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ABSTRACT

Space-time flux synthesis methods for the approximate 

solution of the time-dependent Boltzmann neutron transport 

equation are formulated in this report. The variational and 

the Galerkin techniques are used. The space-dependent part 

of the solution is obtained with the DTF-II program — an Sn- 

type solution of the transport equation. Temperature feed­

back effects are considered in the formulation. The formula­

tion presented here is adapted to the description of rapid 

transients following a large reactivity input, but the method 

can be easily modified to cover other reactor problems where 

a space-time flux description is necessary. It should be use­

ful whenever the situation requires the transport approxima­

tion for the description of the neutron flux.
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I. INTRODUCTION

Solution of the neutron migration problem in a nuclear reactor is usually obtained by straight­

forward finite difference approximation techniques of the equations involved. These methods are 

well established, and there are many codes which provide the desired solutions. There are instances, 

however, when the use of available computers for solving the neutron migration problem would re­

sult in prohibitive expense due to the lengthy time required to make the computations. Examples of 

these situations are: (1) calculation oftwo- or three-dimensional detailed flux shapes in complex 

geometries, and (Z) description of the nonseparable space-time behavior of the neutron flux in 

several types of reactor transients. In such situations, it is convenient to have techniques available 

which will give a reasonably accurate description of the neutron behavior and yet cost only a fraction 

of the equivalent "exact" calculation.

The flux synthesis methods used here are approximate calculational techniques which satisfy 

these requirements. Several such methods have been developed and applied to the calculation of 
neutron fluxes in a reactor.^ These "new" flux synthesis methods are improvements over the con­

ventional or "old" flux synthesis methods from which the generic name was derived.^ All are special
1 3cases of the mathematical technique referred to as: The Method of Weighted Residuals. ’ The 

basic assumption of the synthesis methods is that the neutron flux <p in several variables, for ex­

ample, two space variables x,y and the time t, can be adequately approximated by a function, <p, 

defined by

K
<P(x,y,t) 2 ^(x,y,t) = ^ H.(x,y)T.(t) ...(1)

’ - i=l

where IT(x,y) are given functions of some of the variables x,y, and T^(t) are unknown functions of 

the remaining variable, t, that have to be determined.

The method of weighted residuals is a procedure used to determine these unknown functions, con­

sisting of the following steps. First cp(x,y,t) in Equation 1 is multiplied by an arbitrary weight func­

tion W(x,y). This product is then entered into the equations for the problem in lieu of cp(x,y,t), and 

integrated over the variables x and y. This process results in one differential equation in the un­

known functions T^(t). Repeating the same procedure with all the members of a set of K arbitrary 

weight functions W(j = 1, 2, . . . ., K), a system of K simultaneous total differential equations in 

the unknown functions T^(t) is obtained. The solution to this system of differential equations is the 

solution to the problem.

The functions H.(x,y) are usually called trial functions, whereas T^(t) are the "mixing" functions. 

The several weighted residual methods developed differ by the choice of weight functions used. 

Choice of trial functions is also arbitrary, giving place to many different variations of the method 

even when a particular selection of weight functions has been made. In the Galerkin synthesis method, 

the weight functions W are the same as those chosen as trial functions W. = H.(x,y). In the 

variational synthesis method (when applied to the neutron transport problem), a bilinear functional 

is set up. Its Euler equations are the neutron migration equation, and the adjoint equation which is
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closely related. The solution <p*(x,y,t) of this adjoint equation is approximated by a function

<P*(x,y,t):

K
<p*(x,y,t) - <P*(x,y,t) = J H*(x,y)T*(t). ...(2)

j = l

The trial functions H. (x,y) used in the adjoint solution are then chosen as the weight functions for the 

direct problem. Similarly when solving for the adjoint function (p'^Xjyjt), the trial functions I-L(x,y) 

are used as weight functions for the adjoint problem. When the equation is self-adjoint, both Galerkin 

and variational methods are identical.

Other weighted residuals flux synthesis methods that have been developed are: the multiple spot
1 4method, the region balance method, and the least squares variational method. ’

Several authors have reported successful applications of these techniques to the calculations of 

detailed two- or three-dimensional flux shapes and to the space-time description of the neutron flux 

in reactor transients.

S. Kaplan^ applied several of these methods to the flux calculation in a two-dimensional core con­

sisting of three regions: a rod-out core region, a rod-in core region, and a reflector. The trial
5

functions used were one-dimensional, asymptotic space shapes for each one of the regions. The 

results obtained for the flux shape and eigenvalue with both the Galerkin and variational syntheses 

were very good as compared to a PDQ (two-dimensional diffusion code) calculation of the same test 

case.

S. Kaplan and J. A. Bewick*^ applied the Galerkin technique to study the three-dimensional flux

distribution on a model of the Shippingport Pressurized Water Reactor (PWR). They were able to

reproduce very well the flux shapes predicted with the TKO code — a three-dimensional diffusion 
7

code, but only after some trial and error in their choices of trial functions. This made clear how 

important it is to have a feeling for the kind of solutions expected when working with this type of ap­

proximating technique. In the same paper these authors developed a space-time variational technique
g

for the diffusion equation, based on a functional proposed by Dougherty and Shen. Its application in

a two-energy group version to a flux tilt test case was in excellent agreement with the calculation of
a

the same test case with Wigle — a time dependent two-group slab geometry finite difference solution 

of the diffusion equations.

Yasinsky and Henryk have reported another set of test cases using the same space-time synthesis 

scheme. It was applied to the prediction of fluxes in a couple of bare cores in which asymmetric 

changes in properties induced a nonseparable transient behavior of the neutron flux. Of all the ap­

proximate methods used by them to calculate the flux (point kinetics, adiabatic, nodal, and modal 

methods) the flux synthesis compared best with the corresponding WIGLE calculations. In the case 

of a bare slab, 60 cm thick, in which a step insertion of $^2.5 was followed by a ramp taking the 

reactivity back to zero at 0.01 sec, the calculation of the flux using three trial functions produced 

deviations from the "correct" value of less than 157o. The point kinetics model gave very poor
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results in these tests, but as the authors point out, since feedback effects were not taken into ac­

count it is difficult to draw any quantitative conclusions from their data.

H. Fenech and V. Orphan have reported an application of the variational techniques to the study

of a step insertion of reactivity with a linear temperature-dependent reactivity feedback, but without
spatial dependence.^ The temperature was included explicitly as one of the variational independent

variables. The results obtained with the Galerkin method, the variational method, and the least 
4

squares method are very similar in the accuracy attained. All methods predicted peak power and 

pulse duration with approximately 5% error.

Synthesis techniques as applied to the study of reactor burnup problems have also been reported.
S. Kaplan, O. J. Marlowe, and J. Bewick^ calculated the burnup characteristics of a three-

dimensional model of the Shippingport PWR, using Galerkin synthesis. The nonlinear problem of

burnup was treated as a sequence of linear problems. At each time step, the flux was synthetized.

