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THE THIRD ORDER ELASTIC CONSTANTS OF ALUMINUM 

Joseph Francis Thomas, Jr., Ph.D. 
Department of Physics 

University ·of Illinois, 1968 

The complete set of six third order elastic constants of single 

crystal ~1 has been experimentally determined by measuring both hydro-

static. pressure and uniaxial stress derivatives o·f the natural sound 

velocities using a two specimen interferom.e:tric technique. The values 

obtained are 

clll = -10.76 cl44= -0.23 

~112 = - 3.15 cl66= -3.40 

cl23 = + 0.36 c4s6= -0.30 

. 12 -2 in units of 10 dyn.cm 
/ 

The specimens were neutron irradiated to 

eliminate dislocation -effects~ from the uniaxial experiments. A self-

consistent set of ·hyd-rostatic pressure derivatives of the second order 

elastic constants has been calculated from the measured third order 

elastic constants. The' third order elastic constants have also been 

used to calculate the thermal expansion in the anisotropic continuum 

moqel at both high and low temperatures, and a comparison has been 

made to the directly measured expansion .coefficients. 
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The seven independent reiations between second and third order 

elastic constants and appropriate lattice energy derivatives in a Fuchs 

approach have been obtained. The related deformation parameters have 

been described in a consistent fashion. The applicability of the Fuchs 

appr~ach to elastic constant calculat~9ns for metal crystals has been 

discussed in terms of the neglect of .energy terms which depend upon 

volume only. 

An attempt has been made to calculate the second and third order· 

elastic constants of Al in a Fuchs approach using a Wigner-Seitz 

decomposition of the lattice energy. The terms considered ~ere the 

electrostatic energy and the Fermi energy. The Fermi energy was treated 

in e nearly-free-electron approximation. The fact that this attempt 

was unsuccessful has been attributed to the complicated energy band 

structure of Al in the vicinity of the Brillouin zone boundaries. 
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I. INTRODUCTION 

The mechanical and thermal ·properties of a crystalline solid are 

intimately related to the form of the lattice potential energy. It will 

be useful to consider the general aspects of this relationship. 

Several mechanical and thermal properties can be adequately de­

scribed in the harmonic approximation. In this approximation, infini­

tesimal lattice movements can be expressed in ter~s of a set of normal 

modes of lattice vibration. Static deformations will obey Hooke's law; 

sound wave propagation can be described by the elastic wave equation; and 

the lattice heat capacity can be calculated at moderate temperatures. The 

harmonic model, however, will not account for many well known mechanical 

and thermal properties. There will be no thermal expansion; insulators 

will have no thermal resistance; and sound waves will not be attenuated. 

These properties are related to the anharmonic nature of the lattice 

potentia~ energy. In an anharmonic model, lattice movements must be de­

scribed in terms of interac~ing modes of vibration. Large static defor­

mations will .deviate from Hoo~e's law; sound waves will interact with each 

other and with the thermal vibrations of the lattice; and the lattice will 

expand with a change in t~mperature. 

A full anharmonic model is cap~ble of describing all mechanical and 

thermal properties of a perfect c.rystal. The problem reduces to one of 

calculation rather than one of formulation. In the usual approach of a 

discrete lattice dynamics, one obtains a model expressed in terms of a 

large number of parameters generally referred to as force constants. 

There are several difficulties in obtaining numerical results from such 

an approach. In general, the parameters are too numerous to be deter­

mined directly by experiment. In many cases, particularly in the study 
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of metals, the force constants also lack a clear physical interpretation 

in terms of the cohesive properties of the crystal. 

An alternative approach is to utilize the finite deformation theory 

of an elastic continuum. The change in the lattice potential energy asso-

ciated with deformation away from an equilibrium configuration can be ex-

pressed as a power series in an elastic strain parameter. The coefficients 

in such an expansion are elastic constants. The coefficient of an nth 

th order term in the strain parameter is called an n order elastic constant .. 

It follows that the second order elastic constants are the usual elastic 

constants relating stress to strain in Hooke's law. The higher order 

elastic constants, which are clearly related to d~viations from Hooke's 

law, provide an efficient measure of many aspects of the lattice anharmo-

nicity. 

This can be clarified by considering a simple, one-dimensional model. 

For a one-dimensional solid, a convenient strain parameter would be the 

deviation of the particle separation from the equilibrium separation, 

(r-r ). In a harmonic model, the energy per particle would be a quadratic 
0· 

function of this strain parameter, 

E = E + ~k(r-r )
2 

0 0 
(1) 

To examine the anharmonic nature of the energy, however, we need a more 

realistic energy function. A basic measure of the anharmonicity is the 

asymmetry of the lattice energy with respect to particle separation. We 

can modify Eq. (1) by simply adding a term which is not symmetric about 

r = r . For example, we can write 
0 

(2) 
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For this model the usual elastic constant could be written as 

d~ 
c2 = __,;;;,...;;;o,.~2 = k - g(r-r ) . 

d(r-r ) 0 

0 

(3) 

We see that as the chain is compressed, r < r , the elastic constant will 
0 

increase. Correspondingly, for a real solid, the usual elastic constants 

are functions of pressure, and the pressure derivatives are usually 

positive. 

An alternative description would be to define a second order 

elastic constant as a second energy derivative evaluated at equilibrium 

particle separation, 

r=r 
0 

= k (4) 

To describe the mechanical and thermal behavior of this one-dimensional 

solid, we would then need the higher order elastic constants. In particu-

lar, the third order elastic constant would be 

r=r 
0 

= -g ' (5) 

and the elastic ~.onstants of still higher order would be identical~y zero. 

The for.m.alism for a real, three-dimensional solid is quite analo-

gous to this simple model. We define the vector displacement~ of a 

particle from an initial coordinate a to a final coordinate !,, 

u = r - a (6) 
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It is most convenient to work with the finite Lagrangian strain tensor 

which is defined as!/ 

,ij (7) 

Here_ ui etc. indicates the ith cartesian component of the vector~, and 

repeated indices are always to be summed over. Equation (7) descr~bes 

exactly relative displacements in the solid, eliminating the effect of 

rigid body rotations. The description is exact in the following terms: - . 

If &a is the initial separation of two particles in the solid, and &~ is 
c,~ ~ . ' • • . . 

the final separation after a deformation has been applied, then 

(8) 

In describing the thermodynamic properties of the deformed tattice, 

we can work with either the internal energy per unit mass U(!:,S) or. the 

Helmholtz free energy per unit mass F (!:, T). Here S and T are, respec-

tively, the entropy and the temperature. Elastic constants of any order 

can then be defined as the expansion coefficients of U (or F) in terms 

2/ of the Lagrangian strain tensor components.- More exactly, 

cs 
ijklmn •. 

(9) 

Here superscript S indicates an adiabatic elastic constant which must be 

used to describe an isentropic process. Similarly, superscript T indi-

cates an isothermal elastic constant which must be used to describe an 

isothermal process. 
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The elastic constants of Eq. (9) represent the solid in configura-

tion a. If the coordinates ~represent the natural, unstressed configura-

tion of a solid, then the Ci'kl are those elastic constants which 
J mn •• 

would be calculated from atomic models of the lattice energy. If the co-· 

ordinates ~ represent a stressed configuration of the solid, then the 

C are related simply to the applied stress and the elastic coef-
ijklmn •. 

ficient which would be measured experimentally. These relationships have 

3/ 
recently been clearly summarized by Wallace."' 

We note that the second order elastic constants are elements of a 

fourth rank tensor which has, in general, 81 independent components. How-

ever, it is well known that for a cubic crystal, which we are primarily 

interested in here, symmetry considerations reduce this number to three. 

The third order elastic constants are elements of a sixth rank tensor with, 

in general, 729 independent components. For cubic crystals, however, sym-

metry considerations will reduce this number to six. These six numbers 

can be measured experimentally and, in addition, can be made physically 

meaningful in terms of the energy change during a particular deformation. 

The third order elastic constants will provide a convenient description 

of many anharmonic properties of a crystalline solid. 

Measurements of third order elastic constants have been reported 

for approximately ten single crystal materials including semiconductors, 

piezoelectrics, alkali halides, and, more recently, metals. An extensive 

literature on the subject has developed during the past six years. A 

complete review will not be attempted here. Rather, we shall concen-

trate on measurements on metal single crystals. 

The most powerful method for obtaining anharmonic data in the 

continuum model is the measurement of sound velocity changes with · 
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applied homogeneous stress. Basic measurements of this type utilize 

simple modifications of the well known megacycle pulse-echo technique. 

Early measurements were restricted to velocity change with applied hydro-

static pressure. For a cubic crystal, this gives three experimental 

numbers which are related to five of the six ·third order elastic constants. 

Such results are expressed in terms of the pressure derivatives of the 

three measured second order elastic constants. The original work in this 

el."ea was' duu~ by Lazarus!!/ in 1949 and included measurements on Cu, Al, 

5/ and beta brass. Later, Daniels and Smit~ reported pressure derivatives 

of the noble metals Cu, Ag, and Au. Schmunk and Smit~/ made similar 

measurements on the simple metals Al and Mg. Measurements on the alkali 

' 7-9/ 
metals Li, Na, and K have also been reported.--- Typically, these 

measurements utilized hydrostatic pressures in the kilobar region. Such 

pressures are sufficient to produce readily measurable changes in the 

transit time of an ultrasonic pulse. A correction for the change in path 

length with increasing pressure is required. 

As stated, hydrostatic pressure measurements ·on cubic crystals will 

only give information on three linear combinations of the third order 

elastic constants. To obtain sufficient information to measure all six 

third order elastic constants, it is necessary to utilize a deviatoric 

stress such as uniaxial compression. Here a basic problem arises. In 

the study of metal single crystals, uniaxial compressions large enough to 

produce directly measurable changes in the transit time of an ultrasonic 

pulse will also likely produce changes in the dislocation network always 

present in the metal crystals. It is well known that dislocations will 

affect the measured sound velocity. If the applied uniaxial compression 

changes the existent dislocation network, for example by causing 
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breakaway from weak pinning points or activation of dislocation sources, 

a dislocation contribution will be present in the measured sound velocity 

stress derivative. Hence, we are restricted to very small uniaxial com-

pressions. If measurements can be obtained at several tens of bars, 

dislocation effects might be avoided. However, stresses of this magni-

tude will generally produce sound velocity changes of only several parts 

per million. Uniaxial stress measurements will require an electronic 

system capable of detecting sound velocity changes at this level. 

Several methods have been devised to detect very smell sound 

velocity changes. These have recently been summarized by Alers. 101 In 

the continuous wave resonance method, the impedance of an ultrasonic 

transducer-specimen combination is monitored. Rapid variations in the 

impedance occur as the continuous wave frequency varies through an acous-

tic resonance associated with standing waves in the specimen, In the 

phase comparison method, the phase of a megacycle pulse which has trans-

versed the specimen is compared with that of a reference signal. Several 

variations of .this method have been utilized. An important variation, 

not described by Alers, is the pulse superposition technique of 

McSkimin, 11 •121 in which a series of echoes is superimposed in a phase 

coherent manner by varying the repetition rate. A second variation of 

particular interest is the two specimen interferometer first described 

13/ by Espinola and Waterman.-- Here a -reference pulse is obtained from a 

second specimen which has been matched to the first. The reference 

phase depends upon the transit time in the second specimen which can be 

adjusted by varying the temperature of this specimen. In the sing-

around method, two transducers are attached to one specimen, one used 

as a transmitter and one as a receiver. A particular pulse of the 
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received signal is used to retrigger the system in such a manner as to 

create a high stability oscillator whose frequency depends directly on 

the inverse of the specimen transit time. 

The two specimen interferometric technique has been used by Hiki 

14/ and Granato-- .. to measure the complete set of third order elastic con-

stants of the noble metals Cu, ~g, and Au. Their measurements included 

both hydrostatic and uniaxial stress derivatives. The specimens were 

prestressed to minimize dislocation effects. Swartz11/ used the same 

techniques for measurements on beta brass. 16/ Salama and Alers-- repeated 

uniaxial stress measurements on Cu at several temperatures using the sing-

around method. Their room temperature values agree well with Hiki and 

Granato. Theyalso completed measurements at helium temperatures, the, 

only such measurements which exist at the present time. 

17/ Recently, Thurston and Brugger-- have presented an extremely con-

venient formulation for obtaining third order elastic constants from 

sound velocity stress derivatives. The above results for the third order 

elastic constants of metals have all utilized this formulation. Thurston 

and Brugger defined a quantity called the natural velocity, W = 2L /t, 
. 0 

where L is the path length in the unstressed crystal and t is the round 
0 

trip transit time. The derivative ~ 2 
~p(p0W >T,P=O was then evaluated in 

terms of linear combinations of the third order elastic constants for 

the various combinations of pure sound modes and applied stress P. Here 

p is ·the density of the unstressed medium. 
0 

2 But (p W ) will vary with 
0 

. -2 
stress simply as t . The formulation is convenient because we no longer 

need to worry about the variation of the path length in the stressed 

crystal. ~lso, care was taken to distinguish between adiabatic and iso-

thermal processes. It was pointed out that the third order elastic 
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constants measured in such experiments are of a mixed nature. Specifi-

cally, the quantities measured are 

(10) 

T 

where the isothermal variation refers to the application of. the bias stress. 

