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R. E. Nightingale 
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B a t t e l l e  Memorial I n s t i t u t e  
Richland, Washington 

INTRODUCTION 

Graphite i s  being used i n  seve ra l  forms and i n  combination with a 

v a r i e t y  of ma te r i a l s  i n  high-temperature nuc lear  r eac to r s .  H i s t o r i c a l l y ,  

t h e  f i r s t  app l i ca t ion  was as a moderator, where it i s  used i n  t h e  form of 

l a r g e  bars of po lyc rys t a l l i ne  a r t i f i c i a l  g raphi te .  

are made by t h e  process used f o r  graphi te  e l ec t rodes ,  with s p e c i a l  

a t t e n t i o n  given t o  s e l e c t i o n  of  pure raw mater ia l s .  

p u r i f i c a t i o n  was developed t o  a t t a i n  t h e  p u r i t v  required i n  t h e  e a r l y  

natural-uranium plutonium production p i l e s .  

i n  t h e  moderator graphi tes  e spec ia l ly  w i t h  regard t o  r ad ia t ion  s t a b i l i t y .  

The moderator bars 

A s p e c i a l  halogen 

Improvements have been made 

I n  recent  years g raph i t e  has been employed i n  t h e  f u e l  elements o f  

high-temperature r e a c t o r s ,  e i t h e r  as a fue l -pa r t i c l e  coa t ing ,  as a 

matr ix  f o r  t he  f u e l  p a r t i c l e s ,  o r  f o r  both. I n  t h i s  paper ,  I will review 

t h e  p rope r t i e s  of  g raph i t e ,  po in t ing  out  some of t he  advantages and 

l i m i t a t i o n s  i n  t h e  use of g raph i t e  i n  high-temperature nuclear  appl ica-  

t i o n s .  

d i s  cussed. 

In  t h e  papers t o  fol low,  some s p e c i f i c  appl ica t ions  w i l l  be 
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FABRICATION OF CARBONS AND GRAPHITE 

To t h e  non-special is t  "graphite" usua l ly  means one t h i n g  - t h e  

most common c r y s t a l l i n e  form of carbon. Yet t h e  term i s  loose ly  used 

today t o  r e f e r  t o  a wide v a r i e t y  of ma te r i a l s  made from carbon t h a t  

m a y  have very d i f f e r e n t  p rope r t i e s .  I n  some forms g raph i t e  i s  used 

because it i s  a good thermal conductor, whereas i n  o the r  forms, g raph i t e  

(more properly c a l l e d  carbon) i s  used as a thermal i n s u l a t o r .  

p rope r t i e s  may a l s o  vary widely. It can be made as a dense o r  as a 

very l i g h t  body; as a highly an i so t rop ic ,  o r  as an i s o t r o p i c  material; 

as a high-purity neutron moderator, o r  (by addi t ion  o f  a l i t t l e  boron) 

Other 

as a control-rod o r  s h i e l d  ma te r i a l ;  as a l u b r i c a n t ,  o r  an abras ive ;  

as an extremely low permeabi l i ty  gas b a r r i e r  (comparable t o  g l a s s )  o r  

as a highly porous f i l t e r .  

The f l e x i b i l i t y  o f f e red  t o  the designer  by t h i s  wide range of  

p rope r t i e s  i s  very valuable.  However, it does not come without some 

penal ty .  I t  a l s o  means t h a t  it may be very d i f f i c u l t  t o  ob ta in  s p e c i f i e d  

p rope r t i e s  wi th in  narrow l i m i t s  t h a t  are cons i s t en t  from ba tch  t o  batch.  

