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Abstract

During the last decade, the method of momentsQMOM) has become a robust technique for solving
electromagnetic problems for arbitrary three-dimensional geometries. There are several reasons

why the MOM technique has become so widely used. First, modeling fully three-dimensional
geometries has been facilitated by the development of robust basis functions, such as the roof-top
functions introduced by Rao-Wilton-Glisson(RWG) for triangular meshes. Secondly, complex boundary
conditions can be readily incorporated into the formulation. These boundary conditions, for

example, can include conducting, dielectric, resistive, magnetically conducting, and the imped-

ance boundary condition. Finally, the advent of modem fast paralle] and vector computer architec-
tures has permitted the solutions of larger and more complex problems.

In this presentation, we will investigate the use of hybrid meshes for modeling RCS and antenna
problems in three dimensions. We will consider two classes of hybrid basis functions. These
include combinations of quadrilateral and triangular meshes for arbitrary 3D geometries, and
combinations of axisymmetric body-of-revolution (BOR) basis functions and triangular facets. In
particular, we will focus on the problem of enforcing current continuity between two surfaces
which are represented by different types of surface discretizations and unknown basis function
representations. We will illustrate the use of an operator-based code architecture for the imple-
mentation of these formulations, and how it facilitates the incorporation of the various types of
boundary conditions in the code. Both serial and parallel code implementation issues for the for-
mulations will be discussed.

Results will be presented for both scattering and antenna problems. The emphasis will be on accu-
racy, and robustness of the techniques. Comparisons of accuracy between triangularly meshed and
quadrilateral meshed geometries will be shown. The use of hybrid meshes for modeli

BORs
with attached appendages will also be presented. DM A ST E R
Introduction

The method of moments has been used to solve many electromagnetic problems over the years since its inception.
With the advent of massively parallel architectures, latge complex problems have been solved. To further extend
the class of problems that can be solved hybrid techniques can be incorporated. These hybrid techniques can be
other MOM formulations coupled together, or MOM combined with high-frequency asymptotic techniques. In this
paper alternate MOM formulations will be presented and incorporated within the CARLOS-3D code which has
been ported to massively paraliel architectures and uses the MOM technique to solve Stratton-Chu integral
equations. The different hybrid formulations will be presented, discussed, and tested.

Quadrilateral Patch Formulation

Basis functions can be defined on a surface which is arbitrarily meshed with quadrilateral patches in a manner
which is analogous to the RWG basis functions [1] on a triangularly meshed surface. Use of these linear quad
roof-top basis functions on large smooth surfaces has been shown to reduce the number of unknowns required. In
addition, wire structures can be simply represented as a thin quadrilateral patched surface, with the current being
axially directed along the wire. These quad basis functions are edge based and possess all of the important
propetties of the edge based RWG triangular basis functions, which make them well suited for modeling surfaces
of arbitrary shape. Namely, the component of current normal to each interior edge is continuous across the edge,
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line charges do not exist along the boundary of tlie two quad patches which define the edge, and the symmetric
form of the scalar potential term in the MOM implementation can be used. Also, since the linear quad basis
functions are edge based, the modifications to a RWG based code are straightforward [2,3].

On a surface which is represented by a quadrilateral mesh, linear roof-top basis functions are defined on pairs of
adjacent quads which define each interior edge. Junction edges between surfaces are handled using half basis
functions which are equated to enforce current continuity between surfaces. An edge formed by a pair of quad
patches is illustrated in Figure 1. Each patch is represented as a local parametric bi-linear surface formed by four
vertex points, in terms of the parametric coordinates u and v.
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Figure 1. Quad-patch geometry.

The basis function for the a-th edge is defined in terms of the parametric variablesu,v (0<su=<10=<v=<1) as
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where I, is the length of the n-th edge, and for a point (u,v) on the positive side(Qy ) of the edge, we have
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‘Similar expressions are obtained for the negative side (97 ).