The formulation of Thurston and Brugger along with the recent devel-

opment of techniques for the measurements of very small sound velocity 

changes provide a firm basis for the initiation of a program for the 

measurement of third order elastic constants. In particular, the third 

order elastic constants of metals would be expected to provide useful new 

information on the nature of the cohesive properties and interatomic forces 

of metal crystals. In addition, as has been mentioned above, the third 

order elastic constants are useful in the calculation of mechanical and 

thermal properties related to the anharmonic nature of the lattice. 

The third order elastic constants of the noble metals14 •16 / and 

15/ beta brass-- recently obtained confirm the expectation regarding new 

information on interatomic forces. If it is assumed that the interatomic· 

forces in these crystals are predominantly short range central forces, 

14/ the following relations would hold among the third order elastic constants:--

For an FCC lattice with nearest neighbor interactions only, 

Clll = 2C112 = 2Cl66 

cl23 = cl44 = c456 = 0 • 

For a BCC lattice with nearest neighbor interactions only, 

(11) 

(12) . 
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Here the six non-zero third order elastic constants of a cubic crystal 

are expressed in the contracted (Voight) notation. For a BCC lattice, 

the next nearest neighbors, the adjacent body~centered atoms, are but 14% 

more distant than the nearest neighbors. If BCC next nearest neighbor 

interactions are important, this would result in. a contribution to c
111 

only. Results for the noble metals (FCC) correspond closely to the pattern 

' 
of Eq~ (11). The results for beta brass (BCC) correspond closely to 

Eq. (12) with a significant contribution to c111 from the next nearest 

neighbor interactions. The results for these crystals conform closely 

to the pattern expected if short range central forces make a predominant 

contribution to the higher order elastic constants. ~n important conclu-

sion, then, is that the conduction electrons seem to play a minor role. 

This might be considered somewhat surprising but can be understood in 

terms of the existence of overlapping electronic d-shells and the 

resulting strong exchange forces~ 

It would be interesting to investigate a material in which the con-

duction electrons would be expected to make a major contribution to the 

higher order elastic constants and, hence, to the anharmonic properties 

of the material. One such material is aluminum. In Al there are no d-

electrons; the ion cores are small; and the exchange interactions between 

ion cores should be negligible. Also, Al has three valence electrons 

per atom. Hence, the Fermi surface will interact strongly with the 

Brillouin zone. The conduction electrons should contribute to the shear 

as well as the compressive elastic constants. 

It is the purpose of this thesis to measure the third order elastic 

constants of single crystal Al. This is done by measuring both hydro-

static pressure and uniaxial stress derivatives of the natural sound 
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ve~ocities. The results are analyzed within the formalism developed by 

. 17 I Thurston and Brugger.-- The thermal expansion at both high and low 

temperatures is calculated from the third order elastic constants and 

compared to the measured values. Finally, an attempt is made to inter-

pret the elastic constants in te.rms of the cohesive properties of .the Al 

lattice. 
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II. EXPERIMENTAL PROCEDURE 

~. Specimen Preparation 

The four aluminum single crystals used in this investigation were 

of dimensions 15xl6xl7 mm. They were oriented with faces perpendicular 

to (110], (llO], and (001] directions. These orientations were checked 

with Laue back reflection photographs and were found to be accurate to 

better than 1°. The crystals were obtained as oriented from Semi-Elements 

Inc., Saxonburg, Pennsylvania. 

~ spectrochemical analysis of the composition of these crystals was 

obtained from Dr. V. Mossotti of the Materials Research Laboratory, 

University of Illinois. Order of magnitude estimations of impurity con-

centrations were determined by eqlission spectroscopy. The results showed 
.. - . 

that Cu, Fe, In, Ga, Ca, and Ti were present in concentrations of:lO- 100 

parts per million (ppm). Hence, we estimated that the-".crystals were 

between 99.95% and 99.99% pure ~1. 

In order to make sound velocity measurements by the use of a pulse-

echo technique, it was necessary to polish the crystals so that opposite 

faces would be flat and parallel to better than 50 ppm. A convenient 

method has been developed to obtain such tolerances with moderate effort.~/ 

The crystals were placed in a cylindrical holder which was relieved in 

the center and had a 1/8 inch lip around the circumference. The lip sur-· 

face was machined flat and parallel to better than 100 ppm, and the verti-

cal dimension was set several mils larger than the relevant crystal dimen--

sion. The crystal was set in the holder with Quick Mount (Fulton Metal-

lurgical Products) and could be removed after soaking for 24 hours in 

ethylene dichloride. For rough polishing, 3/0 Emery polishing paper 

saturated with kerosene was placed on a surface plate. Polishing continued 
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until the holder and crystal were being cut evenly on both sides. Fine 

polishing to achieve final tolerances was done with 9.5 micron aluminum 

oxide powder in a suitable lubricating oil directly on the surface plate. 

The dimensions were checked on a Mikrokator (C. E. Johanson Co.) which .. 
'';-

is capable of reading relative values to 10 microinches. A still smoother 

surface could have been obtained by going to a finer powder, but some 

surface roughness was desirable to aid in bonding a quartz transducer to 

the metal surface. 

The second order elastic constants of the ~1 crystals were then 

measured using a direct pulse-echo technique. Quartz transducers of 

resonant frequency 10 MHz were attached to the crystal faces with Nonaq 

stopcock grease (Fisher Scientific Co.). An ~renberg PG-650C pulsed 

oscillator was used to supply 10 MHz pulses of approximately 3 micro-

second duration. Unrectified echoes were received directly by a Tektronix 

585~ dual time base oscilloscope. The time delay circuit of the oscil-

loscope was calibrated using a Tektronix 184 crystal time mark generator. 

The time intervals between a particular cycle of successive echoes could 

be obtained to better than 10 nsec. ~ 100 nsec/echo transit time cor-

rection was applied to the measurement of longitudinal waves. A measured 

-3 density of 2.702 gm.cm was used in calculating the elastic constants. 

The results for the second order elastic constants are presented in 

Table 1 and compared with the values of Schmunk and Smith~/ and Kamm 

and ~lers. 191 

For the particular orientation of our crystals, we were able to 

obtain eight measurements of four pure mode velocities. The errors pre-

sented with our results in Table 1 represent the consistency of these 

eight measurements as derived from a least squares fit of the data. The 



Table 1. 

c 

en 

c12 

c44 

1 
2Cll 

1 
+ 2C12 + c44 

1 
2Cn 

1 
- ~12 

1 
jCll 

2 
+JC12 

The second order elastic constants of At at 25°C. The 
errors indicated i.n column 2 represent the consistency 
of the measured values. (units of 1012 dyn-cm-2) 

This Experiment Schmunk and Smit~/ Kamm 

1.0675 ± 0.0005 1.0732 

0.6041 ± 0.0008 0.6094 

0.2834 ± 0.0004 0.2832 

1.1192 1.1245 

0.2317 0.2319 

0.7585 0. 7640 

19/ and Alers-

1.0686 

0.6075 

0.2824 

1.1205 

0.2305 

0.7612 
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absolute error in the measured elastic constants (c11 , ~ll + ~12_+ c44 , 

c44 , ~ll - ~12 ~f Table 1), allowing for uncertainties in the transit 

time measurement, is approximately± Q.5%. The measured elastic -constants 

in Table 1 agree within this figure. The fact that the consistency error 

is much lower than the absolute error is taken as a final indication that 

the •1 specimens were well-oriented single crystals with no important 

lineage structure. 

During the course of the investigation, it was decided to neutron 

irradiate two of the Al crystals. The irradiation took place in the CP-5 

reactor at the Argonne National Laboratory. The integrated exposure was 

18 2 approximately 5 x 10 neutrons per em with energy greater than 100 keV. 

The temperature of the crystals was neither monitored nor controlled 

during the irradiation. 

B. Ultrasonic Interferometer 

For measurements of the na~ural sound velocity stress derivatives, 

we have used the two specimen ultrasonic interferometric technique. The 

interferometer is illustrated in Fig. 1~ The oscillator and receiver 

were contained in a single unit, the Matec attenuation comparator. The 

Tektronix 585A oscilloscope was used to observe the rectified signal out-

put of the Matec unit. This allowed observation of an expanded region of 

the echo pattern at any desired transit time. The method is basically the 

14/ 15/ same as that described by Hiki and Granato--- and by Swartz.-- We give 

here a brief description together with a clo~er analysis of some aspects 

of the measurement found to be particularly important in this experiment. 

·The generation of an ultrasonic interference pattern can be 

described qualitatively as follows: " Quartz transduce.rs were attached to 
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Fig. 1. The ultrasonic interferometer. The oscillator 

and receiver are contained in a single unit, 

the Matec attenuation comparator. 
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both specimens, and the same pulse was applied to each. The two speci-

mens were polished together and, hence, the path lengths were well matched. 

If the temperature and pressure were the same for the two specimens, the 

wave velocities would be identical. Hence, the two echo patterns obtained 

would also be identic~l. When viewed in parallel, they would simply add. 

Now, if a temperature difference of a few degrees centigrade was set 

between the specimens, the resulting wave velocity difference would be suf-

ficient to cause a readily observab!e interference pattern. 

Temperature control was an important aspect of the experiment. It 
' 

was necessary to be able to detect small changes in the temperature dif-

ference between the two specimens and to control the rate at which this 

temperature difference changed. To measure small changes in the tempera-

ture difference, we used the following technique: Chromel -Advance (5 mil 

diameter wire) thermocouples were attached to the specimens. The sensi-

tivity of these thermocouples was nearly 60 microvolts per °C. The emf 

representing the temperature difference was measured by a Minneapolis -

Honeywell 2768 microvolt potentiometer. The unbalance potential of the 

potentiometer was then fed into a Leeds and Northrup de amplifier and 

•zAR strip chart recorder. The amplifier - recorder combination was set 

for a full scale deflection of 10 microvolts. With this arrangement, 
I 

temperature changes of approximately two millidegrees could be detected. 

The rate of change of the temperature difference was controlled as 

follows: The stressed specimen was effectively at room temperature. The 

second specimen was placed in a furnace which, in turn, was immersed in 

an ice bath. By adjusting the current in the furnace coils, the tempera-

ture and temperature rate of change of this specimen could be controlled 

as desired between approximately 0°C and 20°C. 
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The application of hydrostatic pressure and uniaxial compression 

was accomplished as follows: The hydrostatic pressure was obtained 

simply by using nitrogen tank gas. The pressure was measured by a Heise 

bourdon gage. The uniaxial compression was applied by a Tinius Olsen 

universal testing machine operated in the constant load mode. The machine 

calibration was checked with a Morehouse proving ring and was found to 

be accurate to better than 0.5% at full load. During loading the crystal 

being stressed was placed between indium shims, and the stress was applied 

through a ball joint to insure uniform uniaxial compression. For each 

-2 type of loading, the stress range was approximately 0-50 kg!cm . 

17/ In the formulation of Thurston and Brugger,-- the third order 

elastic constants are expressed in terms of 

the natural velocity defined previously. This can be written as 

2 
Here w is the second order elastic constant (p

0
W )P=O· If we consider W 

to be a simple thermodynamic function of two variables, W = W(P,T), then 

.!.. . owl = w · oP 
o T 

_.l.. 
w 

0 

Equation (14) indicates the procedure we followed in measuring the 

(14) 

natural velocity stress derivatives using the two specimen interferometer. 

We first measured 1 owl 
w

0 
oT P 

for a particular sound mode. This could be 

considered as a calibration of the interferometer for this mode. We then 

measured oT/oPiw for the various stress derivatives of the mode. 



1 owl Direct measurement of the temperature derivative w
0 

aT P 

carried out according to the method of Espinola and Waterman • .!l 
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was 

They 

relate the velocity difference of two superimposed waves to the observed 

interference condition. If the vel~city difference is caused entirely 

by a temperature difference between the two specimens, we can write 

1 owl 
w

0 
aT P = 

2j-l _2. 
2f t oT 

0 

(15) 

Here f is the frequency; t is the'round'trip transit time; J :i:S the node 
0 

index; and n is the echo index. We measured the temperature difference 

. th . th 
~T between the two specimens for which the j node is at the n echo. 

It was observed that 1/n is a linear function of ~T. This gave the 

expected linear dependence of wave velocity on temperature. The tempera-

ture range for each measurement was less than l0°C. 

