COMPLEX. REAL
and INTEGER need not be used if the naming rules (l, J, K, L, M, or N for
integers) are adhered to, but the others are required. F is the name of the
function and again it must be six or fewer alphameric characters starting
with an alphabetic character. A is the argument(s) of the function--the

arguments are not limited in number, but they must be separated by comma's;

they may be array names or non-subscripted variable names. If any of the

arguments are array names, they must appear in a DIMENSION statement in the

subprogram (the DIMENSION statement must preceed any reference of the array

name in an executable statement). For FUNCTIGN (and SUBROUTINE) subprograms
only, the DIMENSION statement used may be of a special form in which the

size of the array is defined not by an integer constant (as is usual) but by

nonsubscripted integer variables (provided both the array name and all of the
variable subscript names are arguments of the subprogram).

For example,

REAL FUNCTIGN FI(A, II, 12)

DIMENSION A(II, 12)
The program which references the FUNCTION SUBPROGRAM FI must also con­

tain a DIMENSION statement which specifies the maximum dimensions of the

array A. The integer variables II and 12 cannot appear on the left side of
an arithmetic or logical statement in the subprogram (i.e. they cannot be

changed by the subprogram).
As before, only a single value is returned when the function is evaluated.

Thus, the function itself must appear at least once on the left side of a

logical or an arithmetic statement.

An example of use of sucn a FUNCTI9N SUBPR9GRAM would be to evaluate a
number factorial (e.g. 61 = 6*5*^*3*2*1) The complete FUNCTI9N SUBPR9GRAM
to evaluate N1 would be

INTEGER FUNCTI9N FACTRL(n)
M = 1

D9 10 I = 1, N
10 M = M* I

FACTRL = M
RETURN

END
In this example we again see the END statement which tells tne compiler that

the particular routine is finished. There is also a new statement introduced

here for the first time and that is the RETURN statement. RETURN tells the
computer to go back to the place in which it was referenced in the program

which referenced the FUNCTI9N. RETURN marks tne logical end of the FUNCTI9N
subprogram, whereas the END statement marked the physical end of the FUNCTI9N

subprogram.
The factorial function may then be referenced by a main program by

INTEGER FACTRL

X = Y*Z(I)**2/FL9AT(FACTRL(I))

note that we converted the integer answer provided by the FACTRL function

subprogram to a real number by using the BUILT-IN function FL9AT.

An additional example would be a main program which says

95
DUN-2400

DIMENSION A(lOO, 100)

BX = PSUM(A, I, J, K, L)

END
and its FUNCTION SUBPROGRAM for PSUM which is as follows

FUNCTION PSUM(X, Ml, M2, I, j)

DIMENSION X(ML, M2)
XXX(Z) = Z*AL0G(Z)

PSUM = XXX(X(I, J))
RETURN

END
Note here we used I and J in the main program (corresponding to Ml and M2

in the FUNCTION SUBPROGRAM) to define the size of the array X (corresponding

to A in the main program). The dimensions to be used for the array X were
thus set up at "object time" or when the FUNCTION subprogram is executed by

the computer. Note that the FUNCTION SUBPROGRAM PSUM contains the STATEMENT

FUNCTION
XXX(Z) = Z*AL0G(Z)

Note also that we did not have to say
REAL FUNCTION PSUM(x, Ml, M2, I, j)

since by the naming convention PSUM is a real name.
Besides alphameric information and logical variables, there is one addi­

tional argument possible for a FUNCTION SUBPROGRAM; that is a FORTRAN state­

ment number (in the referencing program) preceeded by the character $.

For example,

DIMENSION A(100, 100)

BX = PSUM(A, I, J, K, L, $100, $120)

100 WRITE (6, 10)

120 WRITE (6, 20)

END
Wherever a $N appears in the reference, that argument must be a $ in the

subprogram. Thus we must have

FUNCTION PSUM(X, Ml, M2, I, J, $, $)
The reason for this option is that in the event of an error; or for some

other reason, you may not wish to return from the FUNCTION SUBPROGRAM to the

referencing program in the exact place you left (as you would when you reached

the RETURN statement). Thus a special type of RETURN statement is permitted

which looks like

RETURN N
where N is an integer constant or integer variable and corresponds to the

Nth argument in the argument list. (The Nth argument must be a $ and it

must correspond to a $NS in the referencing program where NS is a valid

FORTRAN statement number in the referencing program). Thus, in the above

example we could have

RETURN 6

DUN-2400

:J1

or

RETURN T
where the first (RETURN 6) refers to FORTRAN statement number 100 and the
second (RETURN 7) to statement number 120 in the main program.

A typical use in this example would be as follows:
DIMENSION A(100, .100)

BX - PSUM(A, I, J, K, L, $100, $120)

WRITE (6, 10)

FORMAT (1H1, 10X, 40HR0W.NUMBER.IN.ARRAY.A-IS.OUT-OF.SEQUENCE)
STOP

»

e

WRITE (6, 20)
FORMAT (1H.1, 10X, U3HC0LUMN, NUMBER, IN,ARRAY, A, IS, OUT, OF, SEQUENCE)

STOP

END
and the FUNCTION SUBPROGRAM would be

FUNCTION PSUM(X, Ml, M2, I, J, $, $)

DIMENSION X(M1, M2)

XXX(Z) = Z*AL0G(Z)
IF((I .GT. MI.) .OR. (Ml .GT. 100)) RETURN 6

IF((J .GT. M2) .OR. (M2 .GT. 100)) RETURN 7

PSUM = XXX(X(I, J))

RETURN

END

100
10

120
20

98

Here If one of the integer variables corresponding to the row number of

the matrix A is bad, we use the error return to statement 100 in the main

program, Li.-<ev;sg, if a cGlurmr variable us bad we use the error return to

statement 120 of the main program. If both the row and column indices are

valid,, we calculate X jj loge X , j and return to the place we left the main

program (to store ^°Se in the memory location assigned to the

variable BX).

There is one additional type of RETURN statement and that is

RETURN 0

where 0 is the integer constant zero. The execution of this statement results

in a transfer to the system error program. The RETURN 0 is the only RETURN

statement permitted in a main program.

FUNCTION SUBPROGRAMS are one means of transferring control from the main

program to another "homemade" routine. A second means of transferring control

is by use of a SUBROUTINE SUBPROGRAM.

A SUBROUTINE is very similar to a FUNCTION SUBPROGRAM. The major dif­

ference is that the .latter results in only a single value solution and SUB­

ROUTINES may produce many values for answers. The SUBROUTINE returns the

value(s) it calculates only through its arguments (or through variables in

COMMON blocks, but more about that later).

No specific value or answer is associated with the subroutine name as

is the case for all types of FUNCTIONS.

A SUBROUTINE is not referenced by being a part of an arithmetic or logical

statement tut only by the following FORTRAN statement.

DUN-2400

CALL S(A)

DUN-2400

QO

where S is the subroutine name (again--a maximum of six alphameric characters,
the first being alphabetic) and A are the arguments. The arguments may be,
as before for FUNCTION subprograms, any arithmetic or logical expression,
an array name, a statement number preceeded by the character $, or a group
of Hollerith characters (nH...).

The actual subroutine must start with the statement

SUBROUTINE S(A)
and must contain at least one RETURN statement and end with an END statement
as for FUNCTION subprograms.

Error returns are permitted in subroutines as in FUNCTION subprograms.

Dimensions may be specified by variable integers for SUBROUTINES as well as

for FUNCTION subprograms.

A main program may call any number of SUBROUTINES and each SUBROUTINE
itself may call any number of SUBROUTINES or FUNCTION subprograms.

We could have easily used a SUBROUTINE in the place of the FUNCTION

PSUM in the earlier example. If we had done so the main program would appear
as follows:

DIMENSION A(100, 100)

•

CALL PSUM(A, I, J, K, L, $100, $120, BX)

100 WRITE (6, 10)
10 FORMAT (1H1, 10X, 40HR0W,NUMBER,IN.ARRAY . A,IS,OUT,OF,SEQUENCE)

STOP

100
DUN-2400

120 WRITE (6, 20)

20 FORMAT (1H1, 1QX, 43HC9LUMN,NUMBER.IN,ARRAY , A.IS.OUT.9F.SEQUENCE)
STOP

END
and the subroutine would appear as follows

SUBROUTINE PSUM(X, ML, M2, I, J, $, $, y)

DIMENSION X(ML, M2)
XXX(Z) = Z*AL0G(Z)
IF((I .GT. Ml) .OR. (ML .GT. 100)) RETURN 6

IF((J ,.GT. M2) .OR. (M2 .GT. 100)) RETURN 7

Y = XXX(X(I, J))
RETURN
END

Note the difference between SUBROUTINES and FUNCTION subprograms.
SUBROUTINE names are not on the left side of any arithmetic statement within

the subprogram; SUBROUTINE names are referenced only by the CALL S(A) state­

ment and their names are not part of arithmetic or logical statements within

the referencing program; to return the answer to the referencing program, the
variable that contains the answer (BX in this case) must be in the calling

list of arguments. We could have used SUBROUTINE PSUM to return not only

the value of BX but also that of many other variables, whereas the FUNCTION

PSUM could only return a single answer stored as the name of the FUNCTION

(i.e. PSUM).

