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A Abstract
Algorithms for computing forces and
associated surface deformations (graphical and
physical) are given, which, together with a force
feedback device can be used to haptically display
virtual objects. The ‘Bendable Polygon’
algorithm, created at Sandia National Labs and the
University of New Mexico, for visual rendering
. of computer generated surfaces is also presented.
An implementation using the EIGEN virtual
- reality environment, and the PHANToM
(Trademark) haptic interface, is reported together
with suggestions for future research.

1. Introduction

A great deal of effort and investment is
currently being directed toward the creation of
realistic virtual reality environments. For the most
part, these computer generated realities are only
visual renderings of the modeled objects. Until
haptics is addressed, many VR worlds will be
deficient. The need for haptic feedback is not
merely aesthetic, as its inclusion has been found
to significantly improve performance in certain
tasks [12]{13]. It has also been shown that people
are remarkably good at recognizing objects by the
sense of touch alone [10]. In addition, the sense
of touch is unique, in that it is the only sense that
is bi-directional -- one not only receives input, but
affects the world as well. Therefore, haptics can
be essential for many applications, without which
objects will always seem more “virtual” than
4‘re al’,.

‘While there has been significant progress in
graphical rendering, haptic rendering offers a new
and exciting research area, some of which is only
now possible because of current advances in force
feedback equipment and new software
environments. The haptic rendering techniques
that are used below focus on the fact that there is a
large database of objects which are graphically
surface rendered with polygons, and therefore a
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surface technique is used to compliment these well
established graphical methods.

In our laboratory, we use a PHANToM
(Trademark), as shown in Figure 1, to provide the
force feedback. To render the underlying models
visually, we use Silicon Graphics equipment and
virtual reality software [5], developed under the
EIGEN (Exponential Improvement in Graphics,
Engineering, and Networking) project. The
PHANTOM is a ground based, serial device that
provides 3 degrees of freedom for tracking and
force feedback on a single point. The EIGEN
virtual reality software provides a convenient
framework for drawing conventional graphical
objects and for interacting with the user in more
traditional ways. As in most graphical systems,
objects are rendered with polygons, which are
individually drawn and shaded to produce the
visual scene. )

Figure 1: The PHANToM haptic interface
[4] (printed with permission).
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The algorithm first focuses on determining
if the user point, or cursor, has touched an object,
which requires a collision detection algorithm.
Then forces must be created based on penetration
depth and surface position, including interpolation
for smooth corners.

Graphically, a Bendable Polygon technique
is used along with springs and dampers for
deformations, which are slave to the haptic
- process. This makes the graphical deformations
happen naturally and easily as opposed to a
method in which the graphical and haptic data sets
are separate, yet overlap. In addition, this method
allows for relatively easy dynamics modeling such
as motion or permanent deformations. These
algorithms are presented below, and an
implementation of them is described together with
results and suggestions for further research.

2. Background Methods

Much of the previous haptic rendering
research has used methods that work well with
either continuous vector fields or simple geometric
objecfts.

Continuous vector fields, for example
electric potential, can be modeled by mapping the
electric force vector directly to the mechanical
force felt by the user. In this way, a user can ‘feel
around’ through the space permeated by the
electrical (or other vector) field.

Massie [3] has modeled the forces
associated with touching simple geometric -
surfaces (a wall, for example) by using a force
function, F =kX, where F is the force vector, k
is.a constant, and X is a vector normal tqQ the
surface, with a magnitude proportional to the
depth of penetration into a virtual surface. The
surface can be made to feel stiffer by adding a
viscous damping term to the force equation so that
F =kX + bV [2], where V is a velocity vector
associated with the user point, and b is another
empirical constant.

A box felt from outside its boundaries
(Figure 2) presents a slightly more difficult
problem. The direction of the force is dependent
on the entry path as shown in Figure 2a. One
solution for the problem [3] is shown in figure
2b, where the rectangle is split into four different
areas, each with an associated direction.
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Figure 2: Vector field approach to
modeling forces on a square. (a) It is not
clear which of the forces is appropriate.
The force is path dependent. (b) A vector
field solution. By splitting the square up
into fourths (in 3D there are eight
pyramid shaped pieces) an appropriate
force is always presented.