These results can be expressed in terms of the temper~ture dependence 

2 of the second order elastic constant, c = pv . Here p is the density, and 

v is the actual sound velocity. Hence, the temperature dependence of c 

is given by 

oc I 
oT P = c (.1.. ow 1 _ a) 

w
0 

oT P 
(16) 

Here Q is the coefficient of linear thermal expansion (0.234 x 10-4 °C-l 

for ~1 at 25°C). 201 

1 owl The results for w- oT 
0 p 

for the four sound modes which could be 

propagated in our specimens are presented in Table 2. The results for 

oc/oTip are presented in Table 3 and are compared to the results of Long 

and Smitl/l/ and Kamm and l>lers .12/ Kamm and ~lers present their results 
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in tabular form, end we have calculated the derivative from their high 

temperature values. 

Certain inconsistencies were present in our date for the temperature 

derivatives. It was found that these could be explained by considering 

the existence of an initial phase difference between the two waves. The 

analysis of Espinola and Watermanll/ has been extended to account for 

such effects. This work is presented in ~ppendix A. Also, difficulties 

were encountered in measurements on the (110) longitudinal mode wave 

velocity. In particular, repeated measurements of the temperature derive·-

tive of this mode showed excessively high scatter (approximately 15% of 

the final value). It was decided to use only the results for the tempera-

ture derivatives of the other three modes. A value for the (110) longi-

tudinal mode was calculated from these three modes. This calculated value 

fell well within the range of the measured values. We have no definite 

explanation of the difficulties with the (110) longitudinal mode. Results 

for the other three modes were satisfactory. The error presented with 

our results in Table 3 represents the range of values observed for these 

three measured temperature derivatives. 
' 

We then measured aT/arlw· To do this we picked a convenient inter-

ference pattern as described above by setting the appropriate temperature 

difference AT between the two specimens. We defined the interference 

condition exactly by noting the relative echo amplitudes near a particular 

node. If the stress on one specimen was changed by 6P, the interference 

pattern changed. That is, the relative echo heights near the observed 

node changed. ~n appropriate change in the temperature difference, 

6(Ar), would then return the system ta the initial interference pattern. 



Table 2. The temperature derivatives of the n.atural 
velocities of ~t. These can be considered 
as a calibration of the interferometer for 
the various modes. (units of lo-4 oc-1) 

Sound Mode 

1 1 2Cu + 2C12 + c44 

1 1 
2Cu - 2Cl2 

1 awl 
W· oT p 

- 1.53 

- 1.47 

- 2.95 

- 2.44 

22 
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Table 3. The temperature derivatives of the· second order elastic 
'constants of At. The errors indicated in column 2 
represent the range of the measured values as described 
in the text. (units of 108 dyn.cm-2.oc-l) 

· )his Experimentt Long and Smit~/ Kamm and Alers191 

- 3.51 ± 0.10 - ·3.44 --3.75 

- 0.69 - 0.98 - 0.55 

- 1.45 ± 0.05 - 1.43 - 1.43 

- 3.55 - .J.64 - 3.58 

1 1 
'iCn - 'iC12 - 1.42 ± 0.05 - 1.23 - 1.60 

1 2 
Y:n + 'JC12 - 1.62 - 1.8 - 1.65 

N 
VJ 
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By making successive changes of this type about the initial interference 

pattern as a null condition, we determined 6(~)/6P = aT/aPiw· 

The sensitivity of the two specimen technique depends upon the 

smallest wave velocity change which will produce an observable change in 

an interference pattern. This, in turn, depends upon the structure of the 

interference pattern and the position in time at which measurements are 

being obtained. In general, the sensitivity is higher at longer transit 

times. -6 We have observed that changes of the order 6W/W = 2 x 10 can be 

detected for waves which have spent 100-150 microseconds in the crystal. 

This completes the description of the ultrasonic interferometer. 

. 22/ h h Extensive measureme~ts by Swartz-- on NaCl ave demonstrated t at the 

two specimen interferometer gives reliable results compatible with one 

specimen techniques. The two specimen technique has the distinct advan-

tage that small temperature drifts of the stressed specimen will not 

obscure the sound velocity change with pressure. The two specimen tech-

nique depends explicitly on the temperature-difference between the two 

specimens. It is irrelevant which specimen actually changes temperature. 
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III. EVALUATION OF THIRD ORDER ELASTIC CONSTANTS 

A sound wave can be described by a propagation direction !, a 

di~placement (or polarization) direction y, and an effective second order 

2 
elastic constant, w = (p

0
W )P=O· For an unstressed configuration, w can 

be expressed in terms of a linear combination of the second order elastic 

constants defined by Eq. (9). For the particular orientation of our 

crystals, we were able to propagate five different pure mode sound waves, 

two longitudinal and'three transverse. We measured the hydrostatic 

pressure derivatives of the natural vel.ocities of these five waves. We 

also measured nine uniaxial stress derivatives of the five natural 

velocities. These 14 experiments are characterized in Table 4. 

17/ Thurston and Brugger-- have given explicit relations between the 

measured quantities and the second and third order elastic 

constants for the 14 experiments described in Table 4. These relations 

are presented in Table 5. In Table 5, the superscript T indicates an 

isothermal elastic constant. 

We first measured the hydrostatic pressure derivatives of the five 

natural sound velocities, expts .• 10-14 of Table 5. Measurements were taken 

on two sets of crystals, and the results for each mode were averaged. 

The natural sound velocity change for a typical hydrostatic experiment 

is illustrated in Fig. 2. The results were expressed in terms of three 

linear combinations of five of the six third order elastic constants, 

(c111 + 2c112 ), (%C111 - %C123), (c144 + 2c166 ). These three numbers 

were determined by a least squares fit of the five measurements. The 

results are presented in the first row of Table 6. The error indicated 

with these results repr~sents the consistency of the five measurements. 



Table 4. Characterization of soun~ velocity stress experiments. 

Propagation Displacement Stress 2 
Direction Direction Direction w = (p w ) 

N u M 
0 P=O Expt. No. 

1 [110] (110] [001] 1 1 
2Cn + ZC12 + c 44 

2 [liO] [iio] . (001] 1 
~11 

1 
- ZC12 

3 (110] (001] (001] c44 

4 (001] (001] (110] ell 

~ 

5 [001] [110] (110] c44 

6 (001] [iio] (110] c44 

N 

(i10] [llO] 1 1 (1\ 

7 [110] 2Cn + 2C12 + c 44 
" 



Table 4. (continued) 

Exet. No. N .!! M w 

8 (110] (i1o] [iio] 1 
r:11 

1 
- r:12 

9 [110] coon· (1l0] c44 

10 (001] (001] Hyd. ell 

11 [001] any j_ ! Hyd. c44 

12 (110] (llO] Hyd. 1 1 
r:1i + r:12 + c44 

13 [110] . [llO] Hyd. 
1 . 
r:u 

1 
- r:12 

14 [110] [001] Hyd. c44 



Expt. No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Table 5. Natural sound velocity stress derivatives as a function 
of second and third order elastic constants. 

2wa 

- 2wb 

2wa 

w(a-b-2c) 
I 

w(a-b+2c) 

w(a-b+2c) 

w(a-b.;.2c) 

2wa 

+ aclll + (a-b) cll2 

1 1 1 
+ 4(a-b) clll + 4(a+b) c112 - 2acl23 

1 1 
+ I(a-~) cl44 + I(Ja-b) cl66 + 2c c456 

N 
00 



Table· 5. (continued) 

Expt. No. 

10 

11 

12 

. 13 

14 

a = 

-l-2w(2a-b) 

-l-2w(2a-b) 
. 

-l-2w(2a-b) 

· -l-2w(2a-b) 

-l-2w(2a-b) 

e- T ... 
12 

T T T 
3B (ell -el2 > 

+ (2~-b) 

+ (2a-b) 

' 
+ (2a-b) 

+ (2a-b) 
. . 

+ (2a-b) · 

T 12 -2 
e 11 . = 1.0339 X 10 dyn.cm 

[elll + 2eu2] 

[el44 + 2el66] 

(%Clll + 2e112 + ~123 + el44 + 2e166] 

[~111 - %Cl23] 

[el44 -:r· 2el66] 

1 
c=-

4C44 

T 12 -2 
e

12 
= 0.5104 X 10 dyn.cm 
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Fig. 2. Natural velocity change vs. hydrostatic pressure 

for a C 
44 

mode (Expt. 14 of Tables 4 and 5). The 

separation between the· curves for increasing and 

decreasing pressure is due to a thermal lag between 

the surface and bu~k of the specimen of approximately 

O.l°C. To reduce any effect on the measured slope, 

the results for increasing and decreasing pressure 

were aversg~d. 
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Initial uniaxial stress measurements were made on the two sets of 

crystals. -2 The stress range was approximately 0-40 kg·cm • Even in this 

small stress region, we expected that dislocation motion might occur. 

Hiki and GrenatJ..!tl found that an initial prestress was effective in elim-

inating dislocation effects in measurements on noble metals. That method 

was also attempted here. The sound wave attenuation was monitored during 

the prestress, and no significant changes were detected. However, it 

became apparent that dislocation effects were present in the initial uni-

axial data. 

The problem of determining whether or not dislocation effects exist 

in a particular uniaxial experiment or series of experiments is quite 

involved. Initially, it·was hoped that for any particular experiment a 

dislocation contribution would be a non-linear function of applied stress, 

easily distingui&h~:~ble from the patently linear lattice effect. Hiki 
14/. . 

and Granato-- observed a highly non-linear velocity change at stresses 

above their prestress level. 
. . 16/ 

However, Salama and Alers-- discounted 

this simple notion. Their measurements on hardened Cu crystals showed 

that the uniaxial data could be linear, reproducible, show no hysteresis, 

end give no attenuation change with applied stress and could still contain 

a dislocation contribution. However, they suggested that a suitable 

criterion for the absence of dislocation effects in a series of uniaxial 

measurements was that hydrostatic pressure derivatives calculated from 

the uniaxial data be in agreement with the directly measured values. 

We have adopted that criterion here. This is reflected in the 

method of data reduction. The nine uniaxial stress experiments give 

information on eight linear combinations of the six third order elastic 

constants. The uniaxial data could be used alone to obtain a set of 
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third order elastic constants. The three linear combinations related to 

the hydrostatic pressure derivatives could then be calculated from this 

set. If substantial agreement could be obtained between the measured and 

calculated values of these three linear combinations, then it would be 

proper to combine all the data and obtain a self-consistent set of third 

order elastic constants and hydrostatic pressure derivatives. 

The dominant characteristic of the initial uniaxial data was that 

expts. 1, 2, 3, 4, 7, and 8 gave a linear dependence of the change in 

natural velocity with stress while expts. 5, 6, and 9 did not. A typical 

linear natural velocity change is illustrated in Fig. 3. In the non-

linear experiments, a hysteresis effect was 'observed which was qual ita-

tively reproducible. A typical non-linear natural velocity change 

including hysteresis is illustrated in Fig. 4. 

The six linear experiments were related to five of the six third 

order elastic constants. These were the same five constants which 

determined the hydrostatic pressure derivatives. The initial uniaxial 

data from the six linear experiments was used to determine these five 

elastic constants by a least squares analysis. The set of third order 

constants so determined was totally inconsistent with the measured hydro-

static pressure derivatives. For example, after a particular set of 

12 -2 measurements, we obtained (C111 + 2C112 ) = -8.20 x 10 dyn·cm compared 

to the measured value of -17.10 in the same units. Dislocation effects 

were obviously present in the non-linear experiments. It was concluded 

that dislocation effects must also have been present in several of the 

linear experiments. 

One set of Al crystals was then neutron irradiated as described 

in Sec. IIA. The uniaxial stress measurements were then repeated. 
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Fig. 3. Natural velocity change vs. applied uniaxial stress 

for a c44 mode (Expt. 3 of Tables 4 and 5). The 

-2 experiment was begun with a 4 kg·cm setting stress 

applied to the specimen. 
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Fig. 4. Natural velocity change vs. applied uniaxial stress 

for a typical non-linear mode ~xpt. 9 of Tables 4 

and 5). The observed hysteresis is attributed to 

~ dislocation effect. 
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Results for expts. 2, 3, 5, 6, and 9 were essentially unchanged. The 

hysteresis effects observed in the latter three of these experiments were 

still present. ·The res~lt for expts:--1, 4, 7, 8 changed substantially. 

