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THE THIRD ORDER ELASTIC CONSTANTS OF ALUMINUM

Joseph Francis Thomas, Jf., Ph.D.
Department of Physics
University of Illinois, 1968

The cpmplete.set of six third order elastic constants of single
crystal Al has been experimentally determined by measuring both hydro-
stafic,pressure and uniaxial stress derivatives of the natural sound
velocitigs‘using a two specimen interferometric technique. The values

obtained are

Cq = -10.76 C = =023
Cyp = - 3.15 Cle= -3-40
Clpy = +0.36 Cusg= -0.30
12

in,pnits of 10 dyn.cm-z. The specimens were neutron irradiated to
eliminate dislocation effects' from the uniaxial experiments. A self-
consi;tent set of ‘hydrostatic pressure derivatives of the second order
elastic constants has been calcglate& from the measured third order
eiastic constants. Tﬁe'third order elastic constants have also been
used‘tq calculate the thermal expension in tﬁe anisotropic continuum

model at both high and low temperatures, and a comparison has been

made to the directly measured expansion coefficients,



The seven independent relations between second and third order

elastic constants and appropriate lattice energy derivatives in a Fuchs
" approach have been obtained. The related deformation parameters have
been described in a consistent fashion. The applicability of the Fuchs
approach to elastic constant calculations for metal crystals has been
discussed in terms of the neglect of energy terms which depend upon
volume only.

An attempt has been made to calculate the second and third order
elastic constants of Al in a Fuchs approach using a Wigner-Seitz
decomposition of the lattice energy. The terms considered were the
electrostatic energy and the Fermi energy. The Fernmi energy was treated
in a nearly-free-electron approximation. The fact that this gttempt
was unsuccessful has been attributed to the complicated energy band

structure of Al in the vicinity of the Brillouin zone boundaries.
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I. INTRODUCTION

The mechanical and thermal properties of a crystalliné solid are
intimately ?elated to the form of the lattice potehtial energy. It will
be usegul to consider the general aspects of this relationship.

Several mechanical and thermal properties can be adequately de-
scribed in the harmonic approximation. In this approximation, infini-
tesimal lattice movements can be expressed in tefms of a set of normal
modes of lattice vibration. Static deformations will obey Hooke's law;
sound wave propagati;n can be described by the‘elastic wave equation; and
the lattice heat capacity can be calculated at moderate temperatures. The
harmonic model, however, will not accoﬁnt for many well known mechanical
and thermal properties. There will be no thermal expansion; insulators
will have no thermal resistance; and sound waves will not be attenuated.

These properties are related to the.anharmonic nature of the lattice
potential energy. In an anharmonic model, lattice movements must be de-
scribed in terms of inte;accing modes of vibration.‘ Large static defor-
mations will .deviate from Hooke's‘law; sound waves will interact with each
other and with the thermal vibrations of the lattice; and the lattice will
expand with a change in temperature.

A full anharmonic model is capable of describing all mechanical and
thermal properties of a perfect crystal. The probiem reduces to one of
calculation rather than one of formulation. In the usual approach of a
discrete lattice dynamics, one obtains a model expressed in terms of a
large number of parameteré generally referred to as force constants.

There are several difficulties in obtaining numerical results from such

an approach. In general, the parameters are too numerous to be deter-

mined directly by experiment. In many cases, pérticularly in the study
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of metals, the force constants also lack a clear physical interpretation
in terms of the cohesive properties of the crystal.

An alternative approach is to utilize the finite deformation theory
of an elastic continuum. The change in the lattice potential energy asso-
ciated with deformation away from an equilibrium configuration can be ex-
pressed as a power series in an elastic strain parameter. The coefficients
in such an expansion are elastic constants. The coefficient of an nth
order term in the strain parameter is called an nth order elastic constant.
It follows that the second order elastic constants are the usual elastic
constants relating stress to strain in Hooke's law. The higher order
elastic constants, which are clearly related to deviations from Hooke's
law, provide an efficient measure of many aspects of the lattice anharmo-
nicity.

This can be clarified by considering aﬁéimple, one-dimensional model.
For a one-dimensional solid, a convenient strain parameter would be the
deviation of the particle separation from the equilibrium separation,

(r-ro), In a harmonic model, the energy per particle would be a quadratic

function of this strain parameter,

E=E_+ A;k(r.-ro)2 . 1)

To examine the anharmonic nature of the energy, however, we need a more
realistic energy function. A basic measure of the anharmonicity is the
asymmetry of the lattice energy with respect to particle separation. We
can modify Eq. (1) by simply adding a term which is not symmetric about

r=rx. For example, we can write

L 2 L . 3
E = Eo + “2.k(r-ro) - 6.g(r ro) . (2)



For this model the usual elastic constant could be written as

%

C2 = ;?:::-;E =k - g(r-ro) . (3)
o

We sée that as the chain is ;ompressed, r < o, the elastic constant will
increase. Correspondingly, for a real solid, the usual elastic constants
are functions of pressure, and the pressure derivatives are-usually
positive.

An alternative description would be to define a second order
elastic constant as a second energy derivative evaluated at equilibrium

particle separation,

a%e

=2 =k . (4)

cl =
2
dl(l'"ro)

o

2

r=r
o

To describe the mechanical and thermal behavior of this one-dimensional
solid, we would then need the higher order elastic constants. In particu-

lar, the-third order elastic constant would be

d3E

c
33
d(r-;o)

3= =-g, (5)

Ir=r
o

and the elastic constants of still higher order would be identically zero.
The formalism for a real, three-dimensional solid is quite analo-
gous to this simple model. We define the vector displacement u of a

particle from an»iniqigl‘coordinate 8 to a final coordinate 1,

_i=r-2. (6)
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It is most convenient to work with the finite Lagrangian strain tensor

which is defined asl/

u buk auk ] -

ﬂ - %[ Ba da

H.ere_ui etc, indi;ates the ith cartesian component pf the vector u, and
repeated indices are always to be summed over. Equation (7) describes
exactly relative displacements in the solid,_eliminating the effect of
rigig body rotatiops. The description is exact in the following terms:
If 8a is the initial separation of two particles in the solid, and 8r is

the final separation after a deformation has been applied, then

¢r)? - (8a)? = 2, | sy ba, - (8)

In describing the thermodynamic properties of the deformed lattice,
we can work with either the internal energy per unit mass U(r,S) or the
Helmholtz free energy per unit mass F(r,T). Here S and T afe, £38pec-
tively, the entropy and the temperature. Elastic constants'of any order
can then be defined as the expansion coefficients of U (or F) in terms

of the Lagrangian strain tensor components.g/ More exactly,

cS - p[ 3 U :]
ijklmn.. anlj Mg M., S a0
M
(9)
"F
ijklmn. dn,, on., o
" e T, ] —

Here superscript S indicates an adiabatic elastic constant which must be
used to describe an isentropic process. Similarly, superscript T indi-
cates an isothermal elastic constant which must be used to describe an

isothermal process.



5

The'elasﬁic conspants_of Eq. (9) represent the solid in configura-
tion a. ‘If the coordinates a represent the natu;al, unstressed configura-
tion of a solid, then the.cijklmn., are those elastic constants which
would be calculated from atomic models of'the lattice energy. If the co--
ordinates & represent a stressed configuration of the solid, then the
Cijklmn,. are related simply to the applieq stress and the elastic coef-
ficient which would be measured experimentally. These relationships have
recently been cleprly summarized by Wallace;;/ ]

We note that the second order elastic constants are elements of a
fourth rank tensor which has, in general, 81 independent components. How-
ever, it is well known that for a cubic crystal, which we are primarily
interested in here, symmetry considerations reduce this number to three.
The third order elastic constants are elements of a sixth rank tensor with,
in general, 729 independent components. For cubic crystals, however, sym-
. metry considerations will reduce this number to six. These six numbers
can be measured experimentally and, in addition, can be made physically
meaningful in ;erms of the energy change during a particular deformation.
The third order elastic constants will provide a convenient description
of many anharmonic properties of a crystalline solid.

Measurements of third order elastic constants have been reported
for approximately ten single crystal materials including semiconductors,
piezoelectrics, alkali halides, and, more recently, metals. ‘An extensive
literature on the subject haé developed during the past six years. A
complete reviéw will not be attempted here. Rather, we shéll concen-
trate on measurements on metal single crystals.

The most powerful method for obtaining anharmonic data in the

continuum model is the measurement of sound velocity changes with -



applied homogeneous stress. Basic measurements of this type utilize

simple modifications of the well known megacycle pulse-echo technique.

Early measurements were restricted to velocity change with applied hydro-

static pressure. For a cubié crystal, this gives three expgrimental ]
numbers which are related to five of the six third order elastic constants.
Such results are expressed in terms of the pressure derivapives of the
Fhige measured second order elastic constants. The original work in this

i

area was done by Lazarus&/ in 1949 and included measurements on Cu, Al,

5/

and beta brass. Later, Daniels and Smith=" reported pressure derivatives

6/

of the noble metals Cu, Ag, and Au. Schmunk and Smith=" made similar

measurements on the simple metals Al and Mg. Measurements on the alkali

1=9/ Typically, these

metals Li, Na, and K have also been.réported.
measurements utilized hydrostatic pressures in the kilobar region. Such
pressures are sufficient to produce readily measurable changes in the
transit time of an ultrasonic pulse. A correction for the change in path
length with increasing pressure is required.

As stated, hydrostatic pressure measurements on ;ubic crystals will
only give information on three linear combinations of the third order
elasti; constants. To obtain sufficient information to measure all six
third order elastic constants, it is necessary to utilize a deviatoric
stress such as uniaxial compression. Here a basic problem arises. 1In
the study of metal single crystals, uniaxial compressions large enough to
produce directly measurable changes in the transit time of an ultrasomnic
pulse will also likely produce changes in the dislocation network always'
present in the metal crysta%s. It is well known that dislocations will

affect the measured sound velocity. If the applied uniaxial compression

changes the existent dislocation network, for example by causing
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breakaway from weak pinning points or activation of dislocation sources,
a dislocation contribution will be present in the measured sound velocity
stress derivative. Hence, we.are;restricted to very_small uniaxial com-
pressions. If measurements can be obtained at several t;ns of bars,
dislocation effects might be avoided. However, stresses of this magni-
tude will general}y produce sound velocit§ changes of only several parts
per million. Uniaxial stress measurements will require an electronic
system capable of detecting sound velocity changes at this.level.

Several methods have been deviséd to detect very small sound

10/

velocity changes. These have recently been summarized by Alers.—" 1In
the continuous wave resonance method, the impedance of an ultrasonic
transducér-Specimen combination is monitored. Rapid variations in Fhe
impedance occur és the contiﬁuous wave frequency varies through an acous-
tip resonance associated with standing waves in the specimen, In the
phase comparison method, the phase of a megacycle pulse which has trans-
versed the specimen is coﬁpared with that of a reference signal. Several
variations of this method have been utilized. An important variation,
not déscribed by Algrs, is the pulse superposition technique of

11,12/ in which a series of echoes is superimposed in a phase

McSkimin,
cohergnt manner by varying the repetition rate. A second variation of
particular interest is the two specimen interferometer first described
by Espinola and Waterman.ll/ Here a-reference pulse is obtained from a
second specimen which has been matched to the first. The reference
phase depends upon the transit time in the second specimen which can be
ad justed by varying the temperature of this Specime;. In the sing-

around method, two transducers are attached to one specimen, one used

as a transmitter and one as a receiver. A particular pulse of the
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received signal is used to retrigger the system in such a manner as to
create a high stability oscillator whose frequency depends directly on
the inverse of the specimen transit time.

The two specimen interferometric technique has been used by Hiki
and Granatoli/uto measure the complete set of third order elastic con-
stants of thg nob}e meta}s Cu, Ag, and Au. Their measurements included
both hydrostatic and uniaxial stress deriyatiﬁes. The specimens were
pfestressed to minimize dislocation effecés. Swartzlé/ used the same
techniques for measurements on beta br;ss. Salama and Alerslé/ repeated
ghiaxial stress measurements on Cu at several temperatures using thg sing=-
around method. Their room temperature values agree well with Hiki and
Granato. They also completed measurements at ﬁelium femperatures, the.
only such measﬁrements which exist at the present time.

Recently, Thurston and Bruggerll/Ahave presentéd an extremely con-
venient f&rmulation for obtaining ;hird ofder elastic constants from
sound velocity stress deri;atives. The above results for the third order
elastic constants of metals have all utilized this formulation. Thurston
and Brugger defined a quantity calied the natural velocity, W = 2L;/t,
where Lo is the path length in the unstressed crystal and t is the roﬁnd
trip transit time. The derivative g%(powz)T,P=0 was then evaluated in
terms of linear combinations of the third order elastic constants for
the various combinations of pure sound modes and applied stréss.P. Here
'po is ‘the density of the unstressed medium. But (powz) will vary with
stress simply aé t-z. The formulation is convenient bécause we no longer
need to worry about the variation of the path length in the stressed
crystal. Also, care was tsken to distinguish between adiabatic and iso-

thermal processes. It was pointed out that the third order elastic
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constants measured in such experiments are of a mixed nature. Specifi-

cally, the quantities measured are

ST .3 [ %y ]
ijklmn a'qm o anij oM 5

(10)
where the isothermal variation refers to the application of the bias stress.

