ANRL '68

TN

b\

%

3

DUK-2400
UC-32, Mathematics

and Computers
DISTRIBUTION MADE

FIRSY UNRESTRICTED

by

FORTRAN PROGRAMMING
P. D. Gross, Supervisor

Res:mputation and Control Unit
arch and Engineering Section

ong g juawmdodmd 814 10 ‘to{ESIWWOD O WA
pwaoju) fue ‘o) 85900% gapiscsd IO *gaeuIWIs P
‘yoreslWmo) AW 1O 1010RIIUCD 10 aafordwe Yons

aqy Jo JOlBNED 10 sakoyd -
1an0qe oY) Wl pash SV
‘gopRmIoIUL Aug jo 881
} Aue SOWDNSSY 1

" .wOaUNﬁaFOU L&
Em:m,:a uop

safojdwe 10
0 aaiojdiusd 10 ‘poyssIwmIo)

oq No Bupoe vog1ad,,
30 ‘pomdwW ‘sngededde

19813000 10 jugwAordwa s 0
‘gaapdoerd 107)0BIIE0D YOMS ¥
Jeyy JuIIKe IR A3 «1030BJ7U0D YINS J
~wma Aue sapnisul L cuotEsTIIWO) ¥ J0 Je

pasolastp 5820028

jqodag s{di Ut
ayy wouy Bupnsal seBewvp 1oy IO ‘Jo asw Ul o wadeed s SANINQEL
10 ‘sydiy paumc Aimearad
sgmyesedde gonEmioul Lue jo

oud I0 ‘pOYIBW
an 10 1ggouatadwod ‘fora

fquaxem AU sowEW 'Y

YOTSFTWTOD) ayy 1ou ‘s
sodax eyl

afuyapuy 0w Aew y10d23 ST WY pag0(oaTp H83
asn ayy 1Ryl JO S
_poog oy 0) 30edsIL i pandut

ruoIEgIWIUOD 9 JO Jjeyey uo Supoe uosiad fue 10w
payufl 9yy 1aWISN ‘yiom parosucds JUAWUIIACD JO JUNOIIE ue gu paredoid sem 3

1D1LON 1voi3l

DisTs e

January, 1968

RICHLAND, WASHINGTON

Douglas United Nuclear, Inc
DOUGLAS UNITED NUCLEAR, INC.

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

ii DUN-2L00

FORTRAN PROGRAMMING

PREFACE

This manual has been prepared to familiarize engineers within Douglas
United Nuclear, Inc. with the computer programming language FORTRAN IV.
FORTRAN IV is pasically a '"'universal" programming language which may be used
on most modern data processing computers. Although FORTRAN is only one of
several such languages, it is particularly applicable to scientific and
engineering applications due to its mathematical-based structure.

The first section of this manual serves to introduce how data are stored
and transferred within the basic elements of the computer (including octal
and binary notation). Although this information usually proves to be useful,
it is not essential to learning the FORTRAN language.

Sections II through VI describe the structure and use of the various
basic elements which make up the FORTRAN language itself. Examples are
included to demonstrate or clarify usage of these elements wherever necessary.

The last section of this manual describes techniques in setting up an
application for programming (flowcharting) and in debugging a program once
it has been written.

Although most of the information contained herein applies directly to
the FORTRAN IV system implemented on the UNIVAC 1107 and UNIVAC 1108 digital
computers, it is, for the most part, also applicable to any other digital
computer capable of utilizing the FORTRAN IV language.

f L e

SECTION I

SECTION II

SECTION IIIX

SECTION IV

SECTION V

SECTION VI

SECTION VII

INDEX

DISTRIBUTION

iii

TABLE OF CONTENTS

INTRODUCTION

ARITHMETIC STATEMENTS, CONSTANTS,
AND VARIABLES

LOOPING AND TRANSFER OF CONTROL
INPUT/OUTPUT

FUNCTIONS AND SUBROUTINES
SPECIFICATION AND DATA STATEMENTS

FLOWCHARTING AND PROGRAM DEBUGGING

DUN-2400

DUN-2400

FORTRAN PROGRAMMING - AN INTRODUCTION

INTRODUCTION

A computer 1s stupid. It doesn't know anything. It can't do anything without
being told exactly what to do. The question that then comes up is why use
it at all? The answer is that it can do what it is told at about the speed
of light, so that a machine like the UNIVAC 1108 can perform as many additions,
multiplications, subtractions, and divisions in one hour as a man could in
150 years working 8 hours per day. Another prime consideration is that the
computer will probably not make a single error in the calculations while the
man will probably make several million. So much for what a computer can do--
now how it does it., A computer program is a sequence of instructions which
tells the computer what to do--read in data, add, subtract, multiply, store
data, write out results, etc. There are two mejJor problem areas concerned
with programming & computer and these are:

1) The computer cannot "understand" English.

2) The computer does exactly what you tell it to and not what you want

it to do.

Let's talk about number 1 first; actually the computer can't "understand"
anything but i1s wired to perform certain operations under certain circumstances
—that 1s, when it receives the instructions to perform those particular
operations, The instructions are in the form of binary numbers stored in the
computer's memory. Both instructions and data are stored and operated on as

binary numbers.

DUN-2L0C
A computer looks something like this:
ARITHMETIC UNIT
LOGIC UNIT
_ o . [
at———————> -~
INPUT DEVICES ‘ CONTROL UNIT OUTPUT DEVICES
card readers 4 ; card ‘punches
magnetic, tapes ’ ‘ CRT oscilloscopes
paper tapes MAIN MEMORY or _ magnetic tapes
remote terminals STORAGE UNIT paper tapes
typewriters » on~line printers
, - ’ typewriters
remote terminals
CONSQLE

AUXILIARY STORAGE

drums
discs
magnetic tapes
magnetic cards

The input devices (card readers, magnetic tepes, paper tapes, fémote
terminals, and/or typewriters) are used to provide the computer with both
its instructions and the data to be operated upon. The conﬁrol unit keeps
track of what's going on and transfers information to and from different
sections as required, The arithmetic-logic units are the places in which
the ‘actual mathematical and logical operations oh‘the étored data occur.
Storage is where both the program and dats are kept during computer operation.
These data and instructions pass from storage to the‘contfol ﬁnit and frdm
there to the arithmetic-logic units or to the bﬁtput‘devices. The input dafa
and instructions are received from the input devices, the console, or the
auxiliary storage and are then placed in main memory or storage before being
utilized., The console is where the operator controls the overall operation

of the computer--start, stop, execute the program, etc. OCutput devices may

DUN~2L00

include paper cards (punched), cathode ray tube (CRT) oscilloscopes, magnetic
tape, paper tape, on-line printers, typewriters, and remote terminals,

Main memory usually consists of millions of tiny ferrite rings wired
together to store data by virtue of their being magnetized in one direction
or another (depending upon the direction of flow of current in the wires
connecting the rings) Thus, all information is stored as yes - no, or on -
off since we are dealing with only bistate (flip-flop) devices, All infor-
mation used in a computer is thus represented in a binary (on-off, yes-no,

true-false) mode.*

* Binary means base two (or two-state) much as decimal means base ten. A
binary digit thus may assume either one of two states (O or 1) just as a
decimal digit may assume any one of ten states (0, 1, 2, 3, L, 5, 6, 7, &,
or 9)., Since binary numbers are limited to O or 1 in each digit, they
correspond to decimal numbers in the following manner

DECIMAL NUMBER = BINARY NUMBER
10's 1l's 32's 16's 8's Lrg 2's 1l's
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1
0 2 0 0 0 0 1 0
0 3 0 0 0 0 1 1
0 L 0 0 0 1 0 0
0 5 0 0 0 1 0 1

HHO:.
H o\
e NeNe
00O
e
lo¥eoNe
H o
O

DUN-2L0(

The binary number system only consists of two numbers O and 1 to corre-
spond to off and on, true and false, and yes and no. A clockwise magnetic
field in a magnetic core may mean yes,'on,true,or 1 and a counterclockwise
field may represent a no, off, false, or 0. Flow of current in a wire could
represent yes, on, true, or 1, and lack of flow of current would then repre-
sent no, off, false, or O.

The value of a binary number is a function of its position; in other
words, a binary number has 'place" value. For example, in decimal notation
the number 532 means five hundred and thirt& two, The number 5 is in the
hundreds place or position, the 3 is in the tens place or position, and the
2 1s in the wnits place or position. If the 5 were in the thousands place or
position and the 3 were in the hundreds place or position and the 2 were in
the tens place or position the number no longer would be five hundred and
thirty two, but five thousand three hundred and twenty. Thus the place or
position of the digits of the number determines the value of the number.
Also in the decimal system the number 532 is not equal to 632 even though
they each have digits occupying the hundreds, tens, and units positions.

In the binary system, however, only the place or position determines the

"

value of the number. For example, 0000 equals O, 000l = 1, 0010 = 2,

0011 = 3, 0100 = L, 0101 = 5, 0110 = 6, 0111 = T, 1000 = 8, and 100L = 9;

thus the vlace values of bits are ... 64, 32, 16, 8, 4, 2, and 1. If a 1
bit is present in a place, the corresponding place value is part of the
number, if a zero or "no" bit is present the place value is not part cof the
number, Thus 1 11 01 01 00 01 is equal to; starting from the right

1 x 20 = 1

0x 2ot = 0

[}

Thus, to convert & binary

technique may be used:

11101010001

x2
241
3
X2
=
T
x2
1L+0
15
x2
28+1
29
x2
3840
58
x2
116+1
117
x2
23E+0
23%
x2
&B+0
LGB
x2

936+0
93
x2
1870+1
1873

16

0

6k

0
256
512
1024

1873

DUN-2400

number to & decimal number, the following

DUN-2L(

To convert a decimal number to a binary number the following technique
may be used:

Remainder
2) 1873
2)936
2LE8
2¥23%
2511
27’”
21k
2)7
2)3
21
0

T

READ
* ANSWER

HHEFOHFOHOOOH

As you can see, it is not very much fun to .convert everytiaing into binary
before wuttlng it on the computer. 5o, just tc confuse the matter a bit more,
let's use octal representation of binary date in the computer. In other words,
let's use a system based upon the numbers O - 7 (octal) rather than O - 1
(binary) or O - 10 (decimal),

If you look at groups of only 3 binary places, it is at once apparent
that their value can be equated exactly to an octal number and only exactly

to an octal number. Three binary places may represent only the following

numbers:

BINARY OCTAL DECIMAL
000 000 0 0
000 001 1 1
000 010 2 2
000 011 3 3
000 100 L L
000 101 5 5

000 110 6 6

DUN-2400
Son L DECIMAL
000 111 Z L
001 000 lb ! e g
001 001 o 1 E .
001 010 o 1o - .
001 011 13 0
001 100 ' 1k - y
001 101 15 | N
001 110 16 N
001 111 17 | .
010 000 0 ' R

There are too many places to represent & base 7 number and too few for

a base 9 number thus the number 110 101, equals

6 58

> 310
(note the subscript 2 to represent a binary number, 8 to represent an octal
number, and 10 to represent a decimal number). ’‘and you can see it's much
easier to convert binary to octal than to decimal«and vice versa, This
really hasn't solved the problem of going from the decimal to binary and
vice versa yet, however, since we still have the problem of converting octal
tc decimal and back, but we can attack that similarly to the binary to

decimal ccnversions.

Remainder
1873;09 = 8)1873 1
85235 2
8)29 ‘ 5
813 3
o] .
= 35218
= 011 101 010 OOlp
= 3 5 2 1
= 1 8 T 3y

In a similar manner:

352lg = 3521

x8
2h45
29
_xB
232+2
23%
x8
1872+1
187310

If ve are dealing with fractions:
_ x8
- 'READ ANSWER b .5532
X

L y TIEE8

= ,l&u33+8

= .100 100 O11 Oll+,

READ
ANSWER

. .. DUN-2k00

.5692
X2
1 . 138k
x2
READ 0 .2768
ANSWER x2
0 .5536
x2
1 .1072
x2
0 Lo1LL
x2
0 L3288
x2
0 L8576
x2
1 . 7152
x2
1 .H3OE
+
= ,100 100 Ol1+,
Or .100 100 011, =, starting from the
0.5 + 1,
2)1.0
0.75 + 0.
211.5
O;}Tﬁ + 0,
2)0.75
0,1875 + 0.
250.375
0,09375 + 1,
250.1875
0.546875 + 0
2)1.09375
0.2734375 + 0
270.5L6875
0,13671875 + 1,
250.2735375
.5683+,
251.13571875

= . 5683+lo

right,
1.5

0.75
0.375
0.1875
1.09375
0.546875
0.2734375

1.13671875

DUN-2400

10

DUN-2400

If you recall, we stated earlier that all numbers are represented as

binary numbers in a computer. Similarly, all letters in the alphabet as well

as several symbols may alsc be represented as binary numbérs in a computér.

As seen above each octal number occuples three binary positions. - Letters'and

symbols, howeveg occupy 6 positiong and the following standard representations

are used:

CHARACTER

A

PUNCHED

CARD CODE

12-1
12-2
12-3
12-k
12-5

- 12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-k

‘11-5
11-6
11-7
11-8

11-9

BCD CODE

(MEMORY or STORAGE)

110

110

110

110

110

110

110

111

111

100

100

100

100

100

100

100

101

101

001

010

011

100

101

110

111

000

001

001

010

0ll

100

101

110

111

000

001

CHARACTER

This 1s called the BCD or binary coded decimal notation.

11

PUNCHED

CARD CODE

0-2
0-3
0-k4
0-5
0-6
0-7
0-8
0-9

12-3-8

12-4-8

0-4-8

12

11
3-8

11-4-8.

BCD CODE

Q10

010

010

010

010

010

011

011

111

111

Ol1

110

100

Q001

101

Q10
011
100
101
110
111
000
Ccor
011
100
100
000
000
011

100

DUN-2400

In this nota-

tion, to be consistent, numbers also use 6 positions but for numbers one

through seven, the uppermost three bits are blank or zero and O is represented

as a 10,

CHARACTER

0

BCD CODE

001 010

000 00L

000 010

000 011

000 100

DUN-2L400

CHARACTER ECD CODE
000 T0T

000 110
000 111
001 000

001L 001

O 0 9 D

In the UNIVAC 1107 as well as the UNIVAC 1108 and the IBM 7090, a com-
puter word consists of 36 binary bits., This computer word may thus represent

12 octal numbers ar 6 BCD characters: for example,

BCD S I M P L E
BINARY |010 0O
2

; i
10 {111!001| 100'100 .100: 111 | 100 011 | 110101
OCTAL 2

|
T T A YN

The computer does all of its addition, subtraction, multiplication,
division and logical operations in binary. Input and output are usually
converted to BCD so that the machines that punch our output cards and print-
outs can take the BCD and print or punch decimal numbers and alphabetic
letters that we can easily understand.

So, as was mentioned earlier, the computer doesn't understand English--
only binary or on-off numbers. Every program instruction and every piece
of data is stored in the computer and operated on as either a binary or a
BCD number,

In the earliest computers, if one wanted to add A to B and call the
result C he had to do something like the following:

000 (11 000 011 000 001 OO0 110 000 010

000 111 00l 010 OO0 001 000 111 000 101
000 010 000 100 000 010 OO0 110 000 111

13
DUN-2400

Where these are each three BCD machine instruqtiong,,the first 6,bits
(left) contain the instruction and the remaining 2& contain the address that
the instruction applies to. Thué if 3bmeans zero out gnd lcad the accumu-
lator,; 7 means add to’the éontents bf the accumulat&ru(the ansver goes back
in the accumulator) énd72 means store the conteﬁts of the accumulator;.and
if A, B, and C are stored in memory locations‘3162, 0175, and LoeT respec-
tiveiy we will get C = A+ B by the abéve thrge @achine\instruetions.

ithas‘rapidly apparent that theré must be a faster and simpler way
to program than this. As a result, a mgchiné-oriented or "assembler"
language was soon'developed:which replaced biﬁéry notation with»mnemonics
and let the computer itself do fhe translation.

"The three above statements could then be written as something like this:

ZLA 3162
ADD OL75
STA 1267

The next step in the eveolution of programming techniques was to formulate
a language which had "macro" instructions composed of many of the above
machine-oriented language instructions. The most common example of these
currently in use in the United States are FORTRAN {FORmula TRANslation) and
COBOL (ggmmon Business Oriented Eanguage)a In FORTRAN, a scientifically
oriented language, the above instructions may be written as
C=A+B
while in COBOL one might say
ADD A, B GIVING C.
In this example we have repiaced three machine instructions with a single

"macro” instructicn. When the FORTRAN or COBOL program is "compiled" by the

1L
DUN-2400

computer, these macro instructions are broken down into the basic machine-
oriented language instructions (SLEUTH for the UNIVAC 1108, FAP or MAP for
the IBM 7090) and are then "assembled" to form the actual machine program
using the binary instructions. The "assembler" also assigns the necessary
storage locations for the program as well as for data,

FORTRAN then is not "machine-oriented" but is a "problem-oriented"
language. The FORTRAN language statements are written on special FORTRAN
coding forms which are then copied onto 80 column punched cards by keypunch
operators. These cards containing the progfam instructions together with
cards containing data to be operated upon are fed into the computer by
inserting them into an on~line card reader or transferring the information

from cards to magnetic tape which is then read into the computer.

PAGE oF

ST

17

20

21

22

zsl

CODER) DATE ; PROBLEM NO.
FORTRAN CODING FORM 2 - :
For .
ca 2z :]
COMMENT [} O F OR TR A N S T A TEMENT IDENTIFICATION
STATEMENT 5% .
NUMBER U I -
T , ; ; 3a| i T J T 57 y 68 T7a] 9]
\ 1213 4]5 16 17 8,9 Nol11,12113 14,5 [16117 1849 2021, 22,23 2425 [26[27,28 29 (3031 [32]33[34 [35 [36]37[38[39 [40 4142 43]aa a5 [a6 e7]a845 50 [si [52]s3 [54] 55[56 5758 [s9%60 |61 [62/63 [64]65 [66 ,67;68 (6970 71 72 173 747576 [77 8 75 a0
' N [T PR S B8 I B 13 LIS S TR S S TS T I | L S sy Py I B U T R 1 L 11
: '
.
B ') : L) LI I S} (N N S W P | - Lo P ! U RN | I N | TN WS NN N N N U T | 1 I W Bt i1
;
:] O | R S S vy !) 1 PR B B | U | PR B RN S N M § I T i 4 4 4 S I R S | S B | 1) BRI N [
\ N
. L oy) RN | LT [N | N N L N W B S —1 3t [T Loa 1 4o] Lol & i J U) |
. .
! [S | L] ! [Lot) Ly Pl Ly 1t Loyoa [T gt I :)) Lt
1
)
. L LI " L Y | U | il : N T N T B | TR S N [S L 41 P W A N S| | . I s 1 U LI
)
: 1 gt ! I fo4 ¢ Lo [I TR R S | N] I . toa 4 Lt g by e 2
7
.
' . p i I R | IR ! [N B poa PRI | PR T Lo | P I | 1) P BT L [L
-t
' i
. N ! O I [| to [T oy ! T - a1t P i PR O W B B X p1or 4 [i
' |
T . | TR B |) H I S . [S | IFUNTE PO IR B : L it 1 L —t - i J I B I | B I 4 TR | 1
B i |
H R ' L 1 [L T | —_t sy PO S W PR PR I | SN [i 1y 3 [T X
' it - |,
i
! PR L PR S Loy L TR B TR T P L1 Lo] PO i) AT N
.
' 1 U S i | L 11 § U T
.
. | R 1 : L 1 el ' i3 1
! i
'
' | : [i Fa | Y [L B
N !
1 1
v ! R NN N T ! 13 T 11 I B W
: !
. . i S T S 1 1 FE 1 [T T T |
1
: (| ST W S | i Y 4k T U B BT
1
2 i SRRV | 1 [| 1 LIS T T 1
'
. ' PRSI N | : 1 i1 [N L1 |
' 1
v t }
. . P s (] . Y ro |
:] |
] i
! ! Y ' P t_1 3 O I TS W Lo) ! 1 1 1! i1 1} ' 1 % : L _,,444__L,_4
Ll N .
! i
: ; ity I N | ;]
.
e N S N R ¥ ! ~
. . 1 1
: L b ' I 1 NN | N | TR S W J Loa 1t il 1 Ly

54-3000-560 (6-66) arc.et eichniane wasw.

00w2=NNd

16 DUN-~2400

Notice that the coding form, reproduced on the preceding page, also has
80 columns (like the punched cards) and is broken up into 4 major fields or
areas. The first field is in columns 1-5 and it contains "statement" numbers
which may be used to reference the FORTRAN statement appearing in the rest of
the card. It is not necessary to have a number in the columns 1-5 unless you
want to reference or go to that statement from somewhere else in the program.
Statements may have any number from 1 to 32767. (One never includes comma's
in FORTRAN numbers.) Column 6 is the "continuation" column and is used to
tell the computer that the card contains a FORTRAN statement continued froﬁ
the previous card (this is done by placing any non-zero characters in column
6). Usually the first continuation card is punched with a 1 in column 6, the
second continuation card with a 2, etc. A maximum of 19 continuation cards
is permitted per statement on the UNIVAC 1108.

Columns T-T2 contain the FORTRAN statement itself (which, as indicated
gbove, may be continued to additional cards if necessary). It is usually
good practice to use several short FORTRAN statements rather than one long one,
to avoid mistakes. The computer ignores blank spaces in columns T-72 except
when they appear within a number (and then they mgy be considered to be zero,
depending upon the computer).

Thus, as was mentioned earlier, the computer doesn't understand English,
but FORTRAN comes rather close to the "language" of mathematics once you learn
a few basic rules. At that time it w;s also mentioned that the computer does
exactly what you tell it to do and not what you want it to do. This may seem
facetious but it is very unfortunastely true.

I1f, for example, you are trying to find the volume of a sphere of a known

diameter and you write that

17
DUN-2L400

VOLUME = 3.14159 (DIAM)3
3.0

T
Every volume calculated will be%;-pi rather then ¢~ 7 as it should

be, The program is definately not supplying the correct answer, but it
certainly is doing what is "correct” in that it is doing exactly what you
told it to do.

If, in averaging 23 numbers, you calculate only 22 of the numbers and
divide their sum by 23, your answer is wrong but you are getting the "correct"

solution to the problem that you have specified even though that is not the

problem you want to solve.

Thus in writing your program your first step is to define exactly what
it is you are attempting to do. This definition must include every equation
and relationship involved in the correct sequence of their execution. You
can't write a program to try one approach to a solution and then, if it
doesn't look like you are getting the correct answer, have it try adding,
subtracting, multiplying; or dividing by other numbers to get the "right"
answer. You have to know exactly what it is that you want to do. This leads
to the question "what should one put on the computer?"

A payroll may be calculated in a rather simple fashion:

GROSS = hours worked (dollars/hour) + overtime + shift differential + holiday
pay, etc.

DEDUCTIONS = withholding + social security + insurance + savings plan +
United Crusade + credit union + U. S. Savings Bonds, etc.

NET = GROSS - DEDUCTIONS
This calculation is really quite simple but it lends itself to the com-
puter gquite nicely since it must be repeated many hundreds or thousands of

times per week. Thus a problem which has many sets of data to be processed

18
DUN-2400

is a good computer application.