~e ~easured natural velocity changes with stress all became algebraically 

larger. This ·is the direction of change one would expect if· dislocation 

effects had been eli~inated. The six linear experiments ~ere again ana-

lyzed to obtain a least squares fit for five of the six third order elastic 

constants. The three linear combinations of the third order elastic 

constants related to the hydrostatic pressure derivatives calculated from 

these results agreed almost exactly with the measured values. These combi-

nations are presented in the second row of Table 6. The error presented 

represents the consistency of the six uniaxial measurements • 

. Results of expts. 5, 6, and 9 on the irradiated crystals still 

showed hysteresis effe~ts s~milar to the~ illustrated in Fig. 4. It is 

very likely that the observed hysteresis effects are associated with 

mi,croscopic plastic flow. Some .dislocation motion must still be occurring 

in the irradiated crystals. However, because of the excellent agreement 

observed in Table 6 between uniaxial and-hydrostatic measurements, we 

conclude that dislocation ef~ects have been effectively eliminated from 

the six linear uniaxial experiments. 

We then combined the acceptable uniaxial ~nd hydrostatic data to 

obtain a self-consistent set-of third order elastic constants and hydro-

static pressure derivatives. The data used in-this calculation are sum-

marized in columns 2-4 of Table 7. Results for the natural velocity stress 

derivatives OSq. ~4)) are presented in the fifth column and for 

OSq. (13)) in the sixth column of this table. The errors 



Table 6. 

Measurement 

Hydrostatic 

Uniaxial 

The third order elastic constants related to sound 
velocity hydrostatic pressure derivatives. The 
errors indicated represent the consistency of each 
set of measurements.· (units of 1012 dyn. cm-2) 

1 1 
z<:1u - z<:123 

- 17.10 + 0.05 - 5.60 ± 0.07 - 6.99 ± 0.04 

- 17.11 ± o. 04 - 5.57 ± 0.02 - 7.06 + 0.01 



Exet. No. 

1 

2 

3 

4 

7 

8 

10 

11,14 

12 

13 

Table 7. Experimental data and results for natural velocity stress 
derivatives. -The er-rors indicated in column 4 represent 
the range·· of the measured values. 

w 

1 owl w 0~ p 
aT I 
aP w. 

1·awl 
W oPT 

-2 
~dxn.cm ) (oc~l) . -1 2 

(°C .dyn .em ) -1 2 (dyn .em ) 

1.1192xl0
12 - ·-4 

- 1.47xl0 
- . -a 

- 1. 7 ftt<). 1 Oxl 0 - 2.56_±0.14xl0 
-12 

0.231-7 - 2.95 0.66_±0.04 1.95f0.13 

0.2834 - 2.44 1. 7 8.±0. 07 4.34+0.16 

1.0675 -. 1.53 - 0.51_±0.05 -_· 0. 78.±<>. 08 

.1.1192 ~- 1.47 - 1. 04±0. 07 - 1.53+0.10 

0.2317 -- 2. 95 0.23+0.02 0.68+0.04 

1.0675 - 1.53 1.80_±0.1~' 2. 75_±0.15 

0.2834 . - 2.44 1.40+0.02 3 .. 42+0.05 

1.1192 - 1.47 1. 98±().02 2.91+0.02 

0.2317 - 2 .• 95 1. 01.±<>. 05 2. 98_±0 .15 

0 2 
oP(poW )T,P=O 

~dimensionless) 

- 5 . 7 3.±0 • 3 2 

0.90_±0.06 

2.46_±0.09 

- 1.67+0.16 - -
-· 3.42+0.22 

o.n±() .• 02 

5.87+0.32 

1.94+d.03 

6.51+0.05 

1. 38.±<>. 07 
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· pr~sented with the measured oT/oPiw represent the range of several 

~easurements for ~ach mode (on th'e irradia~ed crystals only for uniax~al 

measuremepts).· These numbers are simpl~ scaled to obtain the ~rror 

presented i~ th~ fifth and sixth columns. From the relatlons of Thurston 

111 a 2 
and ~rugger-- (Table 5) and the measured quantities oP(p

0
W >T,P=O , we 

obtained the five third order elastic constants related to the hyd~ostatic 

and linear uniaxial data by a least squares analysis. The final set of 

third order elastic constants is presented in Table a. The errors indi~ 

cated in Table a represent the ran~e of measured stress derivatives. 

These were obtained by substituting various combinations of the maximum 

and minimum pressure derivatives in the least squares compu~er program 

and noting the range of third order elastic constants so calculated. 

~lthough expts. 5, 6, and 9 were grossly non-linear, certain restric-

tions on the stress derivative could be deduced. It w@~ c1ear. thet the 

derivative was small in each c.ase. AssumiQ.g that the constants c144 and 

c166 were "'e~l known, a fair estimate of c; 456 could be obtai~d·. +hi~ 

value of c456 is presented in Table a. 

The final, self-consistent set of third order elastic constants 

was used to calculate the hydrostatic pressure derivatives of the second 

2 
qrder elastic constants, c = pv . From the definitions of c and W, we 

determine that 

ocl 
oP T,P=O 

{17) 
T,P=O 

·Here BT is tne isothermal bulk modu1us. The second term of Eq. {17) was 

calculated from the relatiops in Table 5 (Expts. ~0-14) and the measurep 

elastic constants. The res~lts are presented in Table 9 and compared to 



Table 8. The third order. elastic con~tants of 
At at 25°C. The errors. represent the 
range of.measured stress derivatives 
as discuss~d in the text·. (units of 
1012 dyn.cm-2) 

c111 = - 10.76 ± 0.30 

c112 = - 3.15 ± 0.10 

. cl23 = + 0.36 ± 0.15 

cl44 = - 0.23 + 0.05 

cl66 = - 3.40 + 0.10 

c456 = 0.30 ± 0.;30 
' 
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Table 9. 

c 

en. 

c12 

C44 

43 

The hydrostatic pressure derivatives of the second 
ord~r .elastic· constant~, c = pv2, of ~l. The error 
presented with the results of the experiment is 
consistent with the erro+, assQciated with the final 
set of third order elastic constants. 

ac I 
arT 

This Experiment Schmunk and Smith.§/ 

6.35 ± 0.23 7.35 

3.45 ± 0.16 4.11 

2.10 + 0.12 2.31 

1 . 1 
~11+ ~12+ c44 7.00 ± 0.31 ~.04 

k ~ 2 11- '2 12 1.45 ± 0.10 1.62 

1 2 
JCil+ 'JC12 4.42 ± 0.18 5.19 
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~he results qf Schmunk and Smith.~/ The error presented is consistent 

with the error associated with the final set of third ord~r ~onstants. 

Our values for the pressure derivatives of the shear constants 

(c44 , ~11-~12 ) are in fair agreement with those of Schmunk and Smith. 

For the longitudinal copstants (c
11

, ~11+~12+e44), our results are sig­

nificantly smaller. We have no definite e~planation for this. It is 

interesting to note, ·however, that a similar comparison can be made 

14/ regarding noble met~ls between work at this laboratqry (Hiki and Granato-- ) 

and at Case~western.Reserve (Daniels and Smitn21). The principal dif-

ference between the two experimental techqiques is the pressure range, the 

Case group working at pressures up to 10 kbars. This might adversely 

affeqt the specimen-transducer bond. In the following section we investi ... 

gate this comparison further by using the pressure.derivativ~ results to 

calculate the lattice thermal expansion. 
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II 

IV. THERMAL EXP~NSION AND THE GRUNEISEN PARAMETER 

Within the anisotropic continuum model, the thermal expansion can 

be calculated from the third order elastic constants. For a cubic crystal, 

the thermal expansion-is isotropic and can be expressed in terms of the 
\ 

pressure derivatives of the three second order elastic constants. Hence'·· 

it depends directly upon the three linear combinations of the third order 

elastic constants previously discussed (Table 6). Comparison of a measured 

and calculated thermal expansion should provide some information on the 

magnitude of these three third order constants. Such a program has been 

23/ discussed elsewhere,-- but a short account will be given here for com- . 

pleteness. ~ further discussion will also be given on comparisons at low 

temperatures. 

To calculate the thermal expansion, we used the quasiharmonic 

approximation. This means that all thermodynamic and elastic properties 

of a crystal are assumed to be determined by the harmonic lattice fre-

quency distribution and its ·dependence on volume or, more generally, on 

strain. This dependence is usually specified by defining the scalar mode 

GrUneisen parameters, 

v -- (18) 

Here V is the volume of the material, and vi is the· frequency of the ith 

normal mode. In the quasiharmonic approximation, vi depends only on the 

24/ 
state of deformation ·and is not an explicit function of temperature.-

Under this assumption, the thermodynamic GrUneisen parameter can be 

defined as a weighted mean of the individual mode parameters, namely, 



46 

3N 

y = I (19) 

i=l 

Her~ Ci is the specific heat of the ith normal mode. y is then directly 

25/ related to the thermal expansion as--

(20) 

Here V is the molar volume; BT and BS are, respectively, the isothermal 

and adiabatic bulk moduli; CV and Cp are, respectively, the specific heats 

at constant volume and constant pressure; and~ is the volume thermal 

expansion. We see that the calculation of the thermal expansion basically 

reduces to the calculation of the various yi and their weighted mean y. 

It is convenient to compare measured and calculated values of the thermal 

expansion through the respective GrUneisen parameters. 

In the anisotropic continuum model, Eq. (18) becomes 

(21) 

Here BT is the isothermal bulk modulus, and ci is the effective second 

th order elastic constant of the i mode. In the quasiharmonic model, the 

mode parameters are not explicitly temperature dependent. However, the 

thermodynamic parameter does depend on temperature through the weighting 

factors (specific heats C.). Expressions for the high temperature and 
~ 

low temperature limits of the thermodynamic GrUneisen parameter can be 

obtained from Eq. (19). ~thigh temper'atures, Ci= k (the B9ltzmann 

constant) for each of the 3N modes, and 
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(22) 

•t low temperatures, by assuming the continuum model, it can be shown 

that~/ 

{23) 

Here v. is the wave velocity of the ith mode. The GrUneisen parameter 
- 1 

at intermediate temperatures is; usua1·1.Y caLculated l?Y taking :account of 

the variation of the specific heat with temperature and the assumed fre-

quency distribution. 

27/ Recently Brugger-- has discussed the tensorial mode GrUneisen 

parameters 

(24) 

which are based upon the general Lagrangian strain dependence of the 

normal mode frequencies. This parameter is not intrinsically quasi-

harmonic as an explicit temperature dependence is allowed. However, this 

dependence is not utilized, and the following calculation can be con-

sidered quasiharmonic. · Adapting the anisotropic continuum model and 

appropriate boundary conditions, the 

..L 
2w. 

1 

yi0f3 can be written as 

a (p
0
w/) . 
a~ 

(25) 
T , fFO 
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Here Wi is the natural velocity of the ith mode, and w. = (p wi2) 0 1 - o TF 

By solving the wa~ equation of small amplitude waves in a homogeneously 

deformed medium, Thurston and Brugger171-derived the expression 

(26) 

N d h i d 1 i i f h .th Here _ an y are t e propagat on an po ar zat on vectors o t e 1 

normal mode, and t is the thermodynamic tension (t~= p0 (~U/~~)S = 

p0 (~F/~~n)T where U and F are the internal and free energies per unit 

mass of the material). The bar over a symbol indicates that the quantity 

is to be evaluated in the homogeneously deformed state. By differentiating 

Eq. (26) with respect to ~ and evaluating at fFO, o~e obtains an ex­

pression for the tensorial mode GrUneisen parameter 

(
CT + CST U U ) N N J at3mn. at3munv u v m n 

(27) 

with 

wi = c5 
N N U U (28) mumv m n n v 

Summation over repeated indices is always implied. Consecutive super-

scripts such as ST indicate the nature of the successive derivatives 

employed to obtain the elastic constant, adiabatic (S) or isothermal (T). 

For cubic crystals, it can be shown that 

1 11 22 33 
y i = 'j'(Y i + y i + y i ) (29) 

and the explicit expanded form is express~d as 
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(30) 

with 

(31) 

The components of! anq y refer to the appropriate vectors for the ith 

normal mode, and the elastic constants are expressed in the contracted 

notation. ~11 third order constants are of the type ST. 

The mode GrUneisen parameters for aluminum were calculated as 

follows: There exist one longitudinal-like and two transverse-like 

elastic waves for a given direction N. The effective elastic constants 

w and, hence, the polarization vectors y of these waves can be conven-

iently determined by solving the elastic wave equation in the form of 

Quimby and Sutton. 281 The yi can then be calculated for any mode using 

Eqs. (30) and (31) and values of the second and third order elastic 

constants. The yH ·a·nd yL can then be calculated from Eqs. (22) and 

(23). In computing these sums it is sufficient to consider propagation 
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directions in a (100] - [110] - [111] triangle on the Debye sphere because 

of the high symmetry apparent in Eqs. (30) and (31). A grid over this 

triangle dividing it into 177 nearly equal areas and having evaluation 

points at the centers of these areas was constructed. This means that 

25,488 modes were considered. Results for yH and yL calculated from our 

measured values of the third order elastic constants (Table 8) are pre-

sented in the first column of·Table 10. 

