
DUK-aljQo
UC-32, Mathematics 

Computers

W*ST UNRESTWCTEf 

DISTRIBUTION made mu ’68

FORTRAN PRQGRAMMTWr.

by

* . 1^. uross, Sut)ervT<5^ 

C°ntr0:l Uni’

January, 1968

DOUGLAS UNITED NUCLEAR 
RICHLAND, WASHINGTON

INC.

LUU
t—
Oz
<
oUl

DKT,-»



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



ii DUN-2i*00

FORTRAN PROGRAMMING

PREFACE
This manual has been prepared to familiarize engineers within Douglas 

United Nuclear, Inc. with the computer programming language FORTRAN IV. 
FORTRAN IV is "basically a "universal" programming language which may be used 
on most modern data processing computers. Although FORTRAN is only one of 
several such languages, it is particularly applicable to scientific and 
engineering applications due to its mathematical-based structure.

The first section of this manual serves to introduce how data are stored 
and transferred within the basic elements of the computer (including octal 
and binary notation). Although this information usually proves to be useful, 
it is not essential to learning the FORTRAN language.

Sections II through VI describe the structure and use of the various 
basic elements which make up the FORTRAN language itself. Examples are 
included to demonstrate or clarify usage of these elements wherever necessary.

The last section of this manual describes techniques in setting up an 
application for programming (flowcharting) and in debugging a program once 
it has been written.

Although most of the information contained herein applies directly to 
the FORTRAN IV system implemented on the UNIVAC 1107 and UNIVAC 1108 digital 
computers, it is, for the most part, also applicable to any other digital 
computer capable of utilizing the FORTRAN IV language.
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FORTRAN PROGRAMMING - AN INTRODUCTION

INTRODUCTION

A computer is stupid. It doesn't know anything. It can't do anything without 
being told exactly what to do. The question that then comes up is why use 
it at all? The answer is that it can do what it is told at about the speed 

of light, so that a machine like the UNIVAC 1108 can perform as many additions, 
multiplications, subtractions, and divisions in one hour as a man could in 
150 years working 8 hours per day. Another prime consideration is that the 
computer will probably not make a single error in the calculations while the 

man will probably make several million. So much for what a computer can do— 

now how it does it. A computer program is a sequence of instructions which 

tells the computer what to do—read in data, add, subtract, multiply, store 

data, write out results, etc. There are two major problem areas concerned 
with programming a computer and these are:

1) The computer cannot "understand" English.

2) The computer does exactly what you tell it to and not what you want 

it to do.
Let's talk about number 1 first; actually the computer can't "understand" 

anything but is wired to perform certain operations under certain circumstances 

—that is, when it receives the instructions to perform those particular 

operations. The instructions are in the form of binary numbers stored in the 

computer's memory. Both instructions and data are stored and operated on as 

binary numbers.
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A computer looks something like this:

OUTPUT DEVICES
card punches 
CRT oscilloscopes 
magnetic tapes 
paper tapes 
on-line printers 
typewriters 
remote terminals

CONSOLE

CONTROL UNIT

MAIN MEMORY or 
STORAGE UNIT

ARITHMETIC UNIT
LOGIC UNIT

drums
discs
magnetic tapes 
magnetic cards

AUXILIARY STORAGE

card readers 
magnetic , tapes 
paper tapes 
remote terminals 
typewriters

INPUT DEVICES

The input devices (card readers, magnetic tapes, paper tapes, remote 

terminals, and/or typewriters) are used to provide the computer with both 

its instructions and the data to be operated upon. The control unit keeps 

track of what's going on and transfers information to and from different 
sections as required. The arithmetic-logic units are the places in which 
the actual mathematical and logical operations on the stored data occur. 

Storage is where both the program and data are kept during computer operation. 

These data and instructions pass from storage to the control unit and from 

there to the arithmetic-logic units or to the output devices. The input data 

and instructions are received from the input devices, the console, or the 
auxiliary storage and are then placed in main memory or storage before being 

utilized. The console is where the operator controls the overall operation 

of the computer--start, stop, execute the program, etc. Output devices may
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include paper cards (punched), cathode ray tube (CRT) oscilloscopes, magnetic 

tape, paper tape, on-line printers, typewriters, and remote terminals.
Main memory usually consists of millions of tiny ferrite rings wired 

together to store data by virtue of their being magnetized in one direction 
or another(depending upon the direction of flow of current in the wires 

connecting the rings). Thus, all information is stored as yes - no, or on - 
off since we are dealing with only bistate (flip-flop) devices. All infor­
mation used in a computer is thus represented in a binary (on-off, yes-no, 
true-false) mode.*

* Binary means base two (or two-state) much as decimal means base ten. A 
binary digit thus may assume either one of two states (0 or l) just as a 
decimal digit may assume any one of ten states (0, 1, 2, 3> *+> 6, 7, 8,
or 9). Since binary numbers are limited to 0 or 1 in each digit, they 
correspond to decimal numbers in the following manner

DECIMAL NUMBER = BINARY NUMBER
10's I's 32's ig’s 8's U1s 2's I's
0
0
0
0
0
0

0
1
2
3
h
5

0
0
o
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
1
1

0
0
1
1
0
0

0
1
0
1
0
1

0 9 
1 0 
1 1

0
0
0

0 10 0 1 
0 10 10 
0 10 11
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The binary number system only consists of two numbers 0 and 1 to corre­
spond to off and on, true and false, and yes and no. A clockwise magnetic 

field in a magnetic core may mean yes, on,true?or 1 and a counterclockwise 
field may represent a no, off, false, or 0. Flow of current in a wire could 

represent yes, on, true, or 1, and lack of flow of current would then repre­
sent no, off, false, or 0.

The value of a binary number is a function of its position; in other 

words, a binary number has "place" value. For example, in decimal notation 

the number 532 means five hundred and thirty two. The number 5 is in the 

hundreds place or position, the 3 is in the tens place or position, and the 

2 is in the units place or position. If the 5 were in the thousands place or 

position and the 3 were in the hundreds place or position and the 2 were in 
the tens place or position the number no longer would be five hundred and 

thirty two, but five thousand three hundred and twenty. Thus the place or 

position of the digits of the number determines the value of the number.

Also in the decimal system the number 532 is not equal to 632 even though 
they each have digits occupying the hundreds, tens, and units positions..

In the binary system, however, only the place or position determines the 

value of the number. For example, 0000 equals 0, 0001 = 1, 0010 = 2,
0013 = 3, 0100 = 4, 0101 = 5, 0110 = 6, 0111 = 7, 1000 = 8, and 1001 = 9; 
thus the place values of bits are ... 64, 32, 16, 8, 4, 2, and 1. If a 1 

bit is present in a place, the corresponding place value is part of the 

number, if a zero or "no" bit is present the place value is not part of the 
number. Thus 11101010001 is equal to; starting from the right 

1x2° = 1

0 x 21 0
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0 x 22

0 x 23 

1x2^
0 x 25
1 x 26

0 x 27

1 x 28
1 x 2^

1 x

ss

ss

0

16

0
64

0

256

512

1024

1873

0

Thus, to convert a binary number to a decimal number, the following 
technique may be used:

11101010001
x2
2+1

3
x2
T+i

7
x2
TK+o
~T¥

x2
25+1

29
x2
5H+0
“55

x2
116+1

117
x2

“231++0
~23%

x2
468+0
”555

x2
935+0
935
x2

1572+11573



6

To convert a decimal number to a binary number the following technique
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may be used:
Remainder

2) 1873 1
“27935 0

0
2)234 0
2)117 1
2)58 0
2729 1
2717 0 i
277 1 t273 1 1
271 1 READ

0 ANSWER

As you can see. it is not very much fun to convert everything into binary
before putting it on the computer. So, just to confuse the matter a bit more,
let's use octal representation of binary data in the computer. In other words

let's use a system based upon the numbers 0-7 (octal) rather than 0-1
(binary) or 0 - 10 (decimal).

If you look at ,groups of only 3 binary places, it is at once apparent

that their value can be equated exactly to an octal number and only exactly
to an octal number. Three binary places may represent only the following

numbers:

BINARY OCTAL DECIMAL
000 000 0 0
000 001 1 1

000 010 2 2

000 Oil 3 3
000 100 4 4

000 101 5 5
000 110 6 6
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DINARY OCTAL DECIMAL
000 111 7 7
001 000 io 8
001 001 11 9
001 010 12 10
001 Oil 13 11
001 100 14 12
001 101 15 13
001 110 16 lh

001 111 17 15
010 000 20 16

There are too many places to represent a base 7 number and too few for 

a base 9 number thus the number 110 lOlg equals

6

5 310

(note the subscript 2 to represent a binary number, 8 to represent an octal 

number, and 10 to represent a decimal number) and you can see! it’s much 

easier to convert binary to octal than to decimal and vice versa. Ibis 
really hasn't solved the problem of going from the decimal to binary and 

vice versa yet, however, since we still have the problem of converting octal 
to decimal and back, but we can attack that similarly to the binary to

decimal conversions.
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l873io = 8)1873 
B]23%

Remainder
■" T '

2
5
3

f
READ

ANSWER

• 35218

- oil 101 010 0012 
^ 3 5 2 18

= 1 8 7 3i0

In a similar manner:
3521q = 3521

x8
2^+5

29
x8
232+2
'~23X

*8
iFflTl
“Wio

If we are dealing with fractions:

0.569210 = .5692
x8

RE/'D ANSWER . 5536
x8

4 71^255 
x8

3 7430?
___x8

3 7443?
x8

3 7545^

- .4433+g

= .100 100 on on+2

L.
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READ
ANSWER

I
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.5692
x2

.1 T13B5
x20 T27SB
x2

0 7553^
x2

1 .1072
x2

0 72144
x2

0 742BB
x20 .8576
x2

1 .7152
x21 7^30^

+
* .100 100 011+2

Or .100 100 Ollg =, starting from the right,

0.5
21370

0.73
21T3"

0.375
2)0.75
0.1875

2)0.375
0.09375

27o.l875
0.546875

2)1.09375

0.2734375
2)0.546875

0.13671875
275.2734375

.5683+.
2)1.13671875

= .5883+10

+ 1. * 1.5

+ 0. = 0.75 

+ 0. = 0.375 

+ 0. = 0.1875

+ 1. = 1.09375

+0 =0.546875 

+ 0 = 0.2734375 

+ 1. = 1.13671875
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If you recall, we stated earlier that all numbers are represented as 
binary numbers in a computer. Similarly, all letters in the alphabet as well 
as several symbols may also be represented as binary numbers in a computer.

DUN-2400

As seen above each octal number occupies three binary positions. Letters and
symbols, howeveij occupy 6 positions and the following standard representations
are used:

PUNCHED BCD CODE
CHARACTER CARD CODE (MEMORY or STORAGE)

A 12-1 110 001
B 12-2 110 010
C 12-3 no on
D 12-4 no ioo
E 12-5 no ioi
F , 12-6 no no
G 12-7 no in
H 12-8 111 000
I 12-9 111 001

J 11-1 100 001

K 11-2 100 010

L 11-3 100 Oil

M 11-4 100 100

N 11-5 100101

0 11-6 ioo no

P 11-7 100 in

Q 11-8 101 000

R 11-9 101 001



11

CHARACTER
S

PUNCHED
CARD CODE

0-2
BCD CODE
010 010

T 0-3 010 Oil
U 0-k 010 100
V 0-5 010 101
W 0-6 010 110
X 0-7 010 111
Y 0-8 Oil 000
Z 0-9 Oil 001

• 12-3-8 111 Oil

) 12-4-8 111 100

( 0-4-8 Oil 100
+ 12 no ooo
- 11 100 000

= 3-8 ooi on
* 11-4-8. 101 100

This is called the BCD or binary coded decimal notation. In this nota-
tion, to be consistent, numbers also use 6 positions but for numbers one
through seven, the uppermost three bits are blank or zero and 0 is represented 
as a 10.

CHARACTER
0
1
2
3
k

BCD CODE 
001 010 

000 001 

000 010 

000 Oil 

000 100
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CHARACTER5

6

T
8
9

BCD CODE 
000 101
OOO 110
000 111
001 OOO 
001 001

In the UNIVAC HOT as well as the UNIVAC 1108 and the IBM 7090, a com­

puter word consists of 36 binary bits. This computer word may thus represent 

12 octal numbers or 6 BCD characters: for example,

BCD S I M P L E
BINARY oio [oio in |ooi 100|100 ioo' 111 iooi Oil 1no i ioi
OCTAL 2 | 2 T l 1 4 | 4 4 , 7 ‘‘I 3 6 i 5

The computer does all of its addition, subtraction, multiplication, 

division and logical operations in binary. Input and output are usually 

converted to BCD so that the machines that punch our output cards and print 

outs can take the BCD and print or punch decimal numbers and alphabetic 

letters that we can easily understand.

So, as was mentioned earlier, the computer doesn't understand English 
only binary or on-off numbers. Every program instruction and every piece 

of data is stored in the computer and operated on as either a binary or a 

BCD number.

In the earliest computers, if one wanted to add A to B and call the

result C he had to do something like the following:

000 Oil 000 Oil 000 001 000 110 000 010
000 111 001 010 000 001 000 111 000 101
000 010 000 100 000 010 000 110 000 111
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Where these are each three BCD machine instructions, the first 6 bits 

(left) contain the instruction and the remaining 24 contain the address that 

the instruction applies to. Thus if 3 means zero out and load the accumu­
lator, 7 means add to the contents of the accumulator (the answer goes back 
in the accumulator) and 2 means store the contents of the accumulator; and 

if A, B, and C are stored in memory locations 3162, 0175, and 4267 respec­
tively we will get 0 = A + B by the above three machine instructions.

It was rapidly apparent that there must be a faster and simpler way 
to program than this. As a result, a machine-oriented or "assembler" 
language was soon developed which replaced binary notation with, mnemonics 
and let the computer itself do the translation.

'The three above statements could then be written as something like this:
ZLA 3162 
ADD 0175 

STA 4267
The next step in the evolution of programming techniques was to formulate 

a language which had "macro" instructions composed of many of the above 

machine-oriented language instructions. The most common example of these 

currently in use in the United States are FORTRAN (FORmula TRANslation) and 

COBOL (COmmon Business Oriented Language). In FORTRAN, a scientifically 

oriented language, the above instructions may be written as

C = A + B

while in COBOL one might say

ADD A, B GIVING C.
In this example we have replaced three machine instructions with a single 

"macro” instruction. When the FORTRAN or COBOL program is "compiled" by the

DUN-2400
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computer, these macro instructions are broken down into the basic machine- 

oriented language instructions (SLEUTH for the UNIVAC 1108, FAP or MAP for 
the IBM 7090) and are then "assembled" to form the actual machine program 
using the binary instructions. The "assembler" also assigns the necessary 
storage locations for the program as well as for data.

FORTRAN then is not "machine-oriented" but is a "problem-oriented" 

language. The FORTRAN language statements are written on special FORTRAN 

coding forms which are then copied onto 80 column punched cards by keypunch 

operators. These cards containing the program instructions together with 
cards containing data to be operated upon are fed into the computer by 

inserting them into an on-line card reader or transferring the information 
from cards to magnetic tape which is then read into the computer.

DUN-2400
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FORTRAN CODING FORM 2 -

CODER DATE PROBLEM NO.

c+ ro"
COMMENT

CO
N

TI
N

- 1 
U

A
TI

O
N

 |
FORT

Z4c 
.

S T A T E M ENT identification

STATEMENT 
NUM 3ER

1 2 13 |4 |5 6 7 l 8 i9 1,0 11:12113,14,15 16 |l 7 ,18 j!9 20 21,22,23 24.25 26 (27; 28,29 (30 31 132,33134 135 36j37(38!39 j40 4I|42 (43[44 (45 46|47(48j49 |50 51 (52[53 [54[ 55 56 57 58 j59 60 61 [62.63 [64(65 66 ,67;68 [69 [70 71 72 73 .74 [75 [76 (77 78 [75 [80

I i > ill' ■ i 1 i ___1- 1 1 ' i___|— 1__ , , , . ___111. | i 1 ' ‘ 1 I'll-- 1 1

2 III. • 1 __l___i___L- i . 1 1 1 ili. I«i1 1 1 1 1 1 1 < 1 1

3 1 , i < i It'- 1 1 1 ■ 1 if 1 1 i 1 1 1 1 1 1 | ■

4
i i i 1 1 1 f till 1 1 1 ■ 1 S 1 1 ■ I 1 1 1 1 t 1 , 1 1___ !___ ■ lit ill! __ 1___|___ 1___ 1___ 1 1 1

5 . • , i l * 1 till . , 1 : 1 1 1 1 1 1
-

l ! 1 l - 1 1___ 1___ 1— , . , . II., ___1 | !___!___ 1 1 1 ■ ■ ii 1 1

6 1 , , , i 1 • 1 1 t i 1 1 1 1 ! i ! t 11(1 1 1 / 1 , , , , .iii1 . 1 ' . 1 1 t I 1

7
i---------

fir1 i . f r i 11.1 ,
1 t 1 ■ ■ fill ) i 1 ( 1 1

8
. N.,. i i i i l.li 1 1 | -L 1 I 1 1 ■ . > 1 1 1 . 1 ..<1 . 1 1 1

9

-----------1 | j

. . ■ i , i • t 1 ! 1 i l i 1 1 I 1 1 1 1 1 , , , 1 . , 1 1 11,1 1 l 1 1 till 1

10 i , 1 t t 1 III* 1 1 1 1 < 1 ■ . 1- 1 1 1 i 1 III. «

11 n
.III 1 . 1 1 <lll 111' tlii . 1 1 1 111! 1 1 1 1 l lit1 1

12 i . i i t 1 f 1 III. 1 1 l 1 1 ■ it'

13 I.., 1 . i ! (ill . 1 1 1 ' 1 , 1 ■ 1 1 i< > 1 —1 1 ±.J___ ll.i 1

. M ! : 1 ' 1 * till 1 1 1 1 , i 1 i 1 < 1 i.l. .
__ 1___1___J___ 1___ __ I__ 1---- 1-----1___ —J_______ 1___ 1___

15
-----------------r-r

1 1 1 . I t 1 i . 1 1 , , , , 1 1 1 1 1 1 1 < i 1

16 . i ! . . . 1 : 1 ! • i : : | 1 1 _J___L 1 l - 1 1 > l —I___ 1___1___1___ _J___ 1___ l___I___ _ __ t__ l___ 1___1___ itii 1 1 1 1 t

17
!

1111 t 1 1 1 1 1 , __ 1___L, 1 J till | I ) 1 l 1 1 | l 1 ' ' ■ t

18 “ ■ ■ i i' :
l.l! 1 . ' ' I 1 1 lilt ill: 1 < 1 1 . . 1 i ___l__ till

19 , . ! i < 1 t i lit' ___i- i . , , i'ii <11! t 1 , | 1 . ! 1 i

20 , : 1 , . i . . I . i * i i ! 1 1 till i'ii 1.1' 1 1 l 1 1 1 1 III: 1

2! ;
; 1 ■ : 1 . i 1 i 1 t 1 i

i . . , , i . .

22 t ■ i .1 1 1 '
, , , 1 .. 1 1__ * J 1___i_ , . j ,

23 : l i 1 1 . 1 ' 1 ill' ' 1 f * , .[.I , ! 1
1 r

1_ 1 * 1 I I 1 I J_ t ' ' ... ' .. .• 1 ! 1 .

24 i
> r , . ,

1 1 l 1 ’ 1 i__ L J 2

25
‘

- . i , . ----- ----- 1---- ------1---- , , - i , 1 , .....
54-3000-S60 { 6-66) *cc «t

H

o

DUN-:
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Notice that the coding form, reproduced on the preceding page, also has 

80 columns (like the punched cards) and is broken up into h major fields or 

areas. The first field is in columns 1-5 and it contains "statement" numbers 

which may be used to reference the FORTRAN statement appearing in the rest of 
the card. It is not necessary to have a number in the columns 1-5 unless you 

want to reference or go to that statement from somewhere else in the program. 

Statements may have any number from 1 to 3276?. (One never includes comma's 
in FORTRAN numbers.) Column 6 is the "continuation" column and is used to 

tell the computer that the card contains a FORTRAN statement continued from 

the previous card (this is done by placing any non-zero characters in column 

6). Usually the first continuation card is punched with a 1 in column 6, the 
second continuation card with a 2, etc. A maximum of 19 continuation cards 
is permitted per statement on the UNIVAC 1108.

Columns 7-72 contain the FORTRAN statement itself (which, as indicated 

above, may be continued to additional cards if necessary). It is usually 

good practice to use several short FORTRAN statements rather than one long one, 

to avoid mistakes. The computer ignores blank spaces in columns 7-72 except 

when they appear within a number (and then they may be considered to be zero, 
depending upon the computer).

