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SUMMARY 

Exact formulas for the forward and backscattering cross sections of mono­

and dual-region imperfectly conducting spheres are developed. Extensive 

numerical results based on the theory are presented in a companion paper. 
1 

The 

scattering body may consist of a plasma with collisions. Evidently the theory 

permits the electron densities and collision frequencies of the plasma comprising 

the shell and core regions to differ. The dielectric constant of the plasma may 

be positive or negative. Among other things it is proved that whenever a->> wl E I 
the scattering obstacle behaves essentially as though it were perfectly conduct­

ing~ i.e.~ the back- and bistatic scattering cross sections are very insensitive 

to a-. This phenomenon was first observed in obtaining the approximate radar 

cross section of an imperfectly conducting scattering antenna when a->> WE (E 

positive). The need for substantiating experimental evidence for either scatter­

ing body is thus obviated. 

Laminar and turbulent scattering from over- and under-dense plasma 

spheres is discussed qualitatively. It is concluded that laminar scattering must 

be equal to or greater than turbulent scattering from such obstacles. 

3 
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SCATTERING FROM IMPERFECTLY CONDUCTING SPHERES: 
THEORETICAL CONSIDERATIONS 

Introduction 

In a recent investigation 
2 

it was discovered that the radar cross section of 

a thin cylindrical rod, for parallel incidence of the electric fieid, is very insensi­

tive to the conductivity of the rod over the range 10 ~ rr _:s 10 
7 

mhos/m. But it 

should be mentioned that the study was not exhaustive in that only several rod 

lengths and frequencies were considered •. Moreover, certain approximations 

were made in the development of the theory. For instance, the internal imped­

ance per unit length of the structure was specified. This severely limits the 

range of cr over which it was possible to obtain reliable results. To obviate the 

need for experimental evidence to substantiate the observed phenomenon it was 

considered important to develop a parallel theory for an imperfectly conducting 

scattering botly amenable to exact analytical treatment--the sphere. For this 

obstacle geometry it is not necessary to define an internal impedance per unit 

length, so thaL the permitted range of cr and E characterizing the material is 

arbitrary. This means that the scattering properties of plasmas of spherical 

shape possibly not physically realizable at the present time may be investigated. 

Mathematical Representation of thP. Electromagnetic Fields 

Figure 1 illustrates a homogeneous spherical plasma shell of outer radius 

a and inner radius b characterized by permeability ~ 
1

, dielectric constant E 
1

, 

and conductivity cr 
1

• It is em bedded in an infinite homogeneous medium with 

5 
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Figure 1. Dual- and Mono-Region Imperfectly Conducting Spheres 



constitutive parameters, f..l 2, E
2

, and cr
2

• The core of the sphere is assumed to 

possess the electrical properties f..l
3

, €
3

, and cr
3

• The center of the sphere is the 

origin of superimposed Cartesian and spherical coordinate systems. The unit 
• 1\1\ 1\ ~::,1\ 6.. . 

vectors m these systems are x, y, and z, and 9, <I>, and H., respectively. 9 1s 

the angle between ~ and I{, 1> is the angle between~ and the projection of~ in the 

xy plane, and R is measured from the origin. The incident electric field is 

linearly polarized in the x-direction and propagates in the direction of the posi­

tive z-~'ds, so that it impinges on the sphere at the angle 9 = 1r. The scattered 

field of interest emanates from the sphere at e = 1r. 