The formulation of Thurston and Brugger alqngAﬁith the recent devel-
opment of techniques for the measurements of very small sound velocity
changes provide a firm basis for the initiation of a program for the
measurement of third order elastic constants. In particular, the third
order elastic constants of metals would be expected to provide usef&l new
inforﬁation on the nature of the cohesive properties and interatomic forces
of metal crystals. 1In addition, as has been mentioned above, the third
order elastic constants are useful in the calculation of mechanical and
thermal properties related to the anharmonic nature of the lattice.

The third order elastic constants of the noble metalsli*kg/ and
beta brasslé/ recently obtained confirm the expectation regarding new
information on interatomic forces. If it is assumed that the interatomic

forces in these crystals are predominantly short range central forces,

the following relations would hold emong the third order elastic constants:lﬂ/

For an FCC lattice with nearest neighbor interactions only,

c 2C = 2C

111 112 166 (11)
€123 = €144 = Cuse =0 - :
For a BCC lattice with nearest neighbor interactions only,
c = C =C = C =C

111 = %112 = €166 = C123 = %144 = Cus6 (12)-
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Here the six non-zero third order elastic constants of a cubic crystal
are expressed in the contracted (Voight) notation. For a BCC lattice,
the next nearest neighbors, the adjacent body-centered atoms, are but 14%
more distant than the nearest neighbors. 1If BCC next nearest neighbor
interactions are important, this would result in a contribution to C111
only. Results for the noble metals (ECC) correspond closely to the pattern

i

of Eq. (11). The results for beta brass (BCC) correstnd closely to

Eq. (12) with a significant contribution to C from the nekt nearest

111

neighbor interactions. The results for these crystals conform closely

to the pattern expected if short range central forces make a predominant
contribution to the higher order elastic constants. An important conclu-
sion, then, is that the conduction electrons seem to play a minor role.
This might be considered somewhat surprising but can be understood in
terms of the existence of overlapping electronic d-shells and the
resulting strong exchange forces.

It would be interesting to investigate a material in which the con-
duction electrons would be expected to make a major contribution to the
higher order elastic constants and, hence, to the anharmonic properties
of the material. One such material is aluminum. In Al there are no d-
electrons; the ion cores are small; and'the exchange interactions between
ion cores should be negligible. Also, Al has three valence electrons
per atom. Hence, the Fermi surface will interact strongly with the
Brillouin zone. The conduction electrons should contribute to the shear
as well as the compressive elastic constants.

It is the purpose of this thesis to measure the third order elastic
constants of single crystal Al. This is done by measuring both hydro-

static pressure and uniaxial stress derivatives of the natural sound
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velocities. The results are analyzed within the formalism developed by
Thurséon and Bruggef.ll/ The thermal expansion at both high and low
temperatures is calculated from the third order elastic constants and
compared to thé measured values. Finally, an attempt is made to inter-

pret the elastic constants in terms of the cohesive properties of the Al

lattice.
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1I. EXPERIMENTAL PROCEDURE

A. Specimen Preparation

The four aluminum single crystals used in this investigation were
of dimensions 15x16x17 mm. They were oriented with faces perpendicular
to [110], [110], and [001] directions. These orientations were checked
with Laue back reflection photographs and were found to be accurate to
bette; than 1°. The crystals were obtained as oriented from Semi-Elements
Inc., Saxonburg, Pennsylvania.

A spectrochemical analysis of the composition of these crystals was
obtained from Dr. V. Mossotti of the Materials Research Laboratory,
University of Illiqois. Order of magnitude estimations of impurity con-
centrations were determined by gmission spectroscopy. The results showed
that Cu, Fe, In, Ga, Ca, and Ti were present in concentrations of 10 - 100
parts per miilion (ppm). Hence, we estimated that the-crystals were
between 95.95% and 99.99% pure Al.

In order to make sound velocity measurements by the use df a pulse-
echo technique, it was necessary to polish the crystals so that opposite
faces would be flat and parallel to better than 50 ppm. A convenient
method has been developed to obtain such tolerances with moderate effort.kﬁ/
The crystals were placed in a cylindrical holder which was relieved in
the center and had a 1/8 inch lip around the circumference. The 1lip sur-"
fece was machined flat and parallel to better than 100 ppm, and tpe verti-
cal dimension was set several mils larger than the relevant crystal dimen-
sion. The crystal was set in the holder with Quick Mount (Fulton Metal-
lurgical Products) and could be removed after soaking for 24 hours in

ethylene dichloride. For rough polishing, 3/0 Emery polishing paper

saturated with kerosene was placed on a surface plate. Polishing continued
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until the holder and crystal were being cut evenly on both sides. Fine
polishing to achieve final tolerances was done with 9.5 micron al@ﬁinpm
oxide powder in a suitable lubricating oil directly on the surface plate..
The dimensions were checked on a Mikrokator (C. E. Johanson Co.) whichh |
is capable of reading relative values to 10 microinches. A stiil smoother
surface could have been obtained by going to a finer powder, but some
surface roughness was desirable to aid in bonding a quartz transducer to
the metal surface.

The second order elastic constants of the Al crystals were then
measured using a direct pulse-echo technique. Quartz transducers of
resonant frequency 10 MHz were attached to the crystal faces with Nonaq
stopcock grease (Fisher Scientific Co.). An Arenberg PG-650C pulsed
oscillator was used to supply %0 MHz pulses of approximately 3 micro-
second duration. Unrectified echoes were received directly by a Tektronix
585A dual time base oscilloscope. The time delay circuit of the oscil-
loscope was calibrated using a Tektronix 184 crystal time mark generator.
The time intervals between a particular cycle of successive echoes could
" be obtained to better than 10 nsec. A 100 nsec/echo transit time cor-
rection was applied to the measurement of longitudinal waves. A measured
density of 2.702 gm.cm“3 was used in calculating the elastic constants.
The results for the second order elastic constants are presepted ;n

6/

Table 1 and compared with the values of Schmunk and Smith=" and Kamm

~and Alers.lg/ . l
For the particular orientation of our crystals, we were able to

obtain eight measurements of four pure mode velocities. The errors pre-

sented with our results in Table 1 represent the consistency of these

eight measurements as derived from a least squares fit of the data. The



Table 1. The second order elastic constants of Af at 25°C. The
errors indicated in column 2 represent the consistency
of the measured values. (units of 1012 dyn.cm-2)

c This Experiment Schmunk and Smithg/ Kamm and Alerslg/
Ci; 1.0675 + 0.0005 1.0732 ' 1.0686
C)) 0.6041 + 0.0008 0.6094 0.6075
Ch 0.2834 + 0.0004 | 0.2832 0.2824
L o +i  +c 1.1192 1.1245 1.1205
2°11 T 2°12 T Pas ¥ y .
1 1
11 - 12 0.2317 0.2319 0.2305
L +% 0.7585 | 0.7640 0.7612
3°11 T 312 . ' . .

71
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absolute error in the measured elastic constants (cll’ 5011 + %012_+ 044,
044, %cll - %012 of Table 1), allowing for uncertainties invthe transit
time measurement, is approximately + 0.5%. The measured elastic -constants
in Table 1 agree within this figure. The fact that the consistgncy error
is much‘lower than the absolute error is taken as a final indication that
the Al specimens were well-oriented single crystals with no important
lineage structure.

During the course of the investigation, it was decided to‘neutron
irradiate two of the Al crystals. The irradiation took place in the CP-5
reactor at the Argonne National Laboratory. The integrated exposure was
approximately 5 x 1018 neutrons per cm2 with energy greater than 100 keV.

The temperature of the crystals was neither monitored nor controlled

during the irradiation.

B. Ultrasonic Interferometer

For measurements of thé natural sound velocity stress derivatives,
we have used the two specimen uitrésonic interferometric tecﬁnique. The
interferometer is illustrated in Fig. 1. The oscillator and receiver
were contained in a single unit, the Matec attenuation comparator. The
Tektronix 585A oscilloscope was used to observe the rectified‘signalvout-
put of the M;tec unit. This allowed observation of an expanded region of
the echo pattern at any desired fransit time. The method is basically the

14/ 15/

same as that described by Hiki and Granato—' and by Swartz .= We give
here a brief description together with a closer analysis of some aspects
of the measurement found to be particularly important in this experiment.

The generation of an ultrasonic interference pattern can be

described qualitatively as follows: - Quartz transducers were attached to
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Fig. 1.

The ultrasonic interferometer. The oscillator
and receiver are contained in a single unit,

the Matec attenuation comparator,
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both specimens, and the same pulse was applied to each. The two speci-
mens were polished together and, hence, the path lengths were well matched.
If thergemperatUre and pressure were the same for the two specimens, Fhe
wave.velocities'would be identical. Hence, the two echo patterns obtained
would also be identicai. When viewed in parallel, they would simply add.
Now, if a temperature differénce of a few degrees centigrade was set
between the specimens, the resulting wave velocity difference would be suf-
ficient to cause a readily observable interference pattern.

Temperature control was an important aspect of the experiment. It
was necessary to be able to detect small changes in the temperature dif-
ference between the two specimens and to control the rate at which this
temperature difference changed. To measure small changes in the tempera-
ture difference, we used the following technique: Chromel ~ Advance (5 mil
diameter wire) thermocouples were attached to the Speciméhs. The sensi-
tivity of these thermocouples was nearly 60 microvolts per °C. The emf
representing the temperature difference was measured byAa Minneapolis -
Honeywell 2768 microvolt potentiometer. The unbalance potential of the
potentiometer was then fed into a Leeds and Northrup dc amplifier and
AZAR strip chart recorder. The amplifier - recorder combination was set :
for a full gcale deflection of 10 microvolts. With this arrangement,
temperaturelchanges of approximately two millidegrees could be detected.
The rate of change df the temperature difference was controlled as
foliows: The stressed specimen was effectiveiy at room temperature. The
second specimen was placed in a furnace which, in turn, was immersed in
an ice bath. By adjusting the current in the furnace coils, the tempera-w

ture and temperature rate of change of this specimen could be controlled

as desired between approximately 0°C and 20°C.
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The application of hydrostatic pressure and uniaxial compression
was accomplished as follows: The hydrostatic pressure was obtained
simply by using nitrogen tank gas. The pressure was measured by a Heise
bourdon gage. The uniaxial compression was applied by a Tinius Olsep
universal testing machine operated in the constant load mode. The mechine
calibration was checked with a Morehouse proving ring and was found to
be accurate to better than 0.57% at full load. During loading the crystal
being stressed was placed between indium shims, and the stress was applied
through a ball joint to insure uniform uniaxial compression. For each
type of loading, the stress range was approximately 0-50 kgecm-z.

In the formulation of Thurston and Brugger,ll/ the third order

. ) 2
elastic constants are expressed in terms of BP(pow )T,P=0 where W is

the natural velocity defined previously. This can be written as

3, .2 L
P 1 p=0 = (W @ . (13)

T,P=0

Here w is the second order elastic constant (powz)P—O’ If we consider W

to be a simple thermodynamic function of two variables, W = W(P,T), then

1 awl 1 W T
=l = - = | I (14)
Wo oP T Wo oT P oP W ‘ _

Equation (14) indicates the procedure we followed in measuring the

natural velocity stress derivatives using the two specimen interferometer.

We first measured %; %% for a particular sound mode. This could be
o IP

considered as a calibration of the interferometer for this mode. We then

measured aT/ale for the various stress derivatives of the mode.
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W
o P
carried out according to the method of Espinola and Waterman.l3 They

Direct measurement of the temperature derivative was

18

relate the velocity difference of two superimposed waves to the observed
interference condition. If the velocity difference is caused entirely

by a temperature difference between the two specimens, we can write

@15)

Here f is the frequency; e, is the round‘trip transit time; j is the node
index; and n is the echo index. We measured the temperature difference

h node is at the nth echo.