For new grades' t h e  p rope r t i e s  of  i n t e r e s t  and t h e i r  v a r i a t i o n  may not be 

known. These a r e  some of t h e  most s e r ious  problems w i t h  t he  use of  

g raph i t e  today. Improvements w i l l  only come as w e  are able t o  bet ter  

understand and con t ro l  t h e  f a b r i c a t i o n  process and provide r e l i a b l e  

des ign information. 
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The wide range of proper t ies  can u l t imate ly  be t r a c e d  back t o  t h e  

c r y s t a l  s t r u c t u r e  of  graphi te ;  t h i s  w i l l  be examined more c lose ly  i n  a 

later sec t ion .  But first,  we w i l l  consider some of t h e  methods of 

making graphi tes ,  

Although t h e  de t a i l ed  methods used f o r  a given grade of graphi te  

are usua l ly  highly p ropr i e t a ry ,  t h e  general  method of manufacturing 

po lyc rys t a l l i ne  materials has been f u l l y  described. 

coke i s  calcined at 13OO0C, milled, s i zed ,  and mixed at about 1 6 5 ' ~  

with a coa l - ta r  p i t ch .  

extruded. 

enough t o  be supported i n  a baking furnace by a permeable pack of sand 

and carbon. During baking t o  8oo0c, a l a r g e  volume of  gas i s  v o l a t i l i z e d  

by pyro lys i s  of t h e  p i t c h ,  and t h e  carbon body shr inks  about 5 vol .% 

during baking. 

furnace t o  250OoC t o  30OO0C. 

evolved, but t h e  p r inc ipa l  change i s  t o  transform t h e  amorphous carbon 

i n t o  c r y s t a l l i n e  graphi te .  

Raw petroleum 

This  mixture i s  then cooled t o  about l l O ° C  and 

Upon cooling t o  room temperature t h e  "green" body i s  r i g i d  

It can then be "graphitized" i n  an Acheson e l e c t r i c  

During g raph i t i za t ion  some f u r t h e r  gas i s  

There are many va r i a t ions  t o  t h i s  process t h a t  can markedly a f f e c t  

the  f i n a l  proper t ies .  Large changes a r e  observed w i t h  d i f f e r e n t  s t a r t i n g  

materials. The baked carbon is  o f t en  impregnated w i t h  p i t c h  before  

g raph i t i za t ion  t o  improve dens i ty  and s t r eng th ;  t h e  graphi t ized  body 

may a l s o  be heated i n  a halogen-containing gas t o  remove t r a c e  impur i t ies .  
... . 

Differen t  methods of forming, such as molding, are sometimes used. 
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High-purity graphi te  made by t h i s  process i s  a r e l a t i v e l y  inexpensive 

material. Current ly ,  unmachined grades cos t  $0.50 t o  $0.75 pe r  pound i n  

several-hundred-ton q u a n t i t i e s .  Machining adds $0.25 t o  $0.50  p e r  pound 

t o  t h e  cos t .  Very l a r g e  bars can now be produced. For example, t h e  core 

o f  t h e  Experimental Gas-Cooled Reactor shown i n  Figure 1 was assembled 

from monolithic columns 16-in. i n  c ross  sec t ion  and 20-ft. long. 

The conventional process must be modified i f  f u e l  p a r t i c l e e  a r e  

incorporated i n  t h e  mix, A thermo-sett ing r e s i n  i s  usua l ly  employed as 

t h e  b inder  and t h e  f i n a l  heat-treatment temperature must be l i m i t e d  t o  

about 20OO0C t o  prevent excessive r eac t ion  and d i f fus ion  of  t h e  uranium 

fue l .  The process used f o r  t h e  UHTREX f u e l  i s  descr ibed i n  a following 

paper. 

The manufacture of  boronated g raph i t e  f o r  f a s t - r eac to r  s h i e l d s  o r  

con t ro l  rods genera l ly  follows t h e  conventional method. Boron-carbide 

p a r t i c l e s  are added t o  the  o r i g i n a l  mix. The f i n a l  heat-treatment i s  

again l i m i t e d  t o  prevent excessive l o s s  of  boron. Temperatures up t o  

t h e  melting po in t  of boron carbide (~2450OC) and above can be used, 

although i f  t h i s  temperature i s  exceeded, ex tens ive  r e c r y s t a l l i z a t i o n  

of the  g raph i t e  and d ispers ion  of the  boron occurs ,  and r ad ia t ion  e f f e c t s  

6 i n  t h e  material are much larger. 