The expansions, in vector spherical wave functions, of the incident, 

scattered, shell and cavity fields may be written down by analogy with the work 

of Stratton. 
3 

The field expressions are 

-jk z 'lJ 

E.=~ e' 2 = E ~ (-·)n 2n+ 1 [m(l) + .n(1)] 
-1 o o LJ J n(n+ 1) -oln J-eln 

n= 1 

R> a • (1) 

-jk z k . ':/) 

H. = Yrr e 2 = - _2 E L 
-1 o u>/.1 2 o n= 1 

(-j)n 2n+1 [ (1) . (1)1 
n(n + 1) m eln - JE.aln R>a (2) 

( -J) a m + Jb n . n 2n + 1 [ r (3)>:< . r (3)*1 
n(n + 1) n --oln n -eln 

R> a • (3) 

k cr.. 
2 ~ n 2n + 1 [ r (3) ,:, . . r (3) ~'] 

H = -- E LJ (-j) b m - Ja n . 
-r W/.1

2 
o n= 1 n(n + 1) n-eln n-oln 

R > a , (4) 

7 



E Eo{~ (-j)n 
2n + 1 [ (3)>:< . (3)>.'<] 

= pn~ln + Jqn~eln -s n(n + 1) 

00 

+~ ( -j)n 2n + 1 [d (3) + f (3) 1} b<R< (5) 
n(n + 1) n moln J n~eln a • 

n=1 

k l 00 

1 E ( .)n 2n + 1 (3)>:< . (3)* 
H = - WJ..l. o ~ -J n(n + 1) [qn~ln - JPn~ln] -s 

1 n= 1 

cr. 

+~ (-·)n 2n + 1 [r m(3) _ .d n(3) l} l>...::R< a • (6) 
J n(n + 1) n -eln J n --oln 

n=1 

00 

E = Eo~ ( .)n 2n+ 1 [ c (1) +.be (1)] 0 < R < p (7) 
-c 

n=1 
-J n(n+1)anmoln Jn~eln 

o < n < b • (8) 

The subscripts on the fieid vectors i, r, s, and c indicate incident, reflected, 

shell, and cavity. respectively. The time dependence assumed (and suppressed 

in writing Equations 1 through 8 is exp (jwt). 

The propagation constant of a given medium is given by 

k = w~ti (E - .i ~) = {3 - ja , ( 9) 

where the subscript corresponding to the region under consideration in Figure 1 

must be used on k, J.J., E, and cr. In Equation 9 standard notation is employed. 

8 

E is the amplitude of the· incident electric field. 
0 



r r c c 
a , b , p , q , d , f , a , and b are constants to be evaluated from the 

n n n n n n n n 
boundary equations. 

(1) jn (kR) 1 cos <I>~ 
m = ± . 

9 
P (cos 9) . ;r,. 9 

-o1n s1n n s1n '*' 
. d 1 sin <I> A 

- J (kR) ... H\ P (cos 9) ;r,.<l> , 
n uo n COS'¥ 

(10) 

e 

± 
1 

[kRj (kR)]'P
1

(cos 9)c?s~~ •. 
kR sin 9 n n s1n 1.!! '*' 

(11} 

m (3} is obtained from m (1) by writing h q) (kR} for j. (kR} throughout the expres-
--oln --oln n · n · 

e e 

. (3) . bt . d f (1) . l"k s1on. n 1s ·o a1ne rom n· ·· 1n · 1 e ·manner. 
-oln -oln 

e e 

In writing down the expressions for the magnetic field, the relations 

\ X ~ = -jWJ.l!! 1 (12) 

and 

\. x m = kn 

\" x n = km 
(13) 

9 



are used. 
(3)>.'< (3)* 

It is important to note that the notation m and n employed in 
~ln -oln 

e e 

this paper indicates that the complex conjugate of the function is to be taken. 

The argument of the function. even though complex. is to be left alone. Thus. 

h~1 )>:<(kR)-+h~2)(kR) and h~)>:<(kR)-+h~1 )(kR). where k may be complex. 

