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SUMMARY

Exact formulas for the forward and backscattering cross sections of mono-
and dual-region imperfectly conducting spheres are developed. Extensive
numerical results based on the theory are presented in a companion paper. ! The
scattering body may consist of a piasma with collisions. Evidently the theory
permits the electron densities and collision frequencies of the plasma comprising
the shell and core regions to differ. The dielectric constant of the plasma may
be positive or negative., Among other things it is proved that whenever o >> wl €|
the scattering obstacle behaves essentially as though it were perfectly conduct-
ing, i.e., the back- and bistatic scattering cross sections are very insensitive
to 0. This phenomenon was first observed in obtaining the approximate radar
cross section of an imperfectly conducting scattering antenna when o >> we (e
positive). The need for substantiating experimental evidence for either scatter-

ing body is thus obviated,

Laminar and turbulent scattering [rom over- and under-dense plasma
spheres is discussed qualitatively. It is concluded that laminar scattering must

be equal to or greater than turbulent scattering from such obstacles.,
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SCATTERING FROM IMPERFECTLY CONDUCTING SPHERES:
THEORETICAL CONSIDERATIONS )

Introduction

In a recent inves‘cigation2 it was discovered that the radar cross section of
a thin éylindrical rod, for parallel incidence of the electric field, is very insensi-
tive to the conductivity of the rod over the range 10 <o < 107 mhos/m. But it |
should be mentioned that the study was not exhaustive in that only several rod
lengths and frequencies were considered. - Moreover, certain approximations
were made in the development of the theory. For instance, the internal imped-
ance per unit length of the structure was specified. This severely limits the
range of 0 over which it was possible to obtain reliable results, To obviate the
need for experimental evidence to substantiate the observed phenomenon it was
considered important to develop a parallel theory for an imperfectly conducting
scattcering body amenable to exact analytical treatment--the sphere, For this
obstacle geometry it is not necessary to define an internal impedance per unit
length, so thal the permitted range of o and € characterizing the material is
arbitrary., This means that the scattering properties of plasmas of spherical

shape possibly not physically realizable at the present time may be investigated.

Mathematical Representation of the Electromagnetic Fields

Figure 1 illustrates a homogeneous spherical plasma shell of outer radius

a and inner radius b characterized by permeability His ‘dielectric constant El’
and conductivity 01. It is cmbedded in an infinite homogeneous medium with



HOMQOQGENEQUS SPHERE

Figure 1. Dual- and Mono-Region Imperfectly Conducting Spheres



constitutive parameters, “2’ 62, and © The core of the sphere is assumed to

2.

possess the electrical properties Hgs €gs and o The center of the sphere is the

origin of superimposed Cartesian and sphericalgcoordinate systems., The unit
vectors in these systems are Q, 9, and /z\, and /9\, (/I\), and f-{, respectively. 0 is
the angle between Z and ﬁ, ® is the angle between % and the projection of R in the
xy plane, and R is measured from the origin. The incident electric field is
linearly polarized in the x-direction and propagates in the direction of the posi-
tive z-axis, go that it impinges on the sphere at the angle 8 = 7T.. The scattered

field of interest emanates from the sphere at 8 = 7,

The expansions, in vector spherical wave functions, of the incident,
scattered, shell and cavity fields may be written down by analogy with the work

of Stratton. 3 The field expressions are
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The subscripts on the field vectors i, r, s, and c indicate incident, reflected,
shell, and cavity, respectively. The time dependence assumed (and suppressed

in writing Equations 1 through 8 is exp (jwt).

The propagation constant of a given medium is given by

k=w‘}u(e-j%5=3-ja, | (9)

where the subscript corresponding to the region under consideration in Figure 1

must be used on k, u, €, and o. In Equation 9 standard notation is employed.