~n alternate procedure for ·calculating GrUneisen parameters based 
. . 29/ 

directly on Eq. (21) has been developed by Schuele.-- For cubic crystals, 

this formulation must be entirely equivalent to the one described here, 

but the calculations are quite different. Use of both procedures provides 

a convenient check on the computations of each. Use of the Schuele 

program and our pressure derivatives (Table 9) gave the same results as 

our program expressed explicitly in terms of the third order constants. 

Schuele's program was also used to calculate yH and yL from the pressure 

derivatives of Schmunk and Smit~/ (Table 9). These results are pre-

sented in the second column of Table 10. 

We also computed yH and yL from the measured thermal properties 

according to Eq. (20). For yH, thermal values were taken at 25°C. 

The particular values used were as follows: the thermal expansion of 

20/ 4 1 Taylor et al.-- (~ = 0.702 x 10- °C- ), the bulk modulu~ measured 

12 -2 here _(BS = 0.7585 x 10 dyn·cm ), the molar volume from the x-ray 

lattice parameter data of_Figgens et a1. 30/ 

and the specific heat of Giaque and Meads311 

3 (V = 10.004 em per mole), 

7 ·-1 
(Cp = 24.34 x 10 erg. °C 

per mole). The yH computed from these values is presented in the third 

column of Table 10. 
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~t low temperatures, contributions to the thermal expansion and the heat 

capacity arise from both the lattice and the electron gas. Equation (20) 

can be separated in the for~/ 

y = 

with (32) 

y = f3 B5V /C e e e 

Here sub-t refers to the lattice, and sub-e to the electron gas. We must 

compute yt= yL as it is this quantity which is calculated from the elastic 

data. At low temperatures, the thermal expansion and the heat capacity 

33/ depend on the temperature as--

3 f3 "(or C) = AT + BT . {33) 

The linear term in temperature is a measure of the electron gas contribu-

tion. The cubic term in temperature is a measure of the lattice contribu-

tion, and this term must be isolated. The particular values used were 

as follows: the thermal expansion of White a~ reported by Collins and 

Wh.itell/ {{f3/T3) = 2.6 x 10-ll °C-4), tbe bulk modulus at 0°K of Kamm 

19/ 12 -2 . 
and Alers--- (B = 0.7938 x 10 dyn•cm ), the molar volume from the 

30/ . 
lattice parameter data of Figgens et al.---- extrapolated to 0°K {V=9.8724 

cm3 per mole), and the specific heat of Phillips3'4/ {(C/T3) =-2.486 x 102 

-4 ergs. °C per mole). 
) 

The yL computed from these values is also presented 

in column 3 of Table 10. 

There are two comparisons of interest in Table 10, the absolute 

magnitudes and the dispersion {yH- yL). The continuum model should give 

excellent agreement between the elastic and thermal values of yL. 



Table 10. 

From elastic data: 
This Experiment 

2.27 

2.33 

The th~rmodynamic GrUneisen 
parameters of At. 

From elastic data: 
Schmunk and Smit't&f 

2.56 

2.60 

From thermal data: 

2.19 

2.45 



53 

Unfortunate.ly, the comparison for yL is difficult to assess due to large 

uncertainties (approximately 10%) in the measured thermal expansion. 

~greement for yH should be questionable as the high frequency lattice 

modes must be considered. However, results for noble metals
23

•351 show 

that good agreement is obtained between elastic and thermal values of yH. 

If this agreement could be expected for close packed metals in general, 

the values of yH in Table 10 would favor our elastic data versus that of 

6/ 36/ Schmunk and Smith.- With regard to the dispersion (yH - yL), Barron-

has shown that for a cubic, close-packed lattice with central forces 

between nearest neighbors only, (yH - yL) = 0.30. Also, this difference 

becomes smaller when more distant neighbors must be taken into account. 

37/ Measurements by Carr et al.--- for Cu agree closely with this result. 

They obtain (yH ~ yL) = 0.28 from thermal data. Elastic data will give 

(yH - yL) = 0.20. This is consistent with the observation of Hiki and 

14/ Granato--- that the elastic properties of the noble metals are determined 

primarily by the exchange repulsion between ion cores. In aiuminum, the 

elastic properties are determined primarily by the conduction electrons. 

Hence, one would expect that in a force constant ~icture distant neigh-

bors would be of major importance. It is interesting to observe in 

Table 10 that both the thermal and elastic GrUneisen parameters give 
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V. FORMALISM OF ELASTIC CONSTANT CALCULATIONS 

At T = 0°K and in the absence of zero-point vibrations, the 

I 
elastic constants of a solid have a well defined relationship to the lat-

tice energy. This has been discussed previously (Eq. (9)) but can be 

simply restated as 

c ijklmn •• = . . ) (34) 

Here E can be defined simply as a lattice energy per unit mass and is a 

function of strain only. At T = 0°K, we need not d,istinguish between an 

internal and a free energy or between an adiabatic and isothermal elastic 

constant. Equatio~ (34) can be considered as a basis for elastic constant 
r ' 

calculations in terms of atomic models of lattice cohesion. 

The el~slic constants of Eq. (34) are those which have been defined 

2/ ' by Brug~er.- A calculation in which these quantities are computed 

directly would be categorized as a finite strain formulatio~. A finite 

strain calculation would begin with a description of the lattice energy 

in terms of volume and interparticle separation, E = E (Y ,£). Since V and 

!. are known.functions of the Lagrangian strain tensor components ~j' the 

derivatives of Eq. (34) could be set up in terms of a simple chain rule. 

In any theory of atomic cohesion, the lattice energy is written as a sum 

of terms, E = E1 + E2 + Although certain of these terms may make 

a negligible contribution to the cohesive energy, the higher strain 

derivatives may still be large. In a finite strain approach, it is neces-

s~ry to analyze all possible contributions to the lattice energy and make 

a consistent estimate of the dependence of each te~m on the Lagrangian 
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38/ The finite strain approach has been used by Ghate--

to calculate the elastic constants of numerous alkali halides, and by 

39/ Keating-- for calculations on the diamond structure. 

An alternative formulation for the calculation of elastic constants 

f t i d 1 h b t d b F . h ....;.40~·~4-1/ rom a om c mo e s as een presen e y uc s.- Fuchs constructed 

two shear deformations for which the volume was strictly conserved. Each 

deformation could be expressed in terms of a single parameter. For a 

cubic crystal, the lattice energy derivatives with respect to these defor-

mation parameters were related directly to the two elastic shear constants 

C' = c11 - c12 and c44 • The Fuchs approach is based on the assumption 

that the lattice energy can be written in the form 

{35) 

Here x describes a volume conserving deformation, and v is the ~elative 

volume change (V /V 
0

) •·. The advantage of the Fuchs approach is that the 

energy term E2 need not be considered in the calculation of the above 

mentioned elastic shear constants. It is to be emphasized that this 

would not be true in an explicit finite strain approach. 

The Fuchs approach is particularly convenient in calculations for 

metals for which the energy decomposition of Eq. (35) can·- be accomplished 
.. 

in a reasonable.··manner .. In fact, it turns out that, for metals, the energy 

terms which depend p~imarily on volume are the most difficul't to calculate. 

For example, for mo~ovalent metals, the wave function of the lowest con-

duction electron state is known to be very flat in the region between 
:-.1 

the ions. The energy of this state should depend primarily on volume and 

be relatively unaffected by a shear distortion of the lattice. The 

' 
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volume dependence would be given in a complicated way by a quantum 

mechan~cal description of electron states. In calculating the elastic 

shear constants in the approach of Fuchs, such a term can be conveniently 
' 

neglected. A further discussion of· these considerations has been given · 

b H 
. . 42/ 

y unt1.ngton .--,-

40 41/ The original work of Fuchs ' concerned the calculation of the 

second order elastic shear constants of the alkali metals and Cu. Thes.e 

calculations were extended to polyvalent metals by. Leigh ~J/. .who calculated 

the second order elastic constants of Al. Leigh's work will be extensive-

ly discussed in the following section. The Fuchs approach has also been 

applied' to 

Mg, 451 and 

. . 44/ 
the second order elastic shear constants o~, beta brass,--

46/ alpha phase Cu and Ag alloys.--
;\ 

Attempts have also been made 

to explain the pressure derivatives'of the second ord~r elastic shear 

7-9/ 5/ 6/ constants of the alkali metals,---- the nople metals,- and Al and Mg.-

Calculated values of elastic shear constants are of interest 

because they can be compared to accurately measured quantities. This 

gives a valuable opportunity to obtain information on application of the 

theories of interatomic forces. The work of Fuchs has provided two 

quantities for such comparison for cubic crystals, the two second order 

elastic shear constants. 

47/ . 
Cousins-- has extended the Fuchs approach to third order for 

cubic crystals. By considering a general volume conserving shear defor-

mation, he has shown that there are exactly three third order elastic 

shear constants. He was able to obtain three appropriate deformations 

which isolated these three third order shear constants. The work of 

Cousins has provided five quantities for comparison between theory and 

experiment, the two second and three third order elastic shear constants. 
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However, a complete extension of the Fuchs approach to the third 
I 

order for cubic crystals must produce seven independent energy deriva-

tives. rbat is, to the third order, there are seven independent quanti-

ties which can be obtained from consideration of the energy term E1 (x,v) 

alone. The two new quantities which we will consider are effectively 

volume derivatives of the second order shear constants. The presence 

of a single derivative with respect to x will eliminate contributions 

from energy terms of the type.E2 . The exi~tence of seven independent 

quantities related to E
1 

alone can be explained in an alternate way. Al­
l. 

-~ . 
together, for cubic crystals, there must be nine independent energy de-

rivatives, the t~ree second order and six third order Brugger elastic 

constants. But in eliminating the effect of energy terms E2 (v), we 

eliminate only the second and third energy derivatives with respect to 

v. Hence, seven quantities remain, 

The Fuchs approach and the finite strain approach are related 

through the strain dependence of the lattice energy. It is always 

convenient to express this elastic strain energy in terms of Lagrangian 

strain parameters and Brugger elastic constants. The en~rgy derivatives 

with respect to volume conserving shear parameters can then be expressed 

in terms of a linear combination of Brugger elastic constants. The 
·'· 

explicit form of the elastic strain. energy for cubic crystals is pre-

sented in Appendix B. 

We have determined the seven independent energy derivatives of 

a third order Fuchs approach for cubic crystals in a consistent fashion. 

The seven derivatives are expressed in terms of linear combinations of 

the second and third order Brugger elastic constants~ 
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. 48/ 
We have used the precedure of Murnaghan.-- The finite Lagrangian 

strain tensor can be·written in the form 

(36) 

where 

ari 
6ij 0 i: ·~ j 0 ik = 

a~ 
= 

1 i>~ j 

(37) 

Here ak and ri are cartesian components of the initial and final coordinate 

vectors a and ~. respectively. The above definition of the Lagrangian 

strain tensor is completely identical to that of Eq. (7). The deformation 

tensor can be constructed to describe a volume conserving shear deforms-

tion, Qik(x), or a simple volume change, aik(v). Two such deformations 

can also be combined to produce a shape change (x) and a volume,change 

(v) simultaneously. In this case 

1/3 = v Qik(x) (38) 

Knowing the deformations Qik(x,v), the Lagrangian strain components 

Tli/x, v) can be obtained from Eq. (36). These can then be substituted 

into the energy expression .(Appendix B) and the derivatives with respE!Ct · 

to x and v obtained directly in terms of linear combinations of the 

Brugger elastic constants. The calculations are le~gthy but straight-

forward and will not be given in detail. 

The particular deformations used have been chosen to distort the 

lattice along directions of high symmetry. This has proven to be 

especially convenient in treating the energy of the elec·tron gas. The 
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first two shear deformations which we utilized (x1 and x4) are struc­

turally equivalent to those used by Cousins. The third deformation (x
3

) 

has been constructed to produce a deformed lattice of higher symmetry 

than the third deformation of Cousins. The functional dependence aik(x) 

will also be different than that of Cousins fo~ two reasons. First, 

Cousins (and Fuchs) express their deformations in terms of a ·parameter x 

which approaches zero at equilibrium. However, this is only convenient 

if it becomes necessary to construct a series expansion in terms of x. 

This is not required in our treatment, and we found that the calculations 

are simpler when expressed in terms of a parameter which approaches 

unity at the equilibrium configuration. Also, we found it convenient 

to construct the deformations in such a way that the aik(x) can be ob­

tained, one from another, by similarity transformations in terms of the 

crystal coordinate axes. 

The first deformation (x1 ) contracts the lattice along the [001] 

direction and expands it in the plane perpendicular to this direction 

so as to maintain constant volume. ·The deformation is described in 

detail i~ Appendix C. 48/ Applying the procedure of Murnaghan-- we obtain 

the following relations: 

4 
"" - C' 3 

(39) 

0 

(40). 