I n t e r e s t  i n  py ro ly t i c  carbons and g raph i t e s  has increased g r e a t l y  

i n  t h e  las t  10 yea r s ,  first f o r  rocket  nozzles  and re-entry s h i e l d s ,  and 

more r ecen t ly  as a coat ing for f u e l  p a r t i c l e s .  The carbon i s  made by 
n 
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pyro ly t i c  decomposition of  hydrocarbon gases.  98 For free-s tanding bodies , 
t h e  carbon i s  usua l ly  deposi ted on a graphi te  s u b s t r a t e  at temperatures 

of 1400 t o  2400'C. The p re fe r r ed  o r i e n t a t i o n ,  dens i ty ,  and o the r  p rope r t i e s  

can be var ied  widely by changes i n  gas pressure ,  temperature,  and o the r  

condi t ions ,  Subsequent heat-treatment t o  higher  temperatures improves t h e  

c r y s t a l l i n i t y .  

high temperatures (3000' - 3 6 0 0 ~ ~ )  exh ib i t  e l e c t r i c a l  p rope r t i e s  very 

c lose  t o  those  of s i n g l e  c r y s t a l s .  Larger samples s u i t a b l e  f o r  phys ica l  

Small samples (1 t o  5 mm) t h a t  have been heated t o  very 

property measurements and i r r a d i a t i o n  t e s t s  with near-s ingle-crystal  

p rope r t i e s  can be made by heat ing py ro ly t i c  g raph i t e  above 250OoC while 

under a compressive stress. 

Pyrolytic-carbon coat ings on f u e l  p a r t i c l e s  a r e  appl ied i n  a f l u i d i z e d  

bed. Fuel p a r t i c l e s  on t h e  order  of  150-2OOp diameter may be thorium o r  

uranium carbides  o r  oxides.  

th ickness  of  about 100~. A grea t  dea l  of work has been repor ted  on t h e  

prepara t ion ,  p r o p e r t i e s ,  and s t r u c t u r e  of coated f u e l  p a r t i c l e s ,  lo 

s e v e r a l  of t h e  papers i n  t h i s  sess ion  will deal with t h i s  t o p i c  i n  

The carbon coat ings are usua l ly  appl ied  t o  a 

and 

considerable  d e t a i l .  

Another c l a s s  of  i n t e r e s t i n g  materials i s  carbon and graphi te  fibers 

and f a b r i c s .  11,12 They are manufactured by pyro lys i s .  o f  rayon o r  

c e l l u l o s e  yarn o r  woven c l o t h  t o  a non-melting-char. Heating t o  1400'C 

y i e l d s  a carbonaceous product and f u r t h e r  heat ing t o  2700'C imparts a 

more g r a p h i t i c  s t r u c t u r e .  These products are now o f fe red  commercially i n  

t h e  form of c l o t h ,  f e l t ,  braided yarn ,  and chopped f i b e r s  i n  a v a r i e t y  of  

grades.  Carbon f i b e r s  a r e  a l s o  promising reinforcements f o r  metals 

composites. 
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A "glassy" carbon has been descr ibed t h a t  has some r a t h e r  i n t e r e s t i n g  

p rope r t i e s .  13-15 Although t h e  method of manufacture has not been descr ibed 

i n  much d e t a i l ,  it i s  bel ieved t o  be formed by c a r e f u l l y  hea t ing  c e r t a i n  

r e s i n s .  The t r i c k  i s  t o  decompose t h e  material without forming cracks 

when t h e  l a r g e  volume of  gases are evolved and t h e  body shr inks .  

You w i l l  s ee  from t h i s  b r i e f  review t h a t  t h e r e  a r e  many ways t o  make 

pure carbon materials. 

Figure 2. 

t hese  materials and i n d i c a t e  some of t h e i r  nuclear  app l i ca t ions .  

Some of t hese  ma te r i a l s  a r e  i l l u s t r a t e d  i n  

I would l i k e  now t o  descr ibe  t h e  s t r u c t u r e  and p rope r t i e s  of 

STRUCTURE AND MORPHOLOGY 

CRYSTAL STRUCTURE 

The c r y s t a l  s t r u c t u r e  of  graphi te  i s  shown i n  Figure 3. I n  t h e  most 

common form of g raph i t e  t h e  l a y e r  planes are s tacked ABAB... producing a 

hexagonal c r y s t a l  s t r u c t u r e .  A much less common form i s  the  rhombohedral 

s t r u c t u r e  i n  which t h e  l a y e r  planes are s tacked ABCABC.... The p rope r t i e s  

of t h e s e  two forms are almost i d e n t i c a l .  