Thus, as was mentioned earlier, the computer doesn't understand English, 

but FORTRAN comes rather close to the "language" of mathematics once you learn 

a few basic rules. At that time it was also mentioned that the computer does 

exactly what you tell it to do and not what you want it to do. This may seem 

facetious but it is very unfortunately true.

If, for example, you are trying to find the volume of a sphere of a known 

diameter and you write that
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VOLUME = 3.14159 (DIAM)3875
TT~ ? 3Every volime calculated will be— D* rather than ~£~ D as it should 

be. The program is definately not supplying the correct answer, but it 
certainly is doing what is "correct" in that it is doing exactly what you 
told it to do.

If, in averaging 23 numbers, you calculate only 22 of the numbers and 
divide their sum by 23, your answer is wrong but you are getting the "correct" 

solution to the problem that you have specified even though that is not the 
problem you want to solve.

Thus in writing your program your first step is to define exactly what 
it is you are attempting to do. This definition must include every equation 
and relationship involved in the correct sequence of their execution. You 

can't write a program to try one approach to a solution and then, if it 

doesn't look like you are getting the correct answer, have it try adding, 

subtracting, multiplying, or dividing by other numbers to get the "right" 

answer. You have to know exactly what it is that you want to do. This leads 

to the question "what should one put on the computer?"

A payroll may be calculated in a rather simple fashion:

GROSS = hours worked (dollars/hour) + overtime + shift differential + holiday 
pay, etc.

DEDUCTIONS = withholding + social security + insurance + savings plan +
United Crusade + credit union + U. S. Savings Bonds, etc.

NET = GROSS - DEDUCTIONS

This calculation is really quite simple but it lends itself to the com­
puter quite nicely since it must be repeated many hundreds or thousands of 

times per week. Thus a problem which has many sets of data to be processed
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is a good computer application.

Take a different type of calculation; in a very simple analysis, a 

nuclear reactor loading may be described in terms of the "buckling" of the 

materials present. The buckling is really the rate of change of the flux 
in that material. It is also known that the slope of the flux = 0 at the 

center of the reactor and that the flux = 0 at the outer edge of the reactor 
that is just critical. Thus to determine how far from critical a reactor 
loading is, one could "guess" a change in material buckling for each zone 

and from that calculate a flux distribution and see if it has zero slope 

at the center of the reactor and if it goes to zero at the outer edge. If 
it did, your problem is solved. But unless you are one heck of a good 

guesser it didn't and you will have to try new sets of ducklings. An 

iterative problem like this lends itself quite well to computer applications 

since if you start out with a zero slope at the center, and the flux is 

negative at the outer edge, the zone ducklings are too high and must be 

reduced. If you start with a zero slope at the center and flux at the outer 

edge is positive, you must increase the buckling in each zone to reduce flux 

at the edge. You keep changing the buckling and finally the flux is close 

enough to satisfy your error criteria. This may take 5> 50> or 500 iterations, 

but the equation will still be solved much more rapidly on the computer than 

by hand. Oddly enough, the real problem in this application is not to set 

up the mathematical model of the problem but to define for the computer how 

much to change the ducklings, to iterate to the "correct" solution as rapidly 

as possible. Thus problems 'which require many iterations to achieve a 

solution or problems containing many sets of data or many large and complex 

relationships are all quite applicable for computer usage. An additional
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class of problems that have wide computer applications are those that require 

taking very small time, distance or temperature steps to achieve the correct 
solution. These are usually combined simultaneously with iterative problems, 
For instance, calculations of transient temperatures during a reactor startup 
or scram requires consideration of many iterations and many short time steps 

as well as small physical volumes to achieve the correct results--there is 
also much feedback between power change and temperature from the standpoint 

of associated reactivity effects of change in fuel and moderator temperature. 

Solutions of problems of this type could not be attempted on a fine scale 

without the aid of a computer.

On the other hand, some calculations are best left off the computer.

These are the simple single solutions with few complications.

Daily calculations of plant throughputs, for instance, might require 

more time to punch the input data on cards than for the user to solve the 

problem by hand. If all 365 sets of data were to be calculated at one time, 

and used as the basis for further calculations it might be reasonable for 

the computer to be used--particiilarly since no errors would be expected from 
the computer results (providing the program is correct and all the input data 
are transcribed correctly) while several dozen errors would probably occur 

in the hand calculations. However, a daily calculation of this type is 

probably not applicable.

DUN-2400
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SECTION II - ARITHMETIC STATEMENTS, CONSTANTS, AND VARIABLES

As mentioned in the previous section, FORTRAN stands for FORmula TRANs- 

lation and is a "problem-oriented" language—that is, it much more closely 

resembles the language of mathematics than the language of computers. FORTRAN 

is also a "machine-independent" language. In other words, a FORTRAN program, 
once written, may be run on virtually any computer having a FORTRAN "compiler". 

The main problem in running FORTRAN programs on different computers is that, 
even though the FORTRAN program says the same thing to both computers, the 

"compiler" (or translator to machine language) will probably not produce 

exactly the same machine language program for each computer. The reasons for 

this are severalfold. In the first place, there are many versions of FORTRAN 

—II, IV, V, etc. as well as different "versions" of each version, and a 

FORTRAN II program may not work out too well on a FORTRAN V compiler. Also, 

the compiler is really only a program itself which was designed by the com­

puter manufacturer or a software firm to translate the FORTRAN program into 

an efficient machine language program for use on that particular model of 

computer. This sounds great, until you realize that different computers do 

things differently so that even adding 1+1 may be done quite differently-- 

not only by computers built by different manufacturers, but even by different 
computer models of the seme manufacturers. The second hooker mentioned above 

is the phrase "efficient machine language program". Compilers tend to move 

parts of your program around during translation to machine language to make 

it as efficient to run on the computer as possible. Thus, a really 

"sophisticated" compiler may do things very differently than
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a somewhat less sophisticated compiler, and the results, even when run on the 
exact same computer, could be startlingly different.

Thus anyone who does very much FORTRAN programming gets to learn a little 
about how "his" compiler works--or at least he gets to know someone else 
who knows this. Before we worry about compilers, however, let's get a little 
FORTRAN under our belt.

A FORTRAN program is merely a deck of cards (called a "symbolic" deck) 

which, when loaded into the computer with the appropriate FORTRAN compiler, 

will result in an "object" or machine language deck that can be operated on 

by the computer. The FORTRAN program can vary in length from a few FORTRAN 

"statements" to many thousands of FORTRAN "statements", where the FORTRAN 

"statement" is usually the equivalent of many machine language instructions.

Since FORTRAN is mathematically oriented, the simplest statements con­

cern everyday addition, subtraction, multiplication, division, and exponenti­
ation.

Each one of these five operations is represented in FORTRAN by a special 

symbol as follows:

+ means
- means 

* means 

/ means 
** means

Thus if one wanted to write

"add"
"subtract"

"multiply"

"divide"
"raise to the power" 

the following expression

y3 • 6 + z9 • 72

s + q
x
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in FORTRAN it would be as follows:

X = (Y**3.6 + Z**9.72) / (S + Q * R**(7./3.))

Note that only capital letters are used since FORTRAN has no provisions for 
lower case letters.

Notice also that parentheses were used to separate parts of the expres­

sion. It is allowable to use as many sets of parentheses as is necessary 
to define the equation and it is usually better to have too many parentheses 

than too few. Extra sets of parentheses will be ignored, but missing ones 

can't be put in by the computer since it won't know where they go. The com­
puter does assign a "weight" to each of the five above operators and it is

>llows:

OPERATOR FUNCTION WEIGHT
** Exponentiation 3
* Multiplication 2

/ Division 2
+ Addition 1

Subtraction 1

If statements contain no parentheses, the computer will evaluate the 

expression from left to right in the order the terms appear unless the 

operation to the right of the one being examined has a higher weight than 

the one being examined--in that case,.the adjacent operation with the higher 

weight is performed first. For example:

X=Y - Z*R**3.2 
is x = y - z(r3*2)

whereas X=Y- (Z*R)**3.2
x = y - (zr)^*2is '
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and

is

and
is

and

is

and

is

whereas

is

Note that inclusion of parentheses will overide the "built-in" weighting 

factors assigned to the operators.

The variables X, Y, Z„ and R; above are representations used by the 

programmer; however the machine considers them merely as "storage locations".

In other words, X is some location in memory, say 0967^ and Y, Z, and R are 

also, as far as the computer is concerned, merely memory or storage locations.

A FORTRAN arithmetic relationship thus differs from mathematical equations 

in that FORTRAN statements may have only one variable or constant on the left 

side of the equal sign. Thus

X •= Y + Z
is permitted but

Y + Z = X
is not allowed.

X = Y + Z means "add the contents of the storage location assigned to

X=y-Z**R*3.2

x = y - 3.2zr

X = Y ** Z - R * 3.2

x = yz - 3.2r

X = (Y - Z) ** R / 3.2

x = (y - z)r 
3.2

X = Y / Z / R / 3.2

x ~ y
3.2zr

X = (Y / Z) / (R / 3.2)

x = 3.2y 
rz



24

Y, to the contents of storage location assigned to 2, and place the result 
in the storage location assigned to X".

Thus

X = X + 4.

is a valid FORTRAN expression even though it does not look "correct" mathe­

matically speaking. In essence it says--"add 4. to X and store the answer 
in X".

Now that the mathematical operators are defined., let's spend a minute 
or two on defining variables and constants.

Since variables and constants are really only "storage locations" (to 
the computer) to which we have assigned "names" for our convenience of 

representation, we must adhere to certain "naming rules" so that the compiler 
knows how to handle such data.

The first rule is that the names used to represent variables or constants 

may not contain more than six characters (although they may have less--in 

fact a single alphabetic character may be a valid name.) The name is not 

permitted to start with anything except an alphabetic character. The name 

may contain alphabetic characters and numbers in any desired sequence provided 

they start only with an alphabetic character. Names may not include any symbol 

such as +, -,*)/, ,, ., (, ), =, etc. since the compiler is not smart

enough to realize you meant the single variable WA-RP and not the variable 

WA minus the variable RP.

Another rule is that any name starting with either an I, J, K, L, M, or 

N is considered to represent an integer variable whereas those names starting 

with alphabetic characters other than I, J, K, L, M, or N are considered to

DUN-2400

be real variables.



25
DUN-2400

Integers are represented in memory as just that--integers. For example, 

if IX = 483io (or ^Sg) a 12 character octal representation of the 36 bit 
binary "word" in memory would appear as this

I
IX in Memory Dump (octal)

Real numbers are not stored as integers in memory—mainly because they 
are not integers and, since they may have values in the range of 10*38 ^.0 
10+38J they could hardly fit in a 12 character octal integer "word". Instead, 

real numbers are stored as shown below

S CHAR. MANTISSA

where S, the left-most binary bit in the 36 bit binary (12 character octal) 
word represents the sign of the number (+ or -), the next 8 bits represent 

the characteristic, and the remaining 27 bits represent the mantissa. The 

mantissa is of the form .XXXXXXXXX3 whereas the characteristic would be n0 

+ 200g if the number is represented as (. X X X X X X X X X) 2n. Thus, to 

represent the number Iiq in the computer we would get I^q = lg = I2 = (.lx 
2^-)g or the word in binary would have a characteristic of 200 + 1 = 10 000 

001 and a mantissa of .100 000 000 ....

0 100000011000000000 0 0000000
/sign \characteristic 1Mantissa

Since we can group three binary bits to form each octal character, the 

above word would appear as shown below in octal (for example in an octal 

memory dump) realizing that .1002 = .4q

201400000000 8
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Similarly the number k could be represented as 4^q = 4g = IOO2 = (.1 x 23)2. 

or 2034-00000000gin octal. The number 10 could be represented 

as 10-j_q = 12g = 001 OlOg = (.1010 x 2^)2 and since .lOlg = .5q "the word would 
look like 2O450OOOOOOOQin octal.

This now raises the question of how one would represent a number like 

7.4692 x 101T in FORTRAN. It is obvious that you can't keypunch XI0^ since 
you can't shift up half a line on a FORTRAN card. Instead you merely replace 

x lO1? by El? or "exponent of 17" thus one could write x = 7.4692 X 10-1-7 in 
FORTRAN as

X = 7.4692E17 
or

X = 7.4692E+17
The + in the exponent as well as a + for the number is "understood" if 

it is not included. However, all - signs must be included, as
Y = -9.2436E-4

to represent y = -0,00092436.

Since a - is a mathematical operator as well as a "minus sign", one must 
be somewhat more careful in using it than might be expected (since two opera­

tors are not permitted to be adjacent). Thus to multiply -X by -17.6(y) one 

must write it as (-X)*(-17.6)*Y using the parentheses to "attach" the sign 
to the variable X or the constant 17.6 and not mix it up with the operator*.

Real numbers are represented by their having a decimal point, whereas 

integers are conspicuous by the absence of a decimal point. Thus, even though 

you "know" that 7. is an integer, the FORTRAN compiler calls it a real number 

because it has a decimal. If one were to write

INK = 4.



the computer would first have to change the real number 203 400000000 

to the integer 000000000004g before it stored it in the location 
representing the variable INK. Thus the following are valid FORTRAN integers

IP = 9 
J = -17394 
MRS = 2741 

KP194 = 2 
N47B6R = -19

and the following are valid real numbers

ZETA = 1.9467322E-27 
P = 1.0

UR = 1743.99 
QM = -1.6E06 
A = 99.32 / 7.6E-4

As mentioned above, real numbers must be in the range 10“38 io+3®. Notice

that no commas are permitted in numbers represented in FORTRAN.

If one has integral powers in an expression it is much more efficient 

to use the integer than a real number for the exponent. In other words,

X = Y**9
is preferred to

X = Y**9.
of course if the exponent is a real number like 7.63 you don't want to use 

an 8 or a 7.
When real numbers are multiplied, added, divided, subtracted, or raised 

to a power, a real number is the result of the calculation. Likewise integer 

arithmetic will result in integer answers. The computer always truncates the
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results of integer division so that if one had IX = 7/2 the result would be 

IX * 3 likewise MRK1+ = 1-1000*(99/100) would yield MHKfc = 1 since 99/100 

truncates to 0; however MRK1+ = 1-1000*99/100 would result in MRK^ = -989 since 
* and / have the same weight and 1000 * 99 would be performed before /100.

If you were to divide a real number by an integer or vice versa you 

would have problems called a "mixed expression" on the IBM 7090, but the 
UNIVAC 1108 FORTRAN compiler is clever enough to convert the integer to a real 
number before performing the operation. Even though the UJilVAC 1108 FCRTRAil 

compiler will "look after you" it is best not to mix expressions when possible 

just to be safe (you might run the program on some other computer some day).
Another example of mixing integers and real numbers, but one that is 

commonly done, is the use of different modes on different sides of an equal 

sign, thus

A = 19/k + 5/1*

= 1* + 1

= 5.

AND IR = 19.A. + 5.A.

= it. 75 + 1-25

= 6

are both valid—the computer evaluates the expression in the appropriate mode 

and then converts the solution to the mode required for storage as the answer.

If you recall, any variable whose name starts with I, J, K, L, M, or ii 

was defined to be an integer variable (or constant). There is a means of 

overriding this definition and that is to use a TYPE statement at the start of 

your program. For instance you may specify IMAX, J, KAY and MQ to be real
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variables by saying
REAL IMAX, J, KAY, MO

Note the line through the 0 in MO to differentiate the letter 0 from the 
number 0 as in the name MO.

Similarly, X, YY, SEL, and P may be specified to be integer variables by 
INTEGER X, YY, SEL, P

If a name is not found in a TYPE statement, the I-N ruled for integers will 
still apply.

Besides the INTEGER and REAL Type statements there are four other Type 

statements. One of these is COMPLEX to define complex numbers of the type 

7* + 9.^i (represented as (7., 9.^) in FORTRAN).

For instance the names Cl, C2, 3K, Q, and RP may be set up as complex 
variables by

C6MPLEX Cl, C2, ZK, Q, RP 

and one could then set zk = 9-642 + l.li by 
ZK = (9-642, 1.1) 

or

ZK = (0.9642E1,11.E-01)
Each complex variable uses two consecutive storage locations—the first 

for the real part (9.642 above) and the second for the imaginary part (l.l 

above). Integers are not permitted as complex variables. All complex numbers 

must be defined by a COMPLEX Type statement.

There is another kind of number stored in the computer and defined by a 

Type statement—that is the DOUBLE PRECISION number. It may appear that 8 or 9 
significant figures are a lot and that they give plenty of accuracy, but you 

can never please everybody, so to permit calculations having 16-18 significant
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figures, a double precision number is used. Every double precision number 

must be defined by a DOUBLE PRECISION Type statement as for Dl, R3, IV, NK 
below

DOUBLE PRECISION Dl, R2, IV, NK,

Each double precision number is stored in two consecutive storage locations 
in memory with the most significant figures in the first storage location and 
the least significant figures in the next location. The characteristic of 
the first location is as normally calculated, that of the second location is 
the first -27 (since the first 27 binary bits went into the first word and 

bits 28-54 will go in the second word). All double precision numbers are 
represented with a D rather than E to signify the exponent so 

Dl = 9.3D+6 

RS = 1.446392117138D+0 

IV = 6.333333333312D-4 

UK = 1.2D+1

are all double precision numbers (note that they had to be defined in the 

DOUBLE PRECISION Type statement as well as have the D in the number).

Another Type statement is the LOGICAL Type statement to define logical 

variables. A logical variable is a variable which may assume the value true 

or false (represented by a 1 or 0 respectively in memory). Thus to make LI, 

JK, R7, M39, PIN36 logical variables we must use the following statement: 

LOGICAL LI, JK, R7, M39, PIN36 

and we may then set

LI = .TRUE.

JK = .TRUE.
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RT = .FALSE, 
etc.

Logical variables may not assume the values of numbers—only .TRUE, or 
.FALSE. Note the periods necessary on each side of the .TRUE, or .FALSE, 
datum.

There are three logical operators, .0R., .AND. , and .N0T. (which must 
also be set off by periods) as well as six logical relational operators, .EQ. 
(equal to), .NE. (not equal to), .GE. (greater than or equal to), .GT. (greater 

than), .LE. (less than or equal to), and .LT. (less than), again all set off 

by periods; which are used in logical manipulations just as the **, *,/,+, 
and - are used in arithmetic manipulations.

Now that you know all about numbers in FORTRAN, consider the problem you 

have if you want to operate on say 500 numbers, you certainly don't want to 

dream up 500 FORTRAN names, one for each number—you would then have to write 

500 sets of all arithmetic expressions to operate on each name (or number).
Thus you say, O.K., let's have 500 X's and we will call the first x-X(l), the 

23rd x-X(23), and the 500th x-X(500). X is called a "subscripted variable" 
or an "array" and one merely decides which "X" he wants to use and that number 
(say the ith) is the subscript used.

A variable may have from 1 to 7 subscripts on the UNIVAC 1108. Tims one 
might have stated X(2,5,5,10) just as well as X(500) and still achieved the 

same result—500 X's all stored in sequence from X(l) or X(l,1,1,1) to X(500) 

or X(2,5,5,10) in memory. They would be stored in the sequence X(l), X(2), 

X(3), X(L)...X(500), or X(l,1,1,1), X(2,1,1,1), X(l,2,1,1), X(2,2,1,1)...

X(2,5,5 ,10).
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The subscript must be an integer and may not itself be subscripted. It 

may also be a product, sum, or difference of integers. The following subscripts 
are valid:

X(I)

R(K+93)

MIIK(LL+91)
B3K92(6*M+9)
F6MIX(3+L, U*N-2, K, IR)

but

rlp(m(71))
is not valid since the subscript itself is subscripted. Subscripts should 

not be zero or negative even though such subscripts are permitted (X(0) would 

be stored next to X(l) backwards in memory, X(-0) next to X(0), X(-l) next to 

X(-0), etc.). Each subscript is separated from the adjacent subscript by a 

comma. The group of subscripts are enclosed in a single set of parentheses.

Integer, Real, Double Precision, Complex, and Logical Variables may all 

be subscripted. The maximum size of each array must be defined. This may be 
done in a DIMENSION statement as follows:

DIMENSION X(9,3,210), Y(lO), IX(2)

The dimensions of an array may also be specified in a TYPE statement if the 

variable name itself appears in a TYPE statement, for example,

DOUBLE PRECISION VM(7,32), R(6,2,ll)

If a variable is dimensioned in a TYPE statement it must not appear in a 

DIMENSION statement; similarly if a variable is dimensioned in a DIMENSION 

statement, it may not appear with dimensions in a TYPE statement but it may 

appear in a TYPE statement without dimensions, for example:
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DIMENSION X(73) , Ky(9), R(2), I4M(9) 
INTEGER X, P(93), V, W7 
REAL KY, IB72, MM, MN(6U3,2) 

are all valid statements.