Take a different type of calculation; in a very simple analysis, a
nuclear reactor loading may be described in terms of the "buckling" of the
materials present, The buckling is really the rate of change of the flux

in that material., It is also known that the slope of the flux = O at the

i

center of the reactor and that the flux 0 at the ocuter edge of the reactor
that is just critical. Thus to determine how far from critical a reactor
locading is, one could "guess" a change in material buckling for each zone

and from that calculate a flux distribution and see if it has zero slope

at the center of the reactor and if it goes to zero at the outer edge. If

it did, your prcblem is solved. But unless you are one heck of a good
guesser it didn't and you will have to try new sets of bucklings. An
iterative problem like this lends itself quite well tc computer applications
since if you start out with a zero slope at the center, and the flux is
negative at the outer edge, the zone bucklings are too high and must be
reduced, If you start with a zero slope at the center and flux at the outer
edge i1s positive, you must increase the buckling in each zone to reduce flux
at the edge. You keep changing the buckling and finally the flux is close
enough to satisfy your error criteria., This may take 5, 50, or 500 iterations,
but the equation will still be solved much more rapidly on the computer than
by hand. 0ddly enough, the real problem in this application is not to set

up the mathematical model of the problem but to define for the computer how
much to change the bucklings, to iterate to the "correct" solution as rapidly
as possible. Thus problems which require many iterations to achieve a
sclution or problems containing many sets of data or many large and complex

relationships are all quite applicable for computer usage. An additional

19
DUN-2400

class of problems that have wide computer applications are those that require
taking very small time, distance or temperature steps to achieve the correct
solution. These are usually combined simultaneously with iterative problems,
For instance, calculations of transient temperatures during a reactor startup
or scram requires consideration of many iterations and many short time steps
as well as small physic&l volumes to achleve the correct results~-there is
also much feedback between power change and temperatufe from the standpoint
of associated reactivity effects of change in fuel and moderator temperature,
Sclutions of problems of this type could not be attempted on a fine scale
‘without the aid of a computer.

On the other hand, some calculations are best left off the computer,
These are the simple single solutions with few complications.

Daily calculations of plant throughputs, for instance, might require
more time to punch the input data on cards than for the user to solve the.
problem by hand. if all 365 sets of data were to be calculated at one time,
and used as the basis for further calculations it might be reasonable for
the computer to be used--particularly since no efrors would be expected from
the computer results (providing the program is correct and all the input data
are transcribed correctly) while several dozen errors would probably occur
in the hand calculations. However, a daily calculation of this type is

probably not applicable.

20
DUN-2400

SECTION IT - ARITHMETIC STATEMENTS, CONSTANTS, AND VARIABLES

As mentioned in the previous section; FORTRAN stands for FORmula TRANs-
lation and is a "problem-oriented" language--that is, it much more closely
resembles the language of mathematics than the language of computers. FORTRAN
is also a "machine-independent" language. In other words, a FORTRAN progran,
once written, may be run on virtually any computer having a FORTRAN "compiler".
The main problem in running FORTRAN programs on different computers is that,
even though the FORTRAN program says the same thing to both computers, the
"cbmpiler" (or translator to machine language) will probably not produce
exactly the same machine language program for each computer., The reasons for
this are severalfold, In the first place, there are many versions of FORTRAN
--II, IV, V, etc. as well as different "versions" of each version, and a
FORTRAN II program may not work out too well on a FORTRAN V compiler. Also,
the compiler is really only a program itself which was designed by the com-
puter manufacturer or a software firm to translate the FORTRAN program into

an efficient machine language program for use on that particular model of

computer. This sounds great, until you realize that different computers do
things differently so that even adding 1 + 1 may be done quite differently--
not only by computers built by different manufacturers, but even by different

computer models of the same manufacturers. The second hocker mentioned above
is the pnrase "efficient machine language program". Compilers tend to move
parts of your program around during translation to macnine language to make
it as efficient to run on the computer as possible. Thus, a really

"sopnisticated" compiler may do things very differently than

21
DUN-2400

a somewhat less sophisticated compiler, and thg results, even when run on the
exact same computer, could be startlingly different.

Thus anyone who does very much FORTRAN programming gets to 1earn‘a little
about how "his" compiler works--or at least he gets fo know someone else
whe knows this. Before we worry about compilers, however, let's get a little‘
FORTRAN under our belt.

A FORTRAN program is merely a deck of cards (éalled a "symbolic" deck)
which, when loaded into the computer with the appropriate FORTRAN compiler,
will result in an "object" or machine language deck that can be operated on
by the computer. The FORTRAN program can vary in length from a few FORTRAN
"statements" to many thousands of FORTRAN "statements", where the FORTRAN
"statement" is usually the equivalent of many machine language instructions,

Since FORTRAN is mathematically oriented, the simplest statements con-
cern everyday addition, subtraction, multiplication, division, and exponenti-
ation,

Each one of these five operations is represented in FORTRAN by a speciai
symbol as follows:

+ means "add"

means "subtract"
* means "multiply"
/ means "divide"
*% means "raise to the power"

Thus if one wanted to write the following expression

_y3.64 9T
s+a B

X

22
DUN-2400

in FORTRAN it would be as follows:

X = (Y**3.6 + 2%%9,72) / (S + Q * R**(7/3))

Note that only capital letters are used since FORTRAN has no provisions for

lower case letters.

Notice also that parentheses were used to separate parts of the expres-
sion. It is allowable to use as many sets of parentheses as is necessary
to define the equation and it is usually better to have too many parentheses
than too few, Extra sets of parentheses will be ignored, but missing ones
can't be put in by the computer since it won't know where they go. The com-
puter does assign a "weight" to each of the five above operators and it is

as follows:

OPERATOR FUNCTION WEIGHT
*H Exponentiation 3
* Multiplication 2
/ Division 2
+ Addition 1
- Subtraction 1

If statements contain no parentheses, the computer will evaluate the
expression from left to right in the order the terms appear unless the
operation to the right of the one being examined has a higher weight than
the one being examined--in that case, the adjacent operation with the higher
weight is performed first. For example:

X=Y -2 %R ¥ 3,2

z(r3+2)

is X=Yy

(g * R) ** 3,2
(zr)3'2

>
"

<
]

whereas

is = X =3

23

DUN-2400
and X=Y - % %R ¥ 3.2
is x =y - 3,22F
and X=Y ¥ Z - R ¥ 3.2
is x =y% -3,2r
and X= (Y ~-2)# R/ 3.2
is x=(y -z
3.2
and X=Y/2/R/ 3.2
is 7 ¥
3.2zr
whereas X = (Y / &)/ (R/ 3.2)
is X = 3.2y
rz

Note that inclusion of parentheses will overide the "built-in" weighting
factors assigned to the operators,

The variables X, Y, Z, and R, above are representations used by the
programmer; however the machine considersthem merely as "storage locations".
In other words, X is some lécafion in memory, say 0967, and Y, %, and R are
also, as far as the computer is concerned, merely memory or storage locations.

A FORTRAN arithmetic relaticnship thus differs from mathematical equations
in that FORTRAN statements mey have only one variable or constant on the left
side cf the équai sign. Thus

X=Y 4+ %

is permitted but

is not allowed.

X =Y + % means "add the contents of the storage location assigned to

2k
DUN-2L00

Y, to the contents of storage location assigned to 2, and place the result
in the storage location assigned to X".
Thus
X=X+bh
is a valid FORTRAN expression even though it does not look "correct" mathe-
matically speaking. In essence it says--"add 4, to X and store the answer
in X".

Now that the mathematical operators are defined, let's spend a minute
or two on defining variables and constants.

Since variables and constants are really only "storage locations" (to
the computer) to which we have assigned "names" for our convenience of
representation, we must adhere to certain "naming rules" so that the compiler
knows how to handle such data.

The first rule is that the names used to represent variables or constants
may not contain more than six characters (although they may have less--in
fact a single alphabetic character may be a valid name.,) The name is not

permitted to start with anything except an alphabetic character. The name

may contain alphabetic characters and numbers in any desired sequence provided
they start only with an alphabetic character. Nemes may not include any symbol
such as +, -, *, /, ,, ., ', (,), =, etc. since the compiler is not smart
enough to realize you meant the single variable WA-RP and not the variable
WA minus the variable RP.

Another rule is that any name starting with either an I, J, K, L, M, or
N is considered to represent an integer variable whereas those names starting
with alphabetic characters gzgggnthan I, J, XK, L, M, or N are considered to

be real variables.

25
DUN-2L00

Integers are represented in memory as just that--integers, For example,
if IX = 48310 (or Th3g) & 12 character octal representation of the 36 bit

binary "word" in memory would appear as this

Molololololololofol7]eT3]

IX in Memory Dump (octal)

Real numbers are not stored as integers in memory--mainly because they
are not integers and, since they may have values in the range of 10'38 to
lO+38, they could hardly fit in a 12 character octal integer "word". Instead,

real numbers are stored as shown below

S CHAR. MANTISSA

where S, the lefﬁ-most binary bit in thev36 bit binary (12 character octal)
word represents the sign of the number (+ or -), the next‘8 bits represent
the characteristic, and the remaining 27 bits represent the mantissa. The
mantissa is of the form .XXXXXXXXX8 whereas the characteristic‘would be ng
+ 200g if the number is represented as (. X X X X X X X X X) 2", Thus, to
represent the number 1y in the computer we would get llO = 18 =1y = (.1 x
21)2 or the word in binary would have a characteristic of 200 + 1 = 10 000

001 and a mantissa of .,100 000 00O .,..

‘ Oll 000000 lll 0000D0DODODODODODOOOOQOO,,,..

s1gn characteristic Manlissa

Since we can group three binary bits to form each octal character, the
above word would appear as shown below in octal (for example in an octal

memory dump) realizing that .100p = ,ug

201400000000 8

DU -2L 00

Similarly the number 4 could be represented as big = kg = 100, = (.1 x 23)2.
or 203400000000 § in octal. The number 10 could be represented
as 104 = 128 = 001 0105 = (,1010 x 2&)2 and since .10l, = .5g the word would
look 1ike 2 04 50000000 0 g in octal.

This now raises the questicn of how one would represent a number like

7.4692 x 10

in FORTRAN. It is obvious that you can't keypunch XlOl7 since
you can't shift up half a line on a FORTRAN card. Instead you merely replace
x 1017 by E17 or "exponent of 17" thus one could write x = 7.4692 X 1017 in

FORTRAN as

>
n

7.L692ELT

or

X = T.4692E+17

The + in the exponent as well as a + for the number is "understood" if

it is not included. However, all - signs must be included, as
Y = -9.2L436E-L
to represent y = -0,00092436,

Since a - is a mathematical operator as well as a "minus sign", one must
be somewhat more careful in using it than might be expected (since two opera-
tors are not permitted to be adjacent). Thus to multiply -X by -17.6(Y) one
must write it as (-X)*(-17.6)*Y using the parentheses to "attach" the sign
to the variable X or the constant 17.6 and not mix it up with the operator¥,

Real numbers are represénted by their having a decimal point, vhereas
integers are conspicuous by the absence of a decimal point. Thus, even though
you "know" that 7. is an integer, the FORTRAN compiler calls it a real number

because it has a decimal. If one were to write

INK = Uk,

DUN-2400

the computer would first have to change the real number 2 03 400000000 8
to the integer 000000000004 g before it stored it in the location
representing the variable INK. Thus the following are valid FORTRAN integers

IP =9

J = -17394

MRS = 27h1

KP19k = 2

NLTB6R = -19
and the following are valid real numbers

ZETA = 1.9467322E-27

P=1.0
UR = 1743.99
QM = ~1,6E06
A =99.32 / T.6E-b

As mentioned above, real numbers must be in the range 10-38 o lO+38. Notice
that no commas are permitted in numbers represented in FORTRAN.
If one has integral powers in an expression it is much more efficient
to use the integer than a real number for the exponent. In other words,
X = Y*¥9
is preferred to

X = Y*¥9,

%

of course if the exponent is a real number like 7.63 you don't want to use
an 8 or a 7.

When real numbers are multiplied,; added, divided, subtracted, or raised
to a power, & real number is the result of the calculation. Likewise integer

arithmetic will result in integer answers., The computer always truncates the

28 DUN-2L400

results of integer division so that if one had IX = T7/2 the result would be
IX = 3 likewise MRKL = 1-1000%(99/100) would yield MRK:k = 1 since 99/100
truncates to 0; however MRKY = 1-1000%99/100 would result in MRK4 = -989 since
¥ and / have the same weight and 1000 * 99 would be performed before /100,

If you were to divide a real number by an integer or vice versa you
would have problems called a "mixed expression’ on the IBM 7090, but the
UNIVAC 1108 FORTRAN compiler is clever enough to convert the integer to a real
number before performing the operation. Iven though the UNIVAC 110& FORTRAL!
compiler will "look after you" it is best not to mix expressions when possible
just to be safe (you might run the program on some other computer sone day).

Another example of mixing integers and real numbers, but one that is
commonly done, is the use of different modes on different sides of an equal
sign, thus
19/4 + 5/4
L+ 1

b=
1}

= 5,

AND IR = 19./4. + 5.7k,

L.75 + 1.25
6

are both valid--the computer evaluates the expression in the appropriate mode
and then converts the solution to the mode required for storage as tine answer.
If you recall, any variable whose name starts with I, J, K, L, M, or &
was defined to be an integer variable (or constant). There is a means of
overriding this definition and that is to use a TYPE statement at the start of

your program. For instence you may specify IMAX, J, KAY and MO to be real

29 DUN-2400

variables by saying

REAL IMAX, Jd, KAY, Mo
Note the line through the @ in MO to differentiate the letter 6 from the
number O as in the name MO,

Similarly, X, YY, 4EL, and P may be specified to be integer variables by

INTEGER X, YY, 2EL, P
If a name is not found in a IYPE statement, the I-N ruled for integers will
still apply.

Besides the INTEGER and REAL Type statements there are four other Type
statements. One of these is COMPLEX to define complex numbers of the type
T. + 9.4i (represented as (7., 9.4) in FORTRAN).

Fér instance the ﬁames Ci, C2, 4K, Q, and RP may be set up as complex
variéblés By

COMPLEX Cl, C2, 2K, Q, RP

and one could then set zk = 9.6L42 + 1.1i by

ZK = (9.642, 1.1)
or

ZK = (0.9642E1,11.E-01)

Lach complex variable uses two consecutive storage locations--the first
for the real part (9.642 above) and the seconé for the imaginary part (1.1
abo%e). Integefs are not permitted as complex variables. All complex numbers
must be defined by a COMPLEX Type statement.

There is another kind of number stored in the computer and defined by a
Type statement--that ié the DOUBLE PRECISION number. It may appear that 8 or 9
significant figures are a lot and that they give plenty of accuracy, but you

can never please everybody, so to permit calculations having 16-18 significant

30 DUN-2400

figures, a double precision number is used. Every double precision number
must be defined by a DOUBLE PRECISION Type statement as for D1, RZ, IV, KK
below

DOUBLE PRECISIGN D1, R&, IV, NK,
Each double preclsion number is stored in two consecutive storage locations
in memory with the most significant figures in the first storage location and
the least significant figures in the next location. The characteristic of
the first location is as normally calculated, that of the second location is
the first -27 (since the first 27 binary bits went into the first word and
bits 28-5h will go in the second word). All double precision numbers are

represented with a D rather than E to signify the exponent so

DI = 9.3D+6
RZ = 1.L446392117138D+0
IV = 6.333333333312D-4
NK = 1,2D+1

are all double precision numbers (note that they had to be defined in the

DOUBLE PRECISION Type statement as well as have the D in the number).
Another Type statement is the LOGICAL Type statement to define logical

variables. A logical variable is a variable which may assume the value true

or false (represented by a 1 or O respectively in memory). Thus to make L1,

JK, RT7, M39, PIN36 logical variasbles we must use the following statement:

LOGICAL L1, JK, RT, M39, PIN36
and we may then set

Ll .TRUE.

JK

.TRUE.

31 DUN-2400

RT = .FALSE.
etc.

Logical variebles may not assume the values of numbers--only .TRUE. or
.FALSE. Note the periods necessary on each side of the .TRUE. or .FALSE.
datum.

There are three logical operators, .8R., .AND., and .NOT. (which must:
also be set off by periods) as well as six logical relational operators, .EQ.
(equal to), .NE. (not equal to), .GE. (greater than or equal to), .GT. (greater
than), .LE. (less than or equal to), and .LT. (less than), again all set off
by periods; which are used in logical manipulations Just as the *¥_ ¥/ 4
and ~ are used in arithmetic manipulations.

Now that you know all about numbers in FORTRAN, consider the problem you
have if you want to operate on say 500 numbers, you certainly don't want to
dream up 500 FORTRAN names, one for each number--you would then have to write
500 sets of all arithmetic expressions to operate on each name (or number).
Thus you say, 0.K., let's have 500 X's and we will call the first x-X(1), the
23rd x-x(2v3), and the 500th x-X(500). X is called a "subscripted variable"
or an "array" and one merely decides which "X" he wants to use and that number
(sa& the ith) is the subscript used.

A variable may have from 1 to 7 subscripts on the UNIVAC 1108. Thus one
might have stated X(2,5,5,10) just as well as X{500) and still achieved the
same result--500 X's all stored in sequence from X(1) or X(1,1,1,1) to X(500)
or X(2,5,5,10) in memory. They would be stored in the sequence X(1), X(2),
X(3), X(4)...X(500), or %(1,1,1,1), x(2,1,1,1), X(1,2,1,1), Xx(2,2,1,1)...

x(2,5,5,10).

32 DUH-2LC0

The subscript must be an integer and may not itself be subscripted. It

may also be a product, sum, or difference of integers. The following subscripts

are valid:

X(I)

R(K+93)

MILK(LL+91)

B3K92(6*M+9)

FEMIX(3+L, L*N-2, K, IR)
but

RLP(M(T1))
is not valid since the subscript itself is subscripted. Subseripts should
not be zero or negative even though such subscripts are permitted (X(0) would
be stored next to X(1) backwards in memory, X(-0) next to X(0), X(-1) next to
X(-0), etc.). Each subscript is separated from the adjacent subscript by a
corma. The group of subscripts are enclosed in a single set of parentheses.

Integer, Real, Double Precision, Complex, and Logical Variables may all

be subscripted. The maximum size of each array must be defined. This may be
done in a DIMENSI®NI statement as follows:

DIMENSION X(9,3,210), Y(10), 1x(2)
The dimensions of an array may also be specified in a TYPE statement if the
variable name itself appears in a TYPE statement, for example,

DOUBLE PRECISION VM(7,32), R(6,2,11)
If a variable is dimensionec¢ in a TYPE statement it must not appear in a
DIMrHSION statement; similarly if a variable is dimensioned in a DIMEISIGON

statement, it may not appear with dimensions in a TYPL statement but it may

appear in a TYPE statement without dimensions, for example:

33 DUN-2L00

DIMENSION X(73), KY(9), R(2), MM(9)
INTEGER X, P(93), V, WT
REAL KY, IBT2, MM, MN(643,2)

are 2ll velid statements.

Whenever a subscripted variable (dimensioned) is used, it may not be used
within the program without a subscript to denote which element within the array
is referenced. TFor example:

REAL IXK, MV(T2), LK39(3,7,96k4), II, 1J, IK

DIMENSION KK(2), ILR(9), PPT(TT)

IXK = 9.6k

R = 6.942E-30

LK39(1,7,32) = -99.4

IL = 17

KK(1) = 19

PPT(3) = 2.TEb
are all valid statements but

MV = 6.2
and

ILR = 10
are not since these variables represent arrays and it is not stated which
element of the array is referenced. (The compiler will assume that ir these
instances the first element is referénced so it will set MV(1) = 6.2 and
ILR(1) = 10.)

To determine the location of a particular element within an arrasy, the

following formule may be used:

34 DUE-2400

Location of X(Il, I2, I3, ...XIT) within array X(D1, D2, D3,...L7) =
location of X(1, 1, 1, 1, 1, 1, 1) + (I1-1) + (I2-1) % D1 + (I3-1) * L1 %
D2 + (Ik-1) * D1 * D2 # D3 + .., + (IT-1) * D1 * D2 * D3 * ,,, ¥ 36, Tor
example, the location of RLY7(2,1,4,3,4) within the array RLT7(5,5,5,10,10)
may be calculated as the storage location of RLT(1,1,1,1,1) + (2-1) + (1-1)
¥+ (L-1) *#5 %54+ (3-1) ¥5%5 %54 (41) %5 %5 %5 %10 = location
of RLT(1,1,1,1,1) + 1 + 0 + 75 + 250 + 3750 = location of RLT(1,1,1,1,1) +
LOTéE,

The above rule applies for all arrays except those of complex or double

precision numbers. In the latter case, two adjacent storage locations are

required for each number. Thus for double precision or complex numbers, the
location of X(Il, I2, I3 ... IT) within array X(D1, D2, D3, ... D7) is tn~
loaction of %(1,1,1,1,1,1,1) + 2 #* (Il-1) + 2 * (I2-1) * D1 + 2 * (I3-1) *

DI * D2 + 2 % (IL-1)* D1 * D2 # D3 + ,,, + 2 % (I7-1) * D1 * D2 # L3 * , , #

35
DUN-2400

SECTION III LOOPING AND TRANSFER OF CONTROL

LOOPING
Now we know all about how to store many sets of'datavin large arrays.
This leads to the next question——whaﬁygdod is the ﬁse‘of.sﬁéh an array (or

arrays)?

Tt's true that if you had ten numbers stored in X(1) to X(10) and
wanted to find y = x(1) you still have to add all teﬁ ﬁumbe}s up.%hether
they are called X(l),‘;22), X(3), ... X(10), or X1, X2, X3, ...X10, The“
advantage of the former notation lies in thé ﬁse of1"inaéxing"Lor éeleciing
the particular variable of interest in the érray; | -

Thus, although -

Y

i

XL+ X2+ X3 +Xb + X5 + X6 + XT + X8 + X0 + X10
as well aé ‘ , l '

Y

[

X(1) + X(2) + X(3) + X(&) + X(5) + X(6) + X(7) + X(8) + X(9)

+ X(10)
cne has no choice but to calculate Y as above using XL, X2, ete. but there
is & much more efficient méthod of adding in the latter case, That is

Y =X(I)+Y

provided Y = 0.0 before we starﬁ,and the index I assumes all values from 1
through 10 inclusive. The real question is how we do the latter--and the
answer, strangely enough, is to D@ it ~- using a "D@ loop". A D6 loop says
"do what follows as many times as necessary to satisfy the index requirements",
The D6 statement is of the form
De N I=J,K,L

where the integer N tells the computer just what statements it is to "De",

36 , DUN-2400

the integer I is the index, the integer J is the first value the index is to
assume, the integer K is the last value the index is to assume, and the integer
L is the increment of the index. If L is left out it is assumed to be equal

to the integer 1.

The DO statement in effect says "do everything from here to statement
N one time for each value of the index I specified by J, K, and L".

Thus to add the ten values of X above we would do it as follows

i DIMENSI6N X(10)
Y = 0.0
D8 20 I =1, lb
20 Y =Y+ X(I)

This may not seem like a tremendous savings, and in this instance it probably
is not, but imagine if we had say 5000 different values of X to add--the
exact same three instructions will accomplish the 5000 additions as it did
for the 10 (provided we index I from 1 through 5000 rather than 10).

Note that the statement N (20 above) is executed for each value of I,
After the statement numbered N is executed, control returns to the Do state-
ment, the index I is incremented by L, and if I exceeds K, contreol is then
sent to the statement following statement N.

As many statements as are desired may be placed in the "loop" (between
DO NI =J, K, L and statement number N)., It is most efficient, however, to
place within the "loop" only those statements which must be executed for each
value of the index I,

Statement N may be virtually any statement (arithmetic, logic, or input/
outpuﬁ) except that it cannot be ancther DO statement or a transfer or test

statement (more about these later).