Eo is the amplitude of the incident electric field.



ar, br, p,q,d, f, ac, and bC are constants to be evaluated from the
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In writing down the expressions for the magnetic field, the relations

\V X E = —jwug s

(12)
\xm = kn
Vvxn=km
(13)
\Xl’_l’]_* - kg
vxn®=km*




B (3)x

are used. It is important to note that the notation m and n_ -~ employed in
—o -0
' In In
e e
this paper indicates that the complex conjugate of the function is to be taken.
The argument of the function, even though complex, is to be left alone. Thus,

8 (r) 0P (kR) and 0" kR) >0 kR), where k may be complex.

The -Scattered Field from a Dual Region Sphere

The electric field scattered by the dual region sphere is given by Equation
3. At great distances from the sphere, when 6 = m, this relation may be simpli-

fied by use of the formulas
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Substituting Equation 14 into Equation 3,

E —jsz o _
_:_0¢€ Z _ n r .r A . ]
E,=i5° g 2w (-D@n+ Dfal - b7 |[cos @8 + sinad]. (1)
2 n=1
But,
% = cos ®b + sindd , (16)
when 8 = 7, Hence,
A EO e—JRZRli n r r .
B= R 57 S 2y (Ve Dal - b7) . an

This is the final expression for the backscattered field from the dual-region
sphere. It is of interest to observe that the electric field propagating in the
dircction of the source (radar antenna) is a plane wave polarized parallel to the

incident electric field,

The Boundary Equations

The boundary conditions that must be satisfied on the inner and outer

surfaces of the region 1, Figure 1, are

11




Let the following notation be introduced:
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It can then be shown that the boundary equations take the following form:
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In obtammg the smnultaneous equal.luns for the constants, one need-only observe
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It is now only necessary to substitute the expressions for afl and bfl given by
Equations 29 and 30, respectively, into Equation 17, The latter expression is then
summed, using a digital computer, to obtain the backscattered field from an
imperfectly conducting spherical shell in terms of the amplitude of the incident

electric field Eo’

Scattering from a Solid Homogeneous Imperfectly Conducting Sphere

The boundary equations for a solid homogeneous imperfectly conducting

sphere are

(2)

U alh “(kya) = a’j (k a) , (31)
E_;{[kzajn(kza)]' + bfl[kzahf)(kZa)]'} = b;[klajn(kla)]', - (32)
EiZ; j (,2) + b h( )(k )} = bfljn(kla) , (33)
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Solving these equations simultaneously yields

NG a)[k aj_(k a)]' - ’23' (k a)[k aj_(k a)]'

]

a = - B) (35)
(kawxﬁl(kad b,k 2 ()]
2, . . .
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n 2 (2) (36)

1 2 (k a)[k a_] (k a)] -u k13 (k a)[k ah (k2a)]'

a; and b; given above for a solid sphere parallel Equations 29 and 30 for the

dual-region sphere,

Forward Scattering by a Sphere

It is of interest to calculate the scattered field in the forward direction of a
sphere (8 = 0) as well as in the backward direction (8 = 7). The limiting forms of

the functions needed for 6 = 0 are

I
(
Limi tP cos 9)__>_ n(n + 1)
8—->0 sin 8 2
I
P(cos8)=0
n
8=0 : (31)
Limit & I nin + 1).
6>0 36 pnlcos @ — 2

-& = cos PO - sin pd

|
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Substituting Equation 37 and two of the relations from Equation 14 into Equation 3

leads to the result

(2n + 1>(J + br> . (38)
n n

This is the final expréssion for the field scattered in the forward direction.

Expressions for afl and bfl appear earlier in the paper.

The Scattering Cross Section of an Obstacle

According to King and Wu4 the monostatic or backscattering cross section
s

isotropic
ted by a fictitious isotropic scatterer (that maintains the same field ET in all

of a finite obstacle is defined to be the ratio of the total power P reradia-

directions as that maintained by the actual obstacle in the direction toward the

source) to the real magnitude Sl of the Poynting vector of the incident plane wave

at the obstaclc. Thus

S 2
2
_ Piso‘c:ropic _ limit 47R E

- = _r
S Sl R—w Eo ‘

(39)

Equation 17 is substituted into Equation 39 with ai and bi given by Equations 29
and 30 or by Equations 35 and 36, depending on whether a dual-region or mono-.
region sphere is under consideration, respectively. Formula 39 is also used to
obtain the histatic cross section of an obstacle., In such installations the receiver
is located in an arbitrary direction with respect to the transmitter. Evidently, it
is necessary to know the scattered field in the specified direction., In particular,
the forward scattering cross section o, is obtained from Equation 39 using

f
Equation 38.