Whenever a subscripted variable (dimensioned) is used, it may not be used 

within the program without a subscript to denote which element within the array 
is referenced. For example:

REAL IXK, MV(72), LK39(3,7,96M, II, IJ, IK 

DIMENSION KK(2), ILR(9), PPT(77)
IXK = 9.6i+

R = 6.91+2E-30 

LK39(1,7,32) = -99.^
IL = 17 

KK(l) = 19 

PPT(3) = 2.7EU 
are all valid statements but 

f4V = 6.2
and

ILR = 10
are not since these variables represent arrays and it is not stated which 

element of the array is referenced. (The compiler will assume that ir. these 

instances the first element is referenced so it will set MV(l) = 6.2 arid 
ILR(l) = 10. )

To determine the location of a particular element within an array, the

following formula may be used:
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Location of X(ll, 12, 13, ...T7) within array X(D1, D2, D3....L7) = 
location of X(l, 1, 1, 1, 1, 1, 1) + (ll-l) + (12-1) * Dl + (13-1) * LI *

D2 + (lU-l) * Dl * D2 * D3 + ... + (17-1) * Dl * D2 * D3 * ... * j6. For
example, the location of RL7(2,1,1+,3,M within the array RL7(5,5,5,10,10) 
may be calculated as the storage location of RL7(l,l,1,1,1) + (2-1) + (l-l)

*5 + (4-1) *5*5+ (3-1) *5*5*5+ (4-1) *5*5*5* io= location
of RL7(l,l,l,l,l) + 1 + 0 + 75 + 250 + 3750 = location of RL7(l,l,l,l,l) +
4076.

The above rule applies for all arrays except those of complex or double 
precision numbers. In the latter case, two adjacent storage locations are 
required for each number. Thus for double precision or complex numbers, the 

location of X(ll, 12, 13 ... 17) within array X(D1, D2, D3, ... D7) is the
loaction of X(l,l,1,1,1,1,1) + 2 * (ll-l) + 2 * (l2-l) * Dl + 2 * (13-1) *
Dl * D2 + 2 * (I1+-1) * Dl * D2 * D3 + ... + 2 * (17-1) * Dl * D2 * D3 * ... * nC.
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SECTION III LOOPING AND TRANSFER OF CONTROL 
LOOPING

Now we know all about how to store many sets of data in large arrays„

This leads to the next question--what good is the use of such an array (or 
arrays)?

It’s true that if you had ten numbers stored in X(l) to X(lO) and 
wanted to find y = ^3c(i) you still have to add all ten numbers up whether

57
they are called X(l), X(2), X(3), ... X(lO), or XI, X2, X3, ...X10. The 
advantage of the former notation lies in the use of "indexing" or selecting 

the particular variable of interest in the array.

Thus, although

Y = XI + X2 + X3 + X4 + X5 + X6 + XT + x8 + X9 + xio
as well as

Y = X(l) + X(2) + x(3) + x(4) + X(5) + x(6) + X(T) + x(8) + X(9)
+ X(10)

one has no choice but to calculate Y as above using XI, X2, etc. but there 

is a much more efficient method of adding in the latter case. That is

Y ■= X(I) + Y

provided Y = 0.0 before we startj and the index I assumes all values from 1 

through 10 inclusive. The real, question is how we do the latter--and the 

answer, strangely enough, is to DG it - using a "D© loop". A DG loop says 
"do what follows as many times as necessary to satisfy the index requirements". 

The DG statement is of the form

DG N I = J, K, L

where the integer N tells the computer just what statement^ it is to "DG",
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the integer I is the index, the integer J is the first value the index is to 

assume, the integer K is the last value the index is to assume, and the integer 

L is the increment of the index. If L is left out it is assumed to be equal 
to the integer 1.

The D6 statement in effect says "do everything from here to statement 
N one time for each value of the index I specified by J, K, and L".

Thus to add the ten values of X above we would do it as follows

DIMENSI0N X(10)
Y = 0.0
D© 20 I = 1, 10 

20 Y = Y + X(I)
This may not seem like a tremendous savings, and in this instance it probably 

is not, but imagine if we had say 5000 different values of X to add--the 
exact same three instructions will accomplish the 5000 additions as it did 
for the 10 (provided we index I from 1 through 5000 rather than 10).

Note that the statement N (20 above) is executed for each value of I.

After the statement numbered N is executed, control returns to the D6 state­

ment, the index I is incremented by L, and if I exceeds K, control is then 

sent to the statement following statement N.

As many statements as are desired may be placed in the "loop" (between 

D© N I = J, K, L and statement number N). It is most efficient, however, to 

place within the "loop" only those statements which must be executed for each 
value of the index I.

Statement N may be virtually any statement (arithmetic, logic, or input/ 

output) except that it cannot be another D0 statement or a transfer or test

statement (more about these later).
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One special statement is commonly used to end a D9 loop and that is the 

CGNTINUE statement. The CONTINUE statement says just that--continue or 
"ignore me". It doesn't cause anything to happen except control to he trans­
ferred to the next statement (or back to the D9 statement if it is the end 
of a D9 loo^i The above problem could have thus also been written as

DIMENSI6N X(10)

Y = 0.0

DG 20 I = 1, 10

Y = Y + X(l)

20 CGNTINUE

Within the loop from DG N I = J, K, L to statement N, neither I, J, K, nor L 
may be redefined. That is, one may not have any one of these integers on 

the left side of an arithmetic statement within the loop.

In DG N I = J, K, L it is normally assumed that L is positive, that 

is K > J; however, it is permitted that J > K and L < 0. If J > K, L must 
be set equal to -1, -2, etc.

Thus, the above problem could have been written 

DIMENSION X(10)

Y = 0.0
DG 20 I = 10, 1, -1

Y = Y + X(l)
20 CGNTINUE

and X(10) would have been added to X(9) to X(8) to X(7) ... X(l) to achieve 

the same answer as before.
The most common limits of DG's are from 1 to K (where the limits of a

DUN-2400
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D© are the numbers J and K in D6 N I = J, K, L). The "range" of a D6 is the 
set of statements between the D© statement and statement N.

The integers I, J, K, and L may be integer constants such as 1, 10, 1000, 

325, etc. or they may be integer variables provided they are not subscripted 
variables.

One is not permitted to transfer into the middle of a D© loop but must 
enter through the D© statement itself. It is permitted, however to transfer 

out of a D© loop (provided it is not at statement N, the end of the loop).
The reason for this is that one must set up all the index limits and the index 

itself (l, J, K, and L) before entering the loop, and the only way to do this 

is by passing through the D© statement. Once the index and limits are set 

up, it is permitted to transfer out of the loop before the loop has calcu­
lated all of the range for the limits of the index (provided one does not 
return to that point of exit from the loop but back to the D© statement if 
the loop must be used again).

D© loops may follow one another in a program or they may be "nested" 

within one another. Nested D©'s must be entirely within each other.

For instance, say you wanted to calculate
10

where



To calculate this, we must "nest" a D9 loop for calculating z within the loop 
for calculating x as follows

50
100

DIMENSION £(10), P(10,15) Q(10,15), Y(l0) 
X = 0.0
D© 100 I = 1, 10

a(i) = 0.0
D© 50 J = 1, 15

*(l) = «(I) + P(I, J)*Q(I,J)
X = X + Y(l)**2 + 17.3*2(1)

Note that the inner loop on J lies entirely within the outer loop on I. 

Although details of transferring will be covered in the next section, 

the following example will show valid transfers from nested D© loops.
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VALID TRANSFERS
NESTED LOOPS

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

Vertical arrows indicate that transfer to anyplace in that direction

is permitted except to within the range of a DO not containing the DO loop 
being left.

Note that the same Indices may not be used on loops within loops, but 

that the limits of an inner DO may be the same as the index of an outer DO 

(i.e. DO 50 M = 1, K where K is the index of an outer loop).
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Note also that the nested DG's had to lie entirely within their outer 

loops. Note that the index K was used twice within the loop DG 90 but it 
was not permitted to be used in the loop DG 65 unless the loop DO 60 had 
already ended (as it did).

Several nested DO loops may end on the same statement. This may be 

illustrated in calculating the product of two 15 by 15 matrices.
Given

IF

a-i^h ?j ~ ••• 15
A* 1

DIMENSION 0(15,15 )> A(15A5)> B(l5A5)
DO 10 I = 1, 15 

DG 10 J = 1, 15 

C(I,J) = 0.0 

DG 10 K = 1, 15

10 C(I,J) = C(I,J) + A(I,K) * B(K,J)

TRANSFER OF CONTROL
Now that you know that you are not permitted to transfer to within the 

range of a DG loop but must enter through the DG statement itself, and that 

you are permitted to transfer out of a DG loop, let's get into the mechanics 
of how to transfer. Let's say that you have just reached a point in your 

program at which you wish to go to statement number 105 to continue the cal­

culation. One way of doing this is to use an "unconditional GG TG" which 

says merely
GG TG 105
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or whatever statement number you wish to go to. When the above statement 

is encountered within your program, control will be transferred to statement 
number 105 and all statements between 105 and the "G© TO 105" statement will 

be skipped. Unconditional G© TO's may be transfers either forward or backward 
within a program.

A second type of transfer statement is the "conditional G© TO" of the
form

G© TO IMY3
where the value of IMT3 has previously been specified by an ASSIGN statement 
which could say

ASSIGN 105 TO IMY3
and the net result would be to transfer to statement number 105 from the 
"G© TO IMy3Mstatement.

A third form of transfer is to use the "assigned G© TO" which requires 

a previously defined ASSIGN statement as did the "conditional G© T©"; the 

difference being that in the "assigned G0 TO", the statement numbers per­
mitted for transfers are defined by the G0 TO statement as well as assigned 

by an ASSIGN statement.

GO TO IMY3, (105, 1020, 2350, 5003)
is an example of an assigned G0 TO. The number of statements one may trans­

fer to in a conditional G© TO is virtually unlimited while that for the 

assigned G© T© is quite limited, even though both the assigned and the con­

ditional G© TO require ASSIGN statements to specify the actual statement 

number to be transferred to.

The conditional G© TO should not be used unless it is essential, since
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the FORTRAN compiler cannot efficiently optimize the program if a conditional 

GG TG appears in the program. A further, although minor, reason for not 

using the conditional GG TG is that one may inadvertantly assign a statement 
number which does not exist in the program. The assigned GG TG would realize 
this since that statement number would not appear on the right side of the 

GG TG M, (ll, 12, 13, ..., IN) statement (as II, 12, 13, ... or Ir) and 

execution would be stopped; the conditional GG TG, however, would not catch 
the error and control would be tranferrred to somewhere (probably outside 

your program ) and likely very bad things will occur (such as looping and 

not being able to get out, destroying your data or program, or destroying 

the resident which controls the computer's overall operation). In any event 
it is not a happy occurence and should be avoided at almost all costs.

Note that the statement

ASSIGN 10 TO JX

is not the same as the statement

JX =10

since the ASSIGN statement is used only to assign statement numbers to 

variables which will later be used by control statements. The execution of 

the ASSIGN statement in this ease presets to 10 the destination of all control 

statements pertaining to JX.

There is one last type of GG TG statement, probably the most frequently 
used (with the exception of the unconditional GO TG -- eg. GO TG 20) and that 

is the "computed GG TG" which says
GG TG (11, 12, 13, . . . ), N

where N is a positive non-subscripted integer variable and II, 12, ... are
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statement numbers to which the transfer is to be made. If N = 1, control 

is transferred to statement number Jl, etc.
For example,

G6 T9 (100, 405, 160, 130, 190, 225), KX3 
if KX3 = 1, control is transferred to statement 100; if KX3 = 6, control is 
transferred to statement 225; if KX3 = T you are in trouble (as with the 
conditional G9 T9 KY where you may have said ASSIGN 109 to KY and there is 
no 109 in the program) since you can only transfer to one of six locations 
in G9 T9 (100, 405, 160, 130, 190, 225), -KX3 and you picked the seventh.

The most commonly used transfer statements are the computed G9 T9 and 

the unconditional G9 T9.

We can now reexamine permitted transfers in nested DG loops using the
transfer statements described above.
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35
40
U5

53
55
60
66
67
68
48
50
55
65
70

90
92

93
94
95
98

100
110
* '
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PERMITTED TRANSFERS WITHIN NESTED DO LOOPS

CONTINUE
*
0

D© 100 I = 1, 50

G© T© (30, 40, 92, 93, 98, 100, 110), IKY
0

D© 90 J = 1, 10
e
0

G© T© (30, 35, 53, 66, 70, 90, 92, 93, 98, 100, 110), ILY
0

D© 60 K = 1, 11P
0

G© T© (30, 35, ^5, 60, 66, 70, 90, 92, 93, 98, 100, 110), imy?
C©NTINUEt
D© 65 K = 1, LP

»

*G© T© INY, (30, 35, 45, 53, 68, 55, 65, 70, 90, 92, 93, 98, 100, no)
D© 50 M = 1, K

09 T© (30, 35, 45, 53, 67, 50, 55, 65, 70, 90, 92, 93, 98, 100, no), 1 
CONTINUE

p

*G0 TO IPY, (30, 35, 45, 53, 66, 67, 65, 70, 90, 92, 93, 98, 100, no)*t
CONTINUE

*G© T© IQY, (30, 35, 45, 53, 66, 90, 92, 93, 98, 100, 110)
0

CONTINUE
t
e

G© T© (30, 35, 40, 93, 98, 100, 110), IRY
t
0

D© 95 M = 3, LL, 4
9
r

G© T© (30, 35, 40, 92, 93, 100, 110), ISY
e
*

CONTINUEI
9

G© T© (30, 35, 40, 92, 93, 100, 110), ITY
P

CONTINUE

STATEMENTS MUST BE PRECEEDED BY APPROPRIATE ASSIGN STATEMENT
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There is another type of transfer statement which is usually associated 

with a test; that is the "arithmetic IF" statement. The arithmetic IF state­

ment, used to test the value of an arithmetic expression, is of the form

IF (EXPRESSION) J, K, L

where J, K, and L are FORTRAN statement numbers. If the value of EXPRESSION 
is negative control is transferred to statement J, if EXPRESSION is zero to 
statement K, and if EXPRESSION is positive to statement L. J, K, and L may be 

numbers corresponding to statement numbers, or names which have been previously 
defined as specific statement numbers by ASSIGN statements. The arithmetic 
EXPRESSION may be any expression involving arithmetic operators (+, -, *, /, 

and **), arithmetic built in or library functions (to be discussed later), 

and arithmetic variables or constants (complex numbers are not permitted, but 
integer, real, and double precision expressions are permitted). An example 
would be

IF (X**2 - 4.3*B/C) 101, 111, 140
If the value of x^ - 4.3b is less than zero control will be transferred

c
to statement number 101, if it is equal to zero control will be transferred 

to statement number 111, and if it is greater than zero control will be trans­

ferred to statement 140. Another way of looking at the above statement is

that if 4.3b > x^ control will be transferred to statement number 101, if c

x2 = 4.3b control will be transferred to statement number 111, and if x2 > 
c

4.3b control will be transferred to statement number l40. 
c

Another example would be to calculate the sum of all positive numbers 

(called SUM)in an array of 20 numbers (called A). If a zero or negative 

number is encountered it must not be a part of the sum. All negative A's



DUN-24 00
hi

must be printed out with their location in the array (eg first, fifth, 

seventeenth, etc. number in the array). Assume the 20 values of A are 

already stored in memory. One program which would accomplish this task is

DIMENSION A( 20)

SUM =0.0

D9 100 I = 1, 20 

IF (A(I)) 10, 100, 20

10 PRINT OUT THE VALUES OF I AND A(l)*

GO TG 100

20 SUM = SUM + A(I)

100 CONTINUE

Note in this example that the CONTINUE statement was required since if 

A is zero we do not want to print it out or add it to SUM but go to the end 

of the loop and calculate the next A. Note also that if A is negative we 

must go to statement 10 where -we print out I, the position of that A in the 

array, and the value of A. After printing this information we must use the 

statement GO TO 100 so we do not add the negative A's to SUM.

A second type of ?lF statement is a "logical IF" which is of the form

IF (EXPRESSION) STATEMENT

where EXPRESSION is a "logical" expression and STATEMENT is any FORTRAN 

statement except another logical IF statement or a DO statement.

If the logical EXPRESSION is .TRUE., the STATEMENT will be executed 

and control will then pass to the next statement. If the logical EXPRESSION 

is .FALSE., the STATEMENT will not be executed but control will pass directly

* more about how to do tnis later
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to the next statement as is indicated below

IF (EXPRESSION )---TRUE.------STATEMENT
I.FALSE.
YNEXT STATEMENT

An example would be: if you have an array, A, of 100 numbers ranging 
in value from more than 0. to less than 5000. and you wanted the actual 

minimum value of A, AMIN, and the actual maximum value of A, AMAX, it could 
be done as follows:

DIMENSI9N A(100)
AMAX = 0.0
AMIN = 5000.

D© 10 I = 1, 100

IF (A(l) .LT. AMIN) AMIN = A(I)
IF (A(I) .GT. AMAX) AMAX = A(l)

10 CONTINUE

Note, first AMAX and AMIN are initialized respectively to the smallest 

and largest "potential” values of A in the array. Then a DG loop is set up 

to test all values of A in the array. The first logical IF statement tests 

to see if the current value of A(l) is less than the minimum value thus far 
calculated. If it is true that the current value of A is less than the 

smallest value yet examined, the IF statement is .TRUE, and the arithmetic 

statement AMIN = A(l) is executed (which stored the value of A(l) in AMIN). 

Control then goes to the next logical IF statement which tests for the 

maximum value of A in the same manner (When will both logical IF statements 

be .TRUE.?, when will both be .FALSE.?). After both IF statements are com­
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pleted (and either, both, or neither of the arithmetic statements are executed) 

control goes to the CONTINUE statement which passes back to the DG loop 

starting point, increments the index by 1, and goes through the loop again.

Notice that one may compare arithmetic variables in a logical IF provided 

that logical operators are used. One may NOT say

1) A(l) .EQ. B(I) this should be A(l) = B(l)

2) IF(A(I) .EQ. B(I)) 100, 110, 120 this should be IF(A(l) - B(l))

100, 110, 120
3) IF(A(I) = B(I)) XI = XI + 1 this should be IF(A(l) .EQ. B(l))

XI = XI + 1

4) IF(A(I) - B(I)) XI = XI + 1 this should be IF(A(l) .LT. B(l))

XI = XI + 1

since in the first instance you are trying to perform an arithmetic calcula­

tion with a logical operator, in the second case you are trying to perform 

an arithmetic test using a logical operator, in the third case you are trying 

to peform a logical test using an arithmetic operator, and in the fourth 

case you are again performing an arithmetic operation in a logical test but 

the answer is a number and not .TRUE, or .FALSE..

The following logical IF _is permitted

IF (X*Y**2 .GT. 3?.*Y-9.*X) X = Y**2 

since the result _is either .TRUE, or .FALSE, depending upon the value of
pxy^ compared to 37y-9X.

Examining arithmetic and logical operators, the order in which the com­

puter will evaluate expressions containing these operators is as follows:
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EVALUATED FIRST

7EVALUATED LAST

** arithmetic exponentiation
* or / arithmetic multiplication- 

or division
+ or - arithmetic addition or 

subtraction
.LT.f .,LE., .EQ., .NE., .GT., or .GE 

relational operators
.NOT. logical operator
.AND; logical operator
.OR. logical operator

Inclusion of parentheses within an expression will override the "built-in" 
order given above. Thus the following IF statement

IF (IX .GT. 9 .AND. IY .LE. l) G© T6 90 

80 IX = IX + 3 
G© T© 100 

90 IX = IX - 3 
100 CONTINUE

will go to 90 if and only if ix > 9 and iy < 1, otherwise control will pass 
to statement number 80.