37
DUN-2400
One special statement is commonly used to end a D6 loop and that is the
CONTINUE statement. The CONTINUE statement says just that--continue or
"ignore me". It doesn't cause anything to happen except control to be trans-
ferred to the next statement (or back to the D@ statement if it is the end
of a D6 loop). The above problem could have thus also been written as
DIMENSION X(10)
Y = 0.0
De 20 I =1, 10
Y =Y + X(I)
20 CONTINUE
Within the loop from De NI = J, K, L to statement N, neither I, J, K, nor L
may be redefined. That is, one may not have any one of these integers on
the left side of an arithmetic statement within the loop.
InDe NI =J, K, L it is normally assumed that L is positive, that
is K > J; however, it is permitted that J > K and L < O. If J > K, L must
be set equal to -1, -2, etc.
Thus, the above problem could have been written
DIMENSIEN X(10)
Y = 0,0
De 20 I =10, 1, -1
Y =¥+ X(I)
20 COeNTINUE
and X{(10) would have been added to X(9) to X(8) to X(7) ... X(1) to achieve
the same answer as before.

The most common limits of D8's are from 1 to K (where the limits of a

38
DUN-2L400
DO are the numbers J and K in D8 NI =J, K, L). The "range" of a Do is the
set of statements between the DO statement and statement N,

The integers I, J, K, and L may be integer constants such as 1, 10, 1000,
325, etc., or they may be integer variables provided they are not subscripted
variables,

One is not permitted to transfer into the middle of a DO loop but must
enter through the DO statement itself. It is permitted, however to transfer
out of a D@ loop (provided it is not at statement N, the end of the loop).

The reason for this is that one must set up all the index limits and the index
itself (I, J, K, and L) before entering the loop, and the only way to do this
is by passing through the D@ statement. Once the index and limits are set

up, it is permitted to transfer out of the loop before the loop has calcu-

lated all of the range for the limits of the index (provided one does not

return to that point of exit from the loop but back to the D6 statement if
the loop must be used again). |

DO loops may follow one another in a program or they may be "nested"
within one another. Nested DO's must be entirely within each other.

For instance, say you wanted to calculate
10

X = Z y% + 17.3z4 where
i=1

15

]

Zi (pi:j) * (Qi:d)

]
J=i

DUN-2L00

To calculate this, we must '"nest" a D@ loop for calculating z within the loop
for calculating x as follows
DIMENSI®ON #(10), P(10,15) Q(10,15), Y(10)
X =0.0
De 100 I =1, 10
#(I) = 0.0
De 50 J =1, 15
50 £(1) = 2(1) + P(I, J)*Q(1,J)
100 X =X+ Y(I)**2 + 17.3%2(1)
Note that the inner loop on J lies entirely within the outer loop on I.
Although details of transferring will be covered in the next section,

the following example will show valid transfers from nested D@ loops.

DUN-2400

Lo
VALID TRANSFERS
NESTED LOOPS * * A 1 A
! |
Do 100 I=1,5 I !
-] -t -
|
Do 90 J=1, 10 I I"‘l
e i
I
Do 60 K =1, LL | : :
S et ey
| »60 CONTINUE !
] 4—:
Dé 65 K =1, LP : :
- [
---------------------- == o
Do 50 M=1,K l I
- —_ — e l
I !
L 50 CONTINUE ’ l
-]]
' |
65 CONTINUE ;! %
] - |-<—|
——~90 CONTINUE : l
-~ -y - ~
!
D6 95 M=3,IL, b ' l |
- —_ — ____.__L_y l
| |
L—-95 CONTINUE | |
-l]
L >100 CONTINUE ; 4 ‘

Vertical arrows indicate that transfer to anyplace in that direction

is permitted except to within the range of a D@ not containing the D@ loop

being left.

Note that the same indices

may not be used on loops within loops, but

that the limits of an inner DO may be the same as the index of an outer D@

(i.e. DB 50 M = 1, K where K is the index of an outer loop).

DUN-2400

Note also that the nested DO's had to lie entirely within their outer
loops. Note that the index K was used twice within the loop Dé 90 but it
was not permitted to be used in the loop D& 65 unless the loop DO 60 had
already ended (as it did).

Several nested DO loops may end on the same statement. This may be
illustrated in calculating the product of two 15 by 15 matrices.

Given

15

iy = ZE a3,k bk’j i, =21,2, ... 15
K=t

DIMENSI6N C(15,15), A(15,15), B(15,15)

De 10 I =1, 15

be 10 J =1, 15

c(1,J) = 0.0

De 10 K =1, 15

10 ¢(1,7) = ¢(1,T) + A(I,K) * B(K,J)

TRANSFER OF CONTROL

Now that you know that you are not permitted to transfer to within the
range of a De loop but must enter through the Do statement itself, and that
you are permitted to transfer out of a D6 loop, let's get intoc the mechanics
of how to transfer. Let's say that you have just reached a point in your
program at which you wish to go to statement number 105 to continue the cal-
culation. One way of doing this is to use an "unconditional G6 Te" which

says merely

Ge To 105

42
DUN-2400
or whatever statement number you wish to go to. When the above statement
is encountered within your program, control will be transferred to statement
number 105 and all statements between 105 and the "Ge Te 105" statement will
be skipped. Unconditional GO T@'s may be transfers either forward or backward
within a program,
A second‘type of transfer statement is the “conditional G& TO" of the

form

Ge Te IMY3
where the value of IMY3 has previously been specified by an ASSIGN statement
which could say |

ASSIGN 105 Te IMY3
and the net result would be to transfer to statement number 105 from the
5o T IMY3'statement.

A third form of transfer is to use the "assigned G T®" which requires

a previously defined ASSIGN statement as did the "conditional GO Te"; the
difference being that in the "assigned GO Te", the statement numbers per-
mitted for transfers are defined by the GO TS statement as well as assigned
by an ASSIGN statement.

GO TO IMY3, (105, 1020, 2350, 5003)
is an example of an assigned GO TO. The number of statements one may trans-
fer to in a conditicnal GO T¢ is virtuslly unlimited while that for the
assigned GO Te is quite limited, even though both the assigned and the con-
ditional GO T6 require ASSIGN statements to specify the actual statement
number to be transferred to.

The conditional G& TO® should not be used unless it is essential, since

Bang
L

DUN-2400

the FORTRAN compiler cannot efficlently optimize the program if a conditional
GO Te appears in the program. A further, although minor, reason for not
using the conditional G& T is that one may inadvertantly assign a statement
number which does not exist in the program. The assigned G T® would realize
this since that statement number would not appear on the right side of the
Ge Te M, (11, 12, I3, ..., IN) statement (as I1, I2, I3, ... or I[) and
execution would be stopped; the conditional Ge Te, however, would not catch
the error and control would be tranferrred to somewhere (probably outside
your program) and likely very bad things will occur (such as looping and
not being able to get out, destroying your data or program, or destroying

the resident which controls the computer's overall operation). In any event
it is not a happy occurence and should be avoided at almost all costs.

Note that the statement

ASSIGN 10 T6 JX
is not the same as the statement

JX = 10
since the ASSIGN statement is used only to assign statement numbers to
variables which will later be uséd by control statements. The execution of
the ASSIGN statement in this case presets to 10 the destination of all control
statements pertaining to JX.

There is‘one last type of GO T0 statement, probably the most frequently
used (with the exception of the unconditional GO Te -- eg. GO T 20) and that
is the "computed GO Te" which says

e Mo (11, 12, 13, ...), N

where N is a positive non-subscripted integer variable and I1, I2, ... are

Ly
DUN-2400

statement numbers to which the transfer is to be made. If N = 1, control
is transferred to statement number J1, etc.

For example,

Go Te (100, 405, 160, 130, 190, 225), KX3

if KX3 = 1, control is transferred to statement 100; if KX3 = 6, control is
transferred to statement 225; if KX3 = 7 you are in trouble (as with the
conditional G& TO KY where you may have said ASSIGN 109 to KY and there is
no 109 in the program) since you can only transfer to one of six locations
in GO Te (100, 405, 160, 130, 190, 225), KX3 and you picked the seventh.

The most commonly used transfer statements are the computed GO TO and
the unconditional Ge Te.

We can now reexamine permitted transfers in nested DO loops using the

transfer statements described above,

DUN-2400
PERMITTED TRANSFERS WITHIN NESTED DO LOOPS

30 CONTINUE

33 ﬁ? 100 I=1,5

35 é? Te (30, Lo, 92, 93, 98, 100, 110), IKY

Lo é; 90 J =1, 10

L5 ée ™ (30, 35, 53, 66, 70, 90, 92, 93, 98, 100, 110), ILY

53 ﬁé 60 K =1, 11

55 é; T (30, 35, 45, 60, 66, TO, 90, 92, 93, 98, 100, 110), IMY

60 éBNTINUE |

66 Die 65 K =1, LP '
67 *é@ T INY, (30, 35, 45, 53, 68, 55, 65, 70, 90, 92, 93, 98, 100, 110)
68 ﬂb 50 M=1, K

48 e T (30, 35, U5, 53, 67, 50, 55, 65, 70, 90, 92, 93, 98, 100, 110), T
50 C;NTINUE

55 *G; TO IPY, (30, 35, 45, 53, 66, 67, 65, 70, 90, 92, 93, 98, 100, 110)
65 C;NTINUE

TO *G; Te IQY, (30, 35, 45, 53, 66, 90, 92, 93, 98, 100, 110)

90 C;NTINUE

92 G; ™ (30, 35, 40, 93, 98, 100, 110), IRY

93 D6 95 M=3,LL, k

9L Gé T (30, 35, 40, 92, 93, 100, 110), ISY

95 C%NTINUE

98 Gé Te (30, 35, 40, 92, 93, 100, 110), ITY
100 C;NTINUE
110

¥ THESE STATEMENTS MUST BE PRECEEDED BY APPROPRIATE ASSIGN STATEMENT

L6 DUN-2400

There is another type of transfer statement which is usually associated
with a test; that is the "arithmetic IF" statement, The arithmetic IF state-
ment, used to test the value of an arithmetic expression, is of the form

IF (EXPRESSIGN) J, K, L
where J, X, and L are FORTRAN statement numbers, If the value of EXPRESSION
is negative control is transferred to statement J, if EXPRESSION is zero to
statement K, and if EXPRESSION is positive to statement L. J, K, and L may be
numbers corresponding to statement numbers, or names which have been previously
defined as specific statement numbers by ASSIGN statements. The arithmetic
EXPRESSION may be any expression involving arithmetic operators (+, -, *, /s
and ¥*), arithmetic built in or library functions (to be discussed latef),
and arithmetic variables or constants (complex numbers are not permitted, but
integer, real, and double precision expressions are permitted). An example
would be

IF (X**2 - 4, 3%¥B/C) 101, 111, 140

If the value of x° - E;QB is less than zero control will be transferred
c

to statement number 101, if it is equal to zero control will be transferred
to statement number 111, and if it is greater than zero control will be trans-

ferred to statement 140, Another way of looking at the above statement is

that if 4.3b > x2 control will be transferred to statement number 101, if
<

x2 = 4 .3b control will be transferred to statement number 111, and if x2 >
c

4,3b control will be transferred to statement number 14O,
c
Another example would be to calculate the sum of all positive numbers
(called SUM)in an array of 20 numbers (called A). If a zero or negative

number is encountered it must not be a part of the sum. All negative A's

L7
DUN-2400
must be printed out with their location in the array (eg first, fifth,
seventeenth, etc. number in the array). Assume the 20 values of A are
already stored in memory. One program which would accomplish this task is
DIMENSION A(20)
SUM = 0.0
De 100 I =1, 20
IF (A(I)) 10, 100, 20
10 PRINT OUT THE VALUES OF I AND A(I)*
Ge Te 100
20 SUM = SUM + A(I)
100 CONTINUE
Note in this example that the CONTINUE statement was required since if
A is zero we do not want to print it out or add it to SUM but go to the end
of the loop and calculate the next A. Note also that if A is negative we
must go to statement 10 where we print out I, the position of that A in the
array, and the valiue of A. After printing this information we must use the
statement GO T8 100 s0 we do not add the negative A's to SUM{
A second type of IF statement is a "logical IF" which is of the form
IF (EXPRESSION) STATEMENT
where EXPRESSION is a "logical" expression and STATEMENT is any FORTRAN
statement except another logical IF statement or a DO statement.
If the logical EXPRESSION is .TRUE., the STATEMENT will be executed
and control will then pass to the next statement. If the logical EXPRESSION

is .FALSE., the STATEMENT will not be executed but control will pass directly

* more about how to do tanis later

L8
DUN-2400

to the next statement as is indicated below

IF (EXPRESSION)—— TRUE, ———>-STATEMENT

.FALSE.
NEXT STATEMENT
An example would be: if you have an array, A, of 100 numbers ranging
in value from more than O, to less than 5000, and you wanted the actual
minimum value of A, AMIN, and the actual maximum value of A, AMAX, it could
be done as follows:
DIMENSION A(100)

AMAX

1]

0.0

AMIN

1]

5000,

De 10 I=1, 100

IF (A(I) .LT. AMIN) AMIN = A(I)

IF (A(I) .GT. AMAX) AMAX = A(I)

10 CONTINUE
Note, first AMAX and AMIN are initialized respectively to the smallest

and largest "potential” values of A in the array. Then a D@ loop is set up
to test all values of A in the array. The first logical IF statement tests
to see if the current value of A(I) is less than the minimum value thus far
calculated, If it is true that the current value of A is less than the
smallest value yet examined, the IF statement is .TRUE. and the arithmetic
statement AMIN = A(I) is executéd (which stored the value of A(I) in AMIN).
Control then goes to the next logical IF statement which tests for the
maximum value of A in the Same manner (When will both logical IF statements

be .TRUE.?, when will both be ,FALSE.?). After both IF statements are com-

L DUN-2L400

pleted (and either, both, or neither of the arithmetic statements are executed)

control goes to the CONTINUE statement which passes ba:k to the DO loop

starting point, increments the index by 1, and goes through the loop again.
Notice that one may compare arithmetic variables in a logical IF provided

that logical operators are used. One may NOT say

1) A(1) .EQ. B(I) this should be A(I) = B(I)
2) IF(a(1) .EQ. B(I)) 100, 110, 120 this should be IF(A(I) - B(I))

100, 110, 120

3) IF(A(I) = B(I)) X1 =X1L +1 this should be IF(A{I) .EQ. B(I))
X1 =X1+1

L) I1F(A(I) - B(I)) X1 =X1 +1 this should be IF(A(I) .LT. B(I))
X1 = X1 + 1

since in the first instance you are trying to perform an arithmetic calcula-

tion with a logical operator, in the second case you are trying to perform

an arithmetic test using a logical operator, in the third case you are trying

to peform a logical test using an arithmetic operator, and in the fourth

case you are again performing an arithmetic operation in a logical test but

the answer is a number and not .TRUE. or .FALSE..
The following logical IF is permitted
IF (X¥Y**2 GT. 37.¥Y-9.¥X) X = y**2
since the result is either .TRUE. or .FALSE. depending uron the value of
xy2 compared to 3Ty-9X.

Examining arithmetic and logical operators, the order in which the com-

puter will evaluate expressions containing these operators is as follows:

50
DUN-2400

EVALUATED FIRST *% arithmetic exponentiation

* or / arithmetic multiplication.
or division o

+ or - arithmetic addition or
subtraction

.LT., .LE., .EQ., .NE., .GT., or. .GE.
" relational-operators

.NOT. Iogiéal operator
.AND: 1loglcal operator
\ 4
EVALUATED LAST .OR. logical operator

 Inclusion of parentheses wifhin an expression will:ove:ride the "built-in"
order giveh above; Thus‘the following IF statement
IF (IX .GT. 9 ;AND. IY .LE. 1) Ge Te 90
80 IX=1IX+3 |
Ge Te 100
90 IX = IX - 3
100 CeNTINUE
will go to 90 if and only if ix > 9 and iy < 1, otherwise control will pass
to statement number‘80; | |
The statement)
| IF (IxX**2 ;GT. 2¥K .AND, Mi .LE. Mg .6R. .NOT. (IX .LT. MI)) GO Te 37
is a valid expression which will result in transfer to 37 if ix >mior if
(ix}2 > 2(k) and ﬁiignm . The expression will be evaluated as if it were
written as

IF (((IX**2 .GT. 2¥k) - AND. (Mi .LE. M2)) .OR. (.NOT, (Ix .LT. ML))) Ge Te 37

51 LU =-2L0¢

SECTION IV INPUT/QUTPUT

The previous sections have covered data representation, aritimetic
statements, variables and arrays, lcoping, transfers, =znd zrithmetic a=nd
lozical tests. All of this is fine, and it is all an esscntial part of

PORTRAN programming, but orce the cormputer has solved the desired protlem

it doesn't help you to know that the computer kKnows the unswer -- you want
the answer yourself, Obviously, to obtain the answer you will have to Luve
the cohputer tell it to you. This is normally done with & "formatted WRITL"
statement., What is a "formatted WRITE' statement? This might best be
answered by first telling you what a "non-formatted" or "binary WRITE" state-
ment is. If you recall, a computer "word" is a collection of 3€ binary Lits
which represent a number, alpnabetic characters, or symbols. To WEITE such
a word out on magnetic tape one merely says
WRITE (Ii) WORD

where N represents the number of the "logical unit" on which the word is to
be written, On the UNIVAC 1108 this could te any number from zero “hrourh
about 29 (where O represents the typewriter at the console, 5 is the card
reader where most input is received, 6 is the printer where most output is
written, and the remaining numbers represent magnetic tape units A - 7 or
nagnetic drum storage - see the table on the next page for specific legical
unit assignments on the UNIVAC 1108). What the above birary WRITE statement
does is copy on logical unit 4 the binary word (or bits) stored in tac locetior
in mermory assigned to WORD.

The binary WRITE is the most commonly used one (and the fastest) for inrut

and output to ana from the computer--for libraries, procrams, records, eto.,

but it is not normally used to communicate with veople since people

FORTRAN

I/Q

DUN-2400
52

UNIVAC 1108

TABLE ASSIGNMENTS - NTAB$

Logical Unit

O oo 9 6wt &= Ww N+ O

e
M - o

13
1k
15
16
17
25
26
27
28
29

0 o o o

o < o o 3 o <] o

-3 o o Q [4] o <] o a

]

<

o

o

Assiggment
s « o o « o o« o oKTYPE$ (Typewriter)

o 6 o o s ¢ o o clape A
o ¢ ¢ o o o o o ovlape E
o o 6 5 ¢ o s o olape B
o 0o o o o o o o oTape F
o o o o o o o o Card Reader

o 6 6 ¢ o o o o oPrinter

o

6 6 0 0 o o o o oTa.pe
6 o o o o s o o oTape
6 0o 0o 6 ¢ 6 o o oTape
¢ o 0o 06 o o o o oTa.pe
6 6 o ¢ o o o o oTape
o 6 0o o o o o o olape
6 6 0o & o 0o o o o Tape
o o o ¢ o s o o olape

oooooooooTape

omo O O "9 oo o> o

oooooooooTape

24 are the same as 9 through 16

c o o 0o o ¢ o o oDrum File 2,400,000 - (5,000,000-1)
o 660060000 " 400,000 ~ (2,400,000-1)
c o 6 0 0o o o " "™ 2,400,000 - (3,400,000-1)
¢ o 0o o o s oo o " " 3,400,000 - 4 400,000-1
6 o 0 0 0 ¢ s o e "™ 4;400,000 - 5,000,000<1

53
DUN-2400

seem to dislike translating to and from binary. However, this method is
used for all records that the program generates and uses as well as for
temporary storage of data during the program execution.

For output records that are going to be used by people, the above-men-
tioned "formatted WRITE" would be used. This statement is of the form

WRITE (N, NF) WORD

Where N, as before, represents the logical unit on which the output
will be written and NF is the number corresponding to the FERMAT under which
the data (stored in the memory Tlocation assigned to WORD) will be written.
In a formatted write, the data stored in WORD is not merely spewed forth and
placed on tape, drum, or the printer as in a binary WRITE, but it is first
"converted" to the mode specified by the FORMAT. There are about eight dif-
ferent modes or FORMAT types possible--they are: integer, real, exponential,
double precision,G (a choice of real or exponential), octal, logical, and

alphameric. ZEach of these modes is represented in a FORMAT as follows:

TYPE REPRESENTATION EXAMPLE
INTEGER Iw Ik
REAL - FIXED POINT Fv.d F10,2
REAL - EXPONENTIAL-FLOATING POINT Ew.d Ell.h4
DOUBLE PRECISION . Dw.d D19.8
EorF =0 Gw.d G17.3
OCTAL ow e13
LOGICAL Lw L6

ALPHAMERIC Aw Al

5k
DUN-2L400

In each of the above examples, w represents the "field" width or the
number of characters or consecutive output locations assigned to the word.
Those FORMATS hafing a w.d say there are w locations for that word and of
them d are to the right of the decimal point. The decimal point itself is
considered one of the locations. Thus the F10,2 could be a number like 6.23,
2100000,00, 1.03, 0.07, etec.

Since integers, octal, logical, and alphameric output have no decimal
point as part of the word, none is provided for in the corresponding format
type and they have only a w signifying the output field length.

The E, D, and G formats produce output of the type 0.12763E-19 where O.
and E+ are provided by the computer and all numbers are represented as
factors with an exponent. If a number is to be written as E10.4 the last
four positions of the word will be used for the exponent designation E+XX,
the first two for O.yand the remaining four positions will contain the number.
Thus one requires ten positions to write four significant figures in E, D,
and (sometimes) G formats, (also, if the number is negative, there will be
no room for the - sign). On some computers the E or D is not printed but
nevertheless a space is still provided for it. It is thus impossible to write
E10.5 since one needs 1l positions for such a number (12 if the number itself
is negative) and the output field width is only 10 characters long.

The G format is one in which the number is written as a fixed point
number (without the exponent) if it will fit within the given field; if it
won't fit as a fixed point number it will be written as an exponential, For
example, the number 913762.4 would appear as 913762.4 in a G10.1 format but

as 0.9138E+06 in a G10.4 format. Note that the number was rounded in the

DUN-240

last significant place., Recall that in the computer integsrs are truncated

?

but for output all numbers are rounded.

Octal words are normally each 12 characters long !reca.l that a word
is 36 binary bits, with each octal character equivaient to 3 tinary bits]
and an ©i3 or 14 will result in one or two tlank spaces preceeding the 12
character cctal number,

Logical words are represented as a T or an F in the vrightmoct position

3

in the fieid on the UNIVAC 1107. On some computers. the entire word TRFE or

.

FALSE is printed out.

Alphameric words are alphabetic characters, symbb.ls‘5 or mumbers. Each
"computer word" (36 bits of binary information) could represzrt up <o 6
alphameric characters (see the table on Page 1L of the first sec*tion!, Thus

the largest alphameric format usually is Aéo

n

i

c?

The way that the above formats are used is in a FORMAT statement., Recall
how in the "formatted WRITE"

WRITE N, NF} WORD
we sald NF was the number correspondirg to the format under which the data
will be written. Using one of the newly learred formate we can now consiruct
a FORMAT statement for the above WRITE statemert as follows

NF FORMAT (FS)
where NF is the same number used as NF in the WRITE statement and FS is the
format specification (one or more of the format types iiscaséed.above}a If
we wanted to write out WORD as an octal number FS couid be @12, if WERD is

a logical word we could have FS be L8. Likewise if WORD was merely a number

FS could be F6.2, E10.3, G9.1, etc. A typical exampie would be

56 DUN-2400

WRITE (6, 45) IX, M, BILCH
45 FORMAT (Il0, Ik, F6.2)

in which we write on logical unit 6 (the printer--where most output is written
on the UNIVAC 1107) according to FORMAT number 45 the two integers IX and M
and the real number ZILCH as a fixed point number. FORMAT number 45 says
that the first word written (IX) will be an integer number of up to ten char-
acters, the second word (M) will also be an integer but it will have & mexi-
mum of 4 characters and the third word (ZILCH) will be a fixed point number
of up to six characters with two of them to the right of the decimal point
and up to three characters to the left of the decimal point (the decimal
point itself took the sixth position). Note that each word specification in ,
the FORMAT statement 1s separated from its neighbor by commas. If fewer
significant characters exist than the format calls for, the left side of the
word will be filled in with blanks, for example, if IX was 136 it would appear
as

R . 1
on the output page where , represents a blank space. If; on the other hand,
ZILCH was & number like 3924,13 it is too big for an F6.2 format, so in the
place of the number ZILCH, six *'s (on the UNIVAC 1108) would appear on the
output page to signify that the word size exceeded the format specification.