The .Scattered Field from a· Dual Region Sphere 

The electric field scattered by the dual region sphere is given by Equation 

3. At great distances from the sphere. when 8 = "• this relation may be simpli­

fied by l.JSP. of the formulas 

10 

Limit h(2)( ). jn+
1

. -jz 
z ~.--e z,-+oo n z 

L . .t P
1

(cos 1:1) ( + 1) 
1m1 n -(- 1)n~--
A~" !?in 8 · 2 

1 
P (cos 8) = 0 

11 

I:} = TT 

Limit _Q_ P1( A}~ -(- 1}n n(n + 1) 
8-+ TT 08 11 COS ·- . 2 

Limit·: ..!.(zh (2) (z)] '- .n e -jz 
Z-+OC Z n J Z :'-

(14) 



Substituting Equation 14 into Equation 3, 

-J·k
2

R ~ E VJ 

E = j 
2 
° _e __ L (-1)n(2n + 1)[a~- b~][cos <I>@ + sin<MJ. 

r k2R n=1 
(15) 

But, 

-~ = cos <I>~ + sin <I>& , ( 16) 

when 9 = 11. Hence, 

.A 
E = -JX 

r 
(1 7) 

This is the final expression for the backscattered field from the dual-region 

sphere. It is of interest to observe that .the electric field propagating in the 

direction of the source (radar antenna) is a plane wave polarized parallel to the 

incident electric field. 

The Boundary Equations 

The boundary conditions that must be satisfied on the inner and outer 

surfaces of the region 1, Figure 1, are 

11 



R = b, (18) 

(E.+ E ) = (.r.: ) -1 -r 
9 

-s 
9 

(E+E) =(E) 
.-i -r<I> -s<I> 

R = a. 

(H. + H ) = (r-I ) 
-1 -r -s 

1::1 ·~ 9. 

(H +H) =(H) -i -r -s 
<I> <1> 

Let the following notation be introduced: 

12 



(2) 
B = ·h (k a) 

1 n 2 
B = h (2) (k b) 

2 n 2 

c = h (2) (k b) 
2 n 1 

D
1 

= h~1 )(k 1 a) D = h (1\k b) 
2 n 1 

E 1 = [k2ajn (k2a))' E 2 = [k2bjn(k2b)]' 
(20) 

[ (2) ] ' F 
1 

= k
2

ahn (k
2

a) . F = [ k b h ( 
2

) (k b)]' 
. 2 2 n 2 

G = 
1 [k1 ah ~) (k1 a)] 

1 
G = [k bh(

2
)(k b)]' 

2 1 .. n . 1 

[ (1) ]' H
1 

= k
1 
ahn (k

1 
a) [ (1) r H

2 
= k

1
bhn (k

1
u) 

It can then be shown that the boundary equations take the following form: 

(21) 

(22) 

. (23) 

13 



J.l
1 

(E + a r F ) = p G
1 

+ d H
1 J.t

2 
1 n 1 n . n 

(24) 

(25) 

k3 
-fq G + f H ) = b cK 
k

1 
\ n 2 n 2 n 2 , 

(26) 

(27) 
'. 

(28) 
... · '. 

In obtaining the simultaneous equaL.i.ons for thP. r.onstants, one need· only observe 

that P~ (cos 9) and d;,
9 
P~ (cos 9} sin 9 are linearly i-ndependent· and the coef~icients 

l"L'lust bP icientically zero 1f a.ny linear combinHtion is to be zero for all 9 in (0, 77). 

These equations yield 

r 
a = 

n 

14 

(2 9) 



(30) 

It is now only necessary to substitute the expressions for ar and br given by 
n n 

Equations 29 and 30, respectively, into Equation 17. The latter expression is then 

summed, using a digital computer, to obtain the backscattered field from an 

imperfectly conducting spherical shell in terms of the amplitude of the incident 

electric field E • 
0 

Scattering from a Solid Homogeneous Imperfectly Conducting Sphere 

The boundary equations for a solid homogeneous imperfectly conducting 
3 

sphere are 

r (2) c 
j (k

2
a) + a h (k

2
a) = a j (k a) 

n n n n n 1 
(31) 

(32) 

(33) 

(34) 

15 



Solving these equations simultaneously yields 

r 
b ::;: -

n 

a r and b r given above for a solid sphere parallel Equations 2 9 and ~U for the 
n n 

dual-region sphere. 