The statement

IF (IX**2 .GT. 2*K .AND. MI .LE. M2 .©R. .NOT. (IX .LT. Ml)) G© T© 37
is a valid expression which will result in transfer to 37 if ix > m i or if 

'2(lx) > 2(k) and mi<mz . The expression will be evaluated as if it were „ 

written as

IF (((IX**2 .GT. 2*K) .AND. (MI .LE.Jfi)) .OR. (.NOT. (IX .LT. Ml))) G© T© 37
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StlCTIOK XV INPUT/OUTPUT

The previous sections have covered data, representation, arithmetic 
statements, variables and arrays, looping, transfers, and arithmetic and 
logical tests. All of this is fine, and it is all an essential part of 

K9RTRAN programming, but once the computer has solved the desired problem 
it doesn't help you to know that the computer knows the answer — you want 

the answer yourself. Obviously, to obtain the answer you will have to have 

the computer tell it to you. This is normally done with a "formatted WRITl" 

statement. What is a "formatted WRITE" statement? This might best be 

answered by first telling you what a "non-formatted" or "binary WRITE" state­

ment is. If you recall, a computer "word" is a collection of 36 binary bits 
which represent a number, alphabetic characters, or symbols. To WRITE sue!; 

a word out on magnetic tape one merely says 

WRITE (N) WORD

where N represents the number of the "logical unit" on which the word is to 
be written. On the UNIVAC 1108 this could be any number from zero through 

about 29 (where 0 represents the typewriter at the console, 5 is the card 
reader where most input is received, 6 is the printer where most output is 

written, and the remaining numbers represent magnetic tape units A - H or 

magnetic drum storage - see the table on the next page for specific logical 

unit assignments on the UNIVAC 1108). 'What the above binary WRITE statement 

does is copy on logical unit N the binary word (or bits) stored in the iccctior 

in memory assigned to WORD.
The binary WRITE is the most commonly used one (and the fastest) for input 

and output to and from the computer—for libraries, programs, records, etc., 

but it is not normally used to communicate with people since people
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FORTRAN I/O TABLE ASSIGNMENTS - NTAB$

Logical Unit

©ooooooooooooo oooooooo
oooocooooooo

Oooooooooooooooooo
COOOOOOaOOOOOOOOOOOOOOOO

oooooooooooooo

0 O 0

loooooooocooo 

2 0 0

3 
k

5oooooooooooo
6
7
8
9oooooooooooo

10 000000000000

11
12 0O0000000000

13o 00000000000

Ik

15 000000000000

16

000000000
OOGOOOOOOO

oooooooooooooooooocooo

000000000000000000000000

0000000000000000000000

oooooooooo
000000000000

ooocoooooooooooooocooooo

000000000

oooooocooooo

oooooooooooooooooooooo

00000000
000000000000000000000000

17 through 2k are the same as 9 through 16

Assignment
KTYPE$ (Typewriter) 
Tape A 
Tape E 
Tape B 
Tape F 

0 c Card Reader 
e oPrinter 

Tape D 
0 0 Tape H 
0 oTape A 

Tape E 
Tape B 
Tape F 
Tape C 
Tape G 
Tape D 
Tape H

000

OOOOCOOOOOOO

oooooooooooooooocoy 00000

25 000060000000

26

27 000000000000

28 0
29

Drum File 2SU00*000
" " 1+00,000

OOOOOGOOOGGO

OOOOOOOOOOOOOOGOOOOOOCrO

" 2,1+00,000

3,1+00,000 -
OQOOOOOOOOQOQOOOCiOOOCOOO l+,l+00,000

(5,000,000-1) 
(2,1+00,000-1) 
(3,1+00,000-1) 
1+,1+00,000-1 
5,000,000-1
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seem to dislike translating to and from binary. However_, this method is 

used for all records that the program generates and uses as well as for 
temporary storage of data during the program execution.

For output records that are going to be used by people, the above-men­

tioned "formatted WRITE" would be used. This statement is of the form

WRITE (N, NF) WORD
Where N, as before, represents the logical unit on which the output 

will be written and NF is the number corresponding to the FGRMAT under which 
the data (stored in the memory location assigned to W9RD) will be written.

In a formatted write, the data stored in W6RD is not merely spewed forth and 

placed on tape, drum, or the printer as in a binary WRITE, but it is first 

"converted" to the mode specified by the FGRMAT. There are about eight dif­

ferent modes or FGRMAT types possible--they are: integer, real, exponential,

double precisionjG (a choice of real or exponential), octal, logical, and 

alphameric. Each of these modes is represented in a FGRMAT as follows:

TYPE REPRESENTATION EXAMPLE

INTEGER Iw Il4

REAL - FIXED POINT Fw.d F10.2

REAL - EXPONENTIAL-FLOATING POINT Ew.d Ell. h

DOUBLE PRECISION Dw.d D19.8

E or F = G Gw.d G17.3
OCTAL Gw G13

LOGICAL Lw L6

ALPHAMERIC Aw Ah
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In each of the above examples, w represents the "field" width or the 

number of characters or consecutive output locations assigned to the word. 

Those F0RMATS having a w.d say there are w locations for that word and of 

them d are to the right of the decimal point. The decimal point itself is 
considered one of the locations. Thus the F10.2 could be a number like 6.23, 
2100000.00, 1.03, 0.07, etc.

Since integers, octal, logical, and alphameric output have no decimal 

point as part of the word, none is provided for in the corresponding format 
type and they have only a w signifying the output field length.

The E, D, and G formats produce output of the type 0.12763E-19 where 0. 
and E+ are provided by the computer and all numbers are represented as 
factors with an exponent. If a number is to be written as E10.4 the last 
four positions of the word will be used for the exponent designation E+XX, 

the first two for 0., and the remaining four positions will contain the number. 
Thus one requires ten positions to write four significant figures in E, D, 

and (sometimes) G formats, (also, if the number is negative, there will be 

no room for the - sign). On some computers the E or D is not printed but 

nevertheless a space is still provided for it. It is thus impossible to write 

E10.5 since one needs 11 positions for such a number (12 if the number itself 

is negative) and the output field width is only 10 characters long.

The G format is one in which the number is written as a fixed point 

number (without the exponent) if it will fit within the given field; if it 

won't fit as a fixed point number it will be written as an exponential. For 
example, the number 913762.4 would appear as 913762.4 in a G10.1 format but 

as 0.9138E+06 in a G10.4 format. Note that the number was rounded in the

54
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last significant place. Recall that in the computer integers are truncated , 
but for output all numbers are rounded.

Octal words are normally each 12 characters long '^recall that a word 

is 36 binary bits, with each octal character equivalent to 3 binary bits) 
and an 013 or 0l4 will result in one or two blank spaces preceeding rhe 12 
character octal number.

Logical words are represented as a T or an F in the right--laost posion 
in the field on the UNIVAC HOT. On some computers , the entire word TF’JE or 
FALSE is printed out.

Alphameric words are alphabetic characters, symbols, or numbers. Each 

"computer word" (36 bits of binary information) could represent up to 6 

alphameric characters (see the table on Page l4 of the first section). Thus 

the largest alphameric format usually is A6.

The way that the above formats are used is in a FORMAT statement. Recall 

how in the "formatted WRITE"

WRITE (N, NF) WORD
we said NF was the number corresponding to the format under which the data 

will be written. Using one of the newly learned formats we can now construct 

a FORMAT statement for the above WRITE statement as follows

NF FORMAT (FS)
where NF is the same number used as NF in the WRITE statement and FS is the 

format specification (one or more of the format types discussed above). If 

we wanted to write out WORD as an octal number FS could be 012, If WORD is 

a logical word we could have FS he L8. Likewise if WORD was merely a number 

FS could be F6.2, E10.3, G9.1, etc. A typical example would, be
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WRITE (6, 45) IX, M, ZILCH 
45 FORMAT (110, 14, F6.2)

in which we write on logical unit 6 (the printer--where most output is written 

on the UNTVAC 1107) according to FORMAT number 45 the two integers IX and M 
and the real number ZILCH as a fixed point number. FORMAT number 45 says 
that the first word written (IX) will be an integer number of up to ten char­

acters, the second word (m) will also be an integer but it will have a maxi­
mum of 4 characters and the third word (ZILCH) will be a fixed point number 

of up to six characters with two of them to the right of the decimal point 
and up to three characters to the left of the decimal point (the decimal 
point itself took the sixth position). Note that each word specification in 

the FGRMAT statement is separated from its neighbor by commas. If fewer 

significant characters exist than the format calls for, the left side of the 
word will be filled in with blanks, for example, if IX was 136 it would appear 
as

1tI!r1t!36
on the output page where 1 represents a blank space. If, on the other hand, 

ZILCH was a number like 3924.13 it is too big for an f6„2 format, so in the 

place of the number ZILCH, six *'s (on the UNIVAC 1108) would appear on the 

output page to signify that the word size exceeded the format specification.

The exact same FGRMAT as above could be used for many different WRITE 

statements, for instance one could also say

WRITE (6, 45) NV, L

WRITE (6, 45) I, II, PER3, M, ML, PER4, N 
using the exact same FGRMAT (number 45). Impossible you say! The format 

calls for three words and the above examples are writing out two and seven



57

words respectively. Well, that's true, but output (and input) is determined 
by both the FGRMAT and the call list (NV and L or I, II, PER3, M, Ml., PER4, 

and N in the examples above) and if the call list specified fewer words than 
the format list contains, only the words specified by the WRITE statement 
will be written. Likewise, if there are more words in the call list of the 
WRITE statement than the FGRMAT specified, the FGRMAT is started over again 

after it is finished until all words have been written. Thus in the last 

example, I is written as 110, II as l4, PER3 as F6.3, and now we are oat of 
format but there are more words in the list so the format is restarted and 

M is written as 110, Ml as l4, PERU as F6.3 and once again we must restart 

the format so that N is an 110.

On the 1108 all formatted output is written in blocks of 132 characters 

(22 words) since that is how many characters fit on a printed line. What 

actually happens is that everything to be printed out except binary output 

is placed in an output buffer in octal representation (regardless of whether 

you specified an integer, logical, alphameric, etc. word). The following 

table shows the octal code corresponding to each character (and the code 
punched on cards) for the UNIVAC 1108.

DUN-2400
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mracter Octal Code Card Code Character Octal Code Card Code
e 00 7-8 K . 20 11-2

[ 01 12-5-8 L 21 n-3

] 02 11-5-8 M 22 11-1+

# 03 12-7-8 N 23 11-5

A Q4 11-7-8 9 21+ 11-6

Space 05 Blank P 25 11-7

A 06 12-1 Q 26 11-8

li 07 12-2 R 27 11-9

C 10 12-3 S 30
l

0-2
D 11 12-1+ T 31 0-3
t: 12 12-5 u 32 0-1+

F 13 12-6 V 33 0-5
G lU 12-7 w 31+ 0-6

H 15 12-8 X 35 0-7

I 16 12-9 Y 36 0-8

J 17 11-1 Z 37 0-9
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racter Octal Code Card. Code Character Octal Code Car.! rc h

0 60 0 ) 00 12-4-f.

1 6l 1 - 4l li

2 62 2 + 02 12
3 63 3 < 43 12-6-8

1* 6U k hh 3-6

5 65 5 > 45 6-8

6 66 6 Sc 46 2-8

7 67 7 ^7 11-3-8

8 70 8 # 60 11-4-8

9 71 9 ( 51 0-4-8
f 72 4-8 Of

/* 52 0-5-8

5 73 11-6-8 : 53 5-8

/ 71* 0-1 ? 54 12-0

. 75 12-3-8 ! 55 1.1-0

X 76 0-7-8 9 56 0-3-6

Idle 77 0-2-8 \ 57 0-6-8
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Thus if we had

IX = 632 

IY = 7
FMIX = 119.96

WRITE (6, 10) IX, IY, FMIX 
10 FORMAT (16, 16, E10.1+) 

the output buffer would contain in octal

IX = 632 IY » 7 FMIX = 0.1200E+03 

'05050566636^05050505056T)S7561626060121+2606305050505...

since, from the above table, 05q is a blank, 66g is a 610, 63g is a 310,
62q is a 2^q etc. and 119.96 is rounded to 120.0 if only four significant 
figures are used; the above output would appear as

,,,632,,,,,70.1200E+03,
Note that if FMIX were -119.96 we would have gotten

,,,632,,,,,70.1200E+03,
since if a - sign overrides the field specification the number will be printed 

in the specified field without the - sign. For this reason it is advisable to 
always be sure that a - sign is provided for. Thus, for instance, a F20.1 

format is much preferred over a 15X F5.1 format to insure adequate room for

all significant figures (the numbers will appear the same on the output page.

There are 22 six character words set up in the output buffer for each 
formatted line of output.

In the above example, instead of writing 

10 FORMAT (16, 16, E10.1+) 

we could have written
10 FORMAT (216, E10.1+)

which would have accomplished the same thing. 216 says there are two consecutive
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It is also permitted to have repetition of groups of words such as 

18 F9RMAT (14, 2F10.6, 3(f4.2, 219, A3), l6)
This F6RMAT says there is one l4, two F10.6, three sets of (one F4.2, two 
19, and one A3) followed by an l6. It could have been written as

18 FGRMAT (14, F10.6, F10.6, F4.2, 19, 19, A3, F4.2, 19, 19,

1A3, F4.2, 19, 19, A3, 16) 
but this is obviously much less convenient.

Recall that earlier we said when a FGRMAT is used up and more words 

appear in the WRITE call list the FGRMAT is repeated--well that is not strictly 

true, what really happens is that control goes back to the next open left 

parenthesis and repeats the format from there. For example,

WRITE (6, 25) B, ALE, IM, IX, 12, MM, MN, MZ

25 FGRMAT (F10.6, E12.4, 2(ll, 13))
the words IM, IX, 12, and MM complete the FGRMAT so that it must start again 

for MN and MZ but it goes back to and starts at the (inner) parenthesis 

labeled with an arrow.
Reading is exactly the same as writing; except that instead of trans­

ferring the data from the computer memory to tape^ cards, or the printer, it 
is transferred from tape or cards to memory; a binary read is as follows

READ (N) LIST
where, again, N is the logical tape unit from which reading is to take place 

and LIST in this case is where the data to be read is stored in memory (in 

the location assigned to LIST).
A formatted READ is as follows

READ (N, NF) WGRD

NF FGRMAT (FS)
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where we read from logical unit N according to format number NF the variable 

WORD. The variable appears on logical unit N as a word of format specifica­
tion FS.

For example, if the first six locations of a card contain the integer 
196 (right adjusted so that the 1 is in column 4, the 9 in column 5* and the 

6 in column 6 of the card) it could be read in and stored in the location 
assigned to IB2 by

READ (5, 20) IB2 

20 FGRMAT (l6)
Note that the integer 196 had to be right adjusted; if it had appeared I

on the card as ,,1961 the number stored in IB2 would have been i960 and not 
196 since the computer "assumes" that all blanks encountered in reading are 
really zero's. (Actually minus 0 on the UNIVAC 1107 but the result would 
still have been i960 and not 196 as desired.)

Input E and F fields also may appear as input but here the decimal may 

be considered to be "built-in". If you recall, 196.2 could not have been 

written under an F4.1 format since this provides for one character to the 

right of the decimal and only two to the left (the fourth character belonging 

to the decimal itself). However 196.2 could have been read from a card as 

1962 under an F4.1 format since this format says one character is to the 

right of the decimal (the 2) and there are three other characters in the field 

(196). Thus there is a "built-in" decimal between the 6 and the 2. Believe 

it or not, the number 0.031 could also be read in by the F4.1 by writing on 

the card .031 where, in this case, by including your own decimal you "override"

the built-in decimal.
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You could not read, however, an A8 word since, as you recall, A says 
alphameric and each alphameric character requires 6 binary bits; in a 36 bit 
word you can only fit 36/6 or 6 alphameric characters so A6 is the largest 

A format permitted for input,, One word of caution here--all data read in 
as alphameric (A format) should be stored as integer numbers or constants 
to prevent loss of significant digits in any testing of these data.

An input data card contains 80 columns so each input FORMAT and corre­

sponding READ statement can read up to 80 columns per card. If you were to

READ (5, .10) A, B, C 

READ (5, 20) K, ZM 
10 FORMAT (3F10.6)

20 FORMAT (ll, F9.2)

what would happen is that the first card in the card reader (logical unit 5) 

will have its first ten characters "transferred" to the memory location 

assigned to A, the next ten characters (column 11-20 of the card) "trans­

ferred" to the memory location assigned to B, and the characters in columns 

21-30 will be "transferred" to the memory location assigned to the word C.

(The data is not really "transferred" since it still remains on the cards 
but it is converted to the proper mode (integer, real., alphameric, logical, 
etc.) and stored.)

When the next READ statement is encountered, the NEXT CARD is used and 

the contents of column 1 of the second card are "transferred" to the memory 

location corresponding to the word K. The contents of columns 2-10 of the 

second card are then stored in the memory location assigned to ZM,

Note that when a new READ is encountered, it automatically starts with
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the next card in the card reader (or next record on tape, but more about 
records later). Had the first format been

10 FGRMAT (2F10.6)

after B was read in and the format restarted, the next card would have been 
read in columns 1-10 for C. Thus when reading in data, if a format is 

restarted the next card is read even though only one READ statement may be 
involved.

Now that we have seen how to read and write single variables at a time, 

the next thing we must discuss is input and output of entire arrays. One 
way to write out an array is as follows

/

DIMENSIGN A(5)
WRITE (6, 10) A(l), A(2), A(3), A(4), A(5)

10 FGRMAT (5F10.3)
As you can see if this method is used and if you have several thousand or 

even several hundred elements to write, you will have to write a rather large 

WRITE statement. Therefore a simpler technique has been made available and 

that is to use an "implied DG" loop as follows

WRITE (6, 10) (A(I), I = 1, 5)

This WRITE statement says, in effect, "write out on logical unit 6, using 

FGRMAT 10, the array A(l) where I takes on the values 1-5 successively. This 

technique may be used to write out arrays having more than one subscript as 

well as portions of arrays.

An even greater .simplification is possible; writing out the above array 

could also have been accomplished as follows
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WRITE (6, 10) A
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In this instance the computer "knows" that A is a subscripted variable since 

it appears in a DIMENSIGN statement. Thus, since the computer was not told 
which A to write out it is clever enough to write out all five A's.

An example of a perfectly legitimate albeit somewhat complicated WRITE 
statement appears below

DIMENSIGN A(100), B(2, 3, 4), C(50, 10), D(50)
WRITE (6, 20) (A(I), I = 11, 30), B, ((0(1, j), J = 1, 10),

1 D(I), 1=1, 10)

20 FGRMAT (20F5.0/24F5.1/ (11F10.2/))

Notice in the above WRITE statement that each array that is not written out 

as a complete array is written out using an index. An array and its index 

must contain parenthesis to set off that particular output grouping of the 

array. What happens in the above write statement is that elements 11-30 of 

the array A are first written out, then the entire array B is written out.

The order in which B is written out is B(l,l,l), B(2,l,l), B(l,2,l);1 B(2,2,l), 

B(1,3A)*...|B(2,3j10. Whenever a multi-subscripted array is written out, 

the left-most subscript is varied most frequently. This is also the order 

in which the array is stored in memory. Note also that the arrays C and D 

are written out together. The order in which these are written out is C(l|l)j 

CM), C(1,3),...,C(1,10), D(l), 0(2,1), 0(2,2), 0(2,3),,., ,E>(2), 0(3,1),,,, 

,D(3 ), 0(4 ,1),.,•,0(10,10), D(10), Note here that by including the index 

spicifieatiena in the WRIT1 statement you automatically override the order 

in which the computer naturally would have printed out the array 5. Note 

also that by judicious use of subscripting it possible to intermingle several 

different arrays,
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Something new has suddenly appeared in the FGRMAT, that is the / (or 

slash). The purpose of the slash is to tell the computer to start a new 

line of output. The use of n successive slashes will result in n-1 blank 
(skipped) lines appearing on your output page. Thus elements 11-30 of the 
array A were written out on the first line, each element having an F5.0 

format. The array B was written out on the next line, each element having 
an F5.1 format. The arrays C and D were written out on the following 10 
lines, each line corresponding to a different value of the subscript I.
Note that since the (11F10.2/) appeared within an inner set of parentheses,

only this format group was repeated for each line containing the arrays C
~ /

and D. The output generated by the above WRITE and FGRMAT statements would 
appear as follows

DUN-2400

A(H) A(12) A(13) A(l4) A(15) ... A(30)

B(l,l,l) B(2,l,l) B(l,2,l) B(2,2,1) B(l,3,l) ... B(2,3,4)

C(l,l) C(l,2) 0(1,3) C(l,4) 0(1,5) • .. C(1,1C) D(l)

C(2,l) C(2,2) C(2,3) C(2,U) 0(2,5) . .. C(2,10) D(2)

C(10,1) C(10,2) C(10,3) 0(10,4) C(10,5) . .. c(io,io) D(1C)

Before we get into any more specific examples, recall that an E1C.4 

format has the form O.XXXXE+YY. If we desire to replace the 0. by a number 

we could accomplish this by using a'"scale factor". For instance if 
Y = 6239.1 and we had

WRITE (6, 2?) Y 

27 FGRMAT (E10.4)
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0.6239E+04

However, we could have placed a IP scale factor in the format as follows:

27 FGRMAT (lPKLO.4) 
and in this case we would have gotten

6.2391E+03
The nP scale factor in effect says "for all formats following, take the 

number stored in memory and multiply its mantissa by 10n and subtract n from 
its exponent before writing it out" (or, for input, take the number being 

read in and multiply its mantissa by 10-n and add n to its exponent before 

storing it in memory). In effect what you are doing is shifting the decimal 

n places (to the right on output and to the left on input). Thus the external 

representations of the number (on cards, tape, printer, etc.) equals the 
internal representation in memory times 10n.

Several facts must be stated about use of the scale factor before we 
use it indiscriminantly. One of these is that it affects numbers written in 

F formats as well as those in E formats. The problem here is that F formats 

have no exponent to adjust so if we have

ZE = -3.429600 

WRITE (6, 6) ZZ 

6 FGRMAT (2PF10.4)

we would get
-342.9600

psince the 2P scale factor adjusted ZZ by multiplying the mantissa by 10 , 

we "see" ZZ as 100 times what it was when stored in memory. Negative scale 

factors are permitted, thus if we had

we would get

6 FGRMAT (-2PF10.4)
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recalling that we round numbers on output rather than truncate them.