In addition, the surface divergence of the basis function is given by
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The cumrent is expanded in terms of these basis functions, and then substituted into a surface integral equation
formulation and solved using the Galerkin method of moments technique. The surface integral equation
formulation used depends on the boundary conditions that need to be satisfied. Each of the formulations is
implemented in terms of an operator structure which is independent of the form of the basis function. The resulting
matrix elements can be computed in a manner analogous to the RWG case using a combination of analytic and
numerical procedures to compute the self and non-seif terms.

Hybrid Quad/Triangle Patch Formulation

When modeling a complex geometry, it is often advantageous to have the freedom to generate hybrid meshes
containing both triangular and quadrilateral patches, where quads are used for the large smooth parts and triangles
are used for the fine detailed parts of the geometry. The forms of the edge based linear quad and RWG roof-top
basis functions allow them to be combined at edges formed by adjacent quads and triangles as illustrated in Figure
2.

Figure 2. Hybrid Quad/Triangle Geometry.

Continuity of the normal component of current across hybrid edges is preserved, where these hybrid basis functions
are defined as
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‘where A is the area of the triangle.

Hybrid BOR/Patch Formulation
For a BOR geometry, the surface is parameterized in terms of (t, ¢ ), where t is the distance along the generating

curve defining the BOR, and @ (0= g = 2x) is the circumferential variable. A point on the surface is given by
(%y,2) = (p(#) cosq, p(t)sing,z(s)) , where p(¢) isthe distance fromthe zaxisto a point on the generating

curve. Forthe BOR/Patch formulation, the currents on the 3D meshed part of the geometry are represented by the
basis functions defined above, and the currents on the BOR part are represented using overlapping triangle
functions for the t variation of the current and an entire-domain Fourier serics representation for the @ variation




[4]. The BOR basis functions and current expansion in terms of the orthogonal tangent vectors 7 and ¢ onthe
surface are given by
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and T (2) is the k-th overlapping triangle function of the surface.

‘When combinations of BOR and patch basis functions are substituted into a surface integral equation formulation
and solved using the MOM technique, the Fourier mode interactions between test and source functions onthe BOR
surfaces decouple and the resuiting matrix equation has the form
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where the superscripts s (BOR) and p (patch) specify the surface on which the test (1st superscript) and source (2nd
superscript) functions reside, and the subscript gives the Fourier mode number. The submatrices are given by Z,
and the column vectors I and V represent the unknown coefficients and known source voltages, respectively. The
variable n specifies the largest positive and negative Fourier mode numbers used in the current expansion. The
sparse form of this matrix equation can be exploited to more efficiently solve the system of equations. In addition,
the matrix sub-blocks possess certain symmetries which can be taken advantage of during the matrix fill process.

Current Continuity Between Hybrid Surface Representations

When dealing with hybrid surface representations which intersect, surface current continuity between the different
representations must be maintained. For the combination of triangular patched and quadrilateral patched surfaces,
this is a simple matter since both representations are edge based, and the functional form of the two types of basis
functions allows them to be connected at each hybrid edge. For the case of the BOR/Patch formulation, it is not a
simple procedure to match the unknowns in order to explicitly enforce current continuity. In fact, for certain
classes of intersecting surfaces, such as the intersection betwreen a circular cylinder and a plate, strict enforcement
of the junction condition would result in coupling of the Fourier modes on the BOR surface. This would destroy
the primary advantage of a BOR formulation.

. The simplest procedure for allowing current continuity between intersecting BOR and patched surfaces involves
overlapping of the intersecting surfaces. This amounts to extending the patched surface so that it overlaps onto the
rotationally symmetric BOR surface. Typically, the overlap should be on the order of a half basis function,
although it can be larger. If the overlap region is too small, then the current variation in the intersecting region
will be overly constrained, and result in a poor representation for the actual current. This procedure is analogous
to overlapping wires in order to form a junction without explicitly implementing the Kirchhoff junction condition.
This procedure of overlapping intersecting surfaces siraply results in regions of the surface which are represented
by two different types of current expansions. From the theoretical point, this procedure is perfectly valid, however,
the numerical implementation requires care duc to the singularity in the Green's function in the overlapping
region. A robust implementation should use a singularity extraction procedure to handle this case, however, we
have found that the equivalent distance approximation used by Mautz and Harrington[5] in their BOR formulation




is adequate. Resuits will be presented which validate this procedure for both 3D patched surfaces and intersecting
BOR/patch surfaces.

