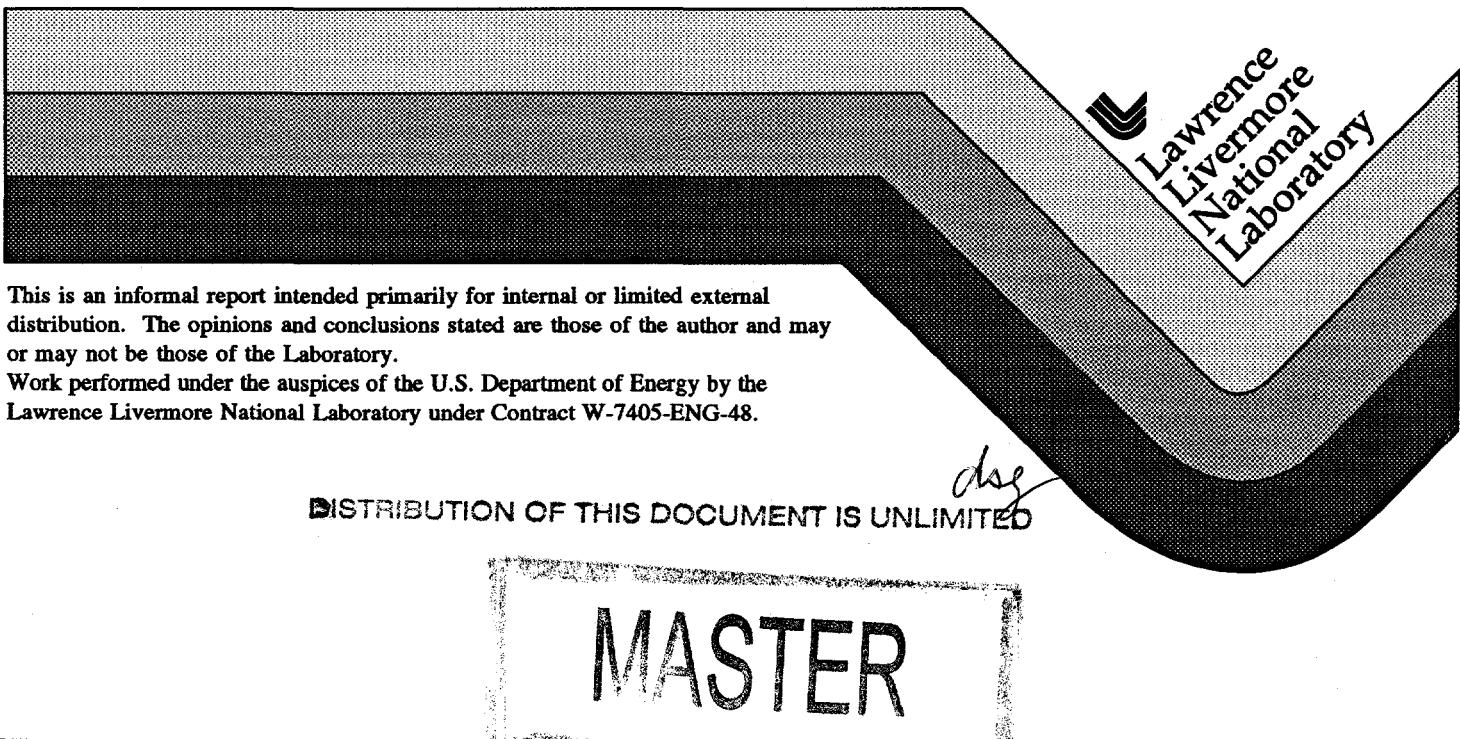


VV HA

# General Chemistry Technical Note

## No. 61: New Developments in Plastic Bonded Explosives


K. Scribner  
E. James

### DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

RECEIVED  
DEC 31 1996  
OSTI

October 9, 1961



This is an informal report intended primarily for internal or limited external distribution. The opinions and conclusions stated are those of the author and may or may not be those of the Laboratory.

Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

## **DISCLAIMER**

**Portions of this document may be illegible  
in electronic image products. Images are  
produced from the best available original  
document.**

69 | 310

GENERAL CHEMISTRY TECHNICAL NOTE NO. 61

"New Developments in Plastic Bonded Explosives"

K. Scribner and E. James

**DECLASSIFICATION**

**STAMP ON REVERSE.**

INTRODUCTION

Two new explosives are under development at LRL which show considerable promise as replacements for PBX 9404 (and also PBX 9010). Three primary considerations have guided us in the development of these explosives; compared to PBX 9404 we have sought

- (1) a significant decrease in sensitivity,
- (2) a substantial gain in mechanical properties, and
- (3) as little loss in energy and detonation velocity as possible.

While testing is not complete on these materials, and probably won't be for quite some time, sufficient information is available to warrant a complete status report at this time. An index of the topics covered herein is:

|                                              | <u>Page</u> |
|----------------------------------------------|-------------|
| 1. Formulations and Raw Materials . . . . .  | 2           |
| 2. Molding Powder . . . . .                  | 2           |
| 3. Explosive Performance. . . . .            | 3           |
| 4. Sensitivity. . . . .                      | 3           |
| 5. Thermal Stability. . . . .                | 8           |
| 6. Compatibility. . . . .                    | 9           |
| 7. Mechanical Properties. . . . .            | 10          |
| 8. Machinability. . . . .                    | 22          |
| 9. Pressability . . . . .                    | 23          |
| 10. Comparison of the Two Materials. . . . . | 25          |

10-9-61-31-DATED SEARCH WOFFORD STEPHEN B

310/36

## I. FORMULATIONS AND RAW MATERIALS

The first of these PBX's is designated LX-03-0 and has the general formulation (given in weight per cent):

70% HMX

20% DATB (2,4-diamino-1,3,5-trinitrobenzene)\*

10% Viton A

The HMX used in this PBX is of 98% purity and coarse granulation, defined in specification MIL-H-45444A as Class A, Grade II. The DATB, for which specifications have not yet been written, is of ~95% purity and has an average particle size of 10-20 $\mu$ . The Viton is a commercial fluoro elastomer produced by E. I. Du Pont De Nemours Co., and has the following elemental analysis, based on weight %:

Fluorine 63.6%

Carbon 34.5%

Hydrogen 1.9%

The other PBX, designated as LX-04-0, has the formula:

HMX 85%

Viton A 15%

The HMX used in LX-04-0 is of 98% purity and fine granulation, defined in specification MIL-H-45444A as Class F, Grade II.

## 2. MOLDING POWDER

Over a ton of molding powder has been prepared at Site 300 and at the Holston Ordnance Plant. There is sufficient evidence to say that a dust-free molding powder with a bulk density of at least 0.85 gm/cc can be manufactured. Although some difficulty has been encountered in controlling the compositions of these products, it appears that the Viton content can be controlled to  $\pm 0.3\%$  in either PBX, and the DATB in the LX-03-0 to  $\pm 0.8\%$ .

\*Correction: Was 2,5-diamino.

## 3. EXPLOSIVE PERFORMANCE

3.1 Energy and Detonation Velocity

The performance of LX-03-0 and LX-04-0 relative to PBX 9404 has been measured in the cylinder test. In addition, double-ended Kinglet experiments have been fired with both PBX 9404 and LX-03-0. PBX 9404 delivered 124 megabar-cc to the Kinglet pit, whereas LX-03-0 delivered 119 megabar-cc. Lyric 2D hydrodynamic calculations best agree with these experiments when the "adjusted  $\varepsilon_0$ "  $\gamma$ -law equations of state given in Table I are used.

Table I

"Adjusted  $\varepsilon_0$ "  $\gamma$ -Law Equations of State

| <u>Explosive</u> | <u>Loading Density (gms/cc)</u> | <u>Detonation Velocity (mm/<math>\mu</math>sec)</u> | <u><math>\varepsilon_0</math> (megabar cc/cc)</u> |
|------------------|---------------------------------|-----------------------------------------------------|---------------------------------------------------|
| PBX 9404         | 1.835                           | 8.78                                                | 0.074                                             |
| LX-04-0          | 1.865                           | 8.48                                                | 0.071                                             |
| LX-03-0          | 1.850                           | 8.40                                                | 0.067                                             |

3.2 Detonator Pickup

J. Stroud of Weapons Division reports that LX-03-0 and LX-04-0 are being tested for initiation by the 1E-26 detonator using a wave shape shot at Mound Laboratories. The shot design is one which is used routinely for the evaluation of each lot of 1E-26 detonators (normally fired with PBX 9404). Preliminary results indicate both materials "pick-up" reproducibly and are ~6shakes slower than PBX 9404.

## 4. SENSITIVITY

Quite a few different sensitivity tests have been run on both LX-03-0 and LX-04-0. The results, particularly of the larger scale tests, show clearly that both materials are less sensitive than PBX 9404. Both of these

new PBX's have now been qualified as LRL Standard-1 (see section 8).

#### 4.1 Drop Hammer

A number of drop weight impact tests using ERL Type 12 tools have been run. The data from a typical group test is reproduced in Table II. The results of this small scale test can be interpreted only to the extent of saying that the new materials are likely to be somewhere between PBX 9404 and composition B-3 in sensitivity.

Table II  
Drop Weight Impact Machine

| Explosive   | With Sandpaper   |             | Without Sandpaper |             | With 30 Mesh SS Screen |             |
|-------------|------------------|-------------|-------------------|-------------|------------------------|-------------|
|             | $h_{50}$<br>(cm) | (log units) | $h_{50}$<br>(cm)  | (log units) | $h_{50}$<br>(cm)       | (log units) |
| PBX 9404-03 | 32.8             | 0.07        | 42.1              | 0.28        | 32.8                   | 0.13        |
| LX-03-0     | 49.1             | 0.10        | 46.5              | 0.13        | 58.6                   | 0.26        |
| LX-04-0     | 50.0             | 0.05        | 36.8              | 0.06        | 39.8                   | 0.15        |
| Comp B-3    | 38.3             | 0.07        | 76.3              | 0.18        | 73.4                   | 0.05        |

#### 4.2 Susan and Large Scale Dahlgren Tests

The Susan test, in which about 1 lb. of the explosive is hurled against a steel plate in a projectile, shows both the new PBX's to be less sensitive than PBX 9404 (see Table III and Figure 1).