The exact same FORMAT as above could be used for many different WRITE

statements, for instance one could alsc say

WRITE (6, 45) W, L

WRITE (6, 45) I, I1, PER3, M, ML, PERL, N
using the exact same FORMAT (number L5). Impossible you say! The format

calls for three words and the above examples are writing out two and seven

57
DUN-2400

words respectively. Well, that's true, but output (aﬁd input) is determined
by both the FORMAT and the call list (NV and L or I, I1, PER3, M, Ml, PERk,
and N in the examples above) and if the call list specified fewer words than
the format list contains, only the words specified by the WRITE statement
will be written., Likewise, if there are more words in the call list of the
WRITE statement than the FORMAT specified, the FORMAT is started over again
after it 1s finished until all words have been written. Thus in the last
example, I is written as I10, Il as I4, PER3 as F6.3, and now we are out of
format but there are more words in the listtso the format is restarted and
M is written as I10, ML as Ik, PERL as F6.3 and once again we must restart
the format so that N is an I10.

On the 1108 all formatted output is written in blocks of 132 characters
(22 words) since that is how many characters fit on a printed line. What |
actually happen§ is that everything to be printed out except binary output

is placed in an output buffer in octal representation (regardless of whether

you specified an integer, logicalyalphameric, etec. word). The following
table shows the octal code corresponding to each character (and the code

punched on cards) for the UNIVAC 1108,

58 DU-2b00

Character Octal Code Card Code Character Octal Code Card Code
¢ 00 7-8 K 20 ' 11-2
[01 12-5-8 L 21 - 11-3
] 02 11-5-8 M 22 11-b
03 12-7-8 N 23 11-%
a ok 11-7-8 8 2k 11-4
Space Q5 Blank P 25 117
A 06 12-1 Q 26 11-8
B 07 12-2 - R 27 11-9
C 10 12-3 s 30 e
D 11 12-4 T 31 0-3
E 12 12-5 U 32 0L
F 13 12-6 N 33 0-%
G 1k 12-7 W 3L 0-€
H 15 12-8 X 35 0-7
I 16 12-9 Y 36 0-8
J 17 11-1 z 37 _ 0-9

Character

Octal Code

Card Code

Character

n

w

9

Idle

70
B
-

T3
Th
5
76
T

4-8

11-6-8

12-3-8
0-7-8

0-2-8

60 DUN-2kL00

Thus if we had
IX = 632
Iy = 7
FMIX = 119.96
WRITE (6, 10) IX, IY, FMIX
10 FORMAT (16, I6, E10.4)
the output buffer would contain in octal

IX = 632 Iy =7 FMIX = 0.1200E+03

e
6;5;5g26636205050505056 60756162606012h26o6§55050505...

since, from the above table, 05§ is a blank, 668 is a 614, 638 is a 3y,

628 is a 210 etc. and 119.96 is rounded to 120.0 if only four significant
figures are used; the above‘output would appear as
111632,,,,,T0.1200E+03,, ,,,
Note that if FMIX were -119.96 we would have gotten
101632, ,,,,70.1200E+03, | (4.«
since if a - sign overrides the field specification the number will be prinﬁed
in the specified field without the - sign. TFor this reason it is advissble to
always be sure that a - sign is provided for. Thus, for instance, a F20.1
format is much preferred over a 15X F5.1 format to insure adequate room for
all significant figures (the numbers will appear the same on the output page.
There are 22 six character words set up in the output buffer for each
formatted line of output.
In the above example, instead of writing
10 FORMAT (I6, I6, E10.L)
we could have written

10 FORMAT (216, E10.4)

which would have accomplished the same thing. 2I6 says there are two consecutive

€1 DUli- 2400
integer words, each of six characters.
It is also permitted to have repetition of groups'of words such as
18 FORMAT (Ik, 2Fr10.6, 3(FLk.2, 219, A3), I6)
This FORMAT says there is one Ik, two F10.6, three sets of (one FL.2, two
I9, and one A3) followed by an I6., It could have been written as
18 FORMAT (I4, F10.6, F10.6, Fh;2, I9, 19, A3, Fh.2, 19, 19,
1 A3, Fk.2, 19, I9, A3, I6)
but this is obviously much less convenient.
Recall that earlier we said when a FORMAT is used up and more words
appear in the WRITE call list the FERMAT is‘repeated-wwell that is not strictly

true, what really happens is that control goes back to the next open left

parenthesis and repeats the format from there., For example,
WRITE (6, 25) B, ALE, IM, IX, I2, MM, MN, MZ

25 FeRMAT (F10.6, El2.4, 2(11, 13))
the words IM, IX, I2, and MM complete the FORMAT so that it must start again
for MN and MZ but it goes back to and starts at the (inner) parenthesis
labeled with an arrow,

Reéding is exactly the same as writing; except that instead of trans-
ferring the data from the computer memory to tape cards, or the printer, it
is transferred from tape or cards to memory; a binary read 1s as follows

READ (N) LIST
where, again, N is the logical tape unit from which reading is to take place
and LIST in this case is where the data to be read is stored in memory (in
the location assigned to LIST).

A formatted READ is as follows

READ (N, NF) WeRD

NF FORMAT (FS)

62
DUN-2400

where we read from logical unit N according to format number NF the variable
WORD., The variable appears on logical unit N as a word of format specifica-
tion FS.

For example, if the first six locations of a card contain the integer
196 (right adjusted so that the 1 is in column 4, the 9 in column 5, and the
6 in column 6 of the card) it could be read in and stored in the location
assigned to IB2 by

READ-(S, 20) IB2
20 FORMAT (16)

Note that the integer 196 had to be right adjusted; if it had appeared

on the card as ,,196: the number stored in IB2 would have been 1960 and not

196 since the computer "assumes" that all blanks encountered in reading are

really zero's. (Actually minus O on the UNIVAC 1107 but the result would

still have been 1960 and not 196 as desired.)

Input E and F fields also may appear as input but here the decimal may
be considered to be "built-in". If you recall, 196.2 could not have been
written under an Fk.,l format since this provides for one character to the
right of the decimal and only two to the left (the fourth character belonging
to the decimal itself). However 196.2 could have been read fram a card as
1962 under an Fh.l format since this format says one character is to the
right of the decimal (the 2) and th¢re are three other characters in the field
(196). Thus there is a "built-in" decimal between the 6 and the 2. Believe
it or not, the number 0.031 could alsd be read in by the Fk,1 by writing on

the card .03l where, in this case, by including your own decimal you "override"

the built-in decimal,

63
DUN-240(

You could not read, however, an A8 word since, és you recall, A says
alphameric and each alphameric character requires € binary bits; in a 36 tit
word you can only fit 36/ 6 or 6 alphameric characters so A6 is the iargest
A format permitted for input. One word of caution here-~-all data read in
as alphameric (A format) should be stored as integer numbers or constants
to prevent loss of significant digits in any testing of these data,

An input data card contains 80 columns so each input FORMAT and corre-
sponding READ statement can read up to 80 columns per card. If you were to

READ (5, 10) 4, B, C
READ (5, 20) K, ZM
10 FORMAT (3F10.6)
20 FORMAT (Il, F9.2)
what would happen is that the first card in the card reader (logical unit 5)
will have its first ten characters "transferred" to the memory location
assigned to A, the next ten characters (column 11-20 of the card) "+rans-
ferred" to the memory location assigned to B, and the characters in columns
21-30 will be "transferred" to the memory location assigned to the word C,
(The data is not really "transferred" since it still remeins on the cards
but it is converted to the proper mode (integer, real, alphameric, logical,
etc,) and stored,)

When the next READ statement is encountered, the NEXT CARD is used and
the contents of column 1 of the second card are "transferred" to the memory
location corresponding to the word K. The contents of coiumns 2-10 of the
second card are then stored in the memory location assigned to &M,

Note that when a new READ is encountered, it automatically starts with

6l
DUN-2400

the next card in the card reader (or next record on tape, but morebébouf
records later). Had the first format been

10 FORMAT (2F10.6)
after B was read in and the format restarted, the next card would have been
read in columns 1-10 for C., Thus when reading in data, if a format is
restarted the next card is read even though only one’READ statement may be
involved.

Now that we have seen how to read and write single variables at a time,
the next thing we must discuss is input and'outpuf of entire arrays. One
way to write out an array is as follows

DIMENSION A(5)

WRITE (6, 10) A(1), A(2), A(3), A(k), A(5)

10 FORMAT (5F10.3)

As you can see if this method is used and if you have several thousand or
even several hundred elements to write, you will have to write a rather large
WRITE statement. Therefore a simpler technique has been made avalilable and
that is to use an "implied D6" loop as follows

WRITE (6, 10)(A(I), I =1, 5)
This WRITE statement says, in effect, "write out on logical unit 6, using
FORMAT 10, the array A(I) where I takes on the values 1-5 successively. This
technique may be used to write out arrays having more than one subscript as
well as portions of arrays.

An even greater simplfimtion 1is possible; writing out the above array
could also have been accomplished as follows

WRITE (6, 10) A

65
DUN-2L40C

In this instance the computer "knows" that A is a subécripted variable since
it appears in a DIMENSION statement. Thus, since the computer was not told
which A to write out it is clever enough to write out all five A's.
An example of a perfectly legitimate albeit somewhat complicated WRITE

statement appears below

DIMENSION A(100), B(2, 3, 4), ¢(50, 10), D(50)

WRITE (6, 20) (A(I), I =11, 30), B, ((c(I, J), J = 1, 10),

1 D(I), I=1, 10)
20 FeRMAT (20F5.0/24F5.1/ (11F16,2/))

Notice in the above WRITE statement that each array that is not written out

as a complete array is written out using an index. An array and its index

must contain parenthesis to set off that particular output grouping of the
array. What happens in the above write statement iz that elements 11~30 of
the array A are first written ocut, then the entlre array B ls written out,

The order in which B is written out is B(1,1,1), B(2,1,1), B(1,2,1), B(2,2,1),
B(1,3,1),...,B(2,3,4). Whenever a multi-subscripted array is written out,

the left-most subscript is varied most frequently. This is also the order

in which the array is stored in memory. Note also that the arrays C and D
are written out together, The order in which these are written out is €(1,1),
c@,2), ¢(1,3),...,6(2,10), D(1), ¢(2,1), c(2,2), €(2,3),,..,D(2), C(3,1),..,
,D(3), ¢k,1),...,0(10,10), D(10), Note here that by ineluding the index
gpeeifications in the WRITE statement you autematieally override the order

in whieh the computer naturally would have printed out the array C. Note
elso that by Judieious use of subscripting it posesible to intermingle several

different arrays.

66
DUN-2400

’Something new has suddenly appeared in the FORMAT, that is the / (or
slash). The purpose of tne slash is to tell the computer to start a new
line of output. The use of n successive slashes will resulit in n-1 blank
(skipped) lines appearing on your output page. Thus elements 11-30 of the
array A were written out on the first line, each element having an F5.0
format. The array B was written out or the next line, each element having
an F5.1 format. The arrays C and D were written out on the following 10
lines, each line corresponding to a different velue of the subscript I.
Note that since the (llFlO,Q/) appeared within an inner set of rarentheses,
only this format group was repeated for each line containing the arrays C
and D. The output generated by the above WRITE and FORMAT statements would
appear ag follows
A(11) A(12) A(13) A(1k) A(15) ... A(30)

B(1,1,1) B(2,1,1) B(1,2,1) B(2,2,1) B(1,3,1) ... B(2,3,4)
c(1,1) c(1,2) c(1,3) c(1,4) c(1,5) ... C(L1,2C} D(1)

c(2,1) c(2,2) c(2,3) c(2,4) c(2,5) ... c{2,10) D(2;

6(10,1) c(r0,2) ¢(10,3) c(10,4) c¢(10,5) ... C(10,1C; D(1C)

Before we get into any more specific examples, recall that an E1C. kL
format has the form O.XXXXE+YY, .If we desire to replace the O. by a number
we could accomplish this by using a "scale factor'". For instance if
Y = 6239.1 and we had

WRITE (6, 27) Y

27 FORMAT (E10.4)

67
DUN-2400

we would get
0.6239E+0k
However, we could have placed a 1P scale factor in the format as follows:
27 FORMAT (1PELO.L)
and in this case we would have gotten
6.2391E+03
The nP scale factor in effect says "for all formats following, take the
number stored in memory and multiply its mantissa by 10" and subtract n from
its exponent before writing it out™ (or, for input, take the number being
read in and multiply its mantissa by 1072 and add n to its exponent before
storing it in memory). 1In effect what you are doing is shifting the decimal

n places (to the right on output and to the left on input). Thus the external

representations of the number (on cards, tape, printer, etc.) equals the
internal representation in memory times lOn.

Several facts must be stated about use of the scale factor before we
use it indiscriminantiy. One of these is that it affects numbers written in
f formats as well as those in E formats, The problem here is that F formats
have no expénent to adjust so if we have

22 = ~-3.429600

WRITE (6, 6) 23

& FORMAT (2PF10.k4)

we would get

-342.9600
since the 2P scale factor adjusted 2% by multiplying the mantissa by 102,
we "see" 23 as 100 times what it was when stored in memory. Negative scale
factors are permitted, thus if we had

6 FORMAT (-2PF10.k4)

68 DUN-2400
we would get FOR 2z -0.0343
recalling that we round numbers on output rather than truncate them.

The other thing assoclated with use of scale factors is that they apply

to all number formats following the one in which they first appear.

Thus if we had

X1 = 10.658
X2 = 132,94000
X3 = 6.44970

WRITE (6, 10) X1, X2, X3
10 FORMAT (1PE16.4, 2F10.4)
we would get
1.0658E+01 1329.4000 64,4970
even though the 2F10.4 format did not have a scale factor associated with
it. To prevent such an occurrence, when we no longer want a scale factor
we must "turn it off" or zero it out as follows
10 FORMAT (1PE16.4, OP2F10.k4)
to get
1.0658E+01 132.9400 6.4U97
Scale factors are commonly used to convert from "units" in the resal
world to "programmed" units. For instance; if data in the form of electrical
readings in millivolts are input to a program requiring volts in the calcula-
tions it performs, they could easily be read in under a 3PF10.5 format which
would take the input number in millivolts and store it as volts in memory.
Likewise 1f microvolts were inputted to the same program they could be read
as 6PF10.5 to automatically make the correct conversions. When these numbers

are then written back out, the same format would convert the answer back to

69
DUN-2L400
the input units by making the correct scale factor conversion.
There are several format fields we have not yet mentioned. One of these
is a "blank field". To skip say n spaces, the format nX may be used. Thus

if we have

X =10
Y = 2.0
%= 3.0

WRITE (6, 10) X, Y, &
10 FeRMAT (10X, 2F5.1///)
the output would appear as

lllll'll'l"l-OIIE.O

——————

—-——-4
v:rtfvrflvrr3.0

where , represents a biank space and ——————> represents a skipped line.

The 10X skipped the first 10 spaces and, since there was only one sig-
nificant figure to the left of the decimal point for each number, only 3
characters were needed for each F5.1 field so that 2 additional blank spaces
were filled in on the left side of each of the F5.1 fields., The first slash
in effect said "go to the end of the line", the second slash said "go to the
end of the next line", while the third slash skipped the second line or "went
to the end of the third line". By then the format is used up, so control goes
back to the next open left parenthesis and starts again with 10 blank spaces
and writes out 2 as an FS.i.

Another very valuable format field is the "Hollerith" or "Alphameric"
field nH which in effect says "print out the next n characters just as they

appear".

70
DUN-2400

An example is

ARGI:H0.0.0:0:0.0.0.0:0¢
which would result in ten X's being printed out.
If we had

Til = 7.35

WRITE (6, 23) T11

23 FORMAT (5X, LHT11=,F5.2)

we would get

prar s T11=,7.35
If we instead said

WRITE (6, 23)
with no list (T1l in this case) we would get

1 Tll=
so you see that X and H fields are ocutput list independent.

One last thing before we start going into more examples--the first
(left-most) column on each page is the "carriage control" column to tell the
printer what to do with what follows. If a 1 appears in the carriage control
column, a new page will be started, a O will cause a line to be skipped
(like 2 slashes), a blank space will cause a new line to be started, (like
one slash) and a + will result in retarding the skipping of a line. Formats
that start with X, I, E, F, G, etc. fields which leave the first column blank
will thus result in the format printing on thke next line.

As a typical example, if we wanted to read an array of 100 numbers (10
numbers on each of 10 cards with an F8.2 format) square each of them, and

write out each number and its square, one per line with 40 lines per page

Tl
DUN-2L00

we could do it as follows:

10

20

30

50

DIMENSION A(100)

READ (5, 10) A

FORMAT (10F8.2)

NPAGE = 1

WRITE (6, 20) NPAGE

FORMAT (1HL, 20X, 16HSQUARING:PROGRAM, 40X, SHPAGE:,
13 /// 14X, 6HNUMBER, 14X, GHSQUARE)

NPAGE = NPAGE + 1 |

D6 50 I =1, 100

ASQ = A(I)*A(I)

WRITE (6, 30) A(I), ASQ

FORMAT (2F20.4)

IF ((I .NE. 4O) .AND., (I .NE. 80)}) Ge Te 50
WRITE (6, 20) NPAGE

NPAGE = NPAGE + 1

CONTINUE

STeP

END

Before we explain in too much detail what is happening in this program

we should note that there are two new FORTRAN statements never befcre encoun-

tered. One, the last one, says END; the END statement tells the compiler

that the program it is now compiling has ended and what follows may be a new

program, a new subroutine, or data. An END statement is required to be the

last card of every subroutine or main program to be compiled.

T2
DUN-2400

The STOP statement preceeding the END statement tells the computer that
the program is finished when it reaches this point in executing the program
and its execution should be terminated.

The above program is a ccomplete FORTRAN program and i1f it is fed into
a computer with a FORTRAN IV compiler and is followed by 10 cards containing
data it should produce the square of the data and write them out.

We will now examine the program in meore detail.

First we have our DIMENSION statement which sets up the size of the
array A as 100, Then we READ in the 100 values of A from logical unit 5
(the card reader) under FERMAT number 10, FORMAT 10 says there are 10 numbers
per card, each F8.2 so that ten numbers per card are read and stored in the
real array A for each of the 10 cards.

An alternate and valid approach would have been to read in ten numbers
(one card) at a time, square them, and write them out before reading the next
ten,

After the 100 values of A are read in and stored, an integer variable
called NPAGE (for the page number of the output) is initialized to 1. Then
a heading line is written out by FORMAT 20 which says "1H1 or go to a new
page (by putting a 1 in the carriage control column), skip 21 spaces (1 for
the carriage control column + 20 for the 20X), write out a 16 Hollerith
field giving the name of tke program, skip 40 spaces, write out PAGE and the
page number, skip two lines (3 slashes) and write out NUMBER in columns 15-20
and SQUARE in columns 35-40.

This is what would appear on the first page:

Pivvtsiessirirvetys i SQUARING PROGRAM, ...r111PAGE,,,1

Illl_l?lililllNUMBER'lI'!IIIIIl!W!SQUARE

73
DUN-2400
Note that we do not see the 1Hl since the first colum is used for carriage
control only and is not printed.

After we write out the heading, we add 1 to NPAGE so that the next time
it is used it will say PAGE:::2,

We then set up a D6 loop to process the 100 values of A. First we cal-
culate A squared (ASQ) and then we write out both the current A and A squared
(ASQ) under FORMAT number 30. We then test to see if we are at the end of
a page or not. If not we go to the end of the loop and calculate and write
out the next A and A square. If we havs prbcessed exactly #C or 80 values
of A, we must go to a new page so we write out the heading again { FORMAT
number 20) and increment the page counter by one.

When we have calculated and written out all 100 vaiues of A we STOP.

If we wanted to write the same program but have it read in only one

card at a time and stop when it encountered a zero value of A, we could do

it as followe:
C SQUARING PROGRAM
DIMENSION A(10)
NPAGE = 1.
C WRITE PAGE HEADING
WRITE (6, 20) NPAGE
20 FORMAT (1H1, 20X, 16HSQUARING PROGRAM, 40X, SHPAGE., 13///
1 14X, 6HNUMBER, 14X, 6HSQUARE)

NPAGE = NPAGE + 1

]

b INDEX = Q
C READ INPUT DATA CARD

8 READ (5, 10) A

Th
DUN-2L400

10 FeRMAT (10F8.2)
De 50 I = 1, 10
IF((A(I) .LT. 0.001) .AND. (-A(I) .LT. 0.001)) STeP
C CALCULATE SQUARE AND WRITE OUT RESULTS
ASQ = A(I)*A(TI)
50 WRITE (6, 30) A(I), AsSQ
30 FORMAT (2F20.4)
INDEX = INDEX + 1
IF(INDEX .LT. 4) Ge 76 8
C PREPARE NEW HEADING PAGE ,
WRITE (6, 20) NPAGE
NPAGE = NPAGE + 1
Ge Te 5

END

Here again we have encountered a new card--the "COMMENT" card--with the
alphabetic character C in column one and alphameric information in the remgining
columns. This card is ignored by the computer (as are all cards with a C in
column 1) and may be used to provide information to the programmer. The
above program differs in several other ways from the previous one but it will
5till read in the 100 numbers and square them and write them out with their
square., This program is more flexible than the previous one in that it will
read in as many numbers as there are and square them whether there are 100,

10, 1, 1000, etc. they will all be processed until a zero is encountered;
whereas the first program will only read in 10 cards of 10 numbers each.

Note that in this program the page initialization {(NPAGE = 1) and the

DUN-240C

heading WRITE statement must be placed first (after the DIMENSIGN statement)
since we lcop back to the beginning ©: 1 read a rew card after every tenth
number and we do not want to reinitialize the page number and go to a new
page with a new heading after reading every card (each 10 values of A).

Note also that we have a new in'~ger variable here, 1.[DEX, which is
used to signal when 4O lines have been printed on a page and a new page
should be started.

We now have a DO loop for only the 10 values of A currently in memory
and we first test A to see if it is "zercd' or not. If A is "zero'" we stop;
if not, we calculate A squared and print them out. Note that we don't
really test to see if A = 0.000000000 since A is nct an integer and roundoff
errors may not say this is true even if a "zero" A were read in. Only integer:
should be tested for equality in logical tests. However, we do the same thing
with

IF((A(I)) .LT. 0.001) .AND. (-A(I) .LT. 0.001)) STeP
since.A was read in as an F8.2 so all values of A that are not zero will be
read in and stored as greater than or equal to 0.0l or less than or equal
to -0.01 since that is the minimum size number that is consistent without
built-in format. (It is true that one could override our built-in format
by placing a positive number as small as .0000001 or a negative number as
large as -.000001 in the F8.2 field by punching in the decimal point, but it
was assumed that the F8.2 wouwld be adhered to. If this assumption is not
valia, one could test for ((4 .LT. 0.0000001) .AND. (-A .LT. 0.000001)) to

assure stopping for zero's and only zero's assuming only a 1 character maxi-

mum roundoff error.)