(41) 

0 
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The second deformation (x2) contracts the lattice along the [111] direc-

tion and expands it in the plane perpendicular to this direction so as 

to maintain constant volume. If we let R . be the transformation which 
ml 

rotates the [001] axis into the [111] ~xis, then this deformation can be 

obtained from the first by the similarity transformation 

The deformation is described in detail ·,in Appendix C. We obtain the 

following relations: 

-'4 
= 3 c44 (42) 

0 

= 16 
~ c456 (43) 

(44-) 

0 

The third deformation-(x3) contracts the lattice along the [110] direction 

and expands it i~ the plane perpendicular ·to this direction so as to 
. . 

maintain constant volume. It can also be obtained by a similarity trans-

formation from (x
1

) as shown above. The deformation is described in 

detail in Appendix C. We obtain the following relations: 
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1 = -(C 1+3C ) 3 44 (45) 

o· 

In the above relations we have used the notation·· C' ,;. t:n -c12 and 
;· 

1 2 
B = 3Cn + Y:12 · Note in the above that Eq. (45) is a linear combination 

of Eqs.' (39) and (42). Also, Eq. (47) is a linear combination of Eqs. (41) 

and (44). Thus, Eqs. (45) and (47) will provide no new information but 

are convenient for the purpose of checking explicit calculations. 

If an isotropic cryst·al is mistakenly analyzed as if it were cubic, 

certain relations must exist among the cubic elastic constants. In partie-

~lar, for the second order ~onstants, we have the well known relation 

c• = c 44 

In the third order, there are three relations among the six elastic 

constants. These can be written 

(48) 

c456 = (l/2)(cl66 - cl44> <49 > 

C456 = (l/B)(Clll - 3C112 + 2Cl23) (50) 

cl44 + 2cl66 = (l/2)(clll - cl23> <51 > 
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Also, si~ce the three deformations above can be obtained, one from another, 

by similarity transformations, the respective Fuchs-type derivatives 

should be identical if the solid were isotropic. Combining Eqs. (48) - (51) 

with Eqs. {39) - {47), we see'that this is exactly the case. 

The seven independent Fuchs relations, Eqs. {39) - (44) and (46), 

can be recombined in linear combinations which are convenient to compare 

to experimental results. These relations are presented in Table 11, and 

will be utilized in this form in the following section. 

As stated previously, in any elastic constant formulation to the 

third order for cubic crystals, there must be nine independent energy de-

rivatives. In the Fuchs approach, we consider only the seven derivatives 

discussed above and summarized in Table 11. For completeness, we will 

mention the two energy derivatives that have been neglected here. These 

are 

a2
E 

B Po -2 = 
av 0 

(52) 

a3E 

10 
1 

Po = - B + g(Clll+6Cll2+2Cl23) av3 (53) 

These derivatives would explicitly involve energy terms of the type E
2 

and would be more difficult to compute from atomic models of metallic 

cohesion than the Fuchs derivatives. 



Table 11. 

Elastic Constant 

c• 

The seven independent FQchs relations to 
the third order for cubic crystals. This 
for~ is particularly convenient for com­
parison to measured quantities. 

Fuchs Energy Derivative 

3 2 
-. p 0 E I 4 o-

oxl2 -~ 

- . ..!... P o
2
E I ~ 1s P o

2
E I ~ 

16 o. 0 2 16 0 -. -2 . 
0 xl 0 oxl 0 



Table 11 {continued) 

Elastic Constant Fuchs Energy Deriv-ative 

0 

. ~2E I -3p --· 
0 ~X 2_ 

0 1 0 
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VI. I> CALCULATION OF THE ELASTIC CONSTANTS OF At 

Leigh431 has calculated the second order elastic shear constants of 

Al using a Fuchs approach. We have extended this theory to the third order 

to see whether it would explain the measured third order elastic constants. 

49 50/ Leigh's calculation was based on a Wigner-Seitz ' decomposit,ion 

of the lattice energy. The energy terms which must be considered are the 

kinetic energy of the lowest electronic state, the electrostatic energy, 

and the Fermi energy (here we mean the total energy of the Fermi sea and 

not the energy of the highest filled electron state). The kinetic energy 

of the lowest electronic state should depend on volume only and can be 

negelec.ted in a Fuchs calculation of the elastic shear constants. The 

electrostatic energy, which is a correction term which must be applied 

to the cell calc~lation of Wigner-Seitz, was modifie~ to account for the 

polyvalent nature of Al. The Fermi energy and its appropriate shear 

derivatives were treated in an empirical way, being expressed in terms 

of parameters which could, in principal, be o~(ained from experimental 

information and from band structure calculations. The calculation was 

restricted to the Hartree one electron approximation, negle~ting the 

effects of conduction electron exchange and correlated electron motion,'· 

The exchange repulsion between ion cores was also neglected. This· should 

be a good approximation for Al.1l/ 

The important contributions which must be con~idered in detail are 

the· electrostatic energy and the Fermi energy. For the electrostatic 

energy; Leigh used a simple modification of the earlier work of Fuchs.~/ 

Leigh's treatment of the energy of the Fermi sea was analogous to a 

nearly-free-electron approach. Since Al has three valence electrons, more· 
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than one energy. band must be. occupied. In a zone picture, the first 

Brillouin zone has sufficient states for two electrons per atom. The third 

electron must go. into the higher zones; Leigh t;re.ated the first and 

higher zones separate~y. The energy of the first zone was expressed in 

terms of an effective mass at the bQttom of the band and a parameter to 

account for the non-parabolic nature of the dependence E(k) at the zone 

boundaries. The energy of electrons in the higher zones was described in 

terms of the energies at the zone faces and the density of states at the 

Fermi surface. Sufficient parameters were available to fit exactly the 

measured values of the second order elastic shear constants. 

At the time ·of Leigh's calculation (1951) there was only limited 

knowledge of the Fermi sea parameters from other experiments and calcula­

tions. In particular, there was no information avail able on the energies 

at the zone faces. This gave Leigh considerable freedom in choosing these 

parameters. In the past 10 years, extensive information has become 

available about the Fermi sea from both theory and experiment. The param­

eters used in Leigh's theory can now be well estimated from other measure­

ments and calculations,' It is now possible to consider a quantitative 

evaluation of Leigh's theory and its extension to the third order elastic 

c.ons tants . 

In extending Leigh's theory to the third order elastic constants 

of Al, we first consider the electrost~tic energy. In the method of 

Wigner and Seitz, 49 •501 the lattice is divided into polyhedra centered 

on ato~ic sites. The conduction electrons and ionic cores are considered 

separately. In the simplest form of the theory for monovalent metals, 

one conduction electron is assigned to each cell to account for correla­

tion effects. The polyhedra are repl~ced by spheres of equal volume 
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(and radius r ), and the energy of the lowest conduction electron state 
0 

is found by. solving the Schroedinger equation using a known ionic potential 

and the boundary condition dw/drl = 0. The resulting energy is lower . r=ro 

than the energy of this electron in ·the atom;., and this is the essence of 

the metallic bond. In the polyhedra picture, the polyhedra would interact 

electrostatically. If the sphere approximation were accurate, there would 

be no interaction. This interaction can be calculated by_ obtaining the 

electrostatic energy per atom of the actual lattice and subtracting off 

the self energy of the sphere. Although this is a small correction to 

the cohesive energy, it is a sensitive function of lattice configuration 

and makes an iml?ortant contribution to the elastic shear constants. 

Fuchs 401 calculated how this electrostatic energy term contributes 

h d d 1 i h ' c . 47/ d h. to t e secon or er e ast c s ear constants. ous1ns-- repeate t 1s 

calculation and extended it to the third order elastic shear constants. 

His results for the second order constants agreed with Fuchs to within 

± 0.1%. These results are presented in Table 12. We also require the 

electrostatic contribution to the energy derivatives that describe the 

volume dependence ~f the second order shear constants. These can be 

calculated dtrectly from the relations given by Cousins._ 'As a. particular 

example we consider the second order shear constant C'. From the first 

rows of Tables 11 and 12 we have 

C' = el 
2 2 I (3/4) P (a E 

1
/ax

1
) o e 

0 
(54) 

The volume dependence of the second energy derivative in Eq. (54) can 
' 

be written as 

(55) 
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Hence, the mixed third derivative is given by 

3 . 2 I p (~ E 1 /~v~x1 ) 
o e o 

= (-1/3)(4/3) c~1 . (56) 

From the sixth row of Table 11, we have that 

(57) 

The calculation involving c
44 

is entirely equivalent. The results for the 

electrostatic contribution to these two energy derivatives are also pre-

sented in Table 12. In the above and in Table 12, a is the lattice con-

stant, and Z is an effective valence. The numerical factors are those 

for units of 1011 dyn.cm-2 with a in angstroms. 

Hence; we know the contribution of the electrostatic energy to the 
. 

seven elastic constants summarized in Table 11 in terms of an effective 

valence. In .a formulation based on the energy decompoisition of Wigner 

and Seitz, this effective valence is just a measure of the charge density 

at the boundary of an atomic polyhedron. For monovalent metals, the 

effective valence must be very close to unity. For·. polyvalent Al, the 

effective valence is not necessarily three. By rearranging terms in 

the Hartree expression for the total energy of the Al lattice, Leigh 

determined tpat the electrostatic contribution to the elastic constants 

of Al col!-ld be simply obtained by utilizing·· an effective valence which 

was less than three due to the nonuniformity of the conduct.ion. electron 

distribution. This resulted from an analysis of electron densities in 

terms of real wave functions. Leigh arbitrarily chose a representative 

2 value of Z = 7.0. 



·Table 12. ~lectrostatic-contribution to the 
elastic constants in a Fuchs formu­
lation for an FCC lattice. (units 
~f 1Z2fa4) loll· dyn.~m-2 with a 
in X) 

Elastic Constant 

c' 

c456 

1 
2<c166- c144> 

Electrostatic Contribution 

48.81 

437.4 

593.1 

590.4 

- 1342 

- 244.05 

- 2187 

69 



70 

In the theory of Leigh, the elastic constants can be obtained 

from two contributions, the electrostatic energy and the Fermi energy. 

2 0 
Using Leigh's value for Z and a = 4.04A, we can calculate numerical 

values for the electrostatic contribution. Knowing the measured elastic 

constant, we can then obtain the Fermi energy contribution by subtrac-

tion. Fermi energy contributions obtained in this manner are summarized 
"i 
' in Table 13. For the experimental elastic constants, we should use the 

values appropriate to T = 0°K. in th.e .. absence of zero-point vibrations. 

For the second order constants the appropriate values can be obtained by 

extrapolating the room temperature values (Table 1) linearly to T = 0°K 

using the measured temperature derivatives (Table 3). Unfortunately, we 

do notknow the temperature variation of the third order constants. We 
. . 

must use the room temperature measured values. We would hope that· this 

would not introduce an error of more than 10%, which should not be 

serious compared to inaccuracies in the model calculation. 

We now consider the extension of Leigh's theory to the third order 

elastic constants for the Fermi energy contributions. The values calcu-

lated here will be compared to those summarized in Table 13. The Fermi 

energy. is ·considered in two parts, the fill~d first zone and the higher 

zones. At the time of Leigh's calculation, it was not known whether or 

' 
not the first zone was, in fact, completely.filled. Now it is known to 

52/ be so.-

To consider the filled first zone, we proceed according to the 

method of Leigh. The Brillouin zone is the Wigner-Seitz polyhedron of 

the reciprocal lattice. The reciprocal lattice of FCC is BCC, and 

the Brillouin zone is the well-known truncated octahedron. Leigh 

divided the zone into tetrahedra which could be defined by three 



Table 13. 

Elastic Constant 

C' 

c44 

t<clll-3Ctl2+2Cl23) 

.c456 

t<cl96-cl44> 

1 3B + 2(Clll-Cl23) 

3B + (Cl44+2Cl66) 

Separation of the elastic constants 
of At into electrostatic and Fermi 
energy contributions in a Fuchs 
approach based on a Wigner-Seitz 
energy decom~osition. (units of 
1011 dyn.cm- ) 

71 

Measured Electrostatic Fermi Energy 
Value Contribution Contribution 

2;7!+ 1.28 1.46 

3.27 11.49 8.22 

0.84 15.58 - 16.42 

3.00 15.51 - 18.51 

- 15.85 - 35.26 .. 19.41 

- 31.40 6.41 - 24.99 

- 46.10 - 57.47 11.37 
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vectors: th~ vector£ extending from the center of the zone to tqe center 

of a face, the vector ~extending from the center of the face to the mid-

point of an edge of the face, and the vector ~extending from the midpoint 

of the edge of the face to a corner o~ the face. The Brillouin zone and 

one such tetrahedron are illustrated in Fig. 6. There are 144 tetrahedra, 

12 based on each hexagonal .face and 8 on each square face. 