Two important f ea tu re s  of  ,.the c r y s t a l  are u l t ima te ly  respons ib le  

f o r  many of t h e  unique p rope r t i e s  of  graphi te :  (1) t h e  system of s t rong  

chemical bonds forming l a r g e  shee t s  o f  hexagonal r ings  i n  which t h e  

e l ec t rons  are q u i t e  mobile; and ( 2 )  t h e  l a r g e  spacing and w e a k  bonding 

between t h e  l a y e r  planes.  The former accounts f o r  t h e  high s t r eng th  and 

good e l e c t r i c a l  and thermal conduct ivi ty  of  g raph i t e  i n  t h e  g d i rec t ion .  

The l a t t e r  accounts f o r  the  low shear  s t r eng th  i n  t he  a d i r e c t i o n  and 
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low conduc t iv i t i e s  i n  t h e  d i r ec t ion .  The high anisotropy,  good 

l u b r i c i t y ,  and some o f  t h e  r ad ia t ion  e f f e c t s  are a l s o  r e a d i l y  explained 

i n  terms of  t h e  s t r u c t u r e .  

POLYCRYSTALLINE GRAPHITE 

If t h e  p rope r t i e s  of  pe r f ec t  s i n g l e  c r y s t a l s  a r e  p red ic t ab le  and 

e a s i l y  understood, q u i t e  t h e  -opposite i s  t r u e  of non-perfect p o l y c r y s t a l l i n e  

g raph i t e ,  All graphi tes  used i n d u s t r i a l l y  have a v a r i e t y  of c r y s t a l  de fec t s  

t h a t  change t h e  p rope r t i e s  of t h e  c r y s t a l s ;  b u t ,  perhaps more important ly ,  

t h e  coke p a r t i c l e s  (conta in ing  o r i en ted  c r y s t a l l i t e s )  a r e  almost randomly 

arranged and he ld  toge ther  by a less w e l l  ordered binder  phase. Figure 4 

shows t h e  morphology of a t y p i c a l  nuclear  graphi te  at seve ra l  magnif icat ions.  

F i l l e r  p a r t i c l e s  i n  t h e  o r i g i n a l  mix can be o f t e n  i d e n t i f i e d ,  which, a f t e r  

g r a p h i t i z a t i o n ,  cons i s t  of many c r y s t a l s  genera l ly  o r i en ted  i n  a pe r fe r r ed  

d i r e c t i o n .  These a r e  he ld  toge ther  by t h e  g raph i t i zed  p i t c h  b inder ,  which 

is  composed of smaller  c r y s t a l l i t e s  with more random o r i e n t a t i o n .  I f  

carbon blacks are added t o  t h e  mix, as i s  sometimes done t o  increase  

dens i ty  and s t r eng th ,  t h e s e  can gene ra l ly  be i d e n t i f i e d  i n  t h e  e l ec t ron  

microscope. 16 

The columnar and gas-nucleated s t r u c t u r e s  o f  py ro ly t i c  g raph i t e  a r e  

shown i n  Figure 5. 

not  pe r f ec t .  

o r i e n t a t i o n  i s  very high. 

t h e  planes and produces a material with p rope r t i e s  as near  t o  those  o f  a 

s i n g l e  c r y s t a l  as i s  p resen t ly  ava i l ab le .  

Both materials are very dense,  bu t  t h e  c r y s t a l s  are 

The l a y e r  planes are buckled and warped, although t h e  p re fe r r ed  

S t r e s s  annealing above 250OoC tends t o  s t r a i g h t e n  
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The c r y s t a l l i t e s  i n  "glassy" carbon are very s m a l l  and randomly or iented.  

Figure 6a i s  a micrograph of Grade GC-30  manufactured by Tokai Electrode. 