AT between the two specimens for which the jt
It was observed that 1/n is a linear function of AT. This gave the
expected linear dependence of wave velocity on temperature. The tempera-
ture range for each measurement was less than 10°C. |

These results can be expressed in terms of the temperature dependence

of the second order elastic constant, c = pvz. Here p is the density, and

v is the actual sound velocity. Hence, the temperature dependence of c

is given by
dc 2 oW
e c — -« (16)
oT P Wo oT P o
Here @ is the coefficient of linear thermal expansion (0.234 x 10-4 °C-1

for Al at 25°C).Zg/ ) )

The résults for 1
Wo oT P

propagated in our specimens are presented in Table 2. The results for

for the four sound modes which could be

ac/arlp are presented in Table 3 and are compared to the results of Long

and Smiéﬁgl/ and Kamm and Alers,lgf Kamm and Alers present their results
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in tabular form, and we have calculated the derivative from their high
temperature values.
Certain inconsistencies were present in our data for the temperature
derivatives. It was found that these could be explained by considering
thé existence of an initial phase difference between the two waves. The

13/

analysis of Espinola and Waterman—' has been extended to account for

such effects. This work is presented in Appendix A. Also, difficulties
were encountered in measurements on the (110) longitudinal mode wave
velocity. 1In particular, repeated measurements of the temperature deri;é-
tive of this mode showed excessively high scatter (approximately 157 of
the final value). It was decided to use only the results for the tempera-
ture derivatives of the other three modes. A value for the (110) longi-
tudinal mode was calculated from these three modes. This calculated value
fell well within the range of the measured values. We have no definite
explanation of the difficulties with the (110) longitudinal mode. Rgsulté
for the other three modes were satisfactory. The error presented with

our results in Table 3 represents the range of values observed for these

H

three measured temperature derivatives.

We then mc;su;ed BT/BPIW.. To do this we picked a convenient inter-
ference pattern as described above by setting the appropriate temperature
difference AT between the two specimens. We defined the interfergnce )
condition éxactly by noting the relative echo amplitudes near a particular
node. I1f the stress on one specimen was changed by 6P, the interference
pattern changed. That is, the relative echo heights near the observed

node changed. An appropriate change in the temperature difference,

8 (AT), would then return the system to the initial interference pattern.
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Table 2. The temperature derivatives of the natural

velocities of Ag.

These can be considered

as a calibration of the interferometer for

the various modes.

, Sound Mode

?11
Fu* %Cu + Cus
%011 - %C12

c

44

(units of 10-%4 °c-l)

-
a3l

- 1.53

- 1.47

- 2.95

- 2.44
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Table 3.

The temperature derivatives of the second order elastic
The errors indicated in column 2
represent the range of the measured values as described
in the text. (units of 108 dyn.cm'2.°C'1)

‘constants of A4.

" This Experiment
F

- 3.51 + 0.10
- 0.69

- 1.45 + 0.05

- 3.55

- 1.42 4 0.05

-1.62

Long

&
3T P

and Smithgl/ Kamm

and Alerslg/

--3.44
- 0.98
- 1.43

- "’3". 64

- 1.23

- '3t75
- 0.55

- 1.43

- 3.58

- 1.60

- 1.65

¥4
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By making successive changes of this type about the initial interference
pattern as a null condition, we determined §(AT)/8P = bT/BPIw.

The sensitivity of‘the two specimen techﬁigue depends upon_the
smallest wave velocity change which will produce an observable change in
an interference pattern. This, in turn, depends upon the structure pf the
interference pattern and the position in time at which measurements are
being obtained. In general, the sensitivity is higher at ionger transit
times. We have observed that changes of the order WM =2 x 10-'6 can be
detected for waves which have spent 100~150 microseconds in the crystal.

This completes the description of the ultrasonic interferometer.
Extensive measurements by Swartzgg/ on NaCl have demonstrated that the
two specimen interferometer gives reliable results compatible with one
specimen techniques. The two.Specimen technique has the distinct advan-
tage that Smallhéemperature drifts of the stressed specimen will not
obscure the sound velocity change with pressure. The two specimen tech-

nique depends explicitly on the temperﬂture:difference between the two

specimens. It is irrelevant which specimen actually changes temperature.
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III. EVALUATION OF THIRD ORDER ELASTIC CONSTANTS

A sound wave can be described by a propagation direction N, a
di§p1acemeﬁt (or polarization) direction U, and an effective second order
elastic constant, w = (powz)P=0' For an unstressed configuration, w can
be expressed in terms of a linear combination of the second order elastic
constants defined by Eq. (9). For the particular orientation of our
crystals, we were able té propagate five different pure mode sound waves,
two longitudinal and three transverse. We measured the hydrostatic
pressure derivatives of the natural velocities of these five waves. We
also megsured nine uniaxial stress derivatives of the five natural
velocities. These 14 experiments are characte;ized in Table 4.

Thurston and Bruggerlz{ have given explicit relations between the
measured quantities g%(powz)T,P=0 and the second and third order elastic
constants for the 14 experiments described in Table 4. These relations
are presented in Table 5. 1In Table 5, the superscript T indicates an
isothermal elastic constant.

We first measured the hydrostatic pressure derivatives of the five
natural sound velocities, expts. 10-14 of Table 5. Measurements were taken
on two sets of crystais, and the results for each mode were averaged.

The natural sound velocity change for a typical hydrostatic experiment
is illustrated in Fig. 2. The results were expressed in terms of three
linear combinations of five of the six third order elastic constants,
(C111 + 20112), (350111 - %0123), (C144 + 2C166). These three numbers
were determined by a least squares fit of the five measurements, The
results are p;esented in the first row of Table 6. The error indicated

with these results represents the consistency of the five measurements.



Table 4. Characterization of sound velocity stress experiments,

Propagation Displacement Stress 2
Direction Direction Direction w={(p W)
. o “p=0
Expt. No. N i} M
[110] [110] [001] L+l s+
1 : 2°11 T 2712 4b
2 [110] [170] [001] L L
. 0] . : 2711 ~ 2*12
3 (110] oo1] {oo1] Cus
4 (oo1] {oo1] (110] Ciq
5 [001] [110] (110] Cus
6 | [oo1] [170] [110] C.y
: - 1 1
7 tl,l_o] (110] [110] 211 + 3%12 * 44

9z



Table 4.

Expt. No.

10
11
12
13

14

(continued)

(110]
[1;0]
foo01]
{o01]
[11oj
[110]

{110]

o
=1
~™ ™~ ~— -~ — —
s B ¥ Y 9 % 5
— o o F' — Ll SI |lc

|1

[110]
(110]
Hyd.

Hyd.

Hyd.

Hyd.

N Ar—-
N Av—-

11

Lt



Expt. No.

Table 5. Natural sound velocity stress derivatives as a function
of second and third order elastic constants.

FRPRE N
3 Po¥ )1 peo

2wa

2wa

- 2wb

2wa
Iw(a-b-2c)
'Q(a-b+2c)
w(a=-b+2c)

w(a~b=2c)

2wa

1 1 | L
+ <aC 1‘+ 2(3a b) C -

2511 112 ~ 2PC123 - ¥C

144 + 28 Cpee

1

1. .1 -
+ 28 T Z(eb) C

1
+ ibC

112 123

+ aC, 44 + (2-b) Cle6

+ aC 1 + (a-b) C

11 112

1 1 ) .
+ 2(3 b) 0144 + 2‘38 b) cl66 - 2¢ 0456

1 1
+3(a=b) C; ., + 7(38-b) C o + 2¢ C o

1 1
+ Z(a-b) C111 + Z(Sa-Bb) c + aC144 + (a-b+4c) C

1
112 ¥ 75323 166

1 1 1
+5(a-b) Cppy + 7(atd) Cppy - 38C) 55

1 L(3a-
+ z(a-p) C144 + 2(3a b) c166 + 2¢ 0456

8¢



Table 5. (continued)

3, .2
. (P W")
Expt. No. 0" ‘T, P=0
10 -1-.2w(29-_b) + (2a-b) [°1_11 + 2c112]
11 -1-_2w(29-b) + (2a-b) [C144 + 2c166]»
12 -1-2w(2a-b) .+ (2a-b) [%c111 + 26,5 + 4C 55 +Cppp t 20166]
13 '-1-2w(2a-b) + (2a-b) [A;clu - %c123]
14 | -1-2w('23_-b) + (2a-b)~[c144 + 20166]
T T T
. - €12 _ %t c ol
- LT T, °' N ; T T, ' T4
3B7(Cy;, -Cyy ) 3B7(C,; =Cqp ) AN
T _ T T
‘- "2
CHT = 1.0339 x 1012 dyn.cm 2,, chT = 0.5104 x 1012 dyn.cm

6C
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Fig. 2.

Natural velocity change vs. hydrostatic pressure

44

separation between the curves for increasing and

for a C,, mode (Expt. 14 of Tables 4 and 5). The

decreasing pressure is due to a thermal lag between
the surface and bulk of the specimen of approximately
0.1°C. To reduce ény effect on the measured slope,
the-reSults for increasing and decreasing pressure

werae averxaged.
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Initial uniaxial stress measurements were made on the two sets of
crystals. The stress range was approximately 0-40 kg-cm-z. Even in this
small stress region, we expected that dislocation motion might occur.

Hiki and Granqtolﬁ/ found that an initial prestress was effective in elim-
inating dislocation effects in measurements on noble metals. That method
was also attempted here. The sound wave attenuation was monitored during
the prestress, and ;o significant changes were detected. However, it
became apparent that dislocation effects were present in the initial uni-
axial data.

The problem of determining whether or not dislocation effects exist
in a particular uniaxial experiment or series of experiments is quite |
involved. Initially, it -was hoped that for any particular experiment a
dislocation contribution would be a ;on-linear_function of applied stress,
easily distinguishabhle from tﬁe paténtly linear lattice effect. Hiki

14/

and Granato— .obgerved a highly non-linear velocity change at stresses
above their prestress level. However, Salama and Alérslé/ discounted
this simple notion. Their measurements on hardened Cu crystals showed
that the uniaxial data could be linear, reproducible, show no hysteresis,
and give no attenuation change with applied stress and could still contain
a dislocation contribution. However, they suggested that a suitable
criterion for the absence of dislocation effects in a series of uniaxial
measurements was that hydrostatig pressure derivatives calculated from
the uniaxial data be in agreement with the directly measured values.

We have adopted that criterion here. This is reflected in the
method of data‘reduetion. The nine uniaxial stress experiments give

information on eight linear combinations of the six third order elastic

constants. The uniaxial data could be used alone to obtain a set of
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third order elastic constants. The three linear combinations related to
the hydrostatic pressure derivatives could then be calculated from this
set. If substantial agreement could be obtained between the measured and
calculated values of these three linear combinations, then it would be
proper to combine all the data and obtain a self-consistent set of third
order elastic constants and hydrostatic pressure derivatives.

The dominant characteristic of the initial uniaxial data was that
expts. 1, 2, 3, 4, 7, and 8 gave a linear dependence of the change in
natural velocity with stress while expts. 5, 6, and 9 did not. A typical
linear natural velocity change is illustrated in Fig. 3. 1In the non-
linear experiments, a hysteresis effect was observed which was qualita-
tively reproducible. A typical non-linear natural velocity change
including hysteresis is illustrated in Fig. 4.

The six linear experiments were related to five of the six third
order elastic constants. These were the same five constants which
determined the hydrostatic pressure derivatives. The initial uniaxial
data ﬁrom the six linear experiments was used to determine these five
elast;c constants by a least squares analysis, The set of third order
constants so determined was totally inconsistent with the measured hydro-
static pressure derivatives. For example, after a particular set of
me asurements, we obtained (C111 + 20112) = =-8.20 x 1012 dyn-cm-2 compared
to the measured value of -17.10 in the same units. Dislocation effects
were obviously present in the non-linear experiments. It was concluded
that dislocation effects must also have been present in several of the
linear experiments.

One set of Al crystals was then neutron irradiated as described

in Sec. IIA. The uniaxial stress measurements were then repeated.
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Fig. 3. Natural velocity change vs. applied uniaxial stress
for a C,, mode (Expt. 3 of Tables 4 and 5). The
experiment was begun with a 4 kg-cmn2 setting stress

applied to the specimen.
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Fig. 4. Natural velocity change vs. applied uniaxial stress
for a typical non-linear mode (Expt. 9 of Tebles 4
and 5). The observed hysteresis is attributed to

a dislocation effect,

i1
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Results for expts. 2, 3, 5, 6, and 9 were essentially unchanged. The
hyéteresis effects observed in the latter three of these experiments were
still present. The result for exptsi--1, 4, 7, 8 changed substantially.

The measurednnatural velocity changes with stress all became algebraically
larger. This 'is the direction of change one would expect if dislocation
effects had been eliminated. The six linear experiments were again ana-
lyzed to obtain a least squares fit for five of the six third order elastic.
constants. The three linear combinations of the third order élastic
constants related to the hydrostatic pressure derivatives calculated from
these results agreed almost exactly with the measured values, These combi-
nations are presented in the second row of Table 6. The efror presented
represents the consistency of the six uniaxiél measurements.