17



Conductivity and Dielectric Constant of a Plasma with Collisions

The propagation constant k of a plasma for an assumed time dependence of

exp (jut) is k = qu(e - j(%) where

2
€ w @
_ o effp
" a)2 + w2 | (40
: eff
2 N 2
Wl N9 , | (41)
p m o
and
2
wp :
€ =€ 1-———;“2 =eo€r. | (42)
4 A
v eff
Here

€
"

2nf where f is the radar frequency,

U = uo = 47 x 10—,7 henry/m is the fundamental magnetic constant of

space,
€ = the effective dielectric constant of the plasma,
c = the efféctivé conductivity of the plasmna, _
€. 8.85 x 10_12 farads/m is the fundamental dielectric constant Of
space,
O e the collision frequency. in collisions/sec,
wp = the plasma frequgncy in cycles/sec,
N = the electron density in electrons per cu/m,
qA= ‘the» charge on an electron; q = 1,602 x 10_19 coulomb,
m = the mass of an electron; m = 9,108 x 10-31 kg.

18



Equations 40 through 42 apply when the motion of the ions can be neglected, i.e.,

w is sufficiently high., Static fields that may be present are neglected.

Note also that ¢ and € as defined here are real., ¢ >0, but € may take on

positive or negative value.

Semiconductors Having the Permeability of Free Space

The complex propagation constant k, as delineated by Equation 9, may be

written

2
B—ja=k=V(u ue - jowu . (43)

The writer believes this is the best form in which to express k to insure taking
the indicated square root correctly, espeéially when the dielectric constant is
negative, Harrison and Aronson5 have prepared tables for obtaining \/m.
For checking computer programs the use of these tables is recommended, Let
the assumption be made in the following discussion that the permeability of the

semiconductor is the same as that of [ree space,
Case I: € <0

In this instance

k= Y-olule] - jown = k_yle_| (g - i) (44)

so that

19



B = konerngﬁ
and | . ‘ | (45)
a=k_ |er|f(p)
Here
_ W ' ’
ko =32 : . (46)
c= 2 =3x10% m/sec , 47
eou
. 1 . -1
g(p) = sinh (5 sinh p) = p/2f(p) , (48)
f(p) = cosh (% sinh_1 p) . ) : (49)
p=—2r = . | | (50)
wlel weolerl

It is important to observe that g(p) is an odd function and that f(p) is an-even

function, If
g >> (ulel , (51)
i.e., P hecomes large,

£(p) — g(p)—\p/2 . : (52)

It follows that Equation 44 may be written

20



N . o
k >k Ier'l f(p)(1 - ) = (1 - J)J‘“_“—z—— . (53)

CaseIl: €=0, i,e,, p—

In this instance

k = \jons = (1 - NS . | (54)

Case IIl: € >0

In this instance it is evident that Equation 43 becomes

k =k ye [P - ig®)] , A (55)
so that
B =k e _ f(p)

and . | (56)

GV 50

Q
1

Thus when Equation 51 applies, k is again given by Equation 53. Thus k correctly
"joins up' as € passes through zero. Consider now a plane-wave electric field
propagating in the positive x direction and having the value Eo at x = 0, When

the dielectric constant is positive,

@

-jkx -koxver g(p) -Jkox “6rf(p) , (57)
o e = Eo e e

E=E
and when the dielectric constant is negative ‘

®



E (58)

-ROXVI €. I f(p) -jkOXVI €. | g(p)
=E e e .
o
It is understood that p = o/wl el as before. Since f(p) > g(p) (except for large p) it

follows that the attenuation of a plane wave traversing a given distance is greater

in a region having a negative as against positive dielectric constant.