76
DUN-2L400

If A is not "zero" we proceed as before and square it and write it out.
After we have processed each ten A's we test for the end of the page (INDEX
= 4), If we have 30 or fewer A's on a page we read a new card (GO T 8).

If we have 4O A's on a page, we put a heading on a new page and reinitilize
our page counter {36 T® 5).

If in the above program, we started the data pack with a card containing
a case title which we wished reproduced as part of the page heading, and if
the title was found in columns 1 - 60 of the first card we read, our program
could start as follows

DIMENSION A(10), NTITLE(10)
NPAGE = 1
READ (5, 1) NTITLE
1 FORMAT (10A6)
WRITE (6, 20) NTITLE, NPAGE
20 FORMAT (1H1, 5X, 16HSQUARING:PROGRAM, 10X, 10A6, 10X, SHPAGE:I3///

1 14X, 6HNUMBER, 14X, GHSQUARE)

Now whenever we write out under FORMAT 20 we must include in the WRITE
list not only the page number (NPAGE) but also the 10 word case title (NTITLE).
Note that the maximum alphameric word size, A§, was used. We could also have
written 12A5 and dimensioned NTITLE (12) but this required two more words of

storage (NTITLE (11) and NTITLE (12)). If we did use the latter approach

we would have to both READ and WRITE the title as 12A5; If we READ the title

as 12A5, the right-most character of each word (the sixth position) will

DUN-2400

contain a blank (A formats are left-adjusted whereas F; E, G, I, L, or ©

formats are right-adjusted) so that if we then write out TITLE as 12A6 or

1046 we would get an extra blank space printed out every sixth character and,
in the latter case, only 10/12 of the title.

It is important to remember that for A formats, the unfilled portion
of the field is placed on the right (the word is left-justified) whereas the
reverse 1s true for other formats.

In the above example, we stored the case title in an array called NTITLE
and this information was available in memory for use at any time. There is
a second way of reading and storing alphameric data in memory and that is
with the Hollerith field.

Although this approach is not commonly used, an example would be:

READ (5, 20) X
20 FORMAT (1OHAAABBBCCC=F10.2)
X=X+ 3.6
30 WRITE (6, 20) X
where the card being read looks like
+ 1 DELTA-X=,,,,103.62
the portion ,,DELTA-X= will be stored in 1OHAAABBBCCC= and 103.62 will be
stored in the memory location corresponding to the variable X, As long as
nothing further is read in under FORMAT 20, 1OHAAABBBCCC= will contain the
information ,,DELTA-X= and when statement 30 (WRITE (6, 20) X) is executed
the output will appear as
1 1+ DELTA-X=11+1107,22
However, if after we said X = X + 3.6 we had also included

READ (5, 20) Y

78
DUN-2400
where it read
ZILCH/X+Y=y+:,439.16
and then wrote statement 30 we would have gotten out
ZILCH/X+Y=,,,,107.22

Thus, although this technique is available, the usual method for reading,
storing, and writing alphameric information is with A formats and by storing
data in arrays father than in Hollerith fields.

One can WRITE or READ toc or from, magnetic tapes, discs, and drums as
well as the printer, card reader, and console typewriter by merely inserting
the correct logical unit designation in the WRITE or READ statement., It is
usually also possible to WRITE or READ formatted information to and from
main memory and to "re-read" something using the software package available
at your computer installstion.

For instance, the 1108 operating system "knows" when a WRITE or READ
referencing logical unit -4 is encountered, the user is talking about main
memory or the I/© buffer (the intermediate storage "buffer" through which all
input and output passes between memory and the I/O device). Thus if you read
in a card and desire to reread that particular card under some other format,
it may be done as follows:

DIMENSION X(13), IMY(14), xmy(T)
10 FeRMAT (I2, 1346)
20 FORMAT (I2, 8X, TF10.0)
30 FORMAT (I2, 8X, 14Ih)

KY = -4

90 READ (5, 10) IX, X

79
DUN-2400
Ge Te (10C, 1i0), IX
100 EEAD (KY, 20) IX, XMV
Ge Te 120

11C READ (KY, 30) IX, iMY

Eere the card is first read and the integer In columns - end 2 is tested
to see if it = 1 (meaning the card contains 7 real variab!es and shouid be
read by statement 100) or if it = 2 (meaning the card contains il integer
variables and should be read by statement 110), The card is then "reread"
by the proper statement utirizing the appropriate FORMAT.

Another technique available, is that of storing the FORMAT itself in an
array in a DATA statemént (more atout DATA statements later) or reading it

in just before you need it.

If you are not certain what formet will be used to read in data, the

format itself may be read in just before the data is. For examp.e

DIMENSION IX (12)

READ (5, 10) IX

READ (5, IX) X, Y

10 FORMAT ({12A6)
Here we first read in the format {under which we will then read X and

Y) and store the forma* in the array called IX., The corresponding data cards
could sppear as follows

(F10.6, F5.0)

....933216.1385

80
DUN-2L00

and X would contain 0,933216, Y = 1385,

This permits the user to choose his own format specifications each time
he runs the program,

Before we leave the subject of input and output we should spend a little
time talking about how the data is represented on the output medium. We
already saw how input records on cards contain 80 characters for 80 columns
as a maximum and how output for the printer contains a maximum of 132
columns or 22 words (each 6 characters). We also mentioned how all infor-
mation is transferred as either binary or field data (Hollerith or alpha-
meric) in the I/6 buffer.

Magnetic tape usually contains seven "tracks" or channels. Six of these
are used to record the BCD code (see the table on page luin section I) or the

binary number and the seventh contains the "parity check" bit. For example

X=1736.2
C GlEEEO© QO EE
B)
Al }
8 } ‘
i b
21 B |
A (N
T
One Frame or Character

Where there is a 1l-bit to represent the presence of a 1 in the table
in section I. The parity channel contains a l-bit if the tape is gxggxparity
and the number of l-bit's in the other 6 channels is odd (eg. for =, 1, 7, .,
and 2) it contains a 1-bit if the tape is odd parity and the number of 1 bits
in the other six channels is even (eg. for X, 3, and 6). A tape is either

EVEN or ODD parity but not both. Thus for even parity, only the E's would

81
DIN-2400
contain a 1-bit (the ©'s would be blank) and for odd parity the ©'s would
contain 1~bits and the E's would be blank.

Each character or number is a FRAME on the tape and each FRAME is checked
for correct parity upon reading to catch transmission errors.

A "logical record” is that which is read or written by one READ or
WRITE statement., A logical record may contain many frames or characters.

It may also contain many lines (at 22 words of output per iine) of data or
many cards but it is classed a "logical" record if it is read or written
by a single statement (even if the statemenf contains many implied De's).

A "physical" record is the way a record is grouped on tape or on the
printer, Binary records are written out in blocks of 253 words (plus 2
control words and a checksum word) or less. There is a 3/L inch gap of
blank tape between each physical record. BCD or alphameric physical records
are written out in blocks of 22 words since there are 22 words per line of output.
Thus if you write out logical records of several hundred or thousand words

each, the physical record(s) of which they consist are limited to 22 (if

BCD or Binary Coded Eecimal) or 253 (if binary) words, with each physical
record separated from its neighbor by a 3/4% inch end of record gap (blank
space) on tape.

There are two control words per binary physical record (256 words total
maximum per block) as mentioned before. One control word is at the start
of the block and the other is at the end of the block. The left half of the
control word tells how many words are in the block and the right half of the
control word contains the block number and a flag for the las®t block of the

logical record.

g2
DUN-2400

The checksum says how many 1 bits were punched in that physical record.

A FILE is a group of one or more logical records concerning a particular
subject on one or more tapes,

To camplete the discussion of input-output, there are three more FORTRAN
statements that should be discussed. These all deal with tapes, drums, or
discs. They are REWIND, BACKSPACE, and END FILE.

REWIND means '"position the tape at the load point or start'. When your
computer encounters the statement

REWIND N

it will rewind the tape on logical unit N to the starting point (marked by

f

a piece of reflecting tape on the magnetic tape),
BACKSPACE N

means rewind logical unit N back one logical record (where a logical record

was a record generated by one read or vne write statement and could be composed
of one or more physical records), Thus after you read or write a record,
you may BACKSPACE and read or write the record again.
END FILE N

causes a logical END OF FILE to be placed on the tape on logical unit N; an
END OF FILE is a gap that is about 3 inches long and it signals the end of
a file., ZEvery output tape must have an END FILE placed on it or a sentinel
signalling that the file continues on another tape, so that upon reading or
printing it you stop at the end of your data records and don't attempt to
read or print whatever is on the tape following your data.

The usual procedure followed when using output tapes or input tapes is

to first REWIND them to get them at the starting point. When output tapes

€3
DUN-2L400

are finished they are marked with an END FILE and theh all tapes are rewound
again so they may be removed by the computer operator.

If oné is using a preselected area of disc or drum memory the REWIND
instruction will usually position you at the start of that area. BACKSPACE
does the same thing on drums or discs as it does on tape--it positicns you

at the start of the last logical record you have read or written.

&k
DUN-2400

SECTION V. FUNCTIONS AND SUBROUTINES

One of the most important features available in FORTRAN programming is
that of being able to utilize previously written programs and routines with-
out having to completely rewrite each one whenever it is needed in your
particular program.

Many often-used mathematical functions already exist and are provided
by the FORTRAN compiler (or processor) or exist in a library. Other functions
may be constructed by the programmer himself..

The simplest type of function is the BUILT-IN or INTRINSIC function
which is part of the FORTRAN processor and is automatically coded (in line)
in your program by the compiier during the compilation process. There are
about thirty such functions usually available in the FORTRAN IV language. A
table of the typical BUILT-IN functions appears on the next page (these are
all available in the UNIVAC 1108 EXEC II FORTRAN Processor).

Note first that the FORTRAN function name obeys tne same rules as a
FORTRAN varilable name--it is limited to six characters, it must start with
an alphabetic character; I, J, K, L, M, or N means the result is in the
integer mode. Note also that functions are quite specialized with regard
to input and output modes--special functions exist for real, integer, double
precision, and complex numbers.

A typical example of the use of‘such an internal function is to recall
an example in the last section in which we wished to test a variable, A(I),
to see if it's absolute value was less than 0,001, To do this we used the
logical IF statement

IF((A(I) .LT. 0.001) .AND. (-A(I) .LT. 0.001)) STEP

UNIVAC 1108 FORTRAN

DUN~2400

a double-precision argument.

FORTRAN No. Mode of
Name Args. Function Argument Function
ABS 1 Determine the absolute value of Real Real
the argument.
IABS Integer Integer
DABS D-P D-P
AINT 1 Truncate: eliminate the frac- Real Real
tional portion of the
argument,
INT Real Integer
DINT D-P D-P
AMBD 2 The expression X-(X/Y)*Y is com- Real Real
puted where X is the first and Y
the second argument. (Z) denotes
the integral part of Z.
MeD Integer Integer
AMAXO > 2 Select the largest value, Integer Real
AMAX1 Real Real
MAXO Integer Integer
MAX1 Real Integer
DMAX] D-P D-P
AMINO >2 Select the smallest value. Integer Real
AMINL Real Real
MINO Integer Integer
MINL Real Integer
DMINL D-P D-P
FLEAT 1 Convert from integer to real. Integer Real
IFIX 1 Convert from real to integer. Real Integer
DBLE 1 Convert from real to double- Real D-P
precision.
CMPLX 2 Convert two real arguments to one Real Complex
complex number,
SIGN 2 Replace the algebraic sign of the Real Real
first argument by that of the
second.
ISIGN Integer Integer
DSIGN L D-P D-P
DIM 2 Positive difference: subtract the Real Real
smallest of the two arguments from
the first argument.
IDIM Integer Integer
SNGL 1 Obtain the most significant part of

D-P Real

86

DUN-2400
FQRTRAN No. of Mode of
Hane Args. Function Argument Function

REAL 1 Obtain the real part of a com- Complex Resl

plex argument,
ATMAG 1 Obtain the imaginary part of a

complex argument. Complex Real
CeNJG 1 Obtain the conjugate of a com- Complex Complex

plex argument,

which in effect says if A(I) is less than 0.001 (all negative numbers, 0.0,
and positive numbers smaller than 0,001 AND -A(I) is less than 0.001 (all
positive numbers, 0.0, and negative numbers larger than 0.001) then STeP.

Had we known about BUILT-IN functions at that time we could have used
the ABS function (which calculates the absolute value of its argument) and
written the test as

IF(ABS(A(I)) .LT. 0.001) STeP

In this example, the FUNCTION is ABS and the ARGUMENT is A(I). Both
are in the real mode, The argument of BUILT-IN functions may be a variable
name (as above), a constant, or any arithmetic expression (involving +, -,
/, %, ¥% operating on arithmetic variables or constants).

For example,

IS = IFIX(A%¥C/D+T.L3%(C+D)¥*3)-2

is a valid use of the IFIX function which converts its real argument
(A*¥%C/D+7.43%(C+D)**3) into integer form.

The FUNCTION is normally used as part of an arithmetic expression and

it supplies a single valued solution to the argument(s) it is provided.

The BUILT-IN function names may not be used for variable or constant

names in the sanme program in which they are referenced as functions; they

(92
-3

DUN-2400

may be used as variables or constants provided they are mentioned in a TYPE

statement (see section II page 32) and are not used as functions. For

example, the variable ABS could not be used in the program above which used
the function ABS, but it would be perfectly valid to say

REAL AINT

AINT = ABS(A(I))
in the program where ABS is a BUILT-IN function and, although AINT is also
on the list of BUILT-IN functions, AINT is a real variable defined by the
REAL type statement (which tells the compiler AINT is not being used as a
function but as a variable this instance). It is then NOT permitted to use
the function AINT at any place in the above program.

A second type of function commonly used is the EXTERNAL or EXTRINSIC
function. There are two types of EXTERNAL functions--those found in a library
provided by the installation and those programmed by the programmer himself.

The table on the next page lists the EXTERNAL library functions available
in the UNIVAC 1108 EXEC II FORTRAN library.

Note again that names are limited to 6 alphameric characters and must
start with an alphabetic character as for FORTRAN variable names. Also,
again, the evaluation or result of the function is a single answer provided
in the place of the function name in an arithmetic statement.

EXTERNAL functions are not coded in-line (as are BUILT-IN functions)
but are transferred to at the time of execution when control passes to them
in a statement. As a result, execution of EXTERNAL functions is not as fast

as execution of BUILT-IN functions.

88

DUN-2400
UNIVAC 110 8 FORTRAN
No. of Type of

Args. Function Reference Argument PFunction
1 Trigonometric Sine: SIN (X) Real Real
DSIN (X) D-P *D-P

CSIN (X) Complex *Complex
1 Trigonometric Cosine: cos (X) Real Real
DCOS (X) D-P *D-P

ccos (X) Complex *Complex
1 Trigonometric Tangent: TAN (X) Real Real
DTAN (X) D-P *D-P

CTAN (X) Complex *Complex
1 Trigonometric Arcsine: ASIN (X) Real Real
DASIN (X) D-P *D-P
1 Trigonometric Arccosinc: ACOS (X) Real Real
DACOS (X) D-P *D-P
1 Trigonometric Arctangent: ATAN (X) Real Real
1 DATAN (X) D-P *D-P
2 ATAN2 (X3 ,Xp) Real Real
2 DATAN2 (Xp,Xp) D-P *D-P
1 Hyperbolic Sine: SINH (X) Real Real
DSINH (X) D-P *D-P

CSINH (X) Complex *Complex
1 Hyperbolic Cosine: COSH (X) Real Real
DCOSH (X) D-P *D-P

CCOSH (X) Complex *Complex
1 Hyperbolic Tangent TANH (X) Real Real
DTANH (X) D-P *D-P

CTANH (X) Complex *Complex
1 Exponential (e*): EXP (X) Real Real
DEXP (X) D-P *D-P

CEXP (X) Complex *Complex
1 Natural Logarithm (LOGe*): ALOG (X) Real Real
DLOG (X) D-P *¥D-P

CLOG (X) Complex *Complex

¥ NOTE: If the result of the function is double precision or complex the
function neme must be declared in a type statement,

89

DUN-2400
No. of Tyve cf
Args., Function Reference Argument Function
1 Common Logarithm (LOGygX): ALOG1O (X) Real Real
DLOGLO (X) ’ D-P *D-P
1/2
1 Square Root (X) SQRT (X) Real Real
DSQRT (X) D-P *D-P
CSQRT (X) Complex *Complex
1 Cube Root (x)l/3 CBRT (X) Real Real
DCBRT (X) D-P *D-P
CCBRT (X) Complex *Complex
1 Absolute value of a CABS (X) Complex Real

complex number

2 The expression Xl-(Xl/X g DMOD(XlXQ) D-P *D-P
Xo is computed, where(Z%
denotes the integral part
of Z.

¥ NOTE: If the result of the function is double precision or complex the
function name must be declared in a type statement.

90
DUN-2400

Since the FORTRAN compiler itself does not provide the EXTERNAL function
during compilation but provides only & transfer address to where the function
will be located during execution, the compiler DOES NOT KNOW whether the
function is COMPLEX, DOURBLE PRECISIGN, or REAL so it assumes that it is REAL
and provides for only one answer after the function is evaluated. Therefore,

to avold getting only half of the answer, EVERY TIME A DOUBLE PRECISION OR

COMPLEX EXTERNAL FUNCTION IS USED, THE NAME OF THE FUNCTION MUST BE INCLUDED

IN THE APPROPRIATE TYPE STATEMENT so that the compiler will provide for a
two-word answer,
For example,

CEOMPLEX A, B

}a = CSQRY B)

will result in only the real psrt of B being placed in A even though BOTH

A and B are defined as complex. To work properly, ycu must have

COMPLEX A, B, CSQRT

A= CSQRT(B)

As for BUILT-IN functions, the argument of functions may be variables,
constants, or arithmetic expressions (including other functions).
The following statement is perfectly valid:
A = SQRT(AL6G(SIN(ABS(X))+CeS(REAL(B))))

where B was defined in a COMPLEX type statement. (Note, for BUILT-IN or
INTRINSIC functions, the name of the function need not be stated in a TYPE

statement if it is complex or double precision since the compiler is

91
DUN-2400

providing the function and it knows whether the answer requires two words
or not. It is only functions that are provided EXTERNAL to the compiler that
must be defined in TYPE statements.)

The above statement will cause the cosine of the real part of B to be
added to the sine cof the absolute value of X; the square root of the loge of
this sum will be stored in A.

A third type of function, the STATEMENT FUNCTION, is one constructed by
the programmer as a part of his program,

As before, the FORTRAN name of the STATEMENT FUNCTION must be limited
to six alphameric characters, beginning with an alphabetic character. The
function name may not be the same as any constant or variable name in the
same program. A STATEMENT FUNCTIGN is limited toc a single arithmetic or
logical statement and only a single answer is provided. All logical STATE-
MENT FUNCTIGN names must appear in LOGICAL type statements.

The STATEMENT FUNCTIEN precedes the first executable statement of the

program and 1t can reference any previously defined STATEMENT FUNCTIGN or a

BUILT-IN or EXTERNAL function.
Examples of STATEMENT FUNCTIONS are:
FXY(X,Y) = X**2 + EXP(Y*X)
R(S) = 6.48%5 + 3.2E-5%5%5 + 1,9E-11%S*S*S
BYK3(P,Q,B) = P*B*R(Q)¥*3
Note that the last STATEMENT FUNCTION (BYK3) referenced the second (R).
We could also have the following logical STATEMENT FUNCTIGNS:
LOeGICAL LFI2, A, B, C, D, LFI3, L3

INTEGER E, ¥, G

92
DUN-2L00

LFI2(A, B, C, D) = ((.NOT. A .AND. C) .OR. (B .AND. D))

LFI3(A, B, E, F)

((A .AND. B) .OR. (E .GT. F))

L3(E, F, ¢) = ((E .CT. F) .OR. (E .LE. G))

The arguments of the functions IN THE FUNCTION STATEMENT may not be
subscripted variables even though the actual arguments used in the reference
may be subscripted. Thus

AB(X, Y) = A¥X + B¥Y®*2 + X*Y
may be referenced by
W73 = E*AB(F(3), G(I))*SQRT(G(I+1))

During execution, the value of F(3) is used for the dummy variable X '
and G(I) is used for the dummy variable Y in the FUNCTION STATEMENT for the
evaluation of AB. However, use of

AS(8(1), x(2)) = axs(1) + B*xX(2)**2 + s(1)*xX(2)

as a FUNCTION STATEMENT is not permitted.

There is one last function, and that is the FUNCTION SUBPREGRAM which

is compiled exclusively of your main or referencing program. It is not a

part of the referencing program like STATEMENT FUNCTIONS, and it likewise

is not supplied by the compiler (like BUILT-IN functions) or the allocator
(1ike EXTERNAL functions). It is referenced in the referencing program

exactly like EXTERNAL functions (if COMPLEX, DOUBLE PRECISI®N, or L6GICAL,

it's name must be placed in the corresponding TYPE statement in the referencing
program), It differs from previously mentioned functions in that it's
arguments may be any arithmetic or logical expression, array names, statement
numbers preceeded by the character $, or nH....- a Holleritn (or alphameric)

field.

O
(VY

DUN-2L00

The FUNCTION SUBPROGRAM itself must nave its first statement say
TYPE FUNCTI6N F(A)

wnere TYPE is REAL, INTEGER, LOGICAL, DeUBLE PRECISIGN, or COMPLEX. REAL
and INTEGER need not be used if tne naming rules (I, J, K, L, M, or N for
integers) are adnered to, but the others are required. F is tne name of tne
function and again it must be six or fewer alpnameric characters starting
witn an alphabetic character. A is the argument(s) of the function--the
arguments are not limited in number, but they must be separated by comma's;
they may be array names or non-subscripted vériable names. If any of the
arguments are array names, they must appear in a DIMENSION statement in the
subprogram (the DIMENSION statement must preceed any reference of tue array
name in an executable statement). For FUNCTION (and SUBROUTINE) subprograms
only, the DIMENSIOGN statement used may be of a special form in which the
size of the array is defined not by an integer constant (as is usual) but by
nonsubscripted integer variables (provided both the array name and all of the
variable subscript names are arguments of the subprogram).

For example,

REAL FUNCTION F1(A, Il, I2)
DIMENSION A(Il, I2)

The program which references the FUNCTION SUBPROGRAM F1l must also con-
tain a DIMENSI®N statement which specifies the maximum dimensions of the
array A. The integer variables Il and I2 cannot appear on the left side of
an arithmetic or logical statement in the subprogram (i.e. they cannot be
changed by the subprogram).

As before, only a single value is returned when the function is evaluated.

DUN-2400

Taus, the function itself must appear at least once on the left side of a
logical or an arithmetic statement.

An example of use of sucn a FUNCTISN SUBPROGRAM would be to evaluate a
number factorial (e.g. 6! = E6*5xU*3%2%¥1) The complete FUNCTI6N SUBPROGRAM
to evaluate N! would be

INTEGER FUNCTION FACTRL(N)

10 M= M¢I

RETURN

END
In this example we again see the END statement which tells tne compiler that
the particular routine is finished. There i1s also & new statement introduced
here for the first time and that is the RETURN statement. RETURN tells the

computer to go back to the place in which it was referenced in the program

which referenced the FUNCTION. RETURN marks tne logical end of the FUNCTION
subprogram, whereas the END statement marked the physical end of the FUNCTIGN
subprogran,
The factorial function may then be referenced by a main program by
INTEGER FACTRL
X = Y*Z(I)**2/FLeAT(FACTRL(I))
note that we converted the integer answer provided by the FACTRL function
subprogram to a real number by using the BUILT-IN function FLOAT.