DUN-2400

Until now, ve have discussed only EXTERNAL FUNCTI6N and SUBROUTINE

subprograms (those which are compiled separately from the main program) in
which the first line of the compilation must be a FUNCTION or a SUBROUTINE
statement. For the most part these are the most common type. However, it

is possible to have INTERNAL FUNCTIONS or SUBROUTINES which are referenced
in the usual manner by the main program, but which follow directly after the

last statement of the main program.

C MAIN PROGRAM STARTS HERE

CALL X(Y, Z)

W = Y + F3(Z)

SUBROUTINE X(A, B)

CALL R(A)

SUBROUTINE R(P)

FUNCTION F3(Q)

END
The compiler assumes that all statements between

SUBROUTINE X(A, B)

and
SUBROUTINE R(P)

102
DUN-21+00

belong to SUBROUTINE X. Likewise the statement

FUNCTION F3(Q)
marks the end of SUBROUTINE R and

END
is the end of the entire set of programs and is the only END statement in
this set of programs.

As mentioned earlier, this technique is not often used since INTERNAL
SUBROUTINES and FUNCTION subprograms may be referenced only by the main pro­

gram or other internal subprograms and not by external subprograms. Also,
in the event of an error, a single subroutine cannot be re-compiled separately.

Many programs are written having very small main programs which reference

many small subroutines. This technique permits compilation and debugging of

small segments of the problem at a time and facillitates changes in and
proliferation of specialized routines. In many programs the main program

has no executable arithmetic, logical, or l/o statements--!! first calls a
special SUBROUTINE to read in data, it then calls a SUBROUTINE to test the

input data, then SUBROUTINES are called to perform the desired calculations,

and finally a SUBROUTINE is called to write out the results.

103
DUN-2400

SECTION VI SPECIFICATION AND DATA STATEMENTS

Specification statements tell the FORTRAN compiler how data are to be

stored in the computer. Since these statements do not result in actual
instructions that the computer executes when it runs the program, these are
called "non-executable" statements. We have already discussed two of the
four specification statements, the FORMAT and DIMENSION statements.

The FORMAT statement instructs the computer how to prepare and decode
the output and input information, respectively, that goes to and from the

l/O (input/output) channels and main memory. The FORMAT statement may appear

at any place in the program.

The DIMENSION statement specifies the maximum size of each array so

that the correct amount of storage for each variable is properly allocated.

The DIMENSION statement must appear before any executable statement of a

main program, function subprogram, or subroutine.
As mentioned earlier, the dimensions of a variable may also be specified

in a TYPE statement (and, as we shall soon see, by a COMMON statement);

however, the dimensions of a variable may only be specified once in either
a DIMENSION, TYPE,, or COMMON statement. A variable dimensioned more than

once will be considered to be multiply-defined — a condition the compiler

will not tolerate even if both definitions say the same thing.

The EQUIVALENCE statement, the third type of specification statement,

does just what it says, it makes two or more variables (or arrays) equivalent

(but NOT equal). This permits the multiple use of storage locations within

any separately compiled FORTRAN program or subroutine. The EQUIVALENCE

DUN-2400
104

statement is of the form

EQUIVALENCE (Variable Names), (Variable Names),....

where the variable names within any one set of parentheses share the same

storage locations. The variable names within the parentheses are separated
by commas, and each pair of parentheses is separated by commas.

An example would be

DIMENSION F(5), G(l0), H(8)

EQUIVALENCE (A,B,C), (F(3)5 G(7), H(l))
A = 0.0
B = A + 6.0

Z1 = (A + 2.0)
C = 4.0
Z2 = (A + 2.0)

Here we have A, B, and C all assigned to the SAME storage location in

memory. We also have F(3)> G(7)> and H(l) all stored in the same location.
(Note that the EQUIVALENCE statement containing the arrays F, G, and H had

to follow the DIMENSI9N statement in which they were defined.) As a result,

F(4), 0(8), and H(2) are also stored in the same memory location. In fact,
F, G, and H are stored as follows (assuming C-(l) is in location x)

STORAGE LOCATION
X G(l)
x+1 G(2)

x+2 G(3)

x+3 G(4)

x+4 F(l) G(5)

105
DUN-2400

x+5 F(2) ------— G(6)
x+6 F(3)‘------ — G(7)'---- H(l)
x+7 f(4) .------ G(8) ---- -H(2)
x+8 F(5)----------0(9)---- -----H(3)
x+9 G(10)---------H(4)
x+10 H(5)
x+11 H(6)
x+12 H(7)
x+13 H(8)

Note that if one element of an array is equivalenced to an i
another array, the entire arrays are equivalenced.

Interestingly enough, we need not have specified H(l) in the EQUIVALENCE

statement since the compiler knows H is an array (because it appears in a

DIMENSI9N statement) and if H appears without a subscript, it is assumed to

be the first element in the array. However, if we forgot to specify F(3)>

we would have equivalenced F(l) automatically to G(T) and H(l),

Note that the maximum size of F was dimensioned as 5* However, F(6)

does exist — it is 0(10) and H(4)j likewise F(l0) is H(8) and 0(l4). F(0)

also exists and is 0(4) as well as H(-l). What the DIMENSIQN statement does

is allocate a certain amount of storage to a variable array but it does not

limit you to using only that storage area. Thus if you are not careful and
you exceed a dimension, you could get into considerable trouble by destroying

information stored as another variable in the adjacent array.

If we look back at the example of the EQUIVALENCE statement, we can see

one reason why variables that are equivalenced are not necessarily equal.

106

We said that A, B., and C were all equivalent and wa then, zeroed out their

common storage location by saying A = 0.0, We then set B ■- A + 6.0 = 6.0

so that the common storage location now contains a 6,0.

Z1 is than defined as A + 2.0 or 8.0. Before we evaluate S2 we set
C = 4.0 so that A> B_, and C are all 4.0, One. would expect thus that 32 = A

+ 2.0 = 6.0, but that is probably not true. Z2 probably is equal to 8.0
just like Zl. The reason for this is that in most cases the compiler will
recognize that A + 2.0 appears in both the expression for S~ and that for Z2.

It will also note that the value of A is not changed between the execution
of these two statements (even though it really is changed by virtue of its
being equivalenced to C) so that it will optimize the program by storing

A + 2.0 in Zl and then setting Z2 equal not to A + 2.0 but to Zl which already
contains what it thinks is A + 2.0. If Zl and Z2 were longer expressions
that both contained A + 2.0, the A + 2.0 would probably still have only been

calculated for evaluating Zl and it would have been put into a temporary

storage location for use in calculating Z2; it still would not be changed to
account for the statement C = 4.0. Although, this is not a usual occurrence,

it is one of the ways to get in trouble if you don't know what the compiler

is doing and if you assume EQUIVALENCE means EQUAL.
Normally, only variables of the same mode are made equivalent to avoid

errors, since, for one reason, double precision and complex variable each

require two adjacent words per element in their arrays. (References to

complex or double precision variables in EQUIVALENCE statements are refer­

ences to the first word of the pair.j

DUN-2^4-00

107
DUN-2400

Thus if we had

COMPLEX A(100), B(100)

DIMENSION C(100), D(200)

EQUIVALENCE (A, B, C, D)
we in effect specify the storage of 200 words and A(2), B(2), C(3)^ D(3) are

all stored together as are A(3)> B(3), C(5),} and D(5). Likewise C(99),
D(99)^ A(50), and B(50) are stored together as are A(l00), B(100), and D(l99)

since the arrays A and B are complex and require two adjacent memory locations
for each "word".

The last type of specification statement is the COMMON statement which,

as its name implies, makes certain areas common to subroutines, function,

subprograms, and the main program. The COMMON statement is of the form:
COMMON VBNj/VNj/BN^VNg

where BN represents the name of the common block to which the variable names

VN belong. Block names must be six or less alphameric characters starting

with an alphabetic character. Each variable name in a list must be separated

by commas from its neighboring variable names. Common areas having block

names are called "labeled" common. If the block name is omitted, the vari­

able names following are given a "blank" name or are part of Blank common
(in contrast to labeled common).

Normally there is no need for an area of Blank common so it is rarely
used.

An example of the use of C0MM6N statements is as follows:

CeMMQN /BL0CK1 /S , Y, Z(100) /BL0CK2/ A, B

Note that g is DIMENSI0NED 100 in the C0MM0N statement and thus Z cannot

appear in a DIMENSION statement or in a TYPE statement with its dimensions
associated. If the above C9MM9N statement appears in a main program and

C6.MM0N /ELSCKl/ P(52), q(50)
appears in one of Its subroutines> P(l) is stored in the same location as
S, P(2) the same as Y, P(3) the same as Z(l) and Q(SO} Is stored in the
same location as 2r(l00)„ Note that the variable name within a specific
common block in two or more routines need not be the same, but the same common
blocks must be the same size„

Data listed in C9MM9N are usually stored in a large block in upper

memory of the computer^ with all labeled common first and blank common (if
there is any) last.