The rods were arranged in groups and withdrawn one group at a time. As a consequence, the space-

time changes of the fluxes are quite complicated. The authors indicate that in order to picture these

changes they had to follow an involved strategy in obtaining the several trial functions used. The

results obtained for power distribution, eigenvalue, and fraction of power in the blanket region of

the PWR as functions of time were excellent by comparison with a TNT-1 — three-dimensional deple- 
13tion calculation. Solution by the "exact" method required approximately 1 hr machine time using 

the Philco S-2000 for each time step. The synthesis required about one-third as much.

14M. Becker and H. Fenech have proposed a different treatment of the burnup problem. It is
4

based on the least squares variational technique, and a consistent account of the nonlinearity of the

problem by treating the depletion equation as part of the variational principle. For a simplified

one-dimensional (slab) depletion calculation, their results compare quite well with those obtained
15with FEVER — a one-dimensional depletion computer code.

In this report, a space-time variational (or Galerkin) flux synthesis technique is developed for the 

time-dependent neutron transport equation. The space-angle energy description of the flux is ob­

tained by means of DTF — an Sn-type solution of the stationary transport equations. The time-de­

pendence is synthetized. The variational principle differs from the one used previously; the form 
used here is the one proposed by Lewins.^ In this formulation, the end point (final time) condition 

affects only the adjoint flux. The flux has to satisfy only an arbitrary initial condition.

The presence of feedback mechanisms can be included without formal complication in the Galerkin 

formulation. An analysis is presented of the complexities introduced in the variational formulation 

by feedback effects; and an approximate way of handling the problem is indicated and developed in 

detail in one of the appendices for a two-energy group, slab geometry synthesis in diffusion approxi­

mation.

The possible applications presented for the transport space-time synthesis scheme cover the 

same range of reactor problems as those reviewed in connection with the diffusion synthesis, and 

should be used whenever the transport approximation becomes necessary. The inclusion of feedback 

effects in the space-time description of neutron fluxes will make it possible to extend some of the 

studies previously reported to more realistic cases.
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II. VARIATIONAL METHOD

The general ideas of the variational method are well known. Here, only those features relevant 

to the present application will be developed directly. The time-dependent neutron transport equation 

can be written as follows:

V fi<E>
L<p(r,ft,E,t) + ^

i= 1

I ^
v dt ’

ac.
M.<p(r,n,E,t) - A.C.(?,t) = ;

• . .(3)

...(4)

with

Lcp = • Vcp - LT(r,E,t)cp

+ + ^d
4tt

d^'dE', •..(5)

M.tp P f f vL(r,E,t)v(r,0,,E,t) dtidE-, 
JQ,JE 1

• •-(6)

wher e

<p(r,n,E,t)

C.(r,t)

Ex(?,E,t)

Sf(r,E,t)

Es(;',n,E,n;E')

A.1

LfE)

^i

/3

V

V

X(E)

directional neutron flux, for point r, direction Cl, energy E, at time t 

i-th group delayed neutron precursor density at point r and time t 

total neutron cross section of the reactor medium 

fission cross section

differential scattering cross section, for scattering from angle Q and 

energy E to angle Cl and energy E

i-th delayed neutron group decay constant

i-th delayed neutron group spectrum

i-th delayed neutron group fraction

^i

neutron speed

neutrons produced per fission 

fission spectrum
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The flux <p(r,fi,E,t) is subject to the boundary condition;

<p(R,n,E,t) = 0 for U • n < 0 .. .(7)

where

R = vector describing the reactor's external surface 

n = outward-pointing normal to that surface 

In addition, the following initial values are given:

<p(r,S,E,o) = cPo(r,5,E) ...(8)

C.(?,o) = C.Q(r) i = 1,2, ....,6, ...(9)

where and are prescribed functions of space, angle, and energy.

The next step in setting up a variational principle for the neutron transport problem is the defini­

tion of a functional having a stationary property about the solution of Equations 3 and 4 with condi­

tions 7, 8, and 9. For the time-dependent neutron transport or diffusion equations, functionals with 

this property are bilinear and not quadratic. Definition of the functional then implies using another 

set of functions, (fi* and Cr, the adjoint flux and adjoint precursor densities. As will be seen, the 

stationary property for the functional will imply another set of differential equations, and another 

set of boundary conditions for the adjoint functions. Following the formulation of the problem given 
by Lewins,* the functional chosen here is:

I to,C.,^,C?rl- /y / /
Jo Jr JE

n,E,t) L<p(r, fl,E,t) + yx.c.f. -
1 1 1 v 3t

i= 1

dr dE dfi dt

y / / cr(r,t)
i = 1 ■'o •'t

3 C."
M.<p - A.C.(mt) - —^ 

i i F ’ ' 3t dr dt

f [ f “<P(r,^>E»tf)<P;i:(r,n,E,tf)dr dfl dE + ^ fC{
Jr JQ, JK 1 = 1-4-

(r ,tf )C?(r ,tf) dr . •.(10)

where t^. is a fixed final time up to which the solution of the problem is considered. The integrals 

in r,fi, and E extend over the entire range of these variables within the reactor system.

If the function <p'''(r, fl,E,t) satisfies the following boundary condition:

<p*(R,n,E,t) = 0 for O • n > 0, ...(11)
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and R and n have the same meaning as in Equation 7, the functional I given in Equation 10 can be 

written in the following equivalent form (Appendix I)

ItCbC. = f Y ( f AE,t) LV:(r,a,E,t) + ^ ^ Cf + ^ ^
Jo -'r-'fl-'E _ i = l

dr da dE dt

> I f‘[
i = 1 ■'o •'r

SC
M*cp* - X.C* + —-L

i ii St dr dt

r -'a •'E

- 0(r, a ,E,o)cp:,'(r, a,E,o) dr da dE + N / C^(r ,o)C*(r ,o) dr , ...(12)

i= 1

where

L'‘'o* ~ a • vtp* - L^cp"'
:::+/ / Eg^.a'^^a^) + ^^(1da'dE'

•^a'^E'1

M*0* = X. r f.(E)<p::;(?,a,E,t) dE da , 
-a-'E

.• .(13)

.•.(14)

and 0(r.a.E,o), C^(r,o), (p*(r, a,E,o), C!‘!(r,o) are the values at time t = 0.

For I to have a stationary value, it is a necessary and sufficient condition that the first order 

variation vanishes identically when it is induced by a first order variation in any of the independent 

functions. O.C..0:,:, and Cr.* ' i * " i

The variation induced in I by a variation in (p'1’ can be easily obtained using the form in Equa­

tion 10. It is:

61 jc.Cb , 6c::.Cf} = 6(p*

-'E

Lip'1' +
1 3(p

X.C.f. - --r- 111 v ot
i = l

dr dil dE dt

+ -0(r ,5,E,tf)6<pv(r,f2,E,tf) dr dO dE.

U JE

The conditions to make 61 = 0 are:

L<p + Y X. C.f. -1^=0 
Zj i i i v St
i = 1

6ip:':(r,r2,E,tf) = 0

NAA-SR-11821
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The first condition is simply Equation 3, the neutron transport equation. The second condition 

means that the function </3*(r, f2,E,t) will have a definite t^ with a variation identically zero by 

definition.