An additional example would be a main program which says

DUN-2400

DIMENSIeN A(100, 100)
BX = PSUM(A, I, J, K, L)

END
and its FUNCTION SUBPROGRAM for PSUM which is as follows

FUNCTION PSUM(X, M1, M2, I, J)

DIMENSION X(ML, M2)

XXx(3) = z*ALed(z)

PSUM = XxXxX(X(I, J))

RETURN

END
Note here we used I and J in the main program (corresponding to ML and M2
in tke FUNCTISN SUBPROGRAM) to define the size of the array X (corresponding
to A in the main program). The dimensions to be used for the array X were
thus set up at "object time" or when the FUNCTION subprogram is executed by
the computer. Note that the FUNCTION SUBPROGRAM PSUM contains the STATEMENT
FUNCTION

XXX(2) = B*ALOG(Z)
Note also that we did not have to say

REAL FUNCTIGN PSUM(X, ML, M2, I, J)
since by the naming convention PSUM is a real name.
Besides alphameric information and logical variables, there is one addi-

tional argument possible for a FUNCTION SUBPReGRAM; that is a FORTRAN state-

ment number (in the referencing program) preceeded by the character §$.

DUN-2400

For example,
DIMENSI®N A(100, 100)

BX = PsuM(A, I, J, K, L, $100, $120)

100 WRITE (6, 10)

120 ﬁRITE (6, 20)
END

Wherever a $N appears in the reference, that argument must be a $ in the

subprogram. Thus we must have
FUNCTION PSUM(X, ML, M2, I, J, $, $)

The reason for this option is that in the event of an error; or for some
other reason, you may not wish to return from the FUNCTION SUBPREGRAM to the
refefencing program in the exact place you left (as you would when you reached
the RETURN statement). Thus a special type of RETURN statement is permitted
which looks like

RETURN N
where N is an integer constant or integer variable and corresponds to the
Nth argument in the argument list. (The Nth argument must be a $ and it
must correspond to a $NS in the referencing program where NS is a valid
FORTRAN statement number in the referencing program). Thus, in the above
example we could have

RETURN 6

7

DUN-2400

or
RETURN 7
where the first (RETURN 6) refers ‘o FORTRAN statement number 100 and the
second (RETURN T7) to statement number 120 in the main program.
A typical use in this example would be as follows:
DIMENSION A(100, 100)

.

BX = PSUM(A, I, J, K, L, $100, $120)

100 WRITE (6, 10)
10 FORMAT (1Hl, 10X, L4OHR6EW:NUMBER:IN:ARRAY+A:+IS:0UT:6F SEQUENCE)
STeP
120 ﬁRITE (6, 20)
20 FORMAT (1H1, 10X, 43HCOLUMN,NUMBER,IN,ARRAY,A,IS,6UT,6F, SEQUENCE)
STep
END
and the FUNCTION SUBPROGRAM would be
FUNCTION PSUM(X, ML, M2, I, J, $, $)
DIMENSION X(ML, M2)
XXX(%) = Z*¥ALOG(R)
IF({I .0T. Ml) .6R. (ML .GT. 100)) RETURN 6
IF((J .GT. M2) .eR. (M2 .GT. 100)) RETURN 7
PSUM = XXX(X(I, J))
RETURN

END

O
o

DUN-2L00

Here if onz cf the integer variables corresponding to the row number of
the matrix A is Tad, ve use the error returr *o statement 100 in the main
program. ILixewics:, 1f a colnm variable s tad we use the errcr return to
statement 120 of the main program. If both the row and cclumn indices are
valid, we caliculat=z XIJ»loge le and return to the place wve left tne main

program (to store A

K1, lcge AKL in the memory location assigned to the

variable BX).
There is one additional type of RETURN statement and that is
RETURN O
where O is the integer constant zerc. The execution of this statement results
in a transfer to the system error program, The RETURN O is the only RETURN
statement permitted in a main program.

FUNCTIeN SUBPRGGRAMS are one means of transferring control from the main
program to another "homemade'" routine. A second means of transferring control
is by use of a SURRGUTINE SUBPROGRAM.

A SUBRQUTINE is very similar to a FUNCTIGN SUBPROGRAM. The major dif-

ference is that the latter results in only a single value solution and SUB-

ROUTINES may produce many values Tor answers, The SUBRGUTINE returns the

J

value(s) it calculates only *hrough its arguments (or through variables in

-~

COMMON biocks, but more about that later),

No specific valu=s or answer is associated with the subroutine name as
ie the case for all types of FUNCTIONS.

A SUBREGUTINE is not referenced by being a part of an arithmetic or logical
statement tut only by the foliowing FERTRAN statement.

CALL S(A

o1¢}
.

DUN-2400

where S is the subroutine name (again--a maximum of six alphameric characters,
the first being alphabetic) and A are the arguments, The arguments may be,
as before for FUNCTION subprograms, any arithmetic or logical expression,
an array name, a statement number preceeded by the character $, or a group
of Hollerith characters (nH...).

The actual subroutine must start with the statement

SUBROUTINE S(A)

and must contain at least one RETURN statement and end with an END statement
as for FUNCTIGN subprograms.

Error returns are permitted in subroutines as in FUNCTION subprograms.
Dimensions may be specified by variable integers for SUBROUTINES as well as
for FUNCTION subprograms.

A main program may call any number of SUBREUTINES and each SUBROUTINE
itself may call any number of SUBROUTINES or FUNCTION subprograms.

We could have easily used a SUBROUTINE in the place of the FUNCTION
PSUM in the earlier example. If we had done so the main program would appear
as follows:

DIMENSION A(100, 100)

CALL PSUM(A, I, J, K, L, $100, $120, BX)

100 WRITE (6, 10)
10 FORMAT (1lHL, 10X, 4OHREW,NUMBER:IN:ARRAY . A,IS:6UT:6F SEQUENCE)

STeP

[
(&}
(&)

DUN-2400

120 WRITE (6, 20)
20 FORMAT (1H1, 10X, 43HCELUMN,NUMBER:IN:ARRAY A,IS:6UT:6FSEQUENCE)

STeP

END
and the subroutine would appear as follows

SUBREUTINE PSUM(X, ML, M2, I, J, $, $, Y)

DIMENSION X(ML, M2)

XXX(2) = Z*ALOG(Z)

IF((I .GT. ML) .6R. (ML .GT. 100)) RETURN 6

IF((J .GT. M2) .6R. (M2 .GT. 100)) RETURN 7

Y = XxX(X(1, J))

RETURN

END

Note the difference between SUBRSUTINES and FUNCTI®ON subprograms.

SUBROUTINE nemes are not on the left side of any arithmetic statement within
the subprogram; SUBRGUTINE names are referenced only by the CALL S(A) state-
ment and their names are not part of arithmetic or logical statements within
the referencing program; to return the answer to the referencing program, the
variable that contains the answer (BX in this case) must be in the calling

list of arguments. We could have used SUBROUTINE PSUM to return not only

the value of BX but also that of many other variables, whereas the FUNCTION
PSUM could only return a single answer stored as the name of the FUNCTION

(i.e. PSUM).

DUN~2L400

Until now, we have discussed only EXTERNAL FUNCTION and SUBROUTINE
subprograms (those which are compiled separately from the main program) in
which the first line of the compilation must be a FUNCTIGN or a SUBREUTINE
statement. For the most part these are the most common type. However, it
is possible to have INTERNAL FUNCTIONS cr SUBROUTINES which are referenced
in the usual manner by the main program, but which follow directly after the
last statement of the main program.

C MAIN PROGRAM STARTS HERE
CALL X(Y, 2)
W =Y+ F3(Z)

SUBREUTINE X(A, B)

CALL R(A)
SUBROUTINE R(P)
FUNCTI®ON F3(Q)

END
The compiler assumes that all statements between
SUBRGUTINE X(A, B)

and

SUBRGUTINE R(P)

102

DUN-2L00

belong to SUBRGUTINE X. Likewise the statement
FUNCTION F3(Q)
marks the end of SUBROUTINE R and
END
is the end of the entire set of programs and is the only END statement in
this set of programs,

As mentioned earlier, this technique is not often used since INTERNAL
SUBROUTINES and FUNCTION subprograms may be referenced ggiz by the main pro-
gram or other internal subprograms and not by external subprograms. Also,
in the event of an error, a single subroutine cannot be re-compiled separately.

Many programs are written having very small main programs which reference
many small subroutines. This technique permits compilation and debugging of
small segments of the problem at a time and facillitates changes in and
proliferation of specialized routines. In many programs the main program

has no executable arithmetic, logical, or ;/O statements--it first calls a

special SUBRGUTINE to read in data, it then calls a SUBREUTINE to test the
input data, then SUBROUTINES are called to perform the desired calculations,

and finally a SUBROUTINE is called to write out the results.

103
DUN-2L400

SECTION VI SPECIFICATION AND DATA STATEMENTS

Specification statements tell the FORTRAN compiler how data are to be
stored in the computer. Since these statements do not result in actual

instructions that the computer executes when it runs the program, these are

called "non-executable" statements. We have already discussed two of the
four specification statements, the FORMAT and DIMENSION statements.

The FORMAT statement instructs the computer how to prepare and decode
the output and input information, respectiveiy, that goes to and from the
I/0 (input/output) channels and main memory. The FORMAT statement may appear
at any place in the progran.

The DIMENSION statement specifies the maximum size of each array so
that the correct amount of storage for each variable is properly allocated.
The DIMENSION statement must appear before any executable statement of a
main program, function subprogram, or subroutine.

As mentioned earlier, the dimensions of a variable may alsc be specified
in a TYPE statement (and, as we shall soon see, by a COMMON statement);
however, the dimensions of a variable may only be specified once in either
a DIMENSION, TYPE, or COMMON statement. A variable dimensioned more than
once will be considered to be multiply-defined -- a condition the compiler
will not tolerate even if both definitions say the same thing.

The EQUIVALENCE statement, the third type of specification statement,
does just what it says, it makes two or more variables (or arrays) equivalent
(but NOT equal). This permits the multiple use of storage locations within

any separately compiled FORTRAN program or subroutine. The EQUIVALENCE

10k |
DUN-2400

statement is of the form
EQUIVALENCE (Variable Names), (Variable Names),....
where the variable names within any one set of parentheses share the same
storage locations. The variable names within the parentheses are separated
by commas, and each pair of parentheses is separated by commas.
An example would be
DIMENSION F(5), G(10), H(8)
EQUIVALENCE (A,B,C), (F(3), G(7), H(1))

A =20,0

1

B=A+ 6,0
2l = (A + 2,0)
C=L54.0
22 = (A + 2.0)

Here we have A, B, and C all assigned to the SAME storage location in
memory. We also have F(3), G(7), and H(1) all stored in the same location.
(Note that the EQUIVALENCE statement containing the arrays F, G, and H had
to follow the DIMENSION statement in which they were defined.) As a result,

F(4), 6(8), and H(2) are also stored in the same memory location. In fact,

F, G, and H are stored as follows (assuming CG(1) is in location x)

STORAGE LOCATION

X G(1)
x+1 G(2)
x+2 G(3)
x+3 G(h)

x+h F(1) G(5)

105

DUN-2400

X+5 F(2) — ¢(6)

x+6 F(3)— o(7)———— H(1)
x+ 7 F(4) a(8) H(2)
x+8 F(5) c(9) H(3)
x+9 G(10)———— H(4)
x+10 H(5)
x+11 H(E)
x+12 H(7)
x+13 | H(8)

Note that if one element of an array is equivalenced to an element of
another array, the entire arrays are equivalenced.

Interestingly enough, we need not have specified H(;) in the EQUIVALENCE
statement since the compiler knows H is an array (because it appears in a
DIMENSION statement) and if H appears without a subscript, it is assumed to
be the first element in the array. However, if we forgot to specify F(;),
we would have equivalenced F(1) automatically to G(7) and H(1).

Note that the maximum size of F was dimensioned as 5. However, F(6)
does exist -- it is G(10) and H(4); likewise F(10) is H(8) arnd a(14). F(0)
also exists and is G(4) as well as H(-1). What the DIMENSION statement does
is allocate a certain amount of storage to a variable array but it does not
limit you to using only that storage area. Thus if you are not careful and
you exceed a dimension, you could get into considerable trouble by destroying
information stored as another variable in the adjacent array.

If we look back at the example of the EQUIVALENCE statement, we can see

one reason why variables that are equivalenced are not necessarily equal.

106
DUN-2400

We said that A, B, and C were all equivaient aid wa ther zerced out their
common storage location by saying A = 0.0, We then set B = A+ 6,0 = 6,0
so that the common storage location now contains a 6.0.

21 is than defined as A + 2.0 or 8.0, Before we evaluate Z2 we set
C = 4.0 so that A, B, and C are a1l k.0, One would expect thus that #2 = A
+ 2.0 = 6.0, but that is probably not true, 32 probably is equa. to 8.0
Just like 2l. The reason for this is that in most cases the compiler will
recognize that A + 2.0 appears in both the expression for 3. and that for 22.
It will also note that the value of A is not changed tetween the execution
of these two statements (even though it really is changed by virtue of its
being equivalenced to C) so tha*t it will optimize the program by storing
A+ 2,0 in Bl and then setting %2 equal not to A + 2.0 but to Al which already
containg what it thinks is A + 2.0. If 21 and Z2 were ionger expressions
that both contained A + 2.0, the 4 + 2.0 would probably still have only been
calculated for evaluating 21 and it would have bteen put intc a temporary
storage location for use in calculating 32; it still wcuid not be changed to
account for the statement C = 4.0, Aithough this is nct a usual occurrence,
it is one of the ways to get in troukle if you don’t know what the compiler
is doing and if you assume EQUIVALENCE means EQUAL.

Normally, only variables of the same mode are made eguivalent to avoid
errors, since, for one reason, double precision and complex variable each
require two adjacent words per elemert in their arrays. (References to
complex or double precision variables in EQUIVALENCE statements are refer-

ences to the first word of the pair.

107
DUN-2L00

Thus if we had

CeMPLEX A(100), B(100)

DIMENSISON C(100), D(200)

EQUIVALENCE (A, B, C, D)
we in effect specify the storage of 200 words and A(2), B(2), ¢(3), D(3) are
all stored together as are A(3), B(3), C(5), and D(5). Likewise C(99),
D(99), A(50), and B(50) are stored together as are A(100), B(100), and D(199)
since the arrays A and B are complex and require two adjacent memory locations
for each "word".

The last type of specification statement is the COMMON statement which,
as its name implies, makes certain areas common to subroutines, function,
subprograms, and the mainprogram, The COMMON statement is of the form:

'COMMON /BN, /VN; /BN,/VN;
where BN represents the name of the common block to which the variable names
VN belong. Block names must be six or less alphameric characters starting
with an alphabetic character. Each variable name in a list must be separated
by commas from its neighboring variable names. Common areas having block
names are called "labeled" common. If the block name is omitted, the vari-
able names following are given a "blank" name or are part of Blank common
(in comtrast to labeled common).

Normally there is no need for an area of Blank common so it is rarely
used.

An example of the use of COMMON statements is as follows;:

CeMMON /BLeCKi /¢, ¥, 2(100) /BLOCK2/ A, B

Note that % is DIMENSIONED 100 in the C6MMGBN statement and thus 3 cannot

DUN-2400

appear in a DIMENS1ON statement or in a TYPE statement with ite dimensions

associated. If the akove COMMON sta*emeut appears 1rn a main program and
COMMON /BLOCK1/ Pi52), @50}

appears in one of its subroutines, P{i) is stored in the same location as

S, P(2) the same az ¥, Pi3) the same as Z/1) ..., and Q50 is stored in the

same location as %(100). Note taat the variablie name within a specific

common block in two or more routines need not be the same, but the same common

blocks must be the same size.

Data listed in COMMBN are usually stored in a large block in upper
memory of the computer, with alil lqpeled commor. first and blank common (if
there is any) last,

All additional CeMMON statements appearing in & single main program
or subroutine will extend the size of those CEMMON blcocks. The size of a
CoMMEN block is equal to the sum of the storage requirements of its variables.
The order of variables stored in COMMON is the same as the order in which
they are listed in the COMMON statement(s),

If CoMMEN statements céntain variables whose dimensions they define,
these COMMON statement must precede any executable statements of the program
conéaining those variables,

Normally, it 1s not a good idea to put variables in both CeMMON and
EQUIVALENCE statements, since the COMMON statement orders the locations of
its variables in memory and so does the EQUIVALENCE statement,and conflicts
may result. Variables belonging tc COMMON which appear iIn EQUIVALENCE state-

ments results in all variables in that equivalence clssg automatically being

placed in CeMMON.

10y

DUN-2L00

EQUIVALENCE statements may not alter the order of CeOMMeN storage except
that they may extend a COMMON block beyond the last assignment made for that
block by the CeMMON statement.,

For instance; if we have

COMMON /BLeOCKL/ A, B, C(50), D(80}
we may also have
DIMENSION X(50), Y(80), z(100)
EQUIVALENCE (A, X(1}), (B, Z(2)), {(D(51), ¥(1))

which in essence stored the variables as follows:

\

A B c(1) ¢(2)...¢(50) p(1)...D(51) D(52)...D(80)
X(1) x(2) x(3) x(k)
(1) 8(2) 2(3) &k4) 3(52) 2(53)

Y(1) ¥i2)...¥(30) ¥(31)...¥{50

and extends COMMON block BLOCK1 by 20 locatione corresponding to Y(31) through
Y(50).

However, the following EQUIVALENCE statement is not permitted with the
above CEMMON statement

EQUIVALENCE (A, X(2)), (c(2), x{4))

since equivalencing A and X(2) causes BLOCKl to be extended backward in memory
(to X(1) which precedes A) and start one statement before the CEMMON statement
says it starts (the location assigned to A must be the start of BLeCKl in the
example). Also, if A is equivalent to X(2) and if C(2) is equivalent to X(k4)

there is an error, since C(1l) must be equivalent to X(3), and there is no

110
DUN-2L00

place in the array X for the variable B which appears between A and C(1),
(or, by the equivalence statement, between X(2) and X(3)).

COMMON statements are often used to communicate information between
SUBROUTINES or between SUBROUTINES and the main program without having to
include them in the subroutine call list.

Recall an example several sections back where we wished to read in ten
data cards (each containing ten numbers), square the numbers, and write out
the numbers and their squares. This could have been accomplished as follows:

(bALL READER

MAIN CALL CALC
PROGRAM {
CALL WRITER
STEP
e
SUBROUTINE READER
SUBROUTINE

DIMENSIGN B(100)
COMMEN /DATA/ A(200)
EQUIVALENCE (A, B)

READER READ (5, 10) B

10 FeRMAT (10F8.2)
RETURN

END

DUN-2400

SUBROUTINE CALC
SURROUTINE COMMON /DATA/ X(200)
De 10 I = 1,100
10 X(100+I) = X(I)*X(I)
CALC
RETURN

END

SUBREUTINE WRITER

DIMENSION Y(100]

CeMMON /DATA/ &(200)

EQUIVALENCE (&(101), Y(1))
SUBROUTINE NPAGE = 1

WRITE (6, 20) NPAGE

20 FORMAT {1H1, 20X, 16HSQUARING,PROGRAM, LOX, SHPAGE, I3 ///
1 14X, 6HNUMBER, 1h4X, GHSQUARE)

NPAGE = NPAGE + 1
WRITE (6, 30) (8(I), Y(I), I = 1,L0)

! 30 FORMAT (2F20.4)
WRITE (6, 20) NPAGE
NPAGE = NPAGE + 1
WRITE (6, 30) (&(1), ¥(I), I = 41,80)
WRITE (6, 20) NPAGE
WRITE (6, 30) (&(1), ¥(IJj, I = 81,100)
RETURN

END

112

DUN-2L400

Admitted, the above is rct as "clear" as doing the calculation all in
one program but it is a very simple example concerning oniy one variable and
its only purpose is to demonstrste the use of the EQUIVALENCE and CGMMeN
statements. The above example would not have to use the EQUIVALENCE state-

ments if we had set ap two COMMEN blocks as follows:

SUBROUTINE READER
CeMMeN /DATAI/ B 10C)
SUBRGUTINE CALC
CeMMGN /DATAL/ X(100) /DATA2/ W(i00)
De 10 I = 1,100
10 W(I) = X(I#xX(1;

°

o

SUBROUTINE WRITER

Y

CoMMON /DATAL/ 2(100) /DATA2/ Y(10C;

°
o

°

In this instance different COMMON blocks suppiied information to dif-
ferent subroutines as needed. If we had desired to write out only the squares
of the numbers and not the numbers themselves, DATA2 need have been the only
CeMMeN block present in SUBREUTINE WRITEE.

There is one last non-executable statement yeht to ke discussed and that
is the DATA statement. 7The DATA statement may te used to initialize variables

or arrays or to set up constants at the time the program is loaded for execution.

The DATA statement is of the form

113
DUN-2400
DATA LIST/VALUES/, LIST/VALUES/,...
A typical example would be
DATA A, B, C, K/6.2, 7.3, 7.3, 4/
Here, 6.2 is stored in the memory location assigned to A, 7.3 in B and

C, and 4 in K when the program is loaded for execution. The reason that

emphasis was placed on the last part of the last sentence is that this is
the ONLY time the variables or constants in the DATA statement are loaded
with the values in the DATA statement. The reason that the DATA statement
is non-executable is that it is used ggiz'when the program is loaded for
execution and is ignored thereafter. Thus the DATA statement may appear
anyplace (provided it follows any DIMENSION or TYPE statements referencing
variables in the DATA list) in the program and the variables and constants
it contains Qill be stored prior to program execution. If you had the arith-
metic statement

100 X = 10,k
You would store the real number 10,4 in the memory location assigned to X
every time you passed through statement number 100,

If you had the DATA statement

100 DATA X/10.4/

you would store the real number 10.4 in the memory location assigned to X

prior to execution when the program is loaded and statement 100 would have

no effect thereafter. (Incidentally, you are not permitted to transfer to
a DATA statement -- as by an IF or GO T statement. You are also not per-

mitted to transfer to a FORMAT statement.)

114
DUN-2400

If you had
100 X = 10.k
DATA X /7.4/
you would set the real nutber 7.4 in the storage location assigned to the
variable X when the program is loaded. X would remain 7.4 until statement
100 is reached for the first time, and then X would be 10.4, X would remain
10.4 thereafter (even though the very next statement is a DATA statement
concerning X) until it again appeared on the left side of an arithmetic
statement. |
Recall out first example of the DATA statement where we had
DATA A, B, C, K /6.2, 7.3, 7.3, 4/
Here we stored 7.3 in both B and C. We could have told the DATA statement
that two (or more) consecutive values were identical by writing them once
and preceding them by an asterisk and the (integer) number of them that is
required. For example,
DATA A, B, C, K /6.2, 2%7.3, L/
It is possible to reference arrays in DATA statements as follows:
DIMENSIeN W(10), Xx(10, 2)
paTA (W(I), X(1I,1), X(1, 2), I = 1,10)/30%0.0/
This serves to zero out the arrays W and X prior to execution. Some computers
permit not only the use of the implied D6 in DATA statements as above but a
also the use of unsubscripted arrays to reference the ENTIRE array (not just
the first element of the array as in arithmetic statements).
DIMENSION W(10), X(10, 2)
DATA W, X /30%0.0/

is thus equivalent to the above,

DinT-2kon

[
b
w

One may initialize double precision, logical and complex variables as
well as real and integer numbers in DATA statements as follows

DOUBLE PRECISION X, Y

LOGICAL IS, IT

CeMPLEX V, W

DATA 11, I2, V, W, X, Y, 2 /2%1, (6.2, 1.k), (3.1, 1.2), £ .3D+0,
9.327k112D-06, 1.0/, IS, IT/.TRUE., .FALSE./

Here we have initialized the two integers Il and I2 as 1, the complex number
V as 6.2+1.41, W as 3.1+1.2i, the double precision numbers X and Y as 6.3
and 9.327hll2XlO'6, respectively, the real number Z as 1.0, and the logical
variable IS and IT as True and False respectively. It is possible to store
an octal number in a DATA statement as follows

DATA oCTl /e3247/
where we have to precede the value with the character ¢ (for ectal). Recall
that an octal number contains 12 characters per word; we only used four for
the word ©CTL so the computer automatically adjusts the 3247 to the rightmost
four positions in the location assigned to €CTLl and fills in the left eight

characters with zeros. In other words, octal words are right-justified in

storage.
It is also possible to store alphameric information in DATA statements
(with six or fewer characters per word).
DIMENSION K(2)
DATA K/1OHEND:6F:JOB/
Here we have the two word array K. The letters END,OF are stored in K(1)
and 'JOB in K(2). Notice that K(2) only contains four of its six characters

(blank, J, ©, and B). These four characters are left-justified and the two

116
DUN-2400

rightmost positions of K(2) are filled in with blanks. In other words,

alphameric information is left-justified in storage.