This ma te r i a l ,  which has been heat- t reated t o  30OO0C,  has an extremely f ine-  

gra in  s t r u c t u r e ;  i n  f a c t  no texture at a l l  i s  seen by b r igh t  f i e l d ,  s e n s i t i v e  

t i n t ,  o r  po lar ized  l i g h t  at a magnification of 75X. The r e s i n s  used t o  produce 

g lassy  carbon do not g raph i t i ze  wel l  even a t  30OO0C.  

@ 

In  Figure 6b t h e  s t r u c t u r e  of  s t ress-annealed py ro ly t i c  is  shown. This 

material, which i s  probably t h e  most c r y s t a l l i n e  of a l l  syn the t i c  g raph i t e s ,  

w a s  made by compressing py ro ly t i c  graphi te  a t  about 4000 p s i  at 2 8 0 O O C .  

The very f i n e  texture  observed i s  seen only under polar ized  l i g h t  very near  

t h e  ex t inc t ion  angle. The misorientat ion of t h e  f ine!  p l a t e l e t s  i s  very small 
,:-I 

and cannot be observed by s e n s i t i v e - t i n t  _- illumination:- The cont ras t  produced 

by p l a t e l e t s  near t h e  edge t h a t  were deformed by machining of t h e  sample 

i l l u s t r a t e  t h e  high degree of  prefer red  alignment within t h e  bulk of t h e  

, *- 
/- 

/ 

,. e- specimen. 

As might be expected from t h e  extremely an iso t ropic  na ture  of  graphi te  

c r y s t a l s ,  most graphi te  bodies are an iso t ropic .  The s t a r t i n g  coke p a r t i c l e s  

have a flake o r  needle shape t o  varying degrees,  and these  a re  o r i en ted  
/ 

during molding o r  ex t rus ion  t o  produce a body with p re fe r r ed  o r i en ta t ion .  

Spec ia l  s t a r t i n g  materials and processes can be used t o  make an almost 

completely is  o t  rop i  c m a t  e ri a1 . -. 

Pyroly t ic  graphi te  i s  t h e  most aniso t ropic  of t h e  graphi tes  used i n  

nuclear  appl icat ions;  but  again,  va r i a t ions  i n  deposi t ion .conditions can 

be used t o  change t h e  anisotropy. Glassy carbon is  q u i t e  i so t rop ic .  

PROPERTIES 
NUCLEAR PROPERTIES 

Because carbon is  a r e l a t i v e l y  l i g h t  atom, graphi te  i s  an e f f i c i e n t  

moderator, 

down power. 

A f igu re  of merit sometimes appl ied t o  moderators i s  t h e  slowing- 

It i s  t h e  average logari thmic energy change of  a neutron when it 



# 

c o l l i d e s  with a moderator atom divided by t h e  mean f r e e  pa th  between 

c o l l i s i o n s .  

power is  0.063 cm'l. 

and seve ra l  o t h e r  materials (Be, BeO, and D20) rank higher  than graphi te .  

second requirement i s  t h a t  a moderator must not absorb many thermal neutrons.  

On t h i s  score ,  g raphi te  i s  very good, being outranked only by D20. 

For nuclear  graphi te  w i t h  a dens i ty  of 1.65 g/cm3 t h e  slowing-down 

Light water has  t he  h ighes t  slowing-down power (1.5 cm") 

A 

8 

Graphite is  a l s o  used as a combined moderator and neutron absorber t o  

s h i e l d  fast r e a c t o r s ,  i n  which case a nuclear  poison such as boron i s  added 

t o  t h e  g raph i t e  mix. The carbon atoms moderate t h e  fast neutrons,  which can 

then be captured by t h e  boron. 
z 

STRENGTH 

A t  low temperatures graphi te  i s  r e l a t i v e l y  weak when compared with o t h e r  

s t r u c t u r a l  mater ia l s .  This w a s  not a ser ious  problem a few years  ago when 

g raph i t e  w a s  used exc lus ive ly  as a moderator and only needed t o  have a 

compressive s t r eng th  of  a f e w  thousand pounds pe r  square inch. However, i n  

- 

/' 

recent  yea r s ,  much more i s  being asked of  g raph i t e ,  and good cons i s t en t  I 

s t r eng th  i s  needed. 