The variation induced in I by a variation in a CT, obtained also from Equation 10, is:

61

^tf .
<P,C.,<p*,5C:;=)= I j 6C*

Jn J-r

ae.'
M. cp - A.C.(?,t) - —^ 

i i' ’ ' at dr dt + /* C.(r ,tf)6c:''(r ,tf) dr.

J T

:i7)

The conditions to make 61-0 are now:

ac.
M.cp - A. C.(r ,t) - —i- = 0,

i i iv ’ ' at ’ • • .(4)

6C*(r,tf) 1.2, .. .(18)

which are the equations for the delayed neutron precursors plus the condition that the values of

C*(r,t^) are prescribed at the final time t = t^. The next step would be to consider the variations

induced in 1 by variations in cp and C^. Before proceeding with this derivation, it is necessary at

this point, to realize that the variation induced in I by variations in <p and C J s will depend on

whether or not the parameters in Equations 3 and 4 are affected by the values of functions (p and .
17 1

In other words, the variation in I will depend on feedback effects. When there is no feedback, the 

variation in <p will produce the following variation in I, obtained from Expression 12.

61
1 9<P:'6<p,c.,<p*,c*) -( ' ( f [ 6(p L'V + 2 ^Lfcf + v at

-'o -'r Jn -'E L i = l
dr dfl dE dt

Ilf-Jr JQ, JK
6<p(r,fl,E,o)cp','(r,0,E,o)dr dfl dE. ...(19)

The conditions for 61-0 are now:

y p.vLrC? =
1 f 1 V

I d(p,~ 
at

...(20)

6cp(r,f2,E,o) = 0 . ...(8a)

Equation 20 is the adjoint equation in this case (no feedback), and the second condition expresses the 

fact that the initial value of the neutron flux is given. The variation produced by a 6C^ is:
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dC. 1
6C. Mr<p* - \.C* + dr dt + 

11 11 ot
6C.(r,o)C?:(r ,o) dr ; . . .(21)

and the vanishing conditions this time are:

. • .(22)

6C.(r,o) = 0 i = 1,2, ... ,6.

These equations are the adjoint-delayed precursor differential equations. The other condition is an 

equivalent way of writing Equation 9.

Solution of the variational problem presented here is equivalent to a solution of the original 

differential equation problem plus the solution of the adjoint problem, as represented by Equa­

tions 20 and 22 subject to the conditions in Equations 11, 16, and 18. When the parameters in 

Equations 3 and 4 depend in some way on the neutron flux, the direct problem (Equations 3 and 4) 

becomes nonlinear. The equations for the adjoint problem in this case are no longer 20 and 22. 

The variation induced in Equation 12 by a variation in <p takes a different mathematical form and 

consequently, the stationary condition — the adjoint flux equation — also has a different form. More­

over, to calculate the time-dependent coefficients of the adjoint equation, it is necessary to know 

the solution to the direct problem: <p(t). The adjoint equations remain linear, and the boundary con­

ditions are not affected.

A detailed discussion of feedback effects on the variational formulation for a simple model is 

given in Appendix II.
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III. THE APPROXIMATION PROCEDURE

The flux synthesis variational method is an example of the approximative technique of variational 
calculus referred to, usually, as the semidirect method,^ or Kantorovich method.It is a 

natural extension of the "direct" method of Rayleigh-Ritz. Here, the trial solution contains unknown 

functions rather than unknown scalars, as are used in the direct method.

The first step in the approximation procedure is to cast the problem into the energy multigroup 

formulation. This transformation can be carried out consistently in the variational approach, as 
has been pointed out by Selengut.^

It is assumed that both the flux (p and the adjoint (p!,! can be expressed in the following way:

<p(r,f2,E,t) = <p (r,n,t)e(E);
g E , £ E S E

g-1 g
<p*(r,£},E,l) = <p*(r,f2,t)e*(E);

g g = 1,2,...,G

fE
I g €(E)dE = 1; where E 's are the energy group . . . (2 5)

•'E H
g-1 boundaries and G is the number

of energy groups
rE/ g e*(E)e(E) dE = 1 ; ... (26)

g-1

. . .(23) 

...(24)

which are the energy multigroup approximations of flux and adjoint. e(E) and r‘:(E) are prescribed 

energy functions, the trial functions for this case. As yet, the (p^(r,f2,t) and (fT^r, f2,t) functions 

are unknown. These will be determined by requiring the functional to have a stationary value, and 

be subject to the same set of initial and boundary conditions specified for the variational problem.

Introducing Equations 23 and 24 into Equation 10 for the functional, then integrating over the 

energy, takes the form: (Delayed neutr on pr ecur sor s are dropped for simplicity.)

■ MU/Ml dt
_ . dcp

- <P*(r,^,t)ft •V0g(?,n,t) - cp*£Tg(?,t)cpg - — -jf

G ,

2 / d<£sgg'<?^')+ Sf1 -
g'= 1JD,'

t)

^<pg::(;,n,tf)<pg(;,n,tf) j. ..(27)
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This is the multigroup form of the functional, where:

£Tg(r,t) = J g ET(r,E,t)e5;;(E)€(E) dE;

g-1

,(28)

i -Xs dE:
8 g-1

...(29)

_ _ /*E /-E / _ _ _
ESgg,(r,a,n') = J S J g Ss(r,n,E,n;E')c*(E)e(E') dE dE';

E , •'E , , 
g-1 g-1

...(30)

rE
/ g X(E)e*(E) dE ; 

•hr
[-1

• • .(31)

rE ,
Efg,(r,t) = J g Lf(r,E;t)e(E') dE'.

g-1

. . .(32)

<Pg'(r, f2,t^), (Pg(r,$^,t^) are final values of and (Pg. Operating on the form of the functional in Equa­

tion 12, the following equivalent expression is obtained:

1 =
G ff r

dr df2< I dt

g = 1 Vr JR,

-*->-> _ _ , 9<P*

<pg(r,n,t>n • v(p*(r,n,t) - cpgz:Tg(?,t)(pg:= + -^vg-^L-

^ / X ' \
+ dn \ SSg'g(r’^,’S) +

g'=l^'
47T -v ^'/"g

+ ^ <Pg(r,n, o)(Pg(?,n, o)lj,
...(33)

having the same definitions for the parameters.

Imposing the stationary condition for the functional with respect to variations in the independent 

functions <Pg(r, O ,t), or <Pg'(r ,f2 ,t) results in a system of coupled differential equations to be satisfied 

by the <Pg's,and lPg's- For the <Pg's, the system is:

-n .Vcpg(r,n,t) - STg(Pg +
G

I
g^l^'

Lsgg'(;’^') +
^ ] S<P (r,n,t)

<P/(r,n,t)dQ -------
8 g

g = 1,2,...,G, ...(34)
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which is the multigroup form of the neutron transport equation. The only difference with the regular

formulation is that the group constants have been weighted with both flux and an adjoint spectrum.