If you recall, we mentioned earlier that FORMATS could be stored in DATA
statements. For example
DIMENSION KFMT(2) A(9)
DATA KFMT/11H(1O0F6.4,12)/
100 READ (5, KFMT) A, B, L, &
Here we stored the FORMAT (10F6.4, I2) in the array KFMT. When we execute
statement 100 we READ in the array A and B as the first ten F6.4 real numbers,
L as an I2 integer, and then restart the FORMAT to read in 2 as an F6.L real
number,
This type of usage permits modifying FERMATS during program execution
as follows: - Suppose we were writing out matrices which varied in size from
2x2 to 12x12. BEach element of the matrix is a real number and is to be
written out under an F10.2 format. If we wanted to write out each matrix
as an n by n array (n varying from 2 to 12 depending upon the particular
matrix) and. it was stofed in the array A. It could be done as follows:
DIMENSION A(12,12), IFMT(3), KFMT(12)
DATA TIFMT /18H(/+11111:v411FL0.2)/,

1 KFMT/1H1, 1H2, 1H3, 1H4, 1H5, 1H6, 1HT, 1H8, 1H9, 2H1O, 2H11l, 2H12/

C CALCULATION OF MATRIX A(N,N) IS PERFORMED HERE

IFMT(2) = KFMT(N)

WRITE (6, IFMT) ((A(1,3), 3 =1, N), I =1,N)

117
DUN-2L400

END

Here we set up the FQRMAT(for writing out the matrig)as array IFMT. We did
not know how many F10.2's per line to expect, so rather than have eleven
separate FORMATS for A(2,2) through A(12,12), and eleven separate WRITE
statement to choose from we merely modify IFMT to sult the matrix size.
This is done by placing the integer N in IFMT(2) which says we write out
under format N F10.2. Note that N had to bé stored as an alphameric number
in the array KFMT and we had to place KFMT(N) into IFMT(2) by using the
arithmetic statement

IFMT(2)

it

KFMT(N)
Had we saild

IFMT(2) = N

we would have had N stored in IFMT(2) but as an integer number and not in the

alphameric form required for FORMAT's,

Note also that we were required to use the indices I and J in the WRITE
statement for two reasons. First, the omission of indices would have written
out the entire 12x12 array A even if we had only a 2x2 matrix. Secondly, even
if it was a 12x12 matrix, the leftmost index, I, is the row number of the
element and J is the column number--had we cmitted the index, the computer
would have automatically varied I most frequently (for each J) and the output
metrix would have A(1,2) where you expected A(2,1) -~ that is, the rows and
columns would be reversed.

One particular use of the DATA statement that is not permitted is

118

DUN-2400

introducing data into variables or constants which are listed in labeled
CoMMON. To enter data into such variables, a special form of subprogram
must be used, the BLOCK DATA subprogrem.

Only non—executable statements may appear in the BLOCK DATA subprogram
(BLOCK DATA, COMMON DIMENSION, Type statements, DATA, and END).

A typical example would be to enter the values 10.3 and 146 as the
variables X and IX and to zerc out the array Y where X, IX, and Y all appear
in a COMMON statement. The main program and one or more subroutines may have
the same CEMMGN statement as that appearingvin the BLOCK DATA subprogram
which follows:

BLOCK DATA
COMMON /BLEKL1/X,IX,¥(34),M,E3,S
DATA X,IX,Y/10.3,146,34*0,0/

END

Note that the BLOCK DATA subprogram is not called or referenced by any
other routines so that it does not requifé a RETURN statement. It is used
only during program loading to permit introduction of the desired initial
values of X, IX, and Y. DNote also that g&;.the elements in the COMMON block
(BLEK1) must be listed in the COMMON statement even though only three of them
are affected. (Whenever a COMMON statement is in a program, all of the vari-

ables stored in that common block must bte accounted for.)

119

DUN-2L400

SECTION VII FLOWCHARTING AND PROGRAM DEBUGGING

Although the topic of FLEGWCHARTING was left until the end of this manual,
it is actually one of the first things that & programmer does before he starts
to write any FERTRAN statements.

Once it has been decided that a particular problem or application is
suitable for computer solution or processing, the programmer must perform a
detailed analysis of the particular problem. He must decide exactly how he
intends to provide a solution and this is uéually done by breaking the pro-
blem down into discrete parts. Once a detailed solution has been determined,
the programmer flowcharts his solution before attempting to code it for the
computer. There are actually two "levels" of flowcharting. The "system"
flowchart is used to visually represent the flow of data and the gross
sequence of computer (and peripheral device) operations. It serves to indi-
cate the overall happenings associated with the program while it avolds most
programming details and calculations.

The "program" flowchart (which is usually prepared after the system
flowchart) indicates the detailed workings of the program. The program flow-
chart serves as 1) an aid to program development (it permits working out the
detailed logic involved and assuring that there are "no paths left untried"),
2) a guide in the actual coding and debugging of the problem, and 3) a means
of documenting the program. This latter aspect may seem unnecessary but it
is possibly the most important function of the three. After you have com-
pleted your program and it is operating satisfactorily, you will probably

rush off and start working on something else. If, six or nine months later,

120

TIIN-2400

someone wants you to modify your old program (or even worse, if someone else
wants to modify it himself) you will be amazed at how many détails (which
you at one time probably lost some sleep over) you have forgotten, This is
where an up-to-date flowchart pays for itself severalfoid. It is much
easier to look at a picture of what's happening than it is to try to untangle
all of the logic in the code itself. It is essential, for this reason, that
any modifications made to the program are always noted on the flowchart to
keep it updated.

The following list of symbols are currently used in system flowcharting

SYSTEM FLOWCHART SYMBOLS

Processing - this symbol may contain
an entire section of your program
flowchart

Input/Output

Magnetic Tape (input or output)

Drum, Disc, or Random Access unit
(input or output

V<0 U YUl

lel

DUN-2400

Paper Tape (input or output)

Printed report or document (output)

Punched Card (input or output)

Display - Plotter, CRT, etc. (output)

Off-line storage - magnetic or paper
tape, cards, etc. (input or output)

On-line keyboard

122

DUN-2400
Auxiliary operation
‘*--~__jESE;;:~§~““‘ Communications link
(:::) Connector - to reference a point
on the same page
Off-page connector to reference a
[:::] point on another page.

A typical example of the use of a system fiowchart would be that of
reading in an inventory file tape, searching for particular stock numbers,
writing out the current number‘of items in inventory and cost of the items

with the associated stock numbers (or stating that it is not on tape if it
could not be found), rewinding the inventory tepe, and writing a message to
the operator telling him td remove ﬁhe tape and place it in a special tape
storage_location, The system flowchart for this particuliar application

could appear as follows (flow is from left to right and top to bottom.)

&

~ READ /7
INVENTOR

1

[as

\

FILE

WRITE
COST AND
NUMBER OR

EFROR

OPERATOR-
UNLOAD AND

READ
STOCK
NUMBER

DUN-2L00

SEARCH FOR

3TCCK NO.

IN INVENTORY
LIST

| rEwIND

INVENTORY
TAPE

FILE

124

DUN-2L00

Note that in the above flowchart we described the "high points" in the
application and we did not get into programming detsils such as what is on
the file, how it is read and stored, or how we search for the stock number
in the inventory 1list. It is possible to see the gross characteristics of
the program, however, and what the program is intended to do (for instance
if we forgot to find out if there was more than one stock number to be
searched for or if we forgot to tell the operator where tc store the inven-
tory tape it should be obvious on the system flowchart).

In the above flowchart there was one symbol that we did not mention
previously, and that was the diamond-shaped question "Are there more stock
numbers?"” This "decision" symbol is really one of the "programming" flow-
chart symbols but, as you will see from the following list, several

symbols have identical meanings for both system and program flowcharts.

PROGRAM FLOWCHART SYMBOLS

Processing - one or more program
processing instructions

Input/Output

Decision - branching occurs here

DUN-2400

Modification or initialization

Predefined Process - operations not
detailed - eg call a subroutine

Terminal - the beginning or end in
a program

Connector -~ to reference a point on
the same page

Off-Page Connector - to reference a
point on another page

As an example of the use of program flowchart symbols, we could take
the one processing box in the previous example, "search for stock number in
inventory list" and program the search as an "artillery" (or binary) search
subroutine. Assume the stock numbers are stored in an array, A, and thaf
the call list of the subroutine contains the array, a variable X consisting
of the stock number of interest, and an integer J into which we will store

the array index corresponding to the stock number sought. If the desired

DUN-2400

stock number does not appear in the array, a message to this effect will be
printed out, J will be set to zero, and an error RET'RN will be made.

An artillery search is implemented by testing tc see if X is equal to
A(M1) (the element in the array midway between the first and last) and if
it is not, test the element midway between A(E;i) anc the appropriate end.
Keep testing elements at midpoints until the answe:r : found. The only
requirement of such a search is that the array A is a monotonically increasing
sequence. This type of search is usually considerabiy faster than testing

each element of the array in sequence,

DIMENSION \
START A(N) AND , IN = 211110
IN1TIALIZE / 2

I1=1,I12=K,JF0

J = IN RETURB

EETUEN 5

127
DUN-2400

12=IN __.®
4 RETURN S)

Note that the entire program flowchart above was necessary to describe

what occurred in the one symbol "search for stock number in inventory list"
in the system flowchart. To clarify what is happening in the program flow-
chart, a diagram plus a little descriptive paragraph might help.

: We started out with an array A of N elements and
— A we are looking for the position of X in the array.

We find the position of X by first testing A(1+N).
2

On the first line of the flowchart we set up the
__ A(1+N) indices I1 = 1 and I2 = N as well as the error
return for J' (J = 0) in the event that we do not.
find the desired solution. We then calculate the
-4- ¥ = A(?)
location of the element in A halfway between A(1)
and A(N) as A(IN) where IN = I1+I2 (= 1+N for

A(N) 2 2
the first iteration).

P

On the second line of the flowchart (starting at #l) we test to see if
A(IN) is greater than, equal to, or less than X. If A(IN) is equal to X we

have found our answer and we set J = IN and return., If A(IN) is less than

DUN-2400

A(IN) <X

X we know that X must lie between A(IN) and A(I2)
™ A{T))

so we set I1 = IN and search between A(IN) and A(I2).
However, before we do this we must test to see 1)
if IN+1 is equal to I2 (if it is, I2 is the only

-=|-- AlIN) value of A that could be equal to X as we know

—_—d-— X

X > A (IN) so we set Il = I2 and IN = I2 and check

?

for A(I2) 2 X), 2) if IM+1l is greater than I2 (if

it is, IN must equal I2 and we have failed to find

1 A(IE) the desired value‘so we use the error RETURN 5), or
3) if IM1 is less than I2 (if it is, we go to 3,
update IN, and meke another iteration).

Going back to the start of the second line (#1) we must then see if A(IN)
is greater than X, If it is, we go to the third line (#2) and test to see if

if IN equals Il (if it does, we have failed to find

A(IN) >x the desired value so we go to #4 amd use the error
+ A(11)
RETURN 5) or if IN is not equal to Il (if not, we
set I2 = IN, go to #3, update IN, and make another
-1~ X
iteration).
—4— A(IN)

If you think that constructing and following
the logic in the flowchart was tough, try following

the logic in the subroutine itself (which follows)

L A(12) without the aid of the flowchart.

—
NO

DUN-2L00

SUBROUTINE SEARCH (A,N,X,J,$)

DIMENSION A(N)

n=1
I2 =N
Jd =20

10 IN = (Il+I2)/2
20 IF (A(IN)-X) 30, 60, 7O
30 I1 = IN

CIF(IM1-I2) 10, LO, 50

Lbo 1 =12
IN = I2
Ge Te 20

50 RETURN 5
60 J = IN
RETURN

70 IF(IN .EQ. I1) RETURN 5

I2 = IN
Ge Te 10
END

As you can see, the flowchart will be a tremendous aid in following the
logic of the above subroutine during debugging. If you happened to make a
mistake in one of the above IF staﬁements, to say that it would be a chore
attempting to discover the error merely by looking at the FORTRAN statements

without a flowchart is probably a rather: superb understatement.

s
Lo
i)

DUN-2400

As you can see, even though flowcharting is one of the first things the
programmer does before actually writing his program and although debugging
is one of the last things he does before thevprogram is set up for production
use, the two phases are closely related.

If your flowchart is carefully worked out to cover alil possible situations
and is very detailed, it will greatly simplify the task of tracing through
the program to locate errors., Once you find cut where the error is cccurring
(from the funny looking output) you can trace backwards in your flowchart to
see what would cause that or those particulér things to occur. I the flow~
chart indicates that area of the program to be apparently error free, then
a close comparison between the flowchart and the program listing might locate
the problem.

The basic reason for debugging a program is that they almost never work
correctly at first. The cause goes back to a statement made in the INTRODUCTION
that the computer does exactly what you tell it to do and not necessarily what
you want it tc do. This leads to two sources of error -- 1) you toid it to
do the wrong thing and 2) you really didn't tell it to do anything for a
particular situation. One of the seemingly impossible tasks of the programmer

is for him to attempt to map out all possible logical paths in hisg program

even though some (if not most) combinations of logic will not normaily, if
ever, occur., You saw an example of the logical complexity of the above

simple subroutine which contained only one liogical and two arithmetic IF

statements. Picture the case where there are 50 or 1CO input, cailculational,
or output choices available~~you can never expeaxt to te sure that your progranm

does what's expected for all combinations of the logical choiceg permitted

DUN-2400

in such a situation (and 50 or 100 -~hoices are still a relatively few). This
leads to debugging.

First, the FORTRAN compiler will catch many of th: - rrors of syntax in
your program (you meant GO TO but said G0 TO with a zer: rather than an),
It may also catch much of your poor spelling and many logical problems {you
set up the variable XARC in a DATA statement and then said W = XARK or you
transferred to statement number 103 which jus* happens rot to exist in your
program, etc.). It is when you stop getting snide compiler-—generated diag-
nostic messages that the real trouble starts-~-now you are on your own,

One of the first things you will probably do irn debugging a problem is
to run a test case made up of simple round numbers like 100, 1000, etc., and
specify the least number of options available, First vry it on & desk cal-
culator following exactly the path the program would fol.ow, statement by
statement. If you got the answer you expected, try the same problem on the
program., When it fails, you can do several things. A memory dump will
probably help to find lost variables or constents that wers not updated.
Extra WRITE statements to give you debug output at cruclas: points in the
calculations (if special DEBUG DUMPING routines are not a part of your soft-
ware) are helpful at this stage. Showing your program to a know.cdgeable
friend who is unfamiliar with what you are trying to do may permit his telling
you what you are doing (compared to what you want to be dsing).

One prime catch is to never assume you are doing something in a part orv
the program and gloss over it because it worked once before- rcad 1t and you
may find that the exact logic is slightly different tkhan you "remembered”.

If possible try to check out one secticn of the program at a time, This

)
[ON)
N

DUN~2L00

is the advantage of having many small subroutines rather than one large pro-
gram. Each subroutine may be tested with "TYPICAL'" data ty using "special"
main programs to provide the desired input. Try to test both positive and

negative data covering the entire range of interest %o catch sny limits you

Sano

might have (log and exponential routines, stc,

After you have gotten your simple case debugged - try different logical
opticns one or two at a time until you are fairly sure that for most typical
cases the program works., (You can never hope to try al. possible paths since
for a set of only 20 yes-no decisions there are about one mi.lion possibie
paths.) Then you can turn it over for production runs--but keep the flow-
charts~-some day someone will try a series of options that you never tested,

Before we leave the area of debugging it would be worthwhiie to discuss
how to avoid building "bugs" to the user into your programs,

In the first place, you must assume that the basic law that "the series
of events having the least probability of occurrence which cause thé most
undesirable results are certain to happen' hags particulsr significance in
the area of computer programs., In other words, "don't trust anytody" tut
set up your programs to check all input data for errcors wherever possible,
For instance, 1f you have an index of & computed G6 TG ag an input 003stant
and it may assume the vaiues one through six, some day it will be =ntered
as ten through sixty or one hundred through six hundred, etc.,., if Ior no
other reason than it was keypunched incorrectly. To save much machine time
and grief on the part of the user, it is thus worth taking the time %o have
your program check all input dats for '"reascnableness” if possib.e, When an

error is found, orly that particuiar case may be typassed from execution, or

DUN-2400

all remaining cases may also be bypassed (but all input data should be tested

and all errors listed for the user, whether all cases are executed or not).

The easiest way to test input data is with a series of logical IF state-

ments. One way may be as follows. Assume you have 83 separate input numbers.

50

100

200

10

300

DIMENSION XHI(83), X1.e(83), NAME(83), XINPUT(83), ISET(83)

DATA XHI, XLe, NAME /...../

EQUIVALENCE (XINPUT(1l),...), (XINPUT(2),.¢4)5e..

IX = 0

READ INPUT DATA HERE

De 100 I =1, 83

ISET(I) = O

IF((XINPUT(I) .GT. XHI(I)) .6R. (XINPUT(I) .LT. XLe(I))) ISET(I) =1
IX = IX + ISET(I)

IF(IX .EQ. 0) GO Te 300

De 200 I =1, 83

IF(ISET(I) .EQ. 1) WRITE (6,10) NAME(I), XINPUT(I), XHI(I), XLe(I)
CONTINUE

Go Te 50

FORMAT (15HOINPUT,ERROR! -:5X,A6,3H,=:1E15.5,10%,

1 19HPERMITTED: RANGE: IS, ,E15.5,4H:TO1 ,E15.5)

134
DUN-2400

Note in the above example we first initialized three arrays in a DATA
statement - XHI, the high limits on each of the 83 input variables; X6, the
low limits on each of the 83 input variables; and NAME, the names of the 83
input variables. We then set up an EQUIVALENCE statement so that all real
input variables are ordered in the array XINPUT (integer input variables may
be stored in the array XINPUT by using arithmetic statements to equate them
to the appropriate XINPUT after the input is read in), After the 83 irput
numbers are read in, they are each tested to assure that they are within the
appropriate range XHI to XLe (if they are nbt) the index ISET is set equal
to 1). If there are no errors, control is transferred to statement 300 and
the remainder of the program is executed, if there are one or more errors,
ali of the errors are written out and the next set of input data are read.

A further aid to the user is to set up all input data so that it is
easy to keypunch and so that the keypunched cards facillitate manual checking
for errors., It is thus a good idea to end all data fields in columns 10, 20,
30, 40,... (which are defined quite clearly on 80-80 forms) to facillitate
ease of data preparation.

One additional item in thils area--it is a good idea to make the input
as simple as possible., Let the program itself manipulate the data wherever
possible and not the user. The greatest benefits from the use of the computer

probably come from simplification in its use,.

A Format .

Alphanumeric, Alphameric, or

Applications

Arithmetic IF
Arithmetic operators
Arithmetic statement
Arrays, storage in memory.
Arrays, subscripts .

Artillery search .

Assembler.

Assembly language.

ASSIGN . . .

BACKSPACE.
BCD.

Binard Coded Decimal .
Binary number system .

Binary search.

135

INDEX

Hollerith .

Binary to decimal conversions.

Binary to octal conversions.

Blank common .

BLOCK DATA .

"Built-in" decimal on input.

Built-in functions

CALL .

Carriage control, printer.

Characteristic

Checksum .

CeBeL. . .

. .« » .

DUN-2L00

52,54,62,76
10,68
17-19
Lo-L7
21-22,50
22-23
34,104-105
108-109
125-129
13-1k

13

Lo-43

81
10-11
10-11
3-5
125-129
5-6, 9
6-T
107
118

61
8L4-86

98-101
69
25-26
81

13

Coding form.

Comment cards.

CeMMeN .
Compiler .

CeMPLEX

Computer applications. . . .

Computer schematic . .

CONTINUE . . « .« « « « «
Conversion of numbers. . .
D Format . . . o e
DATA . . et e e e e e e
DATA, BLOCK. . . « « « «

Data - input, checking . . .

Data - input, simplification .

Debugging.

.

Decimal "built-in"

Decimal to
Decimal to
DIMENSION.
e
DO Limit .
D8, Nested
D@, Range.

binary conversion .

octal conversion

e s e s e s s e »
e e & s s e s

L S R N T T
o & ¢ & s+ e o e »

.

D8, Valid transfers from . .

Dollar Sign ($), use of. .
DOUBLE PRECISISN

E Format .
END. . .
END FILE .

136

DUN-2L400

15
73

. 107-112

13, 20

. 29

17-19

2

37

5-6, 8-9

52-53
112-118
118

. 133-13%4

134
129-13kL
61
5-6, 9
8

33, 95
35-41
37-38
38-41
38

Lo, L5
9L-97
30

52-53, 61
T0
81

'

EQUIVALENCE. . .
ERROR RETURN . . .

137

Evaluation of FORTRAN expression .

Exponential representation .

External functions

Extrinsic functions.

F Format . . .
Factorial function .
Field data code.
Field width. . . .
FILE
Flowchart symbols.
FORMAT

FORMAT, read at object

FORMAT, A. . . .
FORMAT, D.
FORMAT, E.
FORMAT, F.

FORMAT, G.

FORMAT, H.

FORMAT, I.
FORMAT, L.

FORMAT, O.

FORMAT, X.

FORMAT, /.

FORMAT, field width.

-

.

.

.

FORMAT, modification at object

time.

FORMAT, reading in at object time,
FORMAT, repetition of.

FORTRAN coding form.
FORTRAN compiler .

Freme, tape.

.

DUN-2L00

. 103-106
98
22, 50
26
87-90
87-90
52-53, 61
ok
57-58
53
81

120-~122, 124-125
52-81

78

52, 5k, 62, 76
52-53

52-53, 61
52-53, 61
52-53

68

52-55, 61
52, 5L
52, 5h4

68

65

53
116-117
78-79

60

15

13, 20

80

FUNCTION, built-in . .
FUNCTION, external .
FUNCTION, extrinsic. .
FUNCTION, internal . .
FUNCTION, library .
FUNCTION, statement.
FUNCTI®N, subprogram .

G Format

Ge Te

Ge To, assigned . .
G8 To, computed .
Ge To, conditional.

G8 Te, unconditional.

HFormat . « + « . . o .

field .

Hollerith or Alphmeric

I Format
IF o ¢ o v o o

If, arithmetic
IF, logical.

Input data testing . .
INTEGER. . « . « . .
Integer variables. .
Internal functions . .
Internal subroutines .

Intrinsic functions. .

L Format .
Labeled COMMON . . .