' /  One of the  outs tanding p rope r t i e s  of graphi te  is  i t s  high-temperature 

s t rength .  I n  con t r a s t  t o  most m a t e r i a l s ,  s t r eng th  increases  with temperature 

t o  very high temperatures,  reaching a m a x i m u m  at about 25OOOC. 

po lyc rys t a l l i ne  nuclear  graphi te .  with a - - t e n s i l e  s t r eng th  of  2000 p s i  at  room 

A t y p i c a l  

temperatur,e would have a s t r eng th  at  250OoC of about 4000 ps i .  Because 

g raph i t e  i s  a l i g h t  material, i t s  strength-to-weight r a t i o  i s  a l s o  outs tanding,  

and i n  f a c t  i s  b e t t e r  than  any known material above about 1500OC. 

good high-temperature s t r eng th ,  good nuclear  p r o p e r t i e s ,  and l o w  cos t  are t h e  

"he very 

t h r e e  major reasons f o r  i t s  extensive use i n  high-tempeaature gas-cooled and 

n 
nuclear  propuls ion r eac to r s .  
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THERMAL CONDUCTIVITY 

The thermal conduct ivi ty  of graphi te  can be var ied  widely as,shown 

i n  Table I. 

TABLE I 

Typical Values of Thermal Conductivity a t  Room Temperature 

Moderator Graphite (w.g.)* 
(Type CSF) ( a .g . )  

F'yrolytic Graphite (w.g. ) 
(Annealed at 330OOC) (a .  g . ) 
Pyroly t ic  Graphite (w.g. ) 

(Annealed at 2900°C)(a.g. ) 

Low Density Carbon (w.g.) 
( p  = 0.73 g/cm3) (a.g.1 

Boronated Graphite (w.g. 
( 7  w t %  B4C) (a .g .  1 

cal/cm-sec-°C BTU/hr-ft-OF 

0.40 
0.26 

97 
63 

3.8 920 
0.018 4.3 

2.6 - 628 

0.0015 0.36 

0.202 48.9 
0.142 34.4 

Carbon F e l t  8.6 x 0.021 

Glassy Carbon (Grade GC-20) 0.021 5.0 

* w.g. = with gra in  .a.g.  = agains t  g ra in  

The thermal conduct ivi ty  above room temperature does not change 

d r a s t i c a l l y  with temperature because, except i n  t h e  case of  extremely 

c r y s t a l l i n e  graphi te ,  t h e  mean f r e e  path of l a t t i c e  waves carrying t h e  

hea t  i s  l imi t ed  by temperature-independent s c a t t e r i n g  at c r y s t a l  

boundaries. The temperature dependence of thermal conduct ivi ty  f o r  

s eve ra l  materials i s  shown i n  Figure 7. 

Ref. 

(17) 

- 

( 1 9 )  

(20) 
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CHEMICAL PROPERTIES 

A t  low temperature,  g raphi te  i s  i n e r t  t o  a l l  but t h e  s t ronges t  

Q 

oxid iz ing  agents.  However, i t s  r eac t ion  proceeds at a measurable rate 

(10'6 hr-1) with oxygen at 38OoC, water vapor a t  625Oc, and carbon dioxide 

and hydrogen a t  about 7 5 O o C  when any of  these  gases  are present  a t  

atmospheric pressure.  

reac t ions .  22 

cause acce lera ted  a t t ack .  

hydrogen 24 w i l l  i n h i b i t  the oxidat ion by gases t o  some degree,  bu t  i n  

genera l  it i s  necessary t o  use graphi te  i n  an i n e r t  atmosphere o r  coat  it 

with a s u i t a b l e  material. Carbides of  s i l i c o n ,  tantalum, zirconium, and 

niobium have been used with varying degrees of  success as coat ing on 

graphi te .  

A g r e a t  dea l  of work has been published on these  

Traces of c e r t a i n  impur i t ies  such as vanadium and i r o n  can 

Certain gases such as carbon monoxide 23 and 

Graphite i s  compatible with seve ra l  l i q u i d  meta ls ,  notably bismuth, 

l e a d ,  t i n ,  magnesium, and aluminum. 

r e a c t  r ap id ly  with g raph i t e ,  causing it t o  swel l .  