The usual form of the multigroup equations corresponds to a particular choice of the adjoint trial

functions C,;(E):
g

C!(E) =1 g = 1,2, ...,G. ...(35)

A. SPACE-TIME APPROXIMATION

The next step in the variational approximation is the assumption that each one of the functions 

<Pg(r,f2,t) and </yj(r,f2,t) can be approximated as follows:

K
g
^ Ng<?,^)Tg(t) g = l,2,...,G; ...(36)

j = 1

K
g

<p*(r\a,t) = ^ N^V^T^t) g = l,2,...,G. ...(37)

i = 1

Trial functions N*(r, ), and N1 (r,U) are given, and the stationary property of the functional is used
g g i j V

to determine the unknown time functions T^(t), and T^ (t). The choice of trial functions in Equa­

tions 36 and 37 is essentially arbitrary, both in number and type. Each choice will result, of course, 

in a different set of "mixing" functions T^, Tj. There is no fixed procedure to select a "best" set of 

trial functions for a particular problem, and only experimentation can offer the answer. One suc­
cessful method has been the use of N^'s,and 's as the stationary and asymptotic solutions of the 

reactor time-independent equations. When material conditions in the reactor change appreciably 

with time, e.g. , burnup problems, temperature feedback, xenon poisoning, it may be convenient to 

use more than one possible asymptotic solution.

For the present general formulation, the N^'s,and 's are simply known functions of r and £7. 

Introducing Equations 36 and 37 into 27, and then integrating over r and Q, the functional takes the 

for m:

iIt^t1
I g’ g

G g

I 2
g = i 1=1

- AgJ(t)]Tj"'(t)Tj(t)

i1;

JL T1
dt

dt +

Iij

(tf)Tj(tf) . . .(38)

NAA-SR-11821

15



where

/ / N^'Yr.Hjn • vNj(7,5) a? an =

JtJq S ’ S’
1J. . - .(39)

I I (r,h)Z<r,t)Nhr,h)ar dO = A^(t) 

~'r ~'Qi & 1B B S
. . .(40)

/f /Vv,n)<^£sgg,(?,n;m + -^)Efg(;,t)\Nj,(?,n') dh'dfi d? = sgijg,(t);
1"

...(41)

/ / Nr‘'(7,n)Nj(?,n) d? dO = Ilj .
44) S S ’ g

. .(42)

An equivalent expression for the functional is obtained when Equations 36 and 37 are introduced 

into 33.

Imposing the stationary property on the functional, the following set of necessary and sufficient 

conditions is obtained:

For the T (t) functions
g

K G I1J dTJ
2 [-Y - Agl,1H,,) * 2 [sgg'(,Y'(,)] • t' ^
j=il g = i g

0 ; .- .(43)

i = 1,2, ...,K

g = 1,2,...,G;

and at time t = 0

T^(o) are given (initial condition). • • .(44)

For the T (t) functions in the linear case

K
g

2
i = 1

G jij
[+LgJ - Ag|l,]Tg",l) 4 2 [sgig«t,Tg:"]+ v • —

g = i g
dt

. ■ .(45)

j = 1,2, ...,K

= 1,2, ...,G:
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and at time t =

T1
g

(t.) are given (final condition). . . . (46)

The system of ordinary differential Equations 43 and 45 with end point conditions in Equations 44 
and 46 when solved for the unknown functions T^(t), and (t), represent the solution to the varia­

tional problem and to the closely related physical problem of neutron transport. The approximate 

solution to the neutron flux Equation 3 can then be reconstructed using Equations 36 and 23. Similarly 

the adjoint can be reconstructed if necessary using Equations 37 and 24.

It is opportune at this point to note that the mathematical form of Equation 43 would be the same

if, instead of using the variational flux synthesis, any of the other weighted residual techniques had
1 3

been used. ’ Differences between the several approaches are reflected in the definition of param­

eters appearing in the equation. For example, in the Galerkin synthesis method, in which the weight 

functions are the flux functions themselves, the coefficients in Equation 43 would be:

/ / N1(r,f2)fi • VN^.n) dr dQ = L,1^ ;

/ /N^r,^!; (r,t)Nj(r,n) dr dH = Aj’(t)
+/r v/£2 o -L to o to

• • .09')

...(40')

Esgg,<r,fl,sv>*^<1
/3)£fg(r,t) N"*/ (r, £1') dr dfl dfl' = / (t);

g ’ gg

N^r ,f2)N^(r ,f2) dr d5 = .
g ’ g ’ g

• • .(41')

. . .(42')

The form of Equation 43 that would be obtained when using the neutron diffusion equation to formulate 

the problem is naturally the same, as time-dependence is treated in the same way in both transport 

and diffusion formulations. The main change would be in the definition of the coefficients where

the angular treatment is implicit. Feedback effects would result in more basic changes in Equa­

tions 43 and 45. The form of Equation 43 would not change, but the coefficients would then be func­

tions of the flux, or temperature. In this mode, the equation would be nonlinear. In any of the 

weighted residual techniques, except in the variational technique, this would be the only change in­

troduced by a temperature feedback.

In the variational flux synthesis, the presence of feedback will produce changes in the adjoint flux 

equations. Equations in 45 will have extra terms, and their coefficients will be determined by the 

solution of the direct problem. The linear character of the equations is conserved.

B. SOLUTION OF THE SYSTEM OF DIFFERENTIAL EQUATIONS

Before attempting numerical integration of the system of Equations 43 or 45, it is convenient to 

manipulate them into a more tractable algebraic form. Written as they are, there are K equations
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for each energy group, and a total of

K1 + K2 + + K + + kg = k .(47)

differential equations.

Correspondingly there are K unknown functions T^(t). For each group the coefficients (t),
and 1^' can be arranged in matrix form: , and each a square matrix of order K

g J7 L g ' J ' L g .
If the unknown functions T are arranged as a column vector with K components:

g

T =

'T!

Tf

Tf1

g
^,2

TKg

g

G
^2.

tKG
G

...(48)

and the matrices L,1^ L A^(t) , I1*1 are arranged in quasi-diagonal matrices of order K, [l], [A(t)],
L§JL§ -i L g J

and [ijas follows:

[L] -

[A(t)]

• • .(49)

. . .(50)
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. . .(51)M =

The system of Equations in 43 can be written as:

[I]g= {[L]- [A(t)]+[S(t)]}T, ...(52)

where S is a matrix of order K defined with the elements Sgg'• To obtain explicit differential equa­
tions in each one of the components of T (T^ functions), it is necessary to obtain an explicit expres­

sion for dT/dt.

Multiplying Equation 52 by [l the inverse of [ij:

^ = W1 j[L] - [A(t)] + [S(t)]jT, ...(53)

the desired form is obtained. The inversion of matrix I is performed only once at the start of the 

calculation, as it is a constant matrix and independent of feedback. Furthermore, its inversion 

is greatly simplified by its quasi-diagonal character. The inversion problem is not that of inverting 

a matrix of order K, but instead is the inversion of G submatrices of orders Kj, , • . • , K^..