Table III  
Susan Test

| Material | Velocity<br>(ft/sec) | Comments and Type of Reaction (Mod-I projectile)                  |
|----------|----------------------|-------------------------------------------------------------------|
| 9404-03  | 100-200<br>over 200  | Violent burning to high order detonation<br>High order detonation |
| LX-03-0  | 100<br>150-500       | Dud<br>Moderate to vigorous burning. No detonation.               |
| LX-04-0  | 200-400<br>400-1000  | Slight reaction<br>Moderate burning                               |
| Comp B-3 | 250<br>300-1500      | Dud<br>Slight to moderate burning                                 |

**K\*** 10 X 10 TO THE CM.  
KEUFFEL & ESSER CO.

114G  
U.S.A.

GCTN-61

GCTN-61

卷之三

THE JOURNAL OF CLIMATE

00000000000000000000000000000000

卷之三

卷之三

卷之三

卷之三

卷之三

卷之三

卷之三

卷之三

FOOTBALL - SOCCER - VOLLEYBALL - BASKETBALL

FIG 1  
SUSAN TESTS  
(MOD-I PROJ.)

0 - 28 X 940 7  
X - 2 X 030  
□ - 1 X 040  
△ - 20 X 083

CORNER COORDS CURE RATE %

| Y  | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|----|------|------|------|------|------|------|------|------|------|------|------|
| 0  | 10.0 | 9.5  | 9.0  | 8.5  | 8.0  | 7.5  | 7.0  | 6.5  | 6.0  | 5.5  | 5.0  |
| 1  |      | 11.5 | 11.0 | 10.5 | 10.0 | 9.5  | 9.0  | 8.5  | 8.0  | 7.5  | 7.0  |
| 2  |      |      | 12.0 | 11.5 | 11.0 | 10.5 | 10.0 | 9.5  | 9.0  | 8.5  | 8.0  |
| 3  |      |      |      | 12.5 | 12.0 | 11.5 | 11.0 | 10.5 | 10.0 | 9.5  | 9.0  |
| 4  |      |      |      |      | 13.0 | 12.5 | 12.0 | 11.5 | 11.0 | 10.5 | 10.0 |
| 5  |      |      |      |      |      | 13.5 | 13.0 | 12.5 | 12.0 | 11.5 | 11.0 |
| 6  |      |      |      |      |      |      | 14.0 | 13.5 | 13.0 | 12.5 | 12.0 |
| 7  |      |      |      |      |      |      |      | 14.5 | 14.0 | 13.5 | 13.0 |
| 8  |      |      |      |      |      |      |      |      | 15.0 | 14.5 | 14.0 |
| 9  |      |      |      |      |      |      |      |      |      | 15.5 | 15.0 |
| 10 |      |      |      |      |      |      |      |      |      |      | 16.0 |

PROJECTIVE VELOC/SEC

The larger scale Dahlgren tests in which XW-42 type assemblies with an inert metal pit are hurled against concrete targets also show LX-03-0 to be somewhat less sensitive than PBX 9404 (see Table IV). LX-04-0 has not been run.

Table IV  
Large Scale Dahlgren Test

| <u>Material</u> | <u>Velocity<br/>(ft/sec)</u> | <u>Reaction</u>       |
|-----------------|------------------------------|-----------------------|
| PBX-9404        | 185                          | None                  |
|                 | 215-270                      | Burning               |
|                 | 340                          | High order detonation |
| LX-03-0         | 200                          | None                  |
|                 | 300-500                      | Burning               |
| Comp B-3        | 700                          | None                  |
|                 | 750-1650                     | Burning               |
|                 | 2150                         | High order detonation |

#### 4.3 Skid Test

In the Skid test, which is an adaptation of a U.K. sensitivity test, a 14" hemispherical charge weighing ~ 50 lbs. impacts a grit-coated steel plate at an angle of 45°. The A.W.R.E. has found that a combination of impact and friction can represent a serious hazard, and the Skid test which measures the susceptibility to this hazard is of importance in evaluating an explosive from the point of view of plant handling safety. The development of Skid test capability at Pantex is very recent, and since large charges are required, only a limited number of drops have been run so far. The data reported in Table V is preliminary.

Table V\*\*  
Skid Test Results (Pantex)

| Material | Vertical Drop Height, ft. | Overpressure* @ ~15', psi | Remarks                                                              |
|----------|---------------------------|---------------------------|----------------------------------------------------------------------|
| PBX 9404 | 5                         | > 20                      | High order detonation                                                |
|          | 3                         | 0                         | Dud                                                                  |
| LX-03-0  | 10                        | 0.5                       | Very low order partial*                                              |
|          | 7                         | 0.3                       | " " " "                                                              |
|          | 5                         | 0.1                       | " " " "                                                              |
| PBX 9010 | 3.5                       | > 20                      | High order detonation or very vigorous burn                          |
|          | 2.5                       | > 20                      | " " " " "                                                            |
|          | 1.5                       | 0                         | Dud                                                                  |
| LX-04-0  | 7                         | 0.3                       | Very low order partial*                                              |
|          | 5                         | 0.1                       | " " " "                                                              |
|          | 3.5                       | 0.0                       | No overpressure or light but a slight blackening of the impact area. |

\*About 3 gms of explosive detonated high order gives an overpressure of about 0.2-0.3 psi in this particular experimental setup.

\*\*Table V revised December 4, 1961.

#### 4.4 Gap Sensitivity

Gap tests have been run for us by LASL in both the 1-5/8" dia. and the 1/2" dia. sizes. The 50% initiation gaps are listed in Table VI for LX-03-0 along with comparative data for PBX 9404, PBX 9010, Comp B, and TNT. LX-04-0 has not yet been run.

Table VI  
Gap Sensitivity

| Material       | 1-5/8" d Gap (in.) | 1/2" d Gap (in.) | Density (gms/cc) |
|----------------|--------------------|------------------|------------------|
| 9404           | 2.22               | -                | 1.836            |
| 9010           | 2.09               | .085             | 1.785            |
| LX-03-0        | 1.95               | .063             | 1.84             |
| Comp B-3       | 1.98               | .042             | 1.718            |
| Comp B-Grade A | 1.70               | -                | 1.714            |
| TNT            | 1.11               | .010             | 1.62             |

#### 4.5 LASL Drop Tower

In the LASL drop tower test a 6 pound charge is confined in a 50 pound mass of mock H.E. A steel adapter plate is attached so that on contact with the target, a 1" dia. steel cylinder is driven into the test explosive.

The analysis depends not only upon the 50% drop height, but also on the type of reaction observed.

Table VII  
Large Scale LASL Drop Test

| Material | 50% Height | Reactions                                                  |
|----------|------------|------------------------------------------------------------|
| PBX 9404 | 49'        | High order detonations                                     |
| LX-03-0  | 115'       | Vigorous reactions but no detonations even at 150'.        |
| Comp B-3 | 86'        | Small reaction. Lots of H.E. recovered even on 150' drops. |

LX-03-0 has a higher drop height than even Comp B-3; however, the reactions, once initiated, are generally much more violent.

LX-04-0 has not yet been run on the drop tower.

### 5. THERMAL STABILITY

#### 5.1 Thermal Stability

The thermal stabilities of LX-03-0 and LX-04-0 are greater than that of 9404. On the LRL gas chromatographic system the volume of gas evolved at STP when a one gram sample is held at 120°C for 22 hours is:

for PBX 9404 - 1.40 cc  
for LX-03-0 - <.05 cc  
for LX-04-0 - <.05 cc

### 5.2 Resistance to Thermal Spikes

Measurements have been made on the decomposition rates of PBX 9404, LX-03-0, LX-04-0, and pure HMX in the temperature range of 240 to 270°C. These data have been normalized against previously conducted temperature spike experiments with PBX 9404 (using the Hangfire code). The normalization permits the calculation of the thermal stabilities of all these explosives when subjected to rapid thermal pulses (such as might be encountered in inadvertent pit hydriding).

The calculational results indicate that LX-03-0 would ignite when subjected to temperature spikes hotter than 250°C whereas, PBX 9404 and LX-04-0 require temperature spikes of 265-270°C for ignition. This order of thermal stabilities correlates with the melting points of the explosives and is due to the fact that liquid HMX decomposes some 10 times faster than solid HMX. (PBX 9404 and LX-04-0 begin to melt at approximately 270°C while LX-03-0 does so at about 247°C due to eutectic formation between HMX and DATB).