-Results of expts. 5, 6, and 9 on the irradiated crystals still
~ showed hysteresis effects similar to that illﬁstratgd in Fig. 4. It is
very likely that thg observed hysteresis effects are associated with
microscopic plastic flow. Some.dislocatidn motion must still be occurring
in the irradiated crystals. However, because of the excellent agreement
observed in Table 6 between uniaxial end hydrostatic measurements, we
concludelthat dislocation effects have been effectively eliminated from.
the six linear uniaxial exéeriments.

We then combined the acceptabie uniaxial and hydrostatic data to
obtain a self-consistent set -of third order elastic constants and hydro-
static pressure derivatives. The data uéed in this calculation ere sum-
marized ih columns 2-4 of Table 7, Results for the natural velocity stréss
derivatives (Eq. (14)) are presented in the fifth column and for

§%(pow2)T P=0 (Bq. (13)) in the sixth column of this table. The errors



Table 6.

Measurement

Hydrostatic

Uniaxial

The third order elastic constants related to sound
velocity hydrostatic pressure derivatives. The
errors indicated represent the consistency of each
set of measurements.  .(units of 1012 dyn, cm~2)

| 1 1 ~

G * %2 2% " 2% €144 * %166
- 17.10 4 0.05 - 5.60 + 0.07 - 6.99 + 0.04
- 17.11 4 0.04 - 5.57 4 0.02 - 7.06 + 0.01

6¢€



Table 7. Experimental data and results for natural velocity stress
derivatives. The errors indicated in column 4 represent

the range” of the measured values.

loW or L& _3_(p w‘2)

. W eTlp 2P lu W 3kly 38 Po" )1,p=0

Expt. No. (dxn.cm-z) (°C71)‘ (bc.dyn-l.cmz) (dyn-l.cmz) (dimensionless)
1 1.1192x10%2 - 1.47x107% - 1.7440.10x107% - 2.5640.14x1071% - 5.7340.32
2 0.2317 - 2.95 0.66+0.04 1.9540.13 0.90+0.06
3 - 0.2834 - 2.44 1.7840.07 . 4.3420.16  2.4640.09
4 1.0675 - 1.53 0.5140.05 - 0.78+0.08 - 1.6740.16
7 1.1192 - 1.47 1.0440.07 - 1.530.10 - 3.4240.22
8 0.2317 - 2.95 0.23+0.02 0.68+0.04 0.3240..02
10 1.0675 - 1.53 1.8040.10 2.7540.15 5.8740.32
11,14 - 0.2834 - - 2.44 1.4040.02 3.4240.05 1.94+0.03
12 1.1192 - 1.47 1.98+0.02 2.9140.02 6.5140.05
13 0.2317 - 2.95 ©1.0140.05 2.9840.15 1.3840.07

oy
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- presented with the measured BT/ale represent the range of several

me asurements for each mode (on the irradiated crystals only for uniaxial

measurements).  These numbers are simply scaled to obtain the qfror

presented in the fifth and sixth columns. From the relations of Thurston

and Bruggerlz/ (Table 5) and the measured quantities g%(powz)T,é=0 ) ﬁe‘

obtained the five third order elastic constants related to the hydrostatic:

and linear uniaxial data by a least squares analysis. The final set of

third order elastic constants is presented in Table 8. The errors indi-

cated in Table 8 represent the range of measured stress derivatives.

These were obtained by substituting various combinations of the maximum

and minimum pressure &erivatives in the least squares computer program

and noting the range of thifd o;der glastic constants so calcuiated.
Although expts. 5, 6, and 9 were gro#sly non-linear, certain restric-

tions on the stress derivative could be deduced. It was clear that the

derivative was smali in each case. Assuming that the constants C144 and

.C were well 'known, a fair estimate’of 6456 could be obt;inéd; This

166

value of C4 is presented in Table 8.

56

The final, self~-consistent set of third order elastic constants.v
was used to calculate the hydrostatic pressure derivatives of the second
order elastic constants, ¢ = pvz. From the definitions of ¢ and W, we

" determine that

dc ¢ d 2
oP T,P=0 3BT oP o »

. T,P=0

. -Here BT is the isothermal bulk modulus. The second term of Eq. (17) was
calculated from the relations in Table 5 (Expts. 10-14) and the QeaSured

elastic constants. The results are presented in Table 9 and compared to



Table 8. The third order elastic constants of
At at 25°C. The errors. represent the
range of measured stress derivatives
as_discussed _in the text. (units of
1012 dyn.cm'z)

o
il
t

111 10.76 + 0.30

c = - 3.15

12 0.10

I+

Gy = + 0.36 £0.15
CW; - - 0.23 + 0.05
C1e6 - 3.40 4 0.10
Chsg = - 030 £0.30
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Table 9. The hydrostatic pressure derivatives of the second
order elastic- constants, c = pv2, of A4. The error
presented with the results of the experiment is
consistent with the error associated with the final
set of third order elastic constants.

A
o Iy
, 6/
c This Experiment Schmunklang Smith—
c,, 6.35 + 0.23 7.35
cyy | 3.45 £ 0.16 4.11
Cuy ©2.10 £ 0.12 2.31
D S .00 4 0.31 . 8.04
2117 28127 Cuy .00 + 0. \
L i 1.45 + 0.10 O 1.62
2%117 2%12 1.45 £ 0. .
L. + % 4.42 + 0.18 5.19
3¢11% 3C12 +42 1 0.
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the results of Schmunk end Smith.ﬁ/ - The error presenﬁed is cénsistént
with the error associated with the final set of third order constants.

Our values for the pfesshre derivatives of the shear constants

(044, %Cll-%clz) are in fair agreement with those of Schmunk and Smith.
For the 1ongitudina1 constants (Cll’ %011+%c12+044)’ our results are sig-
nificantly smalle;. We have no definite explanation for this. It is
interesting to nﬁte,'however, that a similar comparison can be made
regarding noble metals between work at this laboratory (Hiki gnd GranatoL&/)
and at Case-Western.Reserve (Daniels and Smithi/). The principal dif-
ference between the two experimental techniques is the pressure iange, the
. Case group working at pressures up to 10 kbars. This might adversely
affeqt the specimen-transducer bond. In the following section we investi-
gate this comparisbn further by using the pressure derivative results to

calculate the lattice_thermal'expénsion.
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IV. THERMAL EXPANSION AND THE GRUNEISEN PARAMETER

Within the anisotropic continuum model, the thermal expansion can
be calculated from the third order elastic constants. For a cubic crystal,
thé thermal expansion-is isotropic and can be expressed in termé of the
preésure derivatives of thé three second order elastic constants. Hence,
it depends directly upon the three linear combinations of the third order
elastic constants previously discussed (Table 6). Comparison of a measured
and calculated thermal expansion should provide some information on the
magnitude>of these three third order constants. Such a program has been
discussed elsewhere,gé/ but a short account will be given here for com- -
pleteness. IA further discussion will glso be given on comparisons at low
temperatures.

To calculate the thermal expansion, we used the quasiharmonic
approximation. This means that all thermodynamic and elastic properties
of a crystal are assumed to be determined by the harmonic lattice fre-
quency distribution and its dependence on volume or, more generally, on

strain. This dependence is usually specified by defining the scalar mode

Grlineisen parameters,

dv
v i
Yi ¢ 7 vy dv ° (18)

-

Here V is the volume of the material, and \Z1 is the frequency of the ith

normal mode. In the quasiharmonic approximation, vy depends only on the
state of deformation and is not an explicit function of temperature.gﬁ/

Under this assumption, the thermodynamic Grlineisen parameter can be

defined as a weighte& mean of the individual mode parameters, namely,
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3N 3N
Y= ) oy L ¢ - 19)
i=1 '

i=]

Here C, is the specific heat of the ith normal mode. y is then directly

25/

related to the thermal expansion as—=

Yy = favnT/cV = svns/cp . (20)

Here V is the molar volume; BT and Bs are, respectively, the isothermal

and adiabatic bulk moduli; C, and CP are, respectively, the specific heats

\'
at constant volume and constent pressure; and § is the volume thermal
expansion, We see that the calculation of the thermal expansion basically
reduces to the calculation of the various Yi and their weighted meen y.

It is convenient to compare measured and calculated values of the thermal

expansion through the respective GrlUneisen parameters.

In the anisotropic continuum model, Eq. (18) becomes

B oc
_ 1,1 T i
Yi T "gt2 c, ® |g 1)

Here BT is the isothermal bulk modulus, and ¢y is the effective second
order elastic constant of the ith mode. In the quasiharmonic model, the
mode parameters are not explicitly temperature dependent. However, the
thermodynamic parameter does depend on tempe;ature through the weighting
factors (épecific heats ci). Expressions for the high temperature and
low temperature limits of the thermodynaﬁic GrUneisen parameter can be

obtained from Eq. (19). At high temperitures, Ci= k (the Boltzmenn

constant) for each of the 3N modes, and
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3N
)

YH= 3IN Y; - (22)
' i=1

At low temperatures, by assuming the continuum model, it can be shown

thatgg/
N 3N
_ 2: Yi 2: 1
wo Lo 3 3 (23)
i=1 Vi i=1 Vi ,

Here A\ is the wave velocity of the ith mode. The Grlineisen parameter
at intermediate temperatures is: usudlly calculated by teking -account of
the variation of the specific heat with temperature and the assumed fre-

quency distribution.

Recently Bruggergl/ has discussed the tensorial mode Grlneisen
parameters
Ay
: 1 i
vw* = - (24)

v; \on
i %Tmo

which are based upon the general Lagrangian strain dependence of the
normal mode frequencies. This parameter is not intrinsically quasi-
harmonic as an explicit temperature dependence is allowed. However, this
dependence is not utilized, and the following calculaéion can be con-
sidered quasiharmonic.'vgdapting the anisotropic continuum model and

op

appropriate boundary conditions, the y;  can be written as

g _ __1 a(powiz)- . (25)

Y
i 2wi arbﬁ T, no
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Here W, is the natural velocit f the ith ode, and w, = (p W 2)

. W, is ural velocity o mode, ; = (W neo

By solving the wave equation of small amplitude waves in a homogeneously

de formed medium, Thurston and Bruggeril/ derived the expression

2 - -\ =S
powi UU = [auvtmn + (6W + ZT‘VW) Cmunw ] NmNnUv : (26)

Here N and U are the propagation and polarization vectors of the ith

normal mode, and t is the thermodynemic tension (tmn= po(aU/aThn)S =
po(BF/arhn)T where U and F are the internal and free energies per unit
mass of the material). The bar over a symbol indicates that the quantity
is to be evaluated in the homogeneously deformed state. By differentiating
Eq. (26) with respect to Tbﬁ and evaluating at 7m=0, one obtains an ex-

pression for the tensorial mode GrUneisen parameter

B _ __1 [ T ST _]
Yi 2wi ZwanUB + caan_+ Caﬁmunvuuuv NmNn
(27)
with
w, =¢cS NNUU (28)
i mumv m n nv :

Summation over repeated indices is always implied. Consecutive super-
scripts such as ST indicate the nature of the successive derivatives
employed to obtain the elastic constant, adiabatic (8) or isothermal (T).

For cubic crystals, it can be shown that

1,11 22 33
Y; = 30y vy vy ) (29)

and the explicit expanded form is expressed as
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(1) T T 2.2 2.2 2 2
vy = - (6w) [2»: +C 0 2,0+ (G420, ) (N CU TN, U, S U )

2 2 2
+ (€20 o) [(N2U3+N3U2) + WU N U7+ (N 04N, ) ]

+ 2(C ,4%2C, ;) (N,N;U, Uy + N3N U,U, + N1N2U1Uz)] (30)

with

S 2.2 2.2 .2 2 2
w = C11 (N1 U1 +N2 U2 +N3 U3 ) + 044 [(N2U3+N3U2)

2 2 s
£ U 07+ @ 0,07 ] 20,8 G0, + N Ty,

+ NNUU) . . (31)
The components of N and U refer to the appropriate vectors for the ith
normal mode, and the elastic constants are expressed in the contracted
notation. All third order constants are of the type ST.

The mode Grlineisen parameters for aluminum were calculated as
follows: There exist one longitudinal-like and two transverse-like
elastic waves for a given direction N. The effective elastic constants
w and, hence, the polarization vectors U of these waves can be conven-
iently determined by solving the elastic wave equation in the form of
Quimby and Sutton.gé/ The y; can then be calc;lated for any mode using
Eqs. (30) and (31) and values of the second and third order elastic

constants. The Yy and y, can then be calculated from Eqs. (22) and

(23). In computing these sums it is sufficient to consider prépagation
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directions in a [100] - [110] - [111] triangle on the Debye sphere because
of the high symmetry apparent in Eqs. (30) and (31). A grid over this
trianglg dividing it into 177 near}y eguai areas aﬁd having evgluation
points at the centers of these areas was constructed. This means that
25!488 modes were considered. Results for Yy and Yy, calculated from our
measured values of the third order elastic coﬁstants (Table 8) are pre-
sented in the first column of Table 10.