Numerical Integration

The system of equations in 53 is in a form suitable to integrate numerically. There are several 

numerical techniques available that could be used to perform the integration. An essentially stable, 

high order method, with a variable time step like the predictor-corrector technique in Reference 23, 

would be generally advisable. In practice the integration method used will depend to some extent on 

the characteristics of the system matrix.

In the nonlinear cases where the system matrix is a function of the unknown, it will be necessary 

to recalculate it as the calculation proceeds. How often this recalculation should be made and to 

what extent the recalculation can be expedited will depend on the particular kind of feedback con­

sidered and on the linking equations expressing it.

C. CALCULATION OF COEFFICIENT MATRIX ELEMENTS FROM DTF-II OUTPUT

Trial functions entering in the definitions of the coefficients for the variational synthesis, Equa­

tions 39 through 42, or for the Galerkin synthesis 39; through 42,are obtained by a DTF-II transport 

calculation. These N^(r,f2) and (r,f2) functions are defined by their values on a space-angle mesh, 

N^a, . (I indicates the space mesh point, and 0:, the angular mesh point. )

It is necessary then to rewrite Equations 39 through 43 in some equivalent finite difference form,

using these N‘ N
i*

gto’ gia values. The finite difference forms obtained are:
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L1J = TT 

g
l a

g(^-l)»L g(^-l)a* ' 1Ng(f-i)(«*-! .])>^

2
2

£ \ l a a
...(56)

?(4<{?W^ . ■ .(57)

Details of the transformation from the continuous to the discrete expressions, and definitions of 

the symbols used in Formulas 54 through 57 are given in Appendix III.

D. ACCURACY OF THE METHODS

The accuracy in the results obtained with any of the weighted residual methods depends on the 

choice of a "good" set of trial functions. There is no "best" general recipe in selecting good trial 

functions for a problem. Only experience and intuition can guide the selection of trial functions for

a particular problem. Serious numerical difficulties can also arise if an improper choice of trial
24functions is made, as described by S. Kaplan, et al.

The simple expedient of increasing the number of trial functions may work, but is not a guarantee

in improvement of the accuracy — not even in the variational method where it would be natural to

expect this. The functional is bilinear, and as such, it is stationary around a saddle point, not an 
25extremum. Consequently, the error may simply change sign when a new set of trial functions is

Z 6)used, without becoming smaller. Also, as has been pointed out by Becker, when the functional is 

not a positive definite mathematical expression, accuracy can be obtained through cancellation of 

errors. The flux and adjoints may then be significantly in error even when yielding the correct 

functional value.

The best way to gain confidence in the results obtained with the synthesis method is by comparison 

with results from an "exact" calculation of the same test case. This has been the regular practice 

in all the developments reported here, and should be done whenever possible.
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APPENDIX I

EQUIVALENCE OF FORMS IN EQUATIONS 10 AND 12

The first term in Equation 10 is

,E,t)f2 • V(p(r, f2,E,t) dr df2 dE dt .

Its integrand can be rewritten using the following identity

V . (ClQip*) = <OQ*V • + 5 • V(cpcp*) s ipQ, ■ + <p*h ■ Slip ,

or

• V(/3 = V . (hcplp*) - pfl ■ V(p* .

...(1-2)

...(1-3)

Moreover, the integral

(fl cpcp*) dr S)<P(R,n)<P*(R,d) ds , ...(1-4)

by Gauss divergence theorem; where S is the external surface of the reactor, n its normal, R a 

vector describing it, and ds the surface differential.

Clearly if <p(R,fl) and O) satisfy conditions in Equations 7 and 11, the integral in Equa­
tion 1-4 is zero for any direction fi. Equation I-1 is then transformed into

<p(r, ,E,t)fl • , f^,E,t) dr dfl dE dt . ...(1-5)

The second term in Equation 10 is not transformed; it keeps its form.

<P(r,f2,E,t)£_(r,E,t)<p*(r,f2,E,t) dr dfl dE dt . . ..(1-6)

The third term in Equation 10 is

<p*(r,£2,E,t) 5,E,d',E' X(E)
477

1 -/3)P £fd,E',t )]cp(?,£V,E',t) =1dfVdE' d? dddEdt.

...d-7)
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In the definite integral

f f /,/, [ss(?’^’E’^E/) + ^ir(1 _^)l'i:f(^E’t)]<p(^’E,’t)<p*(^’Ejt) dE ^dE,;
^2 E ^2 E

the name of the mute variables can be interchanged without altering the value of the integral, so it 

is equal to

f f /,/, (E^E'Ae)
-/f2-/e •/n */e L

X(E)
47t (1

- |3) vEf(r,E,t)J <p(r,n,E,t)(/3*(r,n',E' t) dE dO' dE', . . .d-9)

and the transformed Equation 1-7 is

X(E'),I ffo,f [EcEAe'Ae) + ^E(l - ^)^Lf(?,E,t)](p*(?AE',t) dfi'dE'jd^dndEdt.
-'OVe' l s

. . .(1-10)

The fourth terms are

6 t
2 / V f I VEE’t) d? dE dt •
i = 1 ° r ^ E

. . .(1-11)

Writing them as

[xj f f i (E) (p*{ r,n,E ,t) dfl dsjd? dt = C.(r,tdr dt d-H')

gives the transformed expression. 

The fifth term is

~l ‘^ dS dE dt . . .(1-12)

Doing the time integral by parts, gives

f i f f f <P(r,fi,E,t) 1 -jn* dr dO dE dt - f f f — <p(r,n,E,tf)cp*(r,d,E,tf) dr dd dE
Jo JrJaJK v dt Ji-J^Je v 1 1

f f f —-(P(r,r2,E,o)(/3;''(r,0,E,o) dr dd dE . ... (I- 12')
JvJq.Je v
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The sixth terms

^ J fy'c*(r,t)M.(p dr dt
i= 1 0 r

are rewritten as

6
<p(r ,f2,E,t)

’ClJE

^ ^Ef(?,E,t)C*(?,t)

Li = l

dr d^ dE dt

using the definitions found in Equation 6. 

The seventh terms are simply rewritten as

C.(r,t) X. C?'(r,t) dr dt .i ’ i i ' ’

The eighth terms finally are integrated by parts in time, giving

6 I A - fCi(r,tf)Cr(r,tf) dr + f C.(r,o)C*(r,o 

JT Jr
) dr V .

The sum of Equations 1-5, -6, -10, -ll', -12', -IS*, -14, and -15 gives Equation 12

r{<p,c.,<p*,cf} = f£ [ [ /*<P(?AE,t)

Jo Jr “T2 Je

L*(p*(r,f2,E,t) + Y /3^EfC::

i= 1

i
v dt dr df2 dE dt

i/'/cw,

i = 1 Jr

dC.'
M*<p* - X.C* + —

i i i at
dr dt

1v-(p(r,fl,E,o)<p!,'(r,fi,E,o) dr dfj dE +
Jr JQ,JE 1=1-4-

y fC^rjOlCr^o) dr
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APPENDIX II

VARIATIONAL FLUX SYNTHESIS IN A TWO-ENERGY GROUP, SLAB-GEOMETRY DIFFUSION MODEL
WITH TEMPERATURE FEEDBACK

The flux synthesis variational method will be applied here to solve the following.