Sodium and t h e  o the r  a lka l i  metals 

Copper is one of t h e  least  r e a c t i v e  metals w i t h  g raphi te .  It does 

not form a carbide and t h e  s o l u b i l i t y  i n  g raph i t e  i s  immeasurably s m a l l .  

Nickel,  l i k e  copper, does not  form a carb ide ,  bu t  d i sso lves  0.65 w t . %  

carbon a t  t h e  e u t e c t i c  temperature (1316Oc). 

Much work has been done on t h e  compat ib i l i ty  of iron-chromium and 

iron-chromium-aluminum a l l o y s  with graphi te .  25 

occurs t o  varying degrees ,  t hese  a l loys  a r e  genera l ly  use fu l  t o  about 800OC. 

The high s o l u b i l i t y  of carbon i n  a u s t e n i t e  gives  t h e  a u s t e n i t i c  s t e e l s  a 

Although carbide formation 

r e l a t i v e l y  low re s i s t ance  t o  carbur iza t ion .  

11 



MISCELLANEOUS PROPERTIES 

n 

Graphite is e a s i l y  machined; however, if it contains  non-graphitic 

carbon o r  hard p a r t i c l e s  such as carb ides ,  t o o l  wear i s  rap id .  

Moderator graphi tes  a r e  usua l ly  q u i t e  porous, having a t o t a l  pore 

volume of about 25% and a permeabi l i ty  of 

permeabi l i ty  can be reduced t o  10-6 - 10-7 cm*/sec. i n  a f ine-grained base 

t o  loe3 cm2/sec. The 

s tock  by mul t ip le  impregnation and carbonizat ion.  

I f  f r e e  of  c racks ,  py ro ly t i c  graphi te  and g lassy  carbon are p r a c t i c a l l y  

impermeable, having permeabi l i t i es  comparable t o  ordinary g l a s s .  

Graphites can be made with a wide range of d e n s i t i e s .  Typical values  

are shown i n  Table 11. By far  t h e  most common values f o r  a l l  but t h e  

"spec ia l ty"  ma te r i a l s  range from 1 .5  - 1 .6  g/cm3. 

TABLE 11. Typical Dens i t ies  of  Carbons and Graphites 

Mat e r i  a1 Bulk Density,  g/cm3 

Single  Crys ta l s  ( t h e o r e t i c a l  dens i ty )  

Moderator Graphite 

Spec ia l  Po lyc rys t a l l i ne  Graphites 

F'yrolytic Carbon and Graphite 

Carbon F e l t  

Glassy Carbon 

Porous Carbon and Graphite 

2.26 

1.5 - 1.7 

1 .0  - 1.9 

1.2 - 2.2 

0.08 - 0.17 

1 . 5  

0.6 - 1.3 

12 



NUCLEAR APPLICATIONS 

MODERATOR 

Graphite has found most use as a moderator mater ia l .  In  1962 about 

80,000 tons  of g raph i t e  were i n  use i n  the  United S t a t e s ,  England, and 

France, and a l a r g e  add i t iona l  amount of l e s s  pure material was being 

used i n  r e f l e c t o r s ,  

Recently completed graphi te  r eac to r s  i n  t h e  United S t a t e s  include:  

Hanford N-Reactor; H a l l a m  Sodium-Cooled Reactor;  Experimental Gas-Cooled 

Reactor (EGCR) ; Peach Bottom High-Temperature Gas-Cooled Reactor (HTGR) ; 

Ultra-High-Temperature Reactor Experiment (UHTREX) ; Molten-Salt Reactor 

Experiment (MSRE) ; and t h e  nuclear  propulsion r eac to r s  ( K I W I  and NERVA) . 

I n  add i t ion  t o  p ro jec t s  i n  t h e  United S t a t e s ,  r eac to r  development i n  

England and France has concentrated heavi ly  on graphite-moderated gas- 

cooled r e a c t o r s  and a number of  l a r g e  power r eac to r s  have been and a r e  

now being b u i l t .  