An examination of Equations 57 and 58 show that correct roots of Equation
43 have been taken because the attenuation and phase-shift factors have the cor-
rect algebraic signs., The value of k must be the same for a sphere as for a
plane, provided the wave equation jn spherical and Cartesian coordinates is
written in the same form. k must have the same form when ka << 1 as for
ka >> 1, As a— «the spherical surface approaches that of a plane, It also
follows from Equations 57 and 58 that when it is possible to define a skin depth

for a semiconductor it may be calculated from the relations

d_=1/a-=

5 (59)

1
k Ve, g(p)
when € >0 and

1
d = ——eeco :
S kOVl€r| f(p) : (60)

when € < 0, dS is the distance from x = 0 to the point where the field reaches the

_1 : i LN
value e " E . Obviously whenever ¢ > @|e],

4 ‘/—2— . (61)
s Ywus

In writing many of the equations in this section it is assumed that u = Mo



Prognostication of Results

The author's remarks in this section will be confined to a foretoken of
results anticipated in the case of scattering by a homogeneous imperfectly con-
dupting sphere, Of course, the comrﬁents apply with equal force to the dual-
region case., Now the backscattered field as given by Equation 17 is controlled
by a; and bll;. These constants are delineated by Equations 35 and 36, respec-
tively. Examination of these expressions shows that ag and bfl are determined

by the values of k,a and kya. Replacing k, by k_ = wlc = 27r/>\0, c=3x10° m/

1

sec, and k_, by k (refer to Figure 1), it is clear that the backscattered field »

depends onlthe electrical size of the sphere in terms of the free space wave-
length, and on the electrical size of the sphere in terms of the wavelength in the
material. Evidently koa is not a function of the constitutive pérameters o and €
of the material. Hence onemust study the behavior of ka. When the dielectric
constant is positive Ba = koaﬁf(p) and when it is negative, Pa = koa@ g(p).
For large p, f(p)—»@ and g(p)—»\,m, as mentioned before. Since p = o/wlel
it follows that whenever o, w, or |e| satisfy the inequality o >> | el the scatter-
ing obstacle must behave as though it were essentially perfectly conducting.
Notice that moduli signs appear on €. Hence the above statement applies whether
€ is positive or negative. It is of interest to determine under what conditions a
plasma with collisions will lead to large p. From Equations 40 and 42,

. If e <0 and
r

c=€w (1 -¢€)., Hence g >>we Ie Iwhen-a) (l—e)>>ml€
.0 eff r o'r eff r r

is la'rge, the condition is simply weff/w >> 1.

Evidently what has been said relating to the insensitivity of the backscatter-
ing cross section of a sphere to ¢ and ¢ over certain ranges of these parameters
applies with équal force in the case of bistatic cross sections. This includes, of
course, the case of forward scatter. Before conducting this section, scaling for
solid spheres should be mentioned. Since ka = wa{uie - (%) it becomes evident
that if one increases o and w by a factor of 10, holds e fixed, and lets ka = const.,

. . LA : -7
the same numbers for the scattering cross section must be obtained for ¢ = 10 ,

~
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-6 9
f = 108 as for 0= 10 °, =10, But notice that a has been divided by a factor

of 10,

Turbulent Plasmas

It is common to model a turbulent plasma by a random distribution of homo-
geneous spheres having a diameter equal to the space scale of turbulence and
possessing statistical constitutive parameters (€, o). Plane-wave scattering by
a Lurbulent plasma depends on three paf‘ameters which are dimensionally dis-
tances. These are A the wavelength of the incident fieid, /\T lhhe average radius
of the spheres representing the turbulence, and a the radius of the spherical
region within which the turbulence is contained. At distances greater than a, the