All additional C9MM9N statements appearing in a single main program
or subroutine will extend the size of those C9MM0N blocks. The size of a
C9MM9N block is equal to the sum of the storage requirements of its variables.
The order of variables stored in COMMON is the same as the order in which

they are listed in the COMMON statement!'s)„

If COMMON statements contain variables whose dimensions they define,

these COMMON statement must precede any executable statements of the program
containing those variables.

Normally, it is not a good idea to put variables in both COMMON and
EQUIVALENCE statements, since the COMMON statement orders the locations of

its variables in memory and so does the EQUIVALENCE statement^and conflicts

may result. Variables belonging to COMMON which appear in EQUIVALENCE state­

ments results in all variables in that equivalence class automatically being

placed in COMMON.

DUN-2400

icy

EQUIVALENCE statements may not alter the order of COMMON storage except
that they may extend a COMMON block beyond the last assignment made for that
block by the COMMON statements

For instancej if we have

COMMON /BLOCK!/ A, B, C(50), D(80)
we may also have

DIMENSION X(50), Y(80), Z(lOO)

EQUIVALENCE (A, X(l}), (B, Z(2)j, (D(5l), Y(1))
which in essence stored the variables as follows;

A B C(l) C(2)...C(50) D(1)...D(51) d(52)...d(8o)

x(i) X(2) x(3) X(4)

Z(l) 2(2) z(3) .2(4) Z(52) z(53)

Y(l) Y(2)...Y(30) Y(31)...Y(50

and extends COMMON block BL0CK1 by 20 locations corresponding to Y(3l) through

y(50).
However, the following.EQUIVALENCE statement is not permitted with the

above COMMON statement
EQUIVALENCE (A, X(2)), (c(2), X(4))

since equivalencing A and X(2) causes BL0CK1 to be extended backward in memory

(to X(l) which precedes A) and start one statement before the COMMON statement

says it starts (the location assigned to A must be the start of BL0CK1 in the

example). Also, if A is equivalent to X(2) and if C(2) is equivalent to X(4)

there is an error, since C(l) must be equivalent to X(3).» and there is no

110
DUN-2400

place in the array X for the variable B which appears between A and C(l),

(or, by the equivalence statement, between X(2) and X(3)).

COMMON statements are often used to communicate information between

SUBROUTINES or between SUBROUTINES and the main program without having to
include them in the subroutine call list.

Recall an example several sections back where we wished to read in ten
data cards (each containing ten numbers), square the numbers, and write out
the numbers and their squares. This could have been accomplished as follows:

r,CALL READER
MAIN

PROGRAM < CALL CALC

CALL WRITER

STOP
V^END

SUBROUTINE SUBROUTINE READER

DIMENSION B(100)

READER

/ COMMON /DATA/ A(200)

EQUIVALENCE (A, B)

READ (5, 10) B

10 FORMAT (10F8.2)

RETURN

END

Ill
DUN-Ei+OO

SUBROUTINE

CALC
< 10

SUBReUTINE CALC

COMMON /DATA/ X(200)
DO 1.0 I = 1,100

X(100+I) - X(I)*X(I)
RETURN

END

SUBROUTINE

W
R

I

T

E
R

SUBROUTINE WRITER

DIMENSION Y(100)
COMMON /DATA/ a(200)

EQUIVALENCE (a(lOl), Y(l))

NPAGE = 1

WRITE (6, 20) NPAGE
20 FORMAT (1H1, 20X, 1.6HSQUARING, PROGRAM, 4 OX, 5 HP AGE, 13 ///

1 14X, 6HNUMBER, lUx, 6HSQUARE)

NPAGE = NPAGE + 1

WRITE (6, 30) (Z(I), Y(I), I - 1,40)
30 FORMAT (2F20o4)

WRITE (6, 20) NPAGE

NPAGE = NPAGE + 1

WRITE (6, 30) (B(I), Y(I), I = 4l,80)
WRITE (6, 20) NPAGE

WRITE (6, 30) (2(1), YU i, I = 81,100)

RETURN

V. END

112

Admitted, the above is not as "clear" as doing the calculation all in
one program but it is a very simple example concerning only one variable and

its only purpose is to demonstrate the use of the EQUIVALENCE and CQMMQN
statements. The above example would not have to use the EQUIVALENCE state­
ments if we had set up two COMMON blocks as follows”

SUBROUTINE READER

COMMON /DATA!/ B(10G)

DUN-2400

SUBROUTINE CALC

COMMON /DATA!./ X(100) /DATA2/ W(100)
DO 10 I = 1,100

10 W(l) = X(I)*X(I)

SUBROUTINE WRITER

COMMON /DATA!,/ Z(lOO) / DAT A2/ Y(iOC)

In this instance different COMMON blocks supplied information to dif­

ferent subroutines as needed. If we had desired to write out only the squares

of the numbers and not the numbers themselves, DATA2 need have been the only

COMMON block present in SUBROUTINE WRITER.
There is one last non-executable statement yet to be discussed and that

is the DATA statement. 'The DATA statement may be used to initialize variables

or arrays or to set up constants at the time the program is loaded for execution.

The DATA statement is of the form

113
DUN-2400

DATA LIST/VALUES/, LIST/VALUES/,...
A typical example -would be

DATA A, B, C, K/6.2, 7.3, 7.3, 4/
Here, 6.2 is stored in the memory location assigned to A, 7.3 in B and

C, and 4 in K when the program is loaded for execution. The reason that
emphasis was placed on the last part of the last sentence is that this is

the ONLY time the variables or constants in the DATA statement are loaded
with the values in the DATA statement. The reason that the DATA statement

is non-executable is that it is used only when the program is loaded for

execution and is ignored thereafter. Thus the DATA statement may appear

anyplace (provided it follows any DIMENSION or TYPE statements referencing
variables in the DATA list) in the program and the variables and constants

it contains will be stored prior to program execution. If you had the arith­

metic statement

100 X = 10.4
You would store the real number 10.4 in the memory location assigned to X

every time you passed through statement number 100.

If you had the DATA statement

100 DATA X/10.4/

you would store the real number 10.4 in the memory location assigned to X
prior to execution when the program is loaded and statement 100 would have

no effect thereafter. (incidentally, you are not permitted to transfer to

a DATA statement -- as by an IF or GO TO statement. You are also not per­

mitted to transfer to a FORMAT statement.)

DUN-2400
114

If you had
100 X = 10.4

DATA X /7.4/
you would set the real nunber 7.4 in the storage location assigned to the
variable X when the program is loaded. X would remain 7.4 until statement

100 is reached for the first time, and then X would be 10.4. X would remain
10.4 thereafter (even though the very next statement is a DATA statement

concerning X) until it again appeared on the left side of an arithmetic
statement.

Recall out first example of the DATA statement where we had
DATA A, .B, C, K /6.2, 7.3, 7.3 , 4/

Here we stored 7.3 in both B and C. We could have told the DATA statement
that two (or more) consecutive values were identical by writing them once
and preceding them by an asterisk and the (integer) number of them that is

required. For example,

DATA A, B, 0, K /6.2, 2*7-3, 4/

It is possible to reference arrays in DATA statements as follows:
DIMENSION W(10), X(l0, 2)

DATA (W(I), X(I,1), X(I, 2), I = l,10)/30*0.0/

This serves to zero out the arrays W and X prior to execution. Some computers

permit not only the use of the implied D© in DATA statements as above but a

also the use of unsubscripted arrays to reference the ENTIRE array (not just

the first element of the array as in arithmetic statements).

DIMENSION W(10), X(lO, 2)

DATA W, X /30*0.0/

is thus equivalent to the above.

One may initialize double precision, logical and complex variables as
well as real and integer numbers in DATA statements as follows

DOUBLE PRECISION X, Y
LOGICAL IS, IT
COMPLEX V, W

DATA II, 12, V, ¥, X, Y, Z /2*1, (6.2, 1.4), (3.1, 1.2), 6 .3D+0,
9.3274112D-06, 1.0/, IS, IT/.TRUE., .FALSE./

Here we have initialized the two integers II and 12 as 1, the complex number

V as 6.2+1.4i, W as 3.1+l»2i, the double precision numbers X and Y as 6.3
and 9.3274112X10"^, respectively, the real number Z as 1.0, and the logical

variable IS and IT as True and False respectively. It is possible to store

an octal number in a DATA statement as follows

DATA 0CT1 /03247/
where we have to precede the value with the character G (for Octal). Recall

that an octal number contains 12 characters per word; we only used four for

the word 0CH so the computer automatically adjusts the 3247 to the rightmost

four positions in the location assigned to 0CT1 and fills in the left eight

characters with zeros. In other words, octal words are right-justified in

storage.
It is also possible to store alphameric information in DATA statements

(with six or fewer characters per word).

DIMENSIQN K(2)

DATA K/lOHENDtQF.JQB/
Here we have the two word array K. The letters END,9F are stored in K(l)

and 'J9B in K(2). Notice that K(2) only contains four of its six characters

(blank, J, 9, and B). These four characters are left-justified and the two

DUN-2400

rightmost positions of K(2) are filled in with blanks. In other words,

alphameric information is left-justified in storage.