## 6. COMPATIBILITY

LX-03-0 has been shown to be compatible with all materials with which it has been run with the exception of iron oxides. However, its compatibility with Furane and Duco cements is borderline, and contact with these materials should be avoided if possible. The list of tested materials includes:

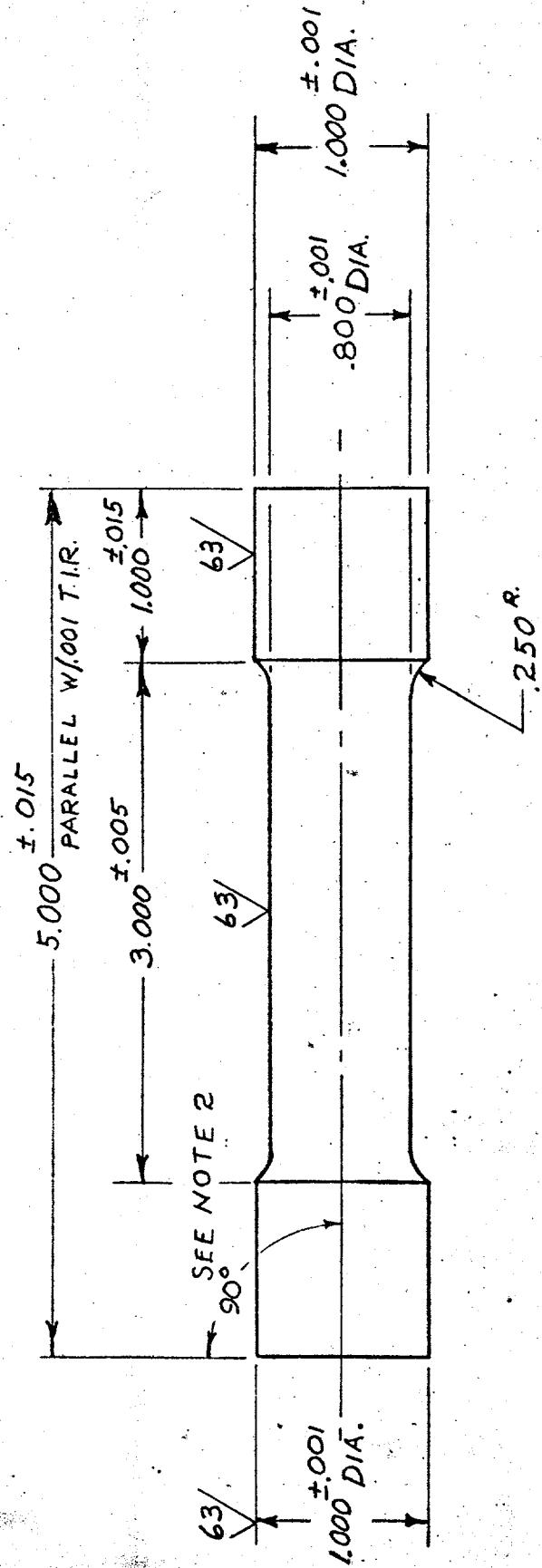
1. Metals - tin, iron, aluminum, copper, zinc.
2. Silastics and rubber - RTV 503, 521, 601, 5313, 5314, GE-565, 916-U, DC silastic LS-X-30274, and butyl rubber.
3. Glues - Eastman 910, Adiprene L-100 (w/MOCA), Furane, Duco cement.
4. Minerals - asbestos fiber.

Compatibility tests will be run with LX-04-0 whenever required; however, since its only components are two major components of LX-03-0, the probability is very high that it would also be compatible with any of the materials in the above list.

## 7. MECHANICAL PROPERTIES

### 7.1 Tensile Tests

Tensile tests have been run on LX-03-0 and LX-04-0 at various temperatures and for LX-03-0 at two crosshead velocities in the LRL standard tensile configuration (see Figure 2). The elongation is determined from a 1" clip gage attached to the center portion of the reduced section of the specimen.


Graphs showing the complete stress strain curves at the various temperatures are shown in Figures 3, 4 and 5.\* Both materials exhibit higher tensile strengths and greater elongations than PBX 9404 at each of the temperatures tested.

A series of tensile tests was conducted on LX-03-0 in which the center of the reduced section of the specimen had been cut at an angle of  $90^\circ$  or  $45^\circ$  and then re-assembled by gluing with a 7 to 10 mil thickness of Adiprene L-100 with MOCA. On the  $45^\circ$  glue joint tests the rupture occurred in the explosive and the stress strain curves, Figure 6, look very much like the earlier runs on the explosive. On the  $90^\circ$  glue joint tests the rupture occurred at the glue joint at  $165^\circ\text{F}$  and  $68^\circ\text{F}$  and the ultimate tensile strength was only about 85% of that of the explosive. At  $-65^\circ\text{F}$ , however, the ultimate tensile strength was the same as for the explosive. Figure 7 shows the stress strain curves for the  $90^\circ$  glue joint. Figures 8, 9 and 10 show typical ruptures in these specimens.

Table VIII gives the average values of the measurements made to determine the 80% secant modulus of elasticity along with some comparable data for PBX 9404 and PBX 9010.

---

\*Not all of these graphs are to the same scale.



NOTES.

1. .800 DIA & 1.000 DIA'S TO BE CONCENTRIC  
WITHIN .003 T.I.R.