Spheres can be modeled so that the force is
always in a direction away from the center, with a
magnitude determined by the distance from the
center. .
All of the above vector field approaches
have limitations in that they are specific to
particular situations or apply to relatively simple
geometric shapes. Also, thin objects can be
unintentionally penetrated through with such
methods. It is conceivable that one might take
geometric primitives, and add them to make more
complex shapes, but in general this does not
always lead to the correct force [6].

Thus, there is a great need for a more

‘coherent approach to haptic rendering and

modeling interactions with complex objects [2], in
which a larger base of haptically renderable
objects can be obtained. Although one might take
a volumetric approach, surface approaches take
advantage of a large database of objects that
already exist.

Zilles and Salisbury [6] use such an
approach. They have modeled rigid polygonal
surfaces using a technique known as the “god-
object” method after Dworkin and Zeltzer. The
constraint-based god object method of Zilles
allows a user to intuitively control a point probing
a virtual object while preventing the point from
penetrating the object. However, the forces and
surface deformations associated with just such
penetrations in non-rigid objects are the subject of
this research and are described below.

In general, the haptic forces will be the
result of a combination of heuristics coupled with




some collision detection algorithm. Fortunately,
the complicated collision detection schemes
needed for the general intersection of two arbitrary
shapes is not required because of the point
interaction paradigm -- collisions need only be
found with a single user point.

3. Rendering Virtual Objects

The algorithms described are meant to be
used with any arbitrary data set consisting simply
of vertex points. However, data sets must be
comprised of only triangles, must be enclosed,
and each triangle must be touching three others. In
general, these characteristics are common, and are
often easily achievable in any case by simply
separating polygons into smaller, triangular
polygons. Each polygon and each vertex is
assigned a number for keeping track of
interactions.

3.1 Force Generation

The first issue encountered with a surface
based approach is collision detection, but is
simplified by the fact that collisions are only
. found for a single point, the cursor. The simple
" collision detection algorithm used increases
computations linearly with the number of
polygons, and although there is a vast literature on
collision detection, the algorithm used here is
effective for these purposes and can be expandpd
for large data sets as described in section 4.1.

After a collision is detected the forces must
be presented. The forces are in the normal
direction and are proportional to the penetration
depth into an object. The directions are
interpolated at edges as described below. When
the penetration depth of the active polygon
becomes negative, the cursor has left the object
and the forces are discontinued.

An initial problem is encountered because of
the arbitrary nature of the data set. Because it is
desired that only vertices, in any order, need be
specified to touch and see the data set, the
outward directions of the polygons are also
arbitrary. This is particularly a problem when
trying to interpolate between adjoining polygons
for smooth edges.

To solve this ambiguity an array is created
which contains a 1 or a -1 for each polygon,
depending on whether the normal points outwards
or inwards, respectively. To get a value in the
array, a point, point ‘A’, is projected from within
a specific polygon in the normal direction of that

polygon to a sphere that encloses all of the
polygonal objects, to give point ‘B’ (Figure 3).

A - arbitrary point in
current polygon

127

B, first case. Two
intersections, so
the normal was
pointing out.

B, second case.
One intersection,
so the nomal

was pointing in.

Figure 3: The creation of the OUT array.
A cross section of two objects and the
method for finding a value in the OUT
array are shown.

Then the number of polygons that are
intersected by the segment from point A to point B
are counted in the same way that collisions are
detected for the cursor (current and previous
positions). Because objects are all enclosed, an -
even number of intersections implies that the
original normal was pointing outward and an odd
number of intersections means that the normal
was pointing inward. By multiplying each normal
when it is used by the corresponding value in the
array, the normals always point in the outward
direction. The information contained in the array
could be found within the cycle as it runs, but
would require more cycle time. This represents a
trade-off between cycle time and memory. In
addition, the array (as with any arrays described)
can be windowed so that only the infomation
concermng polygons in the 1mmcd1atc area is kept
in memory. - -

One would then ]Jke to be able to slide the
cursor from one polygon to another to touch the
entire object. Several problems arise while trying
to do this. First, the active or current polygon
must always be known so that the direction of the
force can be determined. Second, while sliding
across polygons, if there is a sudden change in
depth or direction of the normal force, then
corners feel sharp and distinct even when there is
only a slight angle between the adjoining
polygons.