Forward Scattering by a Sphere 

(35) 

(36) 

It is of interest to c8l~ulate. th.e scattered field in the forward direction of a 

sphere (8 = 0) as well as in the backward direction (8 = TT). The limiting fo~ms of 

the functions needed for 8 = 0 are 

16 

L
. .t PI fcos 8) 
1m1 n 

-~--=---e-o sin 8 

I 
P (cos 8) = 0 

n 

8 = 0 

n(n + 1) 
2 

Limit o I n(n + 1) 
8 -+0 ae p n (cos g)-- 2 

A ,T,/\ · 1\ -x = cos 'l-'8 - s.1n <I><P 

8 = 0 

(3'1) 



Substituting Equation 37 and two of the relations from Equation 14 into Equation 3 

leads to the result 

1\ 
E = -jx 

r 

E 
0 

2 

This is the final expression for the field scattered in the forward direction. 

Expres.sions for ar and br appear earlier in the paper. 
n n 

The Scattering Cross Section of an Obstacle 

(38) 

According to King and Wu 
4 

the monostatic or backscattering cross section 

of a finite obstacle is defined to be the ratio of the total power P~sotropic reradia­

ted by a fictitious isotropic scatterer (that maintains the same field Er in all 

directions as that maintained by the actual obstacle in the direct:lon toward the 

source) to the real magnitude Si of the Poynting vector of the incident plane wave 

at the obstacle. Thus 

s 
limit 47TR 

2 E 
2 

P. t . lSO rOplC r 
a- = :: -

s si R-oo E 
0 

(39) 

Equation 17 is substituted into Equation 39 with ar and br given by Equations 29 
n n 

and 30 or by Equations 35 and 36, depending on whether a dual-region or mono-

region sphere is under consideration, respectively. Formula 3 9 is also userl to 

obtain thP. bistati.c cross section of an obstacle. In such installations the receiver 

is located in an arbitrary direction with respect to the transmitter, Evidently, it 

is necessary to know the scattered field in the specified direction. In particular, 

the forward scattering cross section crf is obtained from Equation 39 using 

Equation 38. 

17 



Conductivity and Dielectric Constant of a Plasma with Collisions 

The propagation constant k of a plasma for an assumed time dependence of 

exp (j6Jt) is k = w~f../.(c - j ~) where 

and 

Here 

18 

w 

(J= 

2 
€ w ff(L) o e p 
2 2 

U) + w 
· eff 

2 
2 

= Nq 
p 

€ = 

mE 
0 

· w2 ) 
p = 

2 2 
(1) + (l)~ff 

€ € o r 

w = 2rrf where f is the radar frequency, 

fJ. = fJ. = 4rr x 10-
7 

henry/m is the fundamental magnetic constant of 
0 

space, 

E = the effective dielectric constant of the plasma, 

CJ = the effective conductivity of the plasma, 

E = 8. 85 x 10-
12 

farads 1m is the fundamental dielectric constant of 
0 

space, 

w = the collision frequency. in collisions I sec, 
eff 
w = the plasma frequency in cycles I sec, 

p 
N = the electron density in electrons per cui m, 

-19 
q = the charge on an electron; q = 1. 602 x 10 coulomb, 

-31 
m = the mass of an electron; m = 9. 108 x 10 kg. 

(40) 

(41) 

(42) 



Equations 40 through 42 apply when the motion of the ions can· be neglected, i.e., 

rv is sufficiently high. Static fields that may be present are neglected. 

Note also that cr and € as defined here are real. cr _::: 0, but € may take on 

positive or negative value. 