If you recall, we mentioned earlier that FORMATS could be stored in DATA
statements. For example

DIMENSION KFMT(2) A(9)
DATA KFMT/11H(10F6.4,I2)/

100 READ (5, KFMT) A, B, L, *
Here we stored the FORMAT (10F6.4, 12) in the array KFMT. When we execute
statement 100 we READ in the array A and B as the first ten F6.4 real numbers,

L as an 12 integer, and then restart the FORMAT to read in 2 as an F6.4 real
number.

This type of usage permits modifying FORMATS during program execution
as follows: Suppose we were writing out matrices which varied in size from

2x2 to 12x12. Each element of the matrix is a real number and is to be
written out under an F10.2 format. If we wanted to write out each matrix

as an n by n array (n varying from 2 to 12 depending upon the particular

matrix) and.it was stored in the array A. It could be done as follows:

DIMENSION A(12,12), IFMT(3), KFMT(12)

DATA IFMT /i8h(/,.>.F10.2)/,

1 KFMT/lHl, 1H2, 1H3, 1H4, 1H5, 1H6, 1H7, 1H8, 1H9, 2H10, 2H11, 2H12/

»

C CALCULATION OF MATRIX A(N,N) IS PERFORMED HERE

116

IFMT(2) = KFMT(N)

WRITE (6, IFMT) ((A(I,J), J = 1, N), I = 1,N)

117
DUN-2400

END

Here we set up the FORMAT (for writing out the matrix^as array IFMT. We did

not know how many F10.?'s per line to expect, so rather than have eleven

separate FORMATS for A(2,2) through A(l2,12), and eleven separate WRITE
statement to choose from we merely modify IFMT to suit the matrix size.

This is done by placing the integer N in IFMT(2) which says we write out

under format N F10.2. Note that N had to be stored as an alphameric number

in the array KFMT and we had to place KFMT(N) into IFMT(2) by using the
arithmetic statement

IFMT(2) = KFMT(N)
Had we said

IFMT(2) = N

we would have had N stored in IFMT(2) but as an integer number and not in the

alphameric form required for FORMAT’S.

Note also that we were required to use the indices I and J in the WRITE

statement for two reasons. First, the omission of indices would have written
out the entire 12x12 array A even if we had only a 2x2 matrix. Secondly, even

if it was a 12x12 matrix, the leftmost index, I, is the row number of the

element and J is the column number--had we omitted the index, the computer

would have automatically varied I most frequently (for each j) and the output

matrix would have A(l,2) where you expected A(2,l) — that is, the rows and

columns would be reversed.

One particular use of the DATA statement that is not permitted is

DUN-21+00

Introducing data into variables or constants which are listed in labeled

COMMON. To enter data into such variables^ a special form of subprogram

must be used, the BLOCK DATA subprogram.

Only non-executable statements may appear in the BLOCK DATA subprogram
(BLOCK DATA, COMMON DIMENSION, Type statements, DATA, and END).

A typical example would be to enter the values 10.3 and 146 as the
variables X and IX and to zero out the array Y where X, IX, and Y all appear
in a COMMON statement,, The main program and one or more subroutines may have
the same COMMON statement as that appearing in the BLOCK DATA subprogram

which follows:

BLOCK DATA
COMMON /BL0K1/X,IX,Y(34),M,B3,S
DATA X,IX,Y/10.3,146,34*0.0/
END

Note that the BLOCK'DATA subprogram is not called or referenced by any

other routines so that it does not require a RETURN statement. It is used

only during program loading to permit introduction of the desired Initial
values of X, IX, and Y. Note also that all the elements in the COMMON block

(BL6K1) must be listed in the COMMON statement even though only three of them

are affected. (Whenever a COMMON statement is in a program, all of the vari­

ables stored in that common block must be accounted for.)

119
DUN-2U00

SECTION VII FLOWCHARTING AND PROGRAM DEBUGGING

Although the topic of FLOWCHARTING was left until the end of this manual,
it is actually one of the first things that a programmer does before he starts
to write any FORTRAN statements.

Once it has been decided that a particular problem or application is
suitable for computer solution or processing, the programmer must perform a
detailed analysis of the particular problem. He must decide exactly how he

intends to provide a solution and this is usually done by breaking the pro­

blem down into discrete parts. Once a detailed solution has been determined,

the programmer flowcharts his solution before attempting to code it for the

computer. There are actually two "levels" of flowcharting. The "system"

flowchart is used to visually represent the flow of data and the gross

sequence of computer (and peripheral device) operations. It serves to indi­

cate the overall happenings associated with the program while it avoids most

programming details and calculations.

The "program" flowchart (which is usually prepared after the system
flowchart) indicates the detailed workings of the program. The program flow­
chart serves as 1.) an aid to program development (it permits working out the

detailed logic involved and assuring that there are "no paths left untried"),

2) a guide in the actual coding and debugging of the problem, and 3) a means
of documenting the program. This latter aspect may seem unnecessary but it

is possibly the most important function of the three. After you have com­

pleted your program and it is operating satisfactorily, you will probably
rush off and start working on something else. If, six or nine months later,

120
r.'TTN-2^pO

someone wants you to modify your old program (or even worse, if someone else

wants to modify it himself) you will be amazed at how many details (which

you at one time probably lost some sleep over) you have forgotten. This is
where an up-to-date flowchart pays for itself severalfold. It is much
easier to look at a picture of what's happening than it is to try to untangle
all of the logic in the code itself. It is essential, for this reason, that

any modifications made to the program are always noted on the fl.owchart to
keep it updated.

The following list of symbols are currently used in system flowcharting

SYSTEM FLOWCHART SYMBOLS
Processing - this symbol may contain
an entire section of your program
flowchart

Input/Output

Magnetic Tape (input or output)

Drum, Disc, or Random Access unit
(input or output}

121
DUN-2^00

Paper Tape (input or output)

Printed report or document (output)

/
Punched Card (input or output)

Display - Plotter, CRT, etc. (output)

Off-line storage - magnetic or paper
tape, cards, etc. (input or output)

On-line keyboard

122
DUN-2400

Auxiliary operation

Communications link

Connector - to reference a point
on the same page

Off-page connector to reference a
point on another page.

A typical example of the use of a system flowchart would be that of

reading in an inventory file tape, searching for particular stock numbers,

writing out the current number of items in inventory and cost of the items

with the associated stock numbers (or stating that it is not on tape if it

could not be found), rewinding the inventory tape, and writing a message to

the operator telling him to remove the tape and place it in a special tape

storage location. The system flowchart for this particular application

could appear as follows (flow is from left to right and top to bottom.)

123
DUN-2400

READ
STOCK

NUMBER

SEARCH FOR
STOCK NO.
IN INVENTORY

LIST

READ
INVENTOR'
FILE ,START

0
YES

WRITE
COST AND
NUMBER 0]
\ ERRORy

V’MOlSy
■rffiRE MOR:

STOCK NjJUMffiRl

REWIND
NO INVENTOR!

TAPE
FILE

0

OPERATOR-
\UNLOAD AN]

STORE
TAPE

HALT

DUN-2400

124

Note that in the above flowchart we described the "high points" in the

application and we did not get into programming details such as what is on

the file, how it is read and stored, or how we search for the stock number

in the inventory list. It is possible to see the gross characteristics of

the program, however, and what the program is intended to do (for instance

if we forgot to find out if there was more than one stock number to be

searched for or if we forgot to tell the operator where to store' the inven­

tory tape it should be obvious on the system flowchart).

In the above flowchart there was one symbol that we did not mention

previously, and that was the diamond-shaped question "Are there more stock

numbers?" This "decision" symbol is really one of the "programming" flow­

chart symbols but, as you will see from the following list, several

symbols have identical meanings for both system and program flowcharts.

PROGRAM FL9WCHART SYMBOLS

Processing - one or more program
processing instructions

Input/Output

O

Decision - branching occurs here

125
don-2400

Modification or initialization

Predefined Process - operations not
detailed - eg call a subroutine

c) Terminal - the beginning or end in
a program

O
Connector - to reference a point on
the same page

Off-Page Connector - to reference a
point on another page

As an example of the use of program flowchart symbols, we could take

the one processing box in the previous example, "search for stock number in

inventory list" and program the search as an "artillery" (or binary) search

subroutine. Assume the stock numbers are stored in an array, A, and that

the call list of the subroutine contains the array, a variable X consisting

of the stock number of interest, and an integer J into which we will store

the array index corresponding to the stock number sought. If the desired

DUN-2400
:lx

stock number does not appear in the array, a message to this effect will be

printed out, J will be set to zero, and an error RETURN will be made.

An artillery search is implemented by testing to see if X is equal to

Af^1) (the element in the array midway between the first and last) and if

it is not, test the element midway between A(I^i) and the appropriate end.

Keep testing elements at midpoints until the answei - s found. The only

requirement of such a search is that the array A is a monotonically increasing

sequence. This type of search is usually considerably faster than testing

each element of the array in sequence.

START

II » IN

127
DUN-2U00

IN: II

Note that the entire program flowchart above was necessary to describe

what occurred in the one symbol "search for stock number in inventory list"

in the system flowchart. To clarify what is happening in the program flow­

chart, a diagram plus a little descriptive paragraph might help.