An alternate procedure for calculating GrUneisén-parameters based

directly on Eq. (21) has been developed by Schuele.gg/

For cubic crystals,
this formulation must be entirely equivaelent to the one described here,

but the calculations are quite different. Use of both procedures provides
a convenient check on the computations of each. Use of the Schuele
program and our pressure derivatives (Table 9) gave the same results as
our program expressed explicitly in terms of éhe third order constants.
Schuele's program was also used to calculatg Yy and v, from the pressure

/

derivatives of Schmunk end Smithé (Table 9). These results are pre-

sented in the second column of Table 10.

We also computed Yy and L, from the measured thermal properties
according to Eq. (20). For Yy thermal values were taken at 25°C.
The particular values used were as follows: the thermal expansion of

20/ 4 ,

Taylor et al.=2 (g = 0.702 x 10™* °c”'), the bulk modulus measured

here‘(Bs = 0.7585 x 1012 dyn-cm-z), the molar volume from the x-ray

lattice parameter data of Figgens et al.ég/ (V = 10.004 cm3 per mole),

and the specific heat of Giaque and Meadsél/ (CP = 24.34 x 107 erg. °C-1
per mole). The Yy computed from these values is presented in the third

column of Table 10.
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At low temperatures, contributions to the thermal expansion and the heat
capacity arise from both the lattice and the electron gas. Equation (20)

can be separated in the forng/

1
Y= CP (c£Y£ + ceYe)

with (32)
Y, = zB v/c » Yo =B, BgV/C, .

Here sub={ refers to the lattice, and sub-e to the electron gas. We must

compute Y= Yy 88 it is this quantity which is calculated from the elastic

data. At low temperatures, the thermal expansion and the heat capacity

33/

depend on the temperature as==

B ‘(or C) = AT + BT3 . (33)

The linear term in temperature is a measure of the electron gas contribu-
tion. The cubic term in temperature is a measure of the lattice contribu-
tion, and this term must be isolated. The partiduiar values used were

as follows: the thermal expansion of White as reported by Collins and

White3 3/ ((B/T ) =2,6 x10 -1l °c” ), the bulk modulus at 0°K of Kamm
and Alersl- (B = 0.7938 x 1012 dyn-cm- ), the molar volume.from the
lattice parameter data of Figgens et al.ég/ extrapolated to 0°K (V=9.8724

cm3 per mole), and the specific heat of Phillips 34/

- 3 ; '
ergs. °C 4 per mole). The YL computed from these values is also presented

(/%) =2.486 x 10°

in column 3 of Table 10.
There are two comparisons of interest in Table 10, the absolute
magnitudes and the dispersion (YH - YL). The continuum model should give

excellent agreement between the elastic and thermal values of Y

\\



Table 10.

From elastic data:

This Experiment

2.27

2.33

The thermodynamic Grlneisen
parameters of Aj.

From elastic data:
Schmunk and Smith6/

——

o,

2.56

2.60

From thermal data:

2.19

2.45

(49
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Unfortunately, the comparison for Yy, is difficult to assess due to large
uncertainties (approximately 10%) in the measured thermal expansion.
Agreement for Yy should be questi;nable as the high fréquency lattice
modes must be considered. However, results for noble metalsgg*gi/ show
that good agreement is obtained between elastic and thermal values of Yy
If this agreement could be expected for close packed metals in general,
the values of Yy in Table 10 would favor ouf e}astic data versus that of
Schmunk and Smith.é/ With regard to the dispersion (YH - yL), Barrongg/
has shown that for a cubic, close-packed lattice with centrai forces
between nearest neighbors ohly, (YH - yL) = 0.30. Also, this difference
becomes smaller when more distant neighbors must be taken into aécount.
Measurements by Carr et al.él/ for Cu agree closely with this result.
They obtain (YH - yL) = 0.28 from thermal data. Elastic data will give
(yH - YL) = 0.20. This is consistent with the observation of Hiki angd
Granatolﬁ/ that the elastic properties of the noble metals are determined
primar?ly by the exchange repulsion between ion cores. In aluminum, the
elastic properties are determined primarily by the conduction electrons.
Hence, one would expect that in a force constant picture distant neigh-

bors would be of major importance. It is interesting to observe in

Table 10 that both the thermal and elastic Grlineisen parameters give
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V. FORMALISM OF ELASTIC CONSTANT CALCULATIONS

At T = 0°K and in the absence of zero-point vibrations, the
X /
elastic constants of a solid have a well defined relationship to the lat-
tice energy. This has been discussed previously (Eq. (9)) but can be

simply restated as

.. e
ijklmn, . ° anij aqd. a'qm .o

(34)

Here E can be defined simply as a lattice energy per unit mass and is a
function of Strain only. At T = 0°K, we need not djstinguish between an
internal and a free energy or between an adiabatic and isothermal elastic
constant. Equation (34) can be considered as a basis for elastic constant
calculations in terms of atomic models of lattice cohesion.

The elaslic constants of Bq. (34) are those which have been defined
gy Brugger.g/ A.calculation in which these quantities are computed
directly would be categorized as a finite strain formulatiom. A finite
strain calculation would begi; with a dbscription of the lattice energy
in terms of volume and interparticle separation, E = E(V,Ir). Since”V and
x are known.functions of the Lagrangian strain tensor components nij’ tﬁe
derivatives of Eq. (34) could be set up in terms of a simple chain rule.
In any theory of atomic cohesiop, the lattice energy isAwritten as a sum
of terms, E = ﬁi + E2 + ... . Although certain of these terms may make
a negligible contribution to the cohesive energy, the higher strain
derivatives may still be large. In a finite strain approach, it is neces-

sary to analyze all possible contributions to the lattice energy and make

a consistent estimate of the dependence of each térm on the Lagrangian
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strain parameters. The finite strain approach has been used by Ghategg/

to calculate the eléétic constants of numerous alkali halides, and by

39/

Keating=" for calculations on the diamond structure.

An alternative formulation for the calculation of elastic constants

ﬁ2*££/ Fuchs constructed

from atomic models has been presented by Fﬁchs.
two shear deformations for which the volume was strictly conserved. Each
deformation could be expressed in terms of a single parameter. For a

cubic crystal, the lattice energy derivgtives with respect to these defor-
mation parameters were related directly to the two elastic shear constants

c'=¢C The Fuchs approach is based on the assumption

11 - Cyp @nd C,,-

that the lattice energy can be written in the form
E =E (x,v) +E,(v only) . (35)

Her; x describes a volume conserving deformation, and v is the relative
volume change CV/V°)~u The advantage of the Fuché'approach is that the
enexgy term E, need not be considered in‘the caiculation of the above
mentioned elastic shear constants. It is to be emphasized that this
would not be true in an explicit finite strain approach.

The Fuchs approach is particularly convenient in calculations for
metals for which the energy decomposition of Eq. (35) can be accomplished
in a4 reasonable manner, In fact, it turns out that,“fér metals, the energy
terms which depend primarily on volume afe the most difficult to calculate.
For example, for monovalent metals, the wave function of the lowest con-
duction electron state is known to be very flat in the region between

thé ions. The energy of this state should depend primarily on volume and

be relatively unaffected by a shear distortion of the lattice. The

N
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volume dependence would be given in a complicated way by a quantum
mechanical description of electron states. In calculating the elastic
shear constants in the approach of Fuchs, such a term can be conveniently

1

neglected. A further discussion of these considerations has been given -

by Huhtington.gg/

40,41/ concerned the calculation of the

The original work of Fuchs
second order elastic shear constants of the alkali metals and Cu. These
calculations were extended to polyvalent metals by.Leighﬁé/swho calculated -
the second order elastic constants of Al. Leigh's work will be extensive-
ly discussed in the following section. The Fuchs approach has also been

44/

applied;to the second order elastic shear constants of beta brass,—

1

"
Mg,ﬁi/ and alpha phase Cu and Ag alloys.ﬁé/ Attempts have also been made

to explain the pressure derivatives of the second order elastic shear

1=9/ the noble metals,é/

and Al and Mg.g/

constants of the alkali metals,

Calculated values of elastic shear constants are of interest
because they cén be compared to accurately measured quantities. This
gives a valuable opportunity to obtain infofpation on application of the
theories of inté?gtomic forces. The work of Fuchs has providéd two
quéntities for such comparison for cuﬁic crystals, the two second order
elastic shear constants.

Cousinsézj has extended the Fuchs approach to third order for
cubic crystals. By considering a genefal volume conserving shear defor-
mation, he has shown that there are exactly three third order elastic
sheér constants. He was able to obtain three appropriate deformations
which isolated these three third order shear consfants. The work of

Cousins has provided five quantities for comparison between theory and

experiment, the two second and three third order elastic shear constants.
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However, a complete extension of the Fuchs approach to the third
order for cubic crystals must proQuce seveﬂ independent energy deriva-
tives. That is, to the third order, there are seven independent qu;nti-
ties which can be obtained from consideration of the energy term El(x,v)
alone. The two new quantities which we will consider are effectively
volume derivatives of the second order shear constants. The presence
of a single derivative with respect to x will eliminate contributions
from energy terms of the type.Ez. The existence of seven independent

[

q%antities related to E. alone can be explained in an alternate way. Al-

1
tggéther, for cubic crystals, there must be nine independenﬁ energy de-
rivatives, the three second order and six third order Brugger elastic
constants., But in eliminating the effect of energy terms Ez(v), we
eliminate only the second and third energy derivatives with reépect to
y. Hence, seven quantities remain.

The Fuchs approach and the finite strain approach are related
through the strain dependence of the lattice energy. It is always
convenient to express this elastic strain energy in terms of Lagrangian
strain parameters and Brugger elastic constants. The energy derivatives
with respect to volume conserving shear parameters can then be expressed
in terms of a linear combination of Brugger elastic constants. The
explicit f;rm of the elastic st;ain'énergy for cubic crystals is pre-
sented in Appendix B.

We have determined the seven independent energy derivgtives of
a third order Fuchs approach for cubic crystals in a consistent fashion.

The seven derivatives are expressed in terms of linear combinations of

the second and third order Brugger elastic constants.
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We have used the precedure of Murnaghan.ﬁé/ The finite Lagrangian

strain tensor can be'written in the form

1
My = 2@u% - 85) (36)
where
aik=§'a-k-’ , 61j=,0.,‘~J . 37)
1i:2] ‘

Here a and r, are cartesian components of the initial and final coordinate
vectors a and r, respectively. The above definition of the Lagrahgian
strain tensor is completely identical to that of Eq. (7). The deformation
tensor can be constructed to describe a volume conservihg shear deforma-

i
tion, aik(X), or a simple volgme change, aik(v). Two such deformations

can also be combined to produce a shape change (x) and a volume ,change

(v) simultaneously. In this case

1/3

0y (6,9 = oy () oy ) = v a0 | (38)

Knowing the deformations aik(x,v), the Lagrangian strain components
nij(x,v) can be obtained from'Eq. (36). These can then be Subst;tuted
into the energy expression (Appendii B) and the derivatives with respect -
to x and v obtained directly in terms of linear combinations of the
Brugger elastic constants. The calculations are lebgthy but séraight-
forward and will not be éiven in detail.

TheAparticular deformatiﬁns'useq have beén chosen to distort the

lattice along directions of high symmetry. This has proven to be

especially convenient in treéting the energy of the electron gas. The
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first two shear deformations which we utilized (x1 and xz) are struc-
turally equivalent to those used by Cousins. The third deformation (x3)
has been constructed to produce a deformed lattice of higher symmetry |
than the.third deformation of Cousins. The functional dependence aik(x)
will also be diﬁferent than that of Cousins for two reasons. First,
Cousins (and Fuchs) express their deformations in terms of a parameter x
which approaches zero at equilibrium. However, this is only c;nvenient
if it becomes necessary to construct a series expansion in terms of ;'.
This is not required in our treatment, and we found that the calculations
are simpler when expressed in terms of a parameter which approaches
" unity at the equilibrium configuration., Aiso, we found it convenient
to construct the deformations in such a way that the aik(x) can be ob-
tainéd, one from another, by similarity trgnsformations in.terms of the
crystal coordinate axes.