2. TO BE PERPENDICULAR WITHIN .001 T.I.R.

TENSILE SAMPLE

FIG #2

SECRET



of 15. Tests at Each

Figure 3

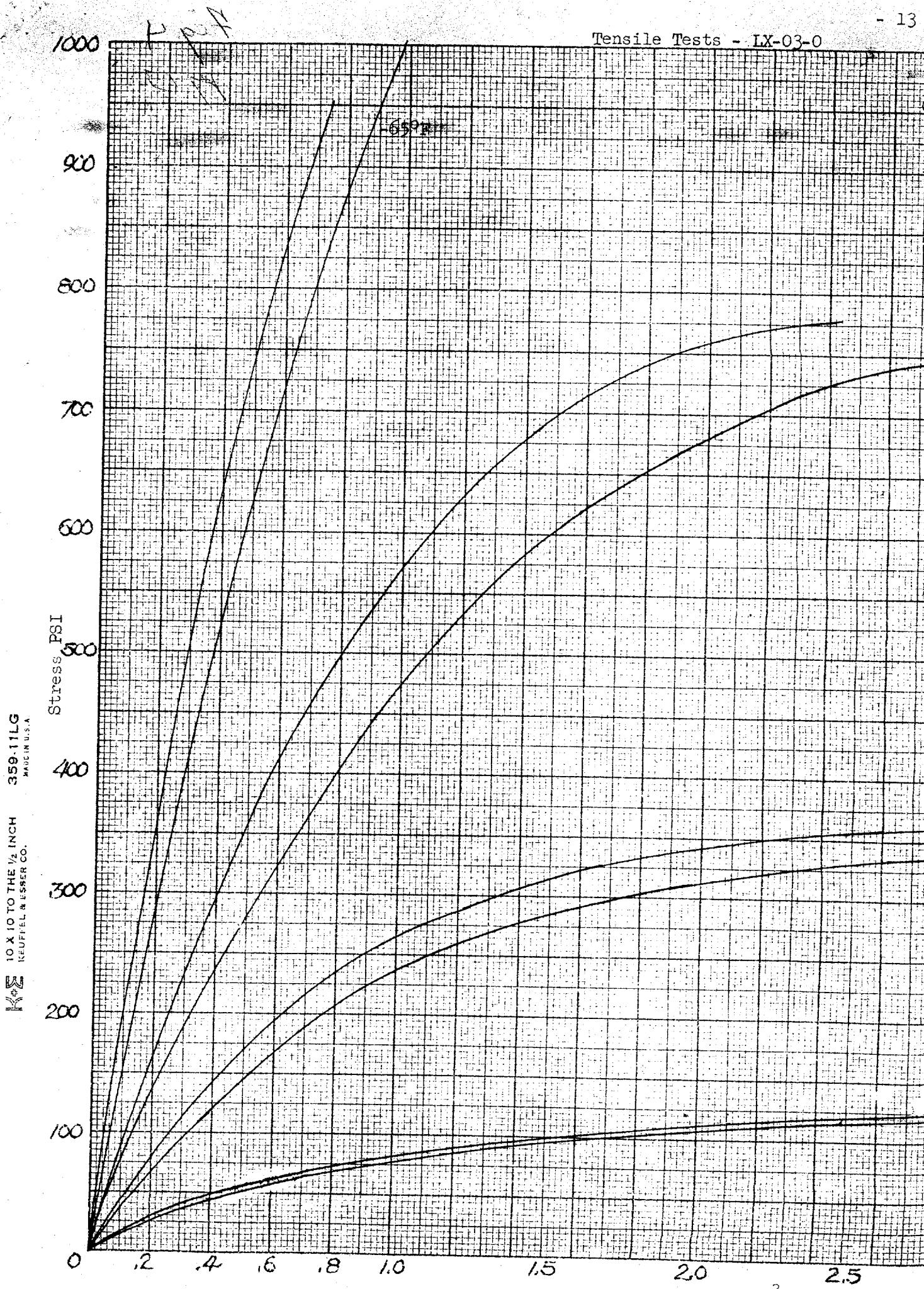
series

Crosshead Loading

0°C

65°F

160°F

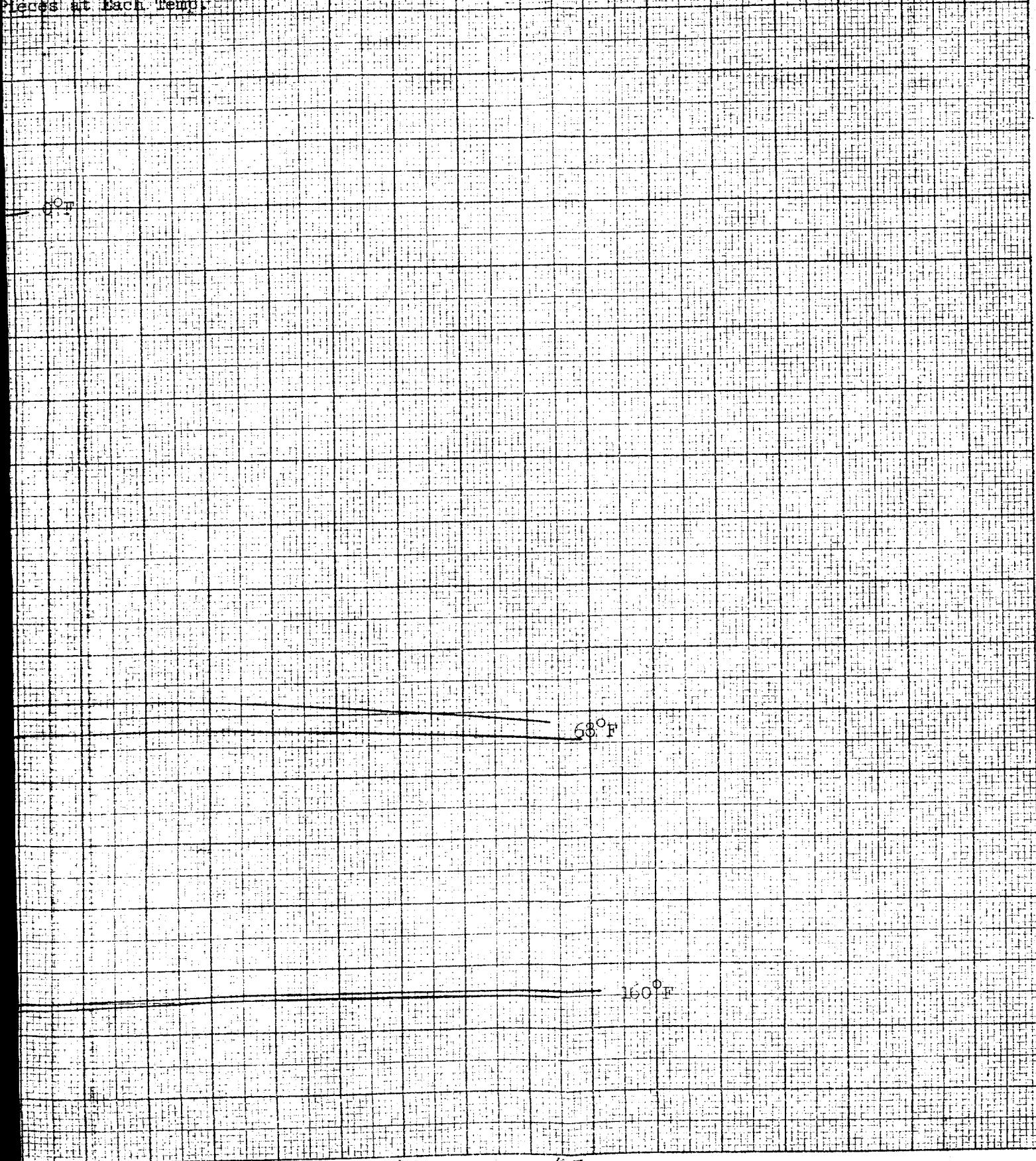

.003

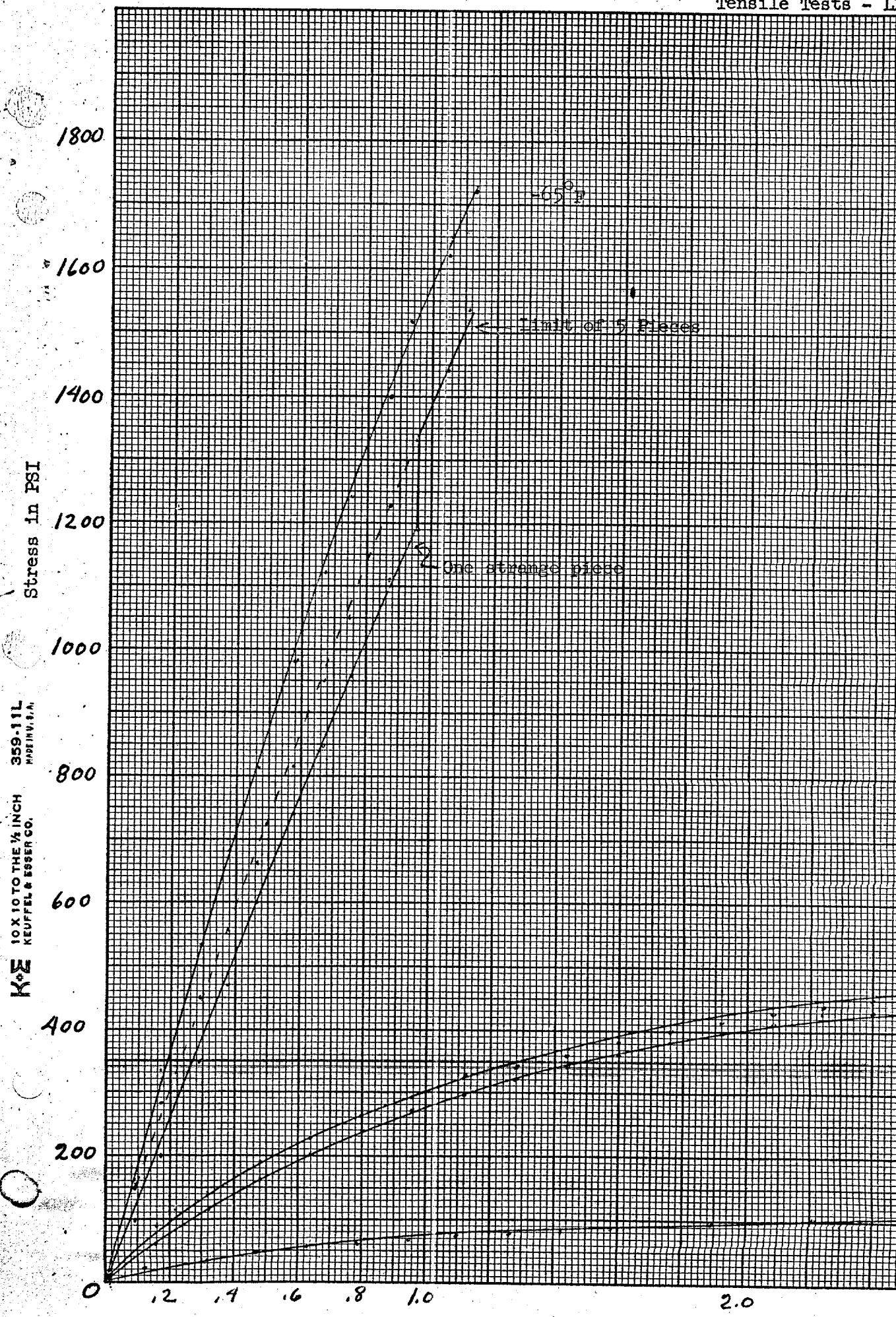
.004

.005

.006

Tensile Tests - LX-03-0





Specimen Area = 0.502" in<sup>2</sup>

5. in/min. Crosshead Loading

Pieces at Each Temp

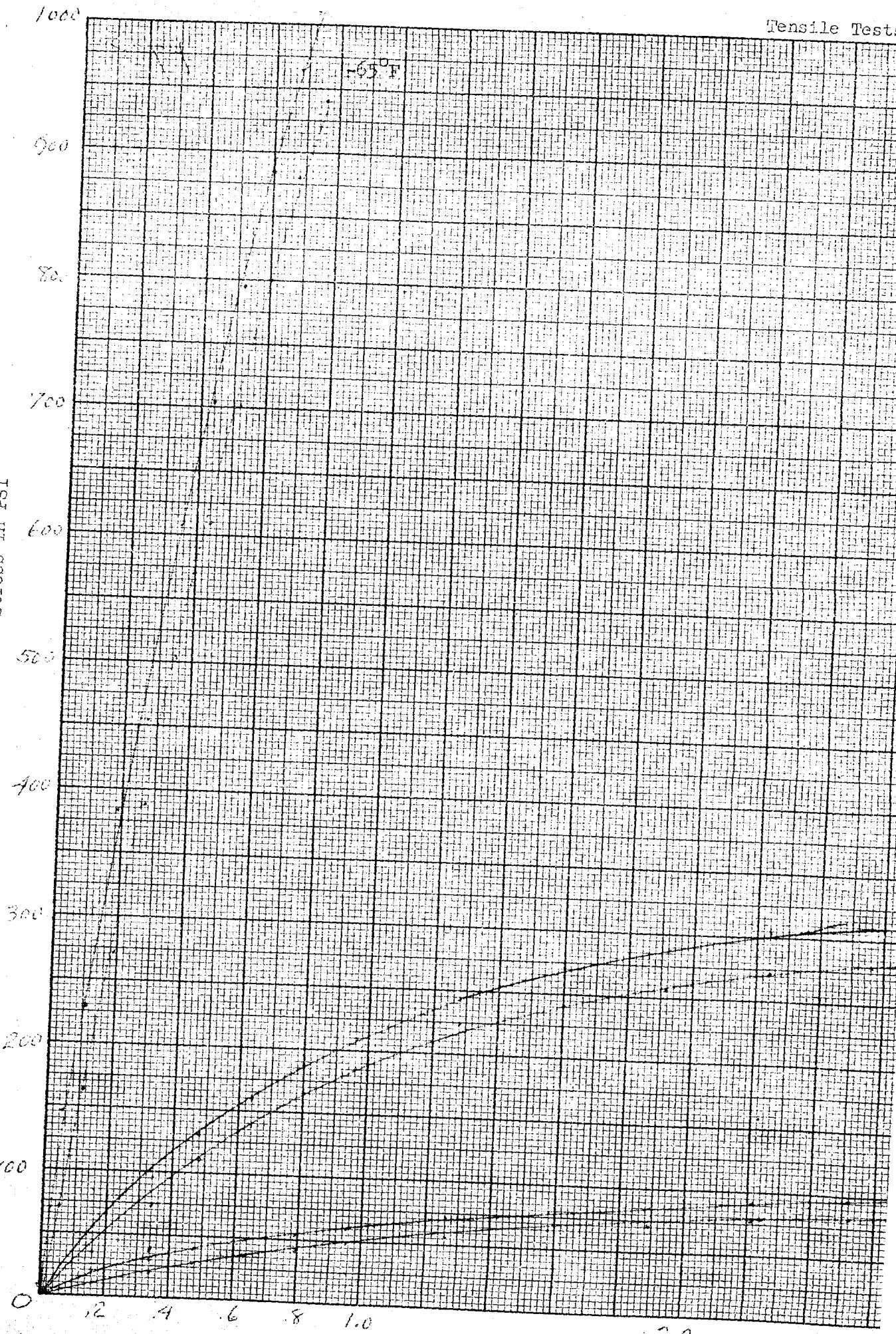
Figure 4





STD Specimen Area = 0.502 in<sup>2</sup>