We started out with an array A of N elements and
~ A(l) we are looking for the position of X in the array.

We find the position of X by first testing A(l+N).
2

A(l+N)
2

On the first line of the flowchart we set up the

indices II = 1 and 12 = N as well as the error

return for J (j = 0) in the event that 'we do not.

find the desired solution. We then calculate the
- X = A(?)

__a(n)

location of the element in A halfway between A(l)

and A(N) as A(lN) where IN = 11+12 (= 1+N for
2 2

the first iteration).

On the second line of the flowchart (starting at #1) we test to see if

A(IN) is greater than, equal to, or less than X. If A(lN) is equal to X we

have found our answer and we set J = IN and return. If A(lN) is less than

,2b

DUN-2400

a(in) < X

A (II)

— A(IN)

--X

___ -- A(IN+I2)
2

_L A(I2)

X we know that X must lie between A(lN) and A(l2)

so we set II = IN and search between A(lN) and A(l2).

However^ before we do this we must test to see l)

if IN+1 is equal to 12 (if it is, 12 is the only

value of A that could be equal to X as we know

X > A (IN) so we set II = 12 and IN = 12 and check

for A(l2) i X), 2) if IN+1 is greater than 12 (if

it is, IN must equal 12 and we have failed to find

the desired value so we use the error RETURN 5); or

3) if IN+1 is less than 12 (if it is, we go to 3>

update IN, and make another iteration).

Going back to the start of the second line (#l) we must then see if A(lN)

is greater than X. If it is, we go to the third line (#2) and test to see if

if IN equals II (if it does, we have failed to find

the desired value so we go to #4 and use the error

RETURN 5) or if IN is not equal to II (if not, we

set 12 = IN, go to #3, update IN, and make another

iteration).

If you think that constructing and following

the logic in the flowchart was tough, try following

the logic in the subroutine itself (which follows)

A(l2) without the aid of the flowchart.

A(IN)
A(II)

X

a(in)

DUN-2400
i; 9

SUBRGUTINE SEARCH (A,N,X,J,$)

DIMENSION A(N)

11 = 1

12 = N

J = 0

10 IN = (11+12)/2

20 IF (A(IN)-X) 30, 60, TO

30 II = IN

IF(IN+1-I2) 10, 40, 50

40 II = 12

IN = 12

GG T© 20

50 RETURN 5

60 J = IN

RETURN

70 IF(IN .EQ. II) RETURN 5

12 = IN

GG TG 10

END

As you can see, the flowchart will be a tremendous aid in following the

logic of the above subroutine during debugging. If you happened to make a

mistake in one of the above IF statements, to say that it would be a chore

attempting to discover the error merely by looking at the FORTRAN statements

without a flowchart is probably a rather' superb understatement.

130

As you can see, even though flowcharting is one of the first things the

programmer does before actually writing his program and although debugging

is one of the last things he does before the program is set up for production

use, the two phases are closely related.

If your flowchart is caiefully worked out to cover all possible situations

and is very detailed, it will greatly simplify the task of tracing through

the program to locate errors. Once you find out where the error is occurring

(from the funny looking output) you can trace backwards in your flowchart to

see what would cause that or those particular things to occur. If the flow­

chart indicates that area of the program to be apparently error free, then

a close comparison between the flowchart and the program listing might locate

the problem.

The basic reason for debugging a program is that they almost never work

correctly at first. The cause goes back to a statement made in the INTRODUCTION

that the computer does exactly what you tell it to do and not necessarily what

you want it to do. This leads to two sources of error - l) you told it to

do the wrong thing and 2) you really didn't tell it to do anything for a

particular situation. One of the seemingly impossible tasks of the programmer

is for him to attempt to map out all possible logical paths in his program

even though some (if not most) combinations of logic will, not normally, if

ever, occur. You saw an example of the logical complexity of the above

simple subroutine which contained only one logical and two arithmetic IF

statements. Picture the case where there are 50 or ICO input, calculational,

or output choices available ■"■you can never expec t to be s ure that your program

DUN-2400

does what’s expected for all combinations of the logical choices permitted

DUN-2400

in such a situation (and 50 or 100 'hoices are still a relatively few). This

leads to debugging.

First,, the FORTRAN compiler will catch many of t bo mors of syntax in

your program (you meant G9 T© but said G© TO with a zero rather than an 9).

It may also catch much of your poor spelling and many Logical problems (you

set up the variable XARC in a DATA statement and then sard W = XARK or you

transferred to statement number .103 which just happens rut to exist in your'

program, etc.). It is when you stop getting snide comp 11 er•—•generated diag­

nostic messages that the real trouble 3tarts-~now you are or your own.

One of the first things you will probably do in debugging a problem is

to run a test case made up of simple round numbers like 100, 1.000, etc. and

specify the least number of options available. First rry it, on a desk cal­

culator following exactly the path the program would follow, statement by

statement. If you got the answer you expected, try the same problem on the

program. When it fails, you can do several things. A memory dump will

probably help to find lost variables or constants that were not updated.

Extra WRITE statements to give you debug outpur at crucial points In the

calculations (if special DEBUG DUMPING routines are not, a part of your soft­

ware) are helpful at this stage. Showing your program to a knowledgeable

friend who is unfamiliar with what you are trying to do may permit his telling

you what you are doing (compared to what you want to he doing).

One prime catch is to never assume you are doing something in a part of

the program and gloss over it because it worked once before..read it and you

may find that the exact logic is slightly different than you "remembered".

If possible try to check out one section of the program at a time. This

132
DUN-2400

is the advantage of having many small subroutines rather than one large pro­

gram. Each subroutine may be tested with "TYPICAL" data by using "special"

main programs to provide the desired input. Try to test both positive and

negative data covering the entire range of interest to catch any limits you

might have (log and exponential routines, etc.)

After you have gotten your simple case debugged - try different logical

options one or two at a time until you are fairly sure that for most typical

cases the program works. (You can never hope to try all possible paths since

for a set of only 20 yes-no decisions there are about one ml.iion possible

paths.) Then you can turn it over for production runs--but keep the flow-

charts--some day someone will try a series of options that you never tested.

Before we leave the area of debugging it would be worthwhile to discuss

how to avoid building "bugs" to the user into your programs.

In the first place, you must assume that the basic law that "the series

of events having the least probability of occurrence which cause the most

undesirable results are certain to happen" has particular significance in

the area of computer programs. In other words, "don't trust anybody" tut

set up your programs to check all input data for errors wherever possible.

For instance, if you have an index of a computed GO TO as an input constant

and it may assume the values one through six, some day it will be entered

as ten through sixty or one hundred through six hundred, etc.,, if for no

other reason than it was keypunched incorrectly. To save much machine time

and grief on the part of the user, it is thus worth taking the time to have

your program, check all input data for "reasonableness" if possib/. e. When an

error is found, only that particular case may be bypassed from execution, or

133
DUN-2U00

all remaining cases may also be bypassed (but all input data should be tested
and all errors listed for the user, whether all cases are executed or not).

The easiest way to test input data is with a series of logical IF state­

ments. One way may be as follows. Assume you have 83 separate input numbers.

DIMENSION XHI(83), XL©(83), NAME(83), XINFUT(83), ISET(83)
DATA XHI, XL9, NAME /..../

EQUIVALENCE (XINPUT(l),...(XINFUT(2),.
50 IX = 0

C READ INPUT DATA HERE

D© 100 I = 1, 83

ISET(I) = 0

IF((XINPUT(l) .GT. XHI(I)) .©R. (XINPUT(l) .LT. XL©(l))) ISET(l) =1

100 IX = IX + ISET(I)

IF(IX .EQ. 0) G© T© 300
D© 200 I = 1, 83

IF(ISET(I) .EQ. 1) WRITE (6,10) NAME(l), XINPUT(l), XHl(l), XL©(l)

200 CONTINUE

G© TO 50
10 F6RMAT (l5H0INPUT,ERR0Ri-.5X,A6,3H,=.E15.5AOX,

1 IQHPERMITTED1 RANGE'IS),E15.5,4h.T©.,E15.5)
300

Note in the above example we first initialized three arrays in a DATA
statement - XHI, the high limits on each of the 83 input variables; XL9, the

low limits on each of the 83 input variables; and NAME, the names of the 83
input variables. We then set up an EQUIVALENCE statement so that all real
input variables are ordered in the array XINPUT (integer input variables may
be stored in the array XINPUT by using arithmetic statements to equate them

to the appropriate XINPUT after the input is read in). After the 83 input
numbers are read in, they are each tested to assure that they are within the
appropriate range XHI to XL9 (if they are not, the index ISET is set equal
to l). If there are no errors, control is transferred to statement 300 and
the remainder of the program is executed, if there are one or more errors,

all of the errors are written out and the next set of input data are read.
A further aid to the user is to set up all input data so that it is

easy to keypunch and so that the keypunched cards facillitate manual checking

for errors. It is thus a good idea to end all data fields in columns 10, 20,

30, 40,... (which are defined quite clearly on 80-80 forms) to facillitate
ease of data preparation.

One additional item in this area--it is a good idea to make the input
as simple as possible. Let the program itself manipulate the data wherever

possible and not the user. The greatest benefits from the use of the computer

probably come from simplification in its use.