The other thing associated with use of scale factors is that they apply 
to all number formats following the one in which they first appear.
Thus if we had

we would get FQR ZZ -0.0343

XI = 10.658 

X2 * 132.94000 

X3 = 6.44970
WRITE (6, 10) XI, X2, X3 

10 FORMAT (1PE16.4, 2F10.4)
we would get

I.O658E+OI 1329.4000 64.4970
even though the 2F10.4 format did not have a scale factor associated with 

it. To prevent such an occurrence, when we no longer want a scale factor 
we must "turn it off" or zero it out as follows

10 FORMAT (1PE16.4, 0P2F10.4)
to get

I.O658E+OI 132.9400 6.4497

Scale factors are commonly used to convert from "units" in the real 

world to "programmed" units. For instance, if data in the form of electrical 

readings in millivolts are input to a program requiring volts in the calcula­

tions it performs, they could easily be read in under a 3PF10.5 format which 

would take the input number in millivolts and store it as volts in memory. 

Likewise if microvolts were inputted to the same program they could be read 

as 6PFIO.5 to automatically make the correct conversions. When these numbers 

are then written back out, the same format would convert the answer back to
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the input units by making the correct scale factor conversion.

There are several format fields we have not yet mentioned. One of these 
is a "blank field". To skip say n spaces, the format nX may be used. Thus 
if we have

X = 1.0
Y = 2.0

a = 3-0
WRITE (6, 10) X, Y, Z 

10 FORMAT (10X, 2F5.l///) 
the output would appear as

i i i i i i i 1111 tl.Oii2.0
-------- >-

f r r i t t r t f r r i 3 • 0

where ■ represents a blank space and -------->■ represents a skipped line.

The 10X skipped the first 10 spaces and, since there was only one sig­

nificant figure to the left of the decimal point for each number, only 3 

characters were needed for each F5.1 field so that 2 additional blank spaces 

were filled in on the left side of each of the F5.1 fields. The first slash 
in effect said "go to the end of the line", the second slash said "go to the 

end of the next line", while the third slash skipped the second line or "went 

to the end of the third line". By then the format is used up, so control goes 
back to the next open left parenthesis and starts again with 10 blank spaces 

and writes out Z as an F5.1.

Another very valuable format field is the "Hollerith" or "Alphameric" 

field nH which in effect says "print out the next n characters just as they 

appear".



TO
DUN-2400

An example is

lOHXXXXXXXXXX
which would result in ten X's being printed out. 

If we had

Til = 7.35 
WRITE (6, 23) Til 

23 FORMAT (5X, 4HT11=,F5.2)
we would get

11111Til—17.3 5
If we instead said

WRITE (6, 23)
with no list (Til in this case) we would get

iiti»Tll=

so you see that X and H fields are output list independent.

One last thing before we start going into more examples--the first 

(left-most) column on each page is the "carriage control" column to tell the 

printer what to do with what follows. If a 1 appears in the carriage control 

column, a new page will be started, a 0 will cause a line to be skipped 

(like 2 slashes), a blank space will cause a new line to be started, (like 

one slash) and a + will result in retarding the skipping of a line. Formats 

that start with X, I, E, F, G, etc. fields which leave the first column blank 

will thus result in the format printing on the next line.

As a typical example, if we wanted to read an array of 100 numbers (10 

numbers on each of 10 cards with an F8.2 format) square each of them, and 

write out each number and its square, one per line with 40 lines per page
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DIMENSION A(100)
READ (5, 10) A 

10 FORMAT (10F8.2)

NPAGE = 1
WRITE (6, 20) NPAGE

20 FORMAT (1H1, 20X , 16HSQUARINGiPROGRAM, 40X, 5HPAGE» 3 

l 13 /// 14X, 6HNUMBER,. l4x, 6HSQUARE )
NPAGE = NPAGE + 1 

DO 50 I = 1, 100 

ASQ = A(I)*A(I)

WRITE (6, 30) A(l), ASQ 
30 FORMAT (2F20,4)

IF ((I .NE. 40) ,AND, (I ,NE. 80)) GO TO 50 
WRITE {6, 20) NPAGE 

NPAGE = NPAGE + 1 
50 CONTINUE 

STOP 

END

Before we explain in too much detail what is happening in this program 

we should note that there are two new FORTRAN statements never before encoun­
tered. One, the last one, says END; the END statement tells the compiler

we could do it as follows:

that the program it is now compiling has ended and what follows may be a new 

program, a new subroutine, or data. An END statement is required to be the 
last card of every subroutine or main program to be compiled.
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The STOP statement preceeding the END statement tells the computer that 

the program is finished when it reaches this point in executing the program 
and its execution should be terminated.

The above program is a complete FORTRAN program and if it is fed into 
a computer with a FORTRAN IV compiler and is followed by 10 cards containing 

data it should produce the square of the data and write them out.
We will now examine the program in more detail.

First we have our DIMENSION statement which sets up the size of the 
array A as 100. Then we READ in the 100 values of A from logical unit 5 
(the card reader) under FORMAT number 10. FORMAT 10 says there are 10 numbers 

per card, each F8.2 so that ten numbers per card are read and stored in the 
real array A for each of the 10 cards.

An alternate and valid approach would have been to read in ten numbers 
(one card) at a time, square them, and write them out before reading the next 
ten.

After the 100 values of A are read in and stored, an integer variable 
called NPAGE (for the page number of the output) is initialized to 1. Then 

a heading line is written out by FORMAT 20 which says "1H1 or go to a new 

page (by putting a 1 in the carriage control column), skip 21 spaces (l for 

the carriage control column + 20 for the 20X), write out a 16 Hollerith 

field giving the name of tie program, skip 40 spaces, write out PAGE and the 

page number, skip two lines (3 slashes) and write out NUMBER in columns•15-20 

and SQUARE in columns 35~40.

This is what would appear on the first page:

ii* tiii;itiiiiiiiiiiSQUARING PROGRAMi»..t tiiPAGE ti11 
iiiiiiitiiiiiNUMBERiiiitiiiiiiiit SQUARE
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Note that we. do not see the 1H.1. since the first column is used for carriage 
control only and is not printed.

After we write out the heading, we add 1 to NPAGE so that the next time 
it is used it will say PAGE* *i2.

We then set up a D9 loop to process the .100 values of A. First we cal­

culate A squared (ASQ) and then we write out both the current A and A squared 

(ASQ) under FORMAT number 30. We then test to see if we are at the end of 

a page or not. If not we go to the end of the loop and calculate and write 

out the next A and A square. If we have processed exactly kC or 80 values 

of A, we must go to a new page so we write out the heading again (FORMAT 
number 20) and increment the page counter by one.

When we have calculated and written out all 100 values of A we STOP.

If we wanted to write the same program but have it read in only one 

card at a time and stop when it encountered a zero value of A} we could do 

it as follows■

C SQUARING PROGRAM
DIMENSION A(10)
NPAGE = 1

C WRITE PAGE HEADING
WRITE (6, 20) NPAGE

20 FORMAT (1H1, 20X, 16HSQUARING.PROGRAM., 40X, 5HPAGEE.., 13/// 

1 14X, 6HNUMBER, l4x, 6HSQUARE)

NPAGE = NPAGE + 1 

5 INDEX = 0

C READ INPUT DATA CARD

8 READ (5j 10) A
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10 FORMAT (10F8.2)

DO 50 I = 1, 10

IF((A(I) .LT. 0.001) .AND. (-A(l) .LT. O.OOl)) STOP 
C CALCULATE SQUARE AND WRITE OUT RESULTS 

ASQ = A(I)*A(I)
50 WRITE (6, 30) A(I), ASQ 
30 FORMAT (2F20.4)

INDEX = INDEX + 1 

IF(INDEX .LT. 4) GO TO 8 
C PREPARE NEW HEADING PAGE

WRITE (6, 20) NPAGE 

NPAGE = NPAGE + 1 

GO TO 5 
END

Here again we have encountered a new card--the "COMMENT" card--with the 

alphabetic character C in column one and alphameric information in the remaining 
columns. This card is ignored by the computer (as are all cards with a C in 
column l) and may be used to provide information to the programmer. The 

above program differs in several other ways from the previous one but it will 

still read in the 100 numbers and square them and write them out with their 

square. This program is more flexible than the previous one in that it will 

read in as many numbers as there are and square them whether there are 100,

10, 1, 1000, etc. they will all be processed until a zero is encountered^ 

whereas the first program will only read in 10 cards of 10 numbers each.

Note that in this program the page initialization (NPAGE = l) and the
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heading WRITE statement must be placed first (after the DIMENSI9N statement) 

since we loop back to the beginning tu I read a rev card after every tenth 

number and we do not want to reinitialize the page number and go to a new 
page with a new heading after reading every card (each 10 values of A).

Note also that we have a new in'-’ger variable here, 1/JDEX, which is 
used to signal when Uo lines have been printed on a page and a new page 

should be started.
We now have a D9 loop for only the 10 values of A currently in memory 

and we first test A to see if it is "zerd' or not. If A is "zero" we stop; 
if not, we calculate A squared and print them out. Note that we don't 

really test to see if A = 0.000000000 since A is net an integer and roundoff 

errors may not say this is true even if a "zero" A were read in. Only integers 

should be tested for equality in logical tests. However, we do the same thing 

with

IF((A(I)) .LT. 0.001) .AND. (-A(l) .LT. 0.001)) ST9P 
since A was read in as an F8.2 so all values of A that are not zero will be 

read in and stored as greater than or equal to 0.01 or less than or equal 

to -0.01 since that is the minimum size number that is consistent without 

built-in format. ( It is true that one could override our built-in format 

by placing a positive number as small as .0000001 or a negative number as 
large as -.000001 in the F8.2 field by punching in the decimal point, but it 

was assumed that the F8.2 would be adhered to. If this assumption is not 

valid, one could test for ((A .LT. 0.0000001) .AND. (-A .LT. 0.000001)) to 
assure stopping for zero's and only zero's assuming only a 1 character maxi­

mum roundoff error.)
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If A is not "zero" we proceed as before and square it and write it out. 

After we have processed each ten A's we test for the end of the page (INDEX 

=4). If we have 30 or fewer A's on a page we read a new card (G© T9 8).
If we have 40 A's on a page, we put a heading on a new page and reinitilize 
our page counter (G8 T9 5)-

If in the above program, we started the data pack with a card containing 
a case title which we wished reproduced as part of the page heading, and if 

the title was found in columns 1 - 60 of the first card we read, our program 
could start as follows

DIMENSION A(10), NTITLE(lO)
NPAGE * 1
READ (5, 1) NTITLE 

1 F9RMAT (10A6)

WRITE (6, 20) NTITLE, NPAGE

20 F9RMAT (1H1, 5X, 16HSQUARING>PROGRAM, 10X, 10A6, 10X, 5HPAGE>I3///

1 14X, 6HNUMHER, l4x, 6HSQUARE)

Now whenever we write out under FORMAT 20 we must include in the WRITE 

list not only the page number (NPAGE) but also the 10 word case title (NTITLE). 
Note that the maximum alphameric word size, A6, was used. We could also have 

written 12A5 and dimensioned NTITLE (12) but this required two more words of 

storage (NTITLE (ll) and NTITLE (12))„ If we did use the latter approach 

we would have to both READ and WRITE the title as 12A5. If we READ the title
as 12A5, the right-most character of each word (the sixth position) will
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contain a blank (A formats are left-adjusted whereas F, E, G, I, L, or G 
formats are right-adjusted) so that if we then write out TITLE as 12A6 or 

10A6 we would get an extra blank space printed out every sixth character and, 
in the latter case, only 10/l2 of the title.

It is important to remember that for A formats, the unfilled portion 
of the field is placed on the right (the word is left-justified) whereas the 
reverse is true for other formats.

In the above example, we stored the case title in an array called NTITLE 

and this information was available in memory for use at any time. There is 

a second way of reading and storing alphameric data in memory and that is 

with the Hollerith field.

Although this approach is not commonly used, an example would be:

READ (5, 20) X

20 F9RMAT (10HAAABBBCCC=F10.2)

X = X + 3.6 
30 WRITE (6, 20) X 

where the card being read looks like

,,DELTA-X=,,,,103.62
the portion ,,DELTA-X= will be stored in 10HAAABBBCCC= and 103.62 will be 

stored in the memory location corresponding to the variable X. As long as 

nothing further is read in under FORMAT 20, 10HAAABBBCCC= will contain the 

information ,,DELTA-X= and when statement 30 (WRITE (6, 20) x) is executed 
the output will appear as

,,DELTA-X=.,..107.22

However, if after we said X = X + 3.6 we had also included
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READ (5, 20) Y
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where it read

zilch/x+y=,,,,439.16

and then wrote statement 30 we would have gotten out

ZILCH/X+Y=,,,,107.22
Thus} although this technique is available, the usual method for reading, 

storing, and writing alphameric information is with A formats and by storing 
data in arrays rather than in Hollerith fields.

One can WRITE or READ to or from, magnetic tapes, discs, and drums as 
well as the printer, card reader, and console typewriter by merely inserting 
the correct logical unit designation in the WRITE or READ statement. It is 

usually also possible to WRITE or READ formatted information to and from 
main memory and to "re-read" something using the software package available 

at your computer installation.
For instance, the 1108 operating system "knows" when a WRITE or READ 

referencing logical unit -4 is encountered, the user is talking about main 
memory or the l/9 buffer (the intermediate storage "buffer" through which all 

input and output passes between memory and the l/© device). Thus if you read 

in a card and desire to reread that particular card under some other format, 

it may be done as follows:

DIMENSION X(13), IMY(l4), XMY(7)
10 F9RMAT (12, 13A6)

20 FORMAT (.12, 8X, 7F10.0)

30 FORMAT (12, 8X, l4l4)
KY = -4

90 READ (5, 10) IX, X
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G9 T0 (IOC, 110), IX 

100 HEAD (KY, 20) IX, XMY 
GG TG 120

110 HEAD (KY, 30) IX, IMY 
.120

Here the card is first read and the integer in columns I and 2 is tested 

to see if it - I ^meaning the card contains 7 real variables and should be 
read by statement 100) or if it -• 2 (meaning the card contains 1.4 i.nteger 

variables and should be read by statement liO)„ The card is then "reread" 

by the proper statement utilizing the appropriate FORMAT.
Another technique available, is that of storing the FORMAT itself in an 

array in a DATA statement (more about DATA statements later) or reading it 

in just before you need it.

If you are not certain what format, will be used to read in data, the 

format itself may be read in lust before the data is. For example

DIMENSION IX (12)

READ (5, 10) IX 

READ (5, IX) X, Y 
10 FORMAT (12A6)

Here we first read in the format (under which we will then read X and 
Y) and store the format in the array called IX. The corresponding data cards

(F10.6, F5.0)

,,933216-1385

could appear as follows
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and X would contain 0.933216, Y = 1385.

This permits the user to choose his own format specifications each time 

he runs the program.

Before we leave the subject of input and output we should spend a little 
time talking about how the data is represented on the output medium. We 

already saw how input records on cards contain 80 characters for 80 columns 
as a maximum and how output for the printer contains a maximum of 132 
columns or 22 words (each 6 characters). We also mentioned how all infor­

mation is transferred as either binary or field data (Hollerith or alpha­
meric) in the l/© buffer.

Magnetic tape usually contains seven "tracks" or channels. Six of these 

are used to record the BCD code (see the table on page 14 in section l) or the 
binary number and the seventh contains the "parity check" bit. For example

E E E 9 G E E

I I I

One Frame or Character

Where there is a 1-bit to represent the presence of a 1 in the table 

in section I. The parity channel contains a 1-bit if the tape is even parity 

and the number of 1-bit's in the other 6 channels is odd (eg. for =, 1, J, 

and 2) it contains a 1-bit if the tape is odd parity and the number of 1. bits 

in the other six channels is even (eg. for X, 3> and 6). A tape is either 

EVEN or ODD parity but not both. Thus for even parity, only the E's would
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contain a 1-bit (the 9's would be blank) and for odd parity the 0's would 

contain 1-bits and the E's would be blank.
Each character or number is a FRAME on the tape and each FRAME is checked 

for correct parity upon reading to catch transmission errors.

A "logical record" is that which is read or written by one READ or 
WRITE statement. A logical record may contain many frames or characters.
It may also contain many lines (at 22 words of output per line) of data or 

many cards but it is classed a "logical" record if it is read or written 

by a single statement (even if the statement contains many implied DQ's).

A "physical" record is the way a record is grouped on tape or on the 

printer. Binary records are written out in blocks of 253 words (plus 2 

control words and a checksum word) or less. There is a 3A inch gap of 
blank tape between each physical record. BCD or alphameric physical records 

are written out in blocks of 22 words since there are 22 words per line of output. 

Thus if you write out logical records of several hundred, or thousand words 

each, the physical record(s) of which they consist are limited to 22 (if 

BCD or Binary Coded Decimal) or 253 (if binary) words, with each physical 

record separated from its neighbor by a 3A inch end of record gap (blank 

space) on tape.
There are two control words per binary physical record (256 words total 

maximum per block) as mentioned before. One control word is at the start 

of the block and the other is at the end of the block. The left half of the 

control word tells how many words are in the block and the right half of the 

control word contains the block number and a flag for the last block of the 

logical record.
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The checksum says how many 1 bits were punched in that physical record.

A FILE is a group of one or more logical records concerning a particular 

subject on one or more tapes.

To complete the discussion of input-output, there are three more FORTRAN 
statements that should be discussed. These all deal with tapes, drums, or 

discs. They are REWIND, BACKSPACE, and END FILE.
REWIND means "position the tape at the load point or start". When your 

computer encounters the statement

REWIND N
it will rewind the tape on logical unit N to the starting point (marked by 
a piece of reflecting tape on the magnetic tape),

BACKSPACE N
means rewind logical unit N back one logical record (where a logical record 
was a record generated by one read or one write statement and could be composed 

of one or more physical records). Thus after you read or write a record, 

you may BACKSPACE and read or write the record again.

END FILE N
causes a logical END OF FILE to be placed on the tape- -on logical unit N; an 

END OF FILE is a gap that is about 3 inches long and it signals the end of 
a file. Every output tape must have an END FILE placed on it or a sentinel 

signalling that the file continues on another tape, so that upon reading or 

printing it you stop at the end of your data records and don’t attempt to 

read or print whatever is on the tape following your data.

The usual procedure followed when using output tapes or input tapes is 

to first REWIND them to get them at the starting point. When output tapes
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are finished they are marked with an END FILE and then all tapes are rewound 

again so they may be removed by the computer operator„
If one is using a preselected area of disc or drum memory the REWIED 

instruction will usually position you at the start of that area. BACKSPACE 

does the same thing on drums or discs as it does on tape--it positions you 
at the start of the last logical record you have read or written.
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SECTION V FUNCTIONS AND SUBROUTINES

One of the most important features available in FORTRAN programming is 

that of being able to utilize previously written programs and routines with­
out having to completely rewrite each one whenever it is needed in your 
particular program.

Many often-used mathematical functions already exist and are provided 

by the FORTRAN compiler (or processor) or exist in a library. Other functions 
may be constructed by the programmer himself..

The simplest type of function is the BUILT-IN or INTRINSIC function 
which is part of the FORTRAN processor and is automatically coded (in line) 

in your program by the compiler during the compilation process. There are 
about thirty such functions usually available in the FORTRAN IV language. A 

table of the typical BUILT-IN functions appears on the next page (these are 

all available in the UNIVAC 1108 EXEC II FORTRAN Processor).

Note first that the FORTRAN function name obeys the same rules as a 

FORTRAN variable name--it is limited to six characters, it must start with 

an alphabetic character; I, J, K, L, M, or N means the result is in the 

integer mode. Note also that functions are quite specialized with regard 

to input and output modes--special functions exist for real, integer, double 
precision, and complex numbers.

A typical example of the use of such an internal function is to recall 

an example in the last section in which we wished to test a variable, A(l), 

to see if it's absolute value was less than 0.001. To do this we used the 

logical IF statement

IF((A(I) .LT. 0.001) .AND. (-A(l) .LT. O.OOl)) STOP
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UNIVAC 110 8 FORTRAN

FORTRAN
Name

No. of 
Args. Function

Mode?
Argument

-Of
function

ABS
IABS
DABS

1 Determine the absolute value of 
the argument.

Real

Integer
D-P

Real

Integer
D-P

AINT

INT
DINT

1 Truncate: eliminate the frac­
tional portion of the 
argument.

Real

Real
D-P

Real

Integer
D-P

AM0D

M0D

2 The expression X-(x/y)*Y is com­
puted where X is the first and Y 
the second argument, (z) denotes 
the integral part of Z.