The first deformation (xl) contracts the lattice along the [001]
direction and expands it in the plane perpendicular to this direction :

so as to maintain constant volume. The deformation is described in

48/

detail in Appendix C. Applying the procedure of Murnaghan—' we obtain
‘the following relations:
2 .
3E_ 4 a
Po 3x 2 3 C ! $39)
1 '0
93—E- = -390“-3(0 =3C,.,+2C.,,) (40)
Po 53| T 773 9111711271237 » A
ox i
1 '0
2 23B44C') + 2(C, . -C. ) (41)
- P 9 9¢“1117%123’ -

o 2
Bvaxl
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The sgcond deformation (x2) contracts the la;tice along the [111] di;ec:
tion and expands it in the plane perpendicular to thi§ direction so as
to paintain constant volume. If we let Rmi be the traqsform§ti6n which

rotates the [001] axis into the [111] ‘axis, then this deformation can be

obtained from the first by the similarity transformation

%n(®9) = Ry Ry (59

The deformation is described in detail \in Appendix C. We obtain the

following relations:

& | _ 4
Po o 2 = 3C (42)
2 1o :
e | . 20, .16, (43)
o 5.3 3 “44 "9 C4s6
2 lo :
33E = ﬁ(3B+4C ) + .li(c +2C ) ' (4%
Po 2 9 46’ T 91447 1667 - ‘
bvaxz 0 .

The third deformation-(x3) c;ntracts the lattice along the [110] direction
aﬁd expands it in the plene perpendicular ‘to this direction so as to
maintain constant Qol&me. It can also.be.obtéined.by a similarity trans-
formation from (xl) as shown above. The deformation is described in

detail in Appendix C. We obtain the following relations:
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(45)

= Lt
3C'43C,,)

OE | _ _2.c 1 -3c. : - -
Po L3 3(C743C,,) + 35(C11173C112%2C123) = Crg67C14s) - (46)
3 o '

EXo

1 4o 1 _ 1 '
Po 3vax. 2 F(4BH5C +4C, ) + 75(Cy11°C0q) + 3(Cy,,42C () - (47)
3

0

In the above relations we have used the notation C' = %Cu-c12 and

5

B = %Cll + %012' Note in the above that Eq. (45) is a linear combination

of Eqs.’ (39) and (42). Also, Eq. (47) is a linear combination of Eqs. (41)
and (44). AThus, Eqs. (45) and (47) will provide no new information bup
are convenient for the purpose of checking explicit calculations.

If an isotropic crystal is mistakenly analyzed as if it were cubic,
certain relations must exist among the cubic elastic constants. In partic-

ular, for the second order constants, we have the well known relation

c' =¢c,, (48)
In the third order, the;e are three relations among the six/elastic
constants. These can be written
Chs6 = (L/2)(Crgq = C1pp) (49)
Chse = (1/8)(Cyqq = 3Cpyp +26153) »  (50)
Ciag + 2Cpgq = (1/2) (€1 = Cpp3) - (51)
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Also, sipce the three deformations above can be obtained, one ﬁrom another,
by similarity transformations, the respective Fuchs-type derivatives
should be identical if the solid were isotropic. Combining Eqs. (48) - (51)
with Eqs. (39) - (47), we seeith;t this is exactly the case. ‘

The seven independent Fuchs relations, Eqs. (39) - (44) and (46),
can be recombined in linear combinations which are convenient to compare
to experimental results. These relations are presented in Table 11, and
will be utilized in this form in the following section.

As stated previously, in any elastic constant formulation to the
third order for cubic crystals, there must be nine independeht energy de-
rivatives. In the Fuchs approach, we consider only the seven derivatives
discussed above and summarized in Table 11. For completeness, we will
mention the two energy derivatives that have been neglected here. These

are

P, o = B , (52)

-B+$c +6C. . . 42C

11116€112+2C153) (53)

©
2|
|

These derivatives would explicitly involve energy terms of the type Ez
and would be more difficult to compute from atomic models of metallic

cohesion than the Fuchs derivatives.



Table 11.

Elastic Constant

C:

44

1
8(C 11" 3C112% 2C53)

The seven independent Fuchs relations to
the third order for cubic crystals. This
form is particularly convenient for com-
parison to measured quantities.

Fuchs Energy Derivative

3 2
4 Po OE
ox 2
1 'o
3 3%E
4 Yo 2
ax2 o
‘ 2
9 JE 45  E
16 Po __ 3 16 Po .
xl x_l
3
f% o O E 45 azg
o 3 16.Fo 2
‘ Ox o axz
.1 % .15 %
16 "o‘a 2 16 Po
X 1y Bxl
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Table 11 (continued)

Elastic Constant ) Fuchs Energy Derivative
" 3 2
1 9 Q'E O E

3B + 5(C1917.6133) 4 Po 7l " 3ee 2
oL , dvdx. ox
1 !
. 3 : 2

9 B ) 3B |.
3B + (Cp 4t 2C 66) 4Po T L 2 30,73
. . Bvaz ox. .

%9
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VI. A CALCULATION OF THE ELASTIC CONSTANTS OF A{

43/

Leigh—" has calculated the second order elastic shear constants of
Al using a Fuchs approach. We have extended this theory to the third order
to see whether it would explain the measured third order elastic constants,.

i9__,i0_/ decomposition

Leigh's calculation was based on a Wigner-Seitz
of the lattice energy. The energy terms which must be considered are the
kiﬁetic energy of the lowest electronic state, the electrostatic energy,
and the Fermi energy (here we mean the total energy of the Fermi sea and
not the‘energy of éhé highest filled electégn state). The kinetic energy
of the lowest electronic state should depend on volume only and can be
negelected in a Fuchs calculation of the elastic shea£ constants., The
electrostatic energy, which is a correction term which musg be applied
to the cell calculation of Wigner-Seitz, was modifieq to account for the
polyvalent nature of Al. The Fermi energy and its appropriate shear
derivatives were treated in an empirical way, being expressed in terms .
of parameters which could, in principal, be obtained from experimental
information and from band structure calculations. The calculation was
restricted to the Hartree one electron approximation, neglecting the
effectg of conduction electron exchange and correlated ele;tron motionf

The exchange repulsion between ion cores was also neglected. This - should

_ : 51/

be a good approximation for Al.==
The importent contributions which must be considered in detail are

the: electrostatic energy and the Fermi energy. For the electrostatic
energy, Leigh used a simple modification of the earlier work of Fuchs.ig/
Leigh's treatment of the energy of the Fermi sea was analogous to a

nearly-free-electron approach. Since Al has three valence electrons, more
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than one energy band must be occupied. In a zone picture, the first
Brillouin zone has sufficient states for two electrons per atom. The third
electron must go into the higher zones: Leigh treated the firs; and
higher zonés separatél&. The energy of the first zone was expressed in
terms gf an effective mass at the bottom of the band and a parameter to
account for the non-parabolic nature of the dependence E (k) at ghe zone
boundaries.. The energy of electrons in the higher zones was desc;ibed in
terms of the enérgies at the zone faces and the density of states at the
Fermi surface. Sufficient pafémeters were available to fit exactly the
measured values of the sgcond order elastic shear constants.

At the time of Leigh's caiculation (1951) there was only limited
knowledge of the Fermi sea parameters from other'experiments and calcula-
tions. ‘in'pértiéular, there was no information available on the energies
at the zone faces. This gave Léigh considerable freedom in choosing these
parameters. In the past %0 years, extensive information has become
available about the Fermi sea from both theory and expe;iment. The param-
eters used in Lgigh'g theory can now be well estimated from other measure-
ments and calculations. It is now possible to consider a quantitative
evaluation of Leigh's theory and its extension.to the third order elastic
constants,

In extending Leigh's theory to the third order elastic constants
of Al, we first consider the electrostéfic energy. In the method of

42,50/ tye lattice is divided into polyhedra centered

Wigner and Seitz,
on atomic sites. The conduction electrons and ionic cores are considered
separately. 1In the simplest form of the theory for monovalent metals,

one conduction electron is assigned to each cell to account for correla-

tion effects. The polyhedra are replaced by spheres of equal volume
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(and.radius ro), and the energy of the lowest conduction electron state
is found by solving the Schroedinger equation using a known ionic poténtiél
and the boundary condition dw/dr|r=ro= 0. The resulting'engrgy is lower
than the energy of this electron in .the atom,,and this is the essence of
the metallic bond. In the polyhedra picture, the polyhedra would interact
electrostatically. If the sphere approximation were accurate, there would
be no interaction. This interaction can be calculated by obtaining the
electrostatic energy per atom of‘the actual lattice and subtracting off
the self energy of the sphere. Although this is a small correction to
the cohesive energy, it is a sensitive function of lattice configuration
and makes an_important contribution to the elastic shgar constants.

Fuchsﬁg/ calculated how this electrostatic enérgy term contributes

47/

to the second order elastic shear constants. Cousins—' repeated this
calculation and extended it to the third order elastic shear constants.
His results for the secbnd order constants.agreed with Fuchs to,witﬁin

+ 0.1%. These results are presented in Table 12, We also require the
electrostatic contribution to the energy derivatives that describe the
volume dependence of the second order shear constants. These can be
calculated directly from the relations given by Cousins. 'As a particular

example we consider the second order shear constant C'. From the first

rows of Tables 11 and 12 we have

cl, = (3/4) po<aZEeI/BXf)IO - 48.81@%/s") . (54)

The volume dependence of the second energy derivative in Eq. (54) can

be written as

po(azael/axf) = (4/3) x 48.81(z%/a%) v /3 | (55)
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Hence, the mixed third derivative is given by

po(a3Ee173vaxf)|°.= (-1/3)(4/3) €} - (56)

From the sixth row of Table 11, we have that

(3B + %(C = (9/4)(-4/9)C), - 3(4/3)C

111 %1231

= (=53¢, en

The calculation involving C is entirely equivalent. The results for the

44
electrostatic contribution to these two energy de:ivatives are also pre-
sented in Table 12. 1In the above and in Table 12, a is the lattice con-
stant, and Z is an effective vglence. The numerical factors are those
for units of 1011 dyn.cm"2 with a in angstroms.

Hence, we know the contribution of the electrostatic energy to the
seven elastic consténfs summarizeh in Table 11 in terms of an efféctive
valence. 1In a formulation based on the eneréy decompoisition of Wigner
and Seitz, this effective valence isﬂjust a measure of the charge density
at the boundary of an atomic polyhedron. For monovalent metals, the
effective valence must be\very close to unity. Fofipolyvalent Al, the
effective valence is not necessarily three. By rearranging terms in
the Hartree expression for the total energy of the Al lattice, Leigh
determined fhat the electrostatic contribution to the elastic constants
of Al could be simply obtained by utilizing an effective valence which
was less than three due to the nonuniformity sf the conduction.electron
distribution. This resulted from an anal?éis of electron densities in
terms of real wave functions. Leigh arbitr;rily chose & representative

value of Zz= 7.0.
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-Table 12. Electrostatic contribution to the
elastic constants in a Fuchs formu-
lation for an FCC lattice. (units
of §22/84) 101 dyn.cm~2 with a -
in A)

Elastic Constant

C’

Cp

3C

1
5C111 3C110% 2C153)

Cys6
2(C, - €y up)
7166~ C144
3B+ L. -c..)
2€1117 G123

3B + (c144+ 2C166)

Electrostatic Contribution

48.81

437 .4

593.1

590.4

- 1342

- 244,05

- 2187
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In the theory of Leigh, the elastic consfants can be obtained
from two contributions, the electrostatic energy and the Fermi energy.
Using Leigh's value for 2% and a = 4.042, we can \calculate numerical
values for the electrostatic contribution. Knowing the measured elastic
constant, we can then'obfain the Fermi energy contribution by suthac~
tion. Fermi energy contributions obtained in this manner are Summari%ed
in Table 13. For the experimental elastic constants, we should use tﬁe
values appropriate to T = 0°Kiin fhg absence of zero-point vibrations.
For the second order éonstants the éépropriate values can be obtained by
extrapolating the ;oom temperature values (Table 1) linearly to T = 0°K
using the measured temperature derivatives (Table 3). Unfortunateiy, we
do not know the temperature variation of the third order constants. We
must use the room temperature measured values. We would hbpe that’ this
would not introduce an error of more than 10%, which should not be
serious compared to inaccuracies in the model calculation.

We now consider the extension of Leigh's theory to the third order
elastic constants for the Fermi energy contributions. The values calcu-
lated here will be compared to those summarized in Table 13. The Fermi
ene%gy-iS'considered in two parts, the filled first zone and the h{gher
zones. At the time of Leigh's calculation, it was not known whether or
not the first zone waé, in fact, completelyffilled. Now it is known to
be so.ég/

To consider the filled first zone, we proceed according to the
method of Leigh: The Brillouin zone is the Wigner-Seitzlpolyhedron of
the reciprocal lattice. The reciprocal lattice of FCC is BCC, and |

the Brillouin zone is the well-known truncated octahedroﬁ. Leigh

divided the zone into tetrahedra which could be defined by three



Table 13.