134
DUN-2400

135 DUN-2U00

INDEX

A Format .. 52,54,62.76
Alphanumeric, Alphameric, or Hollerith 10,68
Applications .. 17-19
Arithmetic IF..46-47
Arithmetic operators 21-22,50
Arithmetic statement 22-23
Arrays, storage in memory................................ 34,104-105
Arrays, subscripts 108-109
Artillery search .. 125-129
Assembler.............................. -................ 13-l4
Assembly language.. 13
ASSIGN... 42-43

BACKSPACE..8l
BCD...10-11
Binard Coded Decimal 10-11
Binary number system 3-5
Binary search..125-129
Binary to decimal conversions. 5-6, 9
Binary to octal conversions.............................. 6-7
Blank common..107
BL9CK DATA..118
"Built-in" decimal on input.............................. 6l
Built-in functions 84-86

CALL... 98-101
Carriage control, printer................................ 69
Characteristic .. 25-26
Checksum..8l
COBOL... 13

136 DUN-21+00

Coding form.. . 15
Comment cards.. 73
CQMMQN .. 107-112
Compiler.. 13, 20
COMPLEX.. 29
Computer applications...................................... 17-19
Computer schematic .. 2
CONTINUE.. 37
Conversion of numbers..................................... 5-6, 8-9

D Format.. 52-53
DATA....................................112-118
DATA, BLOCK.. 118
Data - input, checking................................... 133-131+
Data - input, simplification............................. 13l+
Debugging.. 129-131+
Decimal "built-in" .. 6l
Decimal to binary conversion 5-6, 9
Decimal to octal conversion 8

DIMENSION.. 33, 95
DO.. 35-1+1
DO Limit.. 37-38
DO, Nested.. 38-1+1
DO, Range. ...38
DO, Valid transfers from.................................. 1+0, 1+5
Dollar Sign ($), use of.................................... 9^-97
DOUBLE PRECISION .. 30

E Format .. 52-53, 6l
END.. 70
END FILE.. 81

I
EQUIVALENCE..103-106
ERROR RETURN..98
Evaluation of FORTRAN expression 22, 50
Exponential representation 26
External functions 87-90
Extrinsic functions...................................... 87-90

F Format .. 52-53, 6l
Factorial function 9b
Field data code..57-58
Field width..53
FILE... 8l
Flowchart symbols.. 120-122, 121+-125
FORMAT... 52-81
FORMAT, read at object time................................78
FORMAT, A..52, 54, 62, 76
FORMAT, D. 52-53
FORMAT, E.. 52-53, 6l
FORMAT, F.. 52-53, 6l
FORMAT, G... 52-53
FORMAT, H... 68
FORMAT, 1.. 52-55, 6l
FORMAT, L..52, 5^
FORMAT, 0..52, 5^
FORMAT, X..68
FORMAT, /..65
FORMAT, field width...................................... 53
FORMAT, modification at object time........................116-117
FORMAT, reading in at object time.........................78-79
FORMAT, repetition of.................................... 60
FORTRAN coding form...................................... 15
FORTRAN compiler.. 13, 20
Frame, tape..80

137 DUN-21+00

138 Dtm-2400

FUNCTION, built-in 8U-86
FUNCTION, external 87-90
FUNCTION, extrinsic...................................... 87-90
FUNCTION, internal 84-86
FUNCTION, library 85-86, 88-89
FUNCTION, statement................................. . . . 91-92
FUNCTION, subprogram........... 92-98

G Format..52-53
GO TO..41-45
GO TO, assigned..42
GO TO, computed.. 43
GO TO, conditional...................................... 42
GO TO, unconditional.................................... 4l

H Format .. 68
Hollerith or Alphmeric field 68

I Format .. 52-55, 6l
IF... 46-50
IF, arithmetic............. 46-47
IF, logical..47-50
Input data testing...................................... 133-134
INTEGER..29
Integer variables.. 24, 28
Internal functions 84-86
Internal subroutines 101-102
Intrinsic functions...................................... 84-86

L Format..52, 54
Labeled COMMON .. 107

139 DUN-2 >*00

Library FUNCTI9NS.. 85-86, 88-89
L9GICAL..30
Logical IF..47-50
Logical I/O unit.. 51-52
Logical operators.. 31, 50
Logical record .. 80
Logical variables.. 30
Looping..35

Magnetic tape.. 79
Mantissa...............................■................ 25-26
Matrix multiplication.................................... 4l
Memory, numbers stored in................................ 25
Minimum and Maximum, testing for.........................48

Nested D9 loops. 38-4l
Number conversions 5-6, 8-9
Numbers, represented in memory 25

9 Format.. 52, 54
Object or relocatable binary deck.........................21
Octal field data code.............57-58
Octal number system...................................... 6-7
Octal representation of alphabetic characters............. 57-58
Octal to binary conversion................................ 6-7
Octal to decimal conversion.............................. 8
Output representation in memory............................56-58

P, scale factor.. 66-68
Parentheses, use of...................................... 22

l4o DUN-2400

Parity.. . 79
Physical record.. 80
Place value.. h

Printer or carriage control................................ 69
Product of two matrices. 4l
Program flow chart 124-127

READ (see WRITE).. 51-8l
REAL.. 29
Real variables.. 24
Real numbers, limits on..................27
Record.. 79-80
Record gap.. 80
Relocatable or object deck................................. 21
Repetition of format groups................................. 60

Rereading input.. 77-78
RETURN94, 96-98
RETURN N.. 96-98
REWIND.. 8l

Scale factor, P... 66-68
Slash(/) format.. .65
SLEUTH..14
Source or symbolic deck.................................. 21
Statement functions...................................... 91-92
ST9P..71
Storage of arrays in memory................................104-105, 108-109
Subprogram, function 92-98
SUBRGUTINE .. 98-100
Subroutines, internal.................................... 101
Subscripts, arrays 32-34
Symbolic or source deck.................................. 21
System flowchart .. 119-123

DUN-2 ii 00

Trunciation.. 28
TYPE.. 28

W.jrd, Computer.. 12
WRITE.. 51-81
WRITE, Binary.. 51
WRITE, formatted..........................52

X Format 68

ll4l

distributio:;

-°X .^.e. iie_cretary of Defetise

Advanced Research Projects Agency
.•/ashington, C. C. 20301
(Attn.: Dr. Robert Taylor)
U._S. Atomic Lnergy Conmisslon
Albuquerque Operations Office
P. 0. Box 5ll00
Albuquerque, hew Mexico 17113
(Attn.: L. P. Grise)
U._ 3_._ Atomize ^Energy Commission
Chicago Operations Office
9800 South Cass Avenue
Argonne, Illinois 601+39
(Attn.: George il. Lee)
U. S. ^Atomic Bnerrn' Commission

.AEG Library
Mail Station C-017
Washington, D. C. 20585

U. S. _Atomi_c Energy Commission,
New York Operations Office
376 Hudson Street
New York, New York 10018
(Attn.: Reports Librarian)

U^S. Atomi_c_ Lner^' Commission
Office of Assistant General Counsel for Patents
Washington, D. C. 205^5
(Attn.: Roland A. Anderson)

Uu fy. _AZC Scientific Representative

American Embassy
APO New York, New York 05777

1^3 DUI'-tijQ

X

1

1

1

1

1

1

1

Aerojet-General Corporation

San Ramon Plant
P. 0. oox To
San Ramon, California 9^583
(Attn.: iocument Custodian)

Aerospace Corporation, San Bernardino (AF)

San Bernardino Operations
P. 0. Box 1308
San Bernardino, California 92402
(Attn.: SBC Library)
Air Force Aero Propulsion Laboratory

Wrignt-Patterson A.ir Force Base, Ohio 45L33
(Attn.: APE/STINFO Office)
Systems Engineering Group (PTD)

Wright-Patterson Air Force Base, Ohio 45433
(Attn.: A. Daniels, SEPIR)

Air Force Flight Dynamics Laboratory

FDCL
Wright-Patterson AF3, Ohio 45433
(Attn.: Dr. Paul Polishuk)

Air Force Institute of Technology

Library
Air University, USAF
Wright-Patterson Air Force Base, Ohio 45433
(Attn.: AFIT-LIB)
USAF School of Aerospace Medicine

Aeromedical Library (SMSDL)
Bldg. 155
Brooks Air Force Base, Texas 78235
(Attn.: Chief Librarian)

Air Force Weapons Laboratory (WLIL)

Kirtland Air Force Base, New Mexico 87117
(Attn.: M. F. Canova)

Ames Laboratory
Iowa State University
Ames, Iowa 50010
(Attn.: Dr. F. ii. Gpeddinr;)
Argonne Cancer Research Hospital
950 K. 59th Street
Chicago, Illinois 60637
(Attn.: Frances J. Skozen)
Ar^onne^ Hational Laboratory
Library Services Department
Report Section, Bldg. 203, Rm. CE-125
9700 South Cass Avenue
Argonne, Illinois 60^39
Commanding _0fficer