>
region is unperturbed. Normally a >>X but A <(A,) . The physical

T average
process involved in the scattering by a turbulent plasma region is different

depending on whether the plasma is (1) overdense and (2) underdense,

An overdense plasma is defined as one in which w « wp if there are no
colligional lnsses or the medium is only slightly lossy. In this case the field
penetrating into the plasma is cvanéscent_: hence, the scallering properties of an
overdense turbulent plasma may be described in all essential respects by its
surface properties. The surface of an overdense turbulent plasma sphere is
rough so that the backscattered field is less than from a smooth sphere of the
same radius. The roughness gives rise to diffuse scattering, that is, the scat-
tered field will be nececssarily highly depolarized and incoherent. Backscattering
is usually defined in terms of plane waves. If a plane parallel to the incident
phase fronts is tangential to the rough sphere at the point of contact on the illu-
minated spherical sector, then‘ the backscattering cross section will be the same
(approximately) as that of a smooth sphere of radius equal to the local radius of
curvature of the rough sphere at the point of contact. Usually (statistically speak-
ing), the plane parallel to the phase fronts is not tangential to the rough sphere at

the point of contact. Thus the above mentioned situation does not ordinarily
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occur. Also, for a homogenéous sphere, the backscattering cross-seétion curve
versus a/X has peaks at certain values of a/A. These are called geometrical
resonances, In a rough sphere the radius of curvature changes along the periph-
ery of the sphere, Hence one can expect the geometrical resonances character-
istic of a uniform sphere to be destroyed in the case of a rough sphere. In view
of the foregoing, the backscattering cross section for an overdense plasma
sphere, in general, is smaller than for laminar or coherent backscattering that

obtains from a homogeneous sphere of radius a, discussed in this paper.

In summary, one may conclude that for an overdense turbulent plasma

sphere when a >> A

a. o (laminar) > I, (turbulent) for A < (KT) ,
' average
b. o (laminar) ~ o (turbulent) for A > (KT) .
average
From Figure 2(a) it is clear that when A < (A) ' the surface of the region
' average

bounded by the sphere of radius a is rough. The surface roughness scatters

power incoherently reducing the radar cross section, From Figure 2(b) it is

seen that as A becomes larger with respect to (A) the surface of the
average

overdense turbulent plasma sphere hecomes cffectively more smooth, giving rise

to more laminar or coherent scattering. Noncoherent scattering always reduces

the effective received signal,

An underdense plasma is defined as one in which w > wp. In this case the
field propagates into the plasma, and one must solve a volurr;e rather than a sur-
face problem. As before the plasma is rcpreseunted by a system of randomly
positioned spheres of homogeneous electrical properties. In the theory of under-
dense turbulent scattering clevelopedkso far by workers in the field, the inter-
actions between the spheres, i.e., coupling and fnultiple scattering is ignored,

If the turhulent plasma sphere has a sufficiently large diameter (compared to the
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space scale of turbulence) so that many scattering centers are contained in the
scattering volume, theenergy scattered from the sphere is incoherent, In this
case the scattered signal is highly polarized, and is subject to random fluctua-

tions induced by the turbulent fluctuations.

For an underdense turbulent plasma sphere when a >> A, one may conclude

that:

C. o (laminar) > o (turbulent) for X < (X,_) ,
average

d. o (laminar) > oy (turbulent) for x > (KT)' : -
average

One must remember that scattering from turbulent plasma is incoherent, and that

as X increases for fixed (KT) one approaches more nearly a laminar scat-

average
tering body (refer to Figures 2(c) and (d)).

From the foregoing rem‘arks, it is clear that it is sufficient to compute the
scattering cross section of an underdense or overdense homogeneous plasma
sphere (which gives rise to laminar or coherent scattering) to obtain an upper
bound for the scattering from a turbulent plasma sphere, provided € and o cor-
respond to the constitutive parameters of the most effective scattering subsphere
used in the collection of spheres employed in the turbulent plasma model. It can
be shown that for the underdense case and A > (AT)average a closer upper bound
is .obtained by the use of the mean value of € and o.