Originally, the transition from one polygon
to another was accomplished by finding the
distance from the cursor to the three edges of the
triangle's normal projection. If the cursor crossed
the projection then there would be a new active




polygon. The problem with this approach was that
the distance from the cursor to the current polygon
would change when changing polygons, and a
small jerk would be felt even when the normal
direction was interpolated correctly. This is a
problem not found in graphics interpolation
because a second variable, depth, is included in
the overall interpolation. Also, the distance to the
edge of the plane would change, which was used
in interpolating the direction of the force. And
finally, there can be places within an object that
are not in any triangle’s projection.

Therefore, a different method was
determined in which the distances to ‘edge’ planes
rather than the normal planes were found (Figure
4b). The edge planes are determined from the two
triangle vertices in common and a vector which is
the average of the normals of the two planes.

Height before crossing Height before crossing

EdgePlane -

Hei ght after crossing

(@) (b)
Figure 4: Two different methods of
determining when the cursor crosses over
to another polygon. s

Height after crossing

The method shown in Figure 4b makes the
penetration depth and distance to the edge planes
consistent while sliding to another polygon.

When a change in the active polygon is
detected, the new active polygon can be found by
finding the other polygon (there are only two
triangles that share both vertices) that contains the
two vertices in the edge plane that was crossed.
Currently this information is stored in an array
rather than finding it as the cycle runs, which
saves on cycle time.

In addition to consistent distances, the
directions of the forces need to be consistent to
keep the edges smooth. This was accomplished
by interpolating between adjoining polygons in a
way similar to Phong shading. When the
projection of the cursor into the active polygon
comes within a fixed distance from the edge
planes, the normal is interpolated and then
normalized. Although the distance is currently
fixed, it would be more appropriate in the future

to make the distance depend on the characteristics
of the polygon (i.e. area, side lengths, etc.).
When the cursor’s projection is near two edges
(i.e. near a vertex), the normal is interpolated as
shown in Figure 5, point B.

@ (b)
Figure S: Interpolation of normal
direction.

The direction at point ‘A’ is interpolated
(not necessarily linearly) between triangles 1 and .
2. At point ‘B’, the normal is interpolated from 4
points, ip1 through ip4, all of which are
normalized. Ip1 is the normal direction of triangle
1. Ip2 is the average of the normals of triangles 1
and 5. Ip3 is the average of the normals of
triangles 1 and 2. Finally, ip4 is the average of the
normals of all five triangles.Care must be taken to
make sure the direction is continuous while
interpolating over boundaries.

3.2 Bendable Polygon Algorithm

As the forces are presented to the user, the
visual aspects of the virtual object must change
also. A compliant object should deform as the
cursor moves into it. If the object does not
deform, then the cursor can be lost visually within
1t .
To solve this, the Bendable Polygon =
technique is used. When the cursor first touches a
polygon, the polygon is split into 6 different
polygons as shown in Figure 6. The cursor is
projected normally to the plane of the active
polygon, and then that point is projected to the
edges of the triangle, making base pomts that are
the framework for the approach. The ‘edge base
points' move as the cursor moves, always
normally projected to the sides of the current
polygon. When the polygons are Gouraud or
Phong shaded, the edges look smooth and the
polygon seems to bend. The effects of the
Bendable Polygon technique decrease with
increased graphical detail, but for relatively large




polygons, the effect works well and allows for
lower levels of detail.

Neighboring Polygon

\ Current Polygon
Fd ge Point
Edge Point
\. .
gg}:"“m Neighboring
I Polygon
Edge Pdint

Neighborng Pdygon

Figure 6: Base points in the Bendable
Polygon approach for graphical
deformation.

The cursor is then connected by a spring
and a damper to each of the vertices in the active
polygon and to each of the edge points. The
cursor does not have any forces applied to it by
the springs, but future work might show
interesting results if it did. All six of those points,
in turn are connected to the base points shown in
Figure 6, also by springs and dampers. When the
cursor moves into a polygon, the vertices (open
circles) are pulled away from their respective base
points (filled circles), making the polygon bend as
shown in Figure 7.