Elastic Constant

Cl

Ch

1

5111736112126 53)

Cy56

1 .
2C1667C144)

1
3B+ 2C111C123)

3B + (C

144%2C166)

Separation of the elastic constants
of AL into electrostatic and Fermi
energy contributions in a Fuchs
approach based on a Wigner-Seitz
energy decomposition. (units of
1011 dyn.cm=2) -
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Measured Electrostatic Fermi Energy
Value Qontribution Contribution
| .
2;74 1.28 1.46
3.27 11.49 8.22
- 0.84 15.58 16.42
- ’3.00 15.51 18.51
- 15.85 - 35.26 19.41
- 31.40 - 6.41 24,99
- 46.i0 - 57.47 11.37
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vectors: thg vector p extending from the center of the zone to thé center
of a facé, the vector q extending from the céqter of the face to the mid-
point of an edge of the face, and the vector r extending from the midpoint
of the edge of the face to‘a corner of the face. The Brillouin zone and
one such tetrahedron are illustrated in Fig. 6. There are 144 tetrahedra,
12 based on each hexagonal face and 8 on each square face.

-1t is next necessary to approximate to the function E(k) for the

first zone. Leigh has used the formula

o 1, 2/™ o 2/ L1\ 2/
E (k) ='9§§- K2 - A p2 ;? + ¢ ;f) + 12 ;?) (58)

Here k;, k;, k; are measured along p, q, and r, respectively, for each
tetrahedron. ¢ is a measure of the effective mass at the bottom of the
band. The parameter A modifies the otherwise spherical energy surfaces
in the region of the zone boundary to cut the zone normally so that the
energy at the center of any face is the s ame fraction (1-A) of the free
electron éhergy. E(k) can now be integrated over a tetrahédron to obtain
the total electron energy in that tetrahedron, and the tetrahedra summed

over to obtain the first zone contribution to the Fermi energy.

2
EFI = _Q_‘h_3_ Z pqr (sz o+ qu + Hrz) (59)
2mM"m TET . ..
with
Fl = .L - __XZ.___. G = .1_ - }"3

T 10 2(243N) ! T 20 0 2(243N)(1+N)

’ ' ’ ) - (60)
1 A

H =30 =~ Z+3n) () (240)
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Fig. 5. The FCC Brillouin zone and its division into
tetrahedral segments. T, X, and L represent
points of high symmetry. p, q, and i-are the

vectors describing a particular tetrahedron.






75

We must now calculate the appropriate derivatives of the energy
term EFI. We know how the basis vectors of the reciprocal lattice chénge
with the three shear deformations whicﬂhwe have defined, X, Xy and Xq.
This has been summarized in Appendix C. Hence, we can calculate how the
vectors p, g, and r for each tetrahedron change with each deformation.
This is an involved and complicated procedure. One must first construct
the Brillouin zone of the strained reciprocal lattice from the trans-
formed basis vectors. Only then éan the p(x), q(x), and xr(x) be obfained
for each tetrahedron. These vectors will not chaﬁée by thé éame trans-
formation as the basis vectors. The results for each deformation can be
checked by calculating the volume of the zone which must be independent
of x. In performing these calculations, there will be six different
‘tetrahedra for Xy, five for Xy, and"ten.for Xq. Knowing the depéndence
of the vector; P» 9, &nd I on the strain parameters, we cén calculate
the second and third energy derivatives with reSpéct to these strain
parameters and, hence, the appropriate contributions to the elastic’
constanté. It turns dut that the dependence on A is very slight
(generally less than 2% for A = 0.1), and we can meke the numerical
approximation A = 0. The results are presented in column 2 of Table 14
in terms of the free elecfron energy at the X symmetry point of the

Brillouin zone

2
ah 2n
EX 2m a) ) (61)

where & is the lattice constant.
In column 2 of Table 14, the expression for the first zone contri-

bution to C' and C,, are the seme as those of Leigh., For C' this must

44

be the case as we have used identical strain parameters. For 044, our .
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deformation is structurally equivalent although algebraically different
from that of Leigh. Hence, we must still obtain the same result for the’
elastic constant contribution. The other entries in this column consti-
tute our extension to the third order of this part of.Leigh's calculation.

The contribution to the elastic constants from the energy of the
electrons in the higher zones will also be calculated according to the
method of Leigh. The treatment will effectively consider second zone
regions only. We neglect explicit consideration of the electrons in the
third zone. It is known from an extensive analysis of de Haas - van Alphen
measurementséé/ that only a small fraction of 1 electron/atom is in the
third zone (near the first zone edges), and the fodrth zone (near the first
zone corners) is empty.

After Leigh, we let Ni(E-Eij) be the number of electron states
including spin degeneracy per atom per unit energy at energy E.above
energy'Eij at the center of the jth pair of t.heAith type face‘khexagonal
or square) in the second zone. Then the number of electrons n;j in the
second zone region (ij) is given by

. ¢
ng; = [ MEEHE= [N (e)ds (62)-
. Eij :
Here ( is the Fermi level. Using the same notation for the division of
fhe energy, we can write |
¢ €13
Wig= [ NEE IR =n E o+ [ N (e de . (63)
Eij ° .
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For any of the three strain parameters x we have

" dn dE
ij d¢ i
e = MEE (2‘5 ’“‘é;i) - (64)

\

But it is assumed that the first zone is full and stays full during any

deformation, therefore

Z n,, = 1 , (65)

and the summed strain derivatives of any order of nij are identically zero.

From this fact and Eq. (6@), we determine that
acl - ‘ .
| = o . . (66)

This is a consequence of the fact. that the volume remains constant during
the deformations x.

From Eq. (63), the second strain derivatives of each contribution

to the second zone energy are given by

aw, e, . aE d*n |
2 [ =nyy Tz | TNMEE |5 o B ©7)
. dx o dx o o dx o -

" Equation (67) can be summed over the regions (ij). Using Eq. (65) we

- ‘obtain
2, II 2, 2 : L2
d’E d W, dE,,. dE. .
F =z ___u,=z_. “Z —3i3 -N(c-'E)z —1ii
2 . .2 R e WA 2. FOLIE Y | odx
dx ij dx- o i j dx iy j

(68)
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This result is given by Leigh. From Eq. (67), we can obtain the third
gtrain derivatives of the second zone energy contributions in a straight-
forward manner. Again using Eqs. (65) and (66) and summing over the

regions (ij), we obtain the result

3. 11 3

a3 au a3, .| G, . d%,,
F ij ij ij 14
— = = n, - 3N.(C“.’E. .) .
2 .. 3 . i 3 i ij dx 2
dx ij dx i i dx . B | dx
o J o
o o : o

(69)

In Eq. (69) we have neglected a term proportidnal to the strain derivative
of the denéity of states at the Fermi surface. For a nearly-free-electron
metal, the density of states at the Fermi surface should depend only on
the Fermi level. Hence, by Eq. (66), the density of states should not
change with strain to the first ordér.

From Eq. (67) we can also obtain the mixed third derivatives of the
second zone energy contributions. Here we encounter a term proportioﬁal
to the volume derivative of the density of states at the Fermi éurface.

This must be included. Summing over the regions (ij) we obtain

3, I1 3 3
ke 2 z,dwij _Z . d°Ej;

42 | 2| - z 2
dvdx o ij dvdx o i 1 j dvdx o

2 2
- 2N.(G-E.)) }E Tij T4 -N, (C<E, ) SABN Y Eis) ) |
i ij . dx dvdx iteMit o dv dx
J o o - j\ . o

(70)
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The form of the last term in Eq. (70) assumes thet each of the N, (g EiJ)
have the same volume dependence. In Eq. (70) we have neglected a term
proportional to dnij/dv. Such a factor would depend on the change in the
energy gaps at the zone boundary with wvolume. This dependence is non-
ze;o and has been meaSuredtéﬁ/ However, the effect is of higher prder
than one that should be included in a nearly~free-e1ecpron model and,
hence, has not been considered.

Equations (68)-(70) describe the contribution of the energy of the
electrons in the higher zones to the elastic constents in terms!of general
deformation parameters. We must now compute the respective energy deriv-
atives for the deformatiens used here. Leigh made the assumption that
the energies Eij varied as pijz' where éij is the vector from the center
of the zone to the center of the face bounding region (ij). We retain
that assumption here. The pij are simply the p vectors which were con-
sidered in the first zone calculation. We know the dependence of these

vectors on the strain parameters X, Xg, X end v, and we can calculate

32
the energy derivatives of Eqs. (68)-(70) for each of the three deforma-
tions. The energy derivatives will be given simply by the respective
energy Eij multip¥?ee by & numerical factor.

The results are presented in Table 14. Here, E, and E, represent
the energies at the X and L symmetry points at the square and hexagonal
faces, resPecti§e1y. Similarly, nx.and n are the number of electrons
per atom overlapping the square and hexagonal faces, respectively,

subject to the condition

3nx + 4nL = 1 . | (71)

Nx and NL are the density of states at the Fermi level in the respective
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regions subject to the condition

3Nx + 4NL = N . (72)

Here N is the measured density of states at the Fermi level. ..If we: recall
that N is a dénsity of states per atom, it fpllows that d 1n N/dv is
simply the electronic GrUnéisen parameter as described in the section IV.

In Table 14, rows 1 and 2 correspond to Eq. (68), and these are the

results for the fermi energy contributions to’the second order elastic
shear constants given by Leigh. Rows 3-5 correspond to 1inea; combinations"
of BEqs. (68) and (69), and rows 6 and 7 to linear combinations of Eqs. (68)
and (70). These entries constitute our extension to the third order of- )
Leigh's Fermi energy calculation.

The expressions of Table 14 can be used to compute the Fermi energy
contributions to the elastic constants in a Fuchs approach. It is now
knowg,;hat the gross electronic structure of Ai can be described sur-
prisingly well by a nearly free eléétron model with a reduced effective

- ! L]
mass o L = 1.00 ( + 0.03 ).2233.5/

This dictates the choice of
numerical values for the parameters of Table 14. We choose the free elec-
tron values By = 9.21 ev and EL =6.91 e?. Adjustment of these values

to account for the band gaps at the zone faces would be a small correction.
The number of electrons per atom oyerlapping a particular pair of faces
should be nearly proportional to the volume enclosed between the respec-
tive zone face and the free electron sphere. Using this criterion and

Eq. (71) we obtain n, = 0.041 and no= 0.219. The density of states at

the Fermi surface over a particular peair of faces should be nearly pro-

portional to the area of the face, hexagonal or square. Using this

criterion, Eq. (72), and the measured density of states N'= 0.572 per

*N. W. Ashcfoft, private communication.



Table 14. Fermi energy contributions to the elastic constants
of Ag in a Fuchs formulation. (impIied units are
ergy/atom'or V.~ -1 .energy/volume where' y ‘is the
agomic volume)

Elastic First Zone Term 1 | , Term 2 | Term 3
Constant . Contribution Egs. (68)-(702 _Egs. (6§)r(70) Eq. (70)
' v 8 ‘. s 2 |
¢ 6 Ex (2n.By +3 4B L. T2NgEg y
1 8 © 18 2 )
€4t 2 Bx @n.Ey +3 2B R -
L. 6,426 .) 2g 220k + & nE.) 6 NE,> .
8 “1117°¢1127C123 3 Bx o S A "X
1 ) 8 16 g 2
Css6 3 By 2(2n.By + 3 nEp) 3 NEL -
1 4 8 2 16 2
1. by . 8 . 16 _
7¢1667C144) 3=X 2(2n.By + 3 nE)) 2(NEy+ 5 NE )
-3 8
3B + 2(C111 €123 7 Bx “6(2n.By + 2 nE ) 16 N.& 2 -gdlnd N.E, 2
9 . 8 128 o 2 16 9__1n_N
3B + (C144+2C) 6) -2 By -6@2n.Ey +3 4Ep) 5 NE. 3 dy MFL

2.

18
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ev atom,éi/ we obtain NX = 0.042 and.NL = 0.112 per ev atom. We also
choose the measured valug d 1In N/dv = 1.8 from the low temperature

thermal é;pansion measurement of White as reported by Collins and Whitéf-é/
Substituting these values into the exprgssiéﬁs'of Table 14, we can compute
the Fermi energy contributions to the elastic constants in a Fuchs
approach. The results ‘are presented in Table 15 and compared to the Fermi
energy contributions obtained in Table 13.

The agreement between the two sets of Fermi energy contribuﬁions
in Iaﬁlé 15 is, to say the least, very bad. The isolated agreement of
row 6 should probably not be taken seriously. Although we~afe involved
with the difference pf large numbers, with the exception of row 1 the
agreement could not be substantially improvéd by adjuétments in the indi-
vidual terms of even 25%. In any event, the individual tg;ms,are not
iﬁ&ependent, énd such adjustments would be quite out of the question.