Parallel Implemeutation

The parallel implementation of the quad patch version and the quadftriangle patch version uses the previous
parallelization effort on CARLOS 3D v2.0 [6]. The code was originaily structured to run on either a workstation
or Intel Paragon. By incorporating the parallel message passing protocol MPI (Message Passing Interface) it can
now be run on a workstation, workstation cluster, or a massively parallel machine that supports MPIL.

Inthe parallel version of the code all the input that specifies the type of problem to be solved is read by one node.
This node processes the information then sends it to the rest of the nodes. The next step requires the matrix fill
procedure and is partitioned among the different nodes. The solution technique to solve the matrix equation
depends on the matrix description. For the quad/triangle hybrid formulation the resulting matrix is dense and LU

decomposition optimized for parallel platforms can be used. For this case the matrix solve consists of 7°
operations which dominates the total solution time. For this reason the block matrix fill algorithm, that realizes
optimal load balancing, is prescribed by the solver. The two parallel dense solvers used are the Intel Prosolver-
DES package for out-of core solutions and the Sandia in-core solver. The Sandia in-core solver has also been
configured to Tun under the MPI protocol. The BOR/Patch hybrid formulation yields a sparse matrix so using an
LU decomposition optimized for a dense matrix would be inefficient in time and memory management. Two
alternatives would be a sparse LU solver or an iterative solver. These possibilities have not been exercised on
parallel platforms for this problem. Once the solution is obtained the scattering cross section or scattered fields are
computed on separate nodes and then accurulated to one node to write to an output file.

Resnlts
The RCS for the one meter NASA almond was computed for three different patch representations: quad,

triangular, and quad/triangular patch descriptions. The spatial resolution of the different grids are 106 facets/ A2
and 215 facets/ A2 for the quad and triangular patches, respectively. The hybrid grid is shown in Figure 3 where
triangular facets are used from the tip to 0.2m from the tip. The RCS was calculated at 2 GHz and is shown in
Figure 4.
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Figure 3. Hybrid quad and triangular patch grid for the NASA 1 m. almond.
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Figure 4. Monostatic RCS of a one meteralmond at 2 GHz ( #-pol, g = 0).

The results show good agreement with minor variations in the tip region.

Another problem to consider is the modeling of a wire by using the quad-patch representation. Two wires each
0.75m long separated by 0.75m were modeled using a dense triangular patch mesh and a coarse quad mesh. The
triangular patch mesh models the thickness of the antenna (0.0375m) while the quad mesh does not. The quad and
triangular patch models for this configuration are shown in Figure 5. The monostatic RCS of this configuration is
shown in Figure 6.

a) Triangular patch b)Quad patch

Figure 5. Quad and triangular patch models for the two antenna configuration.
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Figure 6. Monostatic RCS for wire configuration at 200MHz (- pol, ¥ = 0).

Again excellent agreement is seen except in the region where the thickness of the antenna is important. For
modeling of thin wires the quad basis function is more natural since the current is decomposed into axially and
circumferentially directed currents.

The final example is the BOR/Patch hybrid model for a cone which is 2 A long with a base radius of .5A . The
monostatic RCS is shown in Figure 7 for a BOR model and a BOR/Patch model with overlap. The overlap region
was chosen to be a half triangle function on the BOR surface.

{ 1

Figtre 7. Monostatic RCS comparisons fora 24 cone - BOR and hybrid BOR/Patch.




Conclusions

A number of different hybrid schemes have been presented and tested. The methods considered in this paper were
incorporated into the CARLOS-3D code which has been ported to massively paralle] systems and uses 2 modular
operator formulation so that only a few routines needed to be added. The use of these hybrid schemes extends the
range of problems that can be solved using the method of moments by modeling the geometry of interest more
efficiently.
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