138

DUN-2400

8L-86
87-90
87-90
8486
85-86, 88-89
91~92
92-98

52-53
L1-45
Lo
43
4o

. b1

. 68

68

52-55, 61
L6-50
L6-L7
L7-50
133-13k

. 29

2L, 28

. 8L-86

101-102
8L-86

52, 5k
107

Library FUNCTIGNS.
LOGICAL. . . . v v v v v « v ¢ « .
Logical IF + v v « « « &
Logical I/O wunit
Logical operators.
Logical record . . . « « « « « .
Logical variables. . .

Looping. . . + + « ¢ « + « o « .

Magnetic tape.
Mantissa . « . +« ¢« « « « &« & . .
Matrix multiplication.
Memory, numbers stored in.

Minimum and Maximum, testing for .

Nested DO 10O0DPS. &« « v v o & o + &
Number conversions

Numbers, represented in memory . .

@ Format + ¢« + ¢ . ¢ o v
Object or relocatable binary deck.
Octal field data code.
Octal number system.
Octal representation of alphabetic
Octal to binary conversion
Octal to decimal conversion. . . .

Output representation in memory. .

P, scale factor.

Parentheses, use of. . + « « « « &

139

characters.
e e e e s

DUN-2400

85-86, 88-89
30

4750

51-52

31, 50

80

30

35

79
25-26
b1
25
L8

38-41
5-6, 8-9
25

52, Sk
21
57-58
6-7
57-58
6-7

56-58

66-68
22

Parity . . « « . « « . .
Physical record.
Place value.

Printer or carriage control.
Product of two matrices. .

Program flow chart . . .

READ (see WRITE)
REAL . « v v v v v v v v+ .
Real variables
Real numbers, limits on. .

Record . . « . « « v« o .
Record gap+ . .,

Relocatable or object deck .

Repetition of format groups.

Rereading input.

RETURN . o & o v v « & v & &
RETURN N « « « . .
REWIND « . & ¢« v v &« « & « &
Scale factor, P.
Slash(/) format.
SLEUTH . . .+ « + &« « & « & .
Source or symbolic deck. . .

Statement functions.
STOP v v v v o ¢« 4 o o +
Storage of arrays in memory.
Subprogram, function
SUBRQUTINE
Subroutines, internal. . . .
Subscripts, arrays
Symbolic or source deck.

System flowchart

140

DUN-2L400

79
80

69
iy
12h2127

51~81
29

. 2k

27

79~-80

80

21

60

T7-78

oL, 96-98

. 96-98

81

66-68
65

. 1k

21

91-92

71

104-105, 108-109
92-98

98-100

101

32-34

21

119-123

Trunciation.

TYPE .

Wword, Computer .
WRITE.
WRITE, Binary. .

WRITE, formatted .

X Format . .

141

DUN-2400

28
28

12
51-81
51
52

68

S0,

1

|

DISTRIBUTION

Cffice of the Secretary of efense

Advanced Research Projects Agzency
Washington, D. C. 20301
(Attn.: Dr. Rovert Taylor)

Alvuquerque Operations Office
F. 0. Box 5koC

Albuquerque, hkew Mexico 711y
(Attn.: L. P. Grise)

U. 5. Atomic tnerpy Commissicn

Chicago Orerations Office
9800 South Cass Avenue
Argonne, Illinois 60OL39
(Attn.: George il. Lee)

U. 5. Atomic Inerpy Cormission

AEC Library
Mail Staticn C-017
Aashington, D. C. 205L5

New York Crverations Office

376 Hudson Street

New York, liew York 10014

(Attn.: Reports Liorarian)

U. 5. Atouic snergy Cormmission

OCffice of Assistant General Counsel for Patents
Washineton, L. C. 20545

{(Attn.: FEoland A, Anderson)

Y. #. ALC Scientific Representative

Arerican E

APG New YTork, New York S0TTT

1L3

Aerojet-Cencral Corporation

San Famorr Flant

P. 0, Sox 7C

San Ramon, California 5L5E3
(Attn.: Cocuunent Custodian)

Aerospace Corporation, San Bernardino (AF)

San bernardinc Operations

P. 0. Box 1308

San Bernardéino, California 92402
(Attn.: SBO Library)

Air Force Aero Propulsion Laboratory

Wright-Patterson Air Force Base, Ohio L5kL33
(Attn.: APE/STINFO Office)

Systems Engineering Group (RTD)

Wright-Patterson Air Force Base, Ohio L5433
(Attn.: A, Daniels, SEPIR)

Air Force Flight Dynamics Laboratory

FDCL
Wright-Patterson AF3, Ohio L5433
(Attn.: Dr., Paul Polishuk)

Air Force Institute of Technology

Library

Air University, USAF

Wright-Patterson Air Force Base, Ohio L5433
(Attn.: AFIT-LIB)

USAF School of Aerospace Medicine

Aeromedical Library (SMSDL)

Bldg. 155

Brooks Air Force Base, Texas T8235
(Attn.: Chief Librarian)

Air Force Weapons Laboratory (WLIL)

Kirtland Air Force Base, New Mexico 87117
(Attn.: M. F. Canova)

. RPN
DUHN=Zu G

n

10

144

Ames Laboratory

Iowa State University
Ames, Iowa 50010
(Attn.: Dr. F. li. Spedding)

Arponne Cancer Research Hospital

950 Y, 59th Street
Chicago, Illinois 60637
(Attn.: Frances J. Skozen)

Argonne National Laboratory

Library Services Department

Rerort Section, Bldg. 203, Rm. CE-125
G700 South Cass Avenue '
Argonne, Illinois 60439

Commanding Officer

Aberdeen Proving Ground, Maryland 2100%
(Attn.: Technical Library, Blde. 313)

Institute for Zxploratory Research

U. S. Army klectronics Command
Fort Monmouth, New Jersey 0OTT703
(Attn.: AMSEL-XL-5, Dr. Y. J. Ramm)

Director
U. 8. Army Engineer Nucleer Cratering Group
P. 0. Box 808

Livermore, California 94550

U. S. Army Foreign Science and Technology Center

Munitions Building
Washington, L. C. 20315
(Attn.: AMXST-SD-TD)

Commancing Officer

Harry Diamond Laberateries

Washington, D. C. 20L38
{4ttn.: Stuart M. Marcus)

v
I

WUK=CLGT

[

1ks DUN-240¢

Medical Field Service Schocl

Brooke Army Medical Center
Fort Sam iouston, Texas 7822L
(Attn.: Stimson Library)

Commanding Officer

U. 8. Army “Medical Research Unit - Presidio
San Francisco, California 94129
(Attn.: Librarian, Letterman General liospital)

Commanding Officer

U. S. Arry Huclear Defense Laboratory
BEdgewood Arsenal, MMaryland 21010
(Attn.: Librarian)

Commanding Officer

Picatinny Arsenal
Dover, New Jersey 07801
(Attn.: Technical Information Library)

U. 8. Army Research Office-Durham

Box CM, Duke Station
Durham, North Carolina 27706
(Attn.: CRDARD-IP)

Division of Nuclear Medicine

Walter Reed Army Institute of Research
Walter Reed Army Medical Center
Washington, D. C. 20012

Atomic Bomb Casualty Commission

U. S. Marine Corps Air Station
FPO San Francisco, California 9666L
(Attn.: Librarian)

Atomic Power Development Associates, Inc.

1911 First Street
Detroit, lMichigan 48226 _
(Attn.: Document Librarian, for AT(11-1)-476,-865)

146

N

t—
P-4
f

Atomics Internaticnal

P. 0. “ox 207
Canoga Park, California 913Gk
(Attn.: Library)

The Babcock and Wilcox Company
Atomic Znergy Division

P, 0. Box 1260

Lynchburg, Virginia 2LS05
(Attn.: Information Cervices)

Battelle Memorial Institute

Colurbus Laboratories
505 King fLvenue
Columbus, Ohic L3201
(Attn.: John E. Davis)

Battelle Vemorial Institute
Pacific MNorthwest Labcratory
P. 0. Box 979

Richland, YWashingten 99352

(Attn.: Technical Information Secticn)

Westinrhouse Jlectric Corperation

Bettis Atomic Power Laboratory
P. 0. Box 79

West MLifflin, Pennsyive
(Attn.: Virginia Sternvers, Livrarian)

T

Brookhaven lLiational Luboratcr

Information T
Upton, Long Is
(Attn.: Rese

i
and, dew York 11673

;
-
rcan Library)

Clarkson College of Technology

Department of Puysic
Potsdam, Lew York
{Attn.: Dr. Richard

REAtTel)

-

147

Columbia University

Pegram Suclear Physics Laboratories
538 West 120th Street

New York, Liew York 10027

(Attn.: Dr. W. W. Havens, Jr.)

Combustion bLngineering, Inc.

Juclear Division

Prospect hill Road

Windsor, Connecticut 006095
(Attn.: Zuclear Division Library)

Combustion wngineering, Inc.

Naval Reactors Division

P. 0. Box k00O

windsor, Connecticut 0€095
(Attn.: Document Custodian)

Chief, Livermore Division

Field Command
Defense Atomic Support Agency
Lawrence Radiation Laboratory
P. 0. Box 808
Livermore, California 94550

Armed Forces Radiobiology Research Institute

Defense Atomic Support Agency
NEMC

Bethesda, Maryland 20014
(Attn.: Library)

L., I. du Pont de lemours and Company

Savannah River Laboratory
Technical Information Service-TT3A
Aiken, South Carolina 29801

E. I. du Pont de ilemours and Company

Explosives Department

Atomic Energy Division
Wilmington, Delaware 19898
(Attn.: Document Custodian)

DUN-2L00O

14t LUN-2L00

EG&G, Inc.

P. 0. Lox 8346
Albuquerque, lew Mexico £7108
(Attn.: J. Frinkman or William J. Jones)

LG&G, Inc.
P. 0. vox 1912

Las Vegas, Nevada 89101
(Attn.: Librarian)

Environmentel Research Corporation

P. 0. Box 1061
Alexandra, Virginia 22313
(Attn.: Francie G. Rinion)

Alr Resources Field Research Office

Environmental Science Services Administraticn
P. C. Box 2136

Las Vegas, Nevada 09101

(Attn.: P. W. Allen)

L. Machtd, Director

Air Resocurces Laboratory

Environmental Science Services Administration
806C 13th Street

Silver Cpring, Maryland, 20910

Federal Aviation Agency

Information Retrieval Branch, HQ-€3C
Washington, D. C. 20553

Commanding Officer

Pitman-Dunn Laboratories

Frankford Arsenal

Philadelphia, Pennsylvania 19137
(Attn.: ©. Berk, L8LOD, Bldg. 312)

Fundamental Methods Association

31 Union Square West
New York, New York 10003
(Attn.: Dr. Carl N. Klahr)

N

149 DUN=2L50

General Atomic Division

General Dynamics Ccrporation

P. C. Box 111

San Diego, California D211z

{Attn. : Chief, Tech. Information Services)

General Dynarmics/Fort YWorth

P. 0. Box Th&
Fort Worth, Texas 76101
(Attn.: Xeith G. Brown or B. S. Fain)

General klectric Company

Nuclear Materials and Propulsion Operation
P. 0. Box 132)

Cincinnati, Caio 45215

(Attn.: J. W. Stephenson)

General Llectric Company

Atomic Power Lquipment Department
P. 0. Box 1131

San Jose, California 95108

(Attn.: Alleen Thompson)

U. S. Geological Survey

Building 25, Denver Federal Center
Denver, Colorado 80225
(Attn.: Library)

U. 8. Geological Survey

Room 1033, General Services Administration Building
Washington, D. C. 202k2
(Attn.: Librarian)

Goodyear Atomic Corporation

P. 0. Box 628
Piketon, Ohio L5661
(Attn.: Department L23)

Hughes Aircraft Company

P. 0. Box 3310

Building 600, Mail Station F-131
Fullerton, California 9263k
(Attn.: Dr. A. M. Liebschutz)

150 DUN-2L00

IIT Research Institute

10 West 35th Street
Chicaso, Illinois 6061€
(Attn.: Document Library)

Isotopes, Inc.

Palo Alto Laboratories
LOG2 Fabian Street
Palo Alto, California 9L302

Jet Propulsion Laboratory

California Institute of Technology

L8800 Oak Grove Drive

Pasadena, Californiea 91103 °

(Attn.: «N. L. Devereus, Library Supv.)

Johns llopkins University

Applied Physics Laboratory

8621 Georgia Avenue

Silver Spring, Maryland 20910
(Attn.: Boris W. Kuvshinoff)

Knolls Atomic Power Laboratory

P. 0. Box 1072
Schenectady, New York 12301
(Attn.: Document Librarian)

University of California

Lawrence Radiation Laboratory
Technical Information Division
Berkeley, California 94720
(Attn.: Dr. R. K. Wakerling)

University of California

Lawrence Radiation Laboratory

P. 0. Box 808

Livermore, California 94550

(Attn.: Technical Information Dept.)

Lockheed-Georgia Company

Division of Lockheed Aircraft Corporation

Marietta, Georgia 30060

(Attn.: Charles K. Bauer, Manager, Scientific and Technical
Information Department)

Fro

1

151 DUN-2LCO
Los Alaros Scientific Laboratory
FP. 0. Box 1663
Los Alamos, New Mexico 8T5uL
(Attn.: Report Librarian)
Lovelace lFoundation
LEOO Givson Soulevard
Albuquerque, New Mexico 87108
(Attn.: Dr. Clayton C. White, Director of Research)

Martin-Marietta Corporation

Martin Company

Nuclear Products

P. 0. Box 5042

Middle River, Maryland 21220
(Attn.: AEC Document Custodian)

Monsanto Research Corporation

Mound Laboratory

P. 0. Box 32

Miamisburg, Chio L53k2
(Attn.: Library)

National Aeronautics and Space Administration

John F. Kennedy Space Center
Kennedy Space Center, Florida 32899
(Attn.: Mrs. L. B. Russell, Librarian)

National Aeronautics and Space Administration

Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio Lk135
(Attn.: Dorothy Morris)

Scientific and Technical Information Facility

P. 0. Box 33
College Park, Maryland 20740
(Attn.: Acquisitions Branch, S-AK/DL)

National Aeronautics and Space Administration

(Uss-10) :
Washington, D. C. 20546
(Attn.: Document Control Officer)

£

[55

o

152

National Auvccl

1301 W. 22na Stree‘q
Oak Brook, I1l. €0521
Attn.: Litrarian

sational Bureau of Standards
Roomm £-01 Administration DBuilding

WJashingtor, L. C. 20234
(Attn.: Library)

Library
Natiornal Institutes of iealth

Bldg. 10, Room SH115
Bethesda, laryland 2001k
(Attn.: Acquisitions Unit)

Lational Lead Company of Ohio

Post Cffize Lox 230158
Cincinnati, Ohio 45239
(Attn.: Reports Library)

Idelio liuclear Corporation

NRTS Technicsl Library
P. C. Box 14hs

Idaho Falls, Idaho 83401

David Tgylicr

Applied Mathematics Latoratory
Carderoclk, Maryland 20007
{(Attn.: Ccée 800)

Naval Facilities Ingineering Command

Departnment of the Havy
ashingtor, D. C. 20390
(Attn.: Code 0kL2)

1 Research Brench Office

Hew York, iew York 09510

DUN-C00G

153

Commander

U. 8. liaval Ordnance Laboratory
White Oak

Silver Spring, /laryland 20910
(Attn.: Library)

Commander, Naval Ordnance Systems Command

Department of the Navy
Washington, D. C. 20360
Attn.: Code ORD-0332

U. S. Kaval Postgraduate 3chocl

Monterey, California 93940
(Attn.: George R. Luckett, Director of Libraries)

Commanding Officer and Director

U. S. Naval Radiological Defense Laboratory
San Francisco, California 94135
(Attn.: T. J. Mathews)

Naval Ship Systems Command Headquarters

Navships 08

Navy Department
Washington, D. C. 20360
(Attn.: Irene P. White)

New York University

AEC Computing and Applied Mathematics Center
251 Mercer Street

New York, New York 10012

(Attn.: Director)

Environmental Medicine Library

New York University Medical Center

Long Meadow Road, Sterling Forest
Tuxedo, Kew York 10987

(Attn.: L. P. Zipin, Research Division)

NRA, Inc.

3501 Queens Boulevard
Long Island City, New York 11101
(Attn.: Seymour L. Goldblatt)

DUN-2h(0

[

b
\
ya
(&}
S
=i
1
~
ol
<
¢

Juclear Materials and bouipment Corporation

609 North Warren Avenue
Apollo, Permsylvania 15613
(Attn.: Library)

Nuclear Techuology Corporation

116 Main Street
White Plains, New York 10601

Union Carbide Corporation

Kuclear Division

X-10 Laboratory Records Department
P. C. Box X

Qak Ridge, Tennessee 37830

Oceanographic Services, Inc.

5375 Overpass Road
Santa Barbara, California 93105
(Attn.: K§. R. Wallace)

Oregon State University

Corvallis, Oregon G733l
(Attn.: Arvid T. Lonseth)

Picker X-Ray Corporation

Waite Manufacturing Division, Inc.
1020 London Road

Cleveland, Chio LkL110

(Attn.: Research Center Library)

Cyclotron Laboratory

Princeteon University
Department of Physics
Princeton, New Jersey 08540
(Attn.: Professor Rubby Sherr)

Officer in Charge

U. S. Public Health Service

Southeastern Radiological Health Facility
P. 0. Box 61

Montgomery , Alabama 36101

o

j -

155

Officer in Cuarge

U, 8. Puolic Health Service

liortheastern Radiological Health Laborztory
109 Holton Street

Winchester, Massachusetts 01890

Puerto Rico Water Resources Authority

P. 0. Box Lzé7
San Juan, Puerto Rico 00905
(Attn.: Executive Director)

‘Purdue University

Department of Luclear Engineering
Lafayette, Indiana L7907
(Attn.: Prof. Alexander Sesonske)

-

Radiopties, Inc.

10 Du Pont Street
Plainview, lLong Island, MNew York 11803

Rand Corporation

1700 Main Direet
Santa Monica, Califernia 90LO6
(Attn.: Dr. Mario L. Juncosa)

Beactive Metals, Inc.

Extrusicn Plant

P. 0. Box 574

Ashtadula, Ohio LLCOL

{fittn.: PR, 7. Besn, ATLC Contract Marager!

James R. Crockett, General Manager

Reynolds Electrical and Engineering Company, Inc.
7. 0. dox 13(\/

Tas Verss, Vevada U911

(Attn.: ‘enarement lnpineering ept.)

Aice University

Houston, Texeas T7001
(Attn.: Walter Orvedahl)

DUR-~

.’\\

s

LG

L)

DUN-2LCO

-t
1
(02

Sandia Corpcration

P. 0. ox 5800
Albuguerque, llew Mexico 87115
(Attn.: Technical LilLrary)

Sandia Corporation Livermore Laboratory

F. 0. Box 969
Livermore, California 94550
(Atta.: Technical Library)

Soutliwest Research Institute

8500 Culebrsa FRoad
San Antonio, Texas T8206
(Attn.: Librarian)

Stanford University

Stanford Linear Accelerator Center
Stanford, California 94305
(Attn.: Librarian)

The Library

State University of New York at Binghamton
Binghamton, New York 13901

Stevens Institute of Technology

Department of Physics
Hoboken, New Jersey 07030
(Attn.: Dr. Winston Bostick)

Tennessee Valley Authority

Chattanooga, Tennessee 3TLOl
(Attn.: Harold L. Falkenberry)

Texas Nuclear Corporation

Box 9267
Austin, Texas 78756
(Attn.: Dr. John B. Ashe, Director of Research)

Todd Shipyards Corporation

Nuclear Division

P. 0. Box 1600
- Galveston, Texas 77550
(Attn.: Central File)

ro

157

VESTAC

University of Michigan

P. 0. Sox 618

Ann Arvor, MMichigan L8107

University of Puerto Rico

Puerto Rico XNuclear Center
College Station
Mayaguez, Puerto Rico 00706

University of Rochester
Department of Physics and Astronomy
Rochester, llew York 1L627

(Attn.: Dr. Y. F, Kaplon)
P

Department of Physics

University of ‘ashington
Seattle, Washington 98105
(Attn.: Prof. Ronald Geballe)

Virginia Associated Research Center

12070 Jefferson Avenue
Lewport lNews, Virginia 23606

Washington University

St. Louis, Missouri 63130
(Attn.: Leon Cooper)

TRACOR, Inc.

6500 Tracor Lene
Austin, Texas T8T21

Union Carbice Corporation

Nuclear Division

ORGDP Records Department
P. 0. 30x P
Qak Ridge,

m

lennessee 37830

University of Chicago
2,

5630 Ellis Avenue
Chicago, Illinois 00637
(Attn.: Richard Miller)

DUH-E420

T4
25

156

University of Marylangd

College Park, Maryland 207hk?2
(Attn.: Dr. B. k. Hubbard)

Westinghouse ilectric Corporstion

Atomic Power Division

P. 0. Box 355

Pittsburgh, Pennsylvania 15230
(Attn.: Document Custodian)

Westinghouse Electric Corporation

Astronuclear Laboratory

P. O. Box 10864

Pittsburgh, Pennsylvania 15236
(Attn.: Florence M, McKenna)

Director

U, S. Army Engineer Waterways Experiment Station
P. 0. Box 631

Vicksburgh, Mississippi 39180

(Attn.: Library)

The Library

U. S. Geological Survey
Branch of Astrogeoclogy

601 East Cedar Avenue
Flagstaff, Arizona 86002
(Attn.: Librarian)

Officer in Charge

U. S. Public Health Service

Southwestern Radiological IHesalth Laboratory
P. 0. Box 684

Las Vegas, lNevada 89101

United Nuclear Corporation

Research and Engineering Center
Grasslands Road

Elmsford, dNew York 10523
Attn.: Library

AEC Division of Technical Information Fxtension

Clearinghouse for Federal Scientific and Technical Tnfermation

DUN-2k0C

1h

AEC-RL

J. P. Derouin
W. Devine, Jr.

J. E. Goodwin (2)
P, M, Midkiff

R. L. Plum

C. R. Qualhein

Atlantic Richfield Hanford Co.

.
=
.

Fillmore
Gurwell
Harmon
Kofoed

. McMurray
Shaw
Smith
Sloat
Tomlinson

TR QN

el 3 BRg e BRI S I w

LUL-2heo

Battelle Memorial Institute Pacific Northwest Laboratories

Benhamnm
Busselman
Clayton
Dean
Deichman
Deonigi
Driver
Eschbach
Hofmann
Jaech
Lanning
Liikala
Lindennmeier
Neef

.
. . . .

. . . .
. . N

T OQODUSYdE QDY EQD
HE QU rEBRHKgay

Computer Sciences Corporation Northwest Operations

Z. E. Carey

J. E. Farmer

R. Jd. Gurth

J. D. Orton

G. L. Otterbein
J. L. Peterson

35

160

Donald W, Dougzlas Laboratories

H. M. Lusey
R. Coovper
J. Greenborg

I

W. E. MHatheson

Dougias United Nuclear, Inc.

W. Ambrose

. Bell

. Blanchard
Dunn
Fullmer

. Gross (20)
Hallet, Jr.
L. Harrington
Jessen
Koepcke

W. Kuhlman

M. Mathis

S. McMahon
Nilson

W. Riches

C. Schroeder

.

Gy Mg

Qs O
=} B B @ R A Bl €3]

G w

O G ooy =

Hanford Engineering Services

R. D. Duncan

W. 8. Graves

A. J. Hutzelman
G. Kligfield

R. Lysher

M, 0. Rothwell
G. Salzano

E, E. Smith

C. L. Taylor

Sandvik Special Metals Corvoration

S. M. Graves

Washington State University

0. W. Rechard (2)

DUN-2L00