0.005 in/min Crosshead Loading


Figure 5

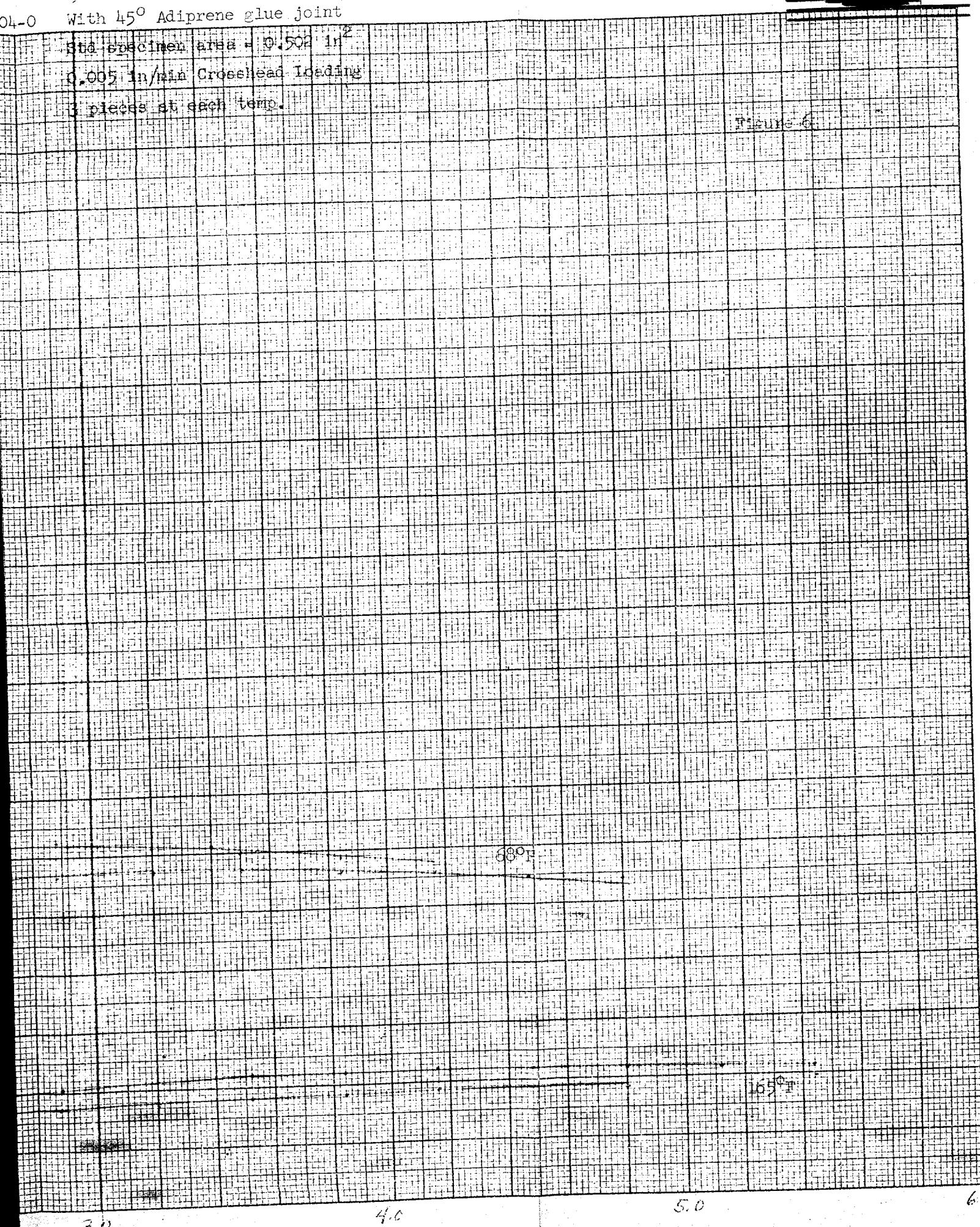
63° T

Tensile Tests

10 X 10 TO THE 1/2 INCH  
KEUFFEL & ESKE CO.

Stress in PSI




04-0 With 45° Adiprene glue joint

Specimen area # 9502 in

### 0.05 in/min Crosshead Loading

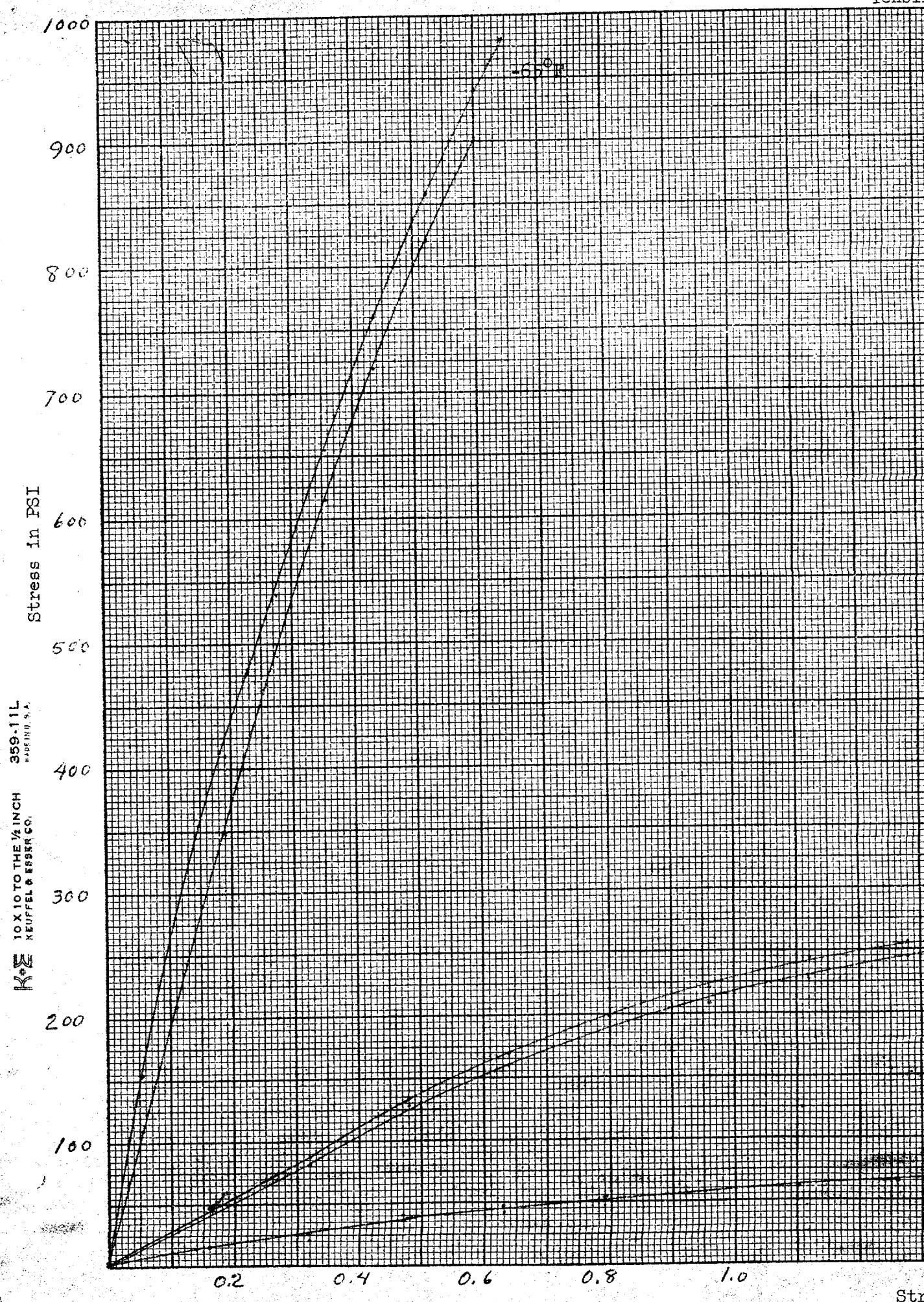

pieces at each temp.

Figure 6



3.0  
in  $\times 10^3$

Tensil



Tests - LX-03-0 with 90° Adiprene Glue Joint,

310 Specimen Area = 0.502 in<sup>2</sup>

0.005 in/min Crosshead Loading

2 pieces at each temp.