P rope r t i e s  of most i n t e r e s t  f o r  moderator appl ica t ions  are p u r i t y ,  

chemical r e a c t i v i t y ,  s t r eng th ,  thermal conduct iv i ty ,  radiation-induced 

creep,  and dimensional s t a b i l i t y .  The l a t t e r  problem has r e s u l t e d  i n  

a g rea t  dea l  of research t o  develop more s t a b l e  materials. In  t h e  United 

S t a t e s  t h e  work has concentrated on r a d i a t i o n  e f f e c t s  at 500 - 12OO0C, 

whereas, most i n t e r e s t  i n  England i s  i n  t h e  range 350 - 650'~. One o f  

the  papers 26 i n  t h i s  symposium w i l l  consider  t h e  problems o f  r ad ia t ion  

e f f e c t s  i n  graphi te .  

1 3  



- .  

A 

For high-temperature gas-cooled r eac to r  app l i ca t ions  i n  t he  United 

States, much more information is needed on t h e  dimensional s t a b i l i t y  and 

creep rates at 8OOOC and above a t  exposures i n  t h e  range 1021 - 
neutrons/cm2. 

t h e  most promising. 

I s o t r o p i c  graphi tes  with good c r y s t a l l i n i t y  appear t o  be 

MATRIX MATERIALS 

As discussed i n  much d e t a i l  a t  t h i s  symposium, g raph i t e  i s  used as 

a matrix f o r  f u e l  p a r t i c l e s .  Current ly ,  these materials are used i n  t h e  

UHTREX, Peach Bottom, and NERVA r eac to r s .  Most e f f o r t  has been d i r e c t e d  

t o  development of f u e l  p a r t i c l e s  t h a t  w i l l  r e t a i n  f i s s i o n  gases .  The 

progress  on coated p a r t i c l e s  i n  t h e  l as t  few years  has made it unnecessar$f 

t o  use low-permeability g raph i t e  f u e l  cans. 

Poisoned graphi te  i s  used as a neutron s h i e l d  i n  t h e  FERMI Reactor 

and f a s t - r eac to r s  i n  Europe and w i l l  c e r t a i n l y  be a candidate  f o r  f u t u r e  

fast r eac to r s .  

boron) i n  graphi te .  

t h a t  it has poorer dimensional s t a b i l i t y  than non-boronated material. 6 

However, it w i l l  a lso  be exposed t o  a much lower neutron dose. 

The s h i e l d  i n  FERMI i s  a matr ix  of B,C p a r t i c l e s  ( 5  - 7 w t %  

The l i m i t e d  amount of data on t h i s  material i n d i c a t e s  

OTHER APPLICATIONS 

There are a number of  s p e c i a l  nuc lear  app l i ca t ions  of g raph i t e  t h a t  

take advantage o f  one o r  more o f  i t s  p rope r t i e s .  I n  UHTREX, porous carbon 

is  used as a high-temperature thermal i n s u l a t o r .  Graphite containing 

boron carbide i s  a l s o  used as con t ro l  rods i n  seve ra l  r eac to r s .  In  f u t u r e  

14 



high-temperature r e a c t o r s ,  g raphi te  w i l l  probably be used t o  contain loose  

fuel p a r t i c l e s .  The nuclear  propulsion r eac to r s  contain many p a r t s  made 

from carbons and graphi tes  t o  se rve  s p e c i a l  needs,  and we can expect t h a t  

such s p e c i a l t y  app l i ca t ions  w i l l  f i n d  more use as t h e  t r e n d  t o  higher  

temperature continues i n  o the r  r eac to r s .  
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FIGURE 2 

Materials and Shapes Made E n t i r e l y  of Carbon. 
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FIGURE 3 

' Crystal Structure of Graphite. 
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Texture of "glassy" carbon manufactured by Tokai Electrode 
(Grade CC-30). Bright - f ie ld  i l l umina t ion  at 75X. 

FIGURE 6b \ 

Stress-annealed p y r o l y t i c  graphi te .  Polar ized- l igh t  
i l l umina t ion  at 75X. 
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