We have used numerical values consistent with the known nearly-
free-electron behavior of Al. At the time of Leigh'§ calculation, this
behavior was not appreciated. It is only recently that the development
of the pseudopotential approach gave theoretical justification for the
nearlyéfree-electron’picture.é%/ Leigh's ability to fit the second
order shear constant Fermi energy terms depended largely on his choice
of EL = 9.08 ev. This is more than 307 higher than the free electron
“value and is not an acceptable choice. Leigh's values for this and the
otherubarameters were based on his assumption thaﬁ.only small, isolated
pockets of electrons existed in the higher zones. The analysis was
more nearly appropriate for a semiconductor than a nearly-free~electron

metal. It might still be noted, however, that u§e of Leigh's values

for the Fermi energy parameters would not produce generai agreement



Table 15. Fermi energy contributions to the elastic constants in a Fuchs approach according
to the method of Leigh. Texrm 1, Term 2, and Term 3 refer to the higher zone con-
tributions of Eqs. (68)-(70). The values presented in column 7 are those calcu-
lated from the difference of the measured constants and the electrostatic contri-
butions. (units of 10}l dyn,cm"2 obtained using an atomic volume of 16.48 A3)

]

. Elastic First : Total By
Constant ‘ Zone Term 1 Term 2 Term 3 quf 2=5 Difference

c' 1449 466 - 6.93 - - 0.78 1.46
Chs 4,48 4.66 - 9.24 - - 0.10 - 8.22
(c111-3c112+29123? 5.97 - 9.32 20.78 - 17.43 -16.42
6456 - 2.99 - 9.32 27.73 - 15.42 -18.5y
3 66 C10s) -11.9 - 9.32 25.41 - 4.15 19.41
3B + %(°111'°123) -13.43 -27.95 55.42  =37.41 -23.37 -24.99
3B +.(c144+20166) -40.29 -27,95- 73.94 -49.91 -44,21 11.37

£8
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between the two sets of Fermi energy contributions.

We conclude that numerical adjustments in Table 15 will not sub-
stantially improve the Fermi energy calculation. The model must be
defective. Although the gross electronic structure of Al is close to
a nearly-free-electron model, the detailed structure near the zone
boundaries is, of course, much more complicated.éé/ Although the energy
differences involved are small, the energy changes with déformation
must be large. It was our decision that the method of Leigh could only
be extended to the third order in the nearly-free-electron approximation. .
Thus, we neglected the geometrical considerations of the third zone
regions. We conclude that the second and third derivatives of the coﬁpli-
cated energy band structuré near the first zone edges and corners must
be important in the calculation of the elastic constants of Al. |

Schmunk ‘and Smithgl h$§e'u3ed the Leigh method to attempt to
explain the pressure derivatives of the second order elastic shear con-
stants of Al. They were forced to-assume that the effective valence
varied with volume in order toucompute values of these two quantities
in agreement with experiment. However, the inclusion of a term modifying
the electrostatic energy contribution cannot eliminate all the discrep-
ancies in Table 15. A volume dependence of the effective valence would ,
not be included in a calculated thifd order shear constant where we
consider strictly volume conserving deformations. Any attempt to réscue
the Leigh procedure would require‘modificatiohs of the Fermi energy
contribution.

Work now in progress at the University of Illinois has indicated
that a pseudopotential app;oach might be applicable to the calculation

of the elastic constants of the alkali metals.it/ The pseudopotential

Pl

*
T. Suzuki, private communication.
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approach should also be applicable to Al. The structure of Al can be |
.- accounted for qualitatively in terms of pseudopotential parameters.éél
It does not seem worthwhile to further pursue the Leigh method for the

calculation of the elastic constants of Al., Rather, it is suggested

that a pseudopotential calculation be attempted.
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VII. CONCLUSIONS

The complete set of six third order elastic constants of single
crystal Al has been experimentally dgtermined by measuring both hydro-
static pressure and uniaxial stress derivatives of the natural sound
velocities using a two specimen interferometric technique. The speci-
mens were neutron irrédiated to eliminate dislocation effects from the
uniaxial experiments., A self-consistent set of hydrostatic pressure
derivatives of the second order elastic constants has been calculated
from the measured third order elastic constants. The third order elas-
tic constants have also been used to calculate the thermal expansion
in the anisotropic continuum model at both high and low temperatures,
and a comparison has been made to the directly measured expansion'
‘goefficients.

The seven independent relations between second and third order
elastig constants and appropriate lattice energy derivatives in a
Fuchs approach have been obtained. The related deformation parameters
have been described in a consistent fashion. .The applicability of the
Fuchs approach to elastic constant calculations for metal crystals has
been di;cussed in terms of the neglect of energy terms which depend
upon volume only. \

An attempt has been made to calculate the second and third order
elastic constants of Al in a Fuchs approach using a Wigner-Seitz
decomposition of the lgttice energy. The terms considered were the
electrostatic energy and the Fermi energy. The Fermi energy was treated

in a nearly-free-electron approximation. The fact that this attempt



was unsuccessful has been attributed to the complicated energy band

structure of Al in the vicinity of the Brillouin zone boundaries.

\
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APPENDIX A

The calculation of Espinola and Watermanlg/ can be modified to
account for an initial phase difference between the two sound waves. We
assume that a cosine wave is propagated in each specimen. We neglect the

attenuation and the finite length of the pulse. Let

AL =A cos(uat - k. x
1 o 171 (A1)

Az =le cos (at - kyx, + @)

These waves can be superimposed to obtain an interference pattern:

A =28 cos[¥(k,x, - k,x, + ¢)]

k. x +k, x

At the jth node in-the interference pattern, the null condition is
- @iy I
Elkyx - kyx, + ol = @i-1) 5 . (A3)

We assume that if ¢ is indeed non-zero, then it is a positive number as

represénted in Eqs. (Al). Equation (A3) can then be written

k,x .
22 (2i-1)m - @
+ (1 - = (A4)
k%, %
Here (+) refers to the case-kzx2 < klxl' Because.the null condition is

represented in terms of an absolute value, there is an ambiguity of sign.
However, this is not critical. The proper sign can always be determined
by other means. We adopt the (+) in Eq. (A4). When a particular node

is exactly at the position of the nth écho, we have
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klx1 = (2ﬂf/v1)‘ntov

1= 2'rrfnto . (A5)

Here vi is the velocity of sound in specimen 1; f is the frequency{ and

t, is the round trip transit time. Also, from the definition of the

natural velocity W, we have

k2x2/k1x1 = Wl/w2 (46)
Combining Eqs. (A5) and (A6) with Eq. (A4) we have
W .
S R €5 D LU S X
L-%, = 2me - n (A7)

2
If we assume that specimen 1 is at constant temperature and specimen 2

is at a variable temperature, we obtain

Lo _ @-br-¢ 3 f1
W a'rl B 2nf‘t° oT (n) (A8) -

P

Here we neglect a factor Wl/w2 which is very close to unity. We can

1 &
determine W oTlp

difference between the two specimens. We see that a non-zero phase dif-

from the slope of a plot of (1/n) vs. the temperature

ference ¢ will affect the absolute magnitude of this slope.

Ideally, the phase angle ¢ should be zero because the same pulse is
applied to each specimen through similar circuits. If ¢ is identically
zero, the sam; temperature derivative Qould be obtained from measurements
on all available nodes. We did not always fihd this to be the case. For
certain measurements, we obtained different slopes using different nodes.
This is illustrated in Fig. 5. The dashed line in Fig. 5 indicates the

A

correct slope which would be measured if the phase difference ¢ was

identically zero. When the movement with?temperature of more than one node
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Fig. 6.

) The natural velocity temperature derivative

mistakenly analyzed as if Eﬁb‘for nodes 2
and 3. For thié'expefiment 6 =-0.47M, A
cbrrect‘analysis‘incluﬂiqg this value of ¢
would give the dasheq iiﬁe showﬁ inlthe

i

figure.
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was observed, it Qas ;a simple matter to determine cp and recalculate the

derivat.ive "17 %P . This has been done for the temperature derivat:i:ves
presented in Tables 2 and 3 in the text.‘ Since the phase differences ¢

varied over a wide range (nearly 0 - -12:! ), we believe this to be an effect

due to the bond between the specimen and the quartz transducer.



93
APPENDIX B
‘The lattice energy per unit mass. can be expan&ed in a power series
in terms of the finite Lagrangian strain parameters. In tensor notation,

this would be written

~

1 1 | |
PE = PBo + 2Cisks Mijws ¥ 8Cijktmn MiNgTm ¥ ¢ - (81)

The elastic constants are those defined by Brugger and are expressed in
the full tensor notation. The'linea¥ term is not present as we are
ekpahding about the equilibrium state.

For cubic crystals, the explicit form of the second order energy

termS can be written és
1 2 2 2
PoEy = .7 Cpy (M tyHnas) + Gy,
2 2 2
* ThaMataThy ) + 20, (M )y hatngy) - (82)
Similerly, the third order term becomes
1 3.3 .3, 1 2
PoE3 = €111 (M1tMotmhs) + 3€ 50, (y,+ms5)
+ oM (Maatth 1) + Mo (M 41000 + Coo o )
N2 My3% M) + M35 (My;+M,, 123123
+ 2C (»2+ 2 4 2)+20 [2(+ )
144 M iTL3 2T 3Ty 5. 166 ™2 M 17L,)

2 2
* M3 (Myptmas) + Ty (My5my, )] * 8C4s6 (MaM3Myy) - (83)

‘In Eqs. (B2) and (B3), the elastic constants are expressed in the con-
tracted notation. Also, in these equations, equal but independéht terms
of the general expansion Eq. (Bl) have been combined. This becomes

important if we wish to differentiate the energy expressions. It must be
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recognized that all nine strain tensor components nij are independent.

Before differentiating, individual energy terms must be symmetrized. For

example, '
2 , 2
3E, 3 N3t |
Po Iman. = 4y 32 7 = Cuy - (84)
33 d ;

™3
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APPENDIX C

Deformation (xl): The deformation tensor is given by

x11/3 0 0
= 3
a(v,xl) = v1/3 0 ‘x11/ .0 b (Cl)
0 0 X.;_ 2/3 "

The Lagrangian strain tensor (Eq. (36)) is given by

%(v2/3 x12/3-1) 0 0 :
n(v,xl) = | . 0 %(V2/3 x12/3-1) 0 ' (c2)

0 | 0 %(vz/3 xl"'/3-1)

The unit cell of the FCC bravais lattice is described by the three vectors
8 = (a/2)[0,1,1], a, = (a/2)[1,0,1], 8y = (a/2)(1,1,0]. Here a is the

lattice constant. The deformed unit cell is described by the vectors

a = (a/2) V%17 101,117,

2, =.(a/2) M 1,0,

1

a, = (a/2) A3

Mo o €3)

The reciprocal lattice of the FCC lattice is the BCC lattice. The deformed

reciprocal lattice is described by the three vectors



Bl = (2"/8) V- 1/3
P.z = (21/a) v

b, = (21/a) v

1/3
x

1/3_-
x

1/3

x]-. [‘1,1,x1] ’

-1/3

1 [l’-ltxll 14

1/3
1 [1,1,‘}{1] .

Deformation (xz): The deformation tensor is given by

=1
a(vixz) = 3

X, +2

1/3 1/3 | xta1
Y X,

The Lagrangian strain tensor is given by

-

213 28 (x£2+2)

2

2/3 2/3 2
v x2

T=1)

Wi~ W=

(x,

(21)

unit cell is described

_ 1.
n= 2
The deformed
g
)
a

/6y V353 ety 2t 2t

(a/6) v1/3 x;/3 [2351

-1 (21) (21)
" (11) (1)

(21) 1)

by the vectors

1/3 ™ -1 -1
X, [2‘x2 +, 2(x, -1), 2x2’+1] ,

-1 -1
+1, 2x2 +1, 2(x2 -1)]

96
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(€5)

(c6)

(€7)
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The deformed reciprocal lattice is described by the vectors

21 = (21/3a) [x2-4, X,+2, x2+2] ,
§2'= (21/38) [x,42, x,-4, x,42]
by = (21/3a) [x2+2, X,+2, x2-4] . . (c8)

Deformation (x The deformation tensor is given by

3)*

Lolyy Lol

N

1/3 _1/3 1, -1 1, -1

0 0 1/ €9)
The Lagrangian strain tensor is given by

v2/3 2/3( xy241)-1 (21) 0

= N

V2/3 §/3( x;2- 1) 22) 0

213 213

3 (C10)

0 0o

~~The deformed unit cell is described by the vectors

1/3 1/3 ¢ 1
x;"7 [

(a/2) v Fea -0, 36, 1,

(a/2) v

[
n

338 tachy, Legton, 11,

]
]

(a/2) y1/3 1/3 [x;' x31, o] . (c11)
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The deformed reciprocal lattice is described by the vectors

@m/ay v- Y313 1, 1, 1T,

b = 3.
b, = @nay v Yy, 1,10,
b, = 2ma) v- 173 x; 1/3 (x5, %5, 1] . (€12)
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