Figure 1

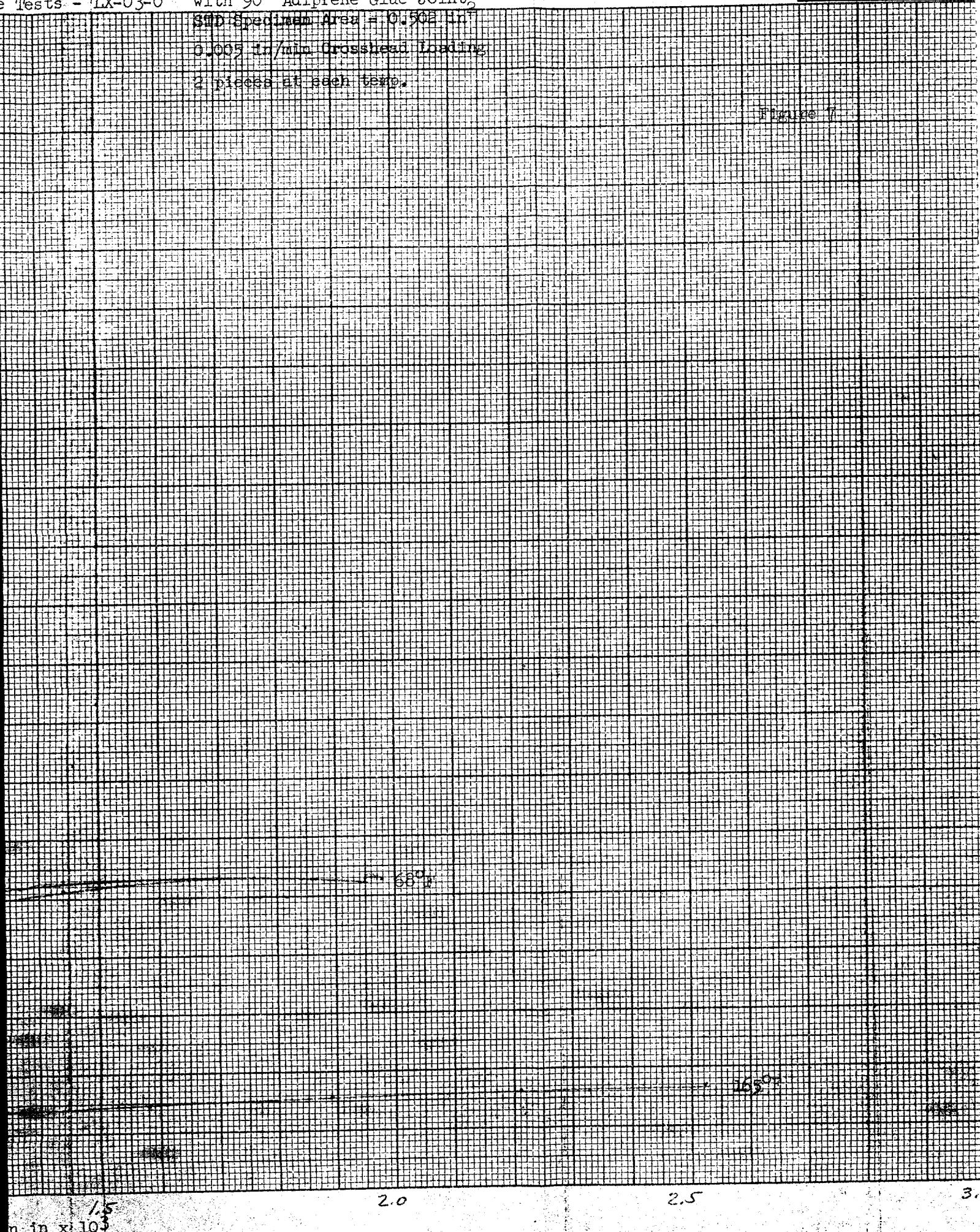



Figure 8. Typical rupture of  $45^{\circ}$  glue joint. Note that the rupture occurred between the marks left by the clip gage. Generally the break does not occur at the point of attachment of the clip gage.

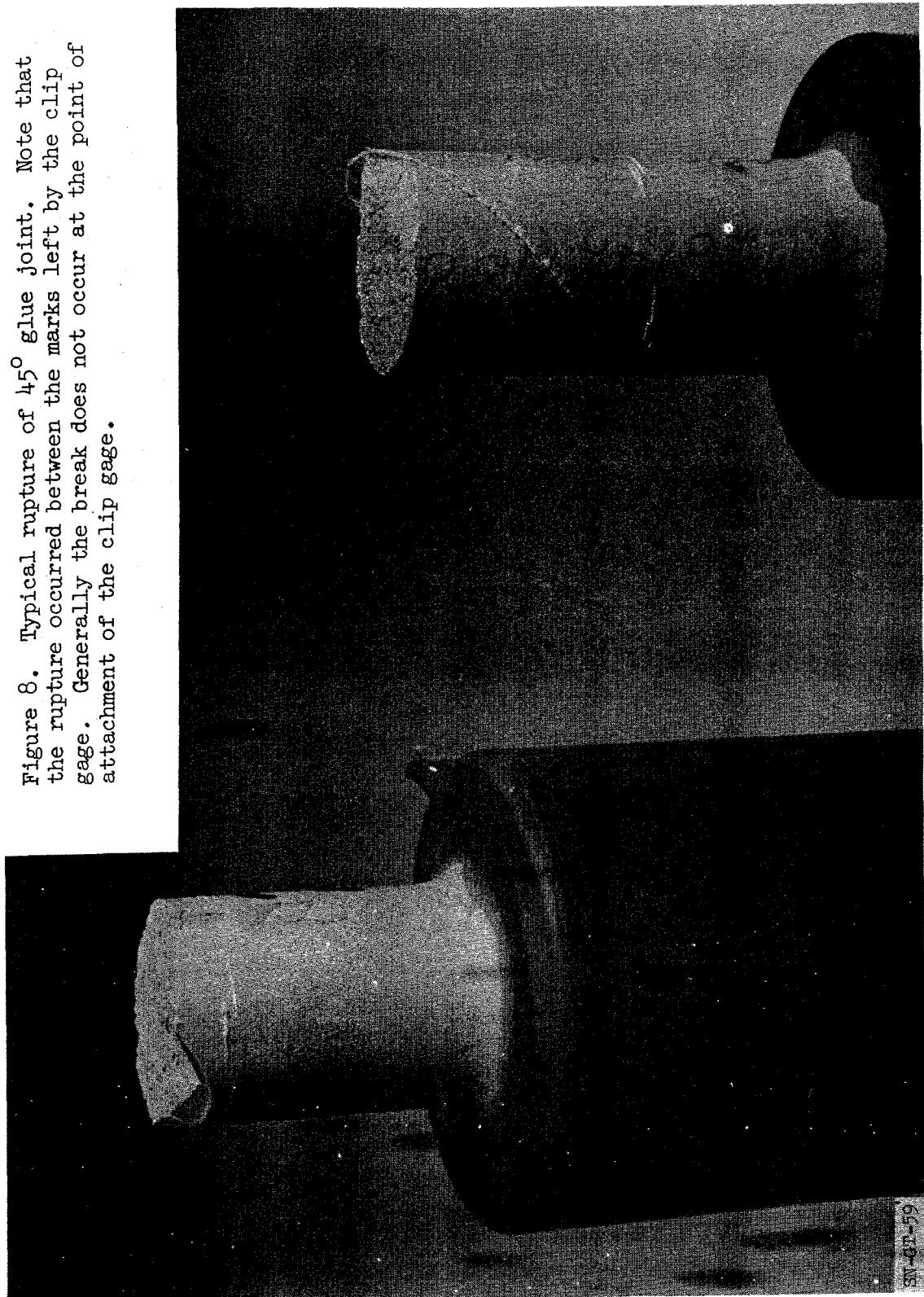



Figure 9. Typical rupture of 90° glue joint specimens  
tested at 68°F and 165°F.

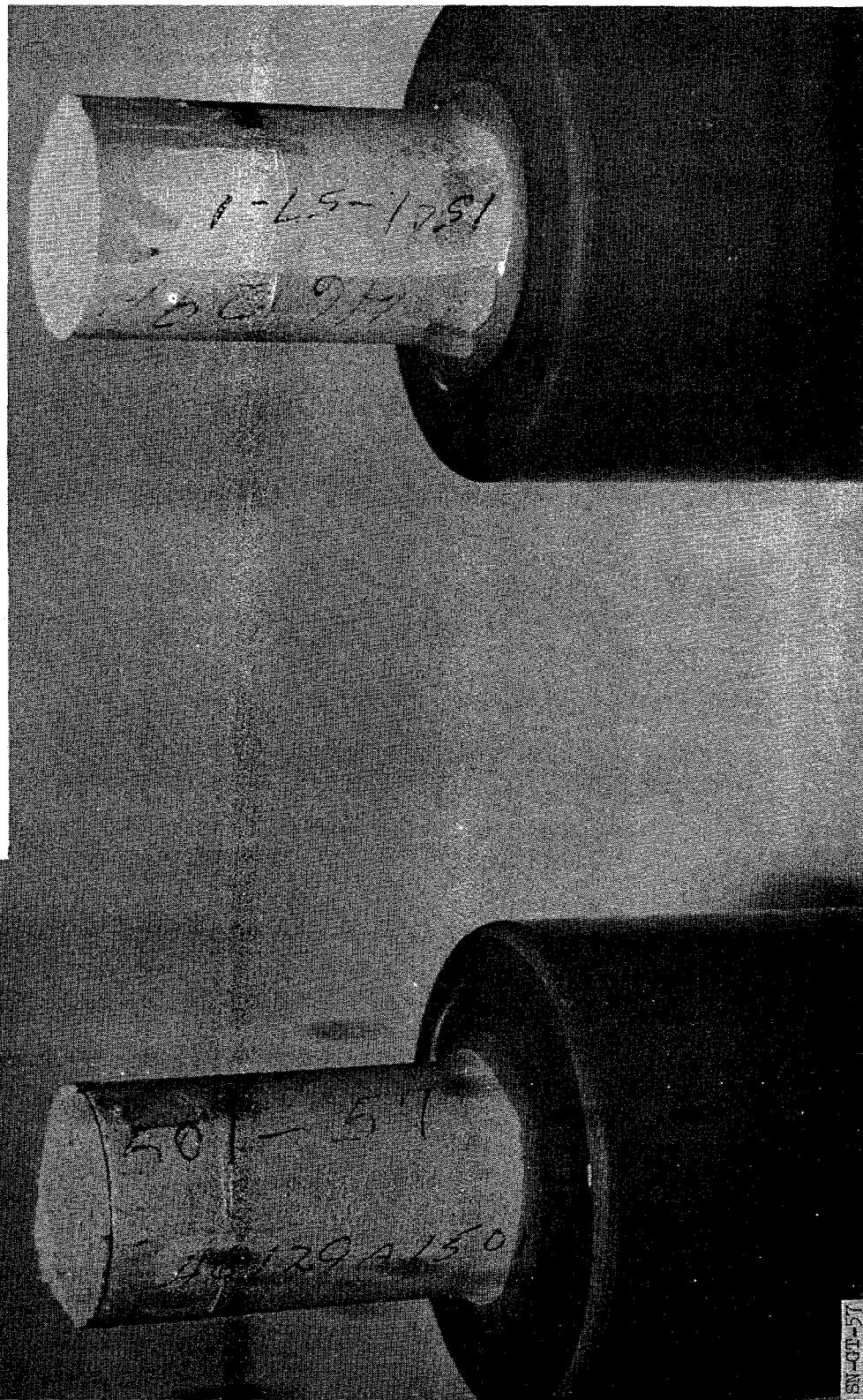



Figure 10. Rupture of  $90^{\circ}$  glue joint specimen tested at  $-65^{\circ}\text{F}$ .