Figure 7: Base Points and Vertex Points
in the Bendable Polygon Algorithm.

The dashed lines represent the object while
it is not deformed, and the solid lines represent the
polygons that the user sees after it is deformed.

As the cursor moves towards an edge, the
springs from the edge points to their respective
base points lose strength, so the indentation in a
polygon remains consistent even as the cursor
moves across different polygons. Different spring
constants and different levels of strength reduction
give different amounts of indentation (i.e. a small
indentation on a water balloon as opposed to a
larger indentation on a trampoline). The springs
from the corner vertices to their base points work
similarly, in that they lose strength as the cursor
approaches them, so the indentation remains
consistent at the corners of the polygons as well.

Then, each of the vertices throughout the
object is connected by springs and dampers to
each of the vertices touching it, to give an overall
ability of large scale deformation. In large data
sets, the number of calculations would become
extremely large, so springs might, for example,
only be connected to vertices in the general
surrounding area of the cursor, depending on the .
application.

Because the edge points split the current
triangle, each of the 3 neighboring triangles must
be split into two triangles as well so that there is
no gap (Figure 6). The EIGEN loop therefore
draws 6 triangles in place of the original, 2
triangles in place of each neighboring triangle, and
then draws all of the rest of the triangles.

The lighting is accomplished by finding the
normals for each vertex, an average of all the
normals of the polygons containing that vertex.
Then the surface is either Phong or Gouraud
shaded according to those normals.

One problem that the Bendable Polygon
method presents is that there are extra vertices
when the cursor touches a polygon. Because of
this, there are more points to interpolate from in
the Phong shading, and therefore there can be a
slight change in the object’s appearance when it is
first touched. The problem is worse with
relatively large polygons and with graphic
materials that are shiny (large amounts of specular
reflectance). The problem diminishes with more
lighting and more detail (more polygons).

3.3 The Haptic Control Loop

One issue that was encountered while trying
to integrate the PHANToM into the EIGEN
environment was the differing cycle loops needed




for visual and haptic rendering, an often
encountered issue with haptic displays. EIGEN
runs at a cycle rate of approximately 30 Hz, which
is common in graphics, but a much higher rate is
necessary for haptic simulation. The sampling rate
of the haptic controller must be at least 10-20
times the desired system bandwidth [8], and
therefore a cycle rate of at least 1000 Hz is
desired.

To solve this problem, a separate process is
forked off from the original EIGEN process to
control the haptic simulation [7]. This effectively
divides the overall visual/haptic renderer into two
interacting, but asynchronous tasks, which
communicate through EIGEN’s shared memory
paradigms. The two processes can then run at the
differing rates.

4. Additional Issues

An effective haptic model needs other key
concepts to be effective, including dynamics,
friction, and texture. These effects are an
important supplement to the existing algorithm.

4.1 Collision Detection

If the number of polygons in a data set was
extremely large, the calculations for the collision
detection could become a limiting factor. To solve
this, the virtual space could be separated into
volumes, and only those polygons within the
current volume would need be checked. This
would decrease the haptic servo time dramatically
and would make nearly any size data set possible
if the volumes were created effectively, but with
the cost of more memory to describe which
polygons are in which volumes. However, only a
‘buffering area’ (the immediate surrounding
volumes and information about polygons within
them) would necessarily be stored in memory, as
the buffering area could be loaded into memory as
needed. This would produce a windowing effect,
which is characteristic of this type of haptic
rendering because of the point interaction
paradigm.

4.2 Texture and Friction

Texture is currently accomplished by simply
changing the effective distance (the distance used
to create the magnitude of the force) as a function
of position using different amplitude and
frequency sine waves. Other methods, such as
those used in the sandpaper system [11] are being
explored.

The incorporation of friction was a more
complex problem. When the cursor moves across
a surface, the friction force is in the direction
opposite the movement. Because the
PHANToM’s encoders are not continuous (like
any kind of tracking, they have a spatial
resolution), when the cursor is nearly stopped the
force opposite the movement pushes the cursor
which in turn creates a friction force in the
opposite direction. Because of the relatively high
bandwidth of the PHANTOM, high frequency
vibrations result. This problem was eliminated by
making the friction partly dependent on velocity,
and by low-pass filtering of the directional
changes of the friction.