A. THE PROBLEM

Calculate the space-time behavior of the two-energy group description of the neutron flux in a 

multiregion slab reactor with temperature feedback for a large insertion of reactivity.

The equations for the problem are:

s(Di Sr) - hh * ^<1 - * W ■ ^

£(d2 St) - + 12.,2»2) + e ej

dT ’

9(0-,__2
St ’

. ..(II-l)

. . .(11-2)

K
pc

(Sn<Pl + V % ST 
“ dt ’ ..(11-3)

where the subscripts 1 and 2 indicate fast and slow energy group parameters; and are total

cross sections; and E-., are fission cross sections, and E is the removal cross section. K isfl f2 ’ r
a conversion factor from fissions to some unit of energy, p is the density of the reactor material, 

and C is its specific heat. Delayed neutrons are not taken into account. The temperature equa­

tion does not have a conduction term, the assumption being that the transient is too fast for any 

temperature equalization to take place. These omissions are not essential.

The parameters Ep E?, Ep, Ef.?, p and will be specified functions of the temperature T.f 1’ f2

If the left and right boundaries of the slab are x = a and x = b, and there are x^ (f = 1, . . . , 2) 

interval boundaries where the reactor properties are discontinuous, the following boundary condi­

tions have to be satisfied.

cp^a) = <Pj (b) = (fl,(a) = cp,(b) = 0;

CPl(xf_) ^(x^)

^(xf-) =<P2(xf+)

S<Pl(xf-) S(Pi(xf+)

S<P2(X. ) 3<P2(xf+)

D2(xf->t)Tr-=D2(xf+’t)-^r-

. . .(II-4)

. . .(II-5)

. . .(II-6)
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f - 1,2, . . . N, for all timeh

where

f(x^ ) = value of function f(x) at the point x^, when approaching it from the left 

f(x^+) = value of function f(x) at the point x^, when approaching it from the right.

At time t = 0 and every a s x £ b

<A,(X,°) =

T(x,o) = Tq

where <Pjq, are given functions of x.

The functional chosen is

tfrbr^f ,0
3x D1 3x + ^1 'Vi +

_1^1
Vj ot

3<A,
+ ^rD2^r + ^ 1 0(f,z-Zzvz + + Ef2^) + - - —

+ Ts
\ rbp

pC ^fl^l +Sf2<p2) ■ ax
at

Idxdt + J

L P -1 ^ *4. ^

and T'1' are adjoint functions, to be defined shortly

t^ = final time (time up to which the solution is to be carried out). 

Integrating by parts in time and rearranging terms, it is easy to see that

l{cPl,<P2,T,cp*,^,T*}

"t'f dep* 3cp.
K

3x
i j<^i r
r^^r^iL'Vr+ (i-^)^fl(Xl<pf+x?<A,*) + S(P,-)+^inT- +

i 5tffi

'2 2 ' r^2 ' pC fl v.
r P 1 ot

a</T|; 3(a
+ “a^T D2 “aT + ^

D2^: + d + + ^ ^

P 2
+ ) dx dtat

br<p::;(o)(p (o) <A*(o)(pL(o)
------ -----------  + „ ----- + T:':(o)T(o) dx

is an equivalent form of the functional. If no temperature feedback is present, the stationary 

ditions for the functional are:

1) the set of Equations II-1, -2, and -3;

NAA-SR-1 1821
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• (n-9)
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0 St S tff ’ 

a s x S b

2) 60j(a,t) = = 6</^(a,t) = 6<£>2(b,t) = 0

So^XjO) = 6(2^(x,o) = 6T(x,o) = 0

equivalent to the set of conditions in Equations II-4 and -7;

3) conditions expressed in Equation II-6;

4) the following set of equations for the adjoint functions

(di-5t)- Vf *'1 • 4 x2«,*) * ^hiT" = i dvt
dt

ox\ 2 dx
+ ^1 ' ^)ySf2^1^r+ + pC Sf2T '' 'v at

0 i T*
at ’

5) 60*(a,t) = 60j;:(b,t) = 6(^;!(a,t) = 6c£:(b,t) = 0

or. equivalent, though less general

C3*(a,t) = <0j:s(b,t) = (/^:;(a,t) = </^;:(b,t) = 0

and

6t3ic(x,tf) = 6c£:( x,tf) = 6T:':(x,tf) = 0 

or its equivalent

o;

0 s t s t.

0 s t s t.

a s x s b

1

°2

T:

(x,tf) = 0*f

(^f) = ^f

= T/

a s x s b given functions of x ;

6) the equivalent of condition in Equation II-6

-0;:;(x„ ) ) '

Dl(xi-»t) ST— = D1(x<+’t) —dT—

70*(x ) d<^:(xf+)

The solution of Equation 11-12 is

(II- 10)

(II-11)

(II- 12) 

(H-13')

(II- 13)

(11-14')

, (11-14)

.(H-15)

T:,:(x,t) = const = , . . .(11-16)

and taking

T* = 0 , ...(11-16'

the function T:,:(x,t) = 0 at all points and times in the system. Clearly T* plays no role in the calcu­

lation, and the whole process can be carried out without explicit reference to the temperature or its
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adjoint. If there is a temperature feedback, all the conditions remain the same, except those in 

Equation II- 12.

The variation of Equation II-9, with respect to T when the parameters depend on T, has to 

take into account the variation with T of terms of the form L(T)<p(p*, which will be

6[L(T)<p<p*] = <p<p*6T

to first order approximation.

Taking this into account, Equation 11-12 takes the form:

w d T dT
+ (1 -P)!'

fl
dE,

1 dT
f2

dT
Xi< + x2^] + t*

. . .(11=17)

The changes introduced by the presence of feedback are then:

1) The Equations II-l, -2, and -3, and conditions for fluxes and temperature are the same 

in form but nonlinear in character.

2) The Equations II-10, -11, and -17 for the adjoints are linear but with several new terms. 

The coefficients are explicit functions of time.

3) To calculate the coefficients in the adjoint system as such, it is necessary to know the 

solution of the direct problem.

The boundary and final conditions for the adjoints do not change.

B. THE APPROXIMATION PROCEDURE

It is assumed that the functions , T,<p*,<pC', and T'1' can be expressed in the following forms:

K1 . .
<^(*,1) = J ^(x)F’(t)

i = 1

k2

i = l

k3
T(x,t) = ^ J^xje^t) 

i = 1

. . .(11-18

NAA-SR-11821
27



<P*(x,t)
= ^$j*(X)Fj*(t)

j = l

<^!5(x,t) 2*f<x>Ff(t>

j=l

T*(x,t) (x)0j;;(t)

...(11-19)

The functions 4^, J1 are space-dependent approximate solutions of Equations II-l, -2, and

-3 at different times during the transient.

The functions are space-dependent approximate solutions of the system of Equa­

tions II- 10, -11, and - 12 in the linear case, or of Equations II- 10, -11, and -17 when there is tem­

perature feedback.