Semiconductors Having the Permeability of Free Space 

The complex propagation constant k, as delineated by Equation 9, may be 

written 

(43) 

The writer believes this is the best form in which to express k to insure taking 

the indicated square root correctly, especially when the dielectric constant is 

negative. Harrison and Aronson 
5 

have prepared tables for obtaining V±a±jb. 

For checking computer programs the use of these tables is recommended. Let 

the assumption be made in the following discussion that the permeability of the 

semiconductor is the same as that of free space. 

Case I: € < 0 

In this instance 

k = 

so that 

- j O"W/J. = k _/~ [g(p) - jf(p)] • 
o "l r 

(44) 

19 



and 

Here 

{3 = k -~g(p) 
0~ 1 trl 

a = k -'f:"l f(p) o,l€rl 

(u 
k = 

0 c 

c=-
1
-= 3xi0

8
m/sec, . w 

g(p) = sinh (~ sinh -
1 

p) = p/ 2f(p) , 

f(p) =cosh(~ sinh-l p) 

(J (Y 

p -~ - WE I E * I . 
o r 

It is important to observe that g(p) is an odd function and that f(p) is ai1·even 

function. If 

i.e., p her.omes large, 

f(p)- g(p)-WJ2 • 

It follows that Equation 44 may be written 

20 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 



k .::::.k
0
W f(p)(l- j).:::: (1- j)~ • (53) 

Case II: E = 0, i.e., p- ':/:) 

In this instance 

k = v-jWJJ,(J = (1 - j)~ • (54) 

Case III: E > 0 

In this instance it is evident that Equation 43 becomes 

k = k VE::'[f(p) - jg(p)] 1 

o. r 
(55) 

so that 

{3 = k • f"E f(p) oV"'-r 

and (56) 

a= k ·'E g(p) o V'-r 

Thus when Equation 51 applies, k is again given by Equation 53. Thus k correctly 

"joins up'' as E passes through zero. Consider now a plane-wave electric fiel~ 

propagating in the positive x direction and having the value E at x = 0. When 
. . 0 

the dielectric constant is positive, 

~· 

and when the dielectric constant is negative 

-jk x"/E:f(p) 
o r 

e 
(57) 

21 



E=E 
0 

e 
-k x•IT;i f(p) 

o 1''-r' 
e 

-jk x•Tr;"T g(p) o 11o::rl 
• (58) 

It is understood that p = crh.ul E I as before. Since f(p) > g(p) (except for large p) it 

follows that the attenuation of a plane wave traversing a given distance is greater 

in a region having a negative as against positive dielectric constant. 

An examination of Equations 57 and 58 show that correct roots of Equatipn 

43 have been taken because the attenuation and phase-shift factors have the cor­

rect algebraic signs. The value of k must be the same for a sphere as for a 

plane, provided the wave equation ln spherical and Cartesian coordinates is 

written in the same. form. k must have the same form when ka << 1 as for 

ka >> 1. As a-odhe spherical surface approaches that of a plane. It also 

follows from Equations 57 and 58 that when it is possible to define a skin depth 

for a semiconductor it may be calculated from the relations 

when £ > 0 and 

d = 
s 

1 

(59) 

(60) 

when E < 0. 
-1 

value e E • 
0 

d is the distance from x = 0 to the point where the field reaches the 
s 
Obviously whenevt:r o- >> c..•l € I, 

(61} 

In writing many of the equations in this section it is assumed that 1-t = 1-t • 
0 

22 
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Prognostication of Results 