Real

Integer

Real

Integer
AMAXO
AMAX1
MAXO
MAXI
DMAX1

> 2 Select the largest value. Integer
Real
Integer
Real
D-P

Real
Real
Integer
Integer
D-P

AMINO
AMIN1
MINO
MINI
DMIN1

> 2 Select the smallest value. Integer
Real
Integer
Real
D-P

Real
Real
Integer
Integer
D-P

FL0AT 1 Convert from integer to real. Integer Real
IFIX 1 Convert from real to integer. Real Integer
DBLE 1 Convert from real to double- 

precision.
Real D-P

CMPLX 2 Convert two real arguments to one 
complex number.

Real Complex

SIGN

ISIGN
DSIGN

2 Replace the algebraic sign of the 
first argument by that of the 
second.

Real

Integer
D-P

Real

Integer
D-P

DIM 2 Positive difference: subtract the Real Real
smallest of the two arguments from 
the first argument.

IDIM Integer Integer
SNGL 1 Obtain the most significant part of 

a double-precision argument. D-P Real
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FORTRANName No. of 
Args. function

Mode
Argument

of
Function

REAL 1 Obtain the real part of a 
plex argument.

com- Complex Real

AIMAG 1 Obtain the imaginary part 
complex argument.

of a
Complex Real

C0NJG 1 Obtain the conjugate of a 
plex argument.

com- Complex Complex

which in effect says if A(l) is less than 0.001 (all negative numbers, 0.0, 

and positive numbers smaller than 0.001 AND -A(l) is less than 0.001 (all 
positive numbers, 0.0, and negative numbers larger than 0.001) then STOP.

Had we known about BUILT-IN functions at that time we could have used 

the ABS function (which calculates the absolute value of its argument) and 

written the test as

IF(ABS(A(l)) .LT. 0.001) STOP

In this example, the FUNCTIGN is ABS and the ARGUMENT is A(l). Both 

are in the real mode. The argument of BUILT-IN functions may be a variable 

name (as above), a constant, or any arithmetic expression (involving +, -,

I) *} ** operating on arithmetic variables or constants).

For example,

IS = IFIX(A**C/D+7.43*(C+D)**3)-2
is a valid use of the IFIX function which converts its real argument 

(A**C/IH-7.43*(C+D)**3) into integer form.
The FUNCTIGN is normally used as part of an arithmetic expression and 

it supplies a single valued solution to the argument(s) it is provided.

The BUILT-IN function names may not be used for variable or constant 

names in the same program in which they are referenced as functions; they
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may be used as variables or constants provided they are mentioned in a TYPE 
statement (see section II page 32) and are not used as functions. For 
example; the variable ABS could not be used in the program above which used 
the function ABS, but it would be perfectly valid to say

REAL AINT

AINT = ABS(A(I))

in the program where ABS is a BUILT-IN function and, although AINT is also 

on the list of BUILT-IN functions, AINT is a real variable defined by the 

REAL type statement (which tells the compiler AINT is not being used as a 

function but as a variable this instance). It is then NOT permitted to use 

the function AINT at any place in the above program.
A second type of function commonly used is the EXTERNAL or EXTRINSIC 

function. There are two types of EXTERNAL functions—those found in a library 
provided by the installation and those programmed by the programmer himself.

The table on the next page lists the EXTERNAL library functions available 

in the UNIVAC 1108 EXEC II FORTRAN library.
Note again that names are limited to 6 alphameric characters and must 

start with an alphabetic character as for FORTRAN variable names. Also, 
again, the evaluation or result of the function is a single answer provided 

in the place of the function name in an arithmetic statement.

EXTERNAL functions are not coded in-line (as are BUILT-IN functions) 

but are transferred to at the time of execution when control passes to them 

in a statement. As a result, execution of EXTERNAL functions is not as fast

as execution of BUILT-IN functions.
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No. of 
Args. Function Reference

Type
Argument

of
Function

1 Trigonometric Sine: SIN (X) Real Real
DSIN (X) D-P *D-P
CSIN (X) Complex *Complex

1 Trigonometric Cosine: COS (x) Real Real
DCOS (X) D-P *D-P
CCOS (X) Complex *Complex

1 Trigonometric Tangent: TAN (X) Real Real
DTAN (X) D-P *D-P
CTAN (X) Complex ^Complex

1 Trigonometric Arcsine: ASIN (X) Real Real
DA3IN (X) D-P *D-P

1 Trigonometric Arccosine: ACOS (X) Real Real
DACOS (X) D-P *D-P

1 Trigonometric Arctangent: ATAN (X) Real Real
1 DATAN (X) D-P *D-P
2 ATAN2 (Xi,Xp) Real Real
2 DATAN2 (X^Xg) D-P *D-P
1 Hyperbolic Sine: SINH (X) Real Real

DSINH (X) D-P *D-P
CSINH (X) Complex ■^Complex

1 Hyperbolic Cosine: COSH (X) Real Real
DCOSH (X) D-P *D-P
CCOSH (X) Complex *Complex

1 Hyperbolic Tangent TANH (X) Real Real
DTANH (X) D-P *D-P
CTANH (X) Complex *Complex

1 Exponential (ex): EXP (X) Real Real
DEXP (X) D-P *D-P
CEXP (X) Complex *Complex

1 Natural Logarithm (LOGex): ALOG (X) Real Real
DLOG (X) D-P *D-P
CLOG (X) Complex *Complex

NOTE: If the result of the function is double precision or complex the
function name must he declared in a type statement.



No. of 
Args. Function Reference

-‘-J S-/

Argument
w j.

Function
1 Common Logarithm (LOGj_ox): AL0G10 (X) 

DL0G10 (X)
Real
D-P

Real
*D-P

1 Square Root SQRT (X)
DSQRT (X) 
CSQRT (X)

Real
D-P
Complex

Real
*D-P
*Complex

1 Cube Root (X)1/3 CBRT (X)
DCBRT (X) 
CCBRT (X)

Real
D-P
Complex

Real
*D-P
*Complex

1 Absolute value of a 
complex number

CABS (X) Complex Real

2 The expression Xq-CX^/Xp)* 
Xg is computed, where(Z; 
denotes the integral part 
of Z.

dmod(x1x2) D-P *D-P

* NOTE: If the result of the function is double precision or complex the
function name must be declared in a type statement.
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Since the F0RTRAN compiler itself does not provide the EXTERNAL function 

during compilation but provides only a transfer address to where the function 

will be located during execution, the compiler DOES NOT KNOW whether the 

function is COMPLEX, D0UBLE PRECISI9N, or REAL so it assumes that it is REAL 
and provides for only one answer after the function is evaluated. Therefore, 
to avoid getting only half of the answer, EVERY TIME A DOUBLE PRECISION OR 

COMPLEX EXTERNAL FUNCTION IS USED, THE NAME OF Kffi FUNCTION MUST BE INCLUDED 
IN THE APPROPRIATE TYPE STATEMENT so that the compiler will provide for a 
two-word answer.

For example,

C6MPLEX A, B

A = csqroXb)
will result in only the real part of B being placed in A even though BOTH 

A and B are defined as complex. To work properly, you must have

COMPLEX A, B, CSQRT

•

A = CSQRT(B)
As for BUILT-IN functions, the argument of functions may be variables, 

constants, or arithmetic expressions (including other functions).

The following statement is perfectly valid:

A = SQRT(AL©0(SIN(AB3(x))+C0S(REAL(B)))) 

where B was defined in a C0MPLEX type statement. (Note, for BUILT-IN or 

INTRINSIC functions, the name of the function need not be stated in a TYPE
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statement if it is complex or double precision since the compiler is
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providing the function and it knows whether the answer requires two words 

or not. It is only functions that are provided EXTERNAL to the compiler that 
must be defined in TYPE statements.)

The above statement will cause the cosine of the real part of B to be 
added to the sine of the absolute value of Xj the square root of the loge of 
this sum will be stored in A.

A third type of function^ the STATEMENT FUNCTION^ is one constructed by 
the programmer as a part of his program.

As before, the F6RTRAN name of the STATEMENT FUNCTI6N must be limited 

to six alphameric characters, beginning with an alphabetic character. The 
function name may not be the same as any constant or variable name in the 

same program. A STATEMENT FUNCTI6N is limited to a single arithmetic or 

logical statement and only a single answer is provided. All logical STATE­

MENT FUNCTIGN names must appear in LGGICAL type statements.
The STATEMENT FUNCTIGN precedes the first executable statement of the 

program and it can reference any previously defined STATEMENT FUNCTIGN or a 

BUILT-IN or EXTERNAL function.

Examples of STATEMENT FUNCTIONS are:

FXY(X,Y) = X**2 + EXP(Y*X)
R(s) = 6.48*S + 3.2E-5*S*S + 1.9E-11*S*S*S 

BYK3(P,Q,B) = P*B*R(Q)**3

Note that the last STATEMENT FUNCTIGN (BYK3) referenced the second (R).
We could also have the following logical STATEMENT FUNCTIONS:

LGGICAL LFI2, A, B, C, D, LFI3, L3 

INTEGER E, F, G
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LFI2(A, B, C, D) = ((.NOT. A .AND. C) .OR. (B .AND. D))

LFI3(A, B, E, F) = ((A .AND. B) .OR. (E .GT. P))

L3(E, F, G) = ((E .GT. F) .OR. (E .LE. G))
The arguments of the functions IN THE FUNCTION STATEMENT may not be 

subscripted variables even though the actual arguments used in the reference 
may be subscripted. Thus

AB(X, Y) = A**X + B*Y**2 + X*Y 
may be referenced by

W73 = E*AB(F(3)t G(I))*SQRT(G(1+1))
During execution, the value of F(3) is used for the dummy variable X 

and G(l) is used for the dummy variable Y in the FUNCTI0N STATEMENT for the 
evaluation of AB. However, use of

AS(S(l), X(2)) = A*S(l) + B*X(2)**2 + S(l)*X(2) 
as a FUNCTION STATEMENT is not permitted.

There is one last function, and that is the FUNCTION SUBPROGRAM which 
is compiled exclusively of your main or referencing program. It is not a 

part of the referencing program like STATEMENT FUNCTIONS, and it likewise 

is not supplied by the compiler (like BUILT-IN functions) or the allocator 

(like EXTERNAL functions). It is referenced in the referencing program 

exactly like EXTERNAL functions (if COMPLEX, DOUBLE PRECISION, or LOGICAL, 

it's name must be placed in the corresponding TYPE statement in the referencing 

program). It differs from previously mentioned functions in that it's 

arguments may be any arithmetic or logical expression, array names, statement 

numbers preceeded by the character $, or nH....- a Holleritn (or alphameric)

field.
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The FUNCTIGN SUBPROGRAM itself must nave its first statement say

TYPE FUNCTIGN F(A)
wnere TYPE is REAL, INTEGER, LGGICAL, DOUBLE PRECISION, or COMPLEX. REAL 
and INTEGER need not be used if the naming rules (l, J, K, L, M, or N for 
integers) are adhered to, but the others are required. F is the name of the 
function and again it must be six or fewer alphameric characters starting 
with an alphabetic character. A is the argument(s) of the function--the 

arguments are not limited in number, but they must be separated by comma's; 

they may be array names or non-subscripted variable names. If any of the 

arguments are array names, they must appear in a DIMENSION statement in the 

subprogram (the DIMENSION statement must preceed any reference of the array 

name in an executable statement). For FUNCTIGN (and SUBROUTINE) subprograms 
only, the DIMENSION statement used may be of a special form in which the 

size of the array is defined not by an integer constant (as is usual) but by 

nonsubscripted integer variables (provided both the array name and all of the 
variable subscript names are arguments of the subprogram).

For example,

REAL FUNCTIGN FI(A, II, 12)

DIMENSION A(II, 12)
The program which references the FUNCTION SUBPROGRAM FI must also con­

tain a DIMENSION statement which specifies the maximum dimensions of the 

array A. The integer variables II and 12 cannot appear on the left side of 
an arithmetic or logical statement in the subprogram (i.e. they cannot be 

changed by the subprogram).
As before, only a single value is returned when the function is evaluated.



Thus, the function itself must appear at least once on the left side of a 

logical or an arithmetic statement.

An example of use of sucn a FUNCTI9N SUBPR9GRAM would be to evaluate a 
number factorial (e.g. 61 = 6*5*^*3*2*1) The complete FUNCTI9N SUBPR9GRAM 
to evaluate N1 would be

INTEGER FUNCTI9N FACTRL(n)
M = 1

D9 10 I = 1, N 
10 M = M* I

FACTRL = M
RETURN

END
In this example we again see the END statement which tells tne compiler that 

the particular routine is finished. There is also a new statement introduced 

here for the first time and that is the RETURN statement. RETURN tells the 
computer to go back to the place in which it was referenced in the program 

which referenced the FUNCTI9N. RETURN marks tne logical end of the FUNCTI9N 
subprogram, whereas the END statement marked the physical end of the FUNCTI9N 

subprogram.
The factorial function may then be referenced by a main program by

INTEGER FACTRL

X = Y*Z(I)**2/FL9AT(FACTRL(I))

note that we converted the integer answer provided by the FACTRL function 

subprogram to a real number by using the BUILT-IN function FL9AT.

An additional example would be a main program which says
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DIMENSION A(lOO, 100)

BX = PSUM(A, I, J, K, L)

END
and its FUNCTION SUBPROGRAM for PSUM which is as follows

FUNCTION PSUM(X, Ml, M2, I, j)

DIMENSION X(ML, M2)
XXX(Z) = Z*AL0G(Z)

PSUM = XXX(X(I, J))
RETURN

END
Note here we used I and J in the main program (corresponding to Ml and M2 

in the FUNCTION SUBPROGRAM) to define the size of the array X (corresponding 

to A in the main program). The dimensions to be used for the array X were 
thus set up at "object time" or when the FUNCTION subprogram is executed by 

the computer. Note that the FUNCTION SUBPROGRAM PSUM contains the STATEMENT 

FUNCTION
XXX(Z) = Z*AL0G(Z)

Note also that we did not have to say
REAL FUNCTION PSUM(x, Ml, M2, I, j) 

since by the naming convention PSUM is a real name.
Besides alphameric information and logical variables, there is one addi­

tional argument possible for a FUNCTION SUBPROGRAM; that is a FORTRAN state­

ment number (in the referencing program) preceeded by the character $.



For example,

DIMENSION A(100, 100)

BX = PSUM(A, I, J, K, L, $100, $120)

100 WRITE (6, 10)

120 WRITE (6, 20)

END
Wherever a $N appears in the reference, that argument must be a $ in the 

subprogram. Thus we must have

FUNCTION PSUM(X, Ml, M2, I, J, $, $)
The reason for this option is that in the event of an error; or for some 

other reason, you may not wish to return from the FUNCTION SUBPROGRAM to the 

referencing program in the exact place you left (as you would when you reached 

the RETURN statement). Thus a special type of RETURN statement is permitted 

which looks like

RETURN N
where N is an integer constant or integer variable and corresponds to the 

Nth argument in the argument list. (The Nth argument must be a $ and it 

must correspond to a $NS in the referencing program where NS is a valid 

FORTRAN statement number in the referencing program). Thus, in the above 

example we could have

RETURN 6
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or

RETURN T
where the first (RETURN 6) refers to FORTRAN statement number 100 and the 
second (RETURN 7) to statement number 120 in the main program.

A typical use in this example would be as follows:
DIMENSION A(100, .100)

BX - PSUM(A, I, J, K, L, $100, $120)

WRITE (6, 10)

FORMAT (1H1, 10X, 40HR0W.NUMBER.IN.ARRAY.A-IS.OUT-OF.SEQUENCE) 
STOP

»

e

WRITE (6, 20)
FORMAT (1H.1, 10X, U3HC0LUMN, NUMBER, IN,ARRAY, A, IS, OUT, OF, SEQUENCE) 

STOP 

END
and the FUNCTION SUBPROGRAM would be

FUNCTION PSUM(X, Ml, M2, I, J, $, $)

DIMENSION X(M1, M2)

XXX(Z) = Z*AL0G(Z)
IF((I .GT. MI.) .OR. (Ml .GT. 100)) RETURN 6

IF((J .GT. M2) .OR. (M2 .GT. 100)) RETURN 7

PSUM = XXX(X(I, J))

RETURN

END

100
10

120
20
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Here If one of the integer variables corresponding to the row number of 

the matrix A is bad, we use the error return to statement 100 in the main 

program, Li.-<ev;sg, if a cGlurmr variable us bad we use the error return to 

statement 120 of the main program. If both the row and column indices are 

valid,, we calculate X jj loge X , j and return to the place we left the main 

program (to store ^°Se in the memory location assigned to the

variable BX).

There is one additional type of RETURN statement and that is

RETURN 0

where 0 is the integer constant zero. The execution of this statement results 

in a transfer to the system error program. The RETURN 0 is the only RETURN 

statement permitted in a main program.

FUNCTION SUBPROGRAMS are one means of transferring control from the main 

program to another "homemade" routine. A second means of transferring control 

is by use of a SUBROUTINE SUBPROGRAM.

A SUBROUTINE is very similar to a FUNCTION SUBPROGRAM. The major dif­

ference is that the .latter results in only a single value solution and SUB­

ROUTINES may produce many values for answers. The SUBROUTINE returns the 

value(s) it calculates only through its arguments (or through variables in 

COMMON blocks, but more about that later).

No specific value or answer is associated with the subroutine name as 

is the case for all types of FUNCTIONS.

A SUBROUTINE is not referenced by being a part of an arithmetic or logical 

statement tut only by the following FORTRAN statement.
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where S is the subroutine name (again--a maximum of six alphameric characters, 
the first being alphabetic) and A are the arguments. The arguments may be, 
as before for FUNCTION subprograms, any arithmetic or logical expression, 
an array name, a statement number preceeded by the character $, or a group 
of Hollerith characters (nH...).

The actual subroutine must start with the statement

SUBROUTINE S(A)
and must contain at least one RETURN statement and end with an END statement 
as for FUNCTION subprograms.

Error returns are permitted in subroutines as in FUNCTION subprograms. 

Dimensions may be specified by variable integers for SUBROUTINES as well as 

for FUNCTION subprograms.

A main program may call any number of SUBROUTINES and each SUBROUTINE 
itself may call any number of SUBROUTINES or FUNCTION subprograms.

We could have easily used a SUBROUTINE in the place of the FUNCTION 

PSUM in the earlier example. If we had done so the main program would appear 
as follows:

DIMENSION A(100, 100)

•

CALL PSUM(A, I, J, K, L, $100, $120, BX)

100 WRITE (6, 10)
10 FORMAT (1H1, 10X, 40HR0W,NUMBER,IN.ARRAY . A,IS,OUT,OF,SEQUENCE)

STOP
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120 WRITE (6, 20)

20 FORMAT (1H1, 1QX, 43HC9LUMN,NUMBER.IN,ARRAY , A.IS.OUT.9F.SEQUENCE) 
STOP 

END
and the subroutine would appear as follows

SUBROUTINE PSUM(X, ML, M2, I, J, $, $, y)

DIMENSION X(ML, M2)
XXX(Z) = Z*AL0G(Z)
IF((I .GT. Ml) .OR. (ML .GT. 100)) RETURN 6

IF( (J ,.GT. M2) .OR. (M2 .GT. 100)) RETURN 7

Y = XXX(X(I, J))
RETURN
END

Note the difference between SUBROUTINES and FUNCTION subprograms.
SUBROUTINE names are not on the left side of any arithmetic statement within 

the subprogram; SUBROUTINE names are referenced only by the CALL S(A) state­

ment and their names are not part of arithmetic or logical statements within 

the referencing program; to return the answer to the referencing program, the 
variable that contains the answer (BX in this case) must be in the calling 

list of arguments. We could have used SUBROUTINE PSUM to return not only 

the value of BX but also that of many other variables, whereas the FUNCTION 

PSUM could only return a single answer stored as the name of the FUNCTION 

(i.e. PSUM).
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Until now, ve have discussed only EXTERNAL FUNCTI6N and SUBROUTINE 

subprograms (those which are compiled separately from the main program) in 
which the first line of the compilation must be a FUNCTION or a SUBROUTINE 
statement. For the most part these are the most common type. However, it 

is possible to have INTERNAL FUNCTIONS or SUBROUTINES which are referenced 
in the usual manner by the main program, but which follow directly after the 

last statement of the main program.

C MAIN PROGRAM STARTS HERE

CALL X(Y, Z)

W = Y + F3(Z)

SUBROUTINE X(A, B)

CALL R(A)

SUBROUTINE R(P)

FUNCTION F3(Q)

END
The compiler assumes that all statements between

SUBROUTINE X(A, B)

and
SUBROUTINE R(P)
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belong to SUBROUTINE X. Likewise the statement

FUNCTION F3(Q)
marks the end of SUBROUTINE R and

END
is the end of the entire set of programs and is the only END statement in 
this set of programs.