The magnitude of the friction force was
divided into two different areas. The first was
Coulomb friction which was dependent on the
depth within the object and a coefficient of
dynamic friction. The second part of the friction
magnitude, viscous damping, was based on the
cursor’s velocity. The percentage of each of the
two different parts gave different effects for
surface properties such as roughness or surface
viscosity. A “stiction point” [2] was used to
model static friction.

One additional issue with friction is that the
friction force should only be in the tangential
direction, or else the object will feel ‘sticky’ when
pulling away from it (unless one wants a sticky
object). By taking only the tangential component
of the friction force, and adding interpolation near
edges, the cursor can move freely away from the
object but will have resistance to sliding across it.

4.3 Dynamics

Several dynamics effects are easily
accomplished using the concept of the base
points. The first is three degree of freedom (x,y,z)
motion. This is accomplished by making the
positions of the base points relative to a single
point with a given mass. Then the force applied to
the cursor (as developed above) is equal but
opposite to the force applied to the mass point.
The base points could be positioned relative to 3
points rather than 1, and the 3 rotational degrees
of freedom could be added, but with the cost of
much more complicated dynamics equations. One
should note that elastic deformations still occur
when the object is moving.

Acceleration is then equal to the force
divided by the mass, and velocity and position can
be found by integrating over time or by use of




standard motion equations. The time variable in
these equations was chosen arbitrarily, rather than
finding it exactly from the servo rate. This gives
more freedom in the ‘feel’ of an object and gave
several surprising effects. When the time variable
was decreased, an object felt more massive and
felt as if it were moving through a thick liquid.

The effect of making the time variable small
gave rise to another feature. When the time
variable was made small enough, an object was
difficult and slow to move. This feature that is
currently being researched by giving each of the
base points a mass and letting them move relative
to each other. Then, by making the time variable
small enough in their motion equations, and
limiting to some degree their movement, a
permanently deforming model could be achieved.
The base points would move according to the
springs connected to the vertex points, and the
movement of the object could be made to feel like
clay which could, for example, lead to virtual
sculpting. Some preliminary applications using
this technique werg successful to a certain degree,
but there were some problems when the model
was deformed too much. The results were
encouraging nonetheless.

Finally, the base points could be
programmed to move in other ways so that the
model would deform. For example, one might
feel a tin can and its elastic/plastic deformation.
The can would deform with force from the cursor.
The vertices would move away from the base
points, and return to their original positions if the
forces were not too large. If, however, the forces
on the can increased past a certain threshold, the
base points could snap into different positions,
which would be the can’s new position. Finally,
to finish the example, the base points could all be
positioned relative to 3 points which would
control the can’s motion through space, and
friction and texture could be added for further
realism.

5. Results and Further Research

The preliminary results from this study have
been promising. The methods used were
successful for interacting with objects of various
elasticities and shapes. Even very elastic objects
with few polygons worked well with the
combination of the force representation and the
Bendable Polygon approach, as the objects
seemed to deform naturally both haptically and
visually.

Additionally, there are limits in the
computing power needed in this algorithm
because of the point interaction paradigm.
Because only the immediate area around the user
point is necessarily rendered, it is expected that
windowing will allow even large data sets to be
haptically rendered.

Future research will include further study of
permanent deformations, more complicated
dynamics modeling, and windowing effects. In
addition, Sandia intends to apply this algorithm to
specific applications in manufacturing, medical
research, and other types of visualization.

6. Conclusions

This algorithm, although still
developmental, has been used effectively to touch
several data sets. Because of the current polygonal
nature of virtual reality and graphics, it is expected
that this method will continue to support other
efforts at Sandia without significant changes in
procedure or philosophy. _

Each of the aspects-of the overall algorithm
could be used separately in other algorithms, or
likewise, certain aspects could be changed in this
algorithm. However, the methods shown have
worked well together and hopefully will continue
to grow.
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