The author's remarks in this section will be confined to a foretoken of 

results anticipated in the case of scattering by a homogeneous imperfectly con­

ducting sphere. Of course, the comments apply with equal force to the dual­

region case. Now the backscattered field as given by Equation 17 is controlled 
r r 

by a and b • These constants a:re delineated by Equations 35 and 36, respec-
n n 

tively. E·xamination of these expressions shows that ar and br are determined 
n n 8 

by the values of k
1

a and k 2a. Replacing k
2 

by k = w/c = 21r/A., c = 3 x 10 m/ 
0 .0 

sec, and k
1 

by k (refer to Figure 1), it is clear that the backscattered field 

depends on the electrical size of the sphere in terms of the free space wave­

length, and on the electrical size of the sphere in terms of the wavelength in the 

material. Evidently k a is not a function of the constitutive parameters cr and E 
0 

of the material.·· Hence one must study the behavior of ka. When the dielectric 

constant is positive {3a = k a.rc-f(p) and when it is negative, {3a = k a-~ g(p). o -,-r o 1 1tr 1 

For large p, f(p)--VP/2 and g(p)-VP/2, as mentioned before. Since p = u!w IE I 

it follows that whenever cr, (JJ, or I E I satisfy the inequality cr >> wl E I the scatter­

ing obstacle must behave as though it were essentially perfectly conducting. 

Notice that moduli signs appear on E. Hence the above statement applies whether 

E is positive or negative. It is of interest to determine under what conditions a 

plasma with collisions will lead to large p. From Equations 40 and 42, 

cr =E. w ff(1- E). Hence cr >>wE IE I whenw ff(1- E) >>(,JIE 1. If E <0 and 
.o e r o r e. r r r 

is Ia:'rge, the condition is simply weff/w >> 1. 

Evidently what has been said relating to the insensitivity of the backscatter­

ing cross section of a sphere to cr and E over certain ranges of these parameters 

applies with equal force in the case of bistatic cross sections. This includes, of 

course, the case of forward scatter. Before conducting this section, scaling for 

solid spheres should be mentioned. Since ka = wa~J..t (E - ~) it becomes evident 

that if on:e increases cr and w by a factor of 10, holds E fixed, and lets ka = const., 

the same n~'mbers for the scattering cross section must be obtained for (J = 10-
7

; 
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f = 10
8 

as for cr= 10-
6

, f = 10
9

• But notice that a has been divided by a factor 

of 10. 

Turbulent Plasmas 

It is common to model a turbulent plasma by a random distribution of homo­

geneous spheres having a diameter equal to the space scale of turbulence and 

possessing statistical constitutive parameters (E, cr). Plane-wave scattering by 

a Lurbulcnt pl8sma depends on three parameters which are dimensionally dis­

tances. These are 'A the wavelength of the incident field, AT Lhe avcrag~;> rHdius 

of the spheres representing the turbulence, and a the radius of the spherical 

region within which the turbulence is contained. At dista.nces greater than a, the 
> 

region is unperturbed. Normally a >>A but A < (AT) • The physical 
average 

process involved jn the scattering by a turbulent plasma region is different 

depending on whether the plasma is (1) overdense and (2) underdense. 

An overdense plasma is defined as one in whkh w < w if there ar~;> no 
. p 

collisional losses or the medium is only slightly lossy. In this case the field 

penetrating into the plasma i8 evanescent.: hence, the scailering properties of an 

overdense turbulent plasma may be described in all essential respects by its 

surface properties. The surface of an overdense turbulent plasma sphere is 

rough so that the backscattered field is less than from a smooth sphere of the 

same radius. The roughness gives rise to diffuse scattering, that is, the scat­

tered field will l.Je necessarily highly depolarized and incoherent. Backscattering 

is usually defined in terrn::; of plane wavP.s." If a plane parallel to the incident 

phase fronts is tangential to the rough sphere at the point of contact on the illu­

minated spherical sector, then the backscattering cross section will be the same 

(approximately) as that of a smooth sphere of rndh.ls P.qual to the local radius of 

curvature of the rough sphere at the point of contact. Usually (statistically speak· 

ing), the plane parallel to the phase fronts is not tangential to the rough sphere at 

the point of contact. Thus the above mentioned situation does not ordinarily 
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occur. Also, for a homogeneous sphere, the backscattering cross-section curve 

ver;sus a/A. has peaks at certain values of a/A.. These are called geometrical 

resonances. In a rough sphere the radius of curvature changes along the periph­

ery of the sphere. Hence one can expect the geometrical resonances character­

istic of a uniform sphere to be destroyed in the case of a rough sphere. In view 

of the foregoing, the backscattering cross section for an overdense plasma 

sphere, in general, is smaller than for laminar or coherent backscattering that 

obtains from a homogeneous sphere of radius a. discussed in this paper. 