It is next necessary to approximate to the function E(k) for the 

first zone. Leigh has used the formula 

Here k~, k~, k~ are measured along p, q, and r, respectively, for each 

tetrahedron. a is a measure of the effective mass at the bottom of the 

band. The parameter ~ modifies the otherwise spherical energy surfaces 

in the region of the zone boundary to cut the zone normally so'that the 

energy at the center of any face is the same fraction (1~~) of the free 

•· 

(58) 

electron energy. E(k) can now be integrated over a tetrahedron to obtain 

the total electron energy in that tetrahedron, and the tetrahedra summed 

over to obtain the first zone contribution to the Fermi energy. 

with 

E I = 
F 

a 11
2 

3 (2TT) m 

1 ~2 
F = TO - 2 (2+3~) 

\ 2 2 2 L pqr (Fp .+ Gq + Hr ) 
TET 

1 ~3 
G = 20 - 2(2+3~)(1+~) 

1 ~4 
H = 60 - 2(2+3~)(1+~)(2+~) 

(59) 

(60) 
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Fig. 5. The FCC Brillouin zone and its _division into 

tetrahedral segments. I', X, and L represent 

points of high symmetry. ~, ~~ and r-are the 

vectors· describing a particular tetrahedron. 
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We must now calculate the appropriate derivatives of the energy 

I term EF We know how the basis vectors of the reciprocal lattice change 

with the three shear deformations which we have defined, x
1

, x
2

, and x
3

• 

This has been summarized in ~ppendix C. Hence, we can calculate how the 

vectors ,e.,. _g,, and r for each tetrahedron change with each deformation. 

This is an i'nvolved and complicated procedure. One must first construct 

the Brillouin zone of the strained reciprocal lattice from the trans-

formed basis vectors. Only then can the ,e.(x), s(x), and ~(x) be obtained 

for each tetrahedron. These vectors will not change by the same trans-

formation as the basis vectors. The results for each deformation can be 

checked by calculating the volume of the zone which must be independent 

of x. In performing these calculations, there will be six different 

tetrahedra for x1 , five for x2 , and ten for x3 . Knowing the dependence 

of the vectors ,e., _g,, and£ on the strain parameters, we can calculate 

the second and third energy derivatives with respect to these str.ain 

parameters and, hence, the appropriate contributions to the elastic' 

constants. It turns out that the dependence on A is very slight 

(generally less than 2% for A = 0.1), and we can make the numerical 

approximation A = 0. The results are presented in column 2 of Table 14 

in terms of the free electron energy at the X symme.try point of the 

Brillouin zone 

where a is the lattice constant. 

(61) 

I~ column 2 of Table 14, the expression for the first zone -contri-

bution to C' and c44 are ~he same as those of Leigh. For C' this must 

be the case as we have used identical strain parameters. For c44 , our . 
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deformation is structurally equivalent although algebraically different 

from that of Leigh. Hence, we must still obtain the same result for the· 

elastic constant contribution. The other entries in this column consti-

tute our extension to the third order of this part of Leigh's calculation. 

The contribution to the elastic constants from the energy o·f the 

electrons in the higher zones will also be calculated according to the 

method of Leigh. The treatment will effectively consider second zone 

regions only. We neglect explicit consideration of the electrons in the 

third zone. It is known from an extensive analysis of de Haas - van Alphen 

53/ measurements-- that only a small fraction of 1 electron/atom is in the 

third zone (near the first zone edges), .and the fourth zone (near the first 

zone corners) is empty. 

J.fter Leigh, we let N. (E-Ei .) be the number of electron states 
1 J 

including spin degeneracy per atom per unit_energy at energy E above 

energy' E .. .th of the .th I 
at the center of the J pair 1 type face {hexagonal 

1J 

or square) in the second zone. Then the number of electrons nij in the 

second zone region {ij) is given by 

,. 
= J N.(E-E .. )dE 

E 
1 1J 

ij . 

C-Eij 

= J Ni(e)de 
0 

(62)--

Here C is the Fermi level. Using the same notation for the division of 

the energy, we can write 

C-Eij 

J Ni{e)e de. {63) 
0 



For any of the three strain parameters X we have 

dnij = 
dx 

N. (C-E .. ) 
l. l.J ·. ( ~ -~) dx · dx 
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(64) 

But it is assumed that the first zone is full and stays full during any 

deformation, therefore 

n .. = 
l.J 

1 (65) 

and the summed strain derivatives of any order of n .. are identically zero. 
l.J 

From this fact and Eq. (64), we determine that 

dC ,. 
crx 

'o 
= 0 (66) 

This is a consequence of the fact· that the volume remains constant during 

the deformations x. 

From Eq. (63), the second strain derivatives of each contribution 

to the second zone ~nergy are given by 

d~ijr 
' 2 
dx 

0 

_,.. .. 

·- ·N. (C-Ei .) 
l. J 

0 
(~!j J +' 

2 
d n .. 

l.] 

dx
2 (67) 

0 

Equation (67) can be summed over the regions (ij). Using Eq. (65) we 

· ·obtain 

d~;. 
1.] = 

d
. 2. 
X·, 

0 

I ... 
l. 

2 
dE .. 

l.] 

2. 
dx.. 0 

(~lf] 
(68) 
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This result is given by Leigh. From Eq. (67), we can obtain the third 

strain derivatives of the second zone energy contributions in a straight• 

forward manner. ~gain using Eqs." (65) and (66) and summing over the 

regions (ij), we obtain the result 

3 
d W .• 

~] 

3 = 
dx · 

0 

- 3N. (' ·E .. ) \ ~ ~J L. 
. J 

dE .. 
--ll 

dx 
0 

2 
d Ei. . l 

"2 
dx 

(69) 

In Eq. (69) we have neglected a term proportional to the strain derivative 

of the density of states at the Fermi surface. For a nearly-free-electron 

metal, the density of states at the Fermi surface should depend only on 

the Fermi level. Hence, by Eq. (66), the density of states should not 

change with strain to the first order. 

From Eq. (67) we can also obtain the mixed third derivatives of the 

second zone energy contributions. Here we encounter a term proportional 

to the volume derivative of the density of states at the Fermi surface. 

This must Qe included. Summing over the regions (ij) we obta1n 

' 2 
dvdx 

3 
d wij 

= \ = I 
L · · dvdx2 

.; 0 ~J 0 ... 

2N. ('-E .. ) \ 
~ ~J L 

j 

cJE •• , 
~ 

dx 
0 

3 
d Eij 

2 
dvdx 

0 

(70) 

0 
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The form of the last term in·Eq. (70) assumes that each of the N.(C-Ei.) 
l. J 

have the same volume dependence. In Eq. (70) we have neglected a term 

proportional to dni./dv. Such a factor would depend on the change in the 
. J 

energy gaps at the zone boundary with ·volume. This dependence is non-

54/ zero and has been measured.-- However, the effect is of higher order 

than one that should be included in a nearly-free-electron model and, 

hence, has not been considered. 

Equations (68)-(70) describe the contribution of the energy of the 

electrons in the h.igher zones to the elastic constants in terms of general 

deformation parameters. We must now compute the respective energy deriv-

atives for the deformations used here. Leigh made the assumption that 

2 
the energies Eij varied as pij where pij is the vector from the center 

of the zone to the center of the face bounding region (ij). We retain 

that assumption here. The pij are simply the~ vectors which were con­

sidered in the first zone calculation. We know the dependence· of these 

vectors on the strain parameters x1 , x2 , x3 , and v, and we can calculate 

the'energy derivatives of Eqs. (68)-(70) for each of the three deforms-

tions. The energy derivatives w~ll be given simply by the respective 

energy Eij multiplied by a numerical factor. 

The results are presented in Table 14. Here, Ex and EL represent 

the energies at the X and L symmetry points at the square and hexagonal 

faces, respectively. Similarly, ~ and I). are 'the number of electrons 

per atom overlapping the square and hexagonal faces, respectively, 

subject to the condition 

3~ + 4~ = 1 (71) 

Nx and ~ are the density of states at the Fermi level in the respective 
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regions subject to the condition 

(72) 

Here N is the measured dei).sity of states at the .. Fermi level ... If we·. recall 

that N is a density of states per atom, it follows that d ln N/dv is 

simply the electronic GrUneisen parameter as described in the section IV. 

In Table 14, rows 1 and 2 'correspond to Eq. (68), and these are the 

results for the Fermi energy contributions to the second order elastic 

shear constants given by Leigh. Rows 3-5 correspond to linea~ c9mbinations 

of Eq.s. (68) and (69), and rows· 6 and 7 to linear combinations of Eqs. (68) 

and (70). These entries constitute our extension to the third order of 

Leigh's Fermi energy c~lculation. 

The expressions of Table 14 can be used to compute the Fermi energy 

contributions to the elastic const'ant~f in a Fuchs approach. It is now 

known.that the gross electronic structure of Al can be described sur-

prisingly well by a nearly free electron model with a reduced effective 

-1 52 53 * I mass a = 1.00 ( + 0.03 ). • ' This dictates the choice of -' 
numerical values for the parameters of Table 14. We .. _choose the free elec-

tron values EX = 9.21 ev and EL = 6.91 ev. Adjustment of these values 

to account for the band gaps at the zone faces would be a small correction. 

The number of electrons per atom o~erlapping a particular pair of faces 

should be nearly proportional to the volume enclosed betwe.en the· respec-

tive zone face and the free electron sphere. Using this criterion and 

Eq. (71) we obtain ~ = 0.041 and ~ = 0.219. The density of states at 

the Fermi surface over a particular pair of faces should be nearly pro-

portio.nal to the area of the face, hexagonal or square. Using this 

criterion, Eq. (72), and the measured density of states N = 0. 572 per 

*N. W. Ashcroft, private communication. 



Elastic 
Constant 

C' 

c44 

Table 14. Fermi energy contributions to the elastic consta.nts 
of .At in a Fuchs f·ormulation:·· .. (:i...ni(>'ffed unit's are 
ep.ergy/atom ·.or v c -l.en~rgy/volume wh~re Yc ·is the 
a\omic volume) 

\ 

First Zone Term 1 Term 2 
Contribution Eqs. ~68}- po> 

\ 
Egs. (68)- (70). 

1; 

6 1 x 
8 

(2nxEX : 3 ~EL) 
. 2 

- 2Yx•. 

·-
1 .. 8 

- 1§. ~E 2 2 Ex (2nxEX + 3 ~EL). 9 L 

--1 - .. 
S(Cill-JC1l2+2C123) 

2 
3 Ex 

. 8 
-2(2nxE~ + 3 ~EL) 6 N~x2 

1 8 li ~E 2 c456 - - E -2(2nxEX + 3 ~EL) 3 X 3 L 

1 4 8 2 16 2 
2<c166 -cl44> - - E -2(2nxEX + 3 ~EL) - 2 <Yx + 91 NLEL ) l=,X 

1 .. 3 E -6(2n Ex+~~~ ) 16 N~x2 3B + 2(C111-Cl23) 2 X X 3 . L 

9 . 8 128 N E 2 
3B + (C144+2C166) -- E -6(2nxEX + 3 ~EL) 2 X 9 L L 

Term 3 
Eg. (70) 

_ 6 d ln N N~ 2 
dv X 

16 d 1n N N E 2. co. -- ...... 3 dv L L 
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34/ 
ev atom,-- we obtain NX = 0.042 and NL = 0.112 per ev atom. We also 

choose the measured value d ln N/dv = 1.8 from'the low temperature 
.· 

. 33/ 
thermal expansion measuremept of White as reported by Collins and White.--

Substituting these values into the expr~ssions of Table 14, we can compute 

the Fermi energy contributions to the elastic constants in a Fuchs 

approach. The results ·are presented in Table 15 and compared to the Fermi 

energy contributions obtained in Table 13. 

The agreement between the two sets of Fermi energy contributions 

in Table 15 is,_ to say the least, very bad. The isolated agreement of 

row 6 should probably not be taken seriously. ~lthough we are involved 

with the difference of large numbers, with the exception of row 1 the 

agreement could not be substantially improved by adjustments in the indi-

vidual terms of even 25%. In any .event, the individual terms, are not 

independent, and such adjustments would be quite out of· the question. 

We have used numerical values consistent with the known nearly-

free-electron behavior of ~1. At the time· of Leigh 1 s calculation, this ,, 

behav'ior was not appreciated. It is only recently that the development 

of the pseudopotential approach gave theoretical justification for the 

1 f 1 t 
. . . 55/ 

near y- ree·-e ec ron p1ctur~ ·~ Leigh's ability to fit the second 

order shear constant Fermi energy terms depended largely on his choice 

of EL = 9.08 ev. This is more than 30% higher than the free electron 

value and is not an acceptable choice. Leigh's values for this and the 

other parameters were based on his assumption that only small, isolated 

pockets of electrons existed in the higher zones. The analysis was 

more nearly appropriate for a semiconductor than a nearly-free-electron 

metal. It might still be noted, however, that use of Leigh's values 

for the Fermi energy parameters would not produce general agreement 

"::" ·. 