As mentioned earlier, this technique is not often used since INTERNAL 
SUBROUTINES and FUNCTION subprograms may be referenced only by the main pro­

gram or other internal subprograms and not by external subprograms. Also, 
in the event of an error, a single subroutine cannot be re-compiled separately.

Many programs are written having very small main programs which reference 

many small subroutines. This technique permits compilation and debugging of 

small segments of the problem at a time and facillitates changes in and 
proliferation of specialized routines. In many programs the main program 

has no executable arithmetic, logical, or l/o statements--!! first calls a 
special SUBROUTINE to read in data, it then calls a SUBROUTINE to test the 

input data, then SUBROUTINES are called to perform the desired calculations,

and finally a SUBROUTINE is called to write out the results.
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SECTION VI SPECIFICATION AND DATA STATEMENTS

Specification statements tell the FORTRAN compiler how data are to be 

stored in the computer. Since these statements do not result in actual 
instructions that the computer executes when it runs the program, these are 
called "non-executable" statements. We have already discussed two of the 
four specification statements, the FORMAT and DIMENSION statements.

The FORMAT statement instructs the computer how to prepare and decode 
the output and input information, respectively, that goes to and from the 

l/O (input/output) channels and main memory. The FORMAT statement may appear 

at any place in the program.

The DIMENSION statement specifies the maximum size of each array so 

that the correct amount of storage for each variable is properly allocated. 

The DIMENSION statement must appear before any executable statement of a 

main program, function subprogram, or subroutine.
As mentioned earlier, the dimensions of a variable may also be specified 

in a TYPE statement (and, as we shall soon see, by a COMMON statement); 

however, the dimensions of a variable may only be specified once in either 
a DIMENSION, TYPE,, or COMMON statement. A variable dimensioned more than 

once will be considered to be multiply-defined — a condition the compiler 

will not tolerate even if both definitions say the same thing.

The EQUIVALENCE statement, the third type of specification statement, 

does just what it says, it makes two or more variables (or arrays) equivalent 

(but NOT equal). This permits the multiple use of storage locations within 

any separately compiled FORTRAN program or subroutine. The EQUIVALENCE
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statement is of the form

EQUIVALENCE (Variable Names), (Variable Names),....

where the variable names within any one set of parentheses share the same 

storage locations. The variable names within the parentheses are separated 
by commas, and each pair of parentheses is separated by commas.

An example would be

DIMENSION F(5), G(l0), H(8)

EQUIVALENCE (A,B,C), (F(3)5 G(7), H(l))
A = 0.0 
B = A + 6.0 

Z1 = (A + 2.0)
C = 4.0
Z2 = (A + 2.0)

Here we have A, B, and C all assigned to the SAME storage location in 

memory. We also have F(3)> G(7)> and H(l) all stored in the same location. 
(Note that the EQUIVALENCE statement containing the arrays F, G, and H had 

to follow the DIMENSI9N statement in which they were defined.) As a result, 

F(4), 0(8), and H(2) are also stored in the same memory location. In fact, 
F, G, and H are stored as follows (assuming C-(l) is in location x )

STORAGE LOCATION
X G(l)
x+1 G( 2)

x+2 G(3)

x+3 G( 4)

x+4 F(l) G(5)
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x+5 F(2) ------— G(6)
x+6 F(3)‘------ — G(7)'---- H(l)
x+7 f(4) .------ G(8) ---- -H(2)
x+8 F(5)----------0(9)---- -----H(3)
x+9 G(10)---------H(4)
x+10 H(5)
x+11 H(6)
x+12 H(7)
x+13 H(8)

Note that if one element of an array is equivalenced to an i
another array, the entire arrays are equivalenced.

Interestingly enough, we need not have specified H(l) in the EQUIVALENCE 

statement since the compiler knows H is an array (because it appears in a 

DIMENSI9N statement) and if H appears without a subscript, it is assumed to 

be the first element in the array. However, if we forgot to specify F(3)> 

we would have equivalenced F(l) automatically to G(T) and H(l),

Note that the maximum size of F was dimensioned as 5* However, F(6) 

does exist — it is 0(10) and H(4)j likewise F(l0) is H(8) and 0(l4). F(0)

also exists and is 0(4) as well as H(-l). What the DIMENSIQN statement does 

is allocate a certain amount of storage to a variable array but it does not 

limit you to using only that storage area. Thus if you are not careful and 
you exceed a dimension, you could get into considerable trouble by destroying 

information stored as another variable in the adjacent array.

If we look back at the example of the EQUIVALENCE statement, we can see 

one reason why variables that are equivalenced are not necessarily equal.
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We said that A, B., and C were all equivalent and wa then, zeroed out their 

common storage location by saying A = 0.0, We then set B ■- A + 6.0 = 6.0 

so that the common storage location now contains a 6,0.

Z1 is than defined as A + 2.0 or 8.0. Before we evaluate S2 we set 
C = 4.0 so that A> B_, and C are all 4.0, One. would expect thus that 32 = A 

+ 2.0 = 6.0, but that is probably not true. Z2 probably is equal to 8.0 
just like Zl. The reason for this is that in most cases the compiler will 
recognize that A + 2.0 appears in both the expression for S~ and that for Z2.

It will also note that the value of A is not changed between the execution 
of these two statements (even though it really is changed by virtue of its 
being equivalenced to C) so that it will optimize the program by storing 

A + 2.0 in Zl and then setting Z2 equal not to A + 2.0 but to Zl which already 
contains what it thinks is A + 2.0. If Zl and Z2 were longer expressions 
that both contained A + 2.0, the A + 2.0 would probably still have only been 

calculated for evaluating Zl and it would have been put into a temporary 

storage location for use in calculating Z2; it still would not be changed to 
account for the statement C = 4.0. Although, this is not a usual occurrence, 

it is one of the ways to get in trouble if you don't know what the compiler 

is doing and if you assume EQUIVALENCE means EQUAL.
Normally, only variables of the same mode are made equivalent to avoid 

errors, since, for one reason, double precision and complex variable each 

require two adjacent words per element in their arrays. (References to 

complex or double precision variables in EQUIVALENCE statements are refer­

ences to the first word of the pair.j

DUN-2^4-00
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Thus if we had

COMPLEX A(100), B(100)

DIMENSION C(100), D(200)

EQUIVALENCE (A, B, C, D)
we in effect specify the storage of 200 words and A(2), B(2), C(3)^ D(3) are 

all stored together as are A(3)> B(3), C(5),} and D(5). Likewise C(99),
D(99)^ A(50), and B(50) are stored together as are A(l00), B(100), and D(l99) 

since the arrays A and B are complex and require two adjacent memory locations 
for each "word".

The last type of specification statement is the COMMON statement which, 

as its name implies, makes certain areas common to subroutines, function, 

subprograms, and the main program. The COMMON statement is of the form:
COMMON VBNj/VNj/BN^VNg ....

where BN represents the name of the common block to which the variable names 

VN belong. Block names must be six or less alphameric characters starting 

with an alphabetic character. Each variable name in a list must be separated 

by commas from its neighboring variable names. Common areas having block 

names are called "labeled" common. If the block name is omitted, the vari­

able names following are given a "blank" name or are part of Blank common 
(in contrast to labeled common).

Normally there is no need for an area of Blank common so it is rarely
used.

An example of the use of C0MM6N statements is as follows:

CeMMQN /BL0CK1 /S , Y, Z(100) /BL0CK2/ A, B 

Note that g is DIMENSI0NED 100 in the C0MM0N statement and thus Z cannot



appear in a DIMENSION statement or in a TYPE statement with its dimensions 
associated. If the above C9MM9N statement appears in a main program and 

C6.MM0N /ELSCKl/ P(52), q(50)
appears in one of Its subroutines> P(l) is stored in the same location as 
S, P(2) the same as Y, P(3) the same as Z(l) and Q(SO} Is stored in the
same location as 2r(l00)„ Note that the variable name within a specific 
common block in two or more routines need not be the same, but the same common 
blocks must be the same size„

Data listed in C9MM9N are usually stored in a large block in upper 

memory of the computer^ with all labeled common first and blank common (if 
there is any) last.

All additional C9MM9N statements appearing in a single main program 
or subroutine will extend the size of those C9MM0N blocks. The size of a 
C9MM9N block is equal to the sum of the storage requirements of its variables. 
The order of variables stored in COMMON is the same as the order in which 

they are listed in the COMMON statement!'s )„

If COMMON statements contain variables whose dimensions they define, 

these COMMON statement must precede any executable statements of the program 
containing those variables.

Normally, it is not a good idea to put variables in both COMMON and 
EQUIVALENCE statements, since the COMMON statement orders the locations of 

its variables in memory and so does the EQUIVALENCE statement^and conflicts 

may result. Variables belonging to COMMON which appear in EQUIVALENCE state­

ments results in all variables in that equivalence class automatically being

placed in COMMON.
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EQUIVALENCE statements may not alter the order of COMMON storage except 
that they may extend a COMMON block beyond the last assignment made for that 
block by the COMMON statements 

For instancej if we have

COMMON /BLOCK!/ A, B, C(50), D(80) 
we may also have

DIMENSION X(50), Y(80), Z(lOO)

EQUIVALENCE (A, X(l}), (B, Z(2)j, (D(5l), Y(1))
which in essence stored the variables as follows;

A B C(l) C(2)...C(50) D(1)...D(51) d(52)...d(8o)

x(i) X(2) x(3) X(4)

Z(l) 2(2) z(3) .2(4) Z(52) z(53)

Y(l) Y(2)...Y(30) Y(31)...Y(50

and extends COMMON block BL0CK1 by 20 locations corresponding to Y(3l) through

y(50).
However, the following.EQUIVALENCE statement is not permitted with the 

above COMMON statement
EQUIVALENCE (A, X(2)), (c(2), X(4))

since equivalencing A and X(2) causes BL0CK1 to be extended backward in memory 

(to X(l) which precedes A) and start one statement before the COMMON statement 

says it starts (the location assigned to A must be the start of BL0CK1 in the 

example). Also, if A is equivalent to X(2) and if C(2) is equivalent to X(4) 

there is an error, since C(l) must be equivalent to X(3).» and there is no
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place in the array X for the variable B which appears between A and C(l),

(or, by the equivalence statement, between X(2) and X(3)).

COMMON statements are often used to communicate information between 

SUBROUTINES or between SUBROUTINES and the main program without having to 
include them in the subroutine call list.

Recall an example several sections back where we wished to read in ten 
data cards (each containing ten numbers), square the numbers, and write out 
the numbers and their squares. This could have been accomplished as follows:

r,CALL READER
MAIN

PROGRAM < CALL CALC

CALL WRITER

STOP
V^END

SUBROUTINE SUBROUTINE READER

DIMENSION B(100)

READER

/ COMMON /DATA/ A(200) 

EQUIVALENCE (A, B) 

READ (5, 10) B 

10 FORMAT (10F8.2)

RETURN

END
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SUBROUTINE

CALC
< 10

SUBReUTINE CALC

COMMON /DATA/ X(200)
DO 1.0 I = 1,100

X(100+I) - X(I)*X(I)
RETURN

END

SUBROUTINE

W
R

I

T

E
R

SUBROUTINE WRITER 

DIMENSION Y(100)
COMMON /DATA/ a(200)

EQUIVALENCE (a(lOl), Y(l))

NPAGE = 1

WRITE (6, 20) NPAGE
20 FORMAT (1H1, 20X, 1.6HSQUARING, PROGRAM, 4 OX, 5 HP AGE, 13 ///

1 14X, 6HNUMBER, lUx, 6HSQUARE)

NPAGE = NPAGE + 1

WRITE (6, 30) (Z(I), Y(I), I - 1,40)
30 FORMAT (2F20o4)

WRITE (6, 20) NPAGE 

NPAGE = NPAGE + 1

WRITE (6, 30) (B(I), Y(I), I = 4l,80)
WRITE (6, 20) NPAGE

WRITE (6, 30) (2(1), YU i, I = 81,100)

RETURN

V. END
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Admitted, the above is not as "clear" as doing the calculation all in 
one program but it is a very simple example concerning only one variable and 

its only purpose is to demonstrate the use of the EQUIVALENCE and CQMMQN 
statements. The above example would not have to use the EQUIVALENCE state­
ments if we had set up two COMMON blocks as follows”

SUBROUTINE READER 

COMMON /DATA!/ B(10G)

DUN-2400

SUBROUTINE CALC

COMMON /DATA!./ X(100) /DATA2/ W(100) 
DO 10 I = 1,100 

10 W(l) = X(I)*X(I)

SUBROUTINE WRITER

COMMON /DATA!,/ Z(lOO) / DAT A2/ Y(iOC)

In this instance different COMMON blocks supplied information to dif­

ferent subroutines as needed. If we had desired to write out only the squares 

of the numbers and not the numbers themselves, DATA2 need have been the only 

COMMON block present in SUBROUTINE WRITER.
There is one last non-executable statement yet to be discussed and that 

is the DATA statement. 'The DATA statement may be used to initialize variables 

or arrays or to set up constants at the time the program is loaded for execution.

The DATA statement is of the form
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DATA LIST/VALUES/, LIST/VALUES/,...
A typical example -would be

DATA A, B, C, K/6.2, 7.3, 7.3, 4/
Here, 6.2 is stored in the memory location assigned to A, 7.3 in B and 

C, and 4 in K when the program is loaded for execution. The reason that 
emphasis was placed on the last part of the last sentence is that this is 

the ONLY time the variables or constants in the DATA statement are loaded 
with the values in the DATA statement. The reason that the DATA statement 

is non-executable is that it is used only when the program is loaded for 

execution and is ignored thereafter. Thus the DATA statement may appear 

anyplace (provided it follows any DIMENSION or TYPE statements referencing 
variables in the DATA list) in the program and the variables and constants 

it contains will be stored prior to program execution. If you had the arith­

metic statement

100 X = 10.4
You would store the real number 10.4 in the memory location assigned to X 

every time you passed through statement number 100.

If you had the DATA statement 

100 DATA X/10.4/

you would store the real number 10.4 in the memory location assigned to X 
prior to execution when the program is loaded and statement 100 would have 

no effect thereafter. (incidentally, you are not permitted to transfer to 

a DATA statement -- as by an IF or GO TO statement. You are also not per­

mitted to transfer to a FORMAT statement.)
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If you had
100 X = 10.4

DATA X /7.4/
you would set the real nunber 7.4 in the storage location assigned to the 
variable X when the program is loaded. X would remain 7.4 until statement 

100 is reached for the first time, and then X would be 10.4. X would remain 
10.4 thereafter (even though the very next statement is a DATA statement 

concerning X) until it again appeared on the left side of an arithmetic 
statement.

Recall out first example of the DATA statement where we had 
DATA A, .B, C, K /6.2, 7.3, 7.3 , 4/

Here we stored 7.3 in both B and C. We could have told the DATA statement 
that two (or more) consecutive values were identical by writing them once 
and preceding them by an asterisk and the (integer) number of them that is 

required. For example,

DATA A, B, 0, K /6.2, 2*7-3, 4/

It is possible to reference arrays in DATA statements as follows: 
DIMENSION W(10), X(l0, 2)

DATA (W(I), X(I,1), X(I, 2), I = l,10)/30*0.0/

This serves to zero out the arrays W and X prior to execution. Some computers 

permit not only the use of the implied D© in DATA statements as above but a 

also the use of unsubscripted arrays to reference the ENTIRE array (not just 

the first element of the array as in arithmetic statements).

DIMENSION W(10), X(lO, 2)

DATA W, X /30*0.0/ 

is thus equivalent to the above.



One may initialize double precision, logical and complex variables as 
well as real and integer numbers in DATA statements as follows 

DOUBLE PRECISION X, Y 
LOGICAL IS, IT 
COMPLEX V, W

DATA II, 12, V, ¥, X, Y, Z /2*1, (6.2, 1.4), (3.1, 1.2), 6 .3D+0,
9.3274112D-06, 1.0/, IS, IT/.TRUE., .FALSE./

Here we have initialized the two integers II and 12 as 1, the complex number

V as 6.2+1.4i, W as 3.1+l»2i, the double precision numbers X and Y as 6.3
and 9.3274112X10"^, respectively, the real number Z as 1.0, and the logical

variable IS and IT as True and False respectively. It is possible to store

an octal number in a DATA statement as follows

DATA 0CT1 /03247/
where we have to precede the value with the character G (for Octal). Recall 

that an octal number contains 12 characters per word; we only used four for 

the word 0CH so the computer automatically adjusts the 3247 to the rightmost 

four positions in the location assigned to 0CT1 and fills in the left eight 

characters with zeros. In other words, octal words are right-justified in 

storage.
It is also possible to store alphameric information in DATA statements 

(with six or fewer characters per word).

DIMENSIQN K( 2)

DATA K/lOHENDtQF.JQB/
Here we have the two word array K. The letters END,9F are stored in K(l) 

and 'J9B in K(2). Notice that K(2) only contains four of its six characters 

(blank, J, 9, and B). These four characters are left-justified and the two
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rightmost positions of K(2) are filled in with blanks. In other words, 

alphameric information is left-justified in storage.

If you recall, we mentioned earlier that FORMATS could be stored in DATA 
statements. For example

DIMENSION KFMT(2) A(9)
DATA KFMT/11H(10F6.4,I2)/

100 READ (5, KFMT) A, B, L, *
Here we stored the FORMAT (10F6.4, 12) in the array KFMT. When we execute 
statement 100 we READ in the array A and B as the first ten F6.4 real numbers, 

L as an 12 integer, and then restart the FORMAT to read in 2 as an F6.4 real 
number.

This type of usage permits modifying FORMATS during program execution 
as follows: Suppose we were writing out matrices which varied in size from

2x2 to 12x12. Each element of the matrix is a real number and is to be 
written out under an F10.2 format. If we wanted to write out each matrix 

as an n by n array (n varying from 2 to 12 depending upon the particular 

matrix) and.it was stored in the array A. It could be done as follows: 

DIMENSION A(12,12), IFMT(3), KFMT(12)

DATA IFMT /i8h(/,.>.F10.2)/,

1 KFMT/lHl, 1H2, 1H3, 1H4, 1H5, 1H6, 1H7, 1H8, 1H9, 2H10, 2H11, 2H12/

»

C CALCULATION OF MATRIX A(N,N) IS PERFORMED HERE

116

IFMT(2) = KFMT(N)

WRITE (6, IFMT) ((A(I,J), J = 1, N), I = 1,N)
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END

Here we set up the FORMAT (for writing out the matrix^as array IFMT. We did 

not know how many F10.?'s per line to expect, so rather than have eleven 

separate FORMATS for A(2,2) through A(l2,12), and eleven separate WRITE 
statement to choose from we merely modify IFMT to suit the matrix size.

This is done by placing the integer N in IFMT(2) which says we write out 

under format N F10.2. Note that N had to be stored as an alphameric number 

in the array KFMT and we had to place KFMT(N) into IFMT(2) by using the 
arithmetic statement

IFMT(2) = KFMT(N)
Had we said

IFMT( 2) = N

we would have had N stored in IFMT(2) but as an integer number and not in the 

alphameric form required for FORMAT’S.

Note also that we were required to use the indices I and J in the WRITE 

statement for two reasons. First, the omission of indices would have written 
out the entire 12x12 array A even if we had only a 2x2 matrix. Secondly, even 

if it was a 12x12 matrix, the leftmost index, I, is the row number of the 

element and J is the column number--had we omitted the index, the computer 

would have automatically varied I most frequently (for each j) and the output 

matrix would have A(l,2) where you expected A(2,l) — that is, the rows and 

columns would be reversed.

One particular use of the DATA statement that is not permitted is
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Introducing data into variables or constants which are listed in labeled 

COMMON. To enter data into such variables^ a special form of subprogram 

must be used, the BLOCK DATA subprogram.

Only non-executable statements may appear in the BLOCK DATA subprogram 
(BLOCK DATA, COMMON DIMENSION, Type statements, DATA, and END).

A typical example would be to enter the values 10.3 and 146 as the 
variables X and IX and to zero out the array Y where X, IX, and Y all appear 
in a COMMON statement,, The main program and one or more subroutines may have 
the same COMMON statement as that appearing in the BLOCK DATA subprogram 

which follows:

BLOCK DATA
COMMON /BL0K1/X,IX,Y(34),M,B3,S 
DATA X,IX,Y/10.3,146,34*0.0/
END

Note that the BLOCK'DATA subprogram is not called or referenced by any 

other routines so that it does not require a RETURN statement. It is used 

only during program loading to permit introduction of the desired Initial 
values of X, IX, and Y. Note also that all the elements in the COMMON block 

(BL6K1) must be listed in the COMMON statement even though only three of them 

are affected. (Whenever a COMMON statement is in a program, all of the vari­

ables stored in that common block must be accounted for.)
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SECTION VII FLOWCHARTING AND PROGRAM DEBUGGING

Although the topic of FLOWCHARTING was left until the end of this manual, 
it is actually one of the first things that a programmer does before he starts 
to write any FORTRAN statements.