Evidently the above remark applies only to plasma bodics of finite size,
There is no scattering in the direction of the source from a homogeneous plasma
slab except for normal incidence of thie eléctromagnetic fiéld. On the‘other hand
for arbitrary angies of incidence of the field on a turbulent plasmé slab there will
exist a scattered signal in the direction of the source. The problem of scattering

from an overdense turbulent plasma slab is closely related to the problem of -

terrain radar return,

27



REFERENCES

1. Harrison, C. W., Jr., and Margaret L, Houston, ''Scattering from
Imperfectly Conducting Spheres: Numerical Results, ' Sandia Corporation
SC-R-68-1692, January 1968, :

2. Taylor, C. D., C. W, Harrison, Jr., and E, A, Aronson, "Resistive
Receiviug and Scattering Antenna, " IEEE Trans. on Ant. and Prop.,
Vol. AP-15;, No, 3, 1967,

3. Stratton, J. A., Electromagnetic Theory, First Edition, pp. 415, 416,
564, and 565, McGraw Hill Book Co., Inc., 1941,

4, King, R, W. P, and T. T. Wu, '"The Scattering and Diffraction of Waves, "
Harvard Monographs in Applied Science, No. 7, Harvard University Press,
1959,

5. Harrison, C. W., Jr., and E, A, Aronson, ''Tables for the Square Root
of Complex Numbers, " Sandia Corporation SC-R-A7-1052, (1967). A copy
of this document may he obtained on request addressed to the I'echuical
Information Departmant.

SUPPLEMENTARY REFERENCES

Tatarski, V. I., Wave Propagation in a Turbulent Medium, McGraw Hill Book
Co., Inc., 1961,

Beckmann, P, and A, Spizzichino, The Scattering uf Wuvea from Roggh Surfaces,
Pergamon Press, 1963,

Kadomtsev, B. B., Plasma Turbulence, Academic Press, 1965,

Weissman, D. E., H. Guthart, and T. Morita,r Radar Interferometry as a
Measure of the Distribution of Scattered Power from Turbulent Plasma, Stanford
Research Institute.

28



SUPPLEMENTARY REFERENCES (cont)

Guthart, H., D. E, Weissman, and T Morita, '""Microwave Scattering from an
Underdense Turbulent Plasma, ' Radio Science, Vol, 1 (new series), No., 11,
pp. 1253-1262, November 1966, ‘

Guthart, H., and W. E, Scharfman, ''Laser Interferometry as a Measure of
Turbulent Fluctuations,'" The Physics of Fluids, Vol. 9, No. 12, pp. 2525-
2527, December 1966,

Weissman, D. E., W, E, Scharfman, and H, Guthart, '"Plasma Diagnostics
Using Electrostatic Probes Under Short Mean Free Path Conditions," The
Physics of Fluids, Vol, 10, No, 2, p. 464-465, February 1967,

Guthart, H,, "Spectrum of Neutron and Ion Density Fluctuations in an Equilibrium
Turbulent Plasma,' The Physics of Fluids, Vol, 8, No, 5, May 1965.

Guthart, H,, D. E, Weissman, and T. Morita, ''Measurements of the Charged
Particles of an Equilibrium Turbulent Plasma,' The Physics of Fluids, Vol. 9,
No. 9, pp. 1766-1772, September 1966,

Erteza, A., J. A. D. Doran, and H, Lenhert, "Concept of Differential Reflec-
tivity as Applied to the Reflection of Beam-Limited Radiation by a Convex Body, "
Radio Science, Vol, 69D, No, 2, pp. 317-328, February 1965,

Erteza, A. and D, H, Lenhert, ""Field Theory of Depolarization of Radar Back-
scatter--with Application to a Distant, Slightly Rough Sphere,' Radio Science,
Vol, 2, No, 9, pp. 979-990, Septemhber 1967,

Erteza, A. and J. A. Doran, ''Bistatic Determination of € and u for a Smooth
Convex Target,' Proc. IEEE, Vol, 54, No. 10, p. 1473, October 1966.

Erteza, A, and J. A, Doran, "A Bistatic Radar Method for the Determination of
€ and p for a Smooth 3pherical Target,' Radio Science, Vol. 1, No. 8, pp. 995- °
1001, August 1966,

29