In summary. one may conclude that for an overdense turbulent plasma 

sphere when a >> A. 

a. CTs (laminar) > CTs (turbulent) for A. < (A.T) 
average 

b. CTs (laminar)~ CTs (turbulent) for A. > (A.T) 
average 

From Figure 2(a} it is clear that when A. < (AT) · the surface of the· region 
' averagP 

bounded by the sphere of radius a is rough. The surface roughn8SS scatters 

power incoherently reducing the radar cross section. From· Figure 2(b) it is 

seen that as A. becomes larger with respect to (AT) the surface of the 
average 

overdense turbulent plasma sphere hP.comes effectively more smooth, giving rise 

to more laminar or coherent scattering. Noncoherent scattering always reduces 

the effective received signal. 

An underdense plasma is defined as one in which w > w • In this case the 
p 

field propagates into the plasma, and one must solve a volume rather than a sur-

face problem. As before the plasm a is rcpreseHted by a system of randomly 

positioned spheres of homogeneous electrical properties. In the theory of under­

dense turbulent scattering developed so far by workers in the field, the inter­

actions between the spheres, i.e., coupling and multiple scattering is ignorP.rl. 

If the turhulent plasma ::>iJhere has a sufficiently large diameter (compared to the 
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CASE A 

OVERDENSE: A< (AT) AVERAGE 
11
ROUGH

11 

SURFACE 

CASE C 

UNDERDENSE: A<(AT) AVERAGE 
11
ROUGH

11 

CASE 8 

OVERDENSE: A>(AT) AVERAGE 
11
SMOOTH

11 

ACTUAL SURFACE 

CASE D 

UNDERDENSE: A> (AT) AVERAGE 
11
SMOOTH

11 

Figure 2. Turbulent Pla~;;mas 
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space scale of turbulence) so that many scattering centers are contained in the 

scattering volume, the energy scattered from the sphere is incoherent. In this 

case the scattered signal is highly polarized, and is subject to random fluctua­

tions induced by the turbulent fluctuations. 

For an underdense turbulent plasma sphere when a >>A, one may conclude 

that: 

c. cr s (laminar) > cr s (turbulent) for A <(AT) 
average 

d. cr s (laminar) 2: cr s (turbulent) for A > (AT) 
average 

One must remember that scattering from turbulent plasma is incoherent, and that 

as A increases for fixed (AT) one approaches more nearly a laminar scat-
average . 

tering body (refer to Figures 2(c). and (d)). 

From the foregoing remarks, it is clear that it is sufficient to compute the 

scattering cross section of an underdense or overdense homogeneous plasma 

sphere (which gives rise to laminar or coherent scattering) to obtain an upper 

bound for the scattering from a turbulent plas:ma sphere, provided E and cr cor­

respond to the constitutive parameters of the most effective scattering subsphere 

used in the collection of spheres employed in the turbulent plasma model. It can 

be shown that for the underdense case and A > (AT) a closer upper bound 
average 

is obtained Ly the use of the mean value of E and cr. 

Evidently the above remark applies only to plasma bodies of finite size. 

There is no scattering in the direction of the source from a homogeneouo pla!:;ma 

slab except for normal incidence of tlle electromagnetic field. On the other hand 

for arbitrary angles of incidence of the field on a turbulent plasma slab there will 

exist a scattere_d signal in t.he direction of the source. The problem of scattering 

from an overdense turbulent plasma slab is closely related to the problem of 

terrain radar return. 
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