Introducing these expressions into the functional (Formulas II-8 and -9), integrating over the 

space dimension, and then imposing the stationary conditions for arbitrary variations in the func­
tions Fj(t), F^t), (/(t), Fj'(t), ^'(t), and 0^'(t), a syst em of first order time differential equations 

will be obtained for these functions.

After introducing Expressions 11-18 and -19 into Equations II-8 and -9, and integrating over the 

space dimension, the functional takes two equivalent forms:

iM,^1; Fivfy*} - (f/^ j k-m+ Aiji<t>T)] - Fjr5 ^

Jo \j = li=ll

K1 K,

+ I ^ FrF2AiJ2(t’T) + 2 2 kF^ + A22(t’T)] ■ ^
j = l i = l j = l i = 1 '

K_, K K3 K1 k3 k.
+ ^ ^F^'FjA^^t.T) + ^ ^ 0J F^QjJ(t,T) + ^ ^0J F^Q^tjT) 

j = l i = l j = l 1 = 1 ‘j = l i = l

K3 K3 . ,„i •\ K1 K1

I : d0 
dt

^ )dt + M M *(tf)F11(tf)I11j

j = l i = l / j = l i = l

K2 K2 K3 K3

2 ' (tf)F2(tf + 2 Iei" (tf)0i(tf)I13j :

j=i i = l j = l 1 = 1

. . .(11-20)
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and

-‘f /K1 K1 . dF, K2 K1 . ..

1 x x +Aiji(t’T)] + FiiXLiij[+12FilF2::!A2i(t>T)

•^o \j — 1 i—1 \ J j = l i = l

F, K f . dF:J* K] K2
I X * A*,i2(t,T)] + f‘ ^ 2 f‘fJ*4(t,T)

j = l i=l^

K . K K K, K,
V ^F1V::Q\j(t!T)+ ^ J2F^V2j(t)T)+ ^ p1 ^Xj \dt

dt 3 /
j = l i = l

K1 K1 .

j = l i=l

K2 K2

j = l i = l

K3 K3
^ ^FjfojFJ'^o) + ^ ^ F^(o)F^'S(o) + J ^e1{o)dJ,‘t(o) ; ...(11-21)

j = l i = l j = l i = l j = l i = 1

with the following set of definitions

L

as1
iJ=

•'a

. . . (11-22)

r d&v a*1
. . . (11-23)

f b r • . •^J1(t’T) = J [-^(x.t.T) + x^d-^^x.t.T)]^^1 dx , ...(11-24)

rhr ■
A22(t’T) = J [-S2(x,t,T) + X2l/(l-)3)E£2(x,t,T)]$J'''$2 dx , ...(11-25)

A^ft.T)
Jb . j. .
/ 1 - ^)2f2(x,t,T)$J '$2 dx , . . . (11-26)

Xb . , .
^(l -^(x^T)*^1 dx ,

'•b $j*$i

I‘=
•'a

...(11-27)

. . .(11-28)
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. . .(11-29)
rb :,:4>'

T1J I 221 dx

f
•'a

jij = j jJ- ji dx . . . (11-30)

Q11J(t,T) =
KEfl(x,t,T)

TJ v$11 dx
p(x,t,T)C (x,t,T) ' ‘1

a P

. . .(11-31)

Q^(t,T) = [b ^±11 jiv
J p(x,t,T)C (x,t,T) 2

dx . . . .(11-32)

F?
The stationary conditions of the functional for arbitrary variations in the functions 
, , and 0^ are (feedback effects included):

K1 {[^ dF.1 ) K2
2 + A^tt.T)] F{(t) +dt

y F^^t.T) = 0 j = 1,2,.. ' ,K! ; ...(II- 33)

i = i i = l

K2 (r
+ A^(t,T)]

dF,1J ) Kl
I F^(t) 2 + 

dt
2 FllA2 l(t.T) = 0 j = 1,2,.. ■>K2 : ...(II- 34)

i = l l / i= 1

K1 K2 K3 • •
yQV(t, T>F11+ ZQ2F2 2 TiJ d0

3 dt = 0 j = 1,2,. •,K3 ; ...(11--35)

i= 1 i = 1 i = 1

with conditions

fJ(o) = Fio i = 1,2,.. •>K1 '

F>) = F20 i = 1,2,.. .,k2 • fixed initial values , . . .(11-36)

ei(o) = e1o i = 1,2,.. .,k3 ^

and

Ki . . dF.-j 1 K,
[Lij + Ali<t>'n]rrj + ^ + + ZQii{t’T)dJ>

f j=l j=l
0 1 - 1,2,. . ..K, (11-37)
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+A22(t;,T>]*f + I
.. dF,
ij ___2
2 dt

K1 •• .... K3
+ 2Q2J(t,T)0j;'= = 0 i = 1,2,...,K2;

j=l j=l

. . (11-38)

K1 Kl aAkf K2 K2 SAki K2 K1 dAW K1 K2 3Aki

I 2 2 2 2 2 2 2
i=l k= 1 f=l k=l £=1 k=1

K3 Kj a kf K3 K2 W

2 2 -w-*y* * 2 2 Tf
^=1 k= 1 i=l k= 1

i=l k=1

j = l

.K, ..(n-39)

with conditions

F-1 ' (t ) = F^1 'V If

F^ '(t ) = F^ ' 
2 ^ 2f

eJ"s(tf) = 6f‘

j = 1,2,..^Kj

j = 1,2,...,K2 

j = 1,2,...,K3

fixed final values . . . (11-40)

The system of Equations 11-33, -34, and -35 with conditions found in -36 is nonlinear, and its 

solution does not depend on the solution for the adjoint flux and adjoint temperature mixing functions — 

Equations 11-37, -38, -39 with conditions of Equation -40.

On the other hand, the system in Equations 11-37, -38, and -39 is linear and its time-dependent 

coefficients depend on the solution of the direct problem. Tp calculate these coefficients, it is 
necessary to know F|(t), ^(t), and T(t), which is the solution for the system of Equations 11-33,

-34, and -35.

In this approximate formulation the solution to the direct problem is not completely independent 

from the solution of the adjoint problem. The coefficients in Equations 11-33, -34, and -35 (defini-
-j >|C -j j{C

tions 11-22 through -32) depend on the functions, 4^ (x), 4>2 (x), and (x), which are approximate 

solutions of the adjoint problem, as expressed in Equations 11-10, -11, and -17. Getting approxi­

mate solutions for Equations II-10, -11, and -17, and then using them in the coefficient definitions does 

not seem practical. A more direct (perhaps, less accurate) method is obtained if the space-dependent 

approximate solutions of Equations 11-10, -11, and -12, with assumption in Equation 11-16 , are 

taken as the approximate solutions to Equations II-10, -11, and -17 which are introduced in the coef­

ficient definitions. Then the system of Equations 11-33, -34, and -35 is solved. If this is considered 

a good approximation to the solution of the problem, the procedure stops there and Equations 11-37, 

-38, and -39 are not to be considered.