Aberdeen Proving Grovmd, Maryland 21005
(Attn.: Technical Library, Bldg. 313)
Institute, for .Exploratory Rese_arch
U. S. Army Llectronics Command
Fort Monmouth, Lew Jersey 07703
(Attn.: AMSEL-XL-S, Dr. W. J. Hamm)

Director
U. S. Army Engineer Nuclear Cratering Group
P. 0. Box 808
Livermore, California 9^550
U. S. Army Foreign Science and Technology Center

Munitions Building
Washington, D. C. 20315
(Attn.: AMXST-SD-TD)

Commandi n£_ 0ff_i ce r

liarmr Diamond Laboratories
Washington, D. C. 20b38
(Attn.: Stuart K. Marcus)

Medical Field Service School
.Brooke Array Medical Center
Fort Sara Houston, Texas 7023^
(Attn.: Stimson Library)

Commanding Officer
U. G. Array Medical Research Unit - Presidio
San Francisco, California 9^129
(Attn.: Librarian, Letteman General Hospital)
Commanding Officer
U. S. Array Nuclear Defense Laboratory
Edgewood Arsenal, Maryland 21010
(Attn.: Librarian)

Commanding Officer

Picatinny Arsenal
Dover, Hew Jersey 07801
(Attn.: Technical Information Library)

If. S. Arrry Research Office-Durham

Box CM, Duke Station
Durham, North Carolina 27706
(Attn.: CRDARD-IP)

Division of Nuclear Medicine

Walter Reed Army Institute of Research
Walter Reed Arny Medical Center
Washington, D. C. 20012
Atomic Bomb_ Casualty Commission
U. S. Marine Corps Air Station
FPO San Francisco, California 9666b
(Attn.: Librarian)
Atomic Power Development Associates, Inc,

1911 First Street
Detroit, Michigan bd226
(Attn.: Document Librarian, for AT(ll-l)-Vjr6,-865)

146 DUIw^G'J

4 Atomics International
P. 0. Pox 20:
Canoga Park, California 91304
(Attn.: Library)

1 The j3abccck and WIIcojc Company
Atomic Lnergy Division
P. 0. Box 1260
Lynchburg, Virginia 24505
(Attn.: Information Cervices)

2 Batteile Memorial Institute
Columbus Laboratories
505 King Avenue
Columbus, Ohio 63201
(Attn.: John L. Davis)

6 Batteile Memorial Ijis_titute_
Pacific Northwest Laboratory
P. 0. Box 999
Richland, Washington 99352
(Attn.: Technical Information Section)

4 Westinghouse Electric Corporation
Bettis Atomic Power Laboratory
P. 0. Box 79
West Mifflin, Pennsylvania 15122
(Attn.: Virginia Sternberg, Librarian)

^ 5.rl09:'^:L^eil national Laboratory
Information Division
Upton, Long Island, Lev/ York 11973
(Attn.: Research Library)

1 Clarkson College of Technology
Department of Physics
Potsdam, Lew York 13676
(Attn.: Dr. Richard Iladey)

1U7 DUK-?U00

1

1

1

1

1

2

Columbia University

Pegrain iJuclear Physics Laboratories
538 West 120th Street
Lew York, Lev York 10027
(Attn.: Dr. W. V. Havens, Jr.)

Combustion hngineering, Inc.
Nuclear Division
Prospect Hill Road
Windsor, Connecticut 06095
(Attn.: Nuclear Division Library)
Combustion Engineering, Inc.

Naval Reactors Division
P. 0. Box ^00
'Windsor, Connecticut 06095
(Attn.: Document Custodian)

Chief, Livermore Division
Field Command
Defense Atomic Support Agency
Lawrence Radiation Laboratory
P. 0. Box 808
Livermore, California 9^550

Armed Forces Radiobiology Research Institute

Defense Atomic Support Agency
IJNMC
Bethesda, Maryland 2001^
(Attn.: Library)

I.__du Pont_de Nemours and Company
Savannah River Laboratory
Technical Information Service-773A
Aiken, South Carolina 29801
E. I. du Pont de Nemours and Company

Explosives Department
Atomic Energy Division
Wilmington, Delaware 19898
(Attn.: Document Custodian)

EG&G, Iiie.

P. 0. box 83^6
Albuquerque, New Mexico 67106
(Attn.: J. Frinkman or William J. Jones)
PG&G, Inc.
P. 0. box 1912
Las Vegas, Nevada 89101
(Attn.: Librarian)

Environmental Research Corporation
P. 0. Box 1061
Alexandra, Virginia 22313
(Attn.: Francie G. Binion)
Air Resources Field Research Office

Environmental Science Services Administration
P. 0. Box 2136
Las Vegas, Nevada 69101
(Attn.:' P. W. Allen)
L. Machta. Director
Air Resources Laboratory-
Environmental Science Services Administration
806C 13th Street
Silver Spring, Maryland, 20910

Federal Aviation Agency

Information Retrieval Branch, HO-630
Washington, D. 0. 20553

Commanding Officer

Pitman-Dunn Laboratories
Frankford Arsenal
Philadelphia, Pennsylvania 19137
(Attn.: C. Berk, LSUOO, Bldg. 312)
Fundamental Methods Association

31 Union Square West
New York, New York 10003
(Attn.: Dr. Carl N. Klahr)

General Atomic Division
General Dynamics Corporation
P. 0. 13ox 1111
San Dieno, California 92112
(Attn.: Chief, Tech. Information Services)

General Dynamics/Fort Worth
P. 0. iiox 7kb
Fort Worth, Texas 76101
(Attn.: Keith G. Brown or B. S. Fain)
General Electric^ Company

Kuclear Materials and Propulsion Operation
P. 0. Box 132
Cincinnati, Ohio 45215
(Attn.: J. W. Stephenson)

General]11 e_ctri c_ Company
Atomic Power Equipment Department
P. 0. Box 1131
San Jose, California 95108
(Attn.: Alleen Thompson)

U. S. Geological_ Survey

Building 25, Denver Federal Center
Denver, Colorado 80225
(A.ttn.: Library)
U. S. Geological Survey

Room 1033, General Services Administration Building
Washington, D. C. 20242
(Attn.: Librarian)

Goodyear Atomic Corporation
P. 0. Box 628
Piketon, Ohio 45661
(Attn.: Department 423)

Hughes Aircraft Company

P. 0. Box 3310
Building 600, Mail Station F-131
Fullerton, California 92634
(Attn.: Dr. A. M. Liebschutz)

IIT Research Institute

10 West 35th Street
Chicago, Illinois 60616
(Attn.: Document Library)

Isotopes , Inc^

Palo Alto Laboratories
4062 Fabian Street
Palo Alto, California 94303
Jet Propulsion Laboratory

California Institute of Technolo.ay
4800 Oak Grove Drive
Pasadena, California 91103
(Attn.: K. E. Devereus, Library Supv.)
Johns Hopkins University
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland 20910
(Attn.: Boris W. Kuvshinoff)
Knolls Atomic Power Laboratory
P. 0. Box 1072
Schenectady, hew York 12301
(Attn.: Document Librarian)

University of _Ca]J._fornia

Lawrence Radiation Laboratory
Techn? cal Information Division
Berkeley, California 94720
(Attn.: Dr. R. K. Wakerling)

University of California

Lawrence Radiation Laboratory
P. 0. Box 808
Livermore, California 94550
(Attn.: Technical Information Dept.)

LockheecL-Geprgia Company

Division of Lockheed Aircraft Corporation
Marietta, Georgia 30060
(Attn.: Charles PC. Bauer, Manager, Scientific and Technical

Information Department)

Los Alar.os Jcientific Laooratory
P. 0. Box 1663
Los Alamos, Lew Mexico 875^
(Attn.: Report LiLrarian)

Lovelace Foundation
U800 Gibson Boulevard
Albuquerque, New Mexico 87108
(Attn.: Dr. Clayton G. White, Director of Research)
Martin-Marietta Corporation
Martin Company
Nuclear Products
P. 0. Box 50L2
Middle River, Maryland 21220
(Attn.: AEG Document Custodian)
Monsanto Research Corporation

Mound Laboratory
P. 0. Box 32
Miamisburg, Ohio l+53*+2
(Attn.: Library)

National Aeronautics and Space Administration

John F. Kennedy Space Center
Kennedy Space Center, Florida 32899
(Attn.: Mrs. L. B. Russell, Librarian)

National Aeronautics and Space Administration
Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio U+135
(Attn.: Dorothy Morris)
Scientific and Technical Information Facility

P. 0. Box 33
College Park, Maryland 207^+0
(Attn.: Acquisitions Branch, S-AK/DL)

National Aeronautics and Space Administration

(USS-10)
Washington, D. C. 205^6
(Attn.: Document Control Officer)

National A c c c 1 c- r at or Lab .