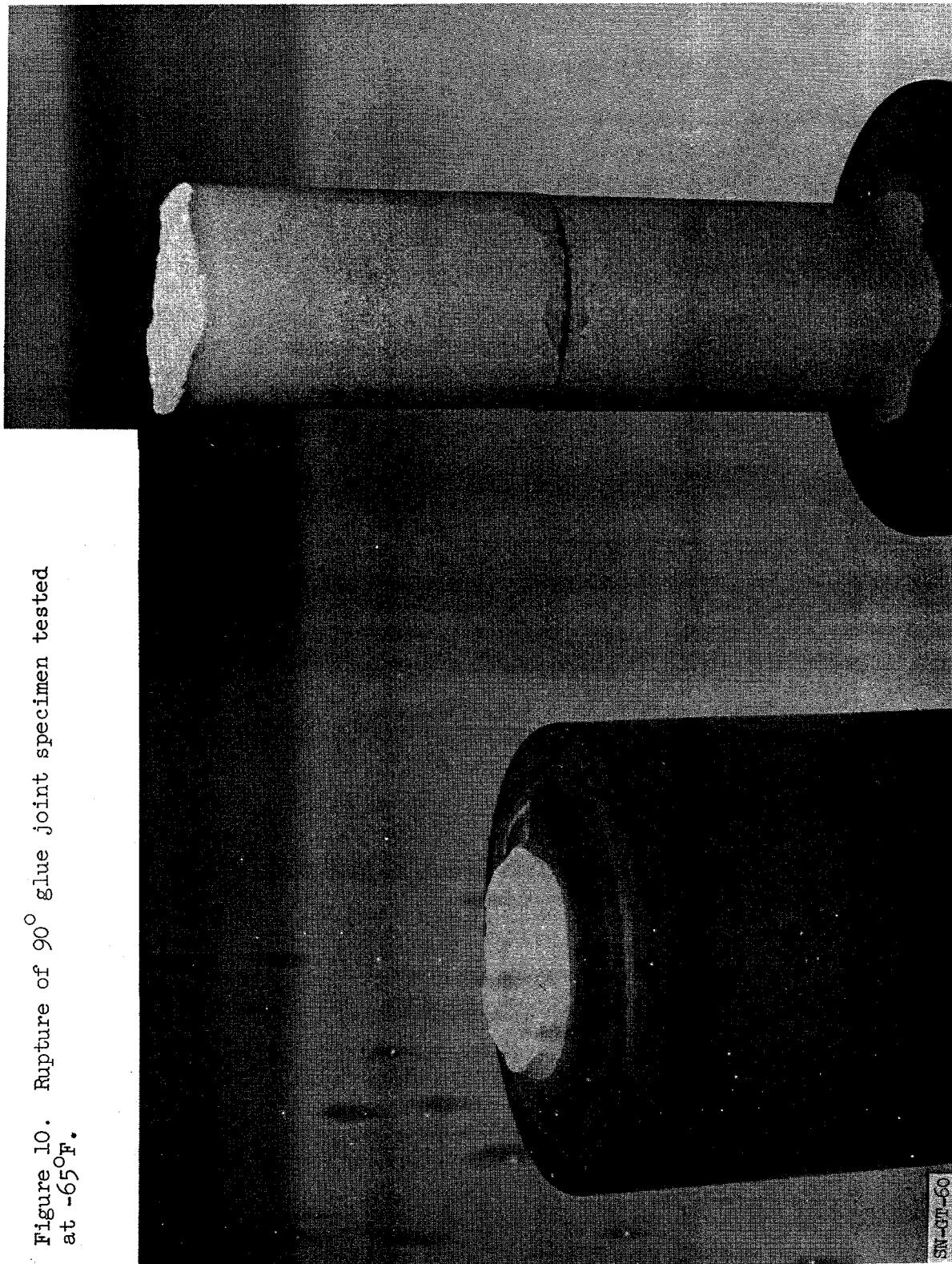



Table VIII  
Tensile Tests

(LRL Standard H.E. Tensile Specimen Configuration  
Cross-Head Movement - 0.005"/min except as noted)

| Material                          | Temp<br>°F | Ultimate<br>psi | 80%<br>Load | Displ @<br>80% | $E \times 10^{-5}$ | Density<br>gm/cc |
|-----------------------------------|------------|-----------------|-------------|----------------|--------------------|------------------|
| 9404<br>Cold Pressed              | 165        | 40              | 32          | .00075         | 0.43               | 1.827            |
|                                   | 70         | 165             | 132         | .00132         | 1.0                | to               |
|                                   | 0          | 550             | 440         | .00056         | 7.8                | 1.840            |
|                                   | -65        | 635             | 508         | .00036         | 14.0               |                  |
| 9404<br>Hot Pressed               | 165        | 40              | 32          | .00070         | 0.46               | 1.827            |
|                                   | 70         | 245             | 196         | .00131         | 1.5                | to               |
|                                   | 0          | 725             | 580         | .00058         | 10.0               | 1.840            |
|                                   | -65        | 650             | 520         | .00026         | 20.0               |                  |
| 9010                              | 165        | 143             | 114         | -              | -                  | 1.77             |
|                                   | 70         | 276             | 221         | .00074         | 3.0                | to               |
|                                   | 0          | 735             | 588         | -              | -                  | 1.79             |
|                                   | -65        | 920             | 736         | .00052         | 14.1               |                  |
| LX-03-0                           | 160        | 99              | 79          | .0018          | 0.44               | 1.832            |
|                                   | 68         | 306             | 245         | .0014          | 1.75               | to               |
|                                   | 0          | 661             | 529         | .0015          | 3.44               | 1.836            |
|                                   | -65        | 950             | 760         | .0006          | 12.77              |                  |
| LX-04-0                           | 165        | 146             | 117         | .00332         | .38                |                  |
|                                   | 68         | 452             | 362         | .00149         | 2.4                |                  |
|                                   | -65        | 1531            | 1225        | .00076         | 15.7               |                  |
| LX-03-0<br>45° glue<br>joint      | 165        | 104             | 83          | .00208         | .40                |                  |
|                                   | 68         | 298             | 238         | .00141         | 1.7                |                  |
|                                   | -65        | 978             | 782         | .00055         | 14.2               |                  |
| LX-03-0<br>90° glue<br>joint      | 165        | 84              | 67          | .00131         | .51                |                  |
|                                   | 68         | 267             | 214         | .00095         | 2.3                |                  |
|                                   | -65        | 943             | 755         | .00045         | 17.0               |                  |
| Cross Head Movement - 0.015"/min. |            |                 |             |                |                    |                  |
| LX-03-0                           | 160        | 130             | 104         | .00188         | 0.56               | 1.832            |
|                                   | 68         | 347             | 277         | .00123         | 2.26               | to               |
|                                   | 0          | 748             | 598         | .00128         | 4.77               | 1.836            |
|                                   | -65        | 984             | 787         | .00064         | 12.4               |                  |

### 7.2 Thermal Coefficient of Expansion of LX-03-0

Pantex has measured the thermal coefficient of expansion of LX-03-0 between  $-65^{\circ}\text{F}$  and ambient temperature as  $32.2 \times 10^{-6}$  in/in/ $^{\circ}\text{F}$ . Nine runs were made and the total spread was  $1.5 \times 10^{-6}$  in/in/ $^{\circ}\text{F}$ .

### 7.3 Dimensional Stability of LX-03-0

Weapons Engineering Division has run some thermal tests on LX-03-0 in shapes similar to XW-58 configuration. Comments on the test are listed below. All assemblies had the explosive confined within RTV silastic rubber (no stress cushions).

| <u>Cycle</u>                                                                                                                                                                                                 | <u>Results</u>                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 1. Heat at $10^{\circ}/\text{hr.}$ to $125^{\circ}\text{F}$<br>Stabilize<br>Cool at $10^{\circ}/\text{hr}$ to $-20^{\circ}\text{F}$<br>Stabilize                                                             | No H.E. cracks.<br>Parts remained within dimensional tolerance |
| 2. Cool at $10^{\circ}/\text{hr}$ to $-40^{\circ}\text{F}$<br>Stabilize<br>Heat at $10^{\circ}/\text{hr}$ to $140^{\circ}\text{F}$<br>Stabilize                                                              | No H.E. cracks.<br>Parts remained within dimensional tolerance |
| 3. Cycle at $10^{\circ}/\text{hr}$ to $+70^{\circ}\text{F}$ ,<br>to $-20^{\circ}\text{F}$ , to $120^{\circ}\text{F}$ , to $-20^{\circ}\text{F}$<br>to $70^{\circ}\text{F}$ , stabilizing at each temperature | No H.E. cracks.<br>Parts remained within dimensional tolerance |

After removal of the case in tests 2 and 3, a gap opened between the H.E. parts. Further tests are in progress to determine if this is a problem.

### 7.4 Dimensional Stability of LX-04-0

An extensive set of thorough tests are currently in progress, but no results are available at this time. Preliminary data on the stability of a few large hydrostatic pressings and several 2" diameter mechanical pressings stored under ambient conditions for several weeks without constraint show decreases in density of the order of 0.002 g/cc.

## 8. MACHINABILITY

Both LX-03-0 and LX-04-0 have been run through rigorous machining tests by Site 300 Mechanical Shops without incident. The results of these tests, which are summarized below, along with previous remote machining and the results of all of our sensitivity tests, have permitted us to reclassify both of these PBX's as LRL-Std. 1. The Std 1 classification allows us to contact machine these materials, and also permits some relaxation with respect to handling procedures.