Once it has been decided that a particular problem or application is 
suitable for computer solution or processing, the programmer must perform a 
detailed analysis of the particular problem. He must decide exactly how he 

intends to provide a solution and this is usually done by breaking the pro­

blem down into discrete parts. Once a detailed solution has been determined, 

the programmer flowcharts his solution before attempting to code it for the 

computer. There are actually two "levels" of flowcharting. The "system" 

flowchart is used to visually represent the flow of data and the gross 

sequence of computer (and peripheral device) operations. It serves to indi­

cate the overall happenings associated with the program while it avoids most 

programming details and calculations.

The "program" flowchart (which is usually prepared after the system 
flowchart) indicates the detailed workings of the program. The program flow­
chart serves as 1.) an aid to program development (it permits working out the 

detailed logic involved and assuring that there are "no paths left untried"), 

2) a guide in the actual coding and debugging of the problem, and 3) a means 
of documenting the program. This latter aspect may seem unnecessary but it 

is possibly the most important function of the three. After you have com­

pleted your program and it is operating satisfactorily, you will probably 
rush off and start working on something else. If, six or nine months later,
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someone wants you to modify your old program (or even worse, if someone else 

wants to modify it himself) you will be amazed at how many details (which 

you at one time probably lost some sleep over) you have forgotten. This is 
where an up-to-date flowchart pays for itself severalfold. It is much 
easier to look at a picture of what's happening than it is to try to untangle 
all of the logic in the code itself. It is essential, for this reason, that 

any modifications made to the program are always noted on the fl.owchart to 
keep it updated.

The following list of symbols are currently used in system flowcharting

SYSTEM FLOWCHART SYMBOLS
Processing - this symbol may contain 
an entire section of your program 
flowchart

Input/Output

Magnetic Tape (input or output)

Drum, Disc, or Random Access unit 
(input or output}
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Paper Tape (input or output)

Printed report or document (output)

/
Punched Card (input or output)

Display - Plotter, CRT, etc. (output)

Off-line storage - magnetic or paper 
tape, cards, etc. (input or output)

On-line keyboard
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Auxiliary operation

Communications link

Connector - to reference a point 
on the same page

Off-page connector to reference a 
point on another page.

A typical example of the use of a system flowchart would be that of 

reading in an inventory file tape, searching for particular stock numbers, 

writing out the current number of items in inventory and cost of the items 

with the associated stock numbers (or stating that it is not on tape if it 

could not be found), rewinding the inventory tape, and writing a message to 

the operator telling him to remove the tape and place it in a special tape 

storage location. The system flowchart for this particular application 

could appear as follows (flow is from left to right and top to bottom.)
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Note that in the above flowchart we described the "high points" in the 

application and we did not get into programming details such as what is on 

the file, how it is read and stored, or how we search for the stock number 

in the inventory list. It is possible to see the gross characteristics of 

the program, however, and what the program is intended to do (for instance 

if we forgot to find out if there was more than one stock number to be 

searched for or if we forgot to tell the operator where to store' the inven­

tory tape it should be obvious on the system flowchart).

In the above flowchart there was one symbol that we did not mention 

previously, and that was the diamond-shaped question "Are there more stock 

numbers?" This "decision" symbol is really one of the "programming" flow­

chart symbols but, as you will see from the following list, several 

symbols have identical meanings for both system and program flowcharts.

PROGRAM FL9WCHART SYMBOLS

Processing - one or more program 
processing instructions

Input/Output

O

Decision - branching occurs here
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Modification or initialization

Predefined Process - operations not 
detailed - eg call a subroutine

c ) Terminal - the beginning or end in 
a program

O
Connector - to reference a point on 
the same page

Off-Page Connector - to reference a 
point on another page

As an example of the use of program flowchart symbols, we could take 

the one processing box in the previous example, "search for stock number in 

inventory list" and program the search as an "artillery" (or binary) search 

subroutine. Assume the stock numbers are stored in an array, A, and that 

the call list of the subroutine contains the array, a variable X consisting 

of the stock number of interest, and an integer J into which we will store 

the array index corresponding to the stock number sought. If the desired
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stock number does not appear in the array, a message to this effect will be 

printed out, J will be set to zero, and an error RETURN will be made.

An artillery search is implemented by testing to see if X is equal to 

Af^1) (the element in the array midway between the first and last) and if 

it is not, test the element midway between A(I^i) and the appropriate end.

Keep testing elements at midpoints until the answei - s found. The only 

requirement of such a search is that the array A is a monotonically increasing 

sequence. This type of search is usually considerably faster than testing 

each element of the array in sequence.

START

II » IN
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IN: II

Note that the entire program flowchart above was necessary to describe 

what occurred in the one symbol "search for stock number in inventory list" 

in the system flowchart. To clarify what is happening in the program flow­

chart, a diagram plus a little descriptive paragraph might help.

We started out with an array A of N elements and
~ A(l) we are looking for the position of X in the array.

We find the position of X by first testing A(l+N).
2

A(l+N)
2

On the first line of the flowchart we set up the 

indices II = 1 and 12 = N as well as the error 

return for J (j = 0) in the event that 'we do not. 

find the desired solution. We then calculate the
- X = A(?)

__a(n)

location of the element in A halfway between A(l)

and A(N) as A(lN) where IN = 11+12 (= 1+N for
2 2

the first iteration).

On the second line of the flowchart (starting at #1) we test to see if 

A(IN) is greater than, equal to, or less than X. If A(lN) is equal to X we 

have found our answer and we set J = IN and return. If A(lN) is less than
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a(in) < X

A (II)

— A(IN) 

--X

___ -- A(IN+I2)
2

_L A(I2)

X we know that X must lie between A(lN) and A(l2) 

so we set II = IN and search between A(lN) and A(l2). 

However^ before we do this we must test to see l) 

if IN+1 is equal to 12 (if it is, 12 is the only 

value of A that could be equal to X as we know 

X > A (IN) so we set II = 12 and IN = 12 and check 

for A(l2) i X), 2) if IN+1 is greater than 12 (if

it is, IN must equal 12 and we have failed to find 

the desired value so we use the error RETURN 5); or 

3) if IN+1 is less than 12 (if it is, we go to 3> 

update IN, and make another iteration).

Going back to the start of the second line (#l) we must then see if A(lN) 

is greater than X. If it is, we go to the third line (#2) and test to see if

if IN equals II (if it does, we have failed to find 

the desired value so we go to #4 and use the error 

RETURN 5) or if IN is not equal to II (if not, we 

set 12 = IN, go to #3, update IN, and make another 

iteration).

If you think that constructing and following 

the logic in the flowchart was tough, try following 

the logic in the subroutine itself (which follows) 

A(l2) without the aid of the flowchart.

A(IN)
A( II)

X

a(in)
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SUBRGUTINE SEARCH (A,N,X,J,$) 

DIMENSION A(N)

11 = 1

12 = N 

J = 0

10 IN = (11+12 )/2

20 IF (A(IN)-X) 30, 60, TO

30 II = IN

IF(IN+1-I2) 10, 40, 50

40 II = 12

IN = 12 

GG T© 20 

50 RETURN 5 

60 J = IN 

RETURN

70 IF( IN .EQ. II) RETURN 5 

12 = IN 

GG TG 10 

END

As you can see, the flowchart will be a tremendous aid in following the 

logic of the above subroutine during debugging. If you happened to make a 

mistake in one of the above IF statements, to say that it would be a chore 

attempting to discover the error merely by looking at the FORTRAN statements 

without a flowchart is probably a rather' superb understatement.
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As you can see, even though flowcharting is one of the first things the 

programmer does before actually writing his program and although debugging 

is one of the last things he does before the program is set up for production 

use, the two phases are closely related.

If your flowchart is caiefully worked out to cover all possible situations 

and is very detailed, it will greatly simplify the task of tracing through 

the program to locate errors. Once you find out where the error is occurring 

(from the funny looking output) you can trace backwards in your flowchart to 

see what would cause that or those particular things to occur. If the flow­

chart indicates that area of the program to be apparently error free, then 

a close comparison between the flowchart and the program listing might locate 

the problem.

The basic reason for debugging a program is that they almost never work 

correctly at first. The cause goes back to a statement made in the INTRODUCTION 

that the computer does exactly what you tell it to do and not necessarily what 

you want it to do. This leads to two sources of error - l) you told it to 

do the wrong thing and 2) you really didn't tell it to do anything for a 

particular situation. One of the seemingly impossible tasks of the programmer 

is for him to attempt to map out all possible logical paths in his program 

even though some (if not most) combinations of logic will, not normally, if 

ever, occur. You saw an example of the logical complexity of the above 

simple subroutine which contained only one logical and two arithmetic IF 

statements. Picture the case where there are 50 or ICO input, calculational, 

or output choices available ■"■you can never expec t to be s ure that your program

DUN-2400

does what’s expected for all combinations of the logical choices permitted
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in such a situation (and 50 or 100 'hoices are still a relatively few). This 

leads to debugging.

First,, the FORTRAN compiler will catch many of t bo mors of syntax in 

your program (you meant G9 T© but said G© TO with a zero rather than an 9).

It may also catch much of your poor spelling and many Logical problems (you 

set up the variable XARC in a DATA statement and then sard W = XARK or you 

transferred to statement number .103 which just happens rut to exist in your' 

program, etc.). It is when you stop getting snide comp 11 er•—•generated diag­

nostic messages that the real trouble 3tarts-~now you are or your own.

One of the first things you will probably do in debugging a problem is 

to run a test case made up of simple round numbers like 100, 1.000, etc. and 

specify the least number of options available. First rry it, on a desk cal­

culator following exactly the path the program would follow, statement by 

statement. If you got the answer you expected, try the same problem on the 

program. When it fails, you can do several things. A memory dump will 

probably help to find lost variables or constants that were not updated.

Extra WRITE statements to give you debug outpur at crucial points In the 

calculations (if special DEBUG DUMPING routines are not, a part of your soft­

ware) are helpful at this stage. Showing your program to a knowledgeable 

friend who is unfamiliar with what you are trying to do may permit his telling 

you what you are doing (compared to what you want to he doing).

One prime catch is to never assume you are doing something in a part of

the program and gloss over it because it worked once before..read it and you

may find that the exact logic is slightly different than you "remembered".

If possible try to check out one section of the program at a time. This
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is the advantage of having many small subroutines rather than one large pro­

gram. Each subroutine may be tested with "TYPICAL" data by using "special" 

main programs to provide the desired input. Try to test both positive and 

negative data covering the entire range of interest to catch any limits you 

might have (log and exponential routines, etc.)

After you have gotten your simple case debugged - try different logical 

options one or two at a time until you are fairly sure that for most typical 

cases the program works. (You can never hope to try all possible paths since 

for a set of only 20 yes-no decisions there are about one ml.iion possible 

paths.) Then you can turn it over for production runs--but keep the flow- 

charts--some day someone will try a series of options that you never tested.

Before we leave the area of debugging it would be worthwhile to discuss 

how to avoid building "bugs" to the user into your programs.

In the first place, you must assume that the basic law that "the series 

of events having the least probability of occurrence which cause the most 

undesirable results are certain to happen" has particular significance in 

the area of computer programs. In other words, "don't trust anybody" tut 

set up your programs to check all input data for errors wherever possible.

For instance, if you have an index of a computed GO TO as an input constant 

and it may assume the values one through six, some day it will be entered 

as ten through sixty or one hundred through six hundred, etc.,, if for no 

other reason than it was keypunched incorrectly. To save much machine time 

and grief on the part of the user, it is thus worth taking the time to have 

your program, check all input data for "reasonableness" if possib/. e. When an 

error is found, only that particular case may be bypassed from execution, or
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all remaining cases may also be bypassed (but all input data should be tested 
and all errors listed for the user, whether all cases are executed or not).

The easiest way to test input data is with a series of logical IF state­

ments. One way may be as follows. Assume you have 83 separate input numbers.

DIMENSION XHI(83), XL©(83), NAME(83), XINFUT(83), ISET(83)
DATA XHI, XL9, NAME /..../

EQUIVALENCE (XINPUT(l),...(XINFUT(2),.
50 IX = 0

C READ INPUT DATA HERE

D© 100 I = 1, 83 

ISET(I) = 0

IF( (XINPUT(l) .GT. XHI(I)) .©R. (XINPUT(l) .LT. XL©(l))) ISET(l) =1 

100 IX = IX + ISET(I)

IF(IX .EQ. 0) G© T© 300 
D© 200 I = 1, 83

IF(ISET(I) .EQ. 1) WRITE (6,10) NAME(l), XINPUT(l), XHl(l), XL©(l)

200 CONTINUE 

G© TO 50
10 F6RMAT (l5H0INPUT,ERR0Ri-.5X,A6,3H,=.E15.5AOX,

1 IQHPERMITTED1 RANGE'IS),E15.5,4h.T©.,E15.5)
300



Note in the above example we first initialized three arrays in a DATA 
statement - XHI, the high limits on each of the 83 input variables; XL9, the 

low limits on each of the 83 input variables; and NAME, the names of the 83 
input variables. We then set up an EQUIVALENCE statement so that all real 
input variables are ordered in the array XINPUT (integer input variables may 
be stored in the array XINPUT by using arithmetic statements to equate them 

to the appropriate XINPUT after the input is read in). After the 83 input 
numbers are read in, they are each tested to assure that they are within the 
appropriate range XHI to XL9 (if they are not, the index ISET is set equal 
to l). If there are no errors, control is transferred to statement 300 and 
the remainder of the program is executed, if there are one or more errors, 

all of the errors are written out and the next set of input data are read.
A further aid to the user is to set up all input data so that it is 

easy to keypunch and so that the keypunched cards facillitate manual checking 

for errors. It is thus a good idea to end all data fields in columns 10, 20, 

30, 40,... (which are defined quite clearly on 80-80 forms) to facillitate 
ease of data preparation.

One additional item in this area--it is a good idea to make the input 
as simple as possible. Let the program itself manipulate the data wherever 

possible and not the user. The greatest benefits from the use of the computer 

probably come from simplification in its use.
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A Format ................................................ 52,54,62.76
Alphanumeric, Alphameric, or Hollerith ................... 10,68
Applications ............................................ 17-19
Arithmetic IF..........................................46-47
Arithmetic operators ....................................  21-22,50
Arithmetic statement ....................................  22-23
Arrays, storage in memory................................  34,104-105
Arrays, subscripts ......................................  108-109
Artillery search ........................................ 125-129
Assembler.............................. -................ 13-l4
Assembly language........................................ 13
ASSIGN................................................... 42-43

BACKSPACE................................................8l
BCD.......................................................10-11
Binard Coded Decimal . ..................................  10-11
Binary number system ....................................  3-5
Binary search............................................125-129
Binary to decimal conversions. ... ..................... 5-6, 9
Binary to octal conversions.............................. 6-7
Blank common............................................107
BL9CK DATA..............................................118
"Built-in" decimal on input.............................. 6l
Built-in functions ... ................................  84-86

CALL................................................... 98-101
Carriage control, printer................................ 69
Characteristic .......................................... 25-26
Checksum................................................8l
COBOL................................................... 13



136 DUN-21+00

Coding form.......................................... . 15
Comment cards.............................................. 73
CQMMQN ....................................................  107-112
Compiler.................................................. 13, 20
COMPLEX.................................................. 29
Computer applications...................................... 17-19
Computer schematic ........................................  2
CONTINUE.................................................. 37
Conversion of numbers..................................... 5-6, 8-9

D Format.................................................. 52-53
DATA.................................... ..................112-118
DATA, BLOCK................................................ 118
Data - input, checking................................... 133-131+
Data - input, simplification............................. 13l+
Debugging.................................................. 129-131+
Decimal "built-in" ........................................  6l
Decimal to binary conversion .............................. 5-6, 9
Decimal to octal conversion .............................. 8

DIMENSION.................................................. 33, 95
DO........................................................ 35-1+1
DO Limit.................................................. 37-38
DO, Nested................................................ 38-1+1
DO, Range. .................................................38
DO, Valid transfers from.................................. 1+0, 1+5
Dollar Sign ($), use of.................................... 9^-97
DOUBLE PRECISION ..........................................  30

E Format ..................................................  52-53, 6l
END........................................................ 70
END FILE.................................................. 81
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EQUIVALENCE..............................................103-106
ERROR RETURN............................................98
Evaluation of FORTRAN expression .......................... 22, 50
Exponential representation ..............................  26
External functions ...................................... 87-90
Extrinsic functions...................................... 87-90

F Format ................................................ 52-53, 6l
Factorial function ......................................  9b
Field data code..........................................57-58
Field width..............................................53
FILE................................................... 8l
Flowchart symbols........................................ 120-122, 121+-125
FORMAT................................................. 52-81
FORMAT, read at object time................................78
FORMAT, A................................................52, 54, 62, 76
FORMAT, D. ...... ................................... 52-53
FORMAT, E................................................ 52-53, 6l
FORMAT, F................................................ 52-53, 6l
FORMAT, G............................................... 52-53
FORMAT, H............................................... 68
FORMAT, 1................................................ 52-55, 6l
FORMAT, L................................................52, 5^
FORMAT, 0................................................52, 5^
FORMAT, X................................................68
FORMAT, /................................................65
FORMAT, field width...................................... 53
FORMAT, modification at object time........................116-117
FORMAT, reading in at object time.........................78-79
FORMAT, repetition of.................................... 60
FORTRAN coding form...................................... 15
FORTRAN compiler........................................ 13, 20
Frame, tape..............................................80
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FUNCTION, built-in ..............................  .... 8U-86
FUNCTION, external ......................................  87-90
FUNCTION, extrinsic...................................... 87-90
FUNCTION, internal ......................................  84-86
FUNCTION, library ......................................  85-86, 88-89
FUNCTION, statement................................. . . . 91-92
FUNCTION, subprogram........... ........................ 92-98

G Format................................................52-53
GO TO..................................................41-45
GO TO, assigned........................................42
GO TO, computed........................................ 43
GO TO, conditional...................................... 42
GO TO, unconditional.................................... 4l

H Format ................................................ 68
Hollerith or Alphmeric field ............................  68

I Format ................................................ 52-55, 6l
IF..................................................... 46-50
IF, arithmetic............. ............................ 46-47
IF, logical..............................................47-50
Input data testing...................................... 133-134
INTEGER..................................................29
Integer variables........................................ 24, 28
Internal functions ......................................  84-86
Internal subroutines ....................................  101-102
Intrinsic functions...................................... 84-86

L Format................................................52, 54
Labeled COMMON .......................................... 107
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Library FUNCTI9NS........................................  85-86, 88-89
L9GICAL..................................................30
Logical IF..............................................47-50
Logical I/O unit........................................ 51-52
Logical operators........................................ 31, 50
Logical record ..........................................  80
Logical variables........................................ 30
Looping..................................................35

Magnetic tape............................................ 79
Mantissa...............................■................ 25-26
Matrix multiplication.................................... 4l
Memory, numbers stored in................................ 25
Minimum and Maximum, testing for.........................48

Nested D9 loops. . . ..................................... 38-4l
Number conversions ......................................  5-6, 8-9
Numbers, represented in memory ........................... 25

9 Format................................................ 52, 54
Object or relocatable binary deck.........................21
Octal field data code............. ......................57-58
Octal number system...................................... 6-7
Octal representation of alphabetic characters............. 57-58
Octal to binary conversion................................ 6-7
Octal to decimal conversion.............................. 8
Output representation in memory............................56-58

P, scale factor.......................................... 66-68
Parentheses, use of...................................... 22
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Parity............................................ . 79
Physical record............................................ 80
Place value................................................ h

Printer or carriage control................................ 69
Product of two matrices. ............................. . . . 4l
Program flow chart ................ ...................... 124-127

READ (see WRITE).......................................... 51-8l
REAL...................................................... 29
Real variables............................................ 24
Real numbers, limits on.................. ..................27
Record.................................................... 79-80
Record gap................................................ 80
Relocatable or object deck................................. 21
Repetition of format groups................................. 60

Rereading input............................................ 77-78
RETURN . . . ...............................................94, 96-98
RETURN N.................................................. 96-98
REWIND.................................................... 8l

Scale factor, P........................................... 66-68
Slash(/) format........................................ .65
SLEUTH..................................................14
Source or symbolic deck.................................. 21
Statement functions...................................... 91-92
ST9P....................................................71
Storage of arrays in memory................................104-105, 108-109
Subprogram, function ....................................  92-98
SUBRGUTINE .............................................. 98-100
Subroutines, internal.................................... 101
Subscripts, arrays ......................................  32-34
Symbolic or source deck.................................. 21
System flowchart ........................................  119-123



DUN-2 ii 00

Trunciation................................................ 28
TYPE...................................................... 28

W.jrd, Computer............................................ 12
WRITE........................................................ 51-81
WRITE, Binary.............................................. 51
WRITE, formatted.......................... ................52

X Format . ................................................. 68
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