1301 if/. 22nd street
Oak Brook, 111. 60521
Attn.: Librarian

National Bureau of Standards

Room B-01 Administration Building
Washington, D. C. 20234
(Attn.: Library)

Lib r_ar;/'

National Institutes of health
Bldg. 10, Room 5N115
Bethesda, Maryland 200lU
(Attn.: Acquisitions Unit)

National Le_ad_Com£any__o_f Ohio

Post Office Box 39158
Cincinnati, Ohio 45239
(Attn.: Reports Library')

Idaho IJuclear Corporation

NRTS Technical Library
P. 0. Box 1645
Idaho Falls, Idaho 83401

David Taylor Model Basin

Applied Mathematics Laboratory
Carderock, Maryland 2000T
(Attn.: Code 800)

Kaval Facilities Engineering Command

Department of the Navy
Washington, D. C. 20390
(Attn.: Code 042)

Office of Naval Research Branch Office

Box 39, F?0
New York, New York 09510

Commander

U. S. liaval Ordnance Laboratory
White Oak
Silver Spring, Maryland 20910
(Attn.: Library)

Commander, Naval Ordnance Systems Command
Department of the Davy
Washington, D. C. 20360
Attn.: Code ORD-0332

U. S■ Kaval Postgraduate School

Monterey, California 939^0
(Attn.: George R. Luckett, Director of Libraries)
Commanding Officer and Director

U. S. Naval Radiological Defense Laboratory
San Francisco, California 9^135
(Attn.: T. J. Mathews)

Naval Ship Systems Command Headquarters

Navships 08
Navy Department
Washington, D. C. 20360
(Attn.: Irene P. White)

New York University

AEC Computing and Applied Mathematics Center
251 Mercer Street
New York, New York 10012
(Attn.: Director)

Environmental Medicine Library

New York University Medical Center
Long Meadow Road, Sterling Forest
Tuxedo, New York 10987
(Attn.: L. P. Zipin, Research Division)

NRA, Inc.
3501 Queens Boulevard
Long Island City, New York 11101
(Attn.: Seymour L. Goldblatt)

_ani^ Equipment Corporation

609 North vJarren Avenue
Apolloj Pennsylvania 15613
(Attn.: Library)
Nuclear Technology Corporation

116 Main Street
White Plains, New York 10601

Union Carbide_Corporation

Nuclear Division
X-10 Laboratory Records Department
P. 0. Box X
Oak Ridge, Tennessee 37830

Oceanographic Services, Inc.

5375 Overpass Road
Santa Barbara, California 93105
(Attn.: N. R. Wallace)

Oregon State University

Corvallis, Oregon 97331
(Attn.: Arvid T. Lonseth)

Picker X-Ray Corporation

Waite Manufacturing Division, Inc.
1020 London Road
Cleveland, Ohio UUllO
(Attn.: Research Center Library)

Cyclotron Laboratory

Princeton University
Department of Physics
Princeton, New Jersey O85J+O
(Attn.: Professor Rubby Sherr)

Officer in Charge

U. S. Public Health Service
Southeastern Radiological Health Facility
P. 0. Box 6l
Montgomery, Alabama 36101

155 DUK-2^C0

1

1

1

1

1

i

Officer in Charge
U. S. Public Health Service
Northeastern Radiological Health Laboratory
109 Holton Street
Winchester, Massachusetts 01690

Puerto Rico Water ^Resources Authority

P. 0. Box 2267
San Juan, Puerto Rico 00905
(Attn.: Executive Director)

- Purdue University

Department of Nuclear Engineering
Lafayette, Indiana 47907
(Attn.: Prof. Alexander Sesonske)

Radioptics, Inc.

10 Du Pont Street
Plainview, Long Island, Hew York 11.803

Rand perforation

1700 Main Street
Santa Monica, California 90406
(Attn.: Dr. Mario L. Juncosa)

Reactive jletals^ Inc.

Extrusion Plant
P. 0. Box 579
Ashtabula, Ohio 44004
(Attn.: P. 1. Bean, AEC Contract Manager)

James R._Crockett, General Manager

Reynolds Electrical and Engineering Company, Inc.
P. 0. Box 1360
Las Veras, Nevada 89101
(Attn.: Management Engineering Lent.)

Hice University

Houston, Texas 77001
(Attn.: Walter Orvedahl)

156 E UN-2^4 00

1 Sandia Corporation

P. 0. Box 5800
Albuquerque, Hew Mexico 87115
(Attn.: Technical Library)

1 Sandia Corporation Livermore Laboratory

P. 0. Box 969
Livermore, California 9^550
(Attn.: Technical Library)

1 Southwest Research Institute

8500 Culebra Road
San Antonio, Texas 78206
(Attn.: Librarian)

1 Stanford University

Stanford Linear Accelerator Center
Stanford, California 9^305
(Attn.: Librarian)

1 T*16 Library

State University of New York at Binghamton
Binghamton, New York 13901

2 Stevens Institute of Technology

Department of Physics
Hoboken, New Jersey 07030
(Attn.: Dr. Winston Bostick)

1 Tennessee Valley Authority

Chattanooga, Tennessee 37^01
(Attn.: Harold L. Falkenberry)

1 Texas Nuclear Corporation

Box 9267
Austin, Texas 78756
(Attn.: Dr. John B. Ashe, Director of Research)

1 Todd Shipyards Corporation

Nuclear Division
P. 0. Box 1600

■ Galveston, Texas 77550
(Attn.: Central File)

1

1

1

1

1

1

1

o

1

157 BUI-i-ZllO

VISZAC

University of Michigan
P. 0. Box 6l8
Ann Arbor, Michican 18107
University _of_ Puerto _P.ico
Puerto Rico Unclear Center
College Station
Mayaguez, Puerto Rico 00708

University of Rochester

Department of Physics and Astronomy
Rochester, New York 11627
(Attn.: Dr. M. F. Kaplon)

Department of Physics

University of Washington
Seattle, Washington 98105
(Attn.: Prof. Ronald Geballe)

Virginia Associated Research_ Center

12070 Jefferson Avenue
Newport News, Virginia 23606

Washington JJnive_rsity
St. Louis, Missouri 63130
(Attn.: Leon Cooper)

TRACOR, Inc.

6500 Tracer Lane
Austin, Texas 78721

Union Carbide Corporation

Nuclear Division
0RGDP Records Department
P. 0. Box P
Oak Ridge, Tennessee 37830

University of Chicago

5630 Ellis Avenue
Chicago, Illinois 60637
(Attn.: Richard Miller)

156 dui;-?Uqc

1 University of Maryland

College Park, Maryland 2Qlh2
(Attn.: Dr. B. E. Hubbard)

2 Westinghouse Electric Corporation

Atomic Power Division
P. 0. Box 355
Pittsburgh, Pennsylvania 15230
(Attn.: Document Custodian)

1 Westinghouse Electric Corporation

Astronuclear Laboratory
P. 0. Box 10861
Pittsburgh, Pennsylvania 15236
(Attn.: Florence M. McKenna)

1 Director

U. S. Army Engineer Waterways Experiment Station
P. 0. Box 631
Vicksburgh, Mississippi 39180
(Attn.: Library)

1 The Library

U. S. Geological Survey
Branch of Astrogeology
601 East Cedar Avenue
Flagstaff, Arizona 86002
(Attn.: Librarian)

Officer in Charge

U. S. Public Health Service
Southwestern Radiological Health Laboratory
P. 0. Box 681
Las Vegas, Nevada 89101

1 United Nuclear Corporation

Research and Engineering Center
Gras s1ands Road
Elmsford. New York 10523
Attn.: Library

7l AEC Division of Technical Information Extension

25 Clearinghouse for Federal Scientific and Technical Information

159 DUK-21GC

AEC-RL

J. P. Derouin
W. Devine, Jr.
J. E. Goodwin (2)
P. M. Midkiff
R. L. Plum
C. R. Qualheim

Atlantic Richfield Hanford Co.

J. W. Fillmore
G. L. Gurwell
M. K. Harmon
R. J. Kofoed
B. J. McMurray
H. P. Shaw
R. E. Smith
R. J. Sloat
R. E. Tomlinson

Batteile Memorial Institute Pacific Northwest Laboratories

R. D. Benham
G. J. Busselman
E. D. Clayton
R. Y. Dean
J. L. Deichman
D. E. Deonigi
G. E. Driver
E. A. Eschbach
P. L. Hofmann
J. L. Jaech
D. D. Lanning
R. C. Liikala
C. W. Lindenmeier
W. I. Neef

Computer Sciences Corporation Northwest Operations

Z. E. Carey
J. E. Farmer
R. J. Gurth
J. D. Orton
G. L. Otterbein
J. L. Peterson

i6o DUI','-2l*00

k

35

9

1

2

^’ Douglas Laboratories
H. M. liusey
R. Cooper
J. Greenborp
W. E. Math es on

P.2H£.-k£?- _Inc_.
T. W. Ambrose
R. 3. Bell
G. M. Blanchard
R. E. Dunn
G. C. Fullmer
P. D. Gross (20)
R. W. Ballet, Jr.
C. D. Harrington
P. T. Jessen
S. Koepcke
C. W. Kuhlman
W. M. Mathis
J. S. McMahon
R. Hi Is on
J. W. Riches
0. C. Schroeder

Hanford Engineering_Services

R. D. Duncan
W. S. Graves
A. J. Hutzelinan
G. Kligfield
R. Lysher
M. 0. Rothwell
G. Salzano
E. E. Smith
C. L. Taylor

Sandvik Special Metals Corporation

S. M. Graves

Washington State University

0. W. Rechard (2)