### Machining Tests

#### Operation

| Saw           | Blade speed    | Feed rate    | No of cuts |
|---------------|----------------|--------------|------------|
| 4 pitch blade | 750-848 ft/min | 5-180 in/min | Dry 45     |

Blade cuts clean with no loading and fairly good finish through feed rates of 40 in/min. Cutting gets rough on higher feed rate. Little or no heating of piece.

| Drill      | RPM | Feed rate             | Depth | No of cuts |
|------------|-----|-----------------------|-------|------------|
| 1/4" twist | 480 | 0.005" to 0.030"/rev. | 1"    | Dry 19     |

Drill cuts freely to approximately 1/4" depth, flutes fill and hole glazes at greater depth. Piece will frequently crack out if drilled within 3/8" from edge.

| Drill      | RPM  | Feed rate   | Depth | No of cuts |
|------------|------|-------------|-------|------------|
| 1/4" twist | 1520 | 0.015"/rev. | 1"    | Dry 4      |

Results similar to lower RPM.

| Form cut     | RPM  | Feed rate             | Depth  | No of cuts |
|--------------|------|-----------------------|--------|------------|
| Single blade | 1800 | 0.002" to 0.030"/rev. | 1/2-1" | Wet 6      |

LX-04-0 loads the cutter on the low feed rate. Both materials seem to cut better at higher feed rate. No heating of either material.

| Form cut     | RPM  | Feed rate             | Depth  | No of cuts |
|--------------|------|-----------------------|--------|------------|
| Single blade | 1800 | 0.002" to 0.030"/rev. | 1/2-1" | Dry 8      |

On LX-03-0 the blade did not load but the material balled up causing a rough finish. On LX-04-0 the cutter loaded at the lower feed rate but cut a very good finish with no loading at the faster rate.

No appreciable heat buildup in either material.

|          |      |             |                  |            |
|----------|------|-------------|------------------|------------|
| Fly cut  | RPM  | Feed rate   | Width of cutter  | No of cuts |
| 6" piece | 1800 | 0.030"/rev. | 0.050" to 0.250" | Dry 4      |

Cuts clean with no loading of blade. No temperature rise of cutter nor part.

On machining tests and on regular machining of pieces, both materials seem easy to work and maintain good finishes with little or no chipping of parts. Generally, LX-04-0 machines better using the higher speed cuts.

## 9. PRESSABILITY

### 9.1 LX-03-0

LX-03-0, which has a theoretical density of 1.880, can be pressed to 98% of TMD under production type conditions.

A typical set of pressings from a 2" dia. mechanical press follows; in all cases the pressed parts were 2" long and the pressings were done with a vacuum of at least 300 u.

|    | Powder<br>Preheat<br>°C | Press<br>Temp.<br>°C | Pressure<br>PSI | Dwell<br>min | No. of<br>Pieces | Avg<br>ρ<br>gm/cc | %<br>TMD |
|----|-------------------------|----------------------|-----------------|--------------|------------------|-------------------|----------|
| 1. | 105                     | 105                  | 30,000          | 10           | 5                | 1.848             | 98.3     |
| 2. | 105                     | 105                  | 20,000          | 10           | 5                | 1.842             | 98.0     |
| 3. | 85                      | 85                   | 30,000          | 10           | 10               | 1.840             | 97.9     |
| 4. | 105                     | 105                  | 30,000          | 3            | 5                | 1.844             | 98.1     |
| 5. | 105                     | 105                  | 20,000          | 3            | 5                | 1.842             | 98.0     |

Some typical isostatic pressings of large pieces, ~50 lbs. that were made at Pantex are as follows:

| Powder<br>Preheat<br>°C | Press<br>Temp.<br>°C | Pressure<br>PSI | Dwell<br>min | No. of<br>Pieces | Machined<br>$\rho$ - gm/cc<br>avg. | %<br>TMD |
|-------------------------|----------------------|-----------------|--------------|------------------|------------------------------------|----------|
| 106                     | 106                  | 20,000          | 10           | 5                | 1.847                              | 98.2     |
| 106                     | Amb                  | 20,000          | 10           | 2                | 1.829                              | 97.3     |
| 106                     | Amb                  | 16,000          | 10           | 1                | 1.843                              | 98.0*    |

\*This pressing was made in the 30" hydrostatic press while all the others were made in the 18" press in the development area. It is not uncommon to get higher density pieces from the 30" press, using lower pressures, than the densities obtained from the 18" press.

#### 9.2 LX-04-0

Two distinct lots of LX-04-0 have been produced at Site 300, the first using Grade 1 HMX that was purified at the Site and the second using Holston's Grade II HMX. Though both of these lots can readily be pressed to 98% of the theoretical density there is a distinct difference between them. TMD for LX-04-0 is 1.899 gm/cc.

Typical mechanical pressing data for the first lot is as follows:

| Powder<br>Preheat<br>°C | Press<br>Temp.<br>°C | Pressure<br>PSI | Dwell<br>min | No. of<br>Pieces | Avg<br>$\rho$<br>gm/cc | %<br>TMD |
|-------------------------|----------------------|-----------------|--------------|------------------|------------------------|----------|
| 90                      | 90                   | 30,000          | 3            | 1                | 1.8622                 |          |
| 105                     | 105                  | 30,000          | 10           | 5                | 1.8657                 |          |

And for the second lot:

|     |     |        |    |   |        |
|-----|-----|--------|----|---|--------|
| 105 | 105 | 30,000 | 10 | 3 | 1.8779 |
| 105 | 105 | 25,000 | 3  | 9 | 1.8747 |

Isostatic pressings from the two lots tend to show the same type of a spread of densities as follows:

From the first lot of PBX

| Powder<br>Preheat<br>°C | Press<br>Temp.<br>°C | Pressure<br>PSI | Dwell<br>min | No. of<br>Pieces | Avg<br>gm/cc | %<br>TMD |
|-------------------------|----------------------|-----------------|--------------|------------------|--------------|----------|
| 105                     | 105                  | 20,000          | 30           | 2                | 1.8574       |          |
| 110                     | Amb                  | 16,000          | 20           | 3                | 1.855        |          |
| And from the second lot |                      |                 |              |                  |              |          |
| 105                     | 105                  | 20,000          | 10           | 3                | 1.870        |          |
| 106                     | Amb                  | 16,000          | 10           | 3                | 1.876        |          |

Photomicrographs and screen analysis have been made on the HMX that went into each of these lots and no significant distinction can be made. We think this anomaly has no serious consequences. The nominal pressed density of LX-04-0 should settle down around 1.870 as further production experience is gained. In the meantime, we set as our pressing specification a density of  $1.860 \pm 0.010$  gm/cc.

#### 10. COMPARISON OF THE TWO MATERIALS

LX-04-0 came about as an outgrowth of the LX-03-0 development. Based on the evidence available today, it seems to be the equal or superior of LX-03-0 in every category. For example, LX-04-0 is less costly, more energetic, and less sensitive under conditions of crushing impact than LX-03-0. In addition, since LX-04-0 is only a 2 component system, it should be simpler to manufacture to tight specifications than LX-03-0. It is likely, therefore, that LX-03-0 will have served only as the pathway to LX-04-0, and that LX-04-0 will be the material of choice for coming LRL weapon and device systems (examples are the XW-58, and the Chickadee and Hedgehog devices). Until all the results of the intensive evaluation program now in progress are available, however, LX-03-0 will be carried along as a back-up to LX-04-0.

Presuming the material enters large scale production, LX-04-0 can be considered a good possibility as a direct substitute for either PBX 9404 or PBX 9010 in weapons now in production. The need for this might arise, for example, as a result of material compatibility problems or from new or more

restrictive weapon handling requirements. Design changes associated with such a substitution could be quite minimal for Robin or Kinglet-based systems, and perhaps even Swan and Tsetse-based systems as well.

KS:EJ:vg

## Distribution:

## Series "B" made 12/7/61

|               |                             |                                         |
|---------------|-----------------------------|-----------------------------------------|
| cy. 1 of 30A  | C. Aplin                    | Cy 1 of 15B - M. T. Abegg, Sandia, Alb. |
| cy. 2 of 30A  | W. Arnold                   | Cy 2 of 15B - R. Bradeen                |
| cy. 3 of 30A  | R. Batzel                   | Cy 3 of 15B - T. Carroll                |
| cy. 4 of 30A  | E. Broadman                 | Cy 4 of 15B - A. Maimoni                |
| cy. 5 of 30A  | J. Dittig                   | Cy 5 of 15B - R. Myers                  |
| ✓cy. 6 of 30A | G. Dorough/J. Kury          | Cy 6 of 15B - L. Peck                   |
| cy. 7 of 30A  | F. Eby                      | Cy 7 of 15B - K. Pister                 |
| cy. 8 of 30A  | J. Foster                   | Cy 8 of 15B - M. Ryan                   |
| cy. 9 of 30A  | L. Germaine                 | Cy 9 of 15B - D. Warner                 |
| cy. 10 of 30A | C. Godfrey                  | Cy 10, 11, 12, 13, 14, 15B - File       |
| cy. 11 of 30A | A. Haussmann                |                                         |
| cy. 12 of 30A | C. Henry                    |                                         |
| cy. 13 of 30A | J. Hulse                    |                                         |
| cy. 14 of 30A | E. James/K. Scribner        |                                         |
| cy. 15 of 30A | E. James/K. Scribner        |                                         |
| cy. 16 of 30A | M. May                      |                                         |
| cy. 17 of 30A | M. Martin                   | Series "C" made 6/14/62                 |
| cy. 18 of 30A | P. Moulthrop                | Cy 1 of 2B - G. Dorough                 |
| cy. 19 of 30A | R. Mullins                  | Cy 2 of 2B - R. Craig                   |
| cy. 20 of 30A | T. Perlman                  |                                         |
| cy. 21 of 30A | J. Routh                    |                                         |
| cy. 22 of 30A | B. Rubin                    | Series "D" - 8/19/63                    |
| cy. 23 of 30A | J. Stroud                   | Cy 1,2,3D - Tech. Info.                 |
| cy. 24 of 30A | I. Akst, Pantex             |                                         |
| cy. 25 of 30A | I. Akst, Pantex             |                                         |
| cy. 26 of 30A | M. Brooks/A. Popolato, LASL |                                         |
| cy. 27 of 30A | E. Eyster, LASL             |                                         |
| cy. 28 of 30A | J. Marron, Sandia, Alb.     |                                         |
| cy. 29 of 30A | L. Smith/M. Urizar, LASL    |                                         |
| cy. 30 of 30A | B. Worden, Sandia, Liv.     |                                         |