If there is reason to believe that the approximation obtained is poor and further investigation 

desired on the effect of improved adjoint trial functions, it is suggested that the following iteration 

process be used.
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The first order solution to the direct problem is employed to calculate the coefficients in the
i >',< i ❖

adjoint system of Equations 11-37, -38, and -39. This gives a set of functions, Fj (t), F“ (t), and 
9-1 (t). Using Equation 11-19 the adjoint magnitudes are reconstructed. A new set of approximate 

space-dependent functions, (x), (x)j anc* (x)> now defined as approximations to the

space-time functions just obtained. This new set of adjoint trial functions is then used to generate 

a new set of coefficients for Equations 11-33, -34, and -35, etc.

For the type of application developed here, in which the flux shapes are desired and not the value 

of the functional, it will hardly be necessary or practical to refine the calculation through the itera­

tion process. In fact, the use of the Galerkin method, without any reference to adjoints, has proved 

to be a good approximation in several instances.
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APPENDIX III

CALCULATION OF THE COEFFICIENTS IN EQUATIONS 43 AND 45 FROM DTF-II OUTPUT

The basic functions N^(r,f2) and (r,0) appearing in the definition of the coefficients of Equa­

tions 43 and 45 depend on the radius vector r and on the direction vector Cl. The coordinate system 

to be used in the description of these functions is depicted in Figure 1. Cylindrical coordinates 

r,z,Q are used to specify the position vectors. The unit direction vector Cl is determined by the 

angle to and a direction cosine £•

The angular coordinates are related by

It = ^/l - 4^ COS CO - IT S CO £ 7T

T) = ^/l - 42 sin to V
I

A
jO

'

V
I

.(III-l)

The solid angle differential is simply:

dCl = d£ dji . , (III-2)

The results of a DTF-II calculation using this coordinate system will be sets of numbers 

representing the values of the functions N^r,^) at the points of a space-angle mesh. The space 

mesh is the normal reticulate corresponding to cylindrical coordinates. The angular mesh is that 

corresponding to an Sn integration of the transport equation. n(n+ 2)/4 directions are chosen in a 

quadrant of the unit sphere in velocity space (n = 2,4, . . . ). These directions are divided into n/2 

levels, i.e., different values of 4- In cylindrical geometry all n(n+2)/4 directions are significant 

(Figure 2). Each direction O' is given a weight corresponding to the area associated with that

direction on the unit sphere. For these directions the discrete angular fluxes N ^ represent the 

average value of the angular flux, at space point f and energy group g, over the area of the unit 

sphere represented by , i.e.,

/ N(?,E,f2) dn = J Wa 

•Tl «

Ngla ‘ . . .(III-3)

Each direction 0 is given an average value of the direction cosine (i , such that

w (III-4)

where is the unit sphere area corresponding to the direction a.

In addition, a number n(n+2)/4 of O'* directions — corresponding to the edges of the angular

ular fluxes going in those 

7T is a startup direction.

zones — are defined. The values N ... represent the angular fluxes going in those directions only.gt a
0. The direction Q* with COFor these directions W ...or'
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Assuming that a linear angular dependence of the flux within the angular zones is chosen, it is 

possible to calculate the edge fluxes N^^'s as functions of the Ng£a's and the fluxes in the cor­

responding startup direction by:

N ... = 2N - N ... . . . . .(Ill-5)O'".' a or -1 ' '

The detailed specification of the coefficients as defined in Equations 39 through 42 in terms of the 

magnitudes and will be carried out here for a particular case: The flux and adjoint are

functions only of r, 4, and 00 since there is no z or 0 dependence. In this case, the subindex indi­

cates the radial dependence.

Finite difference expressions for Equations 40 and 42 are

Ag(t) = / / Ng (r’^STg(r’t^Ng*r’^ dr

-WO

„(t)!yw Fn1"5 N’’, + N1* N''. ]1 >, . . . (III-6)
2 Tgf' y—1 aLgiagfor g(f-l)o: g(f-l)0:Jj^/

t1! fjir* =11 a!{s w<. [Ng«>i,«+Ng«- .toNi«-.)j}\ • • ■ (HI-7)

where

. f total cross section for group g at mesh point (radius) C.1 gx —

27Tr^ Ar = Af = volume element at mesh point H

N1. = value of i-th adjoint flux trial for group g, at mesh point f and
gf a

direction Of

= value of j-th flux trial for group g at mesh point i and direction O' 

Definition for in Equation 3 0 has to be extended to

w w /£_ , ,(?,t) = / / [n, /(?,n',n) + ^-i^(i - u,t)]dn dn'.
a a Sggacr ’ ' j I L Sgg' ’ ’ ' 4n ' fg ’ J

•'Af -lAf„/ct a

In order to write the finite difference form of Equation 41

S1J/(t)
gg

^V,n)[ss /(r,n,n') +-^-1/(1 -|3)E U^jjN^^Odn'dn d
N

g

I< " S 2 WA£S«gg'0rf[Ng(>i'<«' + N6(<-.)0Ng'«-l)«]
la a

. . .(III-8)

. ..(III-9)
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where Z„„ / / are the values of i /(r) at mesh point r.. The first step in obtaining a finiteSfggaa ■ Sggaa' ' f

difference approximation for Equation 39 is to write the form of £2 • /N explicitly for the particular 

case considered. Therefore

N*(r,4,t0)n • VN(r,4,UJ) = N - p N*r) ûN . . .(III-10)

The integral in Equation 39 then takes the form

r -/C0

‘ .... snJ , oNJ'
N1" u —i- - - N1 'rj —i- 

g r Sr r g StO
ZtTr dr dco d4 . . .(Ill-11)

Integration of the first term in Equation III-ll over an element of volume and angle gives

f rrf .snJ
ZTT d4 du; (J(4,W) ( Ng'''(r,4,w) ^ r dr

CL £-1

= 1 Wa[Ngfa + Ng(f-l)J[rf + rf-l][Nifa ‘ %
g(f-l)cyj .. .(Ill-12)

Integration of the second term in Equation III-ll over the element of volume and angle gives

277I' drI snJ
d4 dUJ 17(4,w)N1'''(r,4,UJ)

irri Af In1 ' N-^. - Nj., . J + N1M
oi I gia\_ gf(a--l)J gU-l^Lgg(f-l)a* g(f-1 )(o;*-1 )J I >

where T]^ is the average value of 77(4,w) over the area • This value can be calculated by inte­

gration or with some approximate definition.

Summing Equations III-12 and -13 over all mesh points and angles and then adding the results gives:

lt^'(r ,Cl)Cl * VNJ(r,£i) dr d^i 
§

= 77 2
f a

Ngfa + Ng(f-l)J[rf + rf-l][Ngfa ' Ng(f-l)J

+ rj Af IN1, 
a I gfa

mJ - n-1 + n1 ‘L1Ngf a* 'Vta*-1 )J + 1Ng(f- 1 )a L1Ng Ng(f- 1 W" g(f-l)(Qf*- 1) . (Ill - 14)
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