Table 15. 

. Elastic 
Constant 

c• 

Fermi energy contributions to the elastic constants in a Fuchs approach according 
to the method of Leigh. Term 1., Term 2, and Term 3 refer to the higher zone con­
tributions of Eqs. (68)-(70). The values presented in column 7 are those calcu­
lated from the difference of the measured constants and the electrostatic contri­
butions. (units·of 1011 dyn!cm~2 obtained using an atomic vo~ume of 16.48 A3) 

First 
Zone 

L49 

4.48 

5.97 

- 2.99 

-11.94 

-13.43 

-40.29 

Term 1 

4.66 

4.66 

- 9.32 

- 9.32 

- 9.32 

-27.95 

-27~~5-

Term 2 

- 6.93 

- 9.24 

20.78 

27.73 

25.41 

55.42 

73.94 

Term 3 

-37.41 

-49.91 

., 
Total 

Col. 2-5 

- 0.78 

- 0.10 

17.43 

15.42 

4.15 

-23.37 

-44.21 

By 
Difference 

1.46 

- 8.22 

-16.42 

-18.51 

19.41 

-24.99 

11.37 

co 
w 
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between the two sets of Fermi energy contributions. 

We conclude that numerical adjustments in Table 15 will not sub-

stantially improve the Fermi energy calculation. The model must be 

defective. Although the gross electronic structure of ~1 is close to 

a nearly-free-electron model, the detailed structure near the zone 

boundaries is, of course, much more complicated.21/ Although the energy 

differences involved are small, the energy changes with deformation 

must be large. It was our decision that the method of Leigh could only 

be extended to the third order in the nearly-free-electron approximation .. 

Thus, we neglected the geometrical considerations of the third zone 

regions. We conclude that the second and third derivatives of the compli-

cated energy band structure near the first zone edges and corners must 

be important in the calculation of the elastic constants of Al. 

Schmunk ·and Smith§./ h~~e·used the· Leigh method to attempt to 

explain the pressure derivatives of the second order elastic shear con­

stants of ~1. They were forced· to··assume that the effective valence 

varied with volume in ·order to compute values of these two quantities 

in agreement with experiment. However, the inclusion of a term modifying 

the electrostatic energy contribution cannot eliminate all the discrep-

ancies in Table 15. A volume dependence of· the effec.tive valence would , 

not be included in a calculated third order shear constant where we 

consider strictly volume conserving deformations. Any attempt to rescue 

the Leigh procedure would require'modifications of the Fermi energy 

contribution. 

Work now in progress at the University of Illinois has indicated 

that a pseudopotential approach might be applicable to the calculation 

of the elastic constants of the alkali metals.~ The pseudopotential 

* T. Suzuki, private communication. 
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approach should also be applicable to Al. The structure of ~1 can be 

56/ 
accounted for qualitatively in terms of pseudopotential parameters . .;._ 

It does not seem worthwhile to further pursue the_ Leigh method for the 

calculation of the elastic constants of Al. ~ather, it is suggested 

that a pseudopotential calculation be attempted. 
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VII. CONCLUSIONS 

The complete set of six third order elastic constants of single 

crystal Al has been experimentally determined by measuring both hydro­

static pressure and uniaxial stress derivatives of the natural sound 

velocities using a two specimen interferometric technique. The speci­

mens were neutron irradiated to elimin~te dislocation effects from the 

uniaxial experiments. A self-consistent set of hydrostatic pressure 

derivatives of the second order ela·stic. constants has been calculated 

from the measured third order elastic constants. The third order elas­

tic constants have also been used to calculate the thermal expansion 

in the anisotropic continuum model at both high and low temperatures, 

and a comparison has been made to the directly measured expansion 

· ~oefficients. 

The seven independent relations between second and third order 

elastic constants and appropriate lattice energy derivatives in a 

Fuchs approach have been obtained. The related deformation parameters 

have been described in a consistent fashion. . The applicability of the 

Fuchs approach to elastic constant calculations for metal crystals has 

been discussed in terms of the neglect of energy terms which d~pend 

upon vo~ume only. 

~n attempt has been made to calculate the second and third order 

elastic constants of Al in a Fuchs ap·proach using a Wigner-Seitz 

decomposition of the lattice energy. The terms considered were the 

electrostatic energy ~nd the Fermi energy. The Fermi energy was treated 

in a nearly .. free-electron approximation. The fact that this attempt 



was unsuccessful has been attributed to the complicated energy band 

structure of ~1 in the vicinity of the Brillouin zone boundaries. 

87 
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APPENDIX A 

The calculation of Espinola and Watermanll1 can be modified to 

account for an initial phase difference between the two sound waves. We 

assume that a cosine wave is propagated in each specimen. We neglect the 

attenuation and the finite length of the pulse. Let 

These waves ~an be superimposed to obtain an interference pattern: 

~ = 2A
0 
cos[~(k1x1 - k2x2 + ~)] 

klxl+k2x2 
cos(<tt: +I - 2 ] 

~t the j th node in··the interference pattern, the null condition is 

(2j-l) .!! 
2 

(Al) 

(A2) 

(1-3) 

We assume' that if ~ is indeed non-zero, then it is a positive number as 
I 

represented in Eqs. (~1). Equation (~3) can then be written 

(A4) 

Here (+)refers to the case k2x2 < k
1

x
1

. Because the null condition is 

represented in terms of an absolute value, there is an ambiguity of sign. 

However, this is not critical. The proper sign can always be determined 

by other means. We adopt the (+) in Eq. (A4). When a particular no~e 

th is exactly at the position of the n echo, we have 
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(AS) 

Here v
1 

is the velocity of sound in specimen 1; f is the frequency; and 

t is the round trip transit time. Also, from t~e definition of the 
0 . 

natural velocity W, we have 

Combining Eqs. (AS) and (~6) with Eq. (A4) we have 

If we assume that specimen 1 is 

is at a variable temperature, we 

1 owl = w oT 
p 

(2j-l)n - cp 
2nft. 

0 

at constant 

obtain 

(~) 

temperature and 

(2j-l)n - cp .A.. ( ~ l 2nft 
0 

oT 

(A6) 

(A7) 

specimen 2 

(AS)·; 

Here we neglect a factor w1/w2 which is very close to unity. We can 

determine 1 awl from .the slope of a plot of (1/n) vs. the temperature w aT P 
difference between the two specimens. We see that a non-zero phase dif-

ference cp will affect the absolute magnitu~e of this slope. 

Ideally, the phase angle cp should be zero because the same pulse i~ 

applied to each specimen through similar circuits. If cp is identically 

zero, the same temperature derivative would be obtained from measurements 

on all available nodes. We did not always find this to be the case. For 

certain measurements, we gbtained different slopes using different nodes. 

This is illustrated in Fig. S. The dashed'line in Fig. S indicates the 

correct slope which would be measured if the phase difference ~~as 

identically zero. When the movement with ,temperature of more than one node 
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Fig. 6. The naturat''velocity temperature deti~ative 

for: a C 44 mode. The data is 

mtstakenly. analyzed, as if ·q,.;.o. 'for nodes 2 

and 3. For this experiment ~ =·0.47n. A 

correct an·alysis inch~fling this value of cp 
; # ••• •• 

would give the dashed ~ine shown in the 
II .: 

figure. 
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was observed, it was a simple matter to determine cp and recalc·ulate the 

1 awl derivative This has been done for the temperature derivatives w· oT P 

presented in Tables 2 and 3 in the text. Since the phase differences cp 

TT varied over a wide range (nearly 0 - 2 ) , we believe this to be. an effect 

due to the bond between the specimen and the quartz transducer . 

. ' 
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APPENDIX B 

·The lattice energy per unit mass can be expanded in a power series 

in terms ·of the finite Lagrangian strain parameters. In tensor notation, 

this would be written 

p E = 
0 

(Bl) 

The elastic constants are those defined by Brugger and are expressed in 

the full tensor notation. The linear term is not _present as we are 

expanding about the equilibrium state. 

For cubic crystals, the explicit form of the seco~d order energy 

terms can be written as 

Similarly, the third order term becomes 

In Eqs. (B2) and (B3), the elastic const~nts are expressed in the con-

tracted notation. Also·, in these equations, equal but independent terms 

of the "general expansion Eq. (Bl) have been combined. This becomes 

important if we wish to differentiate the energy expressions. It must be 
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recognized that all nine strain tensor components ~i· are independent. 
,- J 

Before differentiating, individual energy terms_must be symmetrized. For 

example, 

(B4) 
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.APPENDIX C 

Deformation (x
1
): The deformation tensor is given by 

1/3 0 0 xl 

a(v,~) = v 
1/3 0 

1/3 . 0. xl 
- '2/3. 

0 0 xl 

(Cl) 

The Lagrangian strain tensor (Eq. (36)) is given by ,. 

l(i/3 X 2/3 -1) 
2 1 . 

0 0 

f1(v,x1) = 0 l(l/3 X 2/3 -l) 
2 1 0 (C2) 

0 0 1 ( 2/3 -4/3 1) 2 v xl -

The unit cell of the FCC bravais lattice is described by the three vectors 

~l = (a/2)[0,1,1], ~2 = (a/2)[1,0,1], ~3 = (a/2)[1,1,0]. Here a is the 

lattice constant. The deformed unit cell is described by the vectors 

= (a/2) 
1/3- 1/3 -1 

~1 V X · [0,1 ,x1 ] , 1 

~2 = .. (a/2) v 
1/3 

xl 
1/3 [ -1 l,O,x1 ] , 

~3 = (a/2) v 
1/3 1/3 [1,1,0] xl (C3) 

The recip~ocal lattice of the FCC lattice is the BCC lattice. The deformed 

reciprocal lattice is described by ~he three vect9rs 
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kt = (2n/a) v - 1/3 - 1/3 [-l,l,x1] , xl 

.2.2 = (2n/a) v - 1/3 - 1/3 [1,-l,x1], xl 

b = (2n/a) v - 1/3 - 1/3 [1, 1, -x1] _. (C4) 
3 xl 

Deformation (x2): The deformation tensor is given by 

-1 -1 al 
x2 +2 X -1 X -1 2 2 

..• -1 -1 -1 
a(v,x2) 

1 1/3 1/3 x2 -1 x2 +2 X -1 
=- V X 2 

3 2 
-1 -1 -1 (CS) X -1 X -1 x2 +2 2 2 

The Lagrangian strain tensor is given by 

~ 

1 2/3 2/3 -2 (21) (21) 3 V x2 (x2 +2)-1 

1.' .. ·1 2/3 2/3 ( -2' l) ~ (11) (21) Tl = 2 3 v x2 x2·~-' 

(21) (21) (11) (C6) 

The deformed unit cell is described by the vectors 

.!1 = (a/6) v 
1/3 .. ·1/3 [ -1 -1 -1· 

x2 2(x2 -1), 2x2 +1,-2x2 +1] 

(a/6) 1/3 1/3 [ -1 -1 -1 a = v x2 2~2 +1; 2(x2 -1), 2x2 _+1] , 
-2 

(a/6) 1/3 1/3 [ -1 -1 -1 (C7) a • v x2 2x2 +1, 2x2 +1, 2(x2 -1)] -3 
-



Deformation (x3): The deformation tensor is given by 

1 -1 
2<x3 +1) 

1 -1 -(x -1) 
2 ·3 

0 

l(x-1-1) 
2 3 

1 -1 
2(x_3 +1) 

0 

The Lagrangian strain tensor is given by 

1 2/3 213 -2 (21) 2 v x3 (x3 +1)-1 0 

1 1 2/3 2/3( -2-1) (22) 11=2 2 v. x3 x3 . 0. 

0 0 2/3 2/3 1 
V X -3 

·,The deformed unit cell is described by the vectors 

.!1 = (a/2) 1/3 v 1/3 [ 1 -1 1 -1 
~3 2<x3 -1), 2<x3 +1), 1] 

= (a/2) 1/3 1/3 [ 1 -1 1, -1 
1] , .!2 v x3 2(x3 +1), 2(x3 -1), 

.!3 = (a/2) -}13 x;/3 [ -1 -1 
x3 ' ~3 ' 0] 

0 

0 

1 (C9) 

(C10) 

(Cll) 
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The deformed recip:rocal lattice is described by the vectors 

(2n/a) v - 1/3 - 1/3 (-1, 1, 1] .2.1 = x3 

.2,2 = (2n a) v - 1/3 - 1/3 (1, 1] , x3 -1, 

.2.3 (2n a) v - 1/3 - 1/3 
(x3, x3 , -1] (Cl